APPENDIX G

Section 8

Arroyo Simi-Frontier Park – February 11, 2013 Test America Analytical Laboratory Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-37740-1

Client Project/Site: Annual Sediment Arroyo Simi-FP

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 3/8/2013 8:24:36 AM

Debby Wilson Project Manager I

debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

3

4

5

7

8

10

4.0

13

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Debby Wilson Project Manager I 3/8/2013 8:24:36 AM

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	6
Chronicle	7
QC Sample Results	8
QC Association	11
Definitions	13
Certification Summary	14
Subcontract Data	15
Chain of Custody	36
Receipt Checklists	37

6

8

9

4 4

12

Sample Summary

Client: MWH Americas Inc

Project/Site: Annual Sediment Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-37740-3	Arroyo Simi-FP	Solid	02/11/13 12:00	02/11/13 19:20

3

4

5

7

8

10

11

12

11:

Case Narrative

Client: MWH Americas Inc

Project/Site: Annual Sediment Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

Job ID: 440-37740-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-37740-1

Comments

No additional comments.

Receipt

The sample was received on 2/11/2013 7:20 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.3° C.

GC Semi VOA

Method(s) 8081A: Due to the high concentration of Pesticides, the matrix spike / matrix spike duplicate (MS/MSD) for batch 84900 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) 8082: The continuing calibration verification (CCV) for 1016-1260 associated with batch 85021 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. Arroyo Simi-FP (440-37740-3)

Method(s) 8082: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and surrogate recoveries associated with batch 84805 were outside control limits: (440-37748-1 MS), (440-37748-1 MSD). Matrix interference is suspected.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Subcontract non-Sister

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

6

4

4

6

a

10

12

Client Sample Results

Client: MWH Americas Inc

Project/Site: Annual Sediment Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

Lab Sample ID: 440-37740-3

Matrix: Solid

Client Sample ID: Arroyo Simi-FP

Date Collected: 02/11/13 12:00 Date Received: 02/11/13 19:20

Analyte

Percent Moisture

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		5.0	1.5	ug/Kg		02/13/13 13:22	02/16/13 01:36	1
4,4'-DDE	2.2	J,DX	5.0	1.5	ug/Kg		02/13/13 13:22	02/16/13 01:36	1
4,4'-DDT	ND		5.0	1.5	ug/Kg		02/13/13 13:22	02/16/13 01:36	1
Chlordane (technical)	ND		50	10	ug/Kg		02/13/13 13:22	02/16/13 01:36	1
Dieldrin	ND		5.0	1.5	ug/Kg		02/13/13 13:22	02/16/13 01:36	1
Toxaphene	ND		200	50	ug/Kg		02/13/13 13:22	02/16/13 01:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	93		45 - 120				02/13/13 13:22	02/16/13 01:36	1
Tetrachloro-m-xylene	83		35 - 115				02/13/13 13:22	02/16/13 01:36	1

Method: 8082 - Polychlorinated		•	• •	•					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		50	12	ug/Kg		02/13/13 09:01	02/14/13 13:56	1
Aroclor 1221	ND		50	12	ug/Kg		02/13/13 09:01	02/14/13 13:56	1
Aroclor 1232	ND	PI	50	12	ug/Kg		02/13/13 09:01	02/14/13 13:56	1
Aroclor 1242	ND		50	12	ug/Kg		02/13/13 09:01	02/14/13 13:56	1
Aroclor 1248	ND		50	12	ug/Kg		02/13/13 09:01	02/14/13 13:56	1
Aroclor 1254	ND		50	12	ug/Kg		02/13/13 09:01	02/14/13 13:56	1
Aroclor 1260	ND		50	12	ug/Kg		02/13/13 09:01	02/14/13 13:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	50		45 - 120				02/13/13 09:01	02/14/13 13:56	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND		5000	1700	mg/Kg			02/20/13 06:37	1
Ammonia (as N)	4.37	J,DX	10.0	2.00	mg/Kg		02/20/13 04:30	02/20/13 06:43	1

RL

0.10

RL Unit

0.10 %

D

Prepared

Result Qualifier

27

TestAm	nerica	Irvine
	.000	

3

6

R

9

10

12

13

Dil Fac

Analyzed

02/12/13 15:40

Lab Chronicle

Client: MWH Americas Inc

Date Collected: 02/11/13 12:00

Date Received: 02/11/13 19:20

Project/Site: Annual Sediment Arroyo Simi-FP

Prep

Analysis

Analysis

Client Sample ID: Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

Lab Sample ID: 440-37740-3

Lab TAL IRV TAL IRV TAL IRV TAL IRV TAL IRV TAL IRV

TAL IRV

TAL IRV

Matrix: Solid

Г									
	Batch	Batch		Dil	Initial	Final	Batch	Prepared	
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst
Total/NA	Prep	3546			15.05 g	2 mL	84805	02/13/13 09:01	AD
Total/NA	Analysis	8082		1			85021	02/14/13 13:56	CN
Total/NA	Prep	3546			15.00 g	2 mL	84900	02/13/13 13:22	AB
Total/NA	Analysis	8081A		1			85620	02/16/13 01:36	
Total/NA	Analysis	Moisture		1			84657	02/12/13 15:40	DK

1

5 g

0.1009 g

100 mL

0.1009 g

86416

86440

86477

02/20/13 04:30

02/20/13 06:43

02/20/13 06:37

Laboratory References:

Total/NA

Total/NA

Total/NA

ABC = Aquatic Bioassay - Ventura, CA, 29 North Olive Street, Ventura, CA 93001

9060

SM 4500 NH3 B

SM 4500 NH3 D

PTSL = PTS Laboratories, Inc, 8100 Secura Way, Santa Fe Springs, CA 90670

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: MWH Americas Inc

Project/Site: Annual Sediment Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 440-84900/1-A

Matrix: Solid

Analysis Batch: 85620

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 84900

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		5.0	1.5	ug/Kg		02/13/13 13:22	02/15/13 22:09	1
4,4'-DDE	ND		5.0	1.5	ug/Kg		02/13/13 13:22	02/15/13 22:09	1
4,4'-DDT	ND		5.0	1.5	ug/Kg		02/13/13 13:22	02/15/13 22:09	1
Chlordane (technical)	ND		50	10	ug/Kg		02/13/13 13:22	02/15/13 22:09	1
Dieldrin	ND		5.0	1.5	ug/Kg		02/13/13 13:22	02/15/13 22:09	1
Toxaphene	ND		200	50	ug/Kg		02/13/13 13:22	02/15/13 22:09	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	98	45 - 120	02/13/13 13:22	02/15/13 22:09	1
Tetrachloro-m-xylene	81	35 - 115	02/13/13 13:22	02/15/13 22:09	1

Lab Sample ID: LCS 440-84900/2-A

Matrix: Solid

Analysis Batch: 85620

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 84900

	Spi	ike LC	S LCS			%Rec.	
Analyte	Add	led Resu	It Qualifier	Unit	D %Rec	Limits	
4,4'-DDD	33	3.3 29.	9	ug/Kg	90	60 - 120	
4,4'-DDE	3:	3.3 29.	8	ug/Kg	89	60 - 120	
4,4'-DDT	3:	3.3 32.	9	ug/Kg	99	65 - 120	
alpha-Chlordane	3:	3.3 31.	0	ug/Kg	93	50 ₋ 115	
gamma-Chlordane	33	3.3 31.	6	ug/Kg	95	50 - 115	
Dieldrin	33	3.3 31.	8	ug/Kg	95	65 - 115	

LCS LCS

Surrogate	%Recovery Qualit	ier Limits
DCB Decachlorobiphenyl (Surr)	95	45 - 120
Tetrachloro-m-xylene	78	35 - 115

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 440-84805/1-A

Matrix: Solid

Analysis Batch: 85021

Client Sample ID: Method Blank	
Prep Type: Total/NA	

Prep Batch: 84805

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		50	12	ug/Kg		02/13/13 09:01	02/13/13 23:05	1
Aroclor 1221	ND		50	12	ug/Kg		02/13/13 09:01	02/13/13 23:05	1
Aroclor 1232	ND		50	12	ug/Kg		02/13/13 09:01	02/13/13 23:05	1
Aroclor 1242	ND		50	12	ug/Kg		02/13/13 09:01	02/13/13 23:05	1
Aroclor 1248	ND		50	12	ug/Kg		02/13/13 09:01	02/13/13 23:05	1
Aroclor 1254	ND		50	12	ug/Kg		02/13/13 09:01	02/13/13 23:05	1
Aroclor 1260	ND		50	12	ug/Kg		02/13/13 09:01	02/13/13 23:05	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	88		45 - 120	02/13/13 09:01	02/13/13 23:05	1

TestAmerica Irvine

TestAmerica Job ID: 440-37740-1

Project/Site: Annual Sediment Arroyo Simi-FP

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 440-84805/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 85021 Prep Batch: 84805

Client: MWH Americas Inc

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aroclor 1016	 	267	224		ug/Kg		84	65 - 115	
Aroclor 1260		267	232		ug/Kg		87	65 - 115	

LCS LCS %Recovery Qualifier Surrogate I imits DCB Decachlorobiphenyl (Surr) 92 45 - 120

Lab Sample ID: 440-37748-C-1-D MS Client Sample ID: Matrix Spike

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 85021 Prep Batch: 84805

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aroclor 1016	ND		266	116	LN	ug/Kg		44	50 - 120	
Aroclor 1260	ND		266	265		ug/Kg		100	50 - 125	

MS MS Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 34 LG 45 - 120

Lab Sample ID: 440-37748-C-1-E MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 85021

Analysis Batch: 85021									Prep	p Batch:	84805
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aroclor 1016	ND		266	82.6	LN BA	ug/Kg		31	50 - 120	34	30
Aroclor 1260	ND		266	220		ug/Kg		83	50 - 125	19	30

MSD MSD %Recovery Qualifier Limits Surrogate DCB Decachlorobiphenyl (Surr) 33 LG 45 - 120

Method: 9060 - Organic Carbon, Total (TOC)

Lab Sample ID: MB 440-86477/6 Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 86477

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND		5000	1700	mg/Kg			02/20/13 06:32	1

Lab Sample ID: LCS 440-86477/5 Client Sample ID: Lab Control Sample

Matrix: Solid Analysis Batch: 86477

LCS LCS %Rec. Spike Added Analyte Result Qualifier Unit %Rec Limits 10000 Total Organic Carbon 10100 mg/Kg 101 90 - 110

Prep Type: Total/NA

Prep Type: Total/NA

Client: MWH Americas Inc

Project/Site: Annual Sediment Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

Client Sample ID: Arroyo Simi-FP

Client Sample ID: Arroyo Simi-FP

Client Sample ID: Arroyo Simi-FP

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Arroyo Simi-FP

Prep Type: Total/NA

Prep Batch: 86416

Method: 9060 - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: 440-37740-3 MS

Matrix: Solid

Analysis Batch: 86477

Spike MS MS %Rec. Sample Sample Result Qualifier Result Qualifier babbA Limits Analyte Unit D %Rec 19600 **Total Organic Carbon** ND 19100 mg/Kg 98 70 - 130

Lab Sample ID: 440-37740-3 MSD

Matrix: Solid

Analysis Batch: 86477

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Total Organic Carbon ND 19700 19800 mg/Kg 100 70 - 130 30

Method: Moisture - Percent Moisture

Lab Sample ID: 440-37740-3 DU

Matrix: Solid

Analysis Batch: 84657

DU DU Sample Sample RPD Qualifier Analyte Result Result Qualifier Unit Limit % Percent Moisture 27 24 15 20

Method: SM 4500 NH3 D - Ammonia

Lab Sample ID: MB 440-86416/4-A

Matrix: Solid

Analysis Batch: 86440

мв мв

Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed 10.0 02/20/13 04:30 02/20/13 06:39 Ammonia (as N) ND 2.00 mg/Kg

Lab Sample ID: LCS 440-86416/3-A

Matrix: Solid

Analysis Batch: 86440

Prep Batch: 86416 LCS LCS Spike %Rec. hahhΔ Analyte Result Qualifier I imits Unit %Rec Ammonia (as N) 50.0 48.11 mg/Kg 96 85 - 115

Lab Sample ID: 440-37740-3 MS

Client Sample ID: Arroyo Simi-FP **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 86440** Prep Batch: 86416

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits Ammonia (as N) 4.37 J,DX 50.0 52.67 mg/Kg 97 75 - 125

Lab Sample ID: 440-37740-3 MSD

Matrix: Solid

Analysis Batch: 86440

Prep Batch: 86416 Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Ammonia (as N) 4.37 J,DX 50.0 48.11 87 75 - 125 mg/Kg

TestAmerica Irvine

Prep Type: Total/NA

QC Association Summary

Client: MWH Americas Inc

Project/Site: Annual Sediment Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

GC Semi VOA

Prep Batch: 84805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-37740-3	Arroyo Simi-FP	Total/NA	Solid	3546	
440-37748-C-1-D MS	Matrix Spike	Total/NA	Solid	3546	
440-37748-C-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	
LCS 440-84805/2-A	Lab Control Sample	Total/NA	Solid	3546	
MB 440-84805/1-A	Method Blank	Total/NA	Solid	3546	

Prep Batch: 84900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-37740-3	Arroyo Simi-FP	Total/NA	Solid	3546	
LCS 440-84900/2-A	Lab Control Sample	Total/NA	Solid	3546	
MB 440-84900/1-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 85021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-37740-3	Arroyo Simi-FP	Total/NA	Solid	8082	84805
440-37748-C-1-D MS	Matrix Spike	Total/NA	Solid	8082	84805
440-37748-C-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8082	84805
LCS 440-84805/2-A	Lab Control Sample	Total/NA	Solid	8082	84805
MB 440-84805/1-A	Method Blank	Total/NA	Solid	8082	84805

Analysis Batch: 85620

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-37740-3	Arroyo Simi-FP	Total/NA	Solid	8081A	84900
LCS 440-84900/2-A	Lab Control Sample	Total/NA	Solid	8081A	84900
MB 440-84900/1-A	Method Blank	Total/NA	Solid	8081A	84900

General Chemistry

Analysis Batch: 84657

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-37740-3	Arroyo Simi-FP	Total/NA	Solid	Moisture	
440-37740-3 DU	Arroyo Simi-FP	Total/NA	Solid	Moisture	

Prep Batch: 86416

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-37740-3	Arroyo Simi-FP	Total/NA	Solid	SM 4500 NH3 B	
440-37740-3 MS	Arroyo Simi-FP	Total/NA	Solid	SM 4500 NH3 B	
440-37740-3 MSD	Arroyo Simi-FP	Total/NA	Solid	SM 4500 NH3 B	
LCS 440-86416/3-A	Lab Control Sample	Total/NA	Solid	SM 4500 NH3 B	
MB 440-86416/4-A	Method Blank	Total/NA	Solid	SM 4500 NH3 B	

Analysis Batch: 86440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-37740-3	Arroyo Simi-FP	Total/NA	Solid	SM 4500 NH3 D	86416
440-37740-3 MS	Arroyo Simi-FP	Total/NA	Solid	SM 4500 NH3 D	86416
440-37740-3 MSD	Arroyo Simi-FP	Total/NA	Solid	SM 4500 NH3 D	86416
LCS 440-86416/3-A	Lab Control Sample	Total/NA	Solid	SM 4500 NH3 D	86416
MB 440-86416/4-A	Method Blank	Total/NA	Solid	SM 4500 NH3 D	86416

TestAmerica Irvine

Page 11 of 37

QC Association Summary

Client: MWH Americas Inc

Project/Site: Annual Sediment Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

General Chemistry (Continued)

Analysis Batch: 86477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-37740-3	Arroyo Simi-FP	Total/NA	Solid	9060	
440-37740-3 MS	Arroyo Simi-FP	Total/NA	Solid	9060	
440-37740-3 MSD	Arroyo Simi-FP	Total/NA	Solid	9060	
LCS 440-86477/5	Lab Control Sample	Total/NA	Solid	9060	
MB 440-86477/6	Method Blank	Total/NA	Solid	9060	

2

4

6

8

9

10

15

Definitions/Glossary

Client: MWH Americas Inc

Project/Site: Annual Sediment Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
PI	Primary and confirm results varied by > than 40% RPD
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL
LN	MS and/or MSD below acceptance limits. See Blank Spike (LCS)
LG	LG=Surrogate recovery below the acceptance limits
BA	Relative percent difference out of control

General Chemistry

Qualifier	Qualifier Description
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Irvine

Certification Summary

Client: MWH Americas Inc

Project/Site: Annual Sediment Arroyo Simi-FP

TestAmerica Job ID: 440-37740-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-13
Arizona	State Program	9	AZ0671	10-13-13
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	02-28-13
Hawaii	State Program	9	N/A	02-28-13
Nevada	State Program	9	CA015312007A	07-31-13
New Mexico	State Program	6	N/A	02-28-13
Northern Mariana Islands	State Program	9	MP0002	02-28-13
Oregon	NELAP	10	4005	09-12-13
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

3

4

5

7

8

IU

111

8100 Secura Way • Santa Fe Springs, CA 90670 Telephone (562) 347-2500 • Fax (562) 907-3610

February 26, 2013

Debby Wilson TestAmerica 17461 Derian Avenue, Suite 100 Irvine, CA 92614-5817

Re: PTS File No: 43108

Physical Properties Data

Boeing SSFL NPDES Ann. Sediment Arroyo; 440-37740-1

Dear Ms. Wilson:

Please find enclosed report for Physical Properties analyses conducted upon the sample received from your Boeing SSFL NPDES Ann. Sediment Arroyo; 440-37740-1 project. All analyses were performed by applicable ASTM, EPA, or API methodologies. An electronic version of the report has previously been sent to your attention via the internet. The sample is currently in storage and will be retained for thirty days past completion of testing at no charge. Please note that the sample will be disposed of at that time. You may contact me regarding storage, disposal, or return of the sample.

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please contact Morgan Richards at (562) 347-2509.

Sincerely, PTS Laboratories

Michael Mark Brady, P.G. District Manager

Encl.

PTS Laboratories

Project Name: Boeing SSFL NPDES Ann. Sediment Arroyo PTS File No: 43108

Project Number: 440-37740-1 Client: TestAmerica

TEST PROGRAM - 20130214

CORE ID	Depth ft.	Core Recovery ft.	Grain Size Analysis ASTM D4464M		Notes
		Plugs:	Grab		
Date Received: 20130214					
Arroyo Simi-FP (440-37740-3)	N/A	N/A	X		
TOTALS:	1 jar		1		

Laboratory Test Program Notes

Contaminant identification:

Standard TAT for basic analysis is 10 business days.

3

4

Ę

O

0

10

11

12

PTS Laboratories, Inc.

TestAmerica

PTS File No: 43108

PARTICLE SIZE SUMMARY

(METHODOLOGY: ASTM D422/D4464M)

PROJECT NAME: Boeing SSFL NPDES Ann. Sediment Arroyo

PROJECT NO: 440-37740-1

			Median	Particle Size Distribution, wt. per		percent		Silt		
		Mean Grain Size	Grain Size			Sand Size				&
Sample ID	Depth, ft.	Description (1)	mm	Gravel	Coarse	Medium	Fine	Silt	Clay	Clay
Arroyo Simi-FP (440-37740-3)	N/A	Fine sand	0.039	0.00	0.00	18.47	24.74	37.26	19.52	56.79

Page 1 of 2

Page 17 of 37 3/8/2013

10

0.000375

0.000977

 ${f PTS}$ Laboratories, Inc. Particle Size Analysis - ASTM D4464M Client: 43108 TestAmerica PTS File No: Project: Boeing SSFL NPDES Ann. Sediment Arroyo Sample ID: Arroyo Simi-FP (440-37740-3) **Project No:** 440-37740-1 Depth, ft: N/A Sand Size Silt Grv Clay medium fine 100 16 90 14 80 12 70 % **Retained Wt., %** 9 8 01 60 50 40 Cumulative Wt., % 4 20

Particle Size, mm

0.088

0.063

0.125

0.0313

0.0442

				га	Tucie Size	F, 1111111
				Sample	Increment	Cumulative
Оре	ening	Phi of	U.S.	Weight,	Weight,	Weight,
Inches	Millimeters	Screen	No.	grams	percent	percent
0.2500	6.351	-2.67	1/4	0.00	0.00	0.00
0.1873	4.757	-2.25	4	0.00	0.00	0.00
0.1324	3.364	-1.75	6	0.00	0.00	0.00
0.0787	2.000	-1.00	10	0.00	0.00	0.00
0.0468	1.189	-0.25	16	1.40	1.40	1.40
0.0331	0.841	0.25	20	5.80	5.80	7.20
0.0278	0.707	0.50	25	2.75	2.75	9.95
0.0234	0.595	0.75	30	2.69	2.69	12.63
0.0197	0.500	1.00	35	2.85	2.85	15.48
0.0166	0.420	1.25	40	2.99	2.99	18.47
0.0139	0.354	1.50	45	2.56	2.56	21.03
0.0117	0.297	1.75	50	3.53	3.53	24.56
0.0098	0.250	2.00	60	2.87	2.87	27.43
0.0083	0.210	2.25	70	2.72	2.72	30.15
0.0070	0.177	2.50	80	2.70	2.70	32.85
0.0059	0.149	2.75	100	2.64	2.64	35.48
0.0049	0.125	3.00	120	2.31	2.31	37.79
0.0041	0.105	3.25	140	1.93	1.93	39.72
0.0035	0.088	3.50	170	1.76	1.76	41.48
0.0029	0.074	3.75	200	1.73	1.73	43.21
0.0025	0.063	4.00	230	1.73	1.73	44.94
0.0021	0.053	4.25	270	1.76	1.76	46.70
0.00174	0.0442	4.50	325	1.88	1.88	48.58
0.00146	0.0372	4.75	400	1.97	1.97	50.55
0.00123	0.0313	5.00	450	2.03	2.03	52.58
0.000986	0.0250	5.32	500	2.76	2.76	55.34
0.000790	0.0201	5.64	635	3.09	3.09	58.42
0.000615	0.0156	6.00		3.56	3.56	61.98
0.000435	0.0110	6.50		5.11	5.11	67.09
0.000308	0.00781	7.00		5.68	5.68	72.77
0.000197	0.00500	7.65		7.71	7.71	80.48
0.000077	0.00195	9.00		13.60	13.59	94.07
0.000038	0.000977	10.00		4.62	4.62	98.69
0.000019	0.000488	11.00		1.23	1.23	99.92
0.000015	0.000375	11.38		0.08	0.08	100.00
TOTALS				100.00	100.00	100.00

Cumulative Weight Percent greater than						
Weight	Phi	Particle Size				
percent	Value	Inches	Millimeters			
5	0.06	0.0378	0.959			
10	0.51	0.0277	0.705			
16	1.04	0.0191	0.485			
25	1.79	0.0114	0.289			
40	3.29	0.0040	0.102			
50	4.68	0.0015	0.039			
60	5.80	0.0007	0.018			
75	7.19	0.0003	0.007			
84	8.00	0.0002	0.004			
90	8.59	0.0001	0.003			
95	9.20	0.0001	0.002			
		•	•			

0.0110

0.0201

0.00500

Measure	Trask	Inman	Folk-Ward
Median, phi	4.68	4.68	4.68
Median, in.	0.0015	0.0015	0.0015
Median, mm	0.039	0.039	0.039
Mean, phi	2.75	4.52	4.57
Mean, in.	0.0058	0.0017	0.0017
Mean, mm	0.148	0.044	0.042
Sorting	6.494	3.477	3.123
Skewness	1.143	-0.046	-0.029
Kurtosis	0.201	0.315	0.694
Grain Size D	escription		Fine sand
(ASTM-US	CS Scale)	(based on M	lean from Trask)

Description	Retained	Weight
	on Sieve #	Percent
Gravel	4	0.00
Coarse Sand	10	0.00
Medium Sand	40	18.47
Fine Sand	200	24.74
Silt	>0.005 mm	37.26
Clay	<0.005 mm	19.52
	Total	100

