APPENDIX G

Section 8

Outfall 009, October 14, 2009 Test America Analytical Laboratory Reports

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 10/14/09

Received: 10/14/09

Issued: 11/30/09 12:28

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID CLIENT ID MATRIX
ISJ1373-01 Outfall 009 Water

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

TestAmerica Irvine

Joseph Dock

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/14/09

Arcadia, CA 91007 Report Number: ISJ1373 Received: 10/14/09

Attention: Bronwyn Kelly

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1373-01 (Outfall 009 -	Water)								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	9J19044	1.4	4.9	ND	1	DA	10/20/09	
Grease)									

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: ISJ1373 Sampled: 10/14/09
Received: 10/14/09

Attention: Bronwyn Kelly

Arcadia, CA 91007

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1373-01 (Outfall 009 - V	Vater) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8	9J16097	0.30	2.0	0.43	1	NH	10/17/09	J
Cadmium	EPA 200.8	9J16097	0.10	1.0	ND	1	NH	10/17/09	
Copper	EPA 200.8	9J16097	0.50	2.0	5.3	1	NH	10/17/09	
Lead	EPA 200.8	9J16097	0.20	1.0	2.2	1	NH	10/17/09	
Thallium	EPA 200.8	9J16097	0.20	1.0	ND	1	NH	10/17/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/14/09

Arcadia, CA 91007 Report Number: ISJ1373 Received: 10/14/09

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1373-01 (Outfall 009 - V	Vater) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	9J20101	0.30	2.0	0.71	1	BR	10/20/09	J
Cadmium	EPA 200.8-Diss	9J20101	0.10	1.0	ND	1	BR	10/20/09	
Copper	EPA 200.8-Diss	9J20101	0.50	2.0	5.6	1	BR	10/20/09	В
Lead	EPA 200.8-Diss	9J20101	0.20	1.0	0.78	1	BR	10/20/09	J
Thallium	EPA 200.8-Diss	9J20101	0.20	1.0	ND	1	BR	10/20/09	

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/14/09

Arcadia, CA 91007 Report Number: ISJ1373 Received: 10/14/09

INORGANICS

Analyte Sample ID: ISJ1373-01 (Outfall 009 - W	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Reporting Units: mg/l	,								
Chloride	EPA 300.0	9J15061	0.25	0.50	2.1	1	MN	10/15/09	
Nitrate/Nitrite-N	EPA 300.0	9J15061	0.15	0.26	0.67	1	MN	10/15/09	
Sulfate	EPA 300.0	9J15061	0.20	0.50	4.7	1	MN	10/15/09	
Total Dissolved Solids	SM2540C	9J19008	1.0	10	45	1	MC	10/19/09	
Sample ID: ISJ1373-01 (Outfall 009 - W Reporting Units: ug/l	ater)								
Perchlorate	EPA 314.0	9J15069	0.90	4.0	ND	1	MN	10/15/09	

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISJ1373

Sampled: 10/14/09
Received: 10/14/09

Attention: Bronwyn Kelly

DIOXIN (EPA 1613)

		DIOAIN	(E1 A 1013)					
			Reporting	Sample	Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Analyst	Analyzed	Qualifiers
Sample ID: ISJ1373-01 (Outfall 0	09 - Water) - cont.							
Reporting Units: ug/L								
2,3,7,8-TCDD	1613-Dioxin-HR Alta	2469	0.00000496	ND	1	JMH	10/22/09	
1,2,3,7,8-PeCDD	1613-Dioxin-HR Alta	2469	0.0000248	0.00000190	1	JMH	10/22/09	Ja
1,2,3,4,7,8-HxCDD	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,6,7,8-HxCDD	1613-Dioxin-HR Alta	2469	0.0000248	0.00000675	1	JMH	10/22/09	Ja
1,2,3,7,8,9-HxCDD	1613-Dioxin-HR Alta	2469	0.0000248	0.00000800	1	JMH	10/22/09	Ja
1,2,3,4,6,7,8-HpCDD	1613-Dioxin-HR Alta	2469	0.0000248	0.000146	1	JMH	10/22/09	
OCDD	1613-Dioxin-HR Alta	2469	0.0000496	0.00129	1	JMH	10/22/09	
2,3,7,8-TCDF	1613-Dioxin-HR Alta	2469	0.00000496	ND	1	JMH	10/22/09	
1,2,3,7,8-PeCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
2,3,4,7,8-PeCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,4,7,8-HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	0.00000153	1	JMH	10/22/09	Ja
1,2,3,6,7,8-HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
2,3,4,6,7,8-HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	0.00000167	1	JMH	10/22/09	Ja
1,2,3,7,8,9-HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,4,6,7,8-HpCDF	1613-Dioxin-HR Alta	2469	0.0000248	0.0000161	1	JMH	10/22/09	Ja
1,2,3,4,7,8,9-HpCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
OCDF	1613-Dioxin-HR Alta	2469	0.0000496	0.0000663	1	JMH	10/22/09	
Total TCDD	1613-Dioxin-HR Alta	2469	0.00000496	ND	1	JMH	10/22/09	
Total PeCDD	1613-Dioxin-HR Alta	2469	0.0000248	0.00000190	1	JMH	10/22/09	
Total HxCDD	1613-Dioxin-HR Alta	2469	0.0000248	0.0000302	1	JMH	10/22/09	
Total HpCDD	1613-Dioxin-HR Alta	2469	0.0000248	0.000287	1	JMH	10/22/09	
Total TCDF	1613-Dioxin-HR Alta	2469	0.00000496	ND	1	JMH	10/22/09	
Total PeCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
Total HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	0.00000525	1	JMH	10/22/09	
Total HpCDF	1613-Dioxin-HR Alta	2469	0.0000248	0.0000388	1	JMH	10/22/09	
Surrogate: 13C-2,3,7,8-TCDD (25-	-164%)			81.2 %				
Surrogate: 13C-1,2,3,7,8-PeCDD ((25-181%)			77.5 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDL	0 (32-141%)			70.2 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDL	0 (28-130%)			61.2 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCL	DD (23-140%)			72.4 %				
Surrogate: 13C-OCDD (17-157%)				62.5 %				
Surrogate: 13C-2,3,7,8-TCDF (24-	169%)			73.4 %				
Surrogate: 13C-1,2,3,7,8-PeCDF ((24-185%)			71 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-178%)			71.7 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF	F (26-152%)			72.5 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF	F (26-123%)			66.2 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF				69.8 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF	,			73.5 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCL				72 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCL				71.9 %				
Surrogate: 13C-OCDF (17-157%)				64.4 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 10/14/09 Report Number: ISJ1373

Attention: Bronwyn Kelly

Arcadia, CA 91007

Received: 10/14/09

DIOXIN (EPA 1613)

			Reporting	Sample	Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Analyst	Analyzed	Qualifiers

Sample ID: ISJ1373-01 (Outfall 009 - Water) - cont.

Reporting Units: ug/L

Surrogate: 37Cl-2,3,7,8-TCDD (35-197%) 104 %

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: ISJ1373 Sampled: 10/14/09
Received: 10/14/09

Attention: Bronwyn Kelly

Arcadia, CA 91007

ort Number: 18J13/3 Re

MCAWW 245.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers		
Sample ID: ISJ1373-01 (Outfall 009 - Water) - cont.											
Reporting Units: ug/L											
Mercury	MCAWW 245.1	9293508	0.027	0.2	ND	1	CG	10/21/09			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Data

Qualifiers

MWH-Pasadena/Boeing

Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: ISJ1373 Sampled: 10/14/09
Received: 10/14/09

Arcadia, CA 91007 Attention: Bronwyn Kelly

Analyte

MCAV	VW 24	5.1-DISS				
	MDL	Reporting	Sample	Dilution		Date
Batch	Limit	Limit	Result	Factor	Analyst	Analyzed

Sample ID: ISJ1373-01 (Outfall 009 - Water) - cont.

Reporting Units: ug/L

Mercury MCAWW 245.1-DISS 9293522 0.027 0.2 ND 1 CG 10/21/09

Method

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Semi-Annual Outfall 009

Sampled: 10/14/09

Report Number: ISJ1373

Received: 10/14/09

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 (ISJ1373-01) - Water					
EPA 300.0	2	10/14/2009 08:10	10/14/2009 19:05	10/15/2009 13:30	10/15/2009 15:02
Filtration	1	10/14/2009 08:10	10/14/2009 19:05	10/15/2009 11:52	10/15/2009 11:53

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/14/09

Report Number: ISJ1373

Received: 10/14/09

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9J19044 Extracted: 10/19/09										
Blank Analyzed: 10/20/2009 (9J19044-BI	LK1)									
Hexane Extractable Material (Oil & Grease)	ND	5.0	mg/l							
LCS Analyzed: 10/20/2009 (9J19044-BS1)									MNR1
Hexane Extractable Material (Oil & Grease)	20.4	5.0	mg/l	20.0		102	78-114			
LCS Dup Analyzed: 10/20/2009 (9J19044	-BSD1)									
Hexane Extractable Material (Oil & Grease)	20.3	5.0	mg/l	20.0		102	78-114	1	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Semi-Annual Outfall 009

Report Number: ISJ1373

Sampled: 10/14/09

Received: 10/14/09

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
•	Result	Limit	Cints	Level	Result	/orec	Limits	KI D	Limit	Quanners
Batch: 9J16097 Extracted: 10/16/09										
Blank Analyzed: 10/16/2009 (9J16097-Bl	LK1)									
Antimony	ND	2.0	ug/l							
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Thallium	ND	1.0	ug/l							
LCS Analyzed: 10/16/2009 (9J16097-BS1	.)									
Antimony	88.6	2.0	ug/l	80.0		111	85-115			
Cadmium	86.0	1.0	ug/l	80.0		107	85-115			
Copper	79.0	2.0	ug/l	80.0		99	85-115			
Lead	79.2	1.0	ug/l	80.0		99	85-115			
Thallium	76.8	1.0	ug/l	80.0		96	85-115			
Matrix Spike Analyzed: 10/17/2009 (9J10	6097-MS1)				Source: Is	SJ1191-01				
Antimony	87.4	2.0	ug/l	80.0	ND	109	70-130			
Cadmium	84.2	1.0	ug/l	80.0	ND	105	70-130			
Copper	94.5	2.0	ug/l	80.0	19.7	93	70-130			
Lead	77.5	1.0	ug/l	80.0	2.22	94	70-130			
Thallium	73.8	1.0	ug/l	80.0	ND	92	70-130			
Matrix Spike Analyzed: 10/17/2009 (9J10	6097-MS2)				Source: I	SJ1400-03				
Antimony	91.0	2.0	ug/l	80.0	ND	114	70-130			
Cadmium	85.8	1.0	ug/l	80.0	ND	107	70-130			
Copper	73.1	2.0	ug/l	80.0	0.808	90	70-130			
Lead	75.4	1.0	ug/l	80.0	ND	94	70-130			
Thallium	74.4	1.0	ug/l	80.0	ND	93	70-130			
Matrix Spike Dup Analyzed: 10/17/2009	(9J16097-M	SD1)			Source: I	SJ1191-01				
Antimony	86.9	2.0	ug/l	80.0	ND	109	70-130	1	20	
Cadmium	84.1	1.0	ug/l	80.0	ND	105	70-130	0	20	
Copper	93.5	2.0	ug/l	80.0	19.7	92	70-130	1	20	
Lead	77.3	1.0	ug/l	80.0	2.22	94	70-130	0	20	
Thallium	73.4	1.0	ug/l	80.0	ND	92	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Semi-Annual Outfall 009

Sampled: 10/14/09

Report Number: ISJ1373

Received: 10/14/09

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9J20101 Extracted: 10/20/09										
Blank Analyzed: 10/20/2009 (9J20101-Bl		2.0	/1							
Antimony	ND	2.0	ug/l							
Cadmium	ND	1.0	ug/l							
Copper	1.38	2.0	ug/l							J
Lead	ND	1.0	ug/l							
Thallium	ND	1.0	ug/l							
LCS Analyzed: 10/20/2009 (9J20101-BS1	.)									
Antimony	85.5	2.0	ug/l	80.0		107	85-115			
Cadmium	84.7	1.0	ug/l	80.0		106	85-115			
Copper	79.4	2.0	ug/l	80.0		99	85-115			
Lead	80.6	1.0	ug/l	80.0		101	85-115			
Thallium	82.3	1.0	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 10/20/2009 (9J20	0101-MS1)				Source: Is	SJ1373-01				
Antimony	86.1	2.0	ug/l	80.0	0.709	107	70-130			
Cadmium	84.0	1.0	ug/l	80.0	ND	105	70-130			
Copper	84.7	2.0	ug/l	80.0	5.64	99	70-130			
Lead	79.6	1.0	ug/l	80.0	0.780	99	70-130			
Thallium	80.9	1.0	ug/l	80.0	ND	101	70-130			
Matrix Spike Analyzed: 10/20/2009 (9J20	0101-MS2)				Source: Is	SJ1376-01				
Antimony	84.4	2.0	ug/l	80.0	0.839	104	70-130			
Cadmium	81.8	1.0	ug/l	80.0	0.186	102	70-130			
Copper	80.5	2.0	ug/l	80.0	3.51	96	70-130			
Lead	77.5	1.0	ug/l	80.0	0.241	97	70-130			
Thallium	81.0	1.0	ug/l	80.0	ND	101	70-130			
Matrix Spike Dup Analyzed: 10/20/2009	(9J20101-M	SD1)			Source: Is	SJ1373-01				
Antimony	87.2	2.0	ug/l	80.0	0.709	108	70-130	1	20	
Cadmium	83.8	1.0	ug/l	80.0	ND	105	70-130	0	20	
Copper	84.6	2.0	ug/l	80.0	5.64	99	70-130	0	20	
Lead	79.3	1.0	ug/l	80.0	0.780	98	70-130	0	20	
Thallium	81.2	1.0	ug/l	80.0	ND	101	70-130	0	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/14/09

Report Number: ISJ1373

Received: 10/14/09

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 9J15061 Extracted: 10/15/09	resuit	Limit	Circs	Level	resurt	/UKEC	Limits	KI D	Limit	Quanners
Batch: 9315001 Extracted: 10/15/09										
Blank Analyzed: 10/15/2009 (9J15061-Bl	LK1)									
Chloride	ND	0.50	mg/l							
Nitrate/Nitrite-N	ND	0.26	mg/l							
Sulfate	ND	0.50	mg/l							
LCS Analyzed: 10/15/2009 (9J15061-BS1)									
Chloride	5.13	0.50	mg/l	5.00		103	90-110			
Sulfate	10.2	0.50	mg/l	10.0		102	90-110			
Matrix Spike Analyzed: 10/15/2009 (9J15	5061-MS1)				Source: I	SJ1472-08	3			
Chloride	7.13	0.50	mg/l	5.00	2.04	102	80-120			
Sulfate	13.1	0.50	mg/l	10.0	2.87	102	80-120			
Matrix Spike Analyzed: 10/15/2009 (9J15	5061-MS2)				Source: I	SJ1367-01	L			
Chloride	39.2	2.5	mg/l	10.0	28.7	105	80-120			
Sulfate	47.6	2.5	mg/l	20.0	25.0	113	80-120			
Matrix Spike Dup Analyzed: 10/15/2009	(9J15061-M	SD1)			Source: I	SJ1472-08	3			
Chloride	7.08	0.50	mg/l	5.00	2.04	101	80-120	1	20	
Sulfate	13.1	0.50	mg/l	10.0	2.87	102	80-120	0	20	
Batch: 9J15069 Extracted: 10/15/09										
Blank Analyzed: 10/15/2009 (9J15069-Bl	LK1)									
Perchlorate	ND	4.0	ug/l							
LCS Analyzed: 10/15/2009 (9J15069-BS1)									
Perchlorate	25.5	4.0	ug/l	25.0		102	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/14/09

Report Number: ISJ1373

Received: 10/14/09

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 9J15069 Extracted: 10/15/09						,,,,,,,				C
Matrix Spike Analyzed: 10/15/2009 (9J1:	5069-MS1)				Source: I	SJ1179-03				
Perchlorate	37.1	4.0	ug/l	25.0	12.1	100	80-120			
Matrix Spike Dup Analyzed: 10/15/2009	(9J15069-MS	D1)			Source: I	SJ1179-03				
Perchlorate	37.6	4.0	ug/l	25.0	12.1	102	80-120	1	20	
Batch: 9J19008 Extracted: 10/19/09										
Blank Analyzed: 10/19/2009 (9J19008-Bl	LK1)									
Total Dissolved Solids	ND	10	mg/l							
LCS Analyzed: 10/19/2009 (9J19008-BS1	.)									
Total Dissolved Solids	1000	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 10/19/2009 (9J19008	B-DUP1)				Source: I	SJ1307-01				
Total Dissolved Solids	1520	10	mg/l		1500			1	10	

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/14/09

Arcadia, CA 91007 Report Number: ISJ1373 Received: 10/14/09

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 2469 Extracted: 10/19/09										
DI I A I I 10/22/2000 (AFD001)					C					
Blank Analyzed: 10/22/2009 (MB001)	ND	0.00000500	/I		Source:		50 150		25	
2,3,7,8-TCDD	ND ND	0.00000500 0.0000250	ug/L				50-150 50-150		25 25	
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND	0.0000250	ug/L ug/L				50-150		25	
1,2,3,6,7,8-HxCDD	ND ND	0.0000250	ug/L ug/L				50-150		25	
1,2,3,7,8,9-HxCDD	ND	0.0000250	ug/L ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDD	ND	0.0000250	ug/L ug/L				50-150		25	
OCDD	ND	0.0000230	ug/L ug/L				50-150		25	
2,3,7,8-TCDF	ND	0.0000500	ug/L ug/L				50-150		25	
1,2,3,7,8-PeCDF	ND	0.0000300	ug/L ug/L				50-150		25	
2,3,4,7,8-PeCDF	ND	0.0000250	ug/L ug/L				50-150		25	
1,2,3,4,7,8-HxCDF	ND	0.0000250	ug/L ug/L				50-150		25	
1,2,3,6,7,8-HXCDF	ND	0.0000250	ug/L ug/L				50-150		25	
2,3,4,6,7,8-HxCDF	ND	0.0000250	ug/L ug/L				50-150		25	
1,2,3,7,8,9-HxCDF	ND	0.0000250	ug/L ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDF	ND	0.0000250	ug/L ug/L				50-150		25	
1,2,3,4,7,8,9-HpCDF	ND	0.0000250	ug/L ug/L				50-150		25	
OCDF	ND	0.0000500	ug/L ug/L				50-150		25	
Total TCDD	ND	0.0000500	ug/L				50-150		25	
Total PeCDD	ND	0.0000250	ug/L ug/L				50-150		25	
Total HxCDD	ND	0.0000250	ug/L ug/L				50-150		25	
Total HpCDD	ND	0.0000250	ug/L ug/L				50-150		25	
Total TCDF	ND	0.00000500	ug/L				50-150		25	
Total PeCDF	ND	0.0000250	ug/L				50-150		25	
Total HxCDF	ND	0.0000250	ug/L				50-150		25	
Total HpCDF	ND	0.0000250	ug/L				50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	0.00188	0.0000220	ug/L	2000		94	50-150		20	
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00192		ug/L	2000		96	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00182		ug/L	2000		91	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00165		ug/L	2000		83	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00194		ug/L	2000		97	50-150			
Surrogate: 13C-OCDD	0.00333		ug/L	4000		83	50-150			
Surrogate: 13C-2,3,7,8-TCDF	0.00186		ug/L	2000		93	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00193		ug/L	2000		96	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00193		ug/L	2000		97	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00185		ug/L	2000		92	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00175		ug/L	2000		87	50-150			
			~							

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009

Troject ID. Semi rumaar Gatian 609

Report Number: ISJ1373

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 2469 Extracted: 10/19/09										
					~					
Blank Analyzed: 10/22/2009 (MB001)	0.00102		/1	2000	Source:	0.1	50 150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00182		ug/L	2000		91	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00188		ug/L	2000		94	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00187		ug/L	2000		94	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00193		ug/L	2000		97	50-150			
Surrogate: 13C-OCDF	0.00348		ug/L	4000		87	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	0.000773		ug/L	800		97	50-150			
LCS Analyzed: 10/22/2009 (OPR001)					Source:					
2,3,7,8-TCDD	8.78	5.00	ug/L	10		88	50-150		25	
1,2,3,7,8-PeCDD	45.4	25.0	ug/L	50		91	50-150		25	
1,2,3,4,7,8-HxCDD	47.1	25.0	ug/L	50		94	50-150		25	
1,2,3,6,7,8-HxCDD	48.1	25.0	ug/L	50		96	50-150		25	
1,2,3,7,8,9-HxCDD	48.2	25.0	ug/L	50		96	50-150		25	
1,2,3,4,6,7,8-HpCDD	47.4	25.0	ug/L	50		95	50-150		25	
OCDD	96.5	50.0	ug/L	100		97	50-150		25	
2,3,7,8-TCDF	8.55	5.00	ug/L	10		86	50-150		25	
1,2,3,7,8-PeCDF	46.3	25.0	ug/L	50		93	50-150		25	
2,3,4,7,8-PeCDF	46.5	25.0	ug/L	50		93	50-150		25	
1,2,3,4,7,8-HxCDF	49.4	25.0	ug/L	50		99	50-150		25	
1,2,3,6,7,8-HxCDF	48.8	25.0	ug/L	50		98	50-150		25	
2,3,4,6,7,8-HxCDF	47.2	25.0	ug/L	50		94	50-150		25	
1,2,3,7,8,9-HxCDF	48.4	25.0	ug/L	50		97	50-150		25	
1,2,3,4,6,7,8-HpCDF	48.0	25.0	ug/L	50		96	50-150		25	
1,2,3,4,7,8,9-HpCDF	46.8	25.0	ug/L	50		94	50-150		25	
OCDF	102	50.0	ug/L	100		102	50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	93.1		ug/L	100		93	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	84.1		ug/L	100		84	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	89.9		ug/L	100		90	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	82.6		ug/L	100		83	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	90.3		ug/L	100		90	50-150			
Surrogate: 13C-OCDD	158		ug/L	200		79	50-150			
Surrogate: 13C-2,3,7,8-TCDF	96.2		ug/L	100		96	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	90.0		ug/L	100		90	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	91.0		ug/L	100		91	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	87.1		ug/L	100		87	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	83.3		ug/L	100		83	50-150			
	~					~ -				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/14/09

Report Number: ISJ1373

Received: 10/14/09

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 2469 Extracted: 10/19/09										
LCS Analyzed: 10/22/2009 (OPR001)					Source:					
Surrogate: 13C-2,3,4,6,7,8-HxCDF	88.8		ug/L	100		89	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	91.9		ug/L	100		92	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	88.6		ug/L	100		89	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	90.7		ug/L	100		91	50-150			
Surrogate: 13C-OCDF	159		ug/L	200		79	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	38.7		ug/L	40		97	50-150			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/14/09

Report Number: ISJ1373

Received: 10/14/09

METHOD BLANK/QC DATA

MCAWW 245.1

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9293508 Extracted: 10/21/09										
Matrix Spike Dup Analyzed: 10/21/2009	(D9J1603350	01D)			Source: D	9J160335	001			
Mercury	2.04	0.2	ug/L	5	ND	40	90-110	25	10	N, *
Matrix Spike Analyzed: 10/21/2009 (D9J	160335001S)				Source: D	9J160335	001			
Mercury	1.59	0.2	ug/L	5	ND	31	90-110			N
Blank Analyzed: 10/21/2009 (D9J200000	508B)				Source:					
Mercury	ND	0.2	ug/L				-			
LCS Analyzed: 10/21/2009 (D9J20000050	08C)				Source:					
Mercury	4.89	0.2	ug/L	5		98	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/14/09

Report Number: ISJ1373

Received: 10/14/09

METHOD BLANK/QC DATA

MCAWW 245.1-DISS

Analyte <u>Batch: 9293522 Extracted: 10/21/09</u>	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Matrix Spike Dup Analyzed: 10/21/2009 Mercury	(D9J16033500 2.97	1D) 0.2	ug/L	5	Source: D	9J160335 59	001 90-110	5	10	N
Matrix Spike Analyzed: 10/21/2009 (D9J Mercury	160335001S) 3.13	0.2	ug/L	5	Source: D	9J160335 62	001 90-110			N
Blank Analyzed: 10/21/2009 (D9J200000 Mercury	522B) ND	0.2	ug/L		Source:		-			
LCS Analyzed: 10/21/2009 (D9J20000052 Mercury	22C) 5.17	0.2	ug/L	5	Source:	103	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 10/14/09 Arcadia, CA 91007 Report Number: ISJ1373 Received: 10/14/09

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
ISJ1373-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.29	4.9	15
ISJ1373-01	Antimony-200.8	Antimony	ug/l	0.43	2.0	6
ISJ1373-01	Cadmium-200.8	Cadmium	ug/l	0.066	1.0	4
ISJ1373-01	Chloride - 300.0	Chloride	mg/l	2.06	0.50	150
ISJ1373-01	Copper-200.8	Copper	ug/l	5.26	2.0	14
ISJ1373-01	Lead-200.8	Lead	ug/l	2.19	1.0	5.2
ISJ1373-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.67	0.26	10
ISJ1373-01	Perchlorate 314.0 - Default	Perchlorate	ug/l	0	4.0	6
ISJ1373-01	Sulfate-300.0	Sulfate	mg/l	4.69	0.50	250
ISJ1373-01	TDS - SM2540C	Total Dissolved Solids	mg/l	45	10	850
ISJ1373-01	Thallium-200.8	Thallium	ug/l	0.022	1.0	2

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/14/09

Arcadia, CA 91007 Report Number: ISJ1373 Received: 10/14/09

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

* Relative percent difference (RPD) is outside stated control limits.

B Analyte was detected in the associated Method Blank.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Ja The amount detected is below the Lower CalibrationLimit of the instrument

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

N Spike sample recovery is outside control limits.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/14/09

Report Number: ISJ1373 Received: 10/14/09

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 1664A	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
Filtration	Water	N/A	N/A
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical Perspectives

2714 Exchange Drive - Wilmington, NC 28405

Method Performed: 1613-Dioxin-HR Alta

Samples: ISJ1373-01

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: ISJ1373-01

TestAmerica Denver

4955 Yarrow Street - Arvada, CO 80002

Method Performed: MCAWW 245.1

Samples: ISJ1373-01

Method Performed: MCAWW 245.1-DISS

Samples: ISJ1373-01

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/14/09

Arcadia, CA 91007 Report Number: ISJ1373 Received: 10/14/09
Attention: Bronwyn Kelly

TestAmerica St. Louis

 $13715 \; Rider \; Trail \; North \; \text{-} \; Earth \; City, \; MO \; 63045$

Analysis Performed: Gamma Spec

Samples: ISJ1373-01

Analysis Performed: Gross Alpha

Samples: ISJ1373-01

Analysis Performed: Gross Beta

Samples: ISJ1373-01

Analysis Performed: Radium, Combined

Samples: ISJ1373-01

Analysis Performed: Strontium 90

Samples: ISJ1373-01

Analysis Performed: Tritium

Samples: ISJ1373-01

Analysis Performed: Uranium, Combined

Samples: ISJ1373-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: ISJ1373-01

Page 1 of 2

IST1373

CHAIN OF CUSTODY FORM

Test America version 6/29/09

Ĭ.,

618 Michillinda Ave, Suite 200 Semi-Annual Outrall 009 Arcadia, CA 91007 Stormwater at WS-13 Test America Contact: Joseph Doak Stormwater at WS-13 Project Manager: Bronwyn Kelly Phone Number: (626) 568-6691 Sample: Sample Sample Container For Sampling Description Matrix Type Control Outfall 009 W 1L Poly Type Control Date/Time Preservative Control Outfall 009 W 1L Poly Type Control Outfall 009 W 1L Amber Type Control Outfall 009 W 1L Amber Type Control Outfall 009 W 1L Amber Type Control Type Control Type Control Type Control Type Control Type Type Control Type Control Type Control Type Type Control Type Control Type Type Control Type Control Type Type Type Type Type Type Type Type	B	× × Hg, TI CI', SO ₄ , NO ₃ +NO ₂ -N, Perchlorate × CI', SO ₄ , NO ₃ +NO ₂ -N, Perchlorate	Cross Alpha(900.0), Gross Beta(900.0), TDS Titium (H-3) (906.0), Sr-90 (905.0), Tota	Combined Radium 226 (903.0 or 903.1). Radium 228 (904.0), Uranium (908.0), K 40, CS-137 (901.0 or 901.1) Chronic Toxicity	Total Dissolved Metals: Sb, Cd, Cu, Pb,			Comments
Phone Number: (626) 568-6691 Fax Number: (626) 568-6515 Sampling or Date/Time Divided Original Control Divided Divided Original Control Divided Di	Bottle Bottle Bottle Bottle Becoverable Metals: Sb C	× LCDD (sud sil congeners) ~	Gross Alpha(900.0), Gross Beta	Combined Radium 226 (903.0 o Radium 228 (904.0), Uranium (904.0), 40, CS-137 (901.0 or 901.1)				Comments
Phone Number: (626) 568-6691 Fax Number: (626) 568-6515 Sampling Cont. Sampling Cont. Date/Time 1	Bottle M	X Hg, TI CDD (and all cong	(0.00e)shqlA szon2)	Combined Radium 228 (904.0) 40, CS-137 (901.0 o				Comments
(626) 568-6691 Fax Number: (626) 568-6515 Cont. Date/Time 1 b/m/o-1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bottle # 8 2 2 8 4 4 4 4 4 4 8 8 8 4 7 7 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	X TCDD (snd sil c	009)shqlA seorO	Combined Radium 228 (901 40, CS-137 (901				Comments
(626) 568-6515 # of Sampling Cont. Date/Time 1	Bottle # 4A, 4B	X TCDD (sn	qlA seorə	Combined Radium 23				Comments
# of Sampling Cont. Date/Time 1	Bottle # 3A, 3B	TCDE × Hg, T	eson D Cook	Comb				Comments
1 p (14/2) 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2A 2B 2B 4 4A, 4B 7 5 7 7 7 8 8	×	× ×					
2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 4 4A, 4B 7 5 6 6A 7 7 7 8	×	×					
7 7 7 7 7 7 7	3A, 3B 4A, 4B 6A 6B 7		×	· [
7 7 7 7 7	6A 6B 77 7 8	×	×	×				
	6 6 6 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		×	×				
	6A 7 7 8			×				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	6B . 7			<u> </u>				Outlitered and unpreserved
								analysis
		1		×				Only test if first or second rain events of the year
					×			Filter Win 24hrs of receipt at lab
D								
C C							0	
		9	101	10/0	•	1	_	}
COC P	COC Page 2 of 2 are the	sa a	mples for (samples for Outfall 009 for this storm event.	r this sto	rm event.		,
These must be added to the	dded to the same	work order for	r COC Page	Lof 2 for O	utfall 009	o the same work order for COC Page 1, of 2 for Outfall 009 for the same event.	ıt.	٨
Date/Time:	Received By	1	Date/Tiff	b a	<u>≓</u> ,	in-around time: (Check)		
10-14 09 /14:22	1/4			10-11-01	16. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	24 Hour. 7	72 Hour 5 Day:	10 Day:
Date/Time/	Recejved By	<i>)</i>	Date	io		Sample Integrity. (Check)		_
,50:61 bobl-01,		J	١		<u> </u>		On Ice:	
Date/Time:	Received By		Date/Time:	.ie				
					<u> </u>	Data Requirements: (Check)		•
					ž	No Level IV:	All Level IV:	NPDES Level IV

LABORATORY REPORT

Date:

October 22, 2009

Client:

TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-09101505-001

Sample I.D.:

ISJ1373-01 (Outfall 009)

Sample Control:

The sample was received by ATL within the recommended hold time, chilled and with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled:

10/14/09

Date Received:

10/15/09 3.9°C

Temp. Received: Chlorine (TRC):

 $0.0 \, \text{mg/l}$

Date Tested:

10/15/09 to 10/22/09

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Ceriodaphnia Survival:

TUc

NOEC 1.0 100%

Ceriodaphnia Reproduction:

100%

1.0

Quality Control:

Reviewed and approved by:

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-09101505-001 Date Tested: 10/15/09 to 10/22/09

Client/ID: Test America – ISJ1373-01 (Outfall 009)

TEST SUMMARY

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Source: In-laboratory culture.

Food: .1 ml YTC, algae per day.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Test solution volume: 15 ml.

Number of replicates: 10.

Temperature: 25 +/- 1°C.

Photoperiod: 16/8 hrs. light/dark cycle.

Pilytion vistors Mod. hand reconstituted (MIDW)

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 7 days.

QA/QC Batch No.: RT-091006. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	26.1
100% Sample	100%	31.2
* Sample not s	tatistically significantly le	ss than Control.

CHRONIC TOXICITY

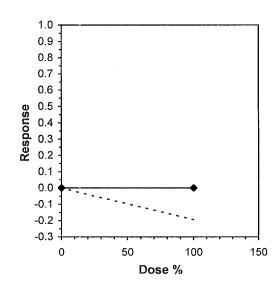
Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result					
Control survival ≥80%	Pass (100% survival)					
≥15 young per surviving control female	Pass (26.1 young)					
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)					
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 10.8%)					
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)					
Concentration response relationship acceptable	Pass (no significant response at concentration tested)					

	Ceriodaphnia Survival and Reproduction Test-7 Day Survival										
Start Date:	10/15/2009	9 14:00	Test ID:	st ID: 9101505c Sample ID: Outfall 009							
End Date:	10/22/2009	9 13:00	Lab ID:	CAATL-Aq	uatic Test	ting Labs	Sample Ty	/pe:	SRW2-Ind	ustrial stormwater	
Sample Date:	10/14/2009	9 08:10	Protocol:	FWCH EP	A		Test Spec	ies:	CD-Ceriod	laphnia dubia	
Comments:											
Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

				Not			Fisher's	Isot	Isotonic		
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean	
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000	
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000	


	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU					
Fisher's Exa	ct Test		100	>100		1					
Treatments	vs D-Control										
				Line	ar Interpo	lation (200	Resa	mples)			
Point	%	SD	95%	CL	Skew						•
IC05	>100										
IC10	>100										
IC15	>100						1.0) 			
IC20	>100						0.9	、 1			1
IC25	>100							4			
IC40	>100						0.8	3 -			
IC50	>100						0.7	, <u> </u>			
								.1			
							9 ,0.6	3 1			
							Response	5 -			
							S	. 1			
							2 0.2	*]			
							0.3	3 -			
							0.2	2 -			
								4			
							0.1	']			
							0.0) 👆		-,-,	
								0	50	100	150
									Dos	se %	

Ceriodaphnia Survival and Reproduction Test-Reproduction										
Start Date:	10/15/2009	9 14:00	Test ID:	9101505c			Sample ID	:	Outfall 009	9
End Date:	10/22/2009	9 13:00	Lab ID:	CAATL-Ac	uatic Test	ling Labs	Sample Ty	rpe:	SRW2-Ind	lustrial stormwater
Sample Date:	10/14/2009	9 08:10	Protocol:	FWCH EP	A		Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	27.000	25.000	23.000	23.000	24.000	31.000	25.000	28.000	26.000	29.000
100	38.000	37.000	33.000	29.000	24.000	31.000	31.000	34.000	27.000	28.000

		***************************************	Transform: Untransformed						1-Tailed	Isotonic		
Conc-%	Mean	N-Mean ¯	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	26.100	1.0000	26.100	23.000	31.000	10.129	10				28.650	1.0000
100	31.200	1.1954	31.200	24.000	38.000	14.157	10	-3.133	1.734	2.823	28.650	1.0000

Auxiliary Tests	Statistic	, Anna Carlotta, Anna Carlotta, Carlotta, Carlotta, Carlotta, Carlotta, Carlotta, Carlotta, Carlotta, Carlotta	Critical	OS SUMANOS SUMAS S	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.98002		0.905		0.16395	-0.1757
F-Test indicates equal variances (p = 0.14)	2.79173		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	2.82285	0.10816	130.05	13.25	0.00575	1, 18
Treatments vs D-Control						

Linear Interpolation (200 Resamples) Point IC05 SD 95% CL Skew % >100 IC10 >100 >100 IC15 IC20 >100 IC25 >100 IC40 IC50 >100 >100

Reviewed by:_

NPDES Page 321 of 1088

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

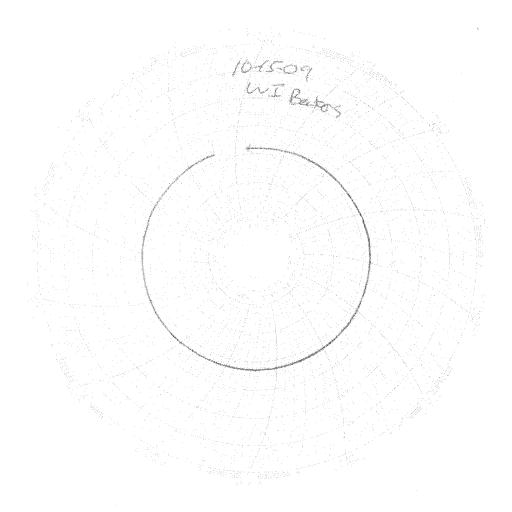
Lab No.: A-09101505-001

Client ID: TestAmerica - ISJ1373-01Outfall 009 Start Date: 10/15/2009

	i obta tillor	1	15/5	, i Outiu								June.	13410. 10	
		DA`	Y 1	DA	AY 2		DAY 3	DA	AY 4	DAY	5	DAY 6		DAY 7
	<u> </u>	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr 24hr
Analyst I	nitials:	Ba	p	R	R-	B	12		A	15-1	L_	An	Rm	K.
Time of R	eadings:	1400	1500	1500	1330)	1330	0 140	1400	1430	14301	430	1430	1430	1430130
	DO	8.3	8.6	8.2	8.4	8.2	28.1	8.0	8.1	8.0	7.9	8.1	7.8	8.8 8.2
Control	pН	7.8	7.9	7.8	7.7	7-8	25	2 27	2.2	2-8	7.7	7.7	7.7	7.7 7.6
	Temp	24.8	24-2	244	244	25.1	DAY	2 21/1	242	24.5	14.3	24.4	249	25:3 24.1
	DO	11.1	8.2	9.2	69	10.	8 67	9.9	80	8-5	7-8	10.5	8.3	11.1 8.2
100%	рН	6.9	6.9	6.7	69	6.	4 7.3	62	7-1	6-5	7-0	6.2	7.1	6.3 7.0
	Temp	25.2	24.5	24.2	24.5	24.	8 25.	24-9	242	<u> 124-512</u>	4.4	24-6	25.1	24.7 742
	Ad	lditional P	'aramete	rs				***************************************	ntrol				100% Sam	ple
	*/***	nductivity	***************************************	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			THE RESPONSE AND DESIGNATION OF THE PARTY.	<u> 30</u>		ter the summer commerce and com		otormore recommendately	74	
		kalinity (m			······································				5	ими денежник при			14	The state of the s
		ardness (mg	/*/***********************************						2	anna versolasaekklaskrólaskrólaskrólaskrólask			22_	
	Ar	nmonia (m	g/1 NH3-N	1)				۷٥.	2				0.6	
	1 (1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1			TOTAL COLLEGE STORY		2	Source of l						1	
	olicate:		A	B	C		D	E	F	G S	<u> </u>	H	1	- 10 American
Bro	od ID:	2	<u>/† </u>	1B	120		36	30	3 j	16		2 H	21	
Sample		Day		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T	T		g Produced	T			al Live	No. Live	
			A	В	C 2	D	E .	F G	H	I J	X	oung	Adults	Initials
		1	<u> </u>	40		$\frac{\mathcal{O}}{\delta}$	4	<u> </u>	12	00	4-5	3	10	
	-	3	10	0		3		0 0 5 0	0	00	1-6	3	10	19,
		4		1 2	2	7	****	5 0 7 4	3	99	12		10	
Control		5	0	7 3	17	7	6 8		8	8 /2	18	0	10	
		6		0	14	0	15/	813	0	14 6	2 2	4	ĹO	Na
		7	16	1 15	0	13	0 ($O \mid O$	17	0 13	. 2	2	(1)	
			つ	र्रा स्ट	12317	23	24/3	,1125	28	2626	$i \mid \lambda$	61	10	
II		Total		1 3	1 2/10	<u> </u>	<u> </u>		1					
		Total 1	42	0	0	0	0	0	0	00			10	
		***************************************	0	0	0	0	0	00	0	00		<u>)</u>	10	2-
		2 3	0		0 0 0	0		00	0	CC)) 8	10	
100%		1 2 3 4	0 0	00000	0 0	000	000	00	0	C C C		20	10	2-
100%		1 2 3 4 5	0 0	0 0 0 1 4 3 14	0	000		0 0 0 C 1 U	0	C C 5 4		200	10	
100%		1 2 3 4 5		0 0 0 0 1 4 14 0 0	0 0	0004		0 0 0 C 5 U 3 11 7 16	0 0 U 0 13 17	C C C		5) 0 8 3 12 92	10	
100%		1 2 3 4 5		0 0 0 1 4 3 14 0 0 1 1 1 1 9	0 0	0 12		0 0 0 C 1 U	0	C C 5 4) 2 8 3 12 9 1	10	

Circled fourth brood not used in statistical analysis.

⁷th day only used if <60% of the surviving control females have produced their third broad.



Test Temperature Chart

Test No: A-091015

Date Tested: 10/15/09 to 10/22/09

Acceptable Range: 25+/- 1°C

SUBCONTRACT ORDER

TestAmerica Irvine ISJ1373

٠	F	N	ŊΙ	N	G	ı	Δ	R	റ	R	Δ	T	റ	R	Υ	•

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756

Project Location: CA - CALIFORNIA

Receipt Temperature: 2 0 0

ce:(Y) N

Standard TAT is requested unless specific due date is requested. => Due Date: Initials:									
Analysis	Units	Expires	Comments						
Sample ID: ISJ1373-01	Water	Sampled: 1 0/14/09 08:10							
Bioassay-7 dy Chrnic	N/A	10/15/09 20:10	Cerio, EPA/821-R02-013, Sub to Aquatic testing						
Containers Supplied: 1 gal Poly (L)		out hell ong							

Received by Date/Time

Date/Time

ne Page 1 of 1

NPDES Page 324 of 1088

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-091006 Date Tested: 10/06/09 to 10/13/09

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Surv	ival	Mean Number of Young Per Female			
Control	90%		24.2			
0.25 g/l	90%		24.7			
0.5 g/l	100%		24.2			
1.0 g/l	100%		17.5	*		
2.0 g/l	80%		4.5	*		
4.0 g/l	0%	*	0	**		

^{*} Statistically significantly less than control at P = 0.05 level

** Reproduction data from concentrations greater than survival NŒC are

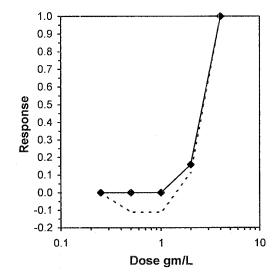
excluded from statistical analysis.

CHRONIC TOXICITY

Survival LC50	2.5 g/l
Reproduction IC25	0.94 g/l

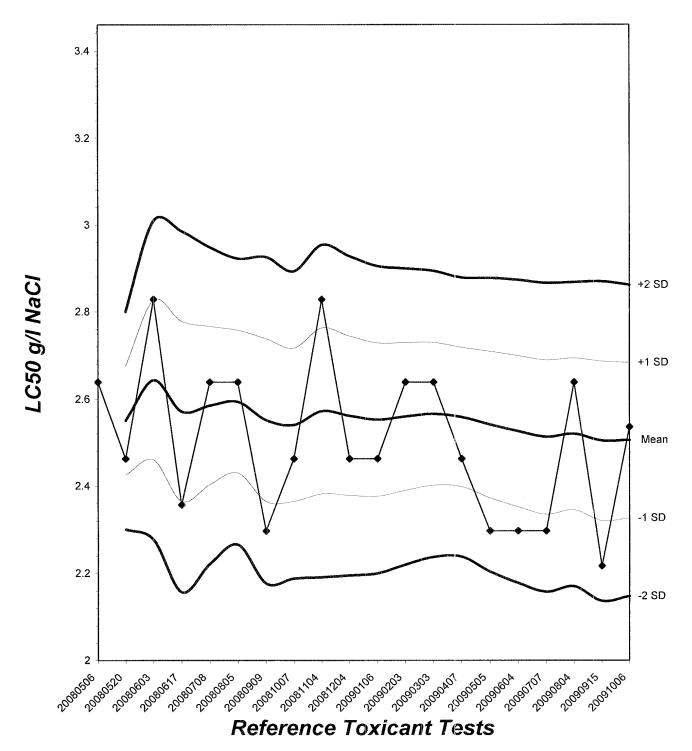
QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (90% Survival)
≥15 young per surviving control female	Pass (25.6 young)
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD < 47% for reproduction	Pass (PMSD = 18.2%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 27.7%)
Concentration response relationship acceptable	Pass (Response curve normal)


	, , , , , , , , , , , , , , , , , , ,	10000	Cerioda	aphnia Sur	vival and	Reprodu	ction Tes	t-7 Day	Survival			
Start Date:	10/6/2009	14:00	Test ID:	RT-09100	3c		Sample ID	:	REF-Ref T	REF-Ref Toxicant		
End Date:	10/13/2009	9 13:30	Lab ID:	CAATL-Ac	uatic Test	ting Labs	Sample Ty	/pe:	NACL-Soc	lium chloride		
Sample Date:	10/6/2009		Protocol:	col: FWCH EPA Test Species: CD-Ceriodaphnia dubia								
Comments:											***	
Conc-gm/L	1	2	3	4	5	6	7	8	9	10		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000		
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000		
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
2	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000		
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	0.9000	1.0000	1	9	10	10			1	10
0.25	0.9000	1.0000	1	9	10	10	0.7632	0.0500	1	10
0.5	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0	10
1	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0	10
2	0.8000	0.8889	2	8	10	10	0.5000	0.0500	2	10
4	0.0000	0.0000	10	0	10	10			10	10

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

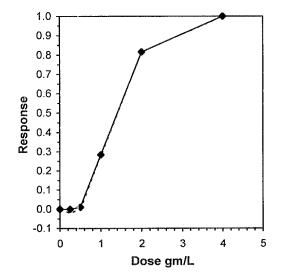

Trimmed Spearman-Karber

Trim Level	EC50	95%	CL	
0.0%	2.5352	2.1607	2.9747	
5.0%	2.5900	2.1500	3.1201	
10.0%	2.6307	2.0726	3.3393	
20.0%	2.6505	2.3680	2.9667	
Auto-0.0%	2.5352	2.1607	2.9747	

Ceriodaphnia Chronic Survival Laboatory Control Chart

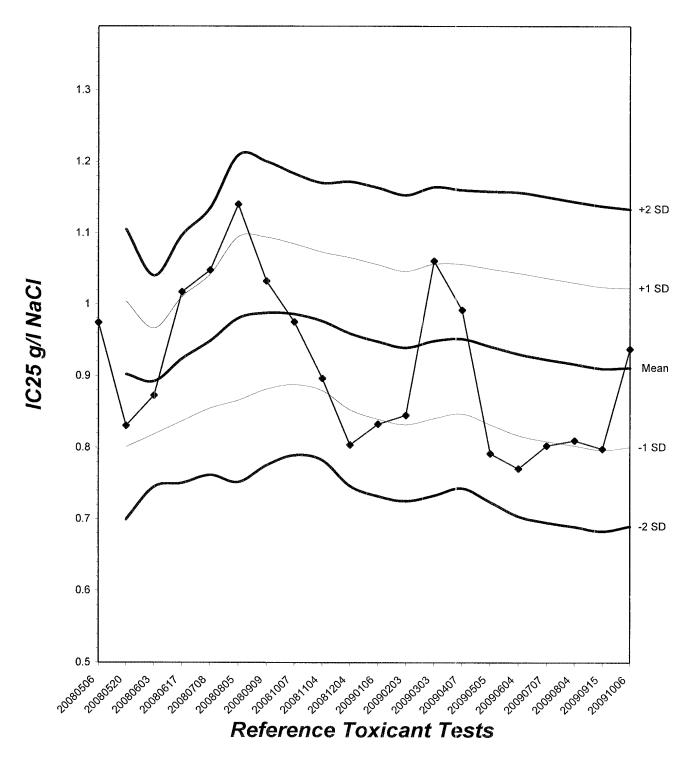
CV% = 7.12

		ATTOCOCYMENTOCOCOCTOCOCOC	Ceriod	aphnia Su	rvival and	i Reprodu	iction Tes	t-Repro	duction		
Start Date:	10/6/2009	14:00	Test ID:	RT-09100			Sample ID		REF-Ref Toxicant		
End Date:	10/13/2009	9 13:30	Lab ID:	CAATL-Ac	uatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	lium chloride	
Sample Date:	10/6/2009		Protocol:	FWCH EP	Α	•	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	21.000	28.000	28.000	27.000	25.000	22.000	12.000	31.000	27.000	21.000	
0.25	23.000	29.000	25.000	24.000	21.000	27.000	27.000	27.000	14.000	30.000	
0.5	28.000	26.000	26.000	25.000	23.000	27.000	23.000	27.000	14.000	23.000	
1	19.000	19.000	18.000	10.000	10.000	23.000	22.000	17.000	18.000	19.000	
2	2.000	2.000	3.000	2.000	9.000	11.000	7.000	5.000	2.000	2.000	
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	