2

6.351

3.364

1.189

0.707

0.500

0.354

0.250

0.177

Page 18 of 37

TestAmerica Irvine

17461 Derian Ave Suite 100

Irvine, CA 92614-5817

Chain of Custody Record

43108

TestAmerico

THE LEADER IN ENVIRONMENTAL TESTING

Prione (949) 261-1022 Fax (949) 260-3297	Sampler:		*** . ********************************	Lab								Ci	arrier T	rackin	g No(s)				COC No:	
Client Information (Sub Contract Lab)	Phone:			Wilson, Debby E-Mail: debby.wilson@testamericainc.com													440-17998.1 Page:	-		
Shipping/Receiving	Phone.					ilson	@tes	tamer	icaino	c.com									Page 1 of 1	
Company: PTS laboratories, Inc									Δ	halv	sis i	Requ	este	d					Job #: 440-37740-1	
Address;	Due Date Request	ed:			11		Т		T	T				Ť	T				Preservation Cod	es:
8100 Secura Way, , City:	2/21/2013 TAT Requested (d	ivs).			41		١.												A - HCL	M - Hexane
Santa Fe Springs	TAT Requested (a	.y <i>.</i> y,.																	B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip: CA, 90670	-																		D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone:	PO #:	***************************************			7		.												F - MeOH G - Amchlor	R - Na2S2SO3 S - H2SO4
Email:	WO #:	······································			- 2														H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate U - Acelone
Ernan.	VVO #.				s or	No)	a l											so.	J - DI Water K - EDTA	V - MCAA W - ph 4-5
Project Name: Boeing SSFL NPDES Ann. Sediment Arroyo	Project #: 44002624				اع	Sof	e Siz											taine	L - EDA	Z - other (specify)
Site:	SSOW#:				ᅥ립	Š	artic											CO	Other:	
Boeing SSFL		T	1			MSD	H L											jo		
			Sample	Matrix	tere	Perform MS/N	SUBCONTRACT/ Particle Size											Total Number		
		Sample	Type (C=comn	(W=water, S≃solid,	d Fill	EJO	S											N IB		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	S=solid, O=waste/oll, BT=Tissue, A≃Ali		Per	SUE								NO 1100000000	COMMUNICATION CO.	- Transmission	Tot	Special In	structions/Note:
		<u>><</u>	Preserva	tion Code:	X	X												X		
Árroyo Simi-FP (440-37740-3)	2/11/13	12:00 Pacific		Solid			х											1	Hamp 3	3,40
					П															
					11		\neg			+				_						
					+	-		-	-	+		· 2 /		_	+					
					++			_					_	-	-					
					$\perp \downarrow$		_		_											
					\top								\top		1					
					++	-			+	-			\dashv	+	-					
					Н	-		_		_			-		-		i			
*					$\bot \bot$	_		_												
					Ш															
Possible Hazard Identification						Sam					may L	_				s ar			d longer than 1	7
Unconfirmed						Cno-		ırn To			L -auln-	<i>Disp</i> ements	osal	By La	ab	L	Ar	chiv	e For	Months
Deliverable Requested: I, II, III, IV, Other (specify)						opec	iai iii	suucu	onsic	JO KE	quire	ments					***************************************			
Empty Kit Relinquished by:		Date:			Tim								Me	ethod o	f Shipm			_/		
Relinquished by:	Date/Time:			Company		Ŕ	eceive	id-by;	W	fer					Date	/fime:	14)	//3	3	Company LAB
Relinquiahed by	Date/Time:	1.01	/	Company	/	R	Receive	d by:								/Time:				Company
Relinquished by:	2 / (/// ()	3 (2:	17	Company		- In	Receive	id by:						-	Date	/Time:				Company
	Date tille.		/	Company											Jake					Sinpanij
Custody Seals Intact: Custody Seal No.:				10	-1 ^		ooler -	Temper	ature(s	s) °C aı	nd Othe	er Rema	rks:							0/0/0040
Δ Yes Δ No			E	age 19	or 3															3/8/2013

1

2

5

7

Ö

10

12

March 6th, 2013

Debby Wilson TestAmerica Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Dear Ms. Wilson:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136. Results were as follows:

CLIENT: SAMPLE I.D.:

TestAmerica Arroyo Simi-FP

DATE RECEIVED:

2/12/2013

ABC LAB. NO .:

TAM0213.173

CHRONIC MYTILUS DEVELOPMENT BIOASSAY

NOEC = 100.00 %

TUc 1.00

>100.00 % IC25 = IC50 >100.00 %

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

06 Mar-13 13:25 (p 1 of 1)

Test Co

TAM0213.173myt | 10-1196-1863

12.11	unia a de la la	77						Test Code:	T	AM0213.	173myt 10	0-1196-1863
Mussel Shell	Development Te	st						Aqua	tic Bioa	assay & C	Consulting	Labs, Inc.
Batch ID: Start Date: Ending Date: Duration:	10-2452-3459 15 Feb-13 16:00 17 Feb-13 16:00 48h	1 Prote	ocol: :ies:	Development-S EPA/600/R-95/ Mytilis galloprov Carlsbad Aquaf	136 (1995) vincialis		1	Analyst: Diluent: Brine: Age:	Labora	itory Wate	er	
	10-5562-1427 11 Feb-13 12:00 12 Feb-13 12:30 4d 4h		rial: rce:	TAM0213.173m Sediment Bioassay Repor Arroyo Simi-FP	rt			Client: Project:	Test A Boeing		PDES Ann.	. Sediment
Comparison S	Summary		7.			100	110					
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Weth	nod			
04-7857-5025	Combined Prop	ortion Norm	100	>100	NA	5.03%	1	Equa	al Varian	ce t Two-	Sample Te	est
Point Estimat	e Summary				77.1							
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Meth	nod			
17-3750-4123	Combined Prop	ortion Norm		>100	N/A	N/A	<1	Linea	ar Interp	olation (I	CPIN)	
(1/2/2010)002	Surraman may	CYZIDIC EEC'NE	EC10	>100	N/A	N/A	<1					
			EC15	>100	N/A	N/A	<1					
			EC20	>100	N/A	N/A	<1					
			EC25	>100	N/A	N/A	<1					
			EC40	>100	N/A	N/A	<1					
			EC50	>100	N/A	N/A	<1					
Test Acceptat	oility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	its	Over	1.12.17	Decision		
04-7857-5025	Combined Prop	ortion Norm	PMSD)	0.05033	NL - 0.25		No		Passes A	cceptability	Criteria
Combined Pro	oportion Normal	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std I	Err S	Std Dev	CV%	%Effect
0	Negative Contro	5	0.9118	0.8685	0.9551	0.875	0.955		22	0.03488	3.83%	0.0%
100		5	0.944	1 0.9025	0.9858	0.8897	0.970	0.01	5 (0.03353	3.55%	-3.55%
Combined Pr	oportion Normal	Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Negative Contro	0.9559	0.9413		0.875	0.8897						
100	1. A	0.9632	0.933	8 0.9706	0.8897	0,9632						
Combined Pr	oportion Normal	Binomials										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Negative Contro	130/136	128/13	36 122/136	119/136	121/136						

121/136

131/136

100

131/136

127/136

132/136

CETIS Analytical Report

Report Date:

06 Mar-13 13:25 (p 1 of 2)

Test Code:

TAM0213.173myt | 10-1196-1863

								Test	Code:	TAM0213.1	/3myt 10	-1196-166
Mussel Shell I	Development Tes	st							Aquatic Bio	oassay & C	onsulting	Labs, Inc.
Analysis ID: Analyzed:	04-7857-5025 06 Mar-13 13:24		Endpoint: Analysis:		netric-Two	ortion Norm Sample	al	0.000	S Version: ial Results:	CETISv1.	3.6	
Batch ID:	10-2452-3459		Test Type:	Deve	lopment-Su	ırvival		Analy	/st:			
Start Date:	15 Feb-13 16:01		Protocol:	EPA/	600/R-95/1	36 (1995)		Dilue	nt: Labo	ratory Wate	r	
Ending Date:	17 Feb-13 16:00		Species:	Mytilis	s galloprov	incialis		Brine	:			
Duration:	48h		Source:	Carls	bad Aquafa	arms CA		Age:				
Sample ID:	10-5562-1427		Code:	TAMO	0213.173m			Clien		America		
Sample Date:	11 Feb-13 12:00		Material:	Sedir	ment			Proje	ct: Boei	ng-SSFL NF	DES Ann.	Sediment
Receive Date:	: 12 Feb-13 12:30	V.	Source:	Bioas	say Repor	t						
Sample Age:	4d 4h		Station:	Аггоу	o Simi-FP							
Data Transfor	rm	Zeta	Alt H	ур '	Trials	Seed		PMSD	Test Resu	0		7000
Angular (Corre	ected)	NA	C > T		NA	NA		5.03%	Passes co	mbined prop	ortion nor	mal
Equal Variance	ce t Two-Sample	Test										
Control	vs C-%		Test S	Stat	Critical	MSD DF	P-Value	P-Type	Decision(
Negative Cont			-1.549)	1.86	0.078 8	0.9200	CDF	Non-Signif	icant Effect		
Test Acceptat	bility Criteria											
Attribute	Test Stat	TAC	Limits		Overlap	Decision						
PMSD	0.05033	NL -	200		No	Passes A	cceptability	Criteria				
ANOVA Table							1	7.7-	7	JA I		
Source	Sum Squa	res	Mean	Squa	re	DF	F Stat	P-Value	Decision(
Between	0.01063993	2	0.010	63992		1	2.398	0.1601	Non-Signif	icant Effect		
Error	0.0354928	8	0.004	43661		8	-0.1					
Total	0.0461328					9						
Distributional	l Tests											
Attribute	Test				Test Stat	Critical	P-Value	Decision				
Variances	Variance I	Ratio I	F		1.12	23.15	0.9151	Equal Var				
Variances	Mod Leve	ne Eq	uality of Vari	ance	0.003864	13.75	0.9525	Equal Var				
Variances	Levene Ed	quality	of Variance		0.000284	11.26	0.9870	Equal Var				
Distribution			Normality		0.9344	0.7411	0.4930	Normal D				
Distribution	Kolmagar				0.2298	0.3025	0.1469	Normal D				
Distribution	D'Agostine				0.4682	2.576	0.6397	Normal D				
Distribution	Anderson	-Darlir	ng A2 Norma	lity	0.4224	3.878	0.3258	Normal D	istribution			
Combined Pr	roportion Normal	Sum	mary									
C-%	Control Type	Cou	nt Mean	1	95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effect
0	Negative Control	5	0.911	8	0.8685	0.9551	0.8971	0.875	0.9559	0.0156	3.83%	0.0%
100	THE VALUE OF THE VALUE OF	5	0.944	11	0.9025	0.9858	0.9632	0.8897	0.9706	0.015	3.55%	-3.55%
Angular (Cor	rected) Transforr	ned S	ummary		Ac total							
					95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
C-%	Control Type	Cou	nt Mear		271111111111111111111111111111111111111							0.0%
C-%	Control Type Negative Contr	Cou 5	1.274		1.194	1.355	1.244	1.209	1.359	0.02893	5.08%	200000000000000000000000000000000000000
C-% 0						1.355 1.424	1.244 1.378	1.209 1.232	1.359 1.398	0.02893 0.03062	5.08% 5.11%	-5.12%
C-% 0 100		5 5	1.274 1.339		1.194		1.378					200000000000000000000000000000000000000
C-% 0 100 Combined Pr	Negative Contr	5 5	1.274 1.339 iI)	1.194	1.424 Rep 4	1.378 Rep 5					CONTRACTOR OF THE
C-% 0 100 Combined Pr	Negative Contr	5 5 Deta Rep	1.274 1.339 iI 1 Rep	2	1.194 1.254	1,424	1.378					CONTRACTOR OF THE
C-% 0 100 Combined Pr C-% 0	Negative Contr roportion Normal Control Type	5 5 Deta Rep	1.274 1.339 ii 1 Rep :	2	1.194 1.254 Rep 3	1.424 Rep 4	1.378 Rep 5					CONTRACTOR OF THE
C-% 0 100 Combined Pr C-% 0 100	Negative Contr roportion Normal Control Type	5 Deta Rep 0.95	1.274 1.339 iI 1 Rep : 59 0.941 32 0.933	2	1.194 1.254 Rep 3 0.8971	1.424 Rep 4 0.875	1.378 Rep 5 0.8897					CONTRACTOR OF THE
C-% 0 100 Combined Pr C-% 0 100 Angular (Con	Negative Controportion Normal Control Type Negative Contro	5 Deta Rep 0.95	1.274 1.339 II 1 Rep : 59 0.941 32 0.933 Detail	2 12 38	1.194 1.254 Rep 3 0.8971	1.424 Rep 4 0.875	1.378 Rep 5 0.8897					200000000000000000000000000000000000000
C-% 0 100 Combined Pr C-% 0 100	Negative Contr roportion Normal Control Type Negative Contro	5 5 Deta Rep 0.95 0.96 med D	1.274 1.339 II 1 Rep : 59 0.941 32 0.933 Detail 1 Rep	2 12 38	1.194 1.254 Rep 3 0.8971 0.9706	Rep 4 0.875 0.8897	1.378 Rep 5 0.8897 0.9632					200000000000000000000000000000000000000

Report Date:

06 Mar-13 13:25 (p 2 of 2)

CETIS Ana	alytical Repo	rt					Report Date: Test Code:	06 Mar-13 13:25 (p 2 of 2) TAM0213.173myt 10-1196-1863
Mussel Shell	Development Te	st					Aquatic B	ioassay & Consulting Labs, Inc.
Analysis ID: Analyzed:	04-7857-5025 06 Mar-13 13:24	2 1 1 1 V	1 To 2 To 1 To 2 To 2 To 2 To 2 To 2 To	Combined Prop Parametric-Tw		nal	CETIS Version: Official Results	Carlotte and Continue
Combined Pr	oportion Normal	Binomial	S		- 10	7,70		
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Negative Contro	130/136	128/136	6 122/136	119/136	121/136		
100		131/136	127/136	3 132/136	121/136	131/136		

CETIS	Analy	/tical	Ren	ort	

Report Date:

06 Mar-13 13:25 (p 1 of 1)

Test Code:

TAM0213.173myt | 10-1196-1863

											Test	Code:		TAM0213.	173myt 1	0-1196-186
Musse	Shell E	Development Te	st									Aquati	ic Bic	assay & (Consulting	g Labs, Inc
Analys	is ID:	17-3750-4123	E	ndp	oint:	Combined	Prop	ortion Norm	nal		CET	S Versi	on:	CETISv1	.8.6	
Analyz		06 Mar-13 13:2		2007060	sis:	Linear Inte	rpola	tion (ICPIN)		Offic	ial Resu	ults:	Yes		
Batch	ID:	10-2452-3459	Т	est	Гуре:	Developm	ent-Si	urvival			Anal	yst:				
Start D	ate:	15 Feb-13 16:01	1 P	roto	col:	EPA/600/F	R-95/1	136 (1995)			Dilu	ent: 1	Labor	atory Wate	ar .	
Ending	Date:	17 Feb-13 16:00	o s	peci	ies:	Mytilis gall	oprov	rincialis			Brin	e:				
Duratio	on:	48h	S	our	ce:	Carlsbad /	Aquaf	arms CA			Age					
Sample	e ID:	10-5562-1427	С	ode	:	TAM0213.	173m				Clie	nt:	Test A	America	A. L. C.	
Sampl	e Date:	11 Feb-13 12:00	O IV	later	rial:	Sediment					Proj	ect: I	Boein	g-SSFL N	PDES Ann	n. Sediment
Receiv	e Date:	12 Feb-13 12:30	o s	our	ce:	Bioassay I	Repor	t								
Sample	e Age:	4d 4h	S	tatio	n:	Arroyo Sin	ni-FP									
Linear	Interpo	lation Options						2070								
X Tran	sform	Y Transform	S	eed		Resample	s	Exp 95%	CL N	/lethod						
Linear		Linear	0	-		280		Yes	7	wo-Po	int Interp	olation				
Point E	Estimate	es														
Level	%	95% LCL	95% U	CL	TU	95%	LCL	95% UCL								
EC5	>100	N/A	N/A	-	<1	NA		NA								
EC10	>100	N/A	N/A		<1	NA		NA								
EC15	>100	N/A	N/A		<1	NA		NA								
EC20	>100	N/A	N/A		<1	NA		NA								
EC25	>100	N/A	N/A		<1	NA		NA								
EC40	>100	N/A	N/A		<1	NA		NA								
EC50	>100	N/A	N/A		<1	NA		NA								
Combi	ned Pro	portion Normal	Summa	iry				Calcu	ılated V	ariate(A/B)				- 1	
C-%	C	ontrol Type	Count		Mean	Min		Max	Std E	rr S	Std Dev	CV%		%Effect	A	В
0	N	egative Control	5		0.911	8 0.875	5	0.9559	0.015	6 0	.03488	3.83%	,	0.0%	620	680
100			5		0.944	1 0.889	7	0.9706	0.015	0	0.03353	3.55%		-3.55%	642	680
Combi	ned Pro	portion Normal	Detail													
C-%	C	ontrol Type	Rep 1		Rep 2	Rep	3	Rep 4	Rep 5							
0	N	egative Control	0.9559	r n	0.941	2 0.897	1	0.875	0.889	7						
100		No. of Contraction	0.9632		0.933	8 0.970)6	0.8897	0.963	2						
Combi	ned Pro	portion Normal	Binomi	als				7,1	1							
C-%		Control Type	Rep 1		Rep 2	2 Rep	3	Rep 4	Rep 5							
0		Negative Contro	130/136	6	128/1	36 122/1	36	119/136	121/1	36						

121/136

131/136

132/136

131/136

127/136

CETIS Measurement Report

Report Date:

06 Mar-13 13:25 (p 1 of 2)

Test Code:

TAM0213.173myt | 10-1196-1863

Mussel Shell Development Test Batch ID: 10-2452-3459 Test Type: Development-Survise Start Date: 15 Feb-13 16:01 Protocol: EPA/600/R-95/136 Ending Date: 17 Feb-13 16:00 Species: Mytilis galloprovincies Duration: 48h Source: Carlsbad Aquafarm Sample ID: 10-5562-1427 Code: TAM0213.173m	i (1995) cialis ns CA			Analyst: Diluent: Brine: Age: Client:	c Bioassay & Laboratory Wat Test America Boeing-SSFL N	er	
Start Date: 15 Feb-13 16:01 Protocol: EPA/600/R-95/136 Ending Date: 17 Feb-13 16:00 Species: Mytilis galloprovinci Duration: 48h Source: Carlsbad Aquafarm	i (1995) cialis ns CA	Tauxi		Diluent: Brine: Age: Client:	Test America		ı. Sediment
Ending Date: 17 Feb-13 16:00 Species: Mytilis galloprovinci Duration: 48h Source: Carlsbad Aquafarm	cialis ns CA	Tues!	,	Brine: Age: Client:	Test America		. Sediment
Duration: 48h Source: Carlsbad Aquafarm	ns CA	The state of the s	,	Age: Client:		IPDES Ann	ı. Sediment
Duration: 48h Source: Carlsbad Aquafarm	% UCL	Deci.		Client:		IPDES Ann	. Sediment
Sample ID: 10-5562-1427 Code: TAM0213.173m		Duel				IPDES Ann	. Sediment
		T. et	-	Project:	Boeing-SSFL N	IPDES Ann	. Sediment
Sample Date: 11 Feb-13 12:00 Material: Sediment		The state of the s					
Receive Date: 12 Feb-13 12:30 Source: Bioassay Report		DL. I	-			-	_
Sample Age: 4d 4h Station: Arroyo Simi-FP		Dust.					
Dissolved Oxygen-mg/L		4 4 4 4					
C-% Control Type Count Mean 95% LCL 95%		Min	Max	Std Er		CV%	QA Count
	.48	6	6.8	0.4	0.5657	8.84%	0
	285	6.6	6.7	0.0499	8 0.07069	1.06%	0
Overall 4 6.525	44	6	6.8				0 (0%)
Total Ammonia (N)-mg/L							the Land
C-% Control Type Count Mean 95% LCL 95	% UCL	Min	Max	Std Er	10.57	CV%	QA Count
0 Negative Contr 1 0		0	0	0	0		0
100 1 0		0	0	0	0		0
Overall 2 0	-	0	0				0 (0%)
pH-Units						5000	
C-% Control Type Count Mean 95% LCL 95	5% UCL	Min	Max	Std Er		CV%	QA Count
0 Negative Contr 2 7.9 7.884 7.9	916	7.9	7.9	0	0	0.0%	0
100 2 7.75 7.115 8.3	385	7.7	7.8	0.0500	0.07072	0.91%	0
Overall 4 7.825		7.7	7.9				0 (0%)
Salinity-ppt							VA. 2.500
C-% Control Type Count Mean 95% LCL 95	5% UCL	Min	Max	Std E		CV%	QA Count
0 Negative Contr 2 34 34 34	4	34	34	0	0	0.0%	0
100 2 34 34 34	4	34	34	0	0	0.0%	0
Overall 4 34		34	34				0 (0%)
Temperature-°C							
C-% Control Type Count Mean 95% LCL 95	5% UCL	Min	Max	Std E	43.00	CV%	QA Coun
	5.49	14.8	14.9	0.0500		0.48%	0
100 2 14.85 14.21 15	5.49	14.8	14.9	0.050	0.07077	0.48%	0
Overall 4 14.85		14.8	14.9				0 (0%)

CETIS Measurement Report

Report Date:

06 Mar-13 13:25 (p 2 of 2)

Test Code:

TAM0213.173myt | 10-1196-1863

							Test C	ode:	TAM0213.173myt 10-1196-1863
Mussel She	ell Development T	est						Aquatic	Bioassay & Consulting Labs, Inc.
Dissolved (Dxygen-mg/L			5.1		A. V		No.	
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	6.8				1772		
100			6.6						
0	Negative Contr	2	6					_	
100			6.7						
Total Amm	onia (N)-mg/L					700 Y	773.7		
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	0			Contraction Contraction	1		
100			0						
pH-Units	cylinas Part	10000							
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	7.9						
100			7.8						
0	Negative Contr	2	7.9						
100			7.7						
Salinity-ppl					TO COL	AL REAL	19 10 1	V.A	
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	34						
100			34						
0	Negative Contr	2	34						~ ~ ~
100			34						
Temperatu	re-°C	10000			1.17	1			
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	14.9						
100			14.9						
0	Negative Contr	2	14.8						
100			14.8						

March 6, 2013

Debby Wilson TestAmerica Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Dear Ms. Wilson:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136. Results were as follows:

TestAmerica CLIENT: Arroyo Simi-FP SAMPLE I.D.: 2/12/2013 DATE RECEIVED:

TAM0213.173 ABC LAB. NO .:

CHRONIC EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 % 1.00 TUc

>100.00 % IC25

>100.00 % IC50

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

06 Mar-13 13:25 (p 1 of 1)

Test Code:

TAM0213173eoh | 10-0452-0910

								lest code.		IMMOLIO	1730011 10	0102 001
Eohaustorius	10-d Survival an	d Reburia	l Sedim	ent Test				Aqua	tic Bi	oassay & C	Consulting	Labs, Inc
Batch ID: Start Date: Ending Date: Duration:	21-0783-4802 15 Feb-13 16:00 25 Feb-13 16:00 10d Oh	Pro Spe	t Type: tocol: cles: irce:	Survival-Reburia EPA/600/R-94/0 Eohaustorius es Northwestern A	025 (1994) stuarius	ice, OR		Analyst: Diluent: Brine: Age:		ratory Seav Applicable	vater	
	04-6419-4609 11 Feb-13 12:00 12 Feb-13 12:30 4d 4h	Sou	le: erial: irce: tion:	TAM0213.173e Sediment Bioassay Repor Arroyo Simi-FP	t			Client: Project:		America ng-SSFL N	PDES Ann.	Sediment
Comparison S	ummary			3.0								
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	od			
11-1117-6547	Survival Rate		100	>100	NA	7.05%	1	Equa	al Vari	ance t Two-	Sample Te	st
Point Estimate	Summary				To to							
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Meth	A STATE OF THE PARTY OF			
20-1271-0796	Survival Rate		EC5	>100	N/A	N/A	<1	Linea	ar Inte	rpolation (le	CPIN)	
			EC10	>100	N/A	N/A	<1					
			EC15	>100	N/A	N/A	<1					
			EC20		N/A	N/A	<1					
			EC25		N/A	N/A	<1					
			EC40		N/A	N/A	<1					
33			EC50	>100	N/A	N/A	<1					
Test Acceptab	ility											
Analysis ID	Endpoint		Attrib	oute	Test Stat	TAC Limi	its	Ove	rlap	Decision		5-6-
11-1117-6547	Survival Rate		Contr	ol Resp	0.93	0.9 - NL		Yes			cceptability	
20-1271-0796	Survival Rate		Contr	ol Resp	0.93	0.9 - NL		Yes		Passes A	cceptability	Criteria
Survival Rate	Summary											
	Control Type	Count	Mean		95% UCL	Min	Max			Std Dev	CV%	%Effec
0	Negative Contro		0.93	0.8745	0.9855	0.9	1	0.02		0.04472	4.81%	0.0%
100		5	0.95	0.8879	1	0.9	1	0.02	236	0.05	5.26%	-2.15%
Survival Rate	Detail		70		HILL							
C-%	Control Type	Rep 1	Rep 2	2 Rep 3	Rep 4	Rep 5						
0	Negative Contro	1	0.9	0.9	0.95	0.9						
100		0.9	1	1	0.95	0.9						
Survival Rate	Binomials				, Tive							
C-%	Control Type	Rep 1	Rep :	Rep 3	Rep 4	Rep 5						
0	Negative Contro		18/20		19/20	18/20						

18/20

20/20

20/20

100

18/20

19/20

CETIS Analytical Report

Report Date:

06 Mar-13 13:25 (p 1 of 2)

Test Code:

TAM0213173eoh | 10-0452-0910

								Test	Code.	MINIOZIOI	racon 10	0402 001
Eohaustorius	10-d Survival and	Rebu	ırial Sedim	ent Te	est				Aquatic Bi	oassay & C	onsulting	Labs, Inc.
Analysis ID: Analyzed:	11-1117-6547 06 Mar-13 13:25		Endpoint: Analysis:		val Rate metric-Two	Sample		17,773	S Version: ial Results:	CETISv1.8 Yes	3.6	
Batch ID:	21-0783-4802	1	Test Type:	Survi	val-Reburia	al		Anal	the real section of the section of			
Start Date:	15 Feb-13 16:00		Protocol:	EPA/	600/R-94/0	25 (1994)		Dilue	nt: Labo	ratory Seaw	ater	
Ending Date:	25 Feb-13 16:00		Species:	Eoha	ustorius es	tuarius		Bring	e: Not	Applicable		
Duration:	10d Oh	5	Source:	North	western Ad	quatic Scie	nce, OR	Age:	11.0			
Sample ID:	04-6419-4609	(Code:	TAMO	0213.173e			Clier	it: Test	America		
Sample Date:	11 Feb-13 12:00	r	Material:	Sedir	ment			Proje	ect: Boei	ng-SSFL NF	DES Ann.	Sediment
	12 Feb-13 12:30		Source:	Bioas	say Repor	t						
Sample Age:	4d 4h		Station:	Arroy	o Simi-FP							
Data Transfor	m	Zeta	Alt H	ур	Trials	Seed		PMSD	Test Resu			
Angular (Corre	cted)	NA	C > T	100	NA	NA		7.05%	Passes su	irvival rate		
Equal Variance	e t Two-Sample	Test										
Control	vs C-%		Test	Stat	Critical	MSD D	F P-Value	P-Type	Decision(a:5%)		
Negative Contr			-0.66	92	1.86	0.117 8	0.7389	CDF	Non-Signi	ficant Effect		
Test Acceptat	oility Criteria											
Attribute		TAC L	imits		Overlap	Decision	Legion 6					
Control Resp		0.9 - N			Yes	Passes A	Acceptability	Criteria				
ANOVA Table							Yant	1,7,7		- 100		
Source	Sum Squar	res	Mear	Squa	ire	DF	F Stat	P-Value	Decision			
Between	0.00439795	51	0.004	39795	51	1	0.4479	0.5222	Non-Signi	ficant Effect		
Error	0.07855894	1	0.009	81986	88	8						
Total	0.0829569					9						
Distributional	Tests					.), 77						
Attribute	Test				Test Stat	Critical	P-Value	Decision				
Variances	Variance F	Ratio F	1 1 1 1	1	1.276	23.15	0.8191	Equal Va				
Variances	Mod Lever	ne Equ	ality of Var	iance	0.3205	13,75	0.5919	Equal Va				
Variances	Levene Ed	quality	of Variance	1	0.1837	11.26	0.6795	Equal Va				
Distribution	Shapiro-W	/ilk W I	Normality		0.8826	0.7411	0.1399		istribution			
Distribution	Kolmogoro	ov-Smi	irnov D		0.2437	0.3025	0.0944		distribution			
Distribution	D'Agostino				0.7303	2.576	0.4652	2-00-4317-45	distribution			
Distribution	Anderson-	Darling	g A2 Norma	ality	0.5941	3.878	0.1246	Normal L	Distribution			
Survival Rate	Summary										Name	OLEO I
C-%	Control Type	Coun		n -	95% LCL	95% UC		Min	Max	Std Err	CV%	%Effec
0	Negative Control	5	0.93		0.8745	0.9855	0.9	0.9	1	0.02	4.81%	0.0%
100		5	0.95		0.8879	1	0.95	0.9	1	0.02236	5.26%	-2.15%
Angular (Cor	rected) Transforn	ned St	ummary							Es fella	Treat.	2000
C-%	Control Type	Coun			95% LCL		101122	Min	Max	Std Err	CV%	%Effec
0	Negative Contr	5	1.31		1.195	1.426	1.249	1.249	1.459	0.04155	7.09%	0.0%
100		5	1.35	2	1.222	1.482	1.345	1.249	1.459	0.04692	7.76%	-3.2%
Survival Rate		5.1			5130	250.3.10	de Roads					
	Control Type	Rep		2	Rep 3	Rep 4	Rep 5				_	_
C-%		1 4	0.9		0.9	0.95	0.9					
0	Negative Control											
111111111111111111111111111111111111111		0.9	1		1	0.95	0.9					
0 100		0.9	1 etail	5	1	7.1	5.11					
0 100	Negative Control rected) Transford Control Type	0.9 ned D	1 etail 1 Rep		Rep 3	Rep 4	Rep 5					
0 100 Angular (Cor	Negative Control	0.9 ned D	1 etail 1 Rep	9		7.1	5.11					

CETIS Analytical Report

Report Date:

06 Mar-13 13:25 (p 2 of 2)

Test Code:

TAM0213173eoh | 10-0452-0910

							rest code.	174W02 13 17 36011 10-0432-03 10
Eohaustorius	s 10-d Survival ar	nd Rebu	rial Sedim	ent Test			Aquatic Bio	oassay & Consulting Labs, Inc.
Analysis ID: Analyzed:	11-1117-6547 06 Mar-13 13:2	- T	indpoint: nalysis:	Survival Rate Parametric-Tv			CETIS Version: Official Results:	CETISv1.8.6 Yes
Survival Rate	Binomials							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Negative Contro	20/20	18/20	18/20	19/20	18/20		
100		18/20	20/20	20/20	19/20	18/20		

B	
Report Date:	

06 Mar-13 13:25 (p 1 of 2) TAM0213173eoh | 10-0452-0910

CETIS Analytical Report							Test Code: TAM0213173eoh			-0452-0910		
Eohaus	torius 1	10-d Survival an	d Reburial	Sedim	ent Test				Aquatic Bi	oassay & Co	onsulting	Labs, Inc.
Analysi: Analyze		D: 20-1271-0796 Endpoint			T.J. A. V.S. (A)(2) V.S.				CETIS Version: CETISv1.			
Batch II	a a 6 maria				il		Analys		- N - 10 - 20 - 1			
Start Da					EPA/600/R-94/0	25 (1994)	Diluer		Laboratory Seawater			
	nding Date: 25 Feb-13 16:00 Species: Echaustoriu				Eohaustorius es			Brine:	Not A	Applicable		
304844370	ration: 10d 0h Source:			ce:	Northwestern Ad	quatic Science	OR	Age:				
Sample	ID:	04-6419-4609	Code	1	TAM0213.173e			Client		America	44.50	econo i
Sample		11 Feb-13 12:00	Mate	rial:	Sediment			Projec	t: Boei	ng-SSFL NP	DES Ann.	Sediment
Receive	e Date:	12 Feb-13 12:30	Sour	ce:	Bioassay Repor							
Sample	Age:	4d 4h	Stati	on:	Arroyo Simi-FP							
Linear	Interpo	lation Options										
X Trans	sform	Y Transform	Seed		Resamples	Exp 95% C						
Linear	-	Linear	0		280	Yes	Two-P	oint Interpo	lation			
Test Ac	ceptab	ility Criteria	J. Commission									
Attribul	te	Test Stat	TAC Limit	s	Overlap	Decision	0.7.5					
	Control Resp 0.93 0.9 - NL Yes Passes Acceptability Criteria					riteria						
Point E	stimate	es			17.0							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC5	>100	N/A	N/A	<1	NA	NA						
EC10	>100	N/A	N/A	<1	4 4 4							
EC15	F. 15 & CD			-1	NA	NA						
	>100	N/A	N/A	<1	NA NA	NA						
EC20	>100	N/A N/A	N/A N/A									
				<1	NA	NA NA NA						
EC25	>100	N/A	N/A	<1 <1	NA NA	NA NA NA						
EC25 EC40	>100 >100	N/A N/A	N/A N/A	<1 <1 <1	NA NA NA	NA NA NA						
EC25 EC40 EC50	>100 >100 >100 >100 >100	N/A N/A N/A	N/A N/A N/A	<1 <1 <1 <1	NA NA NA	NA NA NA NA	ted Variat	- FAR 200 -	20.00	Winaskiik		
EC25 EC40 EC50 Surviv	>100 >100 >100 >100 >100	N/A N/A N/A N/A	N/A N/A N/A	<1 <1 <1 <1	NA NA NA NA	NA NA NA NA NA Calcula	Std Err	Std Dev	CV%	%Effect	A	В
EC25 EC40 EC50 Surviv	>100 >100 >100 >100 >100 al Rate	N/A N/A N/A N/A	N/A N/A N/A N/A	<1 <1 <1 <1 <1	NA NA NA NA	NA NA NA NA Calcula Max	Std Err 0.02	Std Dev 0.04472	4.81%	0.0%	93	100
EC25 EC40 EC50 Surviv	>100 >100 >100 >100 >100 al Rate	N/A N/A N/A N/A Summary	N/A N/A N/A N/A	<1 <1 <1 <1 <1 <1	NA NA NA NA NA	NA NA NA NA Calcula Max	Std Err	Std Dev				
EC25 EC40 EC50 Surviv: C-% 0	>100 >100 >100 >100 >100 al Rate	N/A N/A N/A N/A Summary control Type legative Control	N/A N/A N/A N/A Count	<1 <1 <1 <1 <1 <1 Mea	NA NA NA NA NA	NA NA NA Calcula Max 1	Std Err 0.02	Std Dev 0.04472	4.81%	0.0%	93	100
C-% 0 100	>100 >100 >100 >100 >100 al Rate	N/A N/A N/A N/A Summary control Type legative Control	N/A N/A N/A N/A Count	<1 <1 <1 <1 <1 <1 Mea	NA NA NA NA O Min 0.9 0.9	NA NA NA Calcula Max 1 1	Std Err 0.02 0.02236 Rep 5	Std Dev 0.04472	4.81%	0.0%	93	100
EC25 EC40 EC50 Survivo C-% 0 100 Surviv	>100 >100 >100 >100 al Rate C	N/A N/A N/A N/A Summary control Type legative Control Detail	N/A N/A N/A N/A Count 5 5	<1 <1 <1 <1 <1 Mea 0.93 0.95	NA NA NA NA O Min 0.9 0.9	NA NA NA Calcula Max 1 1	Std Err 0.02 0.02236	Std Dev 0.04472	4.81%	0.0%	93	100

Rep 4

19/20

19/20

Rep 3

18/20

20/20

Rep 2

18/20

20/20

Rep 1

18/20

Rep 5

18/20

18/20

Survival Rate Binomials

C-%

100

0

Control Type

Negative Contro 20/20

CETIS Analytical Report

Report Date:

06 Mar-13 13:25 (p 2 of 2)

Test Code:

TAM0213173eoh | 10-0452-0910

Eohaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: Analyzed:

20-1271-0796 06 Mar-13 13:25

CETIS Analytical Report

Endpoint: Survival Rate

Analysis:

Linear Interpolation (ICPIN)

CETISv1.8.6 **CETIS Version:**

Official Results: Yes

CETIS Measurement Report

Report Date: Test Code: 06 Mar-13 13:25 (p 1 of 2) TAM0213173eoh | 10-0452-0910

								rest code.	TAMOLI	Tracout Li	0 0 102 00 10
Eohaustorius	10-d Survival a	nd Reb	urial Sedim	ent Test				Aquat	ic Bioassay &	Consulting	g Labs, Inc.
Batch ID: Start Date: Ending Date: Duration:	art Date: 15 Feb-13 16:00 Protocol: ading Date: 25 Feb-13 16:00 Species:		Survival-Reburial EPA/600/R-94/025 (1994) Eohaustorius estuarius Northwestern Aquatic Science, OR					Laboratory Seawater Not Applicable			
Sample ID: Sample Date: Receive Date: Sample Age:			Code: Material: Source: Station:	TAM0213.1736 Sediment Bioassay Repo Arroyo Simi-FF	ort			Security (1979)	Test America Boeing-SSFL N	IPDES Ann	ı. Sediment
Dissolved Oxy	ygen-mg/L										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
V 1 to 10.71	Negative Contr		10.05	9.415	10.69	10	10.1	0.0500	0.07073	0.7%	0
100	144.444112.2423441	2	10.15	9.515	10.79	10.1	10.2	0.05	0.0707	0.7%	0
Overall		4	10.1			10	10.2	_ 15/			0 (0%)
Total Ammoni	ia (N)-mg/L			4 (1)	40.00						NO.
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	Negative Contr	2000	0			0	0	0	0		0
100	1179-1117	1	0			0	0	0	0		0
Overall		2	0			0	0				0 (0%)
pH-Units	7 6 7 6										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Coun
0	Negative Contr	2	7.9	7.884	7.916	7.9	7.9	0	0	0.0%	0
100		2	7.75	7.115	8.385	7.7	7.8	0.0500	0.07072	0.91%	0
Overall		4	7.825	-17		7.7	7.9			200	0 (0%)
Salinity-ppt					77						
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Er	rr Std Dev	CV%	QA Coun
0	Negative Contr	2	34	34	34	34	34	0	0	0.0%	0
100	7. 2.77. 2.70.	2	34	34	34	34	34	0	0	0.0%	0
Overall		4	34			34	34			7.65	0 (0%)
Temperature-	°C	-	- 7								
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Coun
0	Negative Contr	1314 × 1325	14.85	14.21	15.49	14.8	14.9	0.0500		0.48%	0
100	Alexantina Lange	2	14.85	14.21	15.49	14.8	14.9	0.0500		0.48%	0
											0 (0%)

CETIS Measurement Report

Report Date:

06 Mar-13 13:25 (p 2 of 2)

Test Code:

TAM0213173eoh | 10-0452-0910

							Test	ode:	TAM0213173eon 10-0452-0910
Eohaustoriu	s 10-d Survival a	ınd Reburial Sedir	ment Test					Aquatic I	Bioassay & Consulting Labs, Inc.
Dissolved O	xygen-mg/L				7.79			100	
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	10.1						
100			10.2						
0	Negative Contr	2	10						
100			10.1						
Total Ammo	nia (N)-mg/L			-			1300	777	
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	0						
100		^-	0						
pH-Units		ATTICK ITTE			1.00		Two said	1,071	
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	7.9						
100			7.8						
0	Negative Contr	2	7.9						
100			7.7						
Salinity-ppt		AL A. H. A.H.	TA I	ALL I	ORAL CO	L R 7%	10.0	7.30	
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	34			201,113	wy wy		
100			34						
0	Negative Contr	2	34						
100			34						
Temperature	-°C	7.00		THE	0.14	7-7.01	7.7		
C-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	14.9						
100			14.9						
0	Negative Contr	2	14.8						
100			14.8						

Chain of Custody Record

ME	8	-		-
IE LEADER IN E	1	COUNTY	DOTA	
NVIRONMENTA			300	
TTESTA	1000	2	5	

dished by:	Relinguist duy.	inquished by:	enverable requested: I, II, III, IV, Other (specify)	Unconfirmed	Possible Hazard Identification												royo SimI-FP (440-37740-3)		milbie identification - client ID (Lab ID)	ample Identification	Boeing SSFL	Boeing SSFL NPDES Ann. Sediment Arroyo	Tojert Name:	Email	CA, 93001 Phone:	Ventura State Zip:	Office Cheet.	Address:	Company: Aquatic Bioassav		1.5	Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297
2-12-13	2-12-13																2/11/13	$\langle \rangle$	Sample Date		SSOW#	Project #: 44002624	WO#	31			2/21/2013	Due Date Requests		Phone:	Sampler	
12:30	wih	ate:								70						Facilic		/_\	<u> </u>							94).	auc).	Ä				
Company	Company																Solid	m	$\overline{}$										de	- T	Va.	Chain
Received by	Reference Mund	Time:	Special Instructions/QC Requiren	A fee	-												-	X	Fie Per SUE	form MS/M SCONTRACT	SD (Ye	s or l	vo) ironic	10day	_	toriu	s	Analysis	bby.wilson@testamericainc.com	Mail:	b PM: Ilson Debby	Chain of Custody Record
Date/Time:	Date/Time:	Method of Shipment	nents:	e assessed if samples are re																								Requested			Carrier Tracking No(s):	
4	2 d'O Company		Archive For Months	tained longer than 1 month)									r ø		177	-				Number o	Other:	K-EDTA	H - Ascorbic Acid					Job# 440-37740-1	Page 1 of 1	440-17951.1	COC No.	lestAmerico
	Mumil 12-15 17:30 Company Received by Date/line: 12:30	Styled by: Company Redelige By Company Redelige By Company Comp	Shed by: Date/Time: Date/T	Special Instructions/QC Requirements: Kit Relinquished by: Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/	Infirmed Sample Disposal (A fee may be assessed if samples are retained longer than 1 miles	ible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 mm Prable Requested: I, II, III, IV, Other (specify)	ible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m.	ible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m. Sample Requested: I, II, III, IV, Other (specify) Kit Relinquished by: Shed by: Date: Date:	ible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m. Frable Requested: I, II, III, IV, Other (specify) Kit Relinquished by: Cale/Time: Date: Date/Time: Date/Time: Date/Date/Time: Date/Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/	ible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m. Frable Requested: I, II, III, IV, Other (specify) Special Instructions/IQC Requirements: Special Instructions/IQC Requirements: Special Instructions/IQC Requirements: Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/	ible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m. rable Requested: I, II, III, IV, Other (specify) Sample Disposal (A fee may be assessed if samples are retained longer than 1 m. Page by: Kit Relinquished by: Special Instructions/QC Requirements: Very Company Desprime: Desprim	bite Hazard Identification Sample Disposal A fee may be assessed if samples are retained longer than 1 m.	bite Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m.	ible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m.	ible Hezard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m.	bble Hazard Identification Sample Disposal (A fee may be assessed if samples are retained managed by:	bble Hazard Identification Description Description	And the Hazard Identification Pacific Pac	yo Simi-FP (440-37740-3) 2/11/13 Pacific Solid X X X 4 4 4 4 4 4 4 4 4 4 4 4 4	Sample Date Time General Fernance Fernance	Sample	Sample Date Time Sample Corporary Sampl	Ing SSFIL NPDES Ann, Sediment Arrayo Proper Some Sample Mastrix Sample Mastrix Sample Samp	Ing SSFL NPDES Ann. Sediment Arroyo Reports Some Some Service And SSFL Service And Sediment Arroyo Reports Ann. Sediment Arroyo Reports Advanced Some Some Service And Service And Service Ann. Sediment Arroyo Reports Ann. Sediment Arroy Reports Ann. Sed	SSPL NODES Am. Sediment Arroyo Adologica SSPL NODES Am. Sediment Arroyo Adologica SSPL NODES Am. Sediment Arroyo Adologica Sample Date Time General Sample Co-comp. Co-comp. Petron. General Sample Co-comp. Co-comp. Sample Date Time General Sample S	SSPE MODES Am. Sediment Arroyo	Signature of the particular of	March Colored Colore	Marth Oive Steek	Page 1 of 1 Page 1 of 1 of 1 Page 1 of 1 of 1 Page 1 of 1 of 1 Page 1 Page 1 of 1 Page 1 of 1 Page 1 of 1 Page 1	Procession	Septiment Command Co

UIRED	Field readings: Temp =	DO=10.40 25/6	Conductivity = 4, 7, w \$/ cn! Water Velocity (ft/sec) = / / 0 cc	Time of readings = √₹ು	Keep sample in cooler in the dark until delivered to ABC Labs									Tum around Time: (check) 24 Hours 5 Days	48 Hours 10 Days	72 Hours Normal Sample Integrity: (check)	Intact On Ice: Data Requirements: (check) No Level IV NPDES Level IV X On Ice:	000 4 000
ANALYSIS REQUIRED	Ponenc TOG-4,4,	DDE	T , Dieldrin, T -DDD, 4,4-	Chlordane, (8081), 4,4-					×					2000		(3	(5:(6	(27-11
AN	article Size Distribution otal Organic Carbon PS (8082)						×	×	×					Date/Time:	× =		2-(1-13)	
	(asgig sə	1808	lis or Cras	ube eduny(M) ornmA lstoT enutsioM %	×	×	×					-		Company of Co		0		
2	suineutse su			Chronic 10-6 Toxicity	×					 	-			By	By	13	m) sail	
	o Simi –			Bottle #	1A, 1B, 1C, 1D	2A	₹	4A	5A				_	Received By	Received By	V	Received	
	NPDES nent Arroy	Der:	::	Preservative	4C in the Dark	4 deg C	4 deg C	4 deg C	4 deg C	-				1 1	\$	1:40 pm	Kils	14:21
i di ci	Project. Boeing-SSFL NPDES Annual Sediment Arroyo Frontier Park	Phone Number:	(626) 568-6691 Fax Number: (626) 568-6515	Sampling Date/Time	N 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<		>	8000 1 1 m 1					Date/Time:	Date/Time:	1	Date/Time:	7-11-13
19/201		+		و م ابر 60 ابر 60	4	-	-	-	-						<i>'</i>	3	, n	Carlon I
COL ALICICA Version 7/19/2010	rss. iue, Suite 20 Debby Wile	Project Manager: Bronwyn Kelly	Sampler: # (7220enberg) Rick BANAGO	Container	1L wide mouth Plastic	9 oz Jar	9 oz Jar	9 oz Jar	9 oz Jar						1	\mathcal{G}	M	Jann Co
בו לק שליים ביי	e/Addre Sadia Ida Aven 91007	nager:	7. 2. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Sample Matrix	S	S	S	S	တ		< 1							1 22
בל אסטן	Client Name/Address: MWH-Arcadia 618 Michilinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact: Debby Wilson	Project Ma	Sampler: R	Sample Description	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP				\(\frac{1}{2}\)	Relinguished By	Relinquished By		Relinquished By	10

Client: MWH Americas Inc Job Number: 440-37740-1

Login Number: 37740 List Source: TestAmerica Irvine

List Number: 1

Creator: Freitag, Kevin R

orontor. From the state of the		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	AG/RB
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Page 37 of 37

TestAmerica Irvine

APPENDIX G

Section 9

Arroyo Simi-Frontier Park – March 8, 2013

MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: 440-40328-1

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

SDG: 440-40328-1

Project:

SSFL NPDES

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00 Sample Delivery Group: 440-40328-1

Project Manager: B. Kelly Matrix: Water

QC Level: IV

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Arroyo Simi- FP	440-40328-1	N/A	Water	3/8/2013 12:15:00 PM	1613B, 200.7, 200.7 Diss, 200.8, 200.8 Diss,218.6, 245.1, 245.1 Diss, 525.2 608, 624, 625, SM2340B, SM2540D, SM4500 CN E, SM9221E, SM9221F

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at Test-America-Irvine within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. Unpreserved aliquots of the water sample were provided for the analysis of 2-chloroethyl vinyl ether. Hexavalent chromium was not requested on the COC but was added as per electronic correspondence from K. McIlvenna of MWH. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered to TestAmerica-Irvine, custody seals were not utilized. Custody seals were intact upon receipt at TestAmerica-Sacramento.

1

Project: SSFL NPDES SDG: 440-40328-1

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Project: SDG:

SSFL NPDES

440-40328-1

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Project:

SDG:

SSFL NPDES

440-40328-1

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

Project:

SSFL NPDES

440-40328-1

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 11, 2013

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of the analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had reported detects for OCDD and OCDF. The sample detect
 below the reporting limit for OCDF was qualified as nondetected, "U," at the level of
 contamination. The method blank result for OCDD was insufficient to qualify the sample
 result.

Project: SSFL NPDES
REPORT SDG: 440-40328-1

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The labeled internal standard recoveries for the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any reportable sample concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL. Isomer 1,2,3,4,6,7,8-HpCDF reported as an EMPC was qualified as an estimated nondetect, "UJ." Totals for HxCDD, HxCDF, and HpCDF containing EMPC peaks were qualified as estimated, "J."

B. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: April 12, 2013

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^x Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 2007., 200.8, 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

Project: SSFL NPDES SDG: 440-40328-1

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects affecting sample results.
- Interference Check Samples: Recoveries were within 80-120%. There were no target compounds present in the ICSA solution at concentrations above their certified contamination level.
- Blank Spikes and Laboratory Control Samples: Recoveries were within methodestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the total analytes and the dissolved ICPMS analytes. Results are not assessed when the native concentration exceeds the spiked amount by 4× or more. The MS recoveries for total cadmium (128%) and total lead (128%) exceeded the control limit; therefore, the total cadmium and lead results in the sample were qualified as estimated, "J." The remaining applicable recoveries and all RPDs were within the method-established control limits.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All sample internal standard intensities were within 70-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

Total hardness was reported twice in the electronic data deliverable, once as Method 200.7 and once as SM2340B. The reviewer rejected, "R," the duplicate SM2340B result.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.