				Transforn	n: Untran	sformed		Rank	1-Tailed	Isoto	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	24.200	1.0000	24.200	12.000	31.000	22.448	10			24.450	1.0000
0.25	24.700	1.0207	24.700	14.000	30.000	18.802	10	106.50	76.00	24.450	1.0000
0.5	24.200	1.0000	24.200	14.000	28.000	16.620	10	102.50	76.00	24.200	0.9898
*1	17.500	0.7231	17.500	10.000	23.000	24.872	10	68.50	76.00	17.500	0.7157
*2	4.500	0.1860	4.500	2.000	11.000	74.994	10	55.00	76.00	4.500	0.1840
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution	$(p \le 0.05)$		0.92101	0.947	-1.0283	1.17755
Bartlett's Test indicates equal var	riances (p =	0.72)			2.09329	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711					

Treatments vs D-Control


Linear Interpolation (200 Resamples)

Point	gm/L	SD	95%	CL	Skew
IC05	0.5726	0.1620	0.1227	0.6251	-0.9888
IC10	0.6638	0.1169	0.2454	0.7571	-1.4866
IC15	0.7550	0.1041	0.4830	0.9101	-0.4781
IC20	0.8463	0.1061	0.6256	1.0370	0.2415
IC25	0.9375	0.1056	0.7388	1.1163	0.1779
IC40	1.2177	0.1042	0.9509	1.3494	-0.3527
IC50	1.4058	0.0896	1.1682	1.5195	-0.4498

Ceriodaphnia Chronic Reproduction Laboatory Control Chart

CV% = 12.2

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-091006

Start Date: 10/06/2009

				Nu	ımbe	r of Y	oung	Prod	==== uced		Aller	Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	Н	I	J	Live Young	Live Adults	Analyst Initials
	1	0	0	\mathcal{O}	0	0	0	0	()	<u>(2)</u>	0	0	10	2
	2	0	0	0	0	0	0	0	0	0	0	Ò	10	
	3	5	3	5	4	0	4	0	0	0	0	21	10	12
Control	4		\mathcal{O}	0	U	S	0	3	3	4	3	18	10	h
Control	5	6	a	9	10	0	8	0	0	9	~		10	10
	6	0	0	C	0	S	0	9	10	14	0	41	10	1
	7	10	16	M	13	12	10	X	15	0		104	a	
	Total	21	28	28	30	25	22	iみ	31	27	21	242	a	1
	1	0	0	0	0	()	0	0	0	0	0	0	1/2	19
	2	0	0	0	0	0	0	0	0	0	0	Ô	10	10
	3	4	5	4	0	3	0	()	0	4	/)	20	10	
0.25 ~/1	4	0	\mathcal{O}	()	4	0	4	3	4	Ó	4	19	10	Ch
0.25 g/l	5	9	10	G	0	δ	0	0	9	10	0	55	10	1/2
	6	0	0	0	9	10	7	9	0	0	10	45	10	
	7	10	14	12	ll	0	16	15	14	X	16	108	4	
	Total	23	29.	25	24]	21	ンン	27	27	14	30	247	4	A
	1	0	0	0	0	0	0	0	0	0	0	0	10	
	2	0	0	0	0	0	0	0	0	0	0	0	(0	
	3	S	4	4	0	0	0	0	0	0	α	13	1/)	
0.5.~/1	4	0	Ó	0	Y	3	4	3	3	5	J	26	10	M
0.5 g/l	5	2	10	8	0	0	0	0	0	0	0	25	10	
	6	0	0	0	9	5	0	8	10	9	9	60	10	1//
	7	16	2	14	12	131	5	12	8 . 8	0	10	118	10	h
	Total	28/3	26	26/3	25/	33	3 7 [23 1	7.7		23	247	10	1

Circled fourth brood not used in statistical analysis.

⁷th day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-091006

Start Date: 10/06/2009

			Oler)	Nı	umbe	r of Y	oung	Produ	ıced	Mariana automatica		Total	No.	Analyst
Sample	Day	A	В	C	D	E	F	G	н	I	J	Live Young	Live Adults	Analyst Initials
	1	0	0	0	0	0	0	0	()	0	0		10	2
	2	()	0	0	0	0	0	0	0	0	0	0	10	2
	3	4	4	2	0	0	0	\bigcirc	2	0	0	12	10	2
1.0 g/l	4	0	0	0	2	3	3	L)	0	3	3	18	(1)	1
1.0 g/1	5	2	6	7	C	0	0	0	5	6	6	37	10	1/2
	6	0		0	8	7	6	6	0	0	\bigcirc	27	11)	h
	7	8	9	9	0	0	14	12	10	9	10	81	10	1
	Total	14	19	18	10	10	23	22	17	18	19	175	10	1
	1	0	0	0	0	0	0	0	0	0	0	0	10	R
	2	0	0	U	0	0	0	0	0	0	0	0	10	6-
	3	0	0	0		0	0	Ĉ	. 2	0	0	2	10	6
2.0 ~/1	4	2	2	0	0	3	2	0	0	0	2	\ j	10	n
2.0 g/l	5	\mathcal{O}	0	0	2	()	0	3	0	L	0	7	10	1//
	6	X	0	3	0	0	4	0	3	0	0	10	9	11
	7	dominin	0	0	0	6	5	Ч	X	0	0	15	8	1/2
	Total	2	2	3	2	q	11	7	5	2_	2	45	8	1
	1	X		_ <		~_X_	\checkmark			<i>></i> <	×	0	0	2
	2	- Marian		COMMUNICAL AC	(Modernia)	- Separate of the Separate of	Antidores es	-	Name and Address of the Address of t	, richte de la constant		*ingeneral**	y Seemble and a second	Manager and American
	3	Market a sir-	, in the World State of	- Constitutions	ويمتانيون	garan.	Water Spiller	Brongaga and America	rhemengari	1500mmedical	- September	Angeres and State of	***************************************	N _{ame} and the State of
4.0 /1	4	- Mariente	4) januarismoon	- <u>adequation</u> to a	المحارب	in a graph of the later of the	in agreement.	avapor."	v		h _{hal} ospillire.	Secretary Section	e gagantin en de la companya de la c	; jjenskim-
4.0 g/l	5	game	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ر د العربيد	Trought	· Carting	-Mary Park	Wasseyson	inggeneratura	,34geodisses ⁴⁷	- Control of the Cont	Supplement of the state of the	And the second second	_{gar} andoStilany.
	6	وسودودون		popular.	(desapport	, and the same of	\	****	Juganne"	,dramatique.	, sage at the	parameters.	e and desired the state of the	, made a constitue ve
	7	in the state of th	-	(Secultary and F	·	garan.	S. Marer	, gg(ii	gare	indiana.	No constitution.	4 Albanisania	Sic sometry graphy and	***Essert*
	Total	0	\mathcal{O}	0	0	()	0	0	0	0	()	0	()	1/2

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

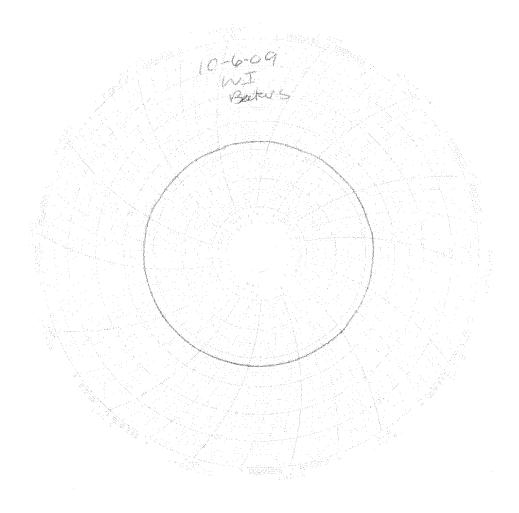
CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-091006

Start Date: 10/06/2009

		DAY 1					DA	Y 3	DA	Y 4	DA	Y 5	DA	AY 6	DA	AY 7
Time of New No. No				<u> </u>	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Control DO S	Analyst 1	Initials:	R	R	R	R	R	Rn	R	Lan.	R	1	1	2	4	1
Control PH 7.7 7.7 7.7 7.8 7.8 7.8 7.7 7.8 7.	Time of R	eadings:	1400	1500	1500	1430	1430	1430	1430	1500	1500	Jun	140	1330	1330	133C
Temp 25.0 24.5 24.4 24.5 24.8 25.2 24.4 24.5		DO	8.9	8.3	8.5	8.4	9./	8.0	8.4	7.9	8.3	81	8.4	8.0	8.2	7.9
DO	Control	рН	7-7	7.9	7.7	2.8	7-8	7.9	7.7	28	7.7	7-8	7-9	7-8	7-8	7-8
0.25 g/l Temp 25.0 24.0 24.1 24.0 24.5 24.9 25.1 24.2 24.1 24.9 25.5 24.2 24.1 24.9 25.5 24.2 24.1 24.9 25.5 24.4 24.9		Temp	25.0	24.5	24.6	24.4	24.5	24.8	25.2	24.1	24.5	24-6	25.2	247	35	24.1
0.25 g/l Temp 28.0 24.6 24.6 24.6 24.5 24.7 25.5 24.2 24.6 24.5 24.5 24.5 24.5 24.7 24.6 24.5 24.7		DO	8.9	8.4	8.5	8.3	9.0	8.0	8.3	7.9	8.3	80	8.3	80	84	7-9
DO	0.25 g/l	pН	2.7	29	7.7	7-8	7-8		7.8	2.8		78	7.8	7-8	28	78
0.5 g/l pH		Temp	25.0	24.6	24.6	24.6	24.5	24.9	25.1	24.2	24-6	245	253	24.6	25.	24.4
Temp 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,		DO	8.9	8.4	8.5	8.3	9.0	2.9	8.3	8.0	8.3	80	8.3	8.1	8.4	かひ
DO	0.5 g/l	рН	 //	7.9	7.7	2.8	7-9	7.9	7.8	2.8	28	7-8	78	7.8	>8	28
PH PH PH PH PH PH PH PH		Temp	24.9	24.6	24.7	24.7	246	2S.O	25.1	24.3	24.60	24.)	253	<i>×0</i>	2 <i>5</i> ,3	24-2
Temp 24.8 24.6 24.8 24.7 24.8 25.0 25.0 24.3 24.7 24.8 25.0 25.0 24.3 24.7 24.8 25.0 25.0 24.3 24.7 24.8 25.0 25.0 24.3 24.7 24.8 25.0 24.3 24.7 24.8 25.0 24.3 24.7 24.8 25.0 24.1 25.0 24.1 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 25.0 24.8 24.1 25.0 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.8 24.1 25.0 24.1 25.0 24.1 25.0 24.1 25.0 24.1 25.0		DO	8.9	8.3	8.5	8.2	8.9	29	8.3	8.0	8.4	7-7	8.2	7-5	8-4	8,2
DO 9.0 8.3 8.4 8.4 8.8 7.8 8.3 8.2 8.5 7-9 8.1 7-4 82 8.2 pH 2.8 7.8 7.8 2-9 8.0 7.9 7.9 7.8 7.8 7.8 7.9 7.9 7.8 7.9 7.9 7.8 7.9 7.9 7.8 7.9 7.9 7.8 7.9 7.9 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	1.0 g/l	рН	7-8	2.9	7. 7	7.9	7.9	29	7.8	2-8	2.8	7-8	7-8	7-8	78	7-9
2.0 g/l pH		Temp	24.8	24.10	24.8	24.7	24.8	25:0	25.0	24.3	24.7	243	253	244	253	24-1
Temp 24.6 24.5 25.0 24.4 25.0 24.9 24.8 24.1 24.8 24.1 25.1 34.5 25.5 24.3 4.0 g/l pH 7.9 7.8		DO	9.0	8.3	8.4	8.4	8.8	7.8	8.3	8.2	8.5	7-9	8-1	29	82	
DO 9.0 8.4	2.0 g/l	· ·		***************************************	7-8		8.0	29		7.8	2.8	7.8	2.9	7.8	7.5	78
4.0 g/l pH 7.9 7.8 — — — — — — — — — — — — — — — — — — —		Temp	1	24.5	25.U	24.6	25.0	24.9	24.8	24.1	24.8	244	25-1	945	254	24.3
Temp 24.2 24.5		DO		8.4	(Annual and a	Magazine	Newson.	O 1000 juga tabahannan	ANGELIAN .	(100gMI Orlindonius)	with the second	g-constitutions.	culturant,	Sangan,	gribbana.	Washing.
Dissolved Oxygen (DO) readings are in mg/l O ₂ ; Temperature (Temp) readings are in °C. Additional Parameters	4.0 g/l				-gazzapii, fizikului	ragging and one	- Angline Colonia	11000000000000000000000000000000000000	PARAMANA.	- Alleganisation -	(myddig ^a retan)	games, .	entrangue.	-	(SSS) and the same of the same	position
Control High Concentration		Temp	24.2	<u> 24.5</u>	agit made la	- Allerton	A CONTRACTOR OF THE PARTY OF TH	, granting provinces of	*attornia***	¹ CSS-bell/all-plane e-t/	Semen	Marie and a second	***************************************	Collegement	eration days.	gottadusmenn
Day 1 Day 3 Day 5 Day 1 Day 3 Day 5	Dissolved Oxygen (DO) readings are in mg/l O ₂ ; Temperature (Temp) readings are in °C.															
Day 1 Day 3 Day 5 Day 1 Day 3 Day 5	A	Additional F	Paramet	ers	-			Contr	ol				High Co	ncentrat	ion	
Alkalinity (mg/l CaCO ₃) Hardness (mg/l CaCO ₃) Source of Neonates Replicate: A B C D E F G H I J						Day 1		Day 3		Day 5		Day 1	<u> </u>	Day 3	D	ay 5
Hardness (mg/l CaCO ₃)						29	2	300)		300	6	560	30	360	34	O)
Source of Neonates		**************************************				42		65		<u>65</u>		13	4	64		
Replicate: A B C D E F G H I J		Hardness (m	ng/I CaCC	O ₃)		44			4	7 X	1	<u> 35 </u>	l ej	<u> </u>	19	6
	.		Ti Ti			T										
BIOURID: 11 (01) 19C 16C 19C 19F 15F 16F 14H 156 6J			7							F		, aring	H			Uarreno
	Broo	a ID:		<u> </u>	<u> </u>	16	- 14		4 /-	\ \frac{1}{2} \frac{1}{2}	61	lain .	4 H	56	6	4



Test Temperature Chart

Test No: RT-091006

Date Tested: 10/06/09 to 10/13/09

Acceptable Range: 25+/- 1°C

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. BOEING NPDES

SSFL MWH-Pasadena/Boeing

Lot #: F9J160241

Joseph Doak

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Project Manager

November 12, 2009

Case Narrative LOT NUMBER: F9J160241

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on October 16, 2009. This sample is associated with your SSFL MWH-Pasadena/Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

There are no observations or nonconformances associated with the analysis in this lot.

METHODS SUMMARY

F9J160241

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD		
Gamma Spectroscopy - Cesium-137 & Hits	EPA 901.1 MOD			
Gross Alpha/Beta EPA 900	EPA 900.0 MOD	EPA 900.0		
H-3 by Distillation & LSC	EPA 906.0 MOD			
Radium-226 by GFPC	EPA 903.0 MOD	EPA 903.0		
Radium-228 by GFPC	EPA 904 MOD	EPA 904		
Strontium 90 by GFPC	EPA 905 MOD			
Total Uranium By Laser Ph osphorimetry	ASTM 5174-91			

References:

ASTM Annual Book Of ASTM Standards.

EPA "EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY

PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

SAMPLE SUMMARY

F9J160241

 WO #
 SAMPLE#
 CLIENT SAMPLE ID
 SAMPLED DATE
 SAMPLED TIME

 LMP7C
 001
 ISJ1373-01
 10/14/09
 08:10

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

TestAmerica Irvine

Client Sample ID: ISJ1373-01

Radiochemistry

Lab Sample ID: F9J160241-001

Date Collected:

10/14/09 0810

Work Order: Matrix:

LMP7C WATER Date Received:

10/16/09 0920

Total	

Parameter	Result	Qual	Uncert. (2 σ+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & H	its by EPA 901	.1 MOD	Ωg	ci/L	Batch #	9293262	Yld %
Cesium 137	0.0	U	8.9	20.0	16	10/20/09	10/20/09
Potassium 40	-100	U	9500		200	10/20/09	10/20/09
Gross Alpha/Beta	EPA 900		pq	:i/L	Batch #	9293164	Yld %
Gross Alpha	1.01	រ	0.61	3.00	0.75	10/20/09	10/23/09
Gross Beta	2.4	រ	1.1	4.0	1.6	10/20/09	10/23/09
Radium 226 by E	PA 903.0 MOD		ρq	i/L	Batch #	9290118	Yld % 93
Radium (226)	0.046	ŭ	0.081	1.00	0.14	10/17/09	11/10/09
Radium 228 by GF1	PC EPA 904 MOD		ρg	:i/L	Batch #	9290119	Y1d % 96
Radium 228	0.1	Ū	0.23	1.00	0.39	10/17/09	11/10/09
TRITIUM (Distill)	by EPA 906.0	MOD	pC	i/L	Batch #	9292238	Yld %
Tritium	-113	ט	85	500	190	10/19/09	10/20/09
SR-90 BY GFPC E	PA-905 MOD		pq	i/L	Batch #	9290126	Yld % 57
Strontium 90	-0.003	Ū	0.28	3.00	0.50	10/17/09	10/27/09
Total Uranium by	KPA ASTM 5174	-91	pQ	:i/L	Batch #	9292099	Yld %
Total Uranium	0.412	J	0.049	0.677	0.21	10/19/09	10/21/09

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is greater than sample detection limit but less than stated reporting limit.

Result is less than the sample detection limit.

METHOD BLANK REPORT

Radiochemistry

Client Lot ID:

F9J160241

Matrix:

WATER

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC		Prep Date	Lab Sample ID Analysis Date
Radium 226 by Radium (226)	EPA 903.0 MOD 0.010	ט	pCi/L 0.073	Batch # 1.00	9290118 0.14	Yld %		9J170000-118B 11/10/09
Radium 228 by	GFPC EPA 904 MO 0.07	U U	pCi/L 0.21	Batch # 1.00	9290119 0.36	Yld %		9 J170000-119B 11/10/09
SR-90 BY GFPC Strontium 90	EPA-905 MOD 0.47	J	pCi/L 0.23	Batch # 3.00	9290126 0.33	Yld %	-	9J170000-126B 10/27/09
TRITIUM (Disti	.11) by EPA 906.	0 MOD	pCi/L 110	Batch #	9292238 190	Yld %	_	9 J190000-238B 10/20/09
	by KPA ASTM 517 0.159		pCi/L 0.018	Batch #	9292099 0.21	Yld %	F	9 J190000-099B 10/21/09
Gross Alpha/Be Gross Alpha Gross Beta	0.28 0.22	บ บ	pCi/L 0.42 0.91	Batch # 3.00 4.00	9293164 0.71 1.5	Yld %	10/20/09	9J200000-164B 10/23/09 10/23/09
Gamma Cs-137 & Cesium 137 Potassium 40	5.4 -100	1.1 MOD U	pCi/L 4.9 8900	Batch # 20.0	9293262 6.8 200	Yld %	10/20/09	9J200000-262B 10/20/09 10/20/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only Bold results are greater than the MDC.

Result is greater than sample detection limit but less than stated reporting limit.

miller to allowers restricted as the sector

Laboratory Control Sample Report

Radiochemistry

Client Lot ID: F9J160241

Matrix:

WATER

			Total		Lab	Sample ID
Parameter	Spike Amount	Result	Uncert. (2 g+/-) MDC	% Yld % Rec	QC Control Limits
Total Uranium by K	PA ASTM 5174-9	1	pCi/L	5174-91	F9J	190000-099C
Total Uranium	27.1	29.0	3.5	0.2	107	(90 - 118)
	Batch #:	9292099		Analysis Dat	e: 10/21/09	
Total Uranium by K	PA ASTM 5174-9	1	pCi/L	5174-91	F9J	190000-099C
Total Uranium	5.42	5.98	0.62	0.21	110	(90 - 118)
	Batch #:	9292099		Analysis Dat	e: 10/21/09	
TRITIUM (Distill) k	y EPA 906.0 M	OD	pCi/L	906.0 MOD	F9J	190000-238C
Tritium	4610	4580	480	190	99	(72 - 107)
	Batch #:	9292238		Analysis Dat	e: 10/20/09	
Gross Alpha/Beta EF	A 900		pCi/L	900.0 MOD	F9J	200000-164C
Gross Beta	68.6	70.4	6.0	1.8	103	(77 - 123)
	Batch #:	9293164		Analysis Dat	e: 10/23/09	
Gross Alpha/Beta EF	PA 900		pCi/L	900.0 MOD	F9J:	200000-164C
Gross Alpha	49.4	47.8	5.2	1	97	(80 - 140)
	Batch #:	9293164		Analysis Dat	e: 10/23/09	
Gamma Cs-137 & Hits	by EPA 901.1	MOD	pCi/L	901.1 MOD	F9J:	200000-262C
Americium 241	141000	142000	11000	600	100	(90 - 110)
Cesium 137	53100	52200	3000	200	98	(90 - 110)
Cobalt 60	87900	85200	4800	200	97	(90 - 110)
	Batch #:	9293262		Analysis Dat	e: 10/20/09	

Laboratory Control Sample/LCS Duplicate Report

Radiochemistry

Client Lot ID:

F9J160241

Matrix:

WATER

					Total			Lab	Sample	ID
Parameter		Spike Amount	Result		Uncert. (2 σ+/-)	% Yld	% Rec	QC Control Limits	Prec	ision:
Radium 226 by	EPA	903.0 MOD		pCi/L	903.0	O MOD		F9J1	70000	-118C
Radium (226)	Spk 2	11.3 11.3	11.5 11.7		1.1 1.1	103 105	102 104	(45 - 150) (45 - 150)	2	%RPD
		Batch #:	9290118			Analysi	s Date:	11/10/09		
Radium 228 by	GFPC	EPA 904 MOD		pCi/L	904 1	MOD		F9J1	70000	-119C
Radium 228	Spk 2	6.65 6.65	5.24 5.44		0.62 0.64	108 109	79 82	(64 - 150) (64 - 150)	4	%RPD
		Batch #:	9290119			Analysi	s Date:	11/10/09		
SR-90 BY GFPC	EPA-	-905 MOD		pCi/L	905 1	10D		F9J1	.70000	-126C
Strontium 90	Spk 2	6.85 6.85	7.21 6.76		0.80 0.75	81 86	105 99	(90 - 143) (90 - 143)	6	%RPD
		Batch #:	9290126			Analysi	s Date:	10/27/09		

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:

F9J160241

Date Sampled: 10/14/09

Matrix:

WATER

Date Received: 10/16/09

Parameter	SAMPL Resul	_	Total Uncert. (2g+/-)	% Yld	DUPLICA Result	TE	Total Uncert. (2 g+/-)	% Yld	QC Sample ID Precisi	on .
TRITIUM (Distill) by	EPA	906.0 MO	D	pCi/L	906.	0 MOD		1	F9J160241-00	1
Tritium	-113	U	85		-34	U	95		107	%RPD
		Batch #:	9292238	(Sample)	9292	238 (Du	plicate)			
Gamma Cs-137 & Hits	by EP	A 901.1	MOD	pCi/L	901.	1 MOD		1	F9J160241-00	1
Cesium 137	0.0	U	8.9		-2.0	υ	9.3		200	%RPD
Potassium 40	-100	Ū	9500		-100	U	4000		5	%RPD
		Batch #:	9293262	(Sample)	9293	262 (Du	plicate)			
Gross Alpha/Beta EPA	900			pCi/L	900.	0 MOD		I	F9J160150-00	1
Gross Alpha	-43	υ	68		14	U	99		392	%RPD
Gross Beta	310		110		360		130		16	%RPD
		Batch #:	9293164	(Sample)	9293	1.6.4 (D.	plicate)			

NOTE(S)

Data are incomplete without the case narrative. Calculations are performed before rounding to avoid round-off error in calculated results

Result is less than the sample detection limit.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

Radiochemistry

Client Lot ID:

F9J160241

Matrix:

WATER

Date Sampled:

10/14/09 0810

Date Received:

10/16/09 0920

				Total				Total	QC Samp	le ID
Parameter		Spike Amount	SPIKE Result	Uncert. (2 g+/-)	Spike Yld	SAMPLE Result		Uncert. (2 ₀ +/-) % Y	.d %Rec	QC Control Limits
Total Uranium	by KPA	ASTM 5		pCi/L	5	174-91			F9J1602	41-001
Total Uranium		27.1	28.8	3.5		0.412	J	0.049	105	(57 - 150)
	Spk2	27.1	28.5	3.4		0.412	J	0.049 Precision:	104 1	(57 - 150) %RPD
		Batcl	#: 9292099	Ana	lysis d	ate:	10/2	1/09		

NOTE(S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

MATRIX SPIKE REPORT

Radiochemistry

Client Lot Id: F9J160247

Matrix:

WATER

Date Sampled:

10/14/09

Date Received:

10/16/09

						QC Sample	∍ ID
Parameter	Spike Amount	Spike Result	Total Uncert. (2g +/-)	Spike Sample Yld. Resul	Oucerc.	%YLD %REC	QC Control Limits
TRITIUM (Distill) by E	A 906.0 MO	D	pCi/L	906.0 M	מכ	F9J160247	-001
Tritium	4610	4460	480	70	120	95	(33 - 150)
	Batch #:	9292238	An	alysis Date:	10/20/09		
Gross Alpha/Beta EPA 90	00		pCi/L	900.0 M	OD	F9J160150	0-001
Gross Beta	6860	7170	610	310	110	100	(71 - 146)
	Batch #:	9293164	An	alysis Date:	10/23/09		
Gross Alpha/Beta EPA 90	00		pCi/L	900.0 M	OD	F9J160150	0-001
Gross Alpha	4940	5490	710	-43	68	112	(33 - 150)
	Batch #:	9293164	An	alysis Date:	10/23/09		

NOTE(S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off errors in calculated results.

SUBCONTRACT ORDER TestAmerica Irvine

ISJ1373

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

TestAmerica St. Louis

13715 Rider Trail North

Earth City, MO 63045

Phone (314) 298-8566

Fax: (314) 298-8757

Project Location: CA - CALIFORNIA

Receipt Temperature:___

С

Ice: Y / N

Analysis	Units	Due	Expires li	nterlab Price	Surch	Comments
Sample ID: ISJ1373-01	Water		Sampled:	10/14/09 08:1	0	
Gamma Spec-O	mg/kg	10/23/09	10/14/10 08:10	\$250.00	0%	Out St Louis, K-40 and CS-137 only, DO NOT FILTER!
Gross Alpha-O	pCi/L	10/23/09	04/12/10 08:10	\$100.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	10/23/09	04/12/10 08:10	\$100.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Level 4 Data Package - Ou	t N/A	10/23/09	11/11/09 08:10	\$0.00	0%	
Radium, Combined-O	pCi/L	10/23/09	10/14/10 08:10	\$238.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Strontium 90-0	pCi/L	10/23/09	10/14/10 08:10	\$155.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Tritium-O	pCi/L	10/23/09	10/14/10 08:10	\$80.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	10/23/09	10/14/10 08:10	\$120.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Containers Supplied:			•			
2.5 gal Poly (J)	500 mL Am	ber (K)				

Released B

10/15/09 17:00

Received By

10/15/19/17:00 Date/Time

Page 1 of 2		.5.	±,09	= sbui	'la	nents									1000	2		·	·····		
Pag		Field readings:	Temp % = 60 %	pn ≕ vr v Time of read	مهاکر ا	Comments									2	20	tionio u out out	10 Day:		ر ت 	NPDES Level IV: X
755B29	REQUIRED.	,												1			Turn-around time: (Check)	72 Hour: 5 Dav:	Sample Integrity: (Check)	On Ice:	Data Requirements: (Check) No Level IV: All Level IV:
1/	ANALYSIS REQUIRED		·	······································													Turn-aroun	24 Hour	3 8	(70) mtact —	Data Require No Level IV:
HAIN OF CUSTODY FORM																	Inposite sample: Date/Time:	10-1459	Date/Time:	Date/Time:	
OF CUST			(W ≣	H- 1 991)) əseəiç	Oil & 0	×										TOTHE VEHIL. CO	HWO []		$\sqrt{}$	
CHAIN		ø.				Bottle #	1A, 1B								/		Received By	100	Received By	Received by	
,		NPDES Outfall 009 t WS-13		er:	. 5	Preservative	HCI		·									4:20		<u>ź</u> ,	
	Project:	Boeing-SSFL NPDES Semi-Annual Outfall 009 GRAB Stormwater at WS-13		Phone Number: (626)	(626) 568-6515	 	15(14/09										ime:		-	0-(4-07 (1-65) Date/Time:	
Version 6/29/09		Suite 200	Joseph Doak	wyn Kelly	ξ.	Container # of Type cont.	1L Amber 2			/	/						npres are une oran Date/Time:	10-14	Date/Time:	Date/Time:	
Test America version 6/29/09	Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Su Arcadia, CA 91007	Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	: 5 Dungor	ole Sample Stion Matrix	W 600										ed By	Marth 1	o kg pau	MI MA Dail	
Test	Client N	MWH-, 618 Mici Arcadia,	Test Am	Project I	Sampler	Sample Description	Outfall 009										Relinquish	\L	Relinquished By	Melinquished By	2

of 2			14					<u> </u>	 			I	<u> </u>		2				-	
Page 1 of 2		Field readings:	Temp % = 60 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +	Time of readings =	مهاد _.	Comments								1/9/	. 05	-mo-montenent	Normal: X		<i>/</i>	NPDES Level IV: X
CHAIN OF CUSTODY FORM 755029	ANALYSIS REQUIRED															eived # Tum-eroung Control Tum-eroung times (Cheek)	12 Hour: 72 Hour: 72 Hour: 5 Day:	9 (One Sample Integrily: (Chee	Date/Time:	Data Requirements: (Check) No Level IV: All Level IV:
O F O			HEM)	I-1 / 991) 988916	اا کے Oii کے ح	 									NOITH EVE	7			
CHAIL						Bottle #	1A, 1B ^c									Received By		Redeived By	Received by	
e.	VPDES Outfall 009	WS-13			- 10	Preservative	Ð.									an manna a	1	/\	3	
	Project: Boeing-SSFL NPDES Semi-Annual Outfall 009	GRAB Stormwater at WS-13		Phone Number:	Fax Number: (626) 568-6515	+	19619									ime:	12:h//60		ime:	
6/29/09	0	d Doak		elly		iner # of e Cont.	ıber 2	-								Date/Time:	10-14	Date/Time:	Date/Time:	
ica version	ress: ve, Suite 200	07 ntact: Jose		Bronwyn k	5 Dewsor	Sample Container Matrix Type	W 1L Amber		4							Date/Time:	7	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		$\cup \mid$
Test America version 6/29/09	Client Name/Address: MVVH-Arcadia 618 Michillinda Ave, S	Arcadia, CA 91007 Test America Contact: Joseph Doak		Project Manager: Bronwyn Kelly	Sampler: 5D	Sample Sa Description M	Outfall 009									Relinquished By	Harry	Relinquished By	Reinquished By	Ā

		(s),~/	Ear	-// _λ	2/1/			285
TestAmerica	Lot #	(8)7		190	047			289
THE LEADER IN ENVIRONMENTAL TESTING					51			292
CONDITION UPON RECE	IPT FORM	-			279			294
Client: 14 Tru					283			298
Quote No: 81594, 1								
COC/RFA No: See below								
		.	211	12/4	1.0	Time:	1920	;
Initiated By: 60	Shippi	Dat no Info	e:	10/14	101	1ime:	0140	
Shipper: FedE UPS	DHL Courier Clien					Multiple Pa	ckages;	(Y) N
Shipping # (s):*						Temperature	(s):**	Ü
1. 7970 2441 9226	6				1. <u>a</u>	mbiant_	6	
2. 2448 0133					_	U		
	8.							
	9							
	10.					y		
		**Sam	ple must	be received	 I at 4°C ± 2°C-	If not, note con	itents below.	Temperature
*Numbered shipping lines correspond to Nur		varianc	e does N	OT affect t	he following:	Metals-Liquid o	or Rad tests-	Liquid or Solids
Condition (Circle "Y" for yes, "N" for no	and "N/A" for not applicable): ody seals present on the		y (3)	A th a	to der goolg	mronont o	n hottles?
1. Y N cooler?		8.	Y 🔀			ustody seals		
2. Y MA Do custody se tampered with	eals on cooler appear to be	9.	YN	(MA)	tampered v	seals on bo vith?		
2 1 (A) (A)	s of cooler frisked after	10.	ΥN	(1/2)			ith proper	pH ¹ ? (If not,
Garage Garage	pefore unpacking? red with Chain of				make note	****		
4. Y N Custody?		11.	(y) N	- 45	•	eived in pro	-	
	in of Custody match in the container(s)?	12.	Y N	(VA)	Headspace (If Yes, note	in VOA or 'sample ID's be	rox liqui	d samples?
6. Y (1) Was sample r	eceived broken?	13.	(Y)N	N/A	Was Intern	al COC/Wor	rkshare re	ceived?
7. N Is sample volumnallysis?	ume sufficient for	14.	Y N	N/A	Was pH ta	ken by origin	nal TestAr	merica lab?
For DOE-AL (Pantex, LANL, Sandia) sites		ust be v	erified, E	XCEPT V	OA, TOX and s	oils.		
Notes: 157 1386 1373	<u>}</u>				,			
1388								
1328	•							
1380								
1383	<u> </u>							
1382								
1400								
i347								
1374								
Corrective Action:			Informe	d hw				
☐ Client Contact Name: ☐ Sample(s) processed "as is"					· ·	· · · · · · · · · · · · · · · · · · ·		
☐ Sample(s) on hold until		If rele	ased, no		——————————————————————————————————————	-20 €		·····
Project Management Review:	- di C			Date:				C OTHER THAT
THIS FORM MUST BE COMPLETED AT THE INITIATOR, THEN THAT PERSON	te neatimen to about their	9 INITTA	AI ANII'	IMPIJAI	H NYMX 1 11 1 11	MAILENI.		Admin004 rev11.doc

Lot # D9J160338

Report Cover Page	1
Case Narrative	2
Executive Summary - Detection Highlights	4
Methods Summary	5
Method / Analyst Summary	6 7
Sample Summary	7
QC Data Association Summary	8
Metals Forms	9
Metals Forms (cont.)	22
Sample Receipt Documents	36
Chain of Custody	38
Supporting Documentation	39
Mercury Metals Raw Data	39
Total Number of Pages in this Package	63

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

MWH - Pasadena/Boeing

Lot D9J160338

Project ISJ1373

Joseph Doak 17461 Derian Avenue Suite 100 Irvine, CA 92614

TestAmerica Laboratories, Inc.

DiLea Griego Project Manager

October 26, 2009

Case Narrative

Enclosed is the report for one sample received at the TestAmerica Laboratory in Denver on October 16, 2009. The results included in this report relate only to the samples in this report and have been reviewed for compliance with the laboratory QA/QC plan and meet all requirements of NELAC. All data have been found to be compliant with laboratory protocol, with the exception of any items noted below.

This report may include reporting limits (RLs) less than TestAmerica's standard reporting limits. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Laboratories, Inc. utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot D9J160338

Sample Receiving

The cooler temperature upon receipt at the laboratory was acceptable at 0.3°C.

Total Metals- Method 245.1

The MS/MSD analyses associated with batch 9293508 exhibited spike compound recoveries and RPD values outside the QC control limits for mercury. The acceptable LCS analysis data indicated that the analytical system was operating within control; therefore, corrective action is deemed unnecessary.

No other anomalies were observed.

Dissolved Metals- Method 245.1

The MS/MSD analyses associated with batch 9293522 exhibited spike compound recoveries outside the QC control limits for mercury. The acceptable LCS analysis data indicated that the analytical system was operating within control; therefore, corrective action is deemed unnecessary.

No other anomalies were observed.

Quality Control Definitions of Qualifiers

Qualifier	Definition
U	Result is less than the method detection limit (MDL).
В	Organics: Method blank contamination. The associated
	method blank contains the target analyte at a
	reportable level.
ļ	Inorganics: Estimated result. Result is less than the RL
J	Organics: Estimated result. Result is less than RL
	Inorganics: Method blank contamination. The associated
	method blank contains the target analyte at a
	reportable level.
E	Estimated result. Result concentrations exceed the calibration
	range.
p	Relative Percent Difference (RPD) is outside control limits.
*	Surrogate or Relative Percent Difference (RPD) is outside
	control limits.
DIL	The concentration is estimated or not reported due to dilution.
COL	More than 40% difference between the primary and
	confirmation detector results. The lower of the two results is reported.
CHI	More than 40% difference between the primary and
	confirmation detector results. The higher of the two results is
	reported.
L	Serial dilution of a digestate in the analytical batch indicates
	that physical and chemical interferences are present.
<u>a</u>	Spiked analyte recovery is outside stated control limits.
N	Spiked analyte recovery is outside stated control limits.
NC	The recovery and/or RPD were not calculated.
MSB	The recovery and/or RPD were not calculated because the
	sample amount was greater than four times the spike amount.

EXECUTIVE SUMMARY - Detection Highlights

D9J160338

		REPORTING		ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
	_			

NO DETECTABLE PARAMETERS

METHODS SUMMARY

D9J160338

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Dissolved Mercury (CVAA)	MCAWW 245.1	MCAWW 245.1
Mercury (Manual Cold Vapor Technique)	MCAWW 245.1	MCAWW 245.1

References:

MCAWW

"Methods for Chemical Analysis of Water and Wastes", ${\tt EPA-600/4-79-020}$, March 1983 and subsequent revisions.

METHOD / ANALYST SUMMARY

D9J160338

ANALYTICAL METHOD		ANALYST	ANALYST ID
MCAWW 245	.1	Christopher Grisdale	9582
Reference	5:		
MCAWW		l Analysis of Water and Wastes", rch 1983 and subsequent revisions.	

SAMPLE SUMMARY

D9J160338

WO # SAMPLE	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LMQ3G 001	ISJ1373-01	10/14/09	08:10

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

QC DATA ASSOCIATION SUMMARY

D9J160338

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
	WATER WATER	MCAWW 245.1 MCAWW 245.1		9293508 9293522	9293301 9293314

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Total Metals

CLP-Like Forms

Lot ID: <u>D9J160338</u>

Client: <u>TestAmerica-Irvine</u>

Method: <u>245.1</u>

Associated Samples: _-001

Batch: 9293508

Total Metals Analysis COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

	COVER PAGE - INORGA	ANIC ANAL	YSIS DATA PAC		
Contract:	TestAmerica Irvine			SDG No.:	D9J160338
Lab Code:	Case No.:	<u>.</u>		SAS No.:	
SOW No.:	***************************************				
	Sample ID.	Lab	Sample No.		
	ISJ1373-01	D9J	160338-001		
Were ICP i	nterelement corrections applied?			Yes/No	YES
Were ICP b	ackground corrections applied?			Yes/No	YES
	es-were raw data generated before ication of background corrections?			Yes/No	NO
appı	ication of background corrections:				
Comments:					
Commerce.					
					
contract, above. Resubmitted	that this data package is in compliance both technically and for completeness, lease of the data contained in this had on floppy diskette has been authorized y the following signature.	for other	than the cond package and	itions detailed in the computer	-readable data
Signature:	James Collin 10123109	Name:	Janice Coll	ins	
Date:	10123/09	Title:	Metals Anal	yst	

TestAmerica Irvine

Total Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

ISJ1373-01

Lot/SDG Number:

D9J160338

Lab Sample ID:

D9J160338-001

Matrix:

WATER

Lab WorkOrder:

LMQ3G

% Moisture:

<u>N/A</u>

Date/Time Collected:

10/14/09 08:10

Basis:

Unit:

Wet

Date/Time Received:

10/16/09 09:00

Analysis Method:

<u>245.1</u>

Date Leached:

QC Batch ID:

ug/L 9293508 Date/Time Extracted:
Date/Time Analyzed:

10/21/09 08:30 10/21/09 11:20

Sample Aliquot:

9293508 10 mL

Instrument ID:

023

Dilution Factor:

1

CAS No.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	U

Total Metals Analysis

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: TestAmerica Irvine Lab Code: Case		ie				
		No.:	SAS No.:		SDG NO.:	D9J160338
Initial Cal	ibration Source:	Inorganic '	/entures			
Continuing	Calibration Source:	Ultra	Scientific			_
						

Concentration Units: ug/L

	Initial Calibration			Contin					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	7.000	6.648	95.0	5.000	5.179	103.6	5.33	5 106.7	CV

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

Total Metals Analysis -2BCRDL STANDARD FOR AA AND ICP

Contract:	TestAmerica :	Irvine			****		
Lab Code:		Case No.:		SAS No.:		SDG No.:	D9J160338
AA CRDL Sta	andard Source:	Ultra	Scientific				
ICP CRDL S	tandard Source:						

Concentration Units: ug/L

	CRDL Stand	CRDL Standard for AA			CRDL Standard fo			or ICP Final		
Analyte	True	Found	%R	True	Found	%R	Found	%R		
Mercury	0.200	0.18500	92.5							

TestAmerica Irvine

Total Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

D9J200000-508B

Lot/SDG Number:

<u>D9J160338</u>

Lab Sample ID: Lab WorkOrder:

Matrix:

WATER

Date/Time Collected:

<u>LMXVC</u>

% Moisture:

Basis:

<u>Wet</u>

Date/Time Received:

Analysis Method:

<u>245.1</u>

Date Leached:

10/21/09 08:30

Unit:

ug/L

Date/Time Extracted:
Date/Time Analyzed:

10/21/07 00:50

QC Batch ID:

9293508

T / / YPS

10/21/09 11:04

Sample Aliquot: Dilution Factor:

<u>10 mL</u>

1

Instrument ID:

<u>023</u>

CAS No.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	U

-3-

BLANKS

Contract:	TestAmerica Irvine			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	D9J160338
Preparation	Blank Matrix (soil/water):	WATER		
Preparation	Blank Concentration Units (ug/L	or mg/kg):	UG/L	

	Initial Calib. Blank		Continuing Calibration Blank (ug/L)				Preparation Blank				
Analyte	(ug/L)	С	1	С	2	C	3	с		С	М
Mercury	0.02	ט (7	0.02	טן 77	-0.0	28 B			0.027	ט	CV

TestAmerica Irvine

Total Metals Analysis Data Sheet

 Lab Name:
 TESTAMERICA DENVER
 Client Sample ID:
 LAB MS/MSD

 Lot/SDG Number:
 D9J160338
 MS Lab Sample ID:
 D9J160335-001S

 Matrix:
 WATER
 MS Lab WorkOrder:
 LMQ24

% Moisture: N/A Date/Time Collected: 10/14/09 08:00

 Basis:
 Wet
 Date/Time Received:
 10/16/09 09:00

Analysis Method: 245.1 Date Leached:

 Unit:
 ug/L
 Date/Time Extracted:
 10/21/09 08:30

 QC Batch ID:
 9293508
 Date/Time Analyzed:
 10/21/09 11:11

MS Sample Aliquot: 10 mL Instrument ID: 023

MS Dilution Factor: $\underline{1}$

Analyte	Spike Amount	Sample Result	C	MS Result	C	% Rec	Q	QC Limit
Mercury	5.00	0.027	U	1.59		31	N	90 - 110

TestAmerica Irvine Total Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

LAB MS/MSD

Lot/SDG Number:

D9J160338

MSD Lab Sample ID:

D9J160335-001D

Matrix:

WATER

MSD Lab WorkOrder:

LMQ24

% Moisture:

<u>N/A</u>

Date/Time Collected:

10/14/09 08:00

Basis:

Wet

Date/Time Collected:

Date/Time Received:

10/16/09 09:00

Analysis Method:

245.1 ug/L Date Leached:
Date/Time Extracted:

10/21/09 08:30

QC Batch ID:

Unit:

9293508

Date/Time Analyzed:

10/21/09 11:13

MSD Sample Aliquot:

10 mL

1

Instrument ID:

<u>023</u>

MSD Dilution Factor:

	Spike	Sample		MSD		0/ D.		RPD	Q	QC Limits	
Analyte	Amount	Result	С	Result	С	% Rec	Q			% Rec	RPD
Mercury	5.00	0.027	U	2.04		40	N	25	*	90 - 110	10

TestAmerica Irvine

Total Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

D9J200000-508C

Lot/SDG Number:

D9J160338

Lab Sample ID: Lab WorkOrder:

LMXVC

Matrix:

WATER

Date/Time Collected:

% Moisture:

<u>N/A</u>

Basis:

<u>Wet</u>

Date/Time Received:

Analysis Method:

<u>245.1</u>

Date Leached:

10/21/09 08:30

Unit:

ug/L

Date/Time Extracted:

QC Batch ID:

9293508 10 mL

Date/Time Analyzed:

10/21/09 11:06

Sample Aliquot: **Dilution Factor:**

1

Instrument ID:

<u>023</u>

Analyte	True	Found	%Rec	Q	Limits
Mercury	5.00	4.89	98		90 - 110

-10-

DETECTION LIMITS

Contract:	<u>TestAmerica</u>	Irvine	·	········			
Lab Code:		Case No.:	SAS No.	:	SDG NO.:	D9J160338	
ICP ID Num	ber:		Date:	12/26/2008			
Flame AA II	Number:	Cetac M7500 Hg					
Furnace AA	ID Number:						

Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	MDL (ug/L)	М
Mercury	253.70		0.20	0.027	CV

Comments:

-13-

PREPARATION LOG

Contract:	TestAmerica	Irvine				
Lab Code:		Case No.:		SAS No.:	SDG NO.:	D9J160338
Method:	cv		Prep Method:		 	

Sample ID	Preparation Date	Initial Volume	Final Volume(mL)
INTRA-LAB QC	10/21/2009	10.0	10.0
LAB MS/MSD MS	10/21/2009	10.0	10.0
LAB MS/MSD MSD	10/21/2009	10.0	10.0
ISJ1373-01	10/21/2009	10.0	10.0
MB9293508	10/21/2009	10.0	10.0
Check Sample	10/21/2009	10.0	10.0

Comments:

ANALYSIS RUN LOG

Contract:	T	estAmerica	Irvi	ne	 			
Lab Code:				Case No.:	 SAS No.:		SDG No.:	D9J160338
Instrument	ID	Number:	Cetac	M7500 Hg	 Method:	CV		
Start Date:		10/21/200	3		End Date:	10/21/2009		

		·		Γ									 Ana	1y	tes	;										
Sample ID.	D/F	Time	% R	A L	ŧ	A S	B A	B E	C D	C A	C R	C 0	F E	P B	M G		H G	N I	ĸ	S E	A G	N A	T L	V	Z N	C N
Cal Blank	1.00	10:37															х									
Std1	1.00	10:39															X									
Std2	1.00	10:41															X									
Std3	1.00	10:43															Х								L	
Std4	1.00	10:46															X									
Std5	1.00	10:48															Х									
Std6	1.00	10:50															х									
ICB	1.00	10:53															Х									
ICV	1.00	10:55															X									
RL	1.00	10:58															х								L	
ccv	1.00	11:00															X								L	<u> </u>
ССВ	1.00	11:02															X								<u> </u>	<u> </u>
MB9293508	1.00	11:04															X								L	
Check Sample	1.00	11:06															X								L	
INTRA-LAB QC	1.00	11:09															Х									
LAB MS/MSD MS	1.00	11:11															х									
LAB MS/MSD MSD	1.00	11:13															Х								Ĺ	
ISJ1373-01	1.00	11:20															х								_	L
ccv	1.00	11:26															X								上	_
ССВ	1.00	11:29															X									

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

THE LEADER IN ENVIRONMENTAL TESTING

Dissolved Metals

CLP-Like Forms

Lot ID: <u>D9J160338</u>

Client: _____TestAmerica-Irvine

Method: 245.1

Associated Samples: _-001

Batch: 9293522

Dissolved Metals Analysis COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

COVER PAGE - INOR	RGANIC ANAL	YSIS DATA PACKAGE	
Contract: TestAmerica Irvine		SDG No.:	D9J160338
Lab Code: Case No.:		SAS No.:	
SOW No.:			
Sample ID.	Lab	Sample No.	
ISJ1373-01		7160338-001	
Were ICP interelement corrections applied?		Yes/No	YES
Were ICP background corrections applied?		Yes/No	YES
If yes-were raw data generated before application of background corrections?		Yes/No	NO
Comments:			

	······································		
I certify that this data package is in compliant contract, both technically and for completeness			
above. Release of the data contained in this submitted on floppy diskette has been authorize	hardcopy data	a package and in the compute	r-readable data
verified by the following signature.			
Date: 10/23/09	Name:	Janice Collins	
<i>V</i>			
Date: 10(23/09	Title:	Metals Analyst	

TestAmerica Irvine Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

ISJ1373-01

Lot/SDG Number:

D9J160338

Lab Sample ID:

D9J160338-001

Matrix:

WATER

Lab WorkOrder:

LMQ3G

% Moisture:

<u>N/A</u> Wet **Date/Time Collected:**

10/14/09 08:10

Basis:

Date/Time Received:

10/16/09 09:00

Analysis Method: Unit:

<u>245.1</u> ug/L

Date Leached: Date/Time Extracted:

10/21/09 08:30

QC Batch ID:

9293522

Date/Time Analyzed:

10/21/09 12:51

Sample Aliquot:

<u>10 mL</u>

Instrument ID:

<u>023</u>

Dilution Factor:

1

CAS No.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	U

Dissolved Metals Analysis

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	TestAmerica Irvin	e			
Lab Code:	Case	No.:	SAS No.:	SDG NO.:	D9J160338
Initial Cal	libration Source:	Inorganic '	Ventures	······································	
Continuing	Calibration Source:	Ultra	Scientific		

Concentration Units: ug/L

	Initial Ca	libration		Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	7.000	6.648	95.0	5.000	5.179	103.6	5.1	66 103.3	cv

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

Analyte

Mercury

True

Found

%R(1)

Dissolved Metals Analysis

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	TestAmerica Irvin	e				
Lab Code:	Case	No.:	SAS No.:	SDG NO.:	D9J160338	
Initial Ca	libration Source:	Inorganic Vent	ures			
Continuing	Calibration Source:	Ultra Scie	entific			
		Concentration U	nits: ug/L			
	Initial	Calibration	Continuin	g Calibration		

True

5.000

Found

%R(1)

5.463 109.3

Found

%R(1)

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

Dissolved Metals Analysis -2B-CRDL STANDARD FOR AA AND ICP

Contract:	TestAmerica	Irvine		······································				
Lab Code:		Case No.:		SAS No.:		SDG No.:	D9J160338	
AA CRDL St	andard Source:	Ultra	Scientific					
ICP CRDL S	tandard Source	:						

Concentration Units: ug/L

	CRDL Stand	lard for AA		In	CRDL Stand	ard for	for ICP Final		
Analyte	True	Found	%R	True	Found	%R	Found	%R	
Mercury	0.200	0.18500	92.5						

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

Lot/SDG Number:

D9J160338

Lab Sample ID:

D9J200000-522B

Matrix:

WATER

Lab WorkOrder:

LMXWE

% Moisture:

<u>Wet</u>

Date/Time Collected:

Date/Time Received:

Basis: **Analysis Method:**

245.1

Date Leached:

Unit:

ug/L

Date/Time Extracted:

10/21/09 08:30

QC Batch ID:

9293522

Date/Time Analyzed: **Instrument ID:**

10/21/09 12:33 <u>023</u>

Sample Aliquot: **Dilution Factor:** 10 mL 1

CAS No.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	U

Dissolved Metals Analysis

-3-

BLANKS

Contract:	TestAmerica Irvine				
Lab Code:	Case No.:	SAS No.:		SDG NO.:	D9J160338
Preparation	Blank Matrix (soil/water):	WATER			
Preparation	Blank Concentration Units (ug/L	or mg/kg):	UG/L		

	Initial Calib. Blank				inuing Blank (Calibrat ug/L)	ion		Preparation Blank			
Analyte	(ug/L)	С	1	C	2	С	3	С		С		М
Mercury	0.02	27 U	0.02	27 0	0.0	27 ប	0.0	27 ช	0.027	Ū	П	CV

Comments:

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

LAB MS/MSD

Lot/SDG Number:

D9J160338

MS Lab Sample ID:

D9J160335-001S

Matrix:

<u>WATER</u>

MS Lab WorkOrder:

LMQ24

% Moisture:

<u>N/A</u>

Date/Time Collected:

10/14/09 08:00

Basis:

<u>Wet</u>

Date/Time Received:

10/16/09 09:00

Analysis Method:

<u>245.1</u>

Date Leached:

10/21/09 08:30

Unit:

ug/L

Date/Time Extracted: Date/Time Analyzed:

10/21/09 12:46

QC Batch ID:

9293522 10 mL

Instrument ID:

023

MS Sample Aliquot:

MS Dilution Factor: 1

Analyte	Spike Amount	Sample Result	C	MS Result	С	% Rec	Q	QC Limit
Mercury	5.00	0.027	U	3.13		62	N	90 - 110

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

LAB MS/MSD

Lot/SDG Number:

D9J160338

MSD Lab Sample ID:

D9J160335-001D

Matrix:

WATER

MSD Lab WorkOrder:

<u>LMQ24</u>

% Moisture:

<u>N/A</u>

Date/Time Collected:

10/14/09 08:00

Basis:

<u>Wet</u>

Date/Time Received:

10/16/09 09:00

Analysis Method:

<u>245.1</u>

1

Date Leached:

10/21/09 08:30

Unit:

ug/L

Date/Time Extracted: Date/Time Analyzed:

10/21/09 12:48

QC Batch ID:

9293522 <u>10 mL</u>

MSD Sample Aliquot: **MSD Dilution Factor:**

Instrument ID:

023

		C-:1-:	Commis		MSD						QC Lin	nits
	Analyte	Spike Amount	Sample Result	С	Result	С	% Rec	Q	RPD	Q	% Rec	RPD
Mercury		5.00	0.027	U	2.97		59	N	5.3		90 - 110	10

TestAmerica Irvine Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

Lot/SDG Number:

D9J160338

Lab Sample ID:

D9J200000-522C

Matrix:

WATER

Lab WorkOrder:

LMXWE

% Moisture:

<u>N/A</u>

Date/Time Collected:

Basis:

Wet

Date/Time Received:

Analysis Method:

<u>245.1</u>

Date Leached:

.

Unit:

ug/L

Date/Time Extracted:

10/21/09 08:30 10/21/09 12:35

QC Batch ID: Sample Aliquot: 9293522 10 mL Date/Time Analyzed: Instrument ID:

023

Dilution Factor:

1

Analyte	True	Found	%Rec	Q	Limits
Mercury	5.00	5.17	103		90 - 110

Dissolved Metals Analysis

-10-

DETECTION LIMITS

Contract:	TestAmerica	Irvine					
Lab Code:		Case No.:	SAS No.	.:	SDG NO.:	D9J160338	
ICP ID Num	ber:		Date:	12/26/2008			
Flame AA II	Number:	Cetac M7500 Hg					
Furnace AA	ID Number:			-			

Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	MDL (ug/L)	м
Mercury	253.70		0.20	0.027	CV

Comments:

Dissolved Metals Analysis

-13-

PREPARATION LOG

Contract:	TestAmerica	Irvine						
Lab Code:		Case No.:	Name	SAS	No.:	SDG NO.:	D9J160338	
Method:	<u>cv</u>		Prep Method:			 		

Sample ID	Preparation Date	Initial Volume	Final Volume(mL)
INTRA-LAB QC	10/21/2009	10.0	10.0
LAB MS/MSD MS	10/21/2009	10.0	10.0
LAB MS/MSD MSD	10/21/2009	10.0	10.0
ISJ1373-01	10/21/2009	10.0	10.0
MB9293522	10/21/2009	10.0	10.0
Check Sample	10/21/2009	10.0	10.0

Comments:

Dissolved Metals Analysis -14-

ANALYSIS RUN LOG

Contract:	T	estAmerica	Irvir	ıe	 _			
Lab Code:				Case No.:	SAS No.:		SDG No.:	D9J160338
Instrument	ID	Number:	Cetac	M7500 Hg	Method:	cv		
Start Date:		10/21/2009)		End Date:	10/21/2009)	

													Ana	1y	tes	3	-									
Sample ID.	D/F	Time	% R	A L	A S	B A	BE	C D	C A	C R	С О	G G		P B	M G		H G	N I	ĸ	S E		N A	T L	v		C N
Cal Blank	1.00	10:37															x									
Std1	1.00	10:39															х									
Std2	1.00	10:41															x									
Std3	1.00	10:43															х									
Std4	1.00	10:46															х									
Std5	1.00	10:48															X									
Std6	1.00	10:50															х									
ICB	1.00	10:53															x									
ICV	1.00	10:55															x								L	<u> </u>
RL	1.00	10:58													i		X									
ccv	1.00	11:00															X								L	<u> </u>
ССВ	1.00	11:02		ļ													X									
ccv	1.00	12:29															x									
ССВ	1.00	12:31															X								L	
MB9293522	1.00	12:33															X				<u> </u>		<u> </u>		<u> </u>	
Check Sample	1.00	12:35															X						<u> </u>	<u> </u>	Ļ	<u>Ļ</u>
INTRA-LAB QC	1.00	12:37				L_											х			<u> </u>					Ļ	ᆜ
LAB MS/MSD MS	1.00	12:46															х								ㄴ	<u> </u>
LAB MS/MSD MSD	1.00	12:48								Į							Х	÷						<u> </u>	_	Ļ
ISJ1373-01	1.00	12:51															Х								<u> </u>	<u> </u>
ccv	1.00	12:57															х							_	丄	_
ССВ	1.00	13:00															х									

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

TestAmerica Denver

Sample Receiving Checklist

Lot #: D95160338	Date/Time Received: 10.16.69 0400
Company Name & Sampling Site:	TA IRVINE - BOEING - 15J1373
PM to Complete This Section: Yes Residual chlorine check required:□ No	Yes No Quarantined: Yes No
Quote #: 72743	
Special Instructions:	
- Log total	+ Diss. as appropriate.
- normal	+ Diss. as appropriate.
Time Zone: • EDT/EST • CDT/CST • MDT/MST • PDT/PST • CDT/CST • DT/CST •	OTHER
Unpacking Checks:	
Cooler #(s):	
Temperatures (°C):	
N/A Yes No	Initials
☐ ☐ ☐ 1. Cooler seals intact? (N/A if hand	delivered) If no, document on CUR.
2. Coolers scanned for radiation. Is	the reading ≤ to background levels? Yes: No:
3. Chain of custody present? If no, do	ocument on CUR.
☐	If yes, document on CUR.
5. Multiphasic samples obvious? If y	
6. Proper container & preservatives u	ised? (ref. Attachment D of SOP# DV-QA-0003) If no, document on CUR.
	et requirements? If no, document on CUR.
	analysis requested? (ref. Attachment D of SOP# DV-QA-0003) If no,
9. Did chain of custody agree with la	bels ID and samples received? If no, document on CUR.
☐ ☐ 10. Were VOA samples without head	space? If no, document on CUR.
	ervative DHCl D4±2°C DSodium Thiosulfate D Ascorbic Acid
12. Did samples require preservation v	vith sodium thiosulfate?
13. If yes to #11, did the samples contains	ain residual chlorine? If yes, document on CUR.
14. Sediment present in dissolved/filte	
	lient requested MS, MSD or matrix duplicates? If no, document on CUR, and
☐ ☐ 16. Receipt date(s) > 48 hours past the	collection date(s)? If yes, notify PA/PM.
☐ ☐ 17. Are analyses with short holding tin	nes requested?
☐ 18. Was a quick Turn Around (TAT) r	equested?

TestAmerica Denver

Sample Receiving Checklist

Lo	t #	D	95	160338	
Lo	gin (Che	eks:		Initials
N/A	Yes	s No			
			19.	Sufficient volume provided for all analysis requested? (ref. Attachment D of SOP# DV-QA-0003) document on CUR, and contact PM before proceeding.	If no,
7		-	20.	Is sufficient volume provided for client requested MS, MSD or matrix duplicates? If no, document o contact PM before proceeding.	on CUR, and
		۵	21	. Did the chain of custody includes "received by" and "relinquished" by signatures, dates, and times?	
			22.	Were special log in instructions read and followed?	
P			23.	Were AFCEE metals logged for refrigerated storage?	
	Z		24.	Were tests logged checked against the COC? Which samples were confirmed?	
			25.	Was a Rush form completed for quick TAT?	
Ø			26.	Was a Short Hold form completed for any short holds?	
		A	27.	Were special archiving instructions indicated in the General Comments? If so, what were they?	
Lal	oelin	g ar	nd S	torage Checks:	Iniplate
			28.	Was the subcontract COC signed and sent with samples to bottle prep?	
	র্ঘ		29.	Were sample labels double-checked by a second person?	
	\square		30.	Were sample bottles and COC double checked for dissolved/filtered metals by a second person?	
	a		31.	Did the sample ID, Date, and Time from label match what was logged?	
\mathbf{Z}_{j}	, u		32.	Were stickers for special archiving instructions affixed to each box? See #27	
2			33.	Were AFCEE metals stored refrigerated?	1 m

Document any problems or discrepancies and the actions taken to resolve them on a Condition Upon Receipt Anomaly Report (CUR).

SUBCONTRACT ORDER

TestAmerica Irvine ISJ1373

SENDING LABORATORY:

RECEIVING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

TestAmerica Denver

4955 Yarrow Street

Arvada, CO 80002 Phone: (303) 736-0100

Fax: (303) 431-7171

Project Location: CA - CALIFORNIA

Receipt Temperature:

°C

Ice: Y / N

Analysis	Units	Due	Expires	Interlab Price S	urch	Comments
Sample ID: ISJ1373-01	Water		Sampled	i: 10/14/09 08:10		
Level 4 + EDD-OUT	N/A	10/23/09	11/11/09 08:10	\$0.00	0%	Sub to Denver, transfer file EDD
Mercury - 245.1, Diss -OUT	ug/l	10/23/09	11/11/09 08:10	\$36.00	0%	Denver, Boeing, J flags
Mercury - 245.1-OUT	ug/l	10/23/09	11/11/09 08:10	\$36.00	0%	Denver, Boeing, permit, J flags,
Containers Supplied:						
• • • • • • • • • • • • • • • • • • • •	125 mL Poly (Dissolved)					

Released By

Date/Time

Received By

Nate Fine age 388 of 1088 1 of 1 38

Tester And By ica

Metals

Supporting Documentation

Sample Sequence, Instrument Printouts

Lot ID: <u> D S</u>	T160338
Client: TA	-Irvinc
Batch(es) #:_	9293508 + 9293522
ssociated Samples:	

I certify that, to the best of my knowledge, the attached package represents a complete and accurate copy of the original data.

Signature/Date: Uster Lisdale 10/21/09

Metals Raw Data RoadMap

LotID		Metal	WorkOrder	Anal Dat	e TestDesc	Batch	File Id	Instr	
D9J160338	1	HG	LMQ3G1A	20091021	M2451DS	9293522	091021AA	023	
D9J160338	1	HG	LMQ3G1A	20091021	M2451_L	9293508	091021AA	023	

METALS PREPARATION LOGS ICP

THE LEADER IN ENVIRONMENTAL TESTING

SUPPLEMENTAL METALS PREP SHEET

(Used in conjunction with METALS PREP LOG/BATCH SUMMARY)

Hg PREP & ANALYSIS - WATERS

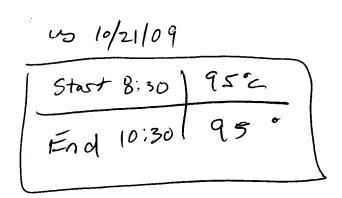
SOP: DEN-MT-0015 QC Batch #: 9293508

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Denver

Prep Date: 10/21/09	Prep By: CGG Ana			Date:10/21/09	Analyst: CGG		
Balance ID:	H53865	4	Thermo	ometer ID: MT 4025			
Digestion Cycles	Start Time	Temp	°C	End Time	Tem	np ℃	
	8:30	95		10:30	S	95	
Purple color persists or	black ppt present:	X Yes		No If "No", exp	lain in Comm	ents below.	
Digestion Tube Lo		<u> </u>	لــــا				
For dissolved mercury		tered in the la	ah?	Yes	X	No	
One or more samples v						No	
•	·	-		ne same manner using th			
n you, and it are metro	d blank and the 200	were also me	erea iii ii	Analyst(s) Initials:		i inter.	
Decreate Used				7 trialy st(3) tritials.		:	
Reagents Used Reagent	Manufacturer	Lot	ш	Standarda Lag #	Vol.	/ml)	
HNO ₃	JT Baker			Standards Log #		(mL)	
H ₂ SO ₄	Fisher	H120 G300				25 .5	
HCI	JT Baker	H190				nstrument	
10% SnCl ₂	Fisher	G456		STD-6425-09		instrument	
10 /0 011012	Fisher	G286		31D-0425-09	added by	instrument	
NaCl / NH ₂ OH	Fisher	G286 G426		STD-6077-09	0	.6	
KMnÖ₄	Fisher	G426		STD-6424-09	1	E	
K ₂ S ₂ O ₈	Fisher	G456 G456		STD-5798-09		1.5 0.8	
Parent Calibration Sto		U430	23	310-3790-09		,0	
raient Cambration St	Lot #			Verification #	Evn	Date	
Second Source	B2-HG020				2/10		
Primary Calibration	K00200	04		STD-1957-09 STD-1955-09)2/10)2/10	
Standards Preparation				Final digestate			
Standards Standards	Final Conc	Parent Sta	andard	Standards Log #	Volume = 10		
Cal Working	10 mg/L	Primary		Januarus Log #	1.00	Pipette 7	
Daily Cal Working	100 ug/L	Cal Wo			1.00	7	
ICAL 0.2	0.2 ug/L	Daily Cal V			0.2	7	
ICAL 0.5	0.5 ug/L	Daily Cal V			0.5	7	
ICAL 1	1.0 ug/L	Daily Cal V		See	1.0	7	
ICAL 2	2.0 ug/L	Daily Cal V		Attached	2.0	7	
ICAL 5	5.0 ug/L	Daily Cal V	<u>~</u>	Standards Log	5.0	24	
ICAL 10	10 ug/L	Daily Cal V		Printouts	10.0	24	
CCV	5 ug/L	Daily Cal V	<u>~~~</u>	· · · · · · · · · · · · · · · · · · ·	5.0	7	
ICV Intermed	700 ug/L	ICV St			0.70	7	
ICV Daily Working	7.0 ug/L	ICV Inte			1.00	7	
LCS	5 ug/L	Daily Cal V			0.5	7	
MS/MSD	5 ug/L	Daily Cal V			0.5	7	
RL	0.2 ug/L	Daily Cal V			0.2	7	
Second Source ICV In	termediate Stock St	andard Pres)	Standards Log #:			
				attached Standards Preparation			
Comments Total					. 3092001110001		
I certify that all inform			nlete				
Signature: ()	Diodale	o. and oom		Date: (0/2	1109		
REVIEWED BY:	Coloura)			Date: 1/1 /2	1/1:0		

Batch Number: 9293508

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary


Prepared By:

Prep Date: 10/20/09 07 10 21 0 9

Lot	Work Order		Due Date:	10/26/09	Initial Weight/Volume
D9J200000 Water	LMXVC	в/	Due Date: SDG:		<u>10 mL</u>
D9J200000 Water	LMXVC	c 2	Due Date: SDG:		<u>10 mL</u>
D9J160335 Water	LMQ24 Total	3	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160335 Water	LMQ24 Total	s 4	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160335 Water	LMQ24 Total	_D 5	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160338 Water	LMQ3G Total	Ь	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160339 Water	LMQ3R Total	7	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160341 Water	LMQ30 Total	8	Due Date: 10/26/09 SDG:		<u>10 mL</u>
~					

Comments:

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

SUPPLEMENTAL METALS PREP SHEET

(Used in conjunction with METALS PREP LOG/BATCH SUMMARY)

Hg PREP & ANALYSIS - WATERS

SOP: DEN-MT-0015 QC Batch #: 9293522

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Denver

Prep Date: 10/2//09	Prep By: CGG	/	Analysis	Date:10/21/09	Analyst: CG0	à	
Balance ID:	H53865 /	3865 / Thermometer ID: MT 4025					
Digestion Cycles	Start Time /	Temp	°C	End Time	Ten	ıp ℃	
	8:30	95		10:30	9)5	
Purple color persists or	hlack pot present:	X Yes		· /	olain in Comm	ents below.	
Digestion Tube Lo		<u> </u>		110 1110 , 50,			
For dissolved mercury		arad in the l	ah2	Yes	· ×	No	
1	•					No	
One or more samples \	•	·			·—		
n yes , then the metho	od blank and the LCS V	were also tilt	erea in tr	ne same manner using th		of flitter.	
				Analyst(s) Initials			
Reagents Used							
Reagent	Manufacturer	Lot		Standards Log #		(mL)	
HNO ₃	JT Baker	H120		27		25	
H ₂ SO ₄	Fisher	G300				.5	
HCI	JT Baker	H190				nstrument	
10% SnCl ₂	Fisher	G456		STD-6425-09	added by	instrument	
NaCl / NH₂OH	Fisher	G286		STD-6077-09	0	.6	
I/MnO	Fisher	G426		OTD 0404 00			
KMnO₄	Fisher	G456		STD-6424-09	<u> </u>	1.5	
K ₂ S ₂ O ₈	Fisher	G456	29	STD-5798-09	1 0	.8	
Parent Calibration Sto				M	T =	D-11-	
Second Source	Lot #	24		Verification #		Date	
Primary Calibration	B2-HG0206 K00200	04		STD-1957-09 STD-1955-09)2/10)2/10	
Standards Preparatio	<u> </u>			Final digestate			
Standards Preparation	Final Conc	Parent Sta	andard	Standards Log #			
Cal Working	10 mg/L	Primary		Standards Log #	Vol (mL)	Pipette 7	
Daily Cal Working	10111g/L 100 ug/L	Cal Wo		1	1.00	. 7 : 7	
ICAL 0.2	0.2 ug/L	Daily Cal V			0.2	7	
ICAL 0.5	0.5 ug/L	Daily Cal V			0.5	7	
ICAL 1	1.0 ug/L	Daily Cal V		See	1.0	7	
ICAL 2	2.0 ug/L	Daily Cal V		Attached	2.0	7	
ICAL 5	5.0 ug/L	Daily Cal V		Standards Log	5.0	24	
ICAL 10	10 ug/L	Daily Cal V		Printouts	10.0	24	
CCV	5 ug/L	Daily Cal V			5.0	7	
ICV Intermed	700 ug/L	ICV St			0.70	7	
ICV Daily Working	7.0 ug/L	ICV Inte	rmed	1	1.00	7	
LCS	5 ug/L	Daily Cal V	Vorking	1	0.5	7	
MS/MSD	5 ug/L	Daily Cal V	Vorking		0.5	7	
RL	0.2 ug/L	Daily Cal V	Vorking		0.2	7	
Second Source ICV In	ntermediate Stock St	andard Prep)	Standards Log #:	STD-6414-09		
NOTE: Details for e	each reagent & standard pre	p are documer	ted in the	attached Standards Preparatio	n Logbook Recor	d.	
	Wed - Boein			<u></u>			
I certify that all inform			plete.				
Signature: Date: 10/21/09 REVIEWED BY: Date: 10/1/09							
REVIEWED BY:	9/			Date: 10 / 2	1/09		

Batch Number: 9

Comments:

9293522

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

				1		, , , , , , , , , , , , , , , , , , ,
				Prep Date:	10/20/09 (0)	2109
Lot	Work Order			Due Date.	10/20/07	Initial Weight/Volume
D9J200000 Water	LMXWE	В	Due Date: SDG:			10 mL
D9J200000 Water	LMXWE	_C 2	Due Date: SDG:			<u>10 mL</u>
D9J160335 Water	LMQ24 Dissolved	2 U	Due Date: SDG:			<u>10 mL</u>
D9J160335 Water	LMQ24 Dissolved	s T	Due Date: SDG:			<u>10 mL</u>
D9J160335 Water	LMQ24 Dissolved	D 3	Due Date: SDG:			<u>10 mL</u>
D9J160338 Water	LMQ3G Dissolved	7	Due Date: SDG:			<u>10 mL</u>
D9J160339 Water	LMQ3R Dissolved	8	Due Date: SDG:			<u>10 mL</u>
D9J160341 Water	LMQ30 Dissolved	U	Due Date: SDG:			<u>10 mL</u>

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

METALS SAMPLE DATA CVAA

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Denver

Standards Preparation Logbook Record

Oct-21-2009

Logbook: \\Densvr06\StdsLog\metals.std STD1955-09, 1000 mg/L HG Calibration Stock Standard (ULTRA Analyst: GRISDALEC Vendor: Ultra (Metals) Lot No.: K00200 Vendor's Expiration Date: 04-02-2010 Solvent: 2% HNO3 Date Prep./Opened: 04-02-2009 Date Received: 04-02-2009 Date Expires(1): 04-02-2010 (1 Year) Date Expires(2): 04-02-2010 (None) (METALS)-Inventory ID: 842 Component Initial Conc (ug/ml) Final Conc (ug/ml) HG 1,000.0 1,000.0 STD1957-09, Hg Inorganic Ventures ICV 100PPM std Analyst: GRISDALEC Vendor: Inorganic Ventures Lot No.: B2-HG02064 Vendor's Expiration Date: 04-02-2010 Solvent: Neat Date Prep./Opened: 04-02-2009 Date Received: 04-02-2009 Date Expires(1): 04-02-2010 (1 Year) Date Expires(2): 04-02-2010 (None) (METALS)-Inventory ID: 843 Component Initial Conc (%) Final Conc (%) HG 100.00 100.00 STD6413-09, 10 mg/L Hg Calibration Std Analyst: grisdalec Solvent: 1% HN03 Lot No.: H12022 Volume (ml): 100.00 Date Prep./Opened: 10-20-2009 Date Expires(1): 11-20-2009 (1 Month) Date Expires(2): 04-02-2010 (1 Month) Date Verified: 12-31--4714 by - (Verification ID: 0) Parent Std No.: STD1955-09, 1000 mg/L HG Calibration Stock Standard (ULTRA)iquot Amount (ml): 1.0000 Parent Date Expires(1): 04-02-2010 Parent Date Expires(2): 04-02-2010 Component Initial Conc (ug/ml) Final Conc (mg/L) HG 1,000.0 10.000