ATION REPORT SDG: 440-40328-1

Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 608 (Low Level)—Pesticides and PCBs

Reviewed By: L. Calvin

Date Reviewed: April 11, 2013

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^x Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 608, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- Calibration: The initial calibrations had %RSDs of ≤10% or r² of ≥0.990 on both analytical columns. The ICVs and CCVs had %Ds within the QC limit of ≤15% with the exception of %Ds for endrin, 4,4'-DDD, and endosulfan sulfate in the CCVs bracketing the pesticide sample analysis. Results for the %D outliers, all nondetects, were qualified as estimated, "UJ." The breakdown totals for endrin and 4,4'-DDT were ≤15%.
- Blanks: The method blanks had no confirmed target compounds detected above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within the laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within the laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy was based on the LCS results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.

Project: SSFL NPDES
VALIDATION REPORT SDG: 440-40328-1

• Compound Identification: Compound identification was verified. Review of the sample chromatograms and retention times indicated no problems with target compound identification. The laboratory analyzed for pesticides and PCB Aroclors by Method 608.

 Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limit was supported by the low point of the initial calibration and the laboratory MDL. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Any reported nondetect is valid to the reporting limit.

D. EPA METHOD 525.2—Diazinon and Chlorpyrifos

Reviewed By: L. Calvin

Date Reviewed: April 11, 2013

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within 24 hours of collection and analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs were ≥0.05 and %RSDs ≤30%. The continuing calibration RRFs were ≥0.05 and recoveries were within the method QC limits of 70-130%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision were evaluated based on the LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

Project: SSFL NPDES SDG: 440-40328-1

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30%.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this analysis.
- System Performance: Review of the raw data indicated no problems with system performance.

E. EPA METHOD 625 (Low Level)—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin

Date Reviewed: April 11, 2013

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (2/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was
 extracted within seven days of collection and analyzed within 40 days of extraction. The
 laboratory re-extracted the sample beyond the seven-day holding time; however, as the reextraction analysis was not retained (see Surrogates section), no qualifications were
 necessary.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Most calibration criteria were met. The initial calibration average RRFs and the ICV and continuing calibration RRFs were ≥0.05 for all target compounds. The initial

Project: SSFL NPDES SDG: 440-40328-1

calibration %RSDs were \le 35%, or r^2 values \ge 0.995. The ICV and CCV %Ds were \le 20%, with the exception of the ICV %Ds for hexachlorocyclopentadiene, 4,6-dinitro-2-methylphenol, and benzidine, and the CCV %D for 1,2-diphenylhydrazine. Results for the %D outliers, all nondetects, were qualified as estimated, "UJ."

- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Surrogate d14-terphenyl was recovered marginally below the QC limits of 50-125% at 46%. The laboratory re-extracted the sample with acceptable surrogate results; however, as the original analysis required no qualification for the single outlier, the re-extraction was performed out of holding time, and sample results were comparable, the re-extraction results were rejected, "R," in favor of the original results. Remaining recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Method accuracy and precision was evaluated based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

Project: SSFL NPDES SDG: 440-40328-1

Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.

 System Performance: Review of the raw data indicated no problems with system performance.

F. EPA METHOD 624 (Low Level)—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin

Date Reviewed: April 11, 2013

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 624, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Analytical holding times were met. The unpreserved aliquot of the water sample was analyzed within seven days of collection and the preserved water sample was analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. The samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs and the ICV and continuing calibration RRFs were ≥0.05 for all applicable target compounds. The initial calibration %RSDs were ≤35%, or r² values ≥0.990. The second source ICV and all applicable CCV recoveries were within the method control limits.
- Blanks: The method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Dibromofluoromethane was recovered above the QC limits in the sample; however, as the sample had no reported detects, no qualification was necessary. Remaining recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the site sample of this SDG. Method accuracy was evaluated based on LCS results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Trip Blanks: This SDG had no identified trip blank sample.

Project: SSFL NPDES
REPORT SDG: 440-40328-1

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

- o Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The internal standard retention times and area counts were within the control limits established by the continuing calibration standards: ±30 seconds for retention times, and -50%/+100% for internal standard areas.
- Compound Identification: Compound identification was verified. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

G. VARIOUS EPA METHODS—General Minerals

Reviewed By: M. Cherny Date Reviewed: April 6, 2013

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 218.6, Methods for the Examination of Water and Wastewater 2540D, 4500CN E, SM9221E, and SM9221F, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The hexavalent chromium holding time, 24 hours from collection, was exceeded by more than 3×; therefore, hexavalent chromium detected in the sample was qualified as estimated, "UJ." Analytical holding times, 14 days for cyanide and 7 days for TSS, were met. The analytical holding time for coliform is listed as immediate. As the sample was prepared within eight hours, no qualifications were required.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 for cyanide and all initial and continuing calibration recoveries were within 90-110%. Balance logs were reviewed and determined to be acceptable. Coliform control results were acceptable.

Project: SSFL NPDES SDG: 440-40328-1

- Blanks: Method blanks and CCBs had no detects above the DL; however, the reviewer
 noted the method blank had a peak at the hexavalent chromium retention time. The
 integrated area of this peak was below the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. Not applicable to coliform analysis.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample for hexavalent chromium. Recoveries and the RPD were within laboratory-established control limits.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms 440-40328-1

Analysis Method 1613B

Sample Name Arroyo Simi-FP Matrix Type: Water Validation Level: IV

Lab Sample Name: 440-40328-1 **Sample Date:** 3/8/2013 12:15:00 PM

Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	0.000037	0.000050	0.0000027	ug/L	J,DX	J	DNQ
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.000050	0.0000015	ug/L	J,DX q	UJ	*III
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.000050	0.0000024	ug/L		U	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.000050	0.0000007	ug/L		U	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.000050	0.0000009	ug/L		U	
1,2,3,6,7,8-HxCDD	57653-85-7	0.000001	0.000050	0.0000006	ug/L	J,DX q	J	DNQ
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.000050	0.0000008	ug/L		U	
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.000050	0.0000006	ug/L		U	
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.000050	0.0000011	ug/L		U	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.000050	0.0000009	ug/L		U	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.000050	0.0000007	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.000050	0.0000008	ug/L		U	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.000050	0.0000007	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.000010	0.0000005	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.000010	0.0000005	ug/L		U	
OCDD	3268-87-9	0.00030	0.00010	0.000012	ug/L	MB		
OCDF	39001-02-0	ND	0.00010	0.0000018	ug/L	J,DX MB	U	В
Total HpCDD	37871-00-4	0.000076	0.000050	0.0000027	ug/L			
Total HpCDF	38998-75-3	0.000029	0.000050	0.0000020	ug/L	J,DX q	J	DNQ, *III
Total HxCDD	34465-46-8	0.000004	0.000050	0.0000006	ug/L	J,DX q	J	DNQ, *III
Total HxCDF	55684-94-1	0.000009	0.000050	0.0000009	ug/L	J,DX q	J	DNQ, *III
Total PeCDD	36088-22-9	ND	0.000050	0.0000009	ug/L		U	
Total PeCDF	30402-15-4	0.000003	0.000050	0.0000007	ug/L	J,DX	J	DNQ
Total TCDD	41903-57-5	ND	0.000010	0.0000005	ug/L		U	
Total TCDF	30402-14-3	ND	0.000010	0.0000005	ug/L		U	

Tuesday, April 16, 2013 Page 1 of 11

Analysis Method 200.7 Rev 4.4

Sample Name	Arroyo Simi-l	FP	Matri	x Type:	Water	Validation Level: IV			
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Aluminum	7429-90-5	6000	50	40	ug/L				
Aluminum, Dissolved	7429-90-5	ND	50	40	ug/L		U		
Arsenic	7440-38-2	ND	10	7.0	ug/L		U		
Arsenic, Dissolved	7440-38-2	ND	10	7.0	ug/L		U		
Beryllium	7440-41-7	ND	2.0	0.90	ug/L		U		
Beryllium, Dissolved	7440-41-7	ND	2.0	0.90	ug/L		U		
Boron	7440-42-8	0.20	0.050	0.020	mg/L				
Boron, Dissolved	7440-42-8	0.22	0.050	0.020	mg/L				
Calcium	7440-70-2	58	0.10	0.050	mg/L				
Calcium, Dissolved	7440-70-2	51	0.10	0.050	mg/L				
Chromium	7440-47-3	14	5.0	2.0	ug/L				
Chromium, Dissolved	7440-47-3	ND	5.0	2.0	ug/L		U		
Hardness, as CaCO3	STL00009	210	0.33	0.17	mg/L				
Hardness, as CaCO3, Dissolve	ed STL00009	180	0.33	0.17	mg/L				
Iron	7439-89-6	9.3	0.040	0.015	mg/L				
Iron, Dissolved	7439-89-6	0.033	0.040	0.015	mg/L	J,DX	J	DNQ	
Magnesium	7439-95-4	17	0.020	0.012	mg/L				
Magnesium, Dissolved	7439-95-4	13	0.020	0.012	mg/L				
Nickel	7440-02-0	14	10	2.0	ug/L				
Nickel, Dissolved	7440-02-0	2.7	10	2.0	ug/L	J,DX	J	DNQ	
Silver	7440-22-4	ND	10	6.0	ug/L		U		
Silver, Dissolved	7440-22-4	ND	10	6.0	ug/L		U		
Vanadium	7440-62-2	28	10	3.0	ug/L				
Vanadium, Dissolved	7440-62-2	ND	10	3.0	ug/L		U		
Zinc	7440-66-6	52	20	9.0	ug/L				
Zinc, Dissolved	7440-66-6	ND	20	9.0	ug/L		U		

Tuesday, April 16, 2013 Page 2 of 11

1 10 0	lanai a	Mathad	200.8
Anai	LVSLS.	Method	200.0

Sample Name	Arroyo Simi-F	FP	Matri	x Type:	Water		Validation Le	vel: IV
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Antimony	7440-36-0	0.87	4.0	0.60	ug/L	J,DX	J	DNQ
Antimony, Dissolved	7440-36-0	0.52	2.0	0.30	ug/L	J,DX	J	DNQ
Cadmium	7440-43-9	0.68	2.0	0.20	ug/L	J,DX	J	Q, DNQ
Cadmium, Dissolved	7440-43-9	0.11	1.0	0.10	ug/L	J,DX	J	DNQ
Copper	7440-50-8	15	4.0	1.0	ug/L	MB		
Copper, Dissolved	7440-50-8	4.3	2.0	0.50	ug/L			
Lead	7439-92-1	4.9	2.0	0.40	ug/L		J	Q
Lead, Dissolved	7439-92-1	ND	1.0	0.20	ug/L		U	
Selenium	7782-49-2	3.2	4.0	1.0	ug/L	J,DX	J	DNQ
Selenium, Dissolved	7782-49-2	2.1	2.0	0.50	ug/L			
Thallium	7440-28-0	ND	2.0	0.40	ug/L		U	
Гhallium, Dissolved	7440-28-0	ND	1.0	0.20	ug/L		U	
Analysis Method	d 218.6							
Sample Name	Arroyo Simi-F	P	Matri	x Type:	Water	Validation Level: IV		
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Chromium, hexavalent	18540-29-9	0.39	1.0	0.25	ug/L	J,DX BU	J	H, DNQ
Analysis Method	d 245.1							
Sample Name	Arroyo Simi-F	P	Matri	x Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/L		U	
Mercury, Dissolved	7439-97-6	ND	0.20	0.10	ug/L		U	
Analysis Method	d 525.2							
Sample Name	Arroyo Simi-F	FP	Matri	x Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Chlorpyrifos	2921-88-2	ND	0.96	0.077	ug/L		U	

Tuesday, April 16, 2013 Page 3 of 11

Analysis Method 608

Sample Name	Arroyo Simi-F	FP	Matri	x Type:	Water	Validation Level: IV		
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
4,4'-DDD	72-54-8	ND	0.0047	0.0038	ug/L		UJ	С
4,4'-DDE	72-55-9	ND	0.0047	0.0028	ug/L		U	
4,4'-DDT	50-29-3	ND	0.0094	0.0038	ug/L		U	
Aldrin	309-00-2	ND	0.0047	0.0014	ug/L		U	
alpha-BHC	319-84-6	ND	0.0047	0.0024	ug/L		U	
Aroclor 1016	12674-11-2	ND	0.47	0.24	ug/L		U	
Aroclor 1221	11104-28-2	ND	0.47	0.24	ug/L		U	
Aroclor 1232	11141-16-5	ND	0.47	0.24	ug/L		U	
Aroclor 1242	53469-21-9	ND	0.47	0.24	ug/L		U	
Aroclor 1248	12672-29-6	ND	0.47	0.24	ug/L		U	
Aroclor 1254	11097-69-1	ND	0.47	0.24	ug/L		U	
Aroclor 1260	11096-82-5	ND	0.47	0.24	ug/L		U	
beta-BHC	319-85-7	ND	0.0094	0.0038	ug/L		U	
Chlordane (technical)	57-74-9	ND	0.094	0.075	ug/L		U	
delta-BHC	319-86-8	ND	0.0047	0.0033	ug/L		U	
Dieldrin	60-57-1	ND	0.0047	0.0019	ug/L		U	
Endosulfan I	959-98-8	ND	0.0047	0.0028	ug/L		U	
Endosulfan II	33213-65-9	ND	0.0047	0.0019	ug/L		U	
Endosulfan sulfate	1031-07-8	ND	0.0094	0.0028	ug/L		UJ	С
Endrin	72-20-8	ND	0.0047	0.0019	ug/L		UJ	С
Endrin aldehyde	7421-93-4	ND	0.0094	0.0019	ug/L		U	
gamma-BHC (Lindane)	58-89-9	ND	0.0094	0.0028	ug/L		U	
Heptachlor	76-44-8	ND	0.0094	0.0028	ug/L		U	
Heptachlor epoxide	1024-57-3	ND	0.0047	0.0024	ug/L		U	
Toxaphene	8001-35-2	ND	0.47	0.24	ug/L		U	

Tuesday, April 16, 2013 Page 4 of 11

Sample Name	Arroyo Simi-l	FP	Matri	іх Туре:	Water	Validation Level: IV		
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,1,1-Trichloroethane	71-55-6	ND	0.50	0.30	ug/L		U	
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.50	0.30	ug/L		U	
1,1,2-Trichloroethane	79-00-5	ND	0.50	0.30	ug/L		U	
1,1-Dichloroethane	75-34-3	ND	0.50	0.40	ug/L		U	
1,1-Dichloroethene	75-35-4	ND	0.50	0.42	ug/L		U	
1,2,3-Trichloropropane	96-18-4	ND	0.50	0.40	ug/L		U	
1,2-Dibromoethane (EDB)	106-93-4	ND	0.50	0.40	ug/L		U	
1,2-Dichlorobenzene	95-50-1	ND	0.50	0.32	ug/L		U	
1,2-Dichloroethane	107-06-2	ND	0.50	0.28	ug/L		U	
1,2-Dichloropropane	78-87-5	ND	0.50	0.35	ug/L		U	
1,3-Dichlorobenzene	541-73-1	ND	0.50	0.35	ug/L		U	
1,4-Dichlorobenzene	106-46-7	ND	0.50	0.37	ug/L		U	
2-Chloroethyl vinyl ether	110-75-8	ND	2.0	1.8	ug/L		U	
Acrolein	107-02-8	ND	5.0	4.0	ug/L		U	
Acrylonitrile	107-13-1	ND	2.0	1.2	ug/L		U	
Benzene	71-43-2	ND	0.50	0.28	ug/L		U	
Bromodichloromethane	75-27-4	ND	0.50	0.30	ug/L		U	
Bromoform	75-25-2	ND	0.50	0.40	ug/L		U	
Bromomethane	74-83-9	ND	0.50	0.42	ug/L		U	
Carbon tetrachloride	56-23-5	ND	0.50	0.28	ug/L		U	
Chlorobenzene	108-90-7	ND	0.50	0.36	ug/L		U	
Chloroethane	75-00-3	ND	0.50	0.40	ug/L		U	
Chloroform	67-66-3	ND	0.50	0.33	ug/L		U	
Chloromethane	74-87-3	ND	0.50	0.40	ug/L		U	
cis-1,2-Dichloroethene	156-59-2	ND	0.50	0.32	ug/L		U	
cis-1,3-Dichloropropene	10061-01-5	ND	0.50	0.22	ug/L		U	
Dibromochloromethane	124-48-1	ND	0.50	0.40	ug/L		U	
Diisopropyl ether	108-20-3	ND	0.50	0.25	ug/L		U	
Ethyl tert-butyl ether	637-92-3	ND	0.50	0.28	ug/L		U	
Ethylbenzene	100-41-4	ND	0.50	0.25	ug/L		U	
Methyl tert-butyl ether	1634-04-4	ND	0.50	0.32	ug/L		U	
Methylene Chloride	75-09-2	ND	1.0	0.95	ug/L		U	
Naphthalene	91-20-3	ND	0.50	0.41	ug/L		U	
Tert-amyl methyl ether	994-05-8	ND	0.50	0.33	ug/L		U	
tert-Butanol	75-65-0	ND	10	6.5	ug/L		U	
Tetrachloroethene	127-18-4	ND	0.50	0.32	ug/L		U	
Tuesday April 16 2013								Page 5 of 1

Tuesday, April 16, 2013 Page 5 of 11

Analysis Method 624

Toluene	108-88-3	ND	0.50	0.36	ug/L	U
trans-1,2-Dichloroethene	156-60-5	ND	0.50	0.30	ug/L	U
trans-1,3-Dichloropropene	10061-02-6	ND	0.50	0.32	ug/L	U
Trichloroethene	79-01-6	ND	0.50	0.26	ug/L	U
Trichlorofluoromethane	75-69-4	ND	0.50	0.34	ug/L	U
Vinyl chloride	75-01-4	ND	0.50	0.40	ug/L	U
Xylenes, Total	1330-20-7	ND	1.0	0.90	ug/L	U

Tuesday, April 16, 2013 Page 6 of 11

Sample Name	Arroyo Simi-	FP	Matri	іх Туре:	Water	Validation Level: IV			
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1,2,4-Trichlorobenzene	120-82-1	ND	0.948	0.0948	ug/L	BU	R	D	
1,2,4-Trichlorobenzene	120-82-1	ND	0.948	0.0948	ug/L		U		
1,2-Dichlorobenzene	95-50-1	ND	0.474	0.0948	ug/L	BU	R	D	
1,2-Dichlorobenzene	95-50-1	ND	0.474	0.0948	ug/L		U		
1,2-Diphenylhydrazine(as Azobenzene)	122-66-7	ND	0.948	0.190	ug/L	BU	R	D	
1,2-Diphenylhydrazine(as Azobenzene)	122-66-7	ND	0.948	0.190	ug/L		UJ	С	
1,3-Dichlorobenzene	541-73-1	ND	0.474	0.0948	ug/L		U		
1,3-Dichlorobenzene	541-73-1	ND	0.474	0.0948	ug/L	BU	R	D	
1,4-Dichlorobenzene	106-46-7	ND	0.474	0.190	ug/L		U		
1,4-Dichlorobenzene	106-46-7	ND	0.474	0.190	ug/L	BU	R	D	
2,4,6-Trichlorophenol	88-06-2	ND	0.948	0.0948	ug/L		U		
2,4,6-Trichlorophenol	88-06-2	ND	0.948	0.0948	ug/L	BU	R	D	
2,4-Dichlorophenol	120-83-2	ND	1.90	0.190	ug/L	BU	R	D	
2,4-Dichlorophenol	120-83-2	ND	1.90	0.190	ug/L		U		
2,4-Dimethylphenol	105-67-9	ND	1.90	0.284	ug/L		Ŭ		
2,4-Dimethylphenol	105-67-9	ND	1.90	0.284	ug/L	BU	R	D	
2,4-Dinitrophenol	51-28-5	ND	4.74	0.853	ug/L	BU	R	D	
2,4-Dinitrophenol	51-28-5	ND	4.74	0.853	ug/L		U		
2,4-Dinitrotoluene	121-14-2	ND	4.74	0.190	ug/L		U		
2,4-Dinitrotoluene	121-14-2	ND	4.74	0.190	ug/L	BU	R	D	
2,6-Dinitrotoluene	606-20-2	ND	4.74	0.0948	ug/L		U		
2,6-Dinitrotoluene	606-20-2	ND	4.74	0.0948	ug/L	BU	R	D	
2-Chloronaphthalene	91-58-7	ND	0.474	0.0948	ug/L	BU	R	D	
2-Chloronaphthalene	91-58-7	ND	0.474	0.0948	ug/L		U		
2-Chlorophenol	95-57-8	ND	0.948	0.190	ug/L	BU	R	D	
2-Chlorophenol	95-57-8	ND	0.948	0.190	ug/L		U		
2-Methylnaphthalene	91-57-6	ND	0.948	0.190	ug/L		U		
2-Methylnaphthalene	91-57-6	ND	0.948	0.190	ug/L	BU	R	D	
2-Methylphenol	95-48-7	ND	1.90	0.0948	ug/L		U		
2-Methylphenol	95-48-7	ND	1.90	0.0948	ug/L	BU	R	D	
2-Nitroaniline	88-74-4	ND	4.74	0.0948	ug/L	BU	R	D	
2-Nitroaniline	88-74-4	ND	4.74	0.0948	ug/L		U		
2-Nitrophenol	88-75-5	ND	1.90	0.0948	ug/L		U		
2-Nitrophenol	88-75-5	ND	1.90	0.0948	ug/L	BU	R	D	

Tuesday, April 16, 2013 Page 7 of 11

Analysis Method 625

3,3'-Dichlorobenzidine	91-94-1	ND	4.74	0.474	ug/L	BU	R	D
3,3'-Dichlorobenzidine	91-94-1	ND	4.74	0.474	ug/L		U	
3-Nitroaniline	99-09-2	ND	4.74	0.948	ug/L		U	
3-Nitroaniline	99-09-2	ND	4.74	0.948	ug/L	BU	R	D
4,6-Dinitro-2-methylphenol	534-52-1	ND	4.74	0.284	ug/L	BU	R	D
4,6-Dinitro-2-methylphenol	534-52-1	ND	4.74	0.284	ug/L		UJ	C
4-Bromophenyl phenyl ether	101-55-3	ND	0.948	0.190	ug/L		U	
4-Bromophenyl phenyl ether	101-55-3	ND	0.948	0.190	ug/L	BU	R	D
4-Chloro-3-methylphenol	59-50-7	ND	1.90	0.190	ug/L	BU	R	D
4-Chloro-3-methylphenol	59-50-7	ND	1.90	0.190	ug/L		U	
4-Chloroaniline	106-47-8	ND	1.90	0.284	ug/L		U	
4-Chloroaniline	106-47-8	ND	1.90	0.284	ug/L	BU	R	D
4-Chlorophenyl phenyl ether	7005-72-3	ND	0.474	0.190	ug/L	BU	R	D
4-Chlorophenyl phenyl ether	7005-72-3	ND	0.474	0.190	ug/L		U	
4-Methylphenol	106-44-5	ND	4.74	0.190	ug/L	BU	R	D
4-Methylphenol	106-44-5	ND	4.74	0.190	ug/L		U	
4-Nitroaniline	100-01-6	ND	4.74	0.474	ug/L		U	
4-Nitroaniline	100-01-6	ND	4.74	0.474	ug/L	BU	R	D
4-Nitrophenol	100-02-7	ND	4.74	2.37	ug/L		U	
4-Nitrophenol	100-02-7	ND	4.74	2.37	ug/L	BU	R	D
Acenaphthene	83-32-9	ND	0.474	0.190	ug/L		U	
Acenaphthene	83-32-9	ND	0.474	0.190	ug/L	BU	R	D
Acenaphthylene	208-96-8	ND	0.474	0.190	ug/L	BU	R	D
Acenaphthylene	208-96-8	ND	0.474	0.190	ug/L		U	
Aniline	62-53-3	ND	9.48	0.284	ug/L		U	
Aniline	62-53-3	ND	9.48	0.284	ug/L	BU	R	D
Anthracene	120-12-7	ND	0.474	0.0948	ug/L		U	
Anthracene	120-12-7	ND	0.474	0.0948	ug/L	BU	R	D
Benzidine	92-87-5	ND	4.74	0.948	ug/L	BU	R	D
Benzidine	92-87-5	ND	4.74	0.948	ug/L		UJ	C
Benzo[a]anthracene	56-55-3	ND	4.74	0.0948	ug/L	BU	R	D
Benzo[a]anthracene	56-55-3	ND	4.74	0.0948	ug/L		U	
Benzo[a]pyrene	50-32-8	ND	1.90	0.0948	ug/L	BU	R	D
Benzo[a]pyrene	50-32-8	ND	1.90	0.0948	ug/L		U	
Benzo[b]fluoranthene	205-99-2	ND	1.90	0.0948	ug/L	BU	R	D
Benzo[b]fluoranthene	205-99-2	ND	1.90	0.0948	ug/L		U	
Benzo[g,h,i]perylene	191-24-2	ND	4.74	0.0948	ug/L	BU	R	D
Benzo[g,h,i]perylene	191-24-2	ND	4.74	0.0948	ug/L		U	
Benzo[k]fluoranthene	207-08-9	ND	0.474	0.190	ug/L	BU	R	D
Benzo[k]fluoranthene	207-08-9	ND	0.474	0.190	ug/L		U	

Tuesday, April 16, 2013 Page 8 of 11

Analysis Method 625

Benzoic acid	65-85-0	ND	4.74	2.84	ug/L	BU	R	D
Benzoic acid	65-85-0	ND	4.74	2.84	ug/L		U	
Benzyl alcohol	100-51-6	0.131	4.74	0.0948	ug/L	J,DX BU	R	D
Benzyl alcohol	100-51-6	1.00	4.74	0.0948	ug/L	J,DX	J	DNQ
bis (2-chloroisopropyl) ether	108-60-1	ND	0.474	0.0948	ug/L	BU	R	D
bis (2-chloroisopropyl) ether	108-60-1	ND	0.474	0.0948	ug/L		U	
Bis(2-chloroethoxy)methane	111-91-1	ND	0.474	0.0948	ug/L	BU	R	D
Bis(2-chloroethoxy)methane	111-91-1	ND	0.474	0.0948	ug/L		U	
Bis(2-chloroethyl)ether	111-44-4	ND	0.474	0.0948	ug/L		U	
Bis(2-chloroethyl)ether	111-44-4	ND	0.474	0.0948	ug/L	BU	R	D
Bis(2-ethylhexyl) phthalate	117-81-7	ND	4.74	1.61	ug/L	BU	R	D
Bis(2-ethylhexyl) phthalate	117-81-7	ND	4.74	1.61	ug/L		U	
Butyl benzyl phthalate	85-68-7	ND	4.74	0.664	ug/L	BU	R	D
Butyl benzyl phthalate	85-68-7	ND	4.74	0.664	ug/L		U	
Chrysene	218-01-9	ND	0.474	0.0948	ug/L	BU	R	D
Chrysene	218-01-9	ND	0.474	0.0948	ug/L		U	
Dibenz(a,h)anthracene	53-70-3	ND	0.474	0.0948	ug/L	BU	R	D
Dibenz(a,h)anthracene	53-70-3	ND	0.474	0.0948	ug/L		U	
Dibenzofuran	132-64-9	ND	0.474	0.0948	ug/L	BU	R	D
Dibenzofuran	132-64-9	ND	0.474	0.0948	ug/L		U	
Diethyl phthalate	84-66-2	ND	0.948	0.0948	ug/L		U	
Diethyl phthalate	84-66-2	0.277	0.948	0.0948	ug/L	J,DX BU	R	D
Dimethyl phthalate	131-11-3	ND	0.474	0.190	ug/L		U	
Dimethyl phthalate	131-11-3	ND	0.474	0.190	ug/L	BU	R	D
Di-n-butyl phthalate	84-74-2	ND	1.90	0.284	ug/L	BU	R	D
Di-n-butyl phthalate	84-74-2	ND	1.90	0.284	ug/L		U	
Di-n-octyl phthalate	117-84-0	0.602	4.74	0.190	ug/L	J,DX	J	DNQ
Di-n-octyl phthalate	117-84-0	ND	4.74	0.190	ug/L	BU	R	D
Fluoranthene	206-44-0	ND	0.474	0.0948	ug/L	BU	R	D
Fluoranthene	206-44-0	ND	0.474	0.0948	ug/L		U	
Fluorene	86-73-7	ND	0.474	0.0948	ug/L	BU	R	D
Fluorene	86-73-7	ND	0.474	0.0948	ug/L		U	
Hexachlorobenzene	118-74-1	ND	0.948	0.0948	ug/L	BU	R	D
Hexachlorobenzene	118-74-1	ND	0.948	0.0948	ug/L		U	
Hexachlorobutadiene	87-68-3	ND	1.90	0.190	ug/L	BU	R	D
Hexachlorobutadiene	87-68-3	ND	1.90	0.190	ug/L		U	
Hexachlorocyclopentadiene	77-47-4	ND	4.74	0.0948	ug/L		UJ	С
Hexachlorocyclopentadiene	77-47-4	ND	4.74	0.0948	ug/L	BU	R	D
Hexachloroethane	67-72-1	ND	2.84	0.190	ug/L	BU	R	D
Hexachloroethane	67-72-1	ND	2.84	0.190	ug/L		U	

Tuesday, April 16, 2013 Page 9 of 11

Analysis Method	625	
Indeno[1,2,3-cd]pyrene	193-39-5	NE
Indeno[1,2,3-cd]pyrene	193-39-5	NE
Isophorone	78-59-1	NE
Isophorone	78-59-1	NE

Indeno[1,2,3-cd]pyrene	193-39-5	ND	1.90	0.0948	ug/L	BU	R	D
Indeno[1,2,3-cd]pyrene	193-39-5	ND	1.90	0.0948	ug/L		U	
Isophorone	78-59-1	ND	0.948	0.0948	ug/L	BU	R	D
Isophorone	78-59-1	ND	0.948	0.0948	ug/L		U	
Naphthalene	91-20-3	ND	0.948	0.0948	ug/L	BU	R	D
Naphthalene	91-20-3	ND	0.948	0.0948	ug/L		U	
Nitrobenzene	98-95-3	ND	0.948	0.0948	ug/L	BU	R	D
Nitrobenzene	98-95-3	ND	0.948	0.0948	ug/L		U	
N-Nitrosodimethylamine	62-75-9	ND	1.90	0.0948	ug/L	BU	R	D
N-Nitrosodimethylamine	62-75-9	ND	1.90	0.0948	ug/L		U	
N-Nitrosodi-n-propylamine	621-64-7	ND	1.90	0.0948	ug/L	BU	R	D
N-Nitrosodi-n-propylamine	621-64-7	ND	1.90	0.0948	ug/L		U	
N-Nitrosodiphenylamine	86-30-6	ND	0.948	0.0948	ug/L	BU	R	D
N-Nitrosodiphenylamine	86-30-6	ND	0.948	0.0948	ug/L		U	
Pentachlorophenol	87-86-5	ND	1.90	0.379	ug/L		U	
Pentachlorophenol	87-86-5	ND	1.90	0.379	ug/L	BU	R	D
Phenanthrene	85-01-8	ND	0.474	0.0948	ug/L		U	
Phenanthrene	85-01-8	ND	0.474	0.0948	ug/L	BU	R	D
Phenol	108-95-2	ND	0.948	0.284	ug/L		U	
Phenol	108-95-2	ND	0.948	0.284	ug/L	BU	R	D
Pyrene	129-00-0	ND	0.474	0.0948	ug/L		U	
Pyrene	129-00-0	ND	0.474	0.0948	ug/L	BU	R	D

SM 2340B Analysis Method

Arroyo Simi-FP Matrix Type: Water Validation Level: IV Sample Name

Lab Sample Name: 440-40328-1 **Sample Date:** 3/8/2013 12:15:00 PM

Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier		Validation Notes
Hardness, as CaCO3	STL00009	210	0.33	0.17	mg/L		R	D

Analysis Method SM 2540D

Sample Name Arroyo Simi-FP Matrix Type: Water Validation Level: IV

Lab Sample Name: 440-40328-1 **Sample Date:** 3/8/2013 12:15:00 PM

Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	 Validation Notes
Total Suspended Solids	STL00161	310	20	20	mg/L		

Tuesday, April 16, 2013 Page 10 of 11

Analysis Method SM 4500 CN E

Sample Name	Arroyo Simi-I	FP	Matri	х Туре:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cyanide, Total	57-12-5	ND	5.0	3.0	ug/L		U	
Analysis Metho	od SM 92	221E						
Sample Name	Arroyo Simi-I	FP	Matri	х Туре:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-40328-1	Sam	ple Date:	3/8/2013	12:15:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Analyte Coliform, Fecal	CAS No		RL	MDL				
	STL00002	Value >=1600	RL	MDL	Units			
Coliform, Fecal	STL00002	Value >=1600 221F		MDL x Type:	Units	Qualifier		Notes
Coliform, Fecal Analysis Metho	STL00002 od SM 92	Value >=1600 221F FP		х Туре:	Units MPN/10	Qualifier	Qualifier	Notes
Coliform, Fecal Analysis Metho Sample Name	od SM 92 Arroyo Simi-F	Value >=1600 221F FP	Matri	х Туре:	Units MPN/10 Water	Qualifier	Qualifier	Notes

Tuesday, April 16, 2013 Page 11 of 11

APPENDIX G

Section 10

Arroyo Simi-Frontier Park – March 8, 2013 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-40328-1

Client Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-

Fro

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Jebby Wilson

Authorized for release by: 4/3/2013 7:57:10 AM

Debby Wilson
Project Manager I

debby.wilson@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Debby Wilson

Project Manager I 4/3/2013 7:57:10 AM TestAmerica Job ID: 440-40328-1

2

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	7
Method Summary	15
Chronicle	16
QC Sample Results	18
QC Association	51
Definitions	57
Certification Summary	58
Subcontract Data	59
Chain of Custody	60
Receipt Checklists	61
Isotope Dilution Summary	63

3

4

_

9

10

12

Sample Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-40328-1	Arroyo Simi-FP	Water	03/08/13 12:15	03/08/13 16:45

3

5

6

8

9

44

12

4 1

Case Narrative

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Job ID: 440-40328-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-40328-1

Comments

No additional comments. Hexavalent chromium analysis was added in by client after holding time had expired.

Receipt

The sample was received on 3/8/2013 4:45 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.9° C.

GC/MS VOA

Method(s) 624: Surrogate recovery for the following sample(s) was outside the upper control limit: Arroyo Simi-FP (440-40328-1). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 525.2: The matrix spike (MS) recovery associated with batch 90585 were outside control limits for Diazinon: (440-39233-6 MS). Matrix interference is suspected.

Method(s) 525.2: The surrogate recovery for the blank associated with batch 90585 was outside recovery limits. All associated sample surrogates fell within acceptance criteria; therefore, the data have been reported.

Method(s) 625: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 91160. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

Method(s) 625: Surrogate recovery of Terphenyl d-14 for the following sample was below control limits: Arroyo Simi-FP (440-40328-1). Matrix interference was suspected. Sample was re-extracted after the method holding time had expired to confirm matrix interference however the Terphynyl d-14 had acceptable recovery. Both results are included and qualified appropriately.

Method(s) 625: The continuing calibration verification (CCV) for 1,2-diphenylhydrazine and n-octadecane associated with batch 92112 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 625: The matrix spike (MS) recoveries associated with batch 94270 were outside control limits: (440-41729-3 MS), (440-41729-3 MSD). Matrix interference is suspected. The associated laboratory control sample (LCS) recovery met acceptance criteria. The matrix spike / matrix spike duplicate (MS/MSD) precision for batch 94270 was outside control limits

Method(s) 625: The continuing calibration verification (CCV) for bis(2-ethylhexyl)phthalate, butylbenzylphthalate, and pyrene associated with batch 94968 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No other analytical or quality issues were noted.

No other analytical or quality issues were noted.

HPLC

Method(s) 218.6: The following sample(s) was prepared and/or analyzed outside the method defined holding time because the request for the test was made after the holding time for the sample expired: Arroyo Simi-FP (440-40328-1).

No other analytical or quality issues were noted.

GC Semi VOA

No analytical or quality issues were noted.

TestAmerica Irvine 4/3/2013

Page 5 of 64

3

4

8

9

1 1

12

4 /

Case Narrative

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Job ID: 440-40328-1 (Continued)

Laboratory: TestAmerica Irvine (Continued)

Dioxin

Method(s) 1613B: Ion abundance ratios are outside criteria for the following samples and for the MB: (MB 320-12332/1-A), Arroyo Simi-FP (440-40328-1). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC). The affected analytes have been flagged.

No other analytical or quality issues were noted.

Metals

Method(s) 200.7 Rev 4.4: The matrix spike / matrix spike duplicate (MS/MSD) precision for aluminum and iron in batch 440-92737 was outside control limits.

Method(s) 200.8: The following sample(s) was diluted due to the nature of the sample matrix: Arroyo Simi-FP (440-40328-1). Elevated reporting limits (RLs) are provided.

Method(s) 200.8: The matrix spike / matrix spike duplicate (MS/MSD) percent recoveries for batch 440-92787 were outside control limits for Zn due to matrix interferences.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Biology

No analytical or quality issues were noted.

Subcontract non-Sister

No analytical or quality issues were noted.

Organic Prep

Method(s) 3520C, 625: The following sample(s) was prepared outside of preparation holding time: Arroyo Simi-FP (440-40328-1).No analytical or quality issues were noted.

Dioxin Prep

No analytical or quality issues were noted.

4

5

6

9

11

12

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Client Sample ID: Arroyo Simi-FP

Lab Sample ID: 440-40328-1 Date Collected: 03/08/13 12:15 Matrix: Water

Date Received: 03/08/13 16:45

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.50	0.30	ug/L			03/19/13 00:21	
2-Chloroethyl vinyl ether	ND		2.0	1.8	ug/L			03/10/13 16:47	
1,1,2,2-Tetrachloroethane	ND		0.50	0.30	ug/L			03/19/13 00:21	
Acrolein	ND		5.0	4.0	ug/L			03/10/13 16:47	
1,1,2-Trichloroethane	ND		0.50	0.30	ug/L			03/19/13 00:21	
Acrylonitrile	ND		2.0	1.2	ug/L			03/10/13 16:47	
1,1-Dichloroethane	ND		0.50	0.40	ug/L			03/19/13 00:21	
1,1-Dichloroethene	ND		0.50	0.42	ug/L			03/19/13 00:21	
1,2-Dichlorobenzene	ND		0.50		ug/L			03/19/13 00:21	
1,2-Dichloroethane	ND		0.50	0.28	ug/L			03/19/13 00:21	
1,2-Dichloropropane	ND		0.50		ug/L			03/19/13 00:21	
1,3-Dichlorobenzene	ND		0.50		ug/L			03/19/13 00:21	
1,2,3-Trichloropropane	ND		0.50	0.40				03/19/13 00:21	
1,4-Dichlorobenzene	ND		0.50	0.37				03/19/13 00:21	
Benzene	ND		0.50		ug/L			03/19/13 00:21	
Bromoform	ND		0.50		ug/L			03/19/13 00:21	
Bromomethane	ND		0.50		ug/L			03/19/13 00:21	
Carbon tetrachloride	ND		0.50		ug/L			03/19/13 00:21	
Chlorobenzene	ND		0.50		ug/L			03/19/13 00:21	
Dibromochloromethane	ND		0.50	0.40				03/19/13 00:21	
Chloroethane	ND		0.50	0.40				03/19/13 00:21	
Chloroform	ND		0.50		ug/L			03/19/13 00:21	
Chloromethane	ND		0.50		ug/L			03/19/13 00:21	
cis-1,3-Dichloropropene	ND		0.50		ug/L			03/19/13 00:21	
Bromodichloromethane	ND		0.50	0.30				03/19/13 00:21	
Ethylbenzene	ND		0.50	0.25	_			03/19/13 00:21	
Methylene Chloride	ND		1.0	0.25				03/19/13 00:21	
Tetrachloroethene	ND		0.50	0.32				03/19/13 00:21	
Toluene	ND ND		0.50	0.36	_			03/19/13 00:21	
trans-1,2-Dichloroethene	ND ND		0.50		ug/L ug/L			03/19/13 00:21	
tert-Butanol	ND		10		ug/L			03/19/13 00:21	
trans-1,3-Dichloropropene	ND		0.50		ug/L			03/19/13 00:21	
Trichlorofluoromethane	ND		0.50		ug/L			03/19/13 00:21	
Vinyl chloride	ND		0.50		ug/L			03/19/13 00:21	
Trichloroethene	ND		0.50		ug/L			03/19/13 00:21	
cis-1,2-Dichloroethene	ND		0.50		ug/L			03/19/13 00:21	
1,2-Dibromoethane (EDB)	ND		0.50		ug/L			03/19/13 00:21	
Diisopropyl ether	ND		0.50		ug/L			03/19/13 00:21	
Methyl tert-butyl ether	ND		0.50		ug/L			03/19/13 00:21	
Naphthalene	ND		0.50		ug/L			03/19/13 00:21	
Tert-amyl methyl ether	ND		0.50		ug/L			03/19/13 00:21	
Ethyl tert-butyl ether	ND		0.50		ug/L			03/19/13 00:21	
Xylenes, Total	ND		1.0	0.90	ug/L			03/19/13 00:21	
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	102		80 - 120					03/10/13 16:47	
Dibromofluoromethane (Surr)	102		80 - 120					03/10/13 16:47	
4-Bromofluorobenzene (Surr)	102		80 - 120					03/19/13 00:21	

TestAmerica Irvine

03/19/13 00:21

80 - 120

121 LH

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Lab Sample ID: 440-40328-1

TestAmerica Job ID: 440-40328-1

Matrix: Water

Client Sample ID: Arroyo Simi-FP

Date Collected: 03/08/13 12:15 Date Received: 03/08/13 16:45

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	110		80 - 120		03/19/13 00:21	

Method: 525.2 - Semivolatile Or	ganic Compounds	s (GC/MS)							
Analyte	Result Q	lualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorpyrifos	ND		0.96	0.077	ug/L		03/09/13 07:08	03/12/13 19:02	1
Diazinon	ND		0.24	0.096	ug/L		03/09/13 07:08	03/12/13 19:02	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,3-Dimethyl-2-nitrobenzene	109	70 - 130	03/09/13 07:08	03/12/13 19:02	1
Perylene-d12	94	70 - 130	03/09/13 07:08	03/12/13 19:02	1
Triphenylphosphate	124	70 - 130	03/09/13 07:08	03/12/13 19:02	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.474	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
Acenaphthylene	ND		0.474	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
Aniline	ND		9.48	0.284	ug/L		03/12/13 13:52	03/16/13 09:30	1
Anthracene	ND		0.474	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Benzidine	ND		4.74	0.948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Benzo[a]anthracene	ND		4.74	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Benzo[b]fluoranthene	ND		1.90	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Benzo[k]fluoranthene	ND		0.474	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
Benzoic acid	ND		4.74	2.84	ug/L		03/12/13 13:52	03/16/13 09:30	1
Benzo[a]pyrene	ND		1.90	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Bis(2-chloroethoxy)methane	ND		0.474	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Bis(2-chloroethyl)ether	ND		0.474	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Bis(2-ethylhexyl) phthalate	ND		4.74	1.61	ug/L		03/12/13 13:52	03/16/13 09:30	1
4-Bromophenyl phenyl ether	ND		0.948	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
Butyl benzyl phthalate	ND		4.74	0.664	ug/L		03/12/13 13:52	03/16/13 09:30	1
4-Chloro-3-methylphenol	ND		1.90	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
2-Chloronaphthalene	ND		0.474	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
2-Chlorophenol	ND		0.948	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
4-Chlorophenyl phenyl ether	ND		0.474	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
Chrysene	ND		0.474	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Dibenz(a,h)anthracene	ND		0.474	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Di-n-butyl phthalate	ND		1.90	0.284	ug/L		03/12/13 13:52	03/16/13 09:30	1
1,2-Dichlorobenzene	ND		0.474	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
1,3-Dichlorobenzene	ND		0.474	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
1,4-Dichlorobenzene	ND		0.474	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
3,3'-Dichlorobenzidine	ND		4.74	0.474	ug/L		03/12/13 13:52	03/16/13 09:30	1
2,4-Dichlorophenol	ND		1.90	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
Diethyl phthalate	ND		0.948	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
2,4-Dimethylphenol	ND		1.90	0.284	ug/L		03/12/13 13:52	03/16/13 09:30	1
Dimethyl phthalate	ND		0.474	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
4,6-Dinitro-2-methylphenol	ND		4.74	0.284	ug/L		03/12/13 13:52	03/16/13 09:30	1
2,4-Dinitrophenol	ND		4.74	0.853	ug/L		03/12/13 13:52	03/16/13 09:30	1
2,4-Dinitrotoluene	ND		4.74	0.190	ug/L		03/12/13 13:52	03/16/13 09:30	1
2,6-Dinitrotoluene	ND		4.74	0.0948	ug/L		03/12/13 13:52	03/16/13 09:30	1
Di-n-octyl phthalate	0.602	J.DX	4.74	0.190	•		03/12/13 13:52	03/16/13 09:30	1

TestAmerica Irvine

3

4

6

9

10

12

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Lab Sample ID: 440-40328-1

TestAmerica Job ID: 440-40328-1

Matrix: Water

Client Sample ID: Arroyo Simi-FP

Date Collected: 03/08/13 12:15 Date Received: 03/08/13 16:45

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued) Result Qualifier MDL Unit D Dil Fac Prepared Analyzed ND 0.948 0.190 ug/L 03/12/13 13:52 03/16/13 09:30 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene ND 0.474 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 Fluorene ND 0.474 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 ND 0.0948 ug/L Hexachlorobenzene 0.948 03/12/13 13:52 03/16/13 09:30 Hexachlorobutadiene ND 1.90 0.190 ug/L 03/12/13 13:52 03/16/13 09:30 ND Hexachloroethane 2.84 0.190 ug/L 03/12/13 13:52 03/16/13 09:30 Hexachlorocyclopentadiene ND 4.74 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 Indeno[1,2,3-cd]pyrene ND 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 1.90 ND Isophorone 0.948 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 ND 4.74 4-Methylphenol 0.190 ug/L 03/12/13 13:52 03/16/13 09:30 Naphthalene ND 0.948 0.0948 03/12/13 13:52 03/16/13 09:30 ug/L Nitrobenzene ND 0.948 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 2-Nitrophenol ND 1.90 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 ND 4-Nitrophenol 4.74 2.37 ug/L 03/12/13 13:52 03/16/13 09:30 N-Nitrosodimethylamine ND 1.90 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 N-Nitrosodiphenylamine ND 0.948 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 N-Nitrosodi-n-propylamine ND 1.90 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 Pentachlorophenol ND 1.90 0.379 ug/L 03/12/13 13:52 03/16/13 09:30 ND Phenanthrene 0.474 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 Phenol ND 0.948 0.284 ug/L 03/12/13 13:52 03/16/13 09:30 Pyrene ND 0.474 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 1,2,4-Trichlorobenzene ND 0.948 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 ND 03/12/13 13:52 2,4,6-Trichlorophenol 0.948 0.0948 ug/L 03/16/13 09:30 2-Methylphenol ND 1.90 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 4-Chloroaniline ND 0.284 ug/L 03/12/13 13:52 03/16/13 09:30 1.90 2-Methylnaphthalene ND 0.948 0.190 ug/L 03/12/13 13:52 03/16/13 09:30 2-Nitroaniline ND 4.74 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 3-Nitroaniline ND 4.74 0.948 ug/L 03/12/13 13:52 03/16/13 09:30 Dibenzofuran ND 0.474 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 4-Nitroaniline ND 4.74 0.474 ug/L 03/12/13 13:52 03/16/13 09:30 Benzo[g,h,i]perylene ND 4.74 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30 0.0948 ug/L Benzyl alcohol 1.00 J,DX 4.74 03/12/13 13:52 03/16/13 09:30 bis (2-chloroisopropyl) ether ND 0.474 0.0948 ug/L 03/12/13 13:52 03/16/13 09:30

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81	50 - 120	03/12/13 13:52	03/16/13 09:30	
2-Fluorophenol	70	30 - 120	03/12/13 13:52	03/16/13 09:30	1
2,4,6-Tribromophenol	107	40 - 120	03/12/13 13:52	03/16/13 09:30	1
Nitrobenzene-d5	82	45 - 120	03/12/13 13:52	03/16/13 09:30	1
Terphenyl-d14	46 LG	50 ₋ 125	03/12/13 13:52	03/16/13 09:30	1
Phenol-d6	78	35 - 120	03/12/13 13:52	03/16/13 09:30	1

Method: 625 - Semivolatile Organic Compounds (GC/MS) - RE

wethod: 625 - Semivolatile Organic C	ompouna	S (GC/IVIS) - I	KE						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	BU	0.474	0.190	ug/L		03/26/13 12:03	03/28/13 22:54	1
Acenaphthylene	ND	BU	0.474	0.190	ug/L		03/26/13 12:03	03/28/13 22:54	1
Aniline	ND	BU	9.48	0.284	ug/L		03/26/13 12:03	03/28/13 22:54	1
Anthracene	ND	BU	0.474	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Benzidine	ND	BU	4.74	0.948	ug/L		03/26/13 12:03	03/28/13 22:54	1