Page 1 of 4

STD6414-09, Hg Inorganic Ventures ICV 700ppb Analyst: grisdalec Solvent: 1% HNO3 Lot No.: H12022 Volume (ml): 100.00 Date Prep./Opened: 10-20-2009 Date Expires(1): 11-03-2009 (2 Weeks) Date Expires(2): 04-02-2010 (None) Date Verified: 12-31--4714 by - (Verification ID: 0) Parent Std No.: STD1957-09, Hg Inorganic Ventures ICV 100PPM std Aliquot Amount (ml): 0.7000 Parent Date Expires(1): 04-02-2010 Parent Date Expires(2): 04-02-2010 Component Initial Conc (%) Final Conc (ug/L) HG 7,000,000 100.00 STD6415-09, 100 ppb Hg Calibration Std Analyst: grisdalec Solvent: 1% HN03 Lot No.: H12022 Volume (ml): 100.00 Date Prep./Opened: 10-21-2009 Date Expires(1): 10-22-2009 (1 Day) Date Expires(2): 04-02-2010 (None) Date Verified: 12-31--4714 by - (Verification ID: 0) Parent Std No.: STD6413-09, 10 mg/L Hg Calibration Std Aliquot Amount (ml): 1.0000 Parent Date Expires(1): 11-20-2009 Parent Date Expires(2): 04-02-2010 Component Initial Conc (mg/L) Final Conc (ug/ml) HG 10.000 0.1000 STD6416-09, Blank Daily Hg Calibration Std Analyst: grisdalec Vendor: Baker Lot No.: H12022 Solvent: 1% HN03 Date Prep./Opened: 10-21-2009 Date Expires(1): 04-21-2010 (6 Months) Date Expires(2): 10-21-2010 (1 Year) Date Verified: 12-31--4714 by 0 (Verification ID: -) Component Initial Conc (%) Final Conc (%) Nitric Acid 1.0000 1.0000 STD6418-09, 0.5 ppb Daily Hg Calibration Std Analyst: grisdalec Solvent: 1% HN03 Lot No.: H12022 Volume (ml): 100.00 Date Prep./Opened: 10-21-2009 Date Expires(1): 10-22-2009 (1 Day) Date Expires(2): 04-02-2010 (None) Date Verified: 12-31--4714 by - (Verification ID: 0)

Page 2 of 4

Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 10-22-2009 Parent Date Expires(2):		ot Amount (ml): 0.5000
Component	Initial Conc (ug/ml)	Final Conc (ug/ml)
HG	0.1000	0.0005
STD6419-09, 1.0 ppb Daily Hg Calibration Std		Analyst: grisdalec
Solvent: 1% HN03 Lot No.: H12022 Date Prep./Opened: 10-21-2009 Date Expires(1): 10-22-2009 (1 Day) Date Expires(2): 04-02-2010 (None) Date Verified: 12-314714 by - (Verification ID: 0)		Volume (ml): 100.00
Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 10-22-2009 Parent Date Expires(2):	04-02-2010	ot Amount (ml): 1.0000
Component HG	Initial Conc (ug/ml)	Final Conc (ug/ml)
110	0.1000	0.0010
STD6420-09, 2.0 ppb Daily Hg Calibration Std		Analyst: grisdalec
Solvent: 1% HN03 Lot No.: H12022 Date Prep./Opened: 10-21-2009 Date Expires(1): 10-22-2009 (1 Day) Date Expires(2): 04-02-2010 (None) Date Verified: 12-314714 by - (Verification ID: 0)		Volume (ml): 100.00
Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std	Alique	ot Amount (ml): 2.0000
Parent Date Expires(1): 10-22-2009 Parent Date Expires(2): Component HG	04-02-2010 <u>Initial Conc (ug/ml)</u> 0.1000	Final Conc (ug/ml) 0.0020
STD6421-09, 5.0 ppb Daily Hg Calibration Std		Analyst: grisdalec
Solvent: 1% HN03 Lot No.: H12022 Date Prep./Opened: 10-21-2009		Volume (ml): 100.00
Date Expires(1): 10-22-2009 (1 Day) Date Expires(2): 04-02-2010 (None) Date Verified: 12-314714 by - (Verification ID: 0)		
Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 10-22-2009 Parent Date Expires(2):		ot Amount (ml): 5.0000
Component	Initial Conc (ug/ml)	Final Conc (ug/ml)
HG	0.1000	0.0050

Page 3 of 4

STD6422-09, 10.0 ppb Daily Hg Calibration Std

Analyst: grisdalec

Volume (ml): 100.00

Date Prep./Opened: 10-21-2009

Date Expires(1): 10-22-2009 (1 Day)

Solvent: 1% HN03

Date Consumed: 12-06-2006

Date Expires(2): 04-02-2010 (None)

Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std

Date Verified: 12-31--4714 by - (Verification ID: 0)

Aliquot Amount (ml): 10.000

Parent Date Expires(1): 10-22-2009

Parent Date Expires(2): 04-02-2010

Lot No.: HJ2022

Lot No.: H12022

Component

Initial Conc (ug/ml)

Final Conc (ug/ml)

HG

0.1000

0.0100

STD6423-09, Hg Daily ICV 7ppb Calibration Std

Analyst: grisdalec Volume (ml): 100.00

Solvent: 1% HNO3 Date Prep./Opened: 10-21-2009

Date Expires(1): 10-22-2009 (1 Day)

Date Expires(2): 04-02-2010 (None)

Date Verified: 12-31--4714 by - (Verification ID: 0)

Aliquot Amount (ml): 1.0000

Parent Std No.: STD6414-09, Hg Inorganic Ventures ICV 700ppb

Parent Date Expires(1): 11-03-2009 Parent Date Expires(2): 04-02-2010 Component

Initial Conc (ug/L)

Final Conc (ug/L)

HG

7,000,000

70,000

Reviewed By: Chalaphu Midale 10/21/09

Page 4 of 4

View
Page
으
4

Raw 0.0 0.2 0.2 1.0 1.0 0.5 1.0 0.5 1.5 0.1 1.5 1.5 1.5 2.0 0.0 1.5 3.3	0/21/09 10:37 Analyst h Matrix Raw DF h Matrix 7.00 1.0 0.20 1.0 1.0 1.0 0.50 1.0 1.0 1.0 1.00 1.0 1.0 1.0 1.00 1.0 1.0 1.0 1.00 1.0 6.65 1.0 1.0 6.65 1.0 1.0 1.0 6.65 1.0 1.0 1.0 6.65 1.0 1.0 1.0 6.65 1.0 1.0 1.0 6.65 1.0 1.0 1.0 6.65 1.0 1.0 1.0 6.65 1.0 1.0 1.0 6.65 1.0 1.0 1.0 6.65 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <	O/21/09 10:37	O/21/09 10:37	Natrix Raw DF Result Units %R Matrix Raw DF Result Units %R 0.00 1.0 0.00 ppb 100.0% 1.00 0.50 ppb 100.0% 1.00 0.00 ppb 100.6% 1.00 0.00 ppb 100.6% 1.00 0.00 ppb 100.6% 1.00 0.00 ppb 100.6% 1.00 0.00 ppb 100.0% 1.00
Raw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Analyst: Raw DF 0.00 1.0 0.50 1.0 0.50 1.0 1.0.00	### Analyst: ### Raw DF 0.00 1.0 0.20 1.0 0.50 1.0 1.0	Haw DF Result Units 0.50 ppb 0.50 1.0 0.50 ppb 0.50 1.0 0.00 ppb 0.00 1.0 0.00 ppb	Name Color Color
	Analyst: DF 000 1.0	Analyst: DF 1.0 00	Analyst: CGG DF Result Units 00 1.0 0.00 ppb 20 1.0 0.50 ppb 00 1.0 1.0 0.50 ppb 00 1.0 5.00 ppb 00 1.0 5.18 ppb 02 1.0 -0.02 ppb 10 1.0 -0.01 ppb 02 1.0 0.20 ppb 11 1.0 -0.02 ppb 12 1.0 -0.02 ppb 13 1.0 -0.02 ppb 14 1.0 5.34 ppb 15 1.0 5.45 ppb 16 1.0 5.54 ppb 17 1.0 5.54 ppb 18 1.0 5.54 ppb 19 5.45 ppb 19 5.45 ppb 10 -0.02 ppb	Analyst: CGG DF Result Units %R 00 1.0 0.00 ppb 100.0% 20 1.0 0.50 ppb 100.0% 00 1.0 1.0 0.50 ppb 100.0% 00 1.0 1.0 0.02 ppb 100.0% 00 1.0 1.0 0.02 ppb 100.0% 00 1.0 1.0 10.00 ppb 100.0% 00 1.0 1.0 0.19 ppb 01 1.0 0.19 ppb 02 1.0 0.02 ppb 03 1.0 4.89 ppb 97.7% 04 1.0 2.04 ppb 05 1.0 5.12 ppb 06 1.0 -0.02 ppb 07 1.0 -0.02 ppb 08 1.0 -0.02 ppb 09 1.0 5.12 ppb 10 -0.02 ppb 10 5.12 ppb 100.7% 11 1.0 5.12 ppb 100.7% 12 1.0 5.12 ppb 100.7% 13 1.0 -0.02 ppb 14 1.0 5.45 ppb 15 1.0 5.45 ppb 16 1.0 -0.02 ppb 17 1.0 -0.02 ppb 18 1.0 -0.02 ppb 19 1.0 5.45 ppb 10 -0.02 ppb 10 -0.02 ppb 10 -0.02 ppb
	Instr In	Instrument: A (02 Illyst: CGG 1.0 0.00 ppb 1.0 0.50 ppb 1.0 0.50 ppb 1.0 1.00 ppb 1.0 5.00 ppb 1.0 6.65 ppb 1.0 0.19 ppb 1.0 5.18 ppb 1.0 -0.02 ppb	ment: A (02 ment: A (02 ppb 0.50 ppb 0.50 ppb 0.00 ppb 0.	ment: A (023) Sult Units %R

RUN SUMMARY

Denver

021AA	Date: 10/21	/09 10:37	Ą	nalyst: C	GG G		ICV:	CAL/CCV:
Lot No.	Batch	Matrix	Raw	묶	£	\$ %B	Analyzed Date	Comment
= 5.00			5.64	1.0	5.64 ppb	112.9%	10/21/09 11:53	
			-0.03	1.0	-0.03 ppb		10/21/09 11:55	
D9J200000	9293528		-0.02	1.0	-0.02 ppb		10/21/09 11:58	
D9J200000 = 5.00	9293528		5.02	1.0	5.02 ppb	100.4%	10/21/09 12:00	
D9J200249-1	9293528	AQUEOUS	-0.01	1.0	-0.01 ppb			
		UNKNOWN	5.09	1.0	5.09 ppb		10/21/09 12:04	
		UNKNOWN	5.36	1.0	5.36 ppb		10/21/09 12:06	
D9J200249-3	9293528	AQUEOUS	-0.00	1.0	-0.00 ppb		10/21/09 12:09	
D9J200249-5	9293528	AQUEOUS	-0.01	1.0	-0.01 ppb		10/21/09 12:11	
D9J200246-1	9293528	AQUEOUS	9.96	1.0	9.96 ppb		10/21/09 12:13	
D9J200246-5	9293528	AQUEOUS	8.79	1.0	8.79 ppb		10/21/09 12:17	
= 5.00			5.60	1.0	5.60 ppb	111.9%	10/21/09 12:21	4.00
			-0.02	1.0	-0.02 ppb		10/21/09 12:23	The second secon
= 5.00			5.17	1.0	5.17 ppb	103.3%	10/21/09 12:29	
			-0.02	1.0	-0.02 ppb	-	10/21/09 12:31	
D9J200000	9293522		-0.01	1.0	-0.01 ppb		, 10/21/09 12:33	
D9J200000 = 5.00	9293522		5.17	1.0	5.17 ppb	103.5%	10/21/09 12:35	
D9J160335-1	9293522	AQUEOUS	0.01	1.0	0.01 ppb		10/21/09 12:37	
D9J160335-1 - 5,00	9293522	AQUEOUS	3.48	; 6	3.48 ppb		10/21/09 12:42	NA USE below.
D0J160335-1 = 5.00	9293522	AQUEOUS	- - - - - - - - - - - - - - - - - - -	 - -	- 6,43 ppb		10/21/09 12:44	
D9J160335-1 = 5.00	9293522	AQUEOUS	3.13	1.0	3.13 ppb		10/21/09 12:46	60/12/01 CO
D9J160335-1 = 5.00	9293522	AQUEOUS	2.97	1.0	2.97 ppb		10/21/09 12:48	
D9J160338-1	9293522	AQUEOUS	-0.01	1.0	-0.01 ppb		10/21/09 12:51	
D9J160339-1	9293522	AQUEOUS	-0.01	1.0	-0.01 ppb		10/21/09 12:53	
D9J160341-1	9293522	AQUEOUS	-0.01	1.0	-0.01 ppb		10/21/09 12:55	
= 5.00			5.46	1.0	5.46 ppb	109.3%	10/21/09 12:57	
			-0.02	1.0	-0.02 ppb		10/21/09 13:00	
D9J200000	9293520		-0.02	1.0	-0.02 ppb	/	10/21/09 13:02	
D9J200000 = 5.00	9293520		5.15	1.0	5.15 ppb	103.0%	10/21/09 13:04	
D9J200249-2	9293520	AQUEOUS	-0.01	1.0	-0.01 ppb		10/21/09 13:06	
		NWOWN	4.86	1.0	4.86 ppb		10/21/09 13:08	
		UNKNOWN	4.91	1.0	4.91 ppb		10/21/09 13:11	
	9293520	AQUEOUS	-0.01	1.0	-0.01 ppb		10/21/09 13:13	
D9J200249-4	9293520	AQUEOUS	-0.01	1.0	-0.01 ppb		10/21/09 13:15	□
	Lot No 5.00 9J200000 9J200249-1 9J200249-3 9J200246-1 9J200246-1 9J200000 9J160335-1 9J160338-1 9J160339-1	Description Date: 10/21 Lot No. Batch = 5.00 9293528 D9J200000 = 5.00 9293528 D9J200249-1 9293528 D9J200249-3 9293528 D9J200249-5 9293528 D9J200246-1 9293528 D9J200246-5 9293528 D9J200000 9293528 D9J200000 9293522 D9J160335-1 5.00 9293522 D9J160339-1 9293522 9293522 D9J160341-1 9293522 D9J160341-1 9293522 D9J160341-1 9293522	10/21/0 10/	Lot No. Batch Matrix Raw Date: 10/21/09 10:37	Lot No. Batch Matrix Raw DF 0 5.64 1.0 00000 9293528 -0.02 1.0 00000 9293528 AQUEOUS -0.01 1.0 00249-1 9293528 AQUEOUS -0.01 1.0 00249-3 9293528 AQUEOUS -0.01 1.0 00249-5 9293528 AQUEOUS -0.01 1.0 00249-6 9293528 AQUEOUS -0.01 1.0 00249-7 9293528 AQUEOUS -0.01 1.0 00249-8 9293528 AQUEOUS -0.01 1.0 00249-7 9293528 AQUEOUS -0.01 1.0 00249-8 9293528 AQUEOUS -0.01 1.0 00249-7 9293528 AQUEOUS 9.96 1.0 00249-8 9293528 AQUEOUS 8.79 1.0 0029000 9293522 AQUEOUS 5.17 1.0 00335-1 5.00 9	Date: 10/21/09 10:37 Analyst: CGG	Date: 10/21/09 10:37	Date: 10/21/09 10:37

RUN SUMMARY

Denver

102		<u>.</u>	1 00	99	98	97	96	95	94	93	92	9	90	89	88	87	86	85	84	83	82	8	80	79	78	77	76	75	74	73	72	71	70	69 -	#	Sequence:
LMGL2		MGI O	ССВ	CCV	LMGLVD	LMGLVS	LMGLV	FWGLA.	LME26	LME24	ССВ	CCV	LME2X	LME2W 100X	FWESM TOX	LMEDW	LME2T 10X	LME2T	LME2P	ССВ	CCV	LME2M	LME2L	LME16	LML8NC	LML8NB	ССВ	CCV	LMXE6 10X	LWXEG	LMXE0 10X	EXTO	LMXEC 10X	基本	Sample ID	
D9J130167-3	700100107-6	D9.1130167-2		= 5.00	D9J130167-1 = 5.00		D9J130167-1	D9J130187-1	D9J120128-9	D9J120128-8		= 5.00	D9J120128-7	X D9J120128-6	D9J120128-6	D9J120128 6	D9J120128-5	D9J120128-5	D9J120128-4		= 5.00	D9J120128-3	D9J120128-2	D9J120128-1	D9J150000 = 5.00	D9J150000		= 5.00	D9J200246-5	D9J200246-5	D9J200246-3	D9J200246-3	D9J200246-1	D0J200240-1	Lot No.	091021AA
9288328	000000	ACERACO			9288328	9288328	9288328	9288328	9288328	9288328			9288328	9288328	9288328	9288328	9288328	9288328	9288328			9288328	9288328	9288328	9288328	9288328			9293520	9293520	9293520	9293520	9293520	9293520	Batch	Date: 10/21/09 10:37
AQUEOUS	אַמטרייס	AOI IEOI IS			AQUEOUS	AQUEOUS	AQUEOUS	ACUEOUS	AQUEOUS	AQUEOUS			AQUEOUS	AQUEOUS	AQUEOUS	AQUEQUS	AQUEOUS	VONEORS	AQUEOUS			AQUEOUS	AQUEOUS	AQUEOUS					AQUEOUS	AQUEQUS	AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS	Matrix	/09 10:37
0.01	0.00	-0 0º	0.00	4.23	5.16	5.20	-0.14	1.58	0.68	3.18	-0.04	5.51	0.56	3.53	24.74	72.17	8.42	61.70	1.72	-0.08	5.22	1.77	0.51	0.27	5.16	-0.02	0.01	5.22	1.08	10.37	1.10	10.71	0.95	10.93	Raw	Þ
1.0		1	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	100	10:0	; •	10.0	16	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10.0	1.0	10.0	 	10.0	1:0	PF	Analyst: CGG
0.02 ppb	2 6	-0 00 nnh	0.00 ppb	4.23 ppb	5.16 ppb	5.20 ppb	-0.14 ppb	-1.58 ppb	0.68 ppb	3.18 ppb	-0.04 ppb	5.51 ppb	0.56 ppb	353.00 ppb	247.39 ppb	72:17 ppb	84.24 ppb	81.70 ppb	1.72 ppb	-0.08 ppb	5.22 ppb	1.77 ppb	0.52 ppb	0.27 ppb	5.16 ppb	-0.02 ppb	0.01 ppb	5.22 ppb	10.82 ppb	10 37 ppb	10.95 ppb	10.71 ppb	9.53 ppb	10.93 ppb	Result	CGG
ppb	700	h	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb		ppb	ddd	add	ppb	ppb	ppo	ppb	ppb		ppb	ppb	dqq		ppb	ppb		ppb	dpb	ppb	ppb	ppb	ppo	Units	
				84.6%								110.3%									104.5%,				103.2%			104.4%							%R	
10/21/09 14:58	10/01/00 11.00	10/21/09 14:56	10/21/09 14:54	10/21/09 14:52	10/21/09 14:49	10/21/09 14:47	10/21/09 14:45	10/21/09 14:41	10/21/09 14:39	10/21/09 14:36	10/21/09 14:34	10/21/09 14:24	10/21/09 14:22	10/21/09 14:20	10/21/09 14.15	10/21/09 14:09	10/21/09 14:07	10/21/09 14:02	10/21/09 13:59	10/21/09 13:57	10/21/09 13:55	10/21/09 13:53	10/21/09 13:50	10/21/09 13:48	10/21/09 13:46	10/21/09 13:44	10/21/09 13:42	J0/21/09 13:39	10/21/09 13:37	10/21/00 10:02	10/21/09 13:30	10/21/09 13:25	10/21/09 13:23	10/21/09 13:17	Analyzed Date	icv:
		,,,	-			7		NA	+-	0,	+	+	10)	0.	7	7			7	01	3				7				<u>†</u>		P'	-	1	9	
E tAr						10,101	60/12/01 CO		60)												50/12/01 CO		each.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	the sactual to	so the		Somples 2-151	7				Annual Community and the second secon		Comment	CAL/CCV:
]																									\ 									۵	
																																				e 403

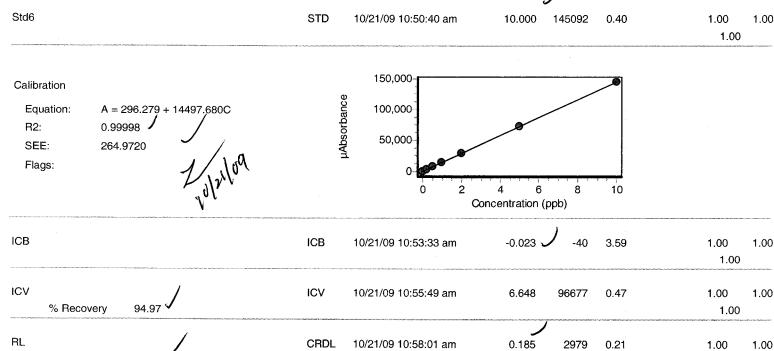
53

View Page 4 of 4

Method: CVI	Method: CVHG - Mercury (Cold Vapor Mercury	· Mercury)			-	Instrument: A (023)	A (02:	3)		Reported: 10/21/09 15:58:20	r . ≠ .
Sequence:	091021AA	Date: 10/21/09 10:37	1/09 10:37	≥	Analyst: CGG	caa			ICV:	CAL/CCV:	
# Sample ID	ID Lot No.	Batch	Matrix	Raw	무	DF Result Units	Units	%R	Analyzed Date	Comment	
103 LMGL5	D9J130167-4	9288328	AQUEOUS	-0.04	1.0	-0.04 ppb	g		10/21/09 15:01		
104 LMGL6	D9J130167-5	9288328	AQUEOUS	-0.01	1.0	-0.01 ppb	ఠ		10/21/09 15:03		
105 LMGL8	D9J130167-6	9288328	AQUEOUS	-0.05	1.0	-0.05 ppb	형		10/21/09 15:05	THE PROPERTY AS A SECURITY OF THE PROPERTY OF	
106 LMGDE	D9J130135-1	9288328	AQUEOUS	-0.06	1.0	-0.06 ppb	퓽		10/21/09 15:07	1	
107 LMJF2	D9J140137-1	9288328	AQUEOUS	4.27	1.0	4.27 ppb	рь	,	∕ 10/21/09 15:10		
108 CCV	= 5.00			5.41	1.0	5.41 ppb		108.1%	10/21/09 15:12		
				0.00	1.0	0.00 ppb	dac		10/21/09 15:14		

Report Generated By CETAC QuickTrace

Analyst: grisdalec


Worksheet file: C:\Program Files\QuickTrace\Worksheets\091021AA.wsz

Date Started: 10/21/2009 9:53:06 AM

Comment:

Results

Sample Name	Туре	Date/Time	Conc (ppb)	μAbs	%RSD	Flags	Wt.	Vol.
Cal Blank	STD	10/21/09 10:37:13 am	0.000	/ 16	19.07		1.00 1.00	
Std1	STD	10/21/09 10:39:26 am	0.200	✓ ₃₀₂₇	0.19		1.00	1.00
Std2	STD	10/21/09 10:41:39 am	0.500	J 7416	0.23	1 - 3)g-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-am-ga-	1.00 1.00	1.00
Std3	STD	10/21/09 10:43:53 am	1.000	J ₁₅₀₄₇	0.24		1.00 1.00	1.00
Std4	STD	10/21/09 10:46:08 am	2.000	29584	0.27		1.00 1.00	1.00
Std5	STD	10/21/09 10:48:24 am	5.000	72999 /	0.32		1.00 1.00	1.00
Std6	STD	10/21/09 10:50:40 am	10.000	145092	0.40		1.00 1.00	1.00
			-				······································	AACAACAACAACAACAACAACAACAA

10/21/2009 3:22:04 PM

% Recovery

92.51

091021AA.wsz

Page 1

1.00

Sample Name	Туре	Date/Time	Conc µAbs	%RSD Flags	Wt. Vol. ODF
CCV % Recovery 103.58	CCV	10/21/09 11:00:17 am	5.179 175382	0.30	1.00 1.00 1.00
CCB	ССВ	10/21/09 11:02:29 am	-0.022 / -29	11.08	1.00 1.00 1.00
LMXVCB	UNK	10/21/09 11:04:41 am	-0.012 / 119	2.19	1.00 1.00 1.00
LMXVCC	UNK	10/21/09 11:06:54 am	4.886 J 71134	0.27	1.00 1.00 1.00
LMQ24	UNK	10/21/09 11:09:07 am	0.019 570	0.77	1.00 1.00 1.00
LMQ24S	UNK	10/21/09 11:11:19 am	1.588 23322	0.22	1.00 1.00 1.00
LMQ24D	UNK	10/21/09 11:13:33 am	2.044 29923	0.17	1.00 1.00 1.00
LMO24S NA Confirms	UNK	10/21/09 11:15:46 am	1.710 25087	0.73	1.00 1.00
LMQ24D	UNK	10/21/09 11:17:59 am	2.180 32027	0.12	1.00 1.00 1.00
LMQ3G	UNK	10/21/09 11:20:13 am	-0.058 -546	2.01	1.00 1.00 1.00
LMQ3R	UNK	10/21/09 11:22:26 am	-0.019 19	29.84	1.00 1.00 1.00
LMQ30	UNK	10/21/09 11:24:41 am	-0.011 139	2.46	1.00 1.00 1.00
CCV % Recovery 106.71	CCV	10/21/09 11:26:56 am	5.335 /77648	0.37	1.00 1.00 1.00
ССВ	ССВ	10/21/09 11:29:08 am	-0.028 -114	1.50	1.00 1.00 1.00
LMTKEB	UNK	10/21/09 11:31:22 am	-0.018 🖍 41	1.90	1.00 1.00 1.00
LMX0CC	UNK	10/21/09 11:33:37 am	5.120 74520	0.52	1.00 1.00 1.00
LMNGV	UNK	10/21/09 11:35:52 am	-0.017 50	5.37	1.00 1.00 1.00

091021AA.wsz

Page 2

PDES Page 406 of 1088 56

Sample Name	Туре	Date/Time	Conc (ppb)	μ Ab s	%RSD Flags	Wt.	Vol.
LMNGVS	UNK	10/21/09 11:38:07 am	5.446	79251	0.40	1.00 1.00	1.00
LMNGVD	UNK	10/21/09 11:40:19 am	5.539	80596	0.08	1.00 1.00	1.00
LMNGVS	UNK	10/21/09 11:42:34 am	5.383	78330	0.27	1.00	1.00
LMNGVD MA VARIFICS 9	bove.	05 16/21/09 19/21/09 11:44:46 am	5.447	79258	0.24	1.00	1.00
LMNHA	UNK	10/21/09 11:46:58 am	-0.017	46	13.65	1.00	1.00
LMNHE	UNK	10/21/09 11:49:11 am	-0.016	65	5.01	1.00	1.00
LMNHJ	UNK	10/21/09 11:51:23 am	-0.012	124	2.67	1.00 1.00	1.00
CCV % Recovery 112.86	CCV	10/21/09 11:53:39 am	5.643	82110	0.11	1.00 1.00	1.00
ССВ	ССВ	10/21/09 11:55:51 am	-0.028	-111	1.34	1.00 1.00	1.00
LMXWPB	UNK	10/21/09 11:58:04 am	-0.017	55	3.49	1.00 1.00	1.00
LMXWPC	UNK	10/21/09 12:00:17 pm	5.019 /	73058	0.22	1.00 1.00	1.00
LMXE1	UNK	10/21/09 12:02:30 pm	-0.014	92	2.00	1.00 1.00	1.00
LMXE1S	UNK	10/21/09 12:04:44 pm	5.093 /	74130	0.03	1.00 1.00	1.00
LMXE1D	UNK	10/21/09 12:06:58 pm	5.360 ~	78004	0.17	1.00 1.00	1.00
LMXE5	UNK	10/21/09 12:09:13 pm	-0.005	230	1.18	1.00 1.00	1.00
LMXE9	UNK	10/21/09 12:11:27 pm	-0.012	123	0.81	1,00 1.00	1.00
LMXEC	UNK	10/21/09 12:13:42 pm	9.964 1	44756	1.18	1.00 1.00	1.00

091021AA.wsz

Sample Name	Туре	Date/Time	Conc µAbs	%RSD Flags	Wt. Vol. ODF
LMXE6	UNK	10/21/09 12:17:32 pm	8.794 127786	0.28	1.00 1.00 1.00
CCV % Recovery 111.92 /	ccv	10/21/09 12:21:38 pm	5.596 / 81426	0.03	1.00 1.00 1.00
ССВ	CCB	10/21/09 12:23:50 pm	-0.024 / -48	5.54	1.00 1.00 1.00
CCV % Recovery 103.33	CCV	10/21/09 12:29:09 pm	5.166 / 75196	0.41	1.00 1.00 1.00
ССВ	ССВ	10/21/09 12:31:21 pm	-0.024 / -59	2.16	1.00 1.00 1.00
LMXWEB	UNK	10/21/09 12:33:33 pm	-0.013 / 104	2.91	1.00 1.00 1.00
LMXWEC	UNK	10/21/09 12:35:46 pm	5.174 75314	0.02	1.00 1.00 1.00
LMQ24	UNK	10/21/09 12:37:58 pm	0.007 394	6.34 s	1.00 1.00 1.00
NA use rerun	UNK	10/21/09 12:42:13 pm	3.477 /50698	1.18	1.00 1.00 1.00
LMQ 24D	UNK	10/21/09 12:44:26 pm	5.435 79096	0.07	1.00 1.00
LMQ24S CO 10/21/09	UNK	10/21/09 12:46:39 pm	3.131 45693	1.16	1.00 1.00 1.00
LMQ24D	UNK	10/21/09 12:48:52 pm	2.970 43349	1.06	1.00 1.00 1.00
LMQ3G	UNK	10/21/09 12:51:06 pm	-0.008 181	0.48	1.00 1.00 1.00
LMQ3R	UNK	10/21/09 12:53:20 pm	-0.015 86	3.68	1.00 1.00 1.00
LMQ30	UNK	10/21/09 12:55:34 pm	-0.008 180	1.29	1.00 1.00 1.00
CCV % Recovery 109.27	CCV	10/21/09 12:57:49 pm	5.463 / 79503	0.25	1.00 1.00 1.00
ССВ	ССВ	10/21/09 01:00:02 pm	-0.024 / -54	8.11	1.00 1.00

091021AA.wsz

Sample Name	Туре	Date/Time	Conc (ppb)	μAbs	%RSD Flags	Wt. \	Vol.
LMXV3B	UNK	10/21/09 01:02:16 pm	-0.016 /	65	6.58	1.00 1.00	1.00
LMXV3C	UNK	10/21/09 01:04:31 pm	5.149	74940	0.21	1.00 1.00	1.00
LMXE3	UNK	10/21/09 01:06:46 pm	-0.013	106	2.91	1.00 1.00	1.00
LMXE3S	UNK	10/21/09 01:08:58 pm	4.857 🖊	70710	0.21	1.00 1.00	1.00
LMXE3D	UNK	10/21/09 01:11:10 pm	4.912	71513	0.19	1.00 1.00	1.00
LMXE7	UNK	10/21/09 01:13:22 pm	-0.010	156	4.37	1.00 1.00	1.00
LMXFA	UNK	10/21/09 01:15:35 pm	-0.015	78	1.73	1.00 1.00	1.00
LMXEC	uples 76	10/21/0 9 01:17:48 pm	-10.926	158701	0.18.0	1.00 1.00	1.00
LMXEC* (OX d).	UNK 10/4/09	10/21/09 01:23:04 pm	0.953	14120	6.57 s	1.00	1.00
L MXE0	UNK	10/21/0 9 01:25:18 pm	10.713	155607	0.09 O	1.00	1.00
LMXEO* 10x di).	UNK	10/21/09 01:30:19 pm	1.095	16168	0.33	1.00 10.00	1.00
LMXE6	UNK	10/21/00 01:32:33 pm	10.388	150586	0.35 0	1.00 1.00	00. ئــ
LMXE6* (0 x d:).	UNK	10/21/09 01:37:34 pm	1.082	15986	0.68	1.00 10.00	1.00
CCV % Recovery 104.42 /	CCV	10/21/09 01:39:50 pm	5.221 /	75987	0.93	1.00 1.00	1.00
ССВ	ССВ	10/21/09 01:42:02 pm	0.011	451	27.21 s	1.00 1.00	1.00
LML8NB	UNK	10/21/09 01:44:16 pm	-0.020	7	171.04	1.00 1.00	1.00
LML8NC	UNK	10/21/09 01:46:30 pm	5.161	75118	0.33	1.00 1.00	1.00

091021AA.wsz

	Туре	Date/Time	Conc µAbs (ppb)	%RSD Flags	Wt. Vol.
LME16	UNK	10/21/09 01:48:44 pm	0.266 414	7 3.82	1.00 1.0 1.00
LME2L	UNK	10/21/09 01:50:59 pm	0.515 776	7 0.30	1.00 1.0 1.00
LME2M	UNK	10/21/09 01:53:14 pm	1.768 2593	2 0.68	1.00 1.00 1.00
CCV % Recovery 104.49	CCV	10/21/09 01:55:29 pm	5.224 / 7603	6 0.62	1.00 1.00 1.00
ССВ	ССВ	10/21/09 01:57:41 pm	-0.077 , -81	5 32.76	1.00 1.00 1.00
LME2P	UNK	10/21/09 01:59:54 pm	1.723 25274	4 0.89	1.00 1.00 1.00
LME2T NA, S	Samples ZINK	10/21/09 02:02:06 pm	61.697 894766	5 1.26 S	1.00 1.00 1.00
LME2T* (0 x d:).	UNK 08 10/2/109	10/21/09 02:07:08 pm	8.424 12242	5 1.61	1.00 1.00 10.00
<u>ÉME2W</u>	UNK	10/21/09 02·09·55 pm	72.173 1046643	3 0.00 S	1.00 1.00 1.00
ME2W*	UNK	1 0/21/09 02.15.00 pm	24.739 358949) 1.61 O	1.00 1.00 10.00
ME2W** 100×d;1.	UNK	10/21/09 02:20:06 pm	3.530 51469	3.91	1.00 1.00 100.00
ME2X	UNK	10/21/09 02:22:19 pm	0.557 8377	7.03 s	1.00 1.00 1.00
% Recovery 110.31	CCV	10/21/09 02:24:35 pm	5.515 / 80255	0.43	1.00 1.00 1.00
ССВ	ССВ	10/21/09 02:34:39 pm	-0.037 -240	2.07	1.00 1.00 1.00
ME24	UNK	10/21/09 02:36:52 pm	3.179 46386	1.37	1.00 1.00 1.00
.ME26	UNK	10/21/09 02:39:05 pm	0.679 10147	2.43	1.00 1.00 1.00
WA see	rerus Co	10/2/109	1 582 - 22642		7/00 0000000000000000000000000000000000

091021AA.wsz

Page 6

NPDE6 Page 410 of 1088 2/10 9 60

Sample Name	Туре	Date/Time	Conc (ppb)	μAbs	%RSD Flags	Wt.	Vol.
LMGLV	UNK	10/21/09 02:45:29 pm	-0.139	-1719	1.67	1.00 1.00	1.00
LMGLVS	UNK	10/21/09 02:47:43 pm	5.198 🗸	75656	0.09	1.00 1.00	1.00
LMGLVD	UNK	10/21/09 02:49:57 pm	5.163	75142	0.40	1.00 1.00	1.00
CCV % Recovery 84.64	CCV	10/21/09 02:52:13 pm	4.232 /	61647	10.83 s	1.00 1.00	1.00
ССВ	ССВ	10/21/09 02:54:25 pm	0.000	295	137.12 s	1.00 1.00	1.00
LMGL0	UNK	10/21/09 02:56:39 pm	-0.021	-8	175.22	1.00 1.00	1.00
LMGL2	UNK	10/21/09 02:58:54 pm	0.015	516	3.92	1.00 1.00	1.00
LMGL5	UNK	10/21/09 03:01:09 pm	-0.037	-247	3.01	1.00 1.00	1.00
LMGL6	UNK	10/21/09 03:03:22 pm	-0.009	160	13.07 s	1.00 1.00	1.00
LMGL8	UNK	10/21/09 03:05:35 pm	-0.045	-351	2.59	1.00 1.00	1.00
LMGDE	UNK	10/21/09 03:07:48 pm	-0.064	-625	0.57	1.00 1.00	1.00
LMJF2	UNK	10/21/09 03:10:01 pm	4.273	62239	0.44	1.00 1.00	1.00
CCV % Recovery 108.14	CCV	10/21/09 03:12:16 pm	5.407 🖊	78684	1.16	1.00 1.00	1.00
ССВ	ССВ	10/21/09 03:14:28 pm	0.004	353	21.85 s	1.00 1.00	1.00

091021AA.wsz

Analysis Parameters

Instrument M-7500 Mercury Analyzer

Conditions

Gas flow (mL/min)	Sample Uptake (s)	Rinse (s)	Read delay (s)	Replicates (#)	Replicate time (s)	Pump speed (%)	Wavelength (nm)
100	35.00	90.00	66.00	4	1.50	50	253.65

Instrumental Zero

Zero before first sample:

No

Zero periodically:

Nο

Baseline Correction

#1 Start time (s)	#1 End time (s)	#2 Start time (s)	#2 End time (s)
26.00	30.00		

Standby Mode

Enabled: Yes

Standby Options: pump slow

Autodilution

Enabled: Yes

Condition: Saturate

Tube # range: 4:1 - 4:60

If no autodilution tubes remaining continue undiluted

Calibration

Settings

Algorithm	Through blank	Weighted fit	Cal. Type	Racalibration rate	Reslope rate	Reslope standard
Linear	No	No	Normal	0	0	N/A

Limits

Calibratio	n slope	Resi	lope	Coeff. of
Lower (%)	Upper (%)	Lower (%)	Upper (%)	Determination
20	150	75	125	0.99500

Error action: Flag and continue

QC

GLP Override: Yes

QC Tests

10/21/2009 3:22:04 PM

091021AA.wsz

CCB

Concentration

(ppb)

0.2000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

ICB

Concentration

(ppb)

0.2000

Failure flag: Z

Error action for manually inserted QC: Stop analysis

CCV

Concentration

Low Limit

80.0000

High Limit

(ppb) % %

5.0000

120.0000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

ICV

Concentration (ppb)

Low Limit

High Limit %

%

7.0000

90.0000

110.0000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

CRDL

Concentration

Low Limit

High Limit

(ppb)

%

0.2000

70.0000

130.0000

Failure flag: Y

Error action for manually inserted QC: Stop analysis

October 27, 2009

Vista Project I.D.: 32139

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on October 16, 2009 under your Project Name "ISJ1373". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier

Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 10/16/2009

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

32139-001 ISJ1373-01

SECTION II

Project 32139 NPDES Page 416 of 1088 Page 3 of 293

Martha M. Maier 27-Oct-2009 11:07

Approved By:

Analyst: JMH

NPDES Page 417 of 1088

Matrix: Aqueous		QC Batch No.:	2469	Lab Sample: 0-MB001		
Sample Size: 1.00 L		Date Extracted:	19-Oct-09	Date Analyzed DB-5: 22-Oct-09		Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	(ug/L)	DL a EMPC	b Qualifiers	Labeled Standard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.000000514		<u>IS</u> 13C-2,3,7,8-TCDD	94.1	25 - 164
1,2,3,7,8-PeCDD	ND	0.00000109		13C-1,2,3,7,8-PeCDD	95.8	25 - 181
1,2,3,4,7,8-HxCDD	N	0.000000974		13C-1,2,3,4,7,8-HxCDD	6.06	32 - 141
1,2,3,6,7,8-HxCDD	NO	0.00000104		13C-1,2,3,6,7,8-HxCDD	82.6	28 - 130
1,2,3,7,8,9-HxCDD	N	0.000000050		13C-1,2,3,4,6,7,8-HpCDD	97.0	23 - 140
1,2,3,4,6,7,8-HpCDD	ND	0.000000565		13C-OCDD	83.3	17 - 157
ОСДД	ND	0.00000249		13C-2,3,7,8-TCDF	92.8	24 - 169
2,3,7,8-TCDF	ND	0.000000382		13C-1,2,3,7,8-PeCDF	96.3	24 - 185
1,2,3,7,8-PeCDF	NO	0.000000739		13C-2,3,4,7,8-PeCDF	9.96	21 - 178
2,3,4,7,8-PeCDF	ND	0.000000741		13C-1,2,3,4,7,8-HxCDF	92.4	26 - 152
1,2,3,4,7,8-HxCDF	ND	0.000000210		13C-1,2,3,6,7,8-HxCDF	87.4	26 - 123
1,2,3,6,7,8-HxCDF	ND	0.000000213		13C-2,3,4,6,7,8-HxCDF	6.06	28 - 136
2,3,4,6,7,8-HxCDF	ND	0.000000239		13C-1,2,3,7,8,9-HxCDF	93.8	29 - 147
1,2,3,7,8,9-HxCDF	ND	0.000000291		13C-1,2,3,4,6,7,8-HpCDF	93.5	28 - 143
1,2,3,4,6,7,8-HpCDF	N	0.000000518		13C-1,2,3,4,7,8,9-HpCDF	2.96	26 - 138
1,2,3,4,7,8,9-HpCDF	ND	0.000000626		13C-OCDF	87.0	17 - 157
OCDF	ND	0.00000165		<u>CRS</u> 37CI-2,3,7,8-TCDD	9.96	35 - 197
Totals				Footnotes		
Total TCDD	ND	0.000000514		a. Sample specific estimated detection limit.		
Total PeCDD	ND	0.00000109		b. Estimated maximum possible concentration.	on.	
Total HxCDD	ND	0.000000988		c. Method detection limit.		
Total HpCDD	ND	0.00	0.000000786	d. Lower control limit - upper control limit.		
Total TCDF	ND	0.000000382				
Total PeCDF	ND	0.000000740				
Total HxCDF	N	0.000000237				
Total HpCDF	ND	0.000000569				

Project 32139

OPR Results					EPA Method 1613	od 1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	2469 19-Oct-09	Lab Sample: 0-OPR001 Date Analyzed DB-5: 22-Oct-09	Date Analyzed DB-225:	25: NA
Analyte	Spike Conc. Conc. (ng/ml	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R LCL-U	LCL-UCL Qualifier
2,3,7,8-TCDD	10.0	8.78	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	93.1 25 - 164	64
1,2,3,7,8-PeCDD	50.0	45.4	35 - 71	13C-1,2,3,7,8-PeCDD	84.1 25 - 181	81
1,2,3,4,7,8-HxCDD	50.0	47.1	35 - 82	13C-1,2,3,4,7,8-HxCDD	89.9 32 - 141	41
1,2,3,6,7,8-HxCDD	50.0	48.1	38 - 67	13C-1,2,3,6,7,8-HxCDD	82.6 28 - 130	30
1,2,3,7,8,9-HxCDD	50.0	48.2	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	90.3 23 - 140	40
1,2,3,4,6,7,8-HpCDD	50.0	47.4	35 - 70	13C-OCDD	78.8 17 - 157	57
OCDD	100	96.5	78 - 144	13C-2,3,7,8-TCDF	96.2 24 - 169	69
2,3,7,8-TCDF	10.0	8.55	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	90.0 24 - 185	85
1,2,3,7,8-PeCDF	50.0	46.3	40 - 67	13C-2,3,4,7,8-PeCDF	91.0 21 - 178	78
2,3,4,7,8-PeCDF	50.0	46.5	34 - 80	13C-1,2,3,4,7,8-HxCDF	87.1 26 - 152	52
1,2,3,4,7,8-HxCDF	50.0	49.4	36 - 67	13C-1,2,3,6,7,8-HxCDF	83.3 26 - 123	23
1,2,3,6,7,8-HxCDF	50.0	48.8	42 - 65	13C-2,3,4,6,7,8-HxCDF	88.8 28 - 136	36
2,3,4,6,7,8-HxCDF	50.0	47.2	35 - 78	13C-1,2,3,7,8,9-HxCDF	91.9 29 - 147	47
1,2,3,7,8,9-HxCDF	50.0	48.4	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	88.6 28 - 143	43
1,2,3,4,6,7,8-HpCDF	50.0	48.0	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	90.7 26 - 138	38
1,2,3,4,7,8,9-HpCDF	50.0	46.8	39 - 69	13C-OCDF	79.4 17 - 157	57
OCDF	100	102	63 - 170	<u>CRS</u> 37CI-2,3,7,8-TCDD	96.7 35 - 197	97

Approved By: Martha M. Maier 27-Oct-2009 11:07

Analyst: JMH

Sample ID: ISJ1	ISJ1373-01							EPA M	EPA Method 1613
Client Data Name: Test Am Project: ISJ1373 Date Collected: 14-Oct-(700)	Test America-Irvine, CA ISJ1373 14-Oct-09 0810		Sample Data Matrix: Sample Size:	Aqueous 1.01 L	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32139-001 2469 22-Oct-09	Date Received: Date Extracted: Date Analyzed I	Date Received: Date Extracted: Date Analyzed DB-225:	16-Oct-09 19-Oct-09 NA
Analyte	Conc. (ug/L)	DF a	$\mathbf{EMPC}^{\mathrm{b}}$	Qualifiers	Labeled Standard	ırd	%R]	TCT-nCT _q	Oualifiers
2,3,7,8-TCDD	ND	0.0000000895	395		<u>IS</u> 13C-2,3,7,8-TCDD	Ð	81.2	25 - 164	
1,2,3,7,8-PeCDD	0.00000190			J	13C-1,2,3,7,8-PeCDD	CDD	77.5	25 - 181	
1,2,3,4,7,8-HxCDD	ND		0.00000303	103	13C-1,2,3,4,7,8-HxCDD	I xCDD	70.2	32 - 141	
1,2,3,6,7,8-HxCDD	0.00000675			J	13C-1,2,3,6,7,8-HxCDD	IxCDD	61.2	28 - 130	
1,2,3,7,8,9-HxCDD	0.00000000			J	13C-1,2,3,4,6,7,8-HpCDD	-НрСDD	72.4	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.000146				13C-OCDD		62.5	17 - 157	
OCDD	0.00129				13C-2,3,7,8-TCDF	Ŧ	73.4	24 - 169	
2,3,7,8-TCDF	ND	0.000000402	402		13C-1,2,3,7,8-PeCDF	CDF	71.0	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000816	316		13C-2,3,4,7,8-PeCDF	CDF	71.7	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000821	821		13C-1,2,3,4,7,8-HxCDF	I xCDF	72.5	26 - 152	
1,2,3,4,7,8-HxCDF	0.00000153			J	13C-1,2,3,6,7,8-HxCDF	IxCDF	66.2	26 - 123	
1,2,3,6,7,8-HxCDF	ND		0.00000128	28	13C-2,3,4,6,7,8-HxCDF	I xCDF	8.69	28 - 136	
2,3,4,6,7,8-HxCDF	0.00000167			J	13C-1,2,3,7,8,9-HxCDF	IxCDF	73.5	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000593	593		13C-1,2,3,4,6,7,8-HpCDF	-HpCDF	72.0	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.0000161			J	13C-1,2,3,4,7,8,9-HpCDF	-HpCDF	71.9	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND		0.00000310	310	13C-OCDF		64.4	17 - 157	
OCDF	0.0000663				<u>CRS</u> 37Cl-2,3,7,8-TCDD)D	104	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.000000895	395		a. Sample specific estimated detection limit.	detection limit.			
Total PeCDD	0.00000190				b. Estimated maximum possible concentration.	ible concentration.			
Total HxCDD	0.0000302		0.0000409	6(c. Method detection limit.				
Total HpCDD	0.000287				d. Lower control limit - upper control limit.	er control limit.			
Total TCDF	ND	0.000000402	402						
Total PeCDF	ND		0.00000123	.23					
Total HxCDF	0.00000525		0.0000149	61					
Total HpCDF	0.0000388		0.0000419	6					

Martha M. Maier 27-Oct-2009 11:07 Approved By:

Analyst: JMH

APPENDIX

NPDES Page 420 of 1088 Page 7 of 293

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-2008
State of Arizona	AZ0639
State of Arkansas, DEQ	08-043-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	N/A
State of Connecticut	PH-0182
State of Florida, DEP	E87777
State of Indiana Department of Health	C-CA-02
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA08000
State of Louisiana, DEQ	01977
State of Maine	2008024
State of Michigan	9932
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	NFESC413
State of Nevada	CA004132007A
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-006
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	TN02996
State of Texas	T104704189-08-TX
U.S. Army Corps of Engineers	N/A
State of Utah	CA16400
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine ISJ1373