TestAmerica Irvine

5

8

10

10

13

14

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Lab Sample ID: 440-40328-1

TestAmerica Job ID: 440-40328-1

Matrix: Water

Client Sample ID: Arroyo Simi-FP

Date Collected: 03/08/13 12:15 Date Received: 03/08/13 16:45

Method: 625 - Semivolatile Orga	nic Compound	s (GC/MS) -	RF (Continued	4)					
Analyte		Qualifier	RL	7	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND	BU	4.74	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Benzo[b]fluoranthene	ND	BU	1.90	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Benzo[k]fluoranthene	ND	BU	0.474	0.190	ug/L		03/26/13 12:03	03/28/13 22:54	1
Benzoic acid	ND	BU	4.74	2.84	ug/L		03/26/13 12:03	03/28/13 22:54	1
Benzo[a]pyrene	ND	BU	1.90	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Bis(2-chloroethoxy)methane	ND	BU	0.474	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Bis(2-chloroethyl)ether	ND	BU	0.474	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Bis(2-ethylhexyl) phthalate	ND	BU	4.74	1.61	ug/L		03/26/13 12:03	03/28/13 22:54	1
4-Bromophenyl phenyl ether	ND	BU	0.948	0.190	-		03/26/13 12:03	03/28/13 22:54	1
Butyl benzyl phthalate	ND	BU	4.74	0.664	-		03/26/13 12:03	03/28/13 22:54	1
4-Chloro-3-methylphenol	ND	BU	1.90	0.190			03/26/13 12:03	03/28/13 22:54	1
2-Chloronaphthalene	ND	BU	0.474	0.0948	-		03/26/13 12:03	03/28/13 22:54	1
2-Chlorophenol	ND	BU	0.948	0.190	-		03/26/13 12:03	03/28/13 22:54	1
4-Chlorophenyl phenyl ether	ND	BU	0.474	0.190			03/26/13 12:03	03/28/13 22:54	1
Chrysene	ND	BU	0.474		-		03/26/13 12:03	03/28/13 22:54	1
Dibenz(a,h)anthracene	ND	BU	0.474	0.0948	•		03/26/13 12:03	03/28/13 22:54	1
Di-n-butyl phthalate	ND	BU	1.90	0.284			03/26/13 12:03	03/28/13 22:54	1
1,2-Dichlorobenzene	ND	BU	0.474				03/26/13 12:03	03/28/13 22:54	1
1,3-Dichlorobenzene	ND	BU	0.474	0.0948	•		03/26/13 12:03	03/28/13 22:54	1
1,4-Dichlorobenzene	ND	BU	0.474	0.190			03/26/13 12:03	03/28/13 22:54	1
3,3'-Dichlorobenzidine	ND	BU	4.74	0.474	-		03/26/13 12:03	03/28/13 22:54	1
2,4-Dichlorophenol	ND	BU	1.90	0.190	-		03/26/13 12:03	03/28/13 22:54	1
Diethyl phthalate	0.277	J,DX BU	0.948	0.0948			03/26/13 12:03	03/28/13 22:54	1
2,4-Dimethylphenol	ND	BU	1.90	0.284	-		03/26/13 12:03	03/28/13 22:54	1
Dimethyl phthalate	ND	BU	0.474	0.190	-		03/26/13 12:03	03/28/13 22:54	1
4,6-Dinitro-2-methylphenol	ND	BU	4.74	0.284			03/26/13 12:03	03/28/13 22:54	1
2,4-Dinitrophenol	ND	BU	4.74	0.853	-		03/26/13 12:03	03/28/13 22:54	1
2,4-Dinitrotoluene	ND	BU	4.74	0.190	-		03/26/13 12:03	03/28/13 22:54	1
2,6-Dinitrotoluene	ND	BU	4.74	0.0948			03/26/13 12:03	03/28/13 22:54	1
Di-n-octyl phthalate	ND	BU	4.74	0.190	-		03/26/13 12:03	03/28/13 22:54	1
1,2-Diphenylhydrazine(as	ND	BU	0.948	0.190	-		03/26/13 12:03	03/28/13 22:54	1
Azobenzene)	112	20	0.010	0.100	ug/L		00/20/10 12:00	00/20/10 22:01	
Fluoranthene	ND	BU	0.474	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Fluorene	ND	BU	0.474	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Hexachlorobenzene	ND	BU	0.948	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Hexachlorobutadiene	ND	BU	1.90	0.190	ug/L		03/26/13 12:03	03/28/13 22:54	1
Hexachloroethane	ND	BU	2.84	0.190	ug/L		03/26/13 12:03	03/28/13 22:54	1
Hexachlorocyclopentadiene	ND	BU	4.74	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Indeno[1,2,3-cd]pyrene	ND	BU	1.90	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Isophorone	ND	BU	0.948	0.0948			03/26/13 12:03	03/28/13 22:54	1
4-Methylphenol	ND	BU	4.74	0.190	ug/L		03/26/13 12:03	03/28/13 22:54	1
Naphthalene	ND	BU	0.948	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Nitrobenzene	ND	BU	0.948	0.0948	-		03/26/13 12:03	03/28/13 22:54	1
2-Nitrophenol	ND	BU	1.90	0.0948	-		03/26/13 12:03	03/28/13 22:54	1
4-Nitrophenol	ND	BU	4.74		ug/L		03/26/13 12:03	03/28/13 22:54	1
N-Nitrosodimethylamine	ND	BU	1.90	0.0948	-		03/26/13 12:03	03/28/13 22:54	1
N-Nitrosodiphenylamine	ND		0.948	0.0948	-		03/26/13 12:03	03/28/13 22:54	1
N-Nitrosodi-n-propylamine	ND		1.90	0.0948			03/26/13 12:03	03/28/13 22:54	1
Pentachlorophenol	ND	BU	1.90	0.379	-		03/26/13 12:03	03/28/13 22:54	1
·					_				1
Phenanthrene	ND	BU	0.474	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1

TestAmerica Irvine

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Client Sample ID: Arroyo Simi-FP

Date Collected: 03/08/13 12:15 Date Received: 03/08/13 16:45 Lab Sample ID: 440-40328-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND	BU	0.948	0.284	ug/L		03/26/13 12:03	03/28/13 22:54	1
Pyrene	ND	BU	0.474	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
1,2,4-Trichlorobenzene	ND	BU	0.948	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
2,4,6-Trichlorophenol	ND	BU	0.948	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
2-Methylphenol	ND	BU	1.90	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
4-Chloroaniline	ND	BU	1.90	0.284	ug/L		03/26/13 12:03	03/28/13 22:54	1
2-Methylnaphthalene	ND	BU	0.948	0.190	ug/L		03/26/13 12:03	03/28/13 22:54	1
2-Nitroaniline	ND	BU	4.74	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
3-Nitroaniline	ND	BU	4.74	0.948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Dibenzofuran	ND	BU	0.474	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
4-Nitroaniline	ND	BU	4.74	0.474	ug/L		03/26/13 12:03	03/28/13 22:54	1
Benzo[g,h,i]perylene	ND	BU	4.74	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Benzyl alcohol	0.131	J,DX BU	4.74	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
bis (2-chloroisopropyl) ether	ND	BU	0.474	0.0948	ug/L		03/26/13 12:03	03/28/13 22:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	80		50 - 120				03/26/13 12:03	03/28/13 22:54	1
2-Fluorophenol	70		30 - 120				03/26/13 12:03	03/28/13 22:54	1
2,4,6-Tribromophenol	104		40 - 120				03/26/13 12:03	03/28/13 22:54	1
Nitrobenzene-d5	88		45 - 120				03/26/13 12:03	03/28/13 22:54	1
Terphenyl-d14	65		50 - 125				03/26/13 12:03	03/28/13 22:54	1
Phenol-d6	74		35 - 120				03/26/13 12:03	03/28/13 22:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	ND		0.094	0.075	ug/L		03/10/13 12:49	03/12/13 19:22	1
Dieldrin	ND		0.0047	0.0019	ug/L		03/10/13 12:49	03/12/13 19:22	1
Toxaphene	ND		0.47	0.24	ug/L		03/10/13 12:49	03/12/13 19:22	1
4,4'-DDD	ND		0.0047	0.0038	ug/L		03/10/13 12:49	03/12/13 19:22	1
4,4'-DDE	ND		0.0047	0.0028	ug/L		03/10/13 12:49	03/12/13 19:22	1
4,4'-DDT	ND		0.0094	0.0038	ug/L		03/10/13 12:49	03/12/13 19:22	1
alpha-BHC	ND		0.0047	0.0024	ug/L		03/10/13 12:49	03/12/13 19:22	1
gamma-BHC (Lindane)	ND		0.0094	0.0028	ug/L		03/10/13 12:49	03/12/13 19:22	1
Endrin aldehyde	ND		0.0094	0.0019	ug/L		03/10/13 12:49	03/12/13 19:22	1
delta-BHC	ND		0.0047	0.0033	ug/L		03/10/13 12:49	03/12/13 19:22	1
Aldrin	ND		0.0047	0.0014	ug/L		03/10/13 12:49	03/12/13 19:22	1
Endosulfan sulfate	ND		0.0094	0.0028	ug/L		03/10/13 12:49	03/12/13 19:22	1
Endosulfan I	ND		0.0047	0.0028	ug/L		03/10/13 12:49	03/12/13 19:22	1
Endrin	ND		0.0047	0.0019	ug/L		03/10/13 12:49	03/12/13 19:22	1
Endosulfan II	ND		0.0047	0.0019	ug/L		03/10/13 12:49	03/12/13 19:22	1
beta-BHC	ND		0.0094	0.0038	ug/L		03/10/13 12:49	03/12/13 19:22	1
Heptachlor	ND		0.0094	0.0028	ug/L		03/10/13 12:49	03/12/13 19:22	1
Heptachlor epoxide	ND		0.0047	0.0024	ug/L		03/10/13 12:49	03/12/13 19:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		35 _ 115				03/10/13 12:49	03/12/13 19:22	1

Method: 608 - Polychlorinated Biphenyls (PCBs) (GC)									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Aroclor 1016	ND ND	0.47	0.24 ug/L		03/10/13 12:49	03/11/13 16:09	1		

TestAmerica Irvine

_

6

8

11

12

14

Client: MWH Americas Inc

Analyte

Aroclor 1221

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 608 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Result Qualifier

ND

RL

0.47

MDL Unit

0.24 ug/L

D

Prepared

03/10/13 12:49

Lab Sample ID: 440-40328-1

Date Collected: 03/08/13 12:15 Date Received: 03/08/13 16:45

Client Sample ID: Arroyo Simi-FP

Analyzed

03/11/13 16:09

TestAmerica Job ID: 440-40328-1

Matrix: Water

Dil Fac

AUGOIOI ILLI	110		0.11	0.21	ug, L		00/10/10 12:10	00/11/10 10:00	•
Aroclor 1232	ND		0.47	0.24	ug/L		03/10/13 12:49	03/11/13 16:09	1
Aroclor 1242	ND		0.47	0.24	ug/L		03/10/13 12:49	03/11/13 16:09	1
Aroclor 1248	ND		0.47	0.24	ug/L		03/10/13 12:49	03/11/13 16:09	1
Aroclor 1254	ND		0.47	0.24	ug/L		03/10/13 12:49	03/11/13 16:09	1
Aroclor 1260	ND		0.47	0.24	ug/L		03/10/13 12:49	03/11/13 16:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	79		45 - 120				03/10/13 12:49	03/11/13 16:09	1
_ Method: 218.6 - Chromium, He	xavalent (lon Ch	romatogran	ohv)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	0.39	J,DX BU	1.0	0.25	ug/L			03/11/13 22:19	1
_ Method: 1613B - Dioxins and F	urans (HRGC/HF	RMS)							
Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000005	ug/L		03/14/13 08:56	03/16/13 11:18	1
2,3,7,8-TCDF	ND		0.000010	0.0000005	ug/L		03/14/13 08:56	03/16/13 11:18	1
				2	Ü				
1,2,3,7,8-PeCDD	ND		0.000050	0.0000009	ug/L		03/14/13 08:56	03/16/13 11:18	1
1,2,3,7,8-PeCDF	ND		0.000050	0.0000007	ug/L		03/14/13 08:56	03/16/13 11:18	1
0.0.4.7.0 D-ODE	ND		0.000050	0			00/44/40 00:50	00/40/40 44:40	4
2,3,4,7,8-PeCDF	ND		0.000050	0.0000007	ug/L		03/14/13 08:56	03/16/13 11:18	1
1,2,3,4,7,8-HxCDD	ND		0.000050	0.0000007	ug/L		03/14/13 08:56	03/16/13 11:18	1
1,2,3,6,7,8-HxCDD	0.0000015	J,DX q	0.000050	0.0000006	ug/L		03/14/13 08:56	03/16/13 11:18	1
4 0 0 7 0 0 H-ODD	ND		0.000050	5			00/44/40 00:50	00/40/40 44:40	4
1,2,3,7,8,9-HxCDD	ND		0.000050	0.0000006	ug/L		03/14/13 08:56	03/16/13 11:18	1
1,2,3,4,7,8-HxCDF	ND		0.000050	0.0000009	ug/L		03/14/13 08:56	03/16/13 11:18	1
1,2,3,6,7,8-HxCDF	ND		0.000050	0.0000008	ug/L		03/14/13 08:56	03/16/13 11:18	1
				0					
1,2,3,7,8,9-HxCDF	ND		0.000050	0.0000011	ug/L		03/14/13 08:56	03/16/13 11:18	1
2,3,4,6,7,8-HxCDF	ND		0.000050	0.0000008	ug/L		03/14/13 08:56	03/16/13 11:18	1
1,2,3,4,6,7,8-HpCDD	0.000037	J,DX	0.000050	0.0000027	ug/L		03/14/13 08:56	03/16/13 11:18	1
1,2,3,4,6,7,8-HpCDF	0.000011	J,DX q	0.000050	0.0000015	ug/L		03/14/13 08:56	03/16/13 11:18	1
1,2,3,4,7,8,9-HpCDF	ND		0.000050	0.0000024	ug/L		03/14/13 08:56	03/16/13 11:18	1
OCDD	0.00030	MB	0.00010	0.000012	ug/L		03/14/13 08:56	03/16/13 11:18	1
OCDF	0.000024	J,DX MB	0.00010	0.000018	ug/L		03/14/13 08:56	03/16/13 11:18	1
Total TCDD	ND		0.000010	0.0000005	ug/L		03/14/13 08:56	03/16/13 11:18	1
Total TCDF	ND		0.000010	0.0000005	ug/L		03/14/13 08:56	03/16/13 11:18	1
Total PeCDD	ND		0.000050	0.0000009	ug/L		03/14/13 08:56	03/16/13 11:18	1
Total PeCDF	0.0000034	J,DX	0.000050	7 0.0000007	ug/L		03/14/13 08:56	03/16/13 11:18	1
Total HxCDD	0.0000047	J,DX q	0.000050	0.0000006	ug/L		03/14/13 08:56	03/16/13 11:18	1
					-				

TestAmerica Irvine

Client: MWH Americas Inc

Date Received: 03/08/13 16:45

37CI4-2,3,7,8-TCDD

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Lab Sample ID: 440-40328-1

03/14/13 08:56

03/16/13 11:18

TestAmerica Job ID: 440-40328-1

Client Sample ID: Arroyo Simi-FP Date Collected: 03/08/13 12:15

Matrix: Water

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued) Analyte Result Qualifier RL **EDL** Unit D Dil Fac Prepared Analyzed **Total HxCDF** 0.000050 03/14/13 08:56 03/16/13 11:18 0.0000098 J,DX q 0.0000009 ug/L **Total HpCDD** 0.000076 0.000050 0.0000027 ug/L 03/14/13 08:56 03/16/13 11:18 0.000050 0.0000020 ug/L 03/14/13 08:56 03/16/13 11:18 **Total HpCDF** 0.000029 J,DX q Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C-2,3,7,8-TCDD 03/14/13 08:56 03/16/13 11:18 64 25 - 164 13C-2,3,7,8-TCDF 59 24 - 169 03/14/13 08:56 03/16/13 11:18 68 13C-1,2,3,7,8-PeCDD 25 - 181 03/14/13 08:56 03/16/13 11:18 56 13C-1,2,3,7,8-PeCDF 24 - 185 03/14/13 08:56 03/16/13 11:18 58 13C-2,3,4,7,8-PeCDF 21 - 178 03/14/13 08:56 03/16/13 11:18 13C-1,2,3,4,7,8-HxCDD 63 32 - 141 03/14/13 08:56 03/16/13 11:18 13C-1,2,3,6,7,8-HxCDD 65 03/14/13 08:56 28 - 130 03/16/13 11:18 13C-1,2,3,4,7,8-HxCDF 59 26 - 152 03/14/13 08:56 03/16/13 11:18 13C-1,2,3,6,7,8-HxCDF 67 26 - 123 03/14/13 08:56 03/16/13 11:18 56 29 - 147 03/14/13 08:56 03/16/13 11:18 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 65 28 - 136 03/14/13 08:56 03/16/13 11:18 62 13C-1,2,3,4,6,7,8-HpCDD 23 - 140 03/14/13 08:56 03/16/13 11:18 13C-1,2,3,4,6,7,8-HpCDF 61 28 - 143 03/14/13 08:56 03/16/13 11:18 13C-1,2,3,4,7,8,9-HpCDF 53 26 - 138 03/14/13 08:56 03/16/13 11:18 13C-OCDD 03/14/13 08:56 54 17 - 157 03/16/13 11:18 Dil Fac %Recovery Qualifier Surrogate Limits Prepared Analyzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6000		50	40	ug/L		03/19/13 14:45	03/19/13 20:34	1
Calcium	58		0.10	0.050	mg/L		03/19/13 14:45	03/19/13 20:34	1
Arsenic	ND		10	7.0	ug/L		03/19/13 14:45	03/19/13 20:34	1
Magnesium	17		0.020	0.012	mg/L		03/19/13 14:45	03/19/13 20:34	1
Boron	0.20		0.050	0.020	mg/L		03/19/13 14:45	03/19/13 20:34	1
Beryllium	ND		2.0	0.90	ug/L		03/19/13 14:45	03/19/13 20:34	1
Calcium	58		0.10	0.050	mg/L		03/19/13 14:45	03/19/13 20:34	1
Chromium	14		5.0	2.0	ug/L		03/19/13 14:45	03/19/13 20:34	1
Iron	9.3		0.040	0.015	mg/L		03/19/13 14:45	03/19/13 20:34	1
Magnesium	17		0.020	0.012	mg/L		03/19/13 14:45	03/19/13 20:34	1
Nickel	14		10	2.0	ug/L		03/19/13 14:45	03/19/13 20:34	1
Vanadium	28		10	3.0	ug/L		03/19/13 14:45	03/19/13 20:34	1
Zinc	52		20	9.0	ug/L		03/19/13 14:45	03/19/13 20:34	1
Silver	ND		10	6.0	ug/L		03/19/13 14:45	03/19/13 20:34	1
Hardness, as CaCO3	210		0.33	0.17	mg/L		03/19/13 14:45	03/19/13 20:34	1

35 _ 197

84

Method: 200.7 Rev 4.4 - Metals	(ICP) - Dissolved	d						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		40	ug/L		03/18/13 08:20	03/18/13 19:01	1
Arsenic	ND	10	7.0	ug/L		03/18/13 08:20	03/18/13 19:01	1
Boron	0.22	0.050	0.020	mg/L		03/18/13 08:20	03/18/13 19:01	1
Beryllium	ND	2.0	0.90	ug/L		03/18/13 08:20	03/18/13 19:01	1
Calcium	51	0.10	0.050	mg/L		03/18/13 08:20	03/18/13 19:01	1
Chromium	ND	5.0	2.0	ug/L		03/18/13 08:20	03/18/13 19:01	1

TestAmerica Irvine

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client Sample ID: Arroyo Simi-FP

Date Collected: 03/08/13 12:15 Date Received: 03/08/13 16:45

Coliform, Fecal

Escherichia coli

Analyte

Lab Sample ID: 440-40328-1

Matrix: Water

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	0.033	J,DX	0.040	0.015	mg/L		03/18/13 08:20	03/18/13 19:01	
Magnesium	13		0.020	0.012	mg/L		03/18/13 08:20	03/18/13 19:01	
Nickel	2.7	J,DX	10	2.0	ug/L		03/18/13 08:20	03/18/13 19:01	
Vanadium	ND		10	3.0	ug/L		03/18/13 08:20	03/18/13 19:01	
Zinc	ND		20	9.0	ug/L		03/18/13 08:20	03/18/13 19:01	
Silver	ND		10	6.0	ug/L		03/18/13 08:20	03/18/13 19:01	
Hardness, as CaCO3	180		0.33	0.17	mg/L		03/18/13 08:20	03/18/13 19:01	
Method: 200.8 - Metals (ICP/MS) - To	otal Recove	rable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	0.68	J,DX	2.0	0.20	ug/L		03/19/13 17:23	03/20/13 10:35	
Copper	15	MB	4.0	1.0	ug/L		03/20/13 19:03	03/21/13 10:09	
Lead	4.9		2.0	0.40	ug/L		03/19/13 17:23	03/20/13 10:35	
Antimony	0.87	J,DX	4.0	0.60	ug/L		03/19/13 17:23	03/20/13 10:35	
Selenium	3.2	J,DX	4.0	1.0	ug/L		03/19/13 17:23	03/20/13 10:35	
Thallium	ND	•	2.0	0.40	ug/L		03/19/13 17:23	03/20/13 10:35	
Method: 200.8 - Metals (ICP/MS) - Di	issolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	0.11	J,DX	1.0	0.10	ug/L		03/20/13 13:48	03/20/13 18:48	
Copper	4.3		2.0	0.50	ug/L		03/20/13 13:48	03/20/13 18:48	
Lead	ND		1.0	0.20	ug/L		03/20/13 13:48	03/20/13 18:48	
Antimony	0.52	J,DX	2.0	0.30	ug/L		03/20/13 13:48	03/20/13 18:48	
Selenium	2.1		2.0	0.50	ug/L		03/20/13 13:48	03/20/13 18:48	
Thallium	ND		1.0	0.20	ug/L		03/20/13 13:48	03/20/13 18:48	
Method: 245.1 - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.20	0.10	ug/L		03/20/13 12:27	03/20/13 19:39	
Method: 245.1 - Mercury (CVAA) - D	issolved								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.20	0.10	ug/L		03/20/13 12:27	03/20/13 16:19	
Method: SM 2340B - Total Hardness	•								
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Hardness, as CaCO3	210		0.33	0.17	mg/L			03/11/13 11:11	
General Chemistry	Dec. 4	Qualifica	DI	MD	Unit	-	Dronger	Analyses	Dil F
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total Suspended Solids	310		20		mg/L			03/12/13 20:09	
•				2 0	ua/l		ハンノイイノイン イモ・ハイ	no/44/40 04-00	
Cyanide, Total	ND		5.0	3.0	ug/L		03/11/13 15:04	03/11/13 21:38	

TestAmerica Irvine

03/08/13 17:30

Analyzed

03/08/13 17:30

Prepared

RL

2.0

>=1600

>=1600

Result Qualifier

Method: SM 9221F - E.Coli (Multiple-Tube Fermentation; EC-MUG)

MPN/100mL

RL Unit

2.0 MPN/100mL

2

4

6

8

9

10

12

13

Method Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL IRV
525.2	Semivolatile Organic Compounds (GC/MS)	EPA	TAL IRV
625	Semivolatile Organic Compounds (GC/MS)	EPA	TAL IRV
608	Organochlorine Pesticides in Water	40CFR136A	TAL IRV
608	Polychlorinated Biphenyls (PCBs) (GC)	40CFR136A	TAL IRV
218.6	Chromium, Hexavalent (Ion Chromatography)	EPA	TAL IRV
1613B	Dioxins and Furans (HRGC/HRMS)	40CFR136A	TAL SAC
200.7 Rev 4.4	Metals (ICP)	EPA	TAL IRV
200.8	Metals (ICP/MS)	EPA	TAL IRV
245.1	Mercury (CVAA)	EPA	TAL IRV
SM 2340B	Total Hardness (as CaCO3) by calculation	SM	TAL IRV
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL IRV
SM 4500 CN E	Cyanide, Total (Low Level)	SM	TAL IRV
SM 9221E	Coliforms, Fecal (Multiple-Tube Fermentation)	SM	TAL IRV
SM 9221F	E.Coli (Multiple-Tube Fermentation; EC-MUG)	SM	TAL IRV
DNA-human bacteriodes; EMSL	General Sub Contract Method	NONE	EMSL