32139 1.3°C

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory-SUB

1104 Windfield Way

El Dorado Hills, CA 95762 Phone :(916) 673-1520

Fax: (916) 673-0106

Project Location: CA - CALIFORNIA

Receipt Temperature: °C Ice: Y / N

Standard TAT is requested unless specific due date is requested. => Due Date: Initials:

Analysis	Units	Expires	Comments
Sample ID: ISJ1373-01	Water	Sampled: 10/14/09 08 :	:10
1613-Dioxin-HR-Alta	ug/l	10/21/09 08:10	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 Data Package	N/A	11/11/09 08:10	, 3 ,
Containers Supplied:			
1 L Amber (C)	1 L Amber (D)		

Released By

Pata/Time

Received By

Date/Time

unll 10/16/09 1028

Relgased 2189

Date/Time

Received By

NF**D0a16e/Prangue**423 of 16888 a 96 1 65 d

SAMPLE LOG-IN CHECKLIST

Vista Analytical Laboratory
Standard

	Date/Time			Initials:		Locatio	n: W¢	2-2
Samples Arrival:	19/16/09) (907	B	B	Shelf/R	ack:	J/A
	Date/Time			Initials:		Locatio	n: ///	2-2
Logged in:	RB	1	100	RI	3	Shelf/R	0	2
Delivered By:	EedEx	UF	PS	Cal	DHI		land livered	Other
Preservation:	Ice)	Bli	ue Ice	D	ry Ice		None
Temp °C /, ろ	C	Time	:	0925	5	Thermo	meter i	D: IR-2

	ernere gener en se solven programme de reprospoje de La companya de la co			YES	NO	NA
Adequate Sample Volume Recei	ved? A	& B BoHle		V		
Holding Time Acceptable?				1		
Shipping Container(s) Intact?				1		
Shipping Custody Seals Intact?				V		
Shipping Documentation Presen	1?					
Airbill Trk#	7970 a	2452 90	190			
Sample Container Intact?				1		
Sample Custody Seals Intact?		_	_	,		1
Chain of Custody / Sample Docu	mentation P	resent?		V		
COC Anomaly/Sample Acceptar	ice Form cor	npleted?				
If Chlorinated or Drinking Water	Samples, Ac	ceptable Pres	ervation?			
Na ₂ S ₂ O ₃ Preservation Documen	·	coc	Sample Containe	, (None	
Shipping Container	Vista	Client	Retain R	eturn	Disp	ose

Comments:

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Northern Drainage-DTSC

618 Michillinda Avenue, Suite 200 Requirement

Arcadia, CA 91007 Surface Water Sampling

Attention: Bronwyn Kelly Sampled: 10/14/09 Received: 10/14/09

Issued: 10/23/09 17:34

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID CLIENT ID MATRIX

ISJ1389-01 Outfall 009 Water

Reviewed By:

TestAmerica Irvine

Joseph Doal

Joseph Doak Project Manager MWH-Pasadena/Boeing Project ID: Northern Drainage-DTSC Requirement

618 Michillinda Avenue, Suite 200 Surface Water Sampling Sampled: 10/14/09

Arcadia, CA 91007 Report Number: ISJ1389 Received: 10/14/09
Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

		<u> </u>					 Т	Ţ		Ţ	 <u> </u>		 		
Page 1 of 1		Field readings: Temp = 57,2°F	pH = 6.6% Time of readings = $6.6%$	Comments	(2010) Care 4:								Turn around Time: (check) 24 Hours 5 Days	48 Hours 10 Days 72 Hours Normal	Sample Integrity: (check) Intact On Ice:
7551389	ANALYSIS REQUIRED											86/	1409 /14:20	3 (905	
CUSTODY FORM			00 t A93) so		×							1	By Supply Date		/ed By
CHAIN OF	Project:	Boeing-SSFL Northern Drainage Surface Water Sampling – DTSC Requirement Outfall 009	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Sampling Preservative Bottle #	(0/H/09 09% None								Date/Time: Received	10-14-09 19-55 Repeiv	Date/Time: Received By
Test America cao no. R4-2007-0054	Client Name/Address:	MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly Sampler: Sowson	Sample Sample Container # of Description Matrix Type Cont	W 1 L Poly								Relinquished By MMTTV 1	Jums 10-	Relinquished By

SUBCONTRACT ORDER

132965

TestAmerica Irvine ISJ1389

2	FI	u	n	IN	G	٠.	Δ	R	n	R	Δ	Т	n	P	v	

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

EMS Laboratories 117 W. Bellevue Drive

Pasadena, CA 91105 Phone :(626) 568-4065

Fax: (626) 796-5282

Project Location: CA - CALIFORNIA

°C

Receipt Temperature:

Ice: Y / N

Standard TAT is requested unless specific due date is requested. => Due Date: Initials:									
Analysis	Units	Expires	Comments						
Sample ID: ISJ1389-01	Water	Sampled: 10/14/09 08:50							
Asbestos-TEM (100.2 - DW)	Present/Not Pre	10/16/09 08:50	Boeing, permit, J flags Out to EMS						
Level 4 Data Package - Out	N/A	11/11/09 08:50	Boeing, permit, J flags						
Containers Supplied: 1 L Poly (A)									

Released By Date/Time Page 1 of 1

Received By Date/Time Page 1 of 1

NPDES Page 428 of 1088

DATE:

October 22, 2009

CUSTOMER:

TestAmerica, Irvine

17461 Derian Ave., Ste 100

Irvine, CA 92614

ATTENTION:

Debby Wilson

REFERENCE:

ISJ1389

REPORT NO:

132965

SUBJECT:

ANALYSIS OF WATER SAMPLES FOR ASBESTOS BY TEM

ACCREDITED:

California Department of Health Services (ELAP-1119)

The date and times of collection, receipt, filtration, and analysis are as follows:

SAMPLE NO.:

ISJ1389-01

COLLECTED:

10/14/09 at 0850

RECEIVED:

10/15/09 at 1100

FILTERED:

10/15/09 at 1203

ANALYZED:

10/22/09

The sample was analyzed for fibers >10 μ m in length to conform with the drinking water document, EPA 600 R 94 134, 100.2. This regulation calls for an MCL (maximum contaminant level) of 7 MFL and an analytical sensitivity level of 0.2 MFL.

No asbestos structures >10 μ m in length were detected. The analytical sensitivity of 0.2 MFL was not reached due to the turbidity.

The results of the analysis and the detection limit are summarized on the following pages.

Respectfully submitted,

EMS LABORATORIES, INC.

Laboratory Director

BMK/ah

NOTE: The results of the analysis are based upon the samples submitted to the laboratory. No representation is made regarding the sampling area other than that implied by the analytical results for the immediate vicinity of the samples analyzed as calculated from the data presented with those samples.

This report, from a NIST laboratory through NVLAP, must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

This report shall not be reproduced, except in full, without the written approval of EMS Laboratories, Inc.

Any deviation or exclusion from the test method is noted in this cover letter.

Unless otherwise noted in this cover letter, the samples were received properly packaged, clearly identified and intact.

ANALYSIS OF WATER BY TEM (EPA-600 R 94 134) EPA 100.2

LAB NO:

132965

CLIENT:

Test America 10/22/2009

			FILTER	MEDIA DATA			
Laboratory	Client	Type	Diameter	Effective Area	No. of G.O.	Analyzed	Sample
I.D.	I.D.		mm	mm^2		Area, mm^2	
132965-1	ISJ1389-01*	PC	47	1017	10	0.094	1
		<u> </u>					
	···						
					 		
							
				<u> </u>			
							····

^{*} FOR FIBERS > 10um ONLY

ANALYTICAL RESULTS

Laboratory	Client	No.	of Asbesto	s Str.	Detection	CONCENTRATION (MFL)			
I.D.	I.D.	All Sizes	5-9.9um	>10um	Limit (MFL)	All Sizes	5-9.9um	>10um	
132965-1	ISJ1389-01*	-	-	N.D.	11.0	-	-	< 11	
		 							
		1							
									
		 				-			

^{*} FOR FIBERS > 10um ONLY

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

Authorized Signature

PC - Polycarbonate

MCE - Mixed cellulose ester

G.O. - Grid Openings

Str - Structures

MFL - Millions of fibers per liter

TEM-7A (2009Rev.)

Analysis of Water by Transmission Electron Microscopy (EPA-600 R 94 134) EPA 100.2

EMS No.	132965	Client	Test America				
Sample No. ISJ13	889-01		Date Analyzed	10/22/2009			
Fibers > 10 µm in l	ength (chrysotile)		BDL*	MFL			
Mass (chrysotile)			0	ug/L			
More/Less than 5 F			1500				
in Sample (chrysot	ne)		LESS				
Poisson 95% Conf	idence Interval		0 to40	MFL			
Detection Limit			11	MFL			
* BDL : Below Dete	ection Limit; MFL: Million Fibers per Lit	ter					
Particle Size Distribution (Chrysotile)							

Particle Length - Microns

O -0.49 0 0

Particle Width - Microns .2 - .24 .25 - .49 .50 - .99 1 & UP 0 - .04 .05 - .09 .1 - .14 .15 - .19 Aspect Ratio L/W 40 - 49.9 50 - 99 100 - 199 0 - 9.9 10 - 19.9 20 - 29.9 30 - 39.9 200 & UP 0

0

TEM 7B (1994)

Analysis of Water by Transmission Electron Microscopy (EPA-600/4-83-043)

EMS No.	132965			Date Analyzed	10/22/2009							
Client	Test America			Date Analyzed	10/22/2009							
Sample No.	EMS BLANK											
Fibers (chrysot	ile)			ND	MFL							
> 5 Micron leng	gth (chrysotile)			ND	MFL							
Mass (chrysoti	le)			0								
More/Less that in Sample (chr			LI									
Sensitivity Leve	əl			0.01	MFL							
	Particle Size Distribution (Chrysotile)											
		Particle Lengt	h - Microns									
O -0.49	0.50 - 0.99	1.00 - 1.49	1.50 - 1.99	2.00 - 2.49	2.5 & UP							
0	0	0	0	0	0							
Particle Width - Microns												
O04	.0509	.114	.1519	.224	.25 & UP							
0	0	0	0	0	0							

Aspect Ratio L/W

20 - 29.9

0

0 - 9.9

10 - 19.9

30 - 39.9

0

40 - 49.9

0

50 & UP

0

APPENDIX G

Section 9

Outfall 009, December 7, 2009

MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ISL0771

Prepared by

MEC^x, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT

Project: SSFL NPDES
SDG: ISL0771

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ISL0771 Project Manager: B. Kelly

Matrix: Water QC Level: IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009	ISL0771-02	G9l100517-001, F9J100528-001, D9L100591-001	Water	12/7/2009 11:12:00 AM	1613, 200.8, 245.1, 900, 901.1, 903.0, 904, 905, 906.0, EMLA-01-R, ASTM 5174-91

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-Irvine within the temperature limits of 4°C ±2°C. The sample for the Method 1613 analysis was received below the temperature limits at TestAmerica-West Sacramento; however, the sample was not noted to be frozen or damaged. The sample receipt temperature was not noted by TestAmerica-St. Louis; however, due to the nonvolatile nature of the analytes, no qualifications were required. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were transported by courier to TestAmerica-Irvine, custody seals were not required. Custody seals were not present upon receipt at TestAmerica-West Sacramento. Custody seals were present and intact at TestAmerica-Denver and TestAmerica-St. Louis.

DATA VALIDATION REPORT

Project: SSFL NPDES SDG: ISL0771

Data Qualifier Reference Table

Qualifie	er Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT

Project: SSFL NPDES SDG: ISL0771

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
М	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ISL0771

Qualification Code Reference Table Cont.

D The analysis with this flag should not The analysis with this flag should not be used because another more be used because another more technically sound analysis is technically sound analysis is available. available. Ρ Instrument performance for Post Digestion Spike recovery was pesticides was poor. not within control limits. **DNQ** The reported result is above the The reported result is above the method detection limit but is less than method detection limit but is less than the reporting limit. the reporting limit. *||, *||| Unusual problems found with the Unusual problems found with the data that have been described in data that have been described in Section II, "Sample Management," or Section II, "Sample Management," Section III, "Method Analyses." The or Section III, "Method Analyses." number following the asterisk (*) will The number following the asterisk indicate the report section where a (*) will indicate the report section description of the problem can be where a description of the problem found. can be found.

Project: SSFL NPDES
DATA VALIDATION REPORT SDG: ISL0771

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: 01/17/09

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance:
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Ocontinuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for all compounds except 2,3,7,8-TCDF. Any sample detects for individual target compound isomers present at concentrations less than five times the method blank concentrations were qualified as nondetected, "U," at the RL. Results for totals were qualified as nondetected, "U," if all peaks comprising the total were present in the method blank at less than five times the

5 Revision 1

Project: SSFL NPDES SDG: ISL0771

blank concentrations. In some instances, one or more peaks in the method blank did not meet ratio criteria; however, due to the extent of contamination present in the method blank, it was the reviewer's professional opinion that the sample total be qualified as nondetected due to method blank contamination if all peaks in the sample total were also present in the method blank.

Results for total HxCDD and total HxCDF in the sample included peaks meeting ratio criteria that were not present in the method blank; therefore, results for both totals were qualified as estimated, "J," as only a portion of the total was considered method blank contamination. The concentration for one peak in total HpCDD was significantly greater than five times the concentration of the same peak in the method blank; therefore, the sample result for total HpCDD was qualified as estimated, "J." The sample concentration for OCDD exceeded five times the blank concentration and required no qualification.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any reportable sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Several results for individual isomers were reported as EMPCs by the laboratory; however, the results were previously qualified as nondetects for method blank contamination and were not further qualified as EMPCs. Any reported totals not qualified as nondetects for method blank contamination that included EMPCs were qualified as estimated, "J." Any detects between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

6 Revision 1

Project: SSFL NPDES SDG: ISL0771

B. EPA METHODS 200.8 and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 14, 2009

The sample listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding times, 180 days for the ICP-MS metals and 28 days for mercury, were met.
- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. The mercury initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 85-115%. Copper was recovered in the CRI associated with the dissolved ICP-MS metals at 174%; therefore, dissolved copper detected in the sample was qualified as estimated, "J." The remaining CRI and CRA recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no applicable detects.
- Interference Check Samples: Lead, cadmium, and copper were detected in the ICSA, but the reviewer was not able to determine if the detects were due to matrix interference. The ICSA and ICSAB recoveries were within the method-established control limits of 80-120%.
- Blank Spikes and Laboratory Control Samples: Recoveries were within methodestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on total mercury and dissolved ICP-MS metals. The mercury recoveries were below the control limit and the RPD exceeded the control limit; therefore, total mercury in the sample was qualified as estimated, "J." The remaining recoveries and RPDs were within the method-established control limits of 75-125% and ≤20%, respectively.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All sample internal standard intensities were within 60-120% of the internal standard intensities measured in the initial calibration. Copper was not bracketed by a lower mass internal standard. As CCV, CRI and LCS recoveries were acceptable, total and dissolved copper in the sample was qualified as estimated, "J," rather than rejected.

7 Revision 1

DATA VALIDATION REPORT

Project: SSFL NPDES
SDG: ISL0771

 Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: January 14, 2008

The sample listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, 906.0, and ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for radium-226, radium-228, and strontium-90 were prepared within the five-day holding time for unpreserved aqueous samples. The aliquot for gamma spectroscopy was prepared beyond the five-day analytical holding time for unpreserved samples; therefore, the nondetected results were qualified as estimated, "UJ." Aliquots for gross alpha and gross beta, and total uranium were prepared more than 3x beyond the five-day analytical holding time for unpreserved samples; therefore, these results were qualified as estimated, "J," for detects and rejected, "R," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha and radium-226 detector efficiencies were less than 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J," and nondetected radium-226 was qualified as estimated, "UJ." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The strontium, radium-226, and radium-228 chemical yields were at least 65% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. The opening KPA Low-

Project: SSFL NPDES SDG: ISL0771

CCV was recovered at 124%; however, as total uranium was not detected in the sample (see Blanks section), no qualification was required. All remaining KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Total uranium was detected in the method blank at 0.496 pCi/L; therefore, total
 uranium detected in the sample was qualified as nondetected, "U." There were no other
 analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries and isotopic uranium, strontium, radium-226, and radium-228 RPDs were within laboratory-established control limits.
- Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for gross alpha and gross beta. The RPDs were either within the laboratoryestablished control limit or within the measurement error.
- Matrix Spike/Matrix Spike Duplicate: Matrix spike analyses were performed on the sample
 in this SDG for tritium and gross alpha and gross beta. MS/MSD analyses were
 performed on the sample in this SDG for total uranium. All recoveries and the isotopic
 uranium RPD were within the laboratory-established control limits. Please note that the
 tritium matrix spike was reported in the summary by the laboratory as having been
 performed on another sample.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Detects
 reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ"
 in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

The laboratory originally analyzed for isotopic uranium instead of total uranium as required by the NPDES permit. The isotopic uranium results were, therefore, rejected, "R," in favor of the total uranium result.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms: ISL0771

Analysis Method ASTM 5174-91

Sample Name Outfall 009 (Comp) Matrix Type: WATER Validation Level: IV

Lab Sample Name: ISL0771-02 **Sample Date:** 12/7/2009 11:12:00 AM

Analyte CAS No Result RL **MDL** Result Lab Validation Validation Value Units Qualifier **Qualifier Notes** Total Uranium 7440-61-1 0.443 0.677 0.21 H,B pCi/L

Analysis Method EPA 200.8

Sample Name Outfall 009 (Comp) Matrix Type: Water Validation Level: IV

Lab Sample Name: ISL0771-02 **Sample Date:** 12/7/2009 11:12:00 AM

Result RLAnalyte CAS No **MDL** Result Lab Validation Validation Value Units Qualifier Qualifier Notes Antimony 7440-36-0 0.95 2.0 0.30 DNQ ug/l Cadmium 7440-43-9 0.11 1.0 0.10 DNO ug/l Copper *III 7440-50-8 5.7 2.0 0.50 ug/l Lead 7439-92-1 5.7 1.0 0.20 ug/l Thallium 7440-28-0 ND 0.20 U ug/l

Analysis Method EPA 200.8-Diss

Sample Name Outfall 009 (Comp) Matrix Type: Water Validation Level: IV

Lab Sample Name: ISL0771-02 **Sample Date:** 12/7/2009 11:12:00 AM

CAS No Result **MDL** Analyte Result Lab Validation Validation Value Units Qualifier Qualifier Notes Antimony, dissolved 7440-36-0 0.51 2.0 0.30 DNQ ug/l Cadmium, dissolved 7440-43-9 ND 1.0 0.10 U ug/l Copper, dissolved 7440-50-8 3.1 2.0 0.50 ug/l J R,*III Lead, dissolved 7439-92-1 0.91 1.0 0.20 ug/l J J DNO Thallium, dissolved 7440-28-0 0.24 1.0 0.20 ug/l J J DNQ

Analysis Method EPA 900.0 MOD

Sample Name Outfall 009 (Comp) Matrix Type: WATER Validation Level: IV

Lab Sample Name: ISL0771-02 **Sample Date:** 12/7/2009 11:12:00 AM

CAS No Result RL Analyte MDL Result Lab Validation Validation Value Units Qualifier Qualifier Notes Gross Alpha 12587-46-1 2.22 0.99 pCi/L Jc H,C,DNQ Gross Beta 12587-47-2 1.78 pCi/L Jc H, DNQ

Friday, January 22, 2010 Page 1 of 4

Analysis Method EPA 901.1 MOD

Sample Name	Outfall 009 (C	Outfall 009 (Comp) Matrix			WATER	7	Validation Level: IV		
Lab Sample Name:	ISL0771-02	Samp	ple Date:	12/7/2009 11:12:00 A		M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Cesium 137	10045-97-3	3.6	20	16	pCi/L	U	UJ	Н	
Potassium 40	13966-00-2	-40	0	300	pCi/L	U	UJ	Н	
Analysis Metho	od EPA 9	903.0 M	IOD						
Sample Name	Outfall 009 (C	Comp)	Matri	x Type:	WATER	7	alidation Le	vel: IV	
Lab Sample Name:	ISL0771-02	Samp	ple Date:	12/7/2009	9 11:12:00 A	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Radium (226)	13982-63-3	0.096	1	0.15	pCi/L	U	UJ	С	
Analysis Metho	od EPA 9	004 MO	DD						
Sample Name	Outfall 009 (Comp) Matrix Type: WATER Validation Level: T						vel: IV		
Lab Sample Name:	ISL0771-02	Samp	ple Date:	12/7/2009	9 11:12:00 A	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Radium 228	15262-20-1	0.11	1	1.1	pCi/L	U	U		
Analysis Metho	od EPA 9	005 MO	D						
Sample Name	Outfall 009 (C	Comp)	Matri	x Type:	WATER	Validation Level: IV			
Lab Sample Name:	ISL0771-02	Samp	ple Date:	12/7/2009 11:12:00 AM					
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Strontium 90	10098-97-2	-0.05	3	0.58	pCi/L	U	U		
Analysis Metho	od EPA 9	906.0 M	IOD						
Sample Name	Outfall 009 (Comp) Matri			ix Type: WATER Validation Level: IV					
Lab Sample Name:	ISL0771-02	Samp	ple Date:	12/7/2009	9 11:12:00 A	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	

Friday, January 22, 2010 Page 2 of 4

Analysis Method EPA-5 1613B

Mercury

Sample Name	Outfall 009 (C	Outfall 009 (Comp)		Matrix Type: WATER			Validation Level: IV		
Lab Sample Name:	ISL0771-02RE1	Sam	ple Date:	12/7/2009 1	1:12:00 A	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00007	0.00000071	ug/L	В	U	В	
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.000048	0.00000083	ug/L	J, B	U	В	
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.000048	0.0000012	ug/L	J, Q, B	U	В	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.000048	0.00000064	ug/L	J, Q, B	U	В	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.000048	0.00000066	i ug/L	J, Q, B	U	В	
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.000048	0.00000058	3 ug/L	J, B	U	В	
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.000048	0.00000061	ug/L	J, B	U	В	
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.000048	0.00000055	ug/L	J, B	U	В	
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.000048	0.0000007	ug/L	J, B	U	В	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.000048	0.0000011	ug/L	J, Q, B	U	В	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.000048	0.000001	ug/L	J, Q, B	U	В	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.000048	0.00000056	i ug/L	J, B	U	В	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.000048	0.0000011	ug/L	J, Q, B	U	В	
2,3,7,8-TCDD	1746-01-6	ND	0.0000096	0.00000056	i ug/L		U		
2,3,7,8-TCDF	51207-31-9	ND	0.0000096	0.0000029	ug/L	CON	U		
OCDD	3268-87-9	0.0011	0.000096	0.0000011	ug/L	В			
OCDF	39001-02-0	ND	0.000096	0.00000062	2 ug/L	J, B	U	В	
Гotal HpCDD	37871-00-4	0.00019	0.000048	0.00000071	ug/L	В	J	В	
Total HpCDF	38998-75-3	ND	0.000048	0.00000083	ug/L	J, Q, B	U	В	
Total HxCDD	34465-46-8	0.000031	0.000048	0.00000055	ug/L	J, Q, B	J	B,*III,DNQ	
Total HxCDF	55684-94-1	0.000036	0.000048	0.00000056	i ug/L	J, Q, B	J	B,*III,DNQ	
Total PeCDD	36088-22-9	ND	0.000048	0.0000011	ug/L	J, Q, B	U	В	
Total PeCDF	30402-15-4	ND	0.000048	0.000001	ug/L	J, Q, B	U	В	
Total TCDD	41903-57-5	ND	0.0000096	0.00000056	i ug/L		U		
Γotal TCDF	55722-27-5	ND	0.0000096	0.00000064	ug/L	J, Q, B	U	В	
Analysis Metho	od MCAV	WW 24	5.1						
Sample Name Outfall 009 (Comp)		Matrix Type: WATER			Validation Level: IV				
Lab Sample Name:	ISL0771-02	Sam	ple Date:	12/7/2009 1	1:12:00 A	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	

Friday, January 22, 2010 Page 3 of 4

0.027

ug/L

0.2

7439-97-6 0.027

Q,*III, DNQ

Analysis Method MCAWW 245.1-DISS

Sample Name	Outfall 009 (Comp)		Matri	Matrix Type: WATER		7	Validation Level: IV		
Lab Sample Name:	ISL0771-02 Sample Date: 12/7/20			12/7/2009	2/7/2009 11:12:00 AM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Mercury, dissolved	7439-97-6	ND	0.2	0.027	ug/L		U		

Friday, January 22, 2010 Page 4 of 4