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

NONE = NONE

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TestAmerica Irvine

2

5

8

10

111

12

14

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Lab Sample ID: 440-40328-1

Matrix: Water

Client Sample ID: Arroyo Simi-FP

Date Collected: 03/08/13 12:15 Date Received: 03/08/13 16:45

Dil Batch Initial Final Batch Prepared Batch **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab TAL IRV Total/NA Analysis 624 10 mL 10 mL 90650 03/10/13 16:47 WC MP Total/NA Analysis 624 1 10 mL 10 mL 92541 03/19/13 00:21 TAL IRV Total/NA Prep 525.2 1040 mL 1 mL 90585 03/09/13 07:08 CN TAL IRV Total/NA Analysis 525.2 1 91197 03/12/13 19:02 CP TAL IRV Total/NA 625 1055 mL 91160 03/12/13 13:52 TAL IRV Prep 2 mL AG Total/NA Analysis 625 1 92112 03/16/13 09:30 DF TAL IRV Total/NA 625 RE 1055 mL 94270 03/26/13 12:03 AG TAL IRV Prep 2 mL Total/NA Analysis 625 RE 1 94968 03/28/13 22:54 DF TAL IRV Prep 90661 03/10/13 12:49 TAL IRV Total/NA 608 1060 mL 2 mL AB Total/NA Analysis 608 1 90786 03/11/13 16:09 JM TAL IRV 90661 Total/NA Prep 608 1060 ml 2 ml 03/10/13 12:49 AB TAI IRV Total/NA 608 1 91083 03/12/13 19:22 DD TAL IRV Analysis Total/NA Analysis 2186 1 10 ml 90811 03/11/13 22:19 QPD TAL IRV Total/NA Prep 1613B 990.3 mL 20 uL 12332 03/14/13 08:56 NM TAL SAC Total/NA 1613B 12476 03/16/13 11:18 MG TAL SAC Analysis 1 Total/NA Analysis SM 2340B 90113 03/11/13 11:11 FR TAL IRV Prep DT TAL IRV Dissolved 200.2 50 mL 50 mL 92375 03/18/13 08:20 Dissolved Analysis 200.7 Rev 4.4 92623 03/18/13 19:01 ΤK TAL IRV Total Recoverable Prep 200.2 50 mL 50 mL 92737 03/19/13 14:45 ND TAL IRV Total Recoverable Analysis 200.7 Rev 4.4 1 92891 03/19/13 20:34 VS TAL IRV Total Recoverable Prep 200.2 50 mL 50 mL 92737 03/19/13 14:45 ND TAL IRV Total Recoverable Analysis 200.7 Rev 4.4 1 92891 03/19/13 20:34 VS TAL IRV 50 mL Total Recoverable Prep 200.2 50 mL 92787 03/19/13 17:23 ND TAL IRV 2 92959 03/20/13 10:35 Total Recoverable Analysis 200.8 NH TAL IRV 20 mL 20 mL 92967 Dissolved Prep 245.1 03/20/13 12:27 MM TAL IRV Dissolved Analysis 245.1 93120 03/20/13 16:19 DB TAL IRV 1 Dissolved 25 mL 25 mL 93021 Prep 200.2 03/20/13 13:48 ND TAL IRV Dissolved Analysis 200.8 1 93128 03/20/13 18:48 YS TAL IRV Total/NA 20 ml 20 mL 92502 TAL IRV Prep 245 1 03/20/13 12:27 MM Total/NA Analysis 245.1 93279 03/20/13 19:39 DB TAL IRV 1 Total Recoverable Prep 200.2 50 mL 50 mL 93130 03/20/13 19:03 ND TAL IRV Total Recoverable Analysis 200.8 2 93289 03/21/13 10:09 RC TAL IRV Total/NA Prep Distill/CN 50 mL 50 mL 90885 03/11/13 15:04 ВТ TAL IRV Total/NA SM 4500 CN E 90984 03/11/13 21:38 ВТ TAL IRV Analysis 1 91279 Total/NA Analysis SM 2540D 1 50 mL 100 mL 03/12/13 20:09 DK TAL IRV Total/NA SM 9221E 100 mL 100 mL 90673 EF TAL IRV Analysis 1 (Start) 03/08/13 17:30 03/11/13 14:50 (End) Total/NA Analysis SM 9221F 100 mL 100 mL 90674 EF TAL IRV 03/08/13 17:30 (Start) (End) 03/11/13 14:50

TestAmerica Irvine

3

6

9

10

12

14

1 E

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

A

7

0

10

11

13

14

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-90650/5

Matrix: Water

Analysis Batch: 90650

Client Sampl	e ID:	Meth	od Bla	ınk
F	rep ⁻	Type:	Total/	NA

мв мв

Analyte	Result Qualifier	RL	MDL Unit	D I	Prepared	Analyzed	Dil Fac
2-Chloroethyl vinyl ether	ND ND	2.0	1.8 ug/L			03/10/13 12:05	1
Acrolein	ND	5.0	4.0 ug/L			03/10/13 12:05	1
Acrylonitrile	ND	2.0	1.2 ug/L			03/10/13 12:05	1
	MB MB						

	MB MB				
rrogate %Re	covery Qualifier	Limits	Prepared	Analyzed	Dil Fac
uene-d8 (Surr)	101	80 - 120		03/10/13 12:05	1
romofluoromethane (Surr)	92	80 - 120		03/10/13 12:05	1

Lab Sample ID: LCS 440-90650/6

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 90650

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	96		80 - 120

Lab Sample ID: 440-40019-S-1 MS

Matrix: Water

Client Sample ID: Matrix Spike
Prep Type: Total/NA

Analysis Batch: 90650

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Chloroethyl vinyl ether	ND		25.0	15.5		ug/L		62	25 - 170	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	95		80 - 120

Lab Sample ID: 440-40019-S-1 MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 90650

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Chloroethyl vinyl ether	ND		25.0	17.0		ug/L		68	25 - 170	9	25

		MSD	MSD	
	Surrogate	%Recovery	Qualifier	Limits
	Toluene-d8 (Surr)	103		80 - 120
ı	Dibromofluoromethane (Surr)	99		80 - 120

Lab Sample ID: MB 440-92541/4 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 92541

,	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.30	ug/L			03/18/13 19:43	1

TestAmerica Irvine

Prep Type: Total/NA

4

6

8

9

11

13

14

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-92541/4 Matrix: Water

Analysis Batch: 92541

	MB	MB							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50	0.30	ug/L			03/18/13 19:43	1
1,1,2-Trichloroethane	ND		0.50	0.30	ug/L			03/18/13 19:43	1
1,1-Dichloroethane	ND		0.50	0.40	ug/L			03/18/13 19:43	1
1,1-Dichloroethene	ND		0.50	0.42	ug/L			03/18/13 19:43	1
1,2-Dichlorobenzene	ND		0.50	0.32	ug/L			03/18/13 19:43	1
1,2-Dichloroethane	ND		0.50	0.28	ug/L			03/18/13 19:43	1
1,2-Dichloropropane	ND		0.50	0.35	ug/L			03/18/13 19:43	1
1,3-Dichlorobenzene	ND		0.50	0.35	ug/L			03/18/13 19:43	1
1,2,3-Trichloropropane	ND		0.50	0.40	ug/L			03/18/13 19:43	1
1,4-Dichlorobenzene	ND		0.50	0.37	ug/L			03/18/13 19:43	1
Benzene	ND		0.50	0.28	ug/L			03/18/13 19:43	1
Bromoform	ND		0.50	0.40	ug/L			03/18/13 19:43	1
Bromomethane	ND		0.50	0.42	ug/L			03/18/13 19:43	1
Carbon tetrachloride	ND		0.50	0.28	ug/L			03/18/13 19:43	1
Chlorobenzene	ND		0.50	0.36	ug/L			03/18/13 19:43	1
Dibromochloromethane	ND		0.50	0.40	ug/L			03/18/13 19:43	1
Chloroethane	ND		0.50	0.40	ug/L			03/18/13 19:43	1
Chloroform	ND		0.50	0.33	ug/L			03/18/13 19:43	1
Chloromethane	ND		0.50	0.40	ug/L			03/18/13 19:43	1
cis-1,3-Dichloropropene	ND		0.50	0.22	ug/L			03/18/13 19:43	1
Bromodichloromethane	ND		0.50	0.30	ug/L			03/18/13 19:43	1
Ethylbenzene	ND		0.50	0.25	ug/L			03/18/13 19:43	1
Methylene Chloride	ND		1.0	0.95	ug/L			03/18/13 19:43	1
Tetrachloroethene	ND		0.50	0.32	ug/L			03/18/13 19:43	1
Toluene	ND		0.50	0.36	ug/L			03/18/13 19:43	1
trans-1,2-Dichloroethene	ND		0.50	0.30	ug/L			03/18/13 19:43	1
tert-Butanol	ND		10	6.5	ug/L			03/18/13 19:43	1
trans-1,3-Dichloropropene	ND		0.50	0.32	ug/L			03/18/13 19:43	1
Trichlorofluoromethane	ND		0.50	0.34	ug/L			03/18/13 19:43	1
Vinyl chloride	ND		0.50	0.40	ug/L			03/18/13 19:43	1
Trichloroethene	ND		0.50	0.26	ug/L			03/18/13 19:43	1
cis-1,2-Dichloroethene	ND		0.50	0.32	ug/L			03/18/13 19:43	1
1,2-Dibromoethane (EDB)	ND		0.50	0.40	ug/L			03/18/13 19:43	1
Diisopropyl ether	ND		0.50	0.25	ug/L			03/18/13 19:43	1
Methyl tert-butyl ether	ND		0.50	0.32	ug/L			03/18/13 19:43	1
Naphthalene	ND		0.50		ug/L			03/18/13 19:43	1
Tert-amyl methyl ether	ND		0.50	0.33	ug/L			03/18/13 19:43	1
Ethyl tert-butyl ether	ND		0.50		ug/L			03/18/13 19:43	1
Xylenes, Total	ND		1.0		ug/L			03/18/13 19:43	1

ИΒ	MΒ

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		80 - 120		03/18/13 19:43	1
Dibromofluoromethane (Surr)	113		80 - 120		03/18/13 19:43	1
Toluene-d8 (Surr)	109		80 - 120		03/18/13 19:43	1

TestAmerica Irvine

5

7

8

3

11

13

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-92541/5

Matrix: Water

Analysis Batch: 92541

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	27.9		ug/L		112	65 - 135	
1,1,2,2-Tetrachloroethane	25.0	24.3		ug/L		97	55 ₋ 130	
1,1,2-Trichloroethane	25.0	25.8		ug/L		103	70 - 125	
1,1-Dichloroethane	25.0	25.2		ug/L		101	70 - 125	
1,1-Dichloroethene	25.0	26.9		ug/L		108	70 - 125	
1,2-Dichlorobenzene	25.0	25.3		ug/L		101	75 _ 120	
1,2-Dichloroethane	25.0	26.2		ug/L		105	60 - 140	
1,2-Dichloropropane	25.0	24.1		ug/L		97	70 - 125	
1,3-Dichlorobenzene	25.0	25.9		ug/L		103	75 - 120	
1,2,3-Trichloropropane	25.0	21.7		ug/L		87	60 - 130	
1,4-Dichlorobenzene	25.0	25.4		ug/L		102	75 - 120	
Benzene	25.0	23.9		ug/L		96	70 - 120	
Bromoform	25.0	29.4		ug/L		118	55 ₋ 130	
Bromomethane	25.0	25.2		ug/L		101	65 _ 140	
Carbon tetrachloride	25.0	29.7		ug/L		119	65 - 140	
Chlorobenzene	25.0	25.3		ug/L		101	75 - 120	
Dibromochloromethane	25.0	30.3		ug/L		121	70 - 140	
Chloroethane	25.0	24.7		ug/L		99	60 _ 140	
Chloroform	25.0	27.5		ug/L		110	70 - 130	
Chloromethane	25.0	21.3		ug/L		85	50 - 140	
cis-1,3-Dichloropropene	25.0	29.6		ug/L		119	75 ₋ 125	
Bromodichloromethane	25.0	28.1		ug/L		113	70 - 135	
Ethylbenzene	25.0	25.5		ug/L		102	75 ₋ 125	
Methylene Chloride	25.0	27.0		ug/L		108	55 ₋ 130	
Tetrachloroethene	25.0	25.0		ug/L		100	70 ₋ 125	
Toluene	25.0	24.9		ug/L		100	70 - 120	
trans-1,2-Dichloroethene	25.0	26.3		ug/L		105	70 - 125	
tert-Butanol	125	129		ug/L		103	70 - 135	
trans-1,3-Dichloropropene	25.0	29.7		ug/L		119	70 - 125	
Trichlorofluoromethane	25.0	28.3		ug/L		113	65 - 145	
Vinyl chloride	25.0	25.9		ug/L		104	55 - 135	
Trichloroethene	25.0	25.2		ug/L		101	70 - 125	
cis-1,2-Dichloroethene	25.0	27.9		ug/L		112	70 - 125	
1,2-Dibromoethane (EDB)	25.0	26.0		ug/L		104	75 - 125	
Diisopropyl ether	25.0	25.4		ug/L		102	60 - 135	
Methyl tert-butyl ether	25.0	24.2		ug/L		97	60 ₋ 135	
Naphthalene	25.0	20.4		ug/L		82	55 - 135	
Tert-amyl methyl ether	25.0	23.0		ug/L		92	60 _ 135	
Ethyl tert-butyl ether	25.0	23.8		ug/L		95	65 ₋ 135	
Xylenes, Total	75.0	75.2		ug/L		100	70 ₋ 125	

CS	LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		80 - 120
Dibromofluoromethane (Surr)	118		80 - 120
Toluene-d8 (Surr)	110		80 - 120

TestAmerica Irvine

2

5

7

9

11

13

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-40534-D-1 MS

Matrix: Water

Surrogate

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 92541

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	-	Spike		MS				%Rec.	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		25.0	27.3		ug/L		109	65 - 140	
1,1,2,2-Tetrachloroethane	ND		25.0	25.4		ug/L		102	55 - 135	
1,1,2-Trichloroethane	ND		25.0	27.6		ug/L		110	65 - 130	
1,1-Dichloroethane	ND		25.0	25.3		ug/L		101	65 - 130	
1,1-Dichloroethene	ND		25.0	25.6		ug/L		103	60 - 130	
1,2-Dichlorobenzene	ND		25.0	25.2		ug/L		101	75 - 125	
1,2-Dichloroethane	ND		25.0	26.4		ug/L		105	60 - 140	
1,2-Dichloropropane	ND		25.0	24.2		ug/L		97	65 _ 130	
1,3-Dichlorobenzene	ND		25.0	25.7		ug/L		103	75 - 125	
1,2,3-Trichloropropane	ND		25.0	22.5		ug/L		90	55 - 135	
1,4-Dichlorobenzene	ND		25.0	26.1		ug/L		104	75 ₋ 125	
Benzene	ND		25.0	23.8		ug/L		95	65 _ 125	
Bromoform	ND		25.0	31.4		ug/L		125	55 - 135	
Bromomethane	ND		25.0	24.4		ug/L		98	55 - 145	
Carbon tetrachloride	ND		25.0	29.3		ug/L		117	65 - 140	
Chlorobenzene	ND		25.0	26.1		ug/L		104	75 - 125	
Dibromochloromethane	ND		25.0	31.5		ug/L		126	65 - 140	
Chloroethane	ND		25.0	23.6		ug/L		95	55 ₋ 140	
Chloroform	ND		25.0	27.2		ug/L		109	65 ₋ 135	
Chloromethane	ND		25.0	20.8		ug/L		83	45 - 145	
cis-1,3-Dichloropropene	ND		25.0	30.7		ug/L		123	70 - 130	
Bromodichloromethane	ND		25.0	29.1		ug/L		116	70 - 135	
Ethylbenzene	ND		25.0	25.8		ug/L		103	65 _ 130	
Methylene Chloride	ND		25.0	25.9		ug/L		104	50 ₋ 135	
Tetrachloroethene	ND		25.0	25.1		ug/L		100	65 ₋ 130	
Toluene	ND		25.0	24.4		ug/L		97	70 _ 125	
trans-1,2-Dichloroethene	ND		25.0	26.0		ug/L		104	65 _ 130	
tert-Butanol	28		125	158		ug/L		104	65 _ 140	
trans-1,3-Dichloropropene	ND		25.0	31.1		ug/L		124	65 _ 135	
Trichlorofluoromethane	ND		25.0	26.6		ug/L		106	60 - 145	
Vinyl chloride	ND		25.0	25.4		ug/L		102	45 _ 140	
Trichloroethene	ND		25.0	25.0		ug/L		100	65 - 125	
cis-1,2-Dichloroethene	ND		25.0	28.3		ug/L		113	65 _ 130	
1,2-Dibromoethane (EDB)	ND		25.0	27.2		ug/L		109	70 - 130	
Diisopropyl ether	ND		25.0	25.2		ug/L		101	60 - 140	
Methyl tert-butyl ether	ND		25.0	26.0		ug/L		104	55 ₋ 145	
Naphthalene	ND		25.0	20.7		ug/L		83	50 - 140	
Tert-amyl methyl ether	ND		25.0	25.5		ug/L		102	60 - 140	
Ethyl tert-butyl ether	ND		25.0	24.2		ug/L		97	60 _ 135	
Xylenes, Total	ND		75.0	76.2		ug/L		102	60 _ 130	
	MS									

TestAmerica Irvine

Limits 80 - 120

80 - 120

80 - 120

%Recovery Qualifier

111

119

110

A

8

10

12

13

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-40534-D-1 MSD

Matrix: Water

Analysis Batch: 92541

Client: MWH Americas Inc

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		25.0	27.9		ug/L		111	65 - 140	2	20
1,1,2,2-Tetrachloroethane	ND		25.0	25.2		ug/L		101	55 - 135	1	30
1,1,2-Trichloroethane	ND		25.0	26.4		ug/L		106	65 _ 130	5	25
1,1-Dichloroethane	ND		25.0	26.1		ug/L		105	65 - 130	3	20
1,1-Dichloroethene	ND		25.0	26.6		ug/L		107	60 - 130	4	20
1,2-Dichlorobenzene	ND		25.0	25.9		ug/L		104	75 - 125	3	20
1,2-Dichloroethane	ND		25.0	26.9		ug/L		108	60 - 140	2	20
1,2-Dichloropropane	ND		25.0	24.9		ug/L		100	65 - 130	3	20
1,3-Dichlorobenzene	ND		25.0	26.3		ug/L		105	75 ₋ 125	2	20
1,2,3-Trichloropropane	ND		25.0	22.9		ug/L		91	55 - 135	2	30
1,4-Dichlorobenzene	ND		25.0	26.5		ug/L		106	75 - 125	2	20
Benzene	ND		25.0	24.4		ug/L		98	65 - 125	3	20
Bromoform	ND		25.0	30.6		ug/L		122	55 ₋ 135	2	25
Bromomethane	ND		25.0	25.4		ug/L		102	55 - 145	4	25
Carbon tetrachloride	ND		25.0	29.8		ug/L		119	65 - 140	2	25
Chlorobenzene	ND		25.0	26.0		ug/L		104	75 - 125	0	20
Dibromochloromethane	ND		25.0	31.3		ug/L		125	65 - 140	1	25
Chloroethane	ND		25.0	25.2		ug/L		101	55 ₋ 140	6	25
Chloroform	ND		25.0	26.8		ug/L		107	65 _ 135	2	20
Chloromethane	ND		25.0	21.2		ug/L		85	45 - 145	2	25
cis-1,3-Dichloropropene	ND		25.0	30.3		ug/L		121	70 - 130	1	20
Bromodichloromethane	ND		25.0	29.7		ug/L		119	70 - 135	2	20
Ethylbenzene	ND		25.0	25.5		ug/L		102	65 _ 130	1	20
Methylene Chloride	ND		25.0	26.2		ug/L		105	50 ₋ 135	1	20
Tetrachloroethene	ND		25.0	25.2		ug/L		101	65 _ 130	1	20
Toluene	ND		25.0	25.0		ug/L		100	70 - 125	2	20
trans-1,2-Dichloroethene	ND		25.0	26.2		ug/L		105	65 - 130	1	20
tert-Butanol	28		125	165		ug/L		109	65 _ 140	4	25
trans-1,3-Dichloropropene	ND		25.0	31.3		ug/L		125	65 _ 135	1	25
Trichlorofluoromethane	ND		25.0	28.0		ug/L		112	60 - 145	5	25
Vinyl chloride	ND		25.0	27.1		ug/L		108	45 - 140	6	30
Trichloroethene	ND		25.0	25.3		ug/L		101	65 - 125	1	20
cis-1,2-Dichloroethene	ND		25.0	28.7		ug/L		115	65 - 130	1	20
1,2-Dibromoethane (EDB)	ND		25.0	27.1		ug/L		108	70 - 130	0	25
Diisopropyl ether	ND		25.0	25.9		ug/L		104	60 - 140	3	25
Methyl tert-butyl ether	ND		25.0	25.9		ug/L		104	55 ₋ 145	0	25
Naphthalene	ND		25.0	21.2		ug/L		85	50 - 140	2	30
Tert-amyl methyl ether	ND		25.0	25.8		ug/L		103	60 - 140	1	30
Ethyl tert-butyl ether	ND		25.0	23.8		ug/L		95	60 ₋ 135	1	25
Xylenes, Total	ND		75.0	74.8		ug/L		100	60 - 130	2	20

MSD MSD	

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		80 - 120
Dibromofluoromethane (Surr)	116		80 - 120
Toluene-d8 (Surr)	110		80 120

TestAmerica Irvine

Page 22 of 64

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client: MWH Americas Inc

Method: 525.2 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-90585/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Prep Batch: 90585 Analysis Batch: 90937

мв мв Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 1.0 0.080 ug/L 03/09/13 07:08 03/11/13 18:35 Chlorpyrifos ND Diazinon ND 0.25 03/09/13 07:08 03/11/13 18:35 0.10 ug/L

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,3-Dimethyl-2-nitrobenzene	98	70 - 130	03/09/13 07:08	03/11/13 18:35	1
Perylene-d12	87	70 - 130	03/09/13 07:08	03/11/13 18:35	1
Triphenylphosphate	141 LH	70 - 130	03/09/13 07:08	03/11/13 18:35	1

Client Sample ID: Method Blank Lab Sample ID: MB 440-90585/1-A

Matrix: Water Prep Type: Total/NA Analysis Batch: 91851 Prep Batch: 90585 MD MD

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorpyrifos	ND		1.0	0.080	ug/L		03/09/13 07:08	03/14/13 22:45	1
Diazinon	ND		0.25	0.10	ug/L		03/09/13 07:08	03/14/13 22:45	1

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	l Analyzed	Dil Fac
1,3-Dimethyl-2-nitrobenzene	95		70 - 130	03/09/13 07	:08 03/14/13 22:45	1
Perylene-d12	101		70 - 130	03/09/13 07	:08 03/14/13 22:45	1
Triphenylphosphate	134	LH	70 - 130	03/09/13 07	:08 03/14/13 22:45	1

Lab Sample ID: LCS 440-90585/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 90937

Triphenylphosphate

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorpyrifos	 5.00	4.92		ug/L		98	70 - 130	
Diazinon	5.00	4.26		ug/L		85	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,3-Dimethyl-2-nitrobenzene	100		70 - 130
Perylene-d12	94		70 - 130

138 LH

MD MD

Lab Sample ID: LCS 440-90585/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

70 - 130

Analysis Batch: 91851 Prep Batch: 90585

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorpyrifos	5.00	5.51	-	ug/L		110	70 - 130	
Diazinon	5.00	4.59		ua/L		92	70 - 130	

Diazilion		5.00
	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
1,3-Dimethyl-2-nitrobenzene	94	70 - 130
Perylene-d12	98	70 - 130
Triphenylphosphate	132 LH	70 - 130

TestAmerica Irvine

Prep Batch: 90585

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client: MWH Americas Inc

Method: 525.2 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 440-90585/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 90937** Prep Batch: 90585 Spike LCSD LCSD

Analyte Added Result Qualifier D %Rec Limits RPD Limit Unit 5.00 95 Chlorpyrifos 4.74 ug/L 70 - 130 4 30

LCSD LCSD Qualifier Limits Surrogate %Recovery 70 - 130 1,3-Dimethyl-2-nitrobenzene 103 Perylene-d12 90 70 - 130 121 70 - 130 Triphenylphosphate

Lab Sample ID: LCSD 440-90585/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA **Analysis Batch: 91851** Prep Batch: 90585

LCSD LCSD Spike **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 5.00 98 30 Chlorpyrifos 4.91 ug/L 70 _ 130 11 Diazinon 5.00 3.58 ug/L 72 70 - 130

LCSD LCSD Surrogate %Recovery Qualifier Limits 1,3-Dimethyl-2-nitrobenzene 105 70 - 130 70 - 130 Perylene-d12 95 70 - 130 114 Triphenylphosphate

Lab Sample ID: 440-39233-Q-6-A MS Client Sample ID: Matrix Spike

Matrix: Water Prep Type: Total/NA Prep Batch: 90585 **Analysis Batch: 91197**

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 4.78 Chlorpyrifos ND 4.07 ug/L 85 70 - 130 ND LR 4.78 2.45 LN 51 Diazinon ug/L 70 - 130

MS MS Qualifier Limits Surrogate %Recovery 70 - 130 1,3-Dimethyl-2-nitrobenzene 84 Perylene-d12 98 70 - 130 Triphenylphosphate 104 70 - 130

Method: 625 - Semivolatile Organic Compounds (GC/MS)

мв мв

Lab Sample ID: MB 440-91160/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 92112** Prep Batch: 91160

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.500	0.200	ug/L		03/12/13 13:52	03/15/13 18:15	1
Acenaphthylene	ND		0.500	0.200	ug/L		03/12/13 13:52	03/15/13 18:15	1
Aniline	ND		10.0	0.300	ug/L		03/12/13 13:52	03/15/13 18:15	1
Anthracene	ND		0.500	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
Benzidine	ND		5.00	1.00	ug/L		03/12/13 13:52	03/15/13 18:15	1
Benzo[a]anthracene	ND		5.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
Benzo[b]fluoranthene	ND		2.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1

TestAmerica Irvine

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-91160/1-A

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA
Prop Ratch: 91160

8

10

12

14

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene	ND ND		0.500	0.200	ug/L		03/12/13 13:52	03/15/13 18:15	1
Benzoic acid	ND		5.00	3.00	ug/L		03/12/13 13:52	03/15/13 18:15	1
Benzo[a]pyrene	ND		2.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
Bis(2-chloroethoxy)methane	ND		0.500	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
Bis(2-chloroethyl)ether	ND		0.500	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
Bis(2-ethylhexyl) phthalate	ND		5.00	1.70	ug/L		03/12/13 13:52	03/15/13 18:15	1
4-Bromophenyl phenyl ether	ND		1.00		ug/L		03/12/13 13:52	03/15/13 18:15	1
Butyl benzyl phthalate	ND		5.00	0.700			03/12/13 13:52	03/15/13 18:15	1
4-Chloro-3-methylphenol	ND		2.00	0.200			03/12/13 13:52	03/15/13 18:15	1
2-Chloronaphthalene	ND		0.500	0.100			03/12/13 13:52	03/15/13 18:15	1
2-Chlorophenol	ND		1.00	0.200			03/12/13 13:52	03/15/13 18:15	1
4-Chlorophenyl phenyl ether	ND		0.500	0.200			03/12/13 13:52	03/15/13 18:15	1
Chrysene	ND		0.500	0.100	_		03/12/13 13:52	03/15/13 18:15	1
Dibenz(a,h)anthracene	ND		0.500	0.100	-		03/12/13 13:52	03/15/13 18:15	1
Di-n-butyl phthalate	ND		2.00	0.300			03/12/13 13:52	03/15/13 18:15	1
1,2-Dichlorobenzene	ND ND		0.500	0.100	-		03/12/13 13:52	03/15/13 18:15	1
1,3-Dichlorobenzene	ND ND		0.500	0.100	_		03/12/13 13:52	03/15/13 18:15	1
1,4-Dichlorobenzene	ND		0.500	0.200			03/12/13 13:52	03/15/13 18:15	
,					-				
3,3'-Dichlorobenzidine	ND		5.00	0.500	_		03/12/13 13:52	03/15/13 18:15	1
2,4-Dichlorophenol	ND		2.00	0.200			03/12/13 13:52	03/15/13 18:15	1
Diethyl phthalate	ND		1.00	0.100	-		03/12/13 13:52	03/15/13 18:15	1
2,4-Dimethylphenol	ND		2.00	0.300	-		03/12/13 13:52	03/15/13 18:15	1
Dimethyl phthalate	ND		0.500	0.200			03/12/13 13:52	03/15/13 18:15	
4,6-Dinitro-2-methylphenol	ND		5.00	0.300	-		03/12/13 13:52	03/15/13 18:15	1
2,4-Dinitrophenol	ND		5.00	0.900	-		03/12/13 13:52	03/15/13 18:15	1
2,4-Dinitrotoluene	ND		5.00	0.200			03/12/13 13:52	03/15/13 18:15	1
2,6-Dinitrotoluene	ND		5.00	0.100	-		03/12/13 13:52	03/15/13 18:15	1
Di-n-octyl phthalate	ND		5.00	0.200			03/12/13 13:52	03/15/13 18:15	1
1,2-Diphenylhydrazine(as	ND		1.00	0.200	ug/L		03/12/13 13:52	03/15/13 18:15	1
Azobenzene)				0.400			00/40/40 40 50	00/45/40 40 45	
Fluoranthene	ND		0.500	0.100	_		03/12/13 13:52	03/15/13 18:15	1
Fluorene	ND		0.500	0.100	_		03/12/13 13:52	03/15/13 18:15	1
Hexachlorobenzene	ND		1.00	0.100			03/12/13 13:52	03/15/13 18:15	1
Hexachlorobutadiene	ND		2.00	0.200	-		03/12/13 13:52	03/15/13 18:15	1
Hexachloroethane	ND		3.00	0.200	-		03/12/13 13:52	03/15/13 18:15	1
Hexachlorocyclopentadiene	ND		5.00	0.100			03/12/13 13:52	03/15/13 18:15	1
Indeno[1,2,3-cd]pyrene	ND		2.00	0.100			03/12/13 13:52	03/15/13 18:15	1
Isophorone	ND		1.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
4-Methylphenol	ND		5.00	0.200	ug/L		03/12/13 13:52	03/15/13 18:15	1
Naphthalene	ND		1.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
Nitrobenzene	ND		1.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
2-Nitrophenol	ND		2.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
4-Nitrophenol	ND		5.00	2.50	ug/L		03/12/13 13:52	03/15/13 18:15	1
N-Nitrosodimethylamine	ND		2.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
N-Nitrosodiphenylamine	ND		1.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
N-Nitrosodi-n-propylamine	ND		2.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
Pentachlorophenol	ND		2.00	0.400	-		03/12/13 13:52	03/15/13 18:15	1
Phenanthrene	ND		0.500	0.100			03/12/13 13:52	03/15/13 18:15	1

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 440-91160/1-A

Matrix: Water

Analysis Batch: 92112

Client: MWH Americas Inc

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 91160

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		1.00	0.300	ug/L		03/12/13 13:52	03/15/13 18:15	1
Pyrene	ND		0.500	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
1,2,4-Trichlorobenzene	ND		1.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
2,4,6-Trichlorophenol	ND		1.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
2-Methylphenol	ND		2.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
4-Chloroaniline	ND		2.00	0.300	ug/L		03/12/13 13:52	03/15/13 18:15	1
2-Methylnaphthalene	ND		1.00	0.200	ug/L		03/12/13 13:52	03/15/13 18:15	1
2-Nitroaniline	ND		5.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
3-Nitroaniline	ND		5.00	1.00	ug/L		03/12/13 13:52	03/15/13 18:15	1
Dibenzofuran	ND		0.500	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
4-Nitroaniline	ND		5.00	0.500	ug/L		03/12/13 13:52	03/15/13 18:15	1
Benzo[g,h,i]perylene	ND		5.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
Benzyl alcohol	ND		5.00	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1
bis (2-chloroisopropyl) ether	ND		0.500	0.100	ug/L		03/12/13 13:52	03/15/13 18:15	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
2-Fluorobiphenyl	87		50 - 120	03/12/13 13:52 03/15/13 18:15	1
2-Fluorophenol	87		30 - 120	03/12/13 13:52 03/15/13 18:15	1
2,4,6-Tribromophenol	104		40 - 120	03/12/13 13:52 03/15/13 18:15	1
Nitrobenzene-d5	95		45 - 120	03/12/13 13:52 03/15/13 18:15	1
Terphenyl-d14	109		50 - 125	03/12/13 13:52 03/15/13 18:15	1
Phenol-d6	91		35 - 120	03/12/13 13:52 03/15/13 18:15	1

Lab Sample ID: LCS 440-91160/2-A

Matrix: Water

Analysis Batch: 92112

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 91160

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	10.0	9.099		ug/L		91	57 - 120	
Acenaphthylene	10.0	9.090		ug/L		91	60 - 120	
Aniline	10.0	8.841	J,DX	ug/L		88	53 - 120	
Anthracene	10.0	9.861		ug/L		99	62 _ 120	
Benzidine	10.0	4.962	J,DX	ug/L		50	20 - 168	
Benzo[a]anthracene	10.0	9.683		ug/L		97	62 - 120	
Benzo[b]fluoranthene	10.0	8.596		ug/L		86	46 - 125	
Benzo[k]fluoranthene	10.0	9.916		ug/L		99	61 - 127	
Benzoic acid	10.0	7.520		ug/L		75	20 - 120	
Benzo[a]pyrene	10.0	9.383		ug/L		94	66 - 130	
Bis(2-chloroethoxy)methane	10.0	8.597		ug/L		86	57 - 120	
Bis(2-chloroethyl)ether	10.0	8.729		ug/L		87	54 - 120	
Bis(2-ethylhexyl) phthalate	10.0	11.10		ug/L		111	61 - 126	
4-Bromophenyl phenyl ether	10.0	9.243		ug/L		92	58 - 120	
Butyl benzyl phthalate	10.0	10.53		ug/L		105	57 - 129	
4-Chloro-3-methylphenol	10.0	8.108		ug/L		81	46 - 123	
2-Chloronaphthalene	10.0	8.022		ug/L		80	54 - 120	
2-Chlorophenol	10.0	8.130		ug/L		81	20 - 122	
4-Chlorophenyl phenyl ether	10.0	10.12		ug/L		101	50 - 122	
Chrysene	10.0	9.862		ug/L		99	63 - 120	

TestAmerica Irvine

Page 26 of 64

4/3/2013

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-91160/2-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 92112

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 91160

Analysis Batch: 92112							Prep Batch: 911		
	Spike		LCS				%Rec.		
Analyte	Added		Qualifier	Unit	D	%Rec	Limits		
Dibenz(a,h)anthracene	10.0	10.03		ug/L		100	56 - 124		
Di-n-butyl phthalate	10.0	10.42		ug/L		104	60 - 126		
1,2-Dichlorobenzene	10.0	6.614		ug/L		66	43 - 120		
1,3-Dichlorobenzene	10.0	6.171		ug/L		62	41 - 120		
1,4-Dichlorobenzene	10.0	6.367		ug/L		64	41 - 120		
3,3'-Dichlorobenzidine	10.0	6.427		ug/L		64	25 - 135		
2,4-Dichlorophenol	10.0	8.301		ug/L		83	21 - 132		
Diethyl phthalate	10.0	10.66		ug/L		107	44 - 131		
2,4-Dimethylphenol	10.0	7.723		ug/L		77	51 - 120		
Dimethyl phthalate	10.0	10.69		ug/L		107	33 - 140		
4,6-Dinitro-2-methylphenol	10.0	9.334		ug/L		93	22 - 147		
2,4-Dinitrophenol	10.0	8.442		ug/L		84	20 - 134		
2,4-Dinitrotoluene	10.0	9.942		ug/L		99	65 - 120		
2,6-Dinitrotoluene	10.0	9.954		ug/L		100	65 - 120		
Di-n-octyl phthalate	10.0	10.09		ug/L		101	63 - 130		
1,2-Diphenylhydrazine(as	10.0	11.67		ug/L		117	59 - 124		
Azobenzene)	40.0	40.00				400	04 400		
Fluoranthene	10.0	10.29		ug/L		103	64 - 120		
Fluorene	10.0	10.37		ug/L		104	52 ₋ 120		
Hexachlorobenzene	10.0	9.099		ug/L		91	61 - 120		
Hexachlorobutadiene	10.0	5.538		ug/L		55	34 - 120		
Hexachloroethane	10.0	5.638		ug/L		56	34 - 120		
Hexachlorocyclopentadiene	10.0	5.366		ug/L		54	23 - 120		
Indeno[1,2,3-cd]pyrene	10.0	9.744		ug/L		97	59 - 128		
Isophorone	10.0	8.761		ug/L		88	50 - 120		
4-Methylphenol	10.0	8.113		ug/L		81	50 - 120		
Naphthalene	10.0	8.433		ug/L		84	52 - 120		
Nitrobenzene	10.0	8.770		ug/L		88	52 - 120		
2-Nitrophenol	10.0	8.396		ug/L		84	21 - 132		
4-Nitrophenol	10.0	8.479		ug/L		85	20 - 151		
N-Nitrosodimethylamine	10.0	8.765		ug/L		88	20 - 143		
N-Nitrosodiphenylamine	10.0	9.166		ug/L		92	58 - 120		
N-Nitrosodi-n-propylamine	10.0	8.565		ug/L		86	60 - 120		
Pentachlorophenol	10.0	6.815		ug/L		68	20 - 137		
Phenanthrene	10.0	9.713		ug/L		97	62 - 120		
Phenol	10.0	8.268		ug/L		83	20 - 120		
Pyrene	10.0	10.08		ug/L		101	54 - 120		
1,2,4-Trichlorobenzene	10.0	6.801		ug/L		68	44 - 120		
2,4,6-Trichlorophenol	10.0	8.319		ug/L		83	20 _ 139		
2-Methylphenol	10.0	8.086		ug/L		81	47 - 120		
4-Chloroaniline	10.0	8.157		ug/L		82	52 - 120		
2-Methylnaphthalene	10.0	7.743		ug/L		77	55 _ 120		
2-Nitroaniline	10.0	9.943		ug/L		99	60 - 135		
3-Nitroaniline	10.0	9.933		ug/L		99	63 - 123		
Dibenzofuran	10.0	9.828		ug/L		98	60 - 120		
4-Nitroaniline	10.0	10.54		ug/L		105	60 - 126		
Benzo[g,h,i]perylene	10.0	9.139		ug/L		91	52 _ 136		
Benzyl alcohol	10.0	9.743		ug/L		97	50 - 120		

TestAmerica Irvine

6

8

10

12

1 A

1 E

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client: MWH Americas Inc

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-91160/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 92112** Prep Batch: 91160 LCS LCS Spike

Result Qualifier Analyte Added Unit D %Rec Limits 10.0 8 570 86 45 - 120 bis (2-chloroisopropyl) ether ug/L

LCS LCS Surrogate %Recovery Qualifier Limits 50 - 120 2-Fluorobiphenyl 86 30 - 120 2-Fluorophenol 83 2,4,6-Tribromophenol 99 40 - 120 Nitrobenzene-d5 90 45 - 120 Terphenyl-d14 96 50 - 125 Phenol-d6 35 - 120 83

Lab Sample ID: LCSD 440-91160/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water Analysis Batch: 92112							•	ype: Tot Batch:	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	10.0	9.336		ug/L		93	57 - 120	3	20
Acenaphthylene	10.0	9.571		ug/L		96	60 - 120	5	20
Aniline	10.0	9.203	J,DX	ug/L		92	53 - 120	4	30
Anthracene	10.0	10.20		ug/L		102	62 - 120	3	20

Benzidine 10.0 4.693 J,DX 47 20 - 168 6 35 ug/L 101 62 - 120 20 Benzo[a]anthracene 10.0 10.14 ug/L 5 25 Benzo[b]fluoranthene 10.0 8.487 85 46 - 125 ug/L Benzo[k]fluoranthene 10.0 9.286 ug/L 93 61 - 127 20 10.0 8.077 Benzoic acid 81 20 - 120 30 ug/L Benzo[a]pyrene 10.0 9.739 ug/L 97 66 - 130 25 Bis(2-chloroethoxy)methane 10.0 9.232 ug/L 92 57 - 120 20 Bis(2-chloroethyl)ether 10.0 8.037 ug/L 80 54 - 120 20 Bis(2-ethylhexyl) phthalate 10.0 11.94 119 61 - 126 20 ug/L 4-Bromophenyl phenyl ether 10.0 9.819 ug/L 98 58 - 120 6 25 Butyl benzyl phthalate 10.0 11.27 ug/L 113 57 - 129 20 10.0 46 - 123 2 4-Chloro-3-methylphenol 8.287 ug/L 83 25 2-Chloronaphthalene 10.0 8.739 87 54 - 120 20 ug/L 2-Chlorophenol 10.0 8.332 ug/L 83 20 - 122 25 4-Chlorophenyl phenyl ether 10.0 10.52 ug/L 105 50 - 122 20 10.0 10 27 103 63 - 12020 Chrysene ug/L 10.0 10.85 ug/L 109 56 - 124 25 Dibenz(a,h)anthracene 10.0 10.83 108 20 Di-n-butyl phthalate 60 - 126 ug/L 1,2-Dichlorobenzene 10.0 6.804 68 43 - 120 25 ug/L 1.3-Dichlorobenzene 10.0 6.622 ug/L 66 41 - 120 25 1,4-Dichlorobenzene 10.0 6.502 ug/L 65 41 - 120 2 25 3,3'-Dichlorobenzidine 10.0 6.627 ug/L 66 25 - 135 3 25 10.0 8.456 85 2,4-Dichlorophenol ug/L 21 - 132 2 20 ug/L Diethyl phthalate 10.0 11.05 111 44 - 131 30 2,4-Dimethylphenol 7.884 25 10.0 ug/L 79 51 - 1202 Dimethyl phthalate 10.0 11.27 113 33 - 140 30 ug/L 4,6-Dinitro-2-methylphenol 103 25 10.0 10.31 ug/L 22 - 14710 2,4-Dinitrophenol 10.0 9.433 ug/L 94 20 - 134 11 25 2,4-Dinitrotoluene 10.0 10.53 ug/L 105 65 - 12020

TestAmerica Irvine

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 440-91160/3-A

Matrix: Water

Analysis Batch: 92112

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

-	31	
Prep	Batch:	91160

Analysis Batch. 32112	Spike	LCSD			%Rec. RP				
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,6-Dinitrotoluene	10.0	10.58	-	ug/L		106	65 - 120	6	20
Di-n-octyl phthalate	10.0	10.40		ug/L		104	63 - 130	3	20
1,2-Diphenylhydrazine(as Azobenzene)	10.0	12.26		ug/L		123	59 - 124	5	25
Fluoranthene	10.0	10.54		ug/L		105	64 - 120	2	20
Fluorene	10.0	10.86		ug/L		109	52 - 120	5	20
Hexachlorobenzene	10.0	9.479		ug/L		95	61 - 120	4	20
Hexachlorobutadiene	10.0	6.064		ug/L		61	34 - 120	9	25
Hexachloroethane	10.0	6.059		ug/L		61	34 - 120	7	25
Hexachlorocyclopentadiene	10.0	5.643		ug/L		56	23 - 120	5	30
Indeno[1,2,3-cd]pyrene	10.0	10.08		ug/L		101	59 - 128	3	25
Isophorone	10.0	9.309		ug/L		93	50 - 120	6	20
4-Methylphenol	10.0	8.408		ug/L		84	50 - 120	4	20
Naphthalene	10.0	8.298		ug/L		83	52 - 120	2	20
Nitrobenzene	10.0	8.832		ug/L		88	52 - 120	1	25
2-Nitrophenol	10.0	8.513		ug/L		85	21 - 132	1	25
4-Nitrophenol	10.0	8.859		ug/L		89	20 - 151	4	30
N-Nitrosodimethylamine	10.0	9.054		ug/L		91	20 - 143	3	20
N-Nitrosodiphenylamine	10.0	9.322		ug/L		93	58 - 120	2	20
N-Nitrosodi-n-propylamine	10.0	9.388		ug/L		94	60 - 120	9	20
Pentachlorophenol	10.0	6.650		ug/L		67	20 - 137	2	25
Phenanthrene	10.0	10.12		ug/L		101	62 _ 120	4	20
Phenol	10.0	8.404		ug/L		84	20 - 120	2	25
Pyrene	10.0	10.50		ug/L		105	54 - 120	4	25
1,2,4-Trichlorobenzene	10.0	6.723		ug/L		67	44 - 120	1	20
2,4,6-Trichlorophenol	10.0	9.047		ug/L		90	20 - 139	8	30
2-Methylphenol	10.0	8.381		ug/L		84	47 - 120	4	20
4-Chloroaniline	10.0	8.916		ug/L		89	52 - 120	9	25
2-Methylnaphthalene	10.0	8.107		ug/L		81	55 - 120	5	20
2-Nitroaniline	10.0	10.44		ug/L		104	60 - 135	5	20
3-Nitroaniline	10.0	10.49		ug/L		105	63 - 123	5	25
Dibenzofuran	10.0	10.14		ug/L		101	60 - 120	3	20
4-Nitroaniline	10.0	10.63		ug/L		106	60 - 126	1	20
Benzo[g,h,i]perylene	10.0	10.86		ug/L		109	52 - 136	17	25
Benzyl alcohol	10.0	10.36		ug/L		104	50 - 120	6	20
bis (2-chloroisopropyl) ether	10.0	8.758		ug/L		88	45 - 120	2	20

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	92		50 - 120
2-Fluorophenol	83		30 - 120
2,4,6-Tribromophenol	100		40 - 120
Nitrobenzene-d5	89		45 - 120
Terphenyl-d14	99		50 ₋ 125
Phenol-d6	90		35 - 120

TestAmerica Irvine

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-94270/1-A

Matrix: Water

Analysis Batch: 94968

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 94270

	МВ	МВ							
Analyte	Result	Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		0.500	0.200	ug/L		03/26/13 12:03	03/28/13 20:38	
Acenaphthylene	ND		0.500	0.200	ug/L		03/26/13 12:03	03/28/13 20:38	
Aniline	ND		10.0	0.300	ug/L		03/26/13 12:03	03/28/13 20:38	
Anthracene	ND		0.500	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	
Benzidine	ND		5.00	1.00	ug/L		03/26/13 12:03	03/28/13 20:38	
Benzo[a]anthracene	ND		5.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	
Benzo[b]fluoranthene	ND		2.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	
Benzo[k]fluoranthene	ND		0.500	0.200	ug/L		03/26/13 12:03	03/28/13 20:38	
Benzoic acid	ND		5.00	3.00	ug/L		03/26/13 12:03	03/28/13 20:38	
Benzo[a]pyrene	ND		2.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	
Bis(2-chloroethoxy)methane	ND		0.500	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	
Bis(2-chloroethyl)ether	ND		0.500	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	
Bis(2-ethylhexyl) phthalate	ND		5.00	1.70	ug/L		03/26/13 12:03	03/28/13 20:38	
4-Bromophenyl phenyl ether	ND		1.00	0.200	ug/L		03/26/13 12:03	03/28/13 20:38	
Butyl benzyl phthalate	ND		5.00	0.700	ug/L		03/26/13 12:03	03/28/13 20:38	
4-Chloro-3-methylphenol	ND		2.00	0.200	ug/L		03/26/13 12:03	03/28/13 20:38	
2-Chloronaphthalene	ND		0.500	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	
2-Chlorophenol	ND		1.00	0.200	ug/L		03/26/13 12:03	03/28/13 20:38	
4-Chlorophenyl phenyl ether	ND		0.500	0.200			03/26/13 12:03	03/28/13 20:38	
Chrysene	ND		0.500	0.100	-		03/26/13 12:03	03/28/13 20:38	
Dibenz(a,h)anthracene	ND		0.500	0.100	-		03/26/13 12:03	03/28/13 20:38	
Di-n-butyl phthalate	ND		2.00	0.300			03/26/13 12:03	03/28/13 20:38	
1,2-Dichlorobenzene	ND		0.500	0.100			03/26/13 12:03	03/28/13 20:38	
1,3-Dichlorobenzene	ND		0.500	0.100	-		03/26/13 12:03	03/28/13 20:38	
1,4-Dichlorobenzene	ND		0.500		ug/L		03/26/13 12:03	03/28/13 20:38	
3,3'-Dichlorobenzidine	ND		5.00	0.500	ug/L		03/26/13 12:03	03/28/13 20:38	
2,4-Dichlorophenol	ND		2.00	0.200	-		03/26/13 12:03	03/28/13 20:38	
Diethyl phthalate	ND		1.00	0.100			03/26/13 12:03	03/28/13 20:38	
2,4-Dimethylphenol	ND		2.00		ug/L		03/26/13 12:03	03/28/13 20:38	
Dimethyl phthalate	ND		0.500	0.200	_		03/26/13 12:03	03/28/13 20:38	
4,6-Dinitro-2-methylphenol	ND		5.00	0.300			03/26/13 12:03	03/28/13 20:38	
2,4-Dinitrophenol	ND		5.00		ug/L		03/26/13 12:03	03/28/13 20:38	
2,4-Dinitrotoluene	ND		5.00	0.200	-		03/26/13 12:03	03/28/13 20:38	
2,6-Dinitrotoluene	ND		5.00	0.100			03/26/13 12:03	03/28/13 20:38	
	ND		5.00	0.200	_		03/26/13 12:03	03/28/13 20:38	
Di-n-octyl phthalate									
1,2-Diphenylhydrazine(as	ND		1.00	0.200	ug/L		03/26/13 12:03	03/28/13 20:38	
Azobenzene) Fluoranthene	ND		0.500	0.100	ua/L		03/26/13 12:03	03/28/13 20:38	
Fluorene	ND		0.500	0.100	_		03/26/13 12:03	03/28/13 20:38	
Hexachlorobenzene	ND		1.00	0.100	_		03/26/13 12:03	03/28/13 20:38	
Hexachlorobutadiene	ND		2.00	0.200			03/26/13 12:03	03/28/13 20:38	
Hexachloroethane	ND		3.00	0.200	-		03/26/13 12:03	03/28/13 20:38	
Hexachlorocyclopentadiene	ND		5.00	0.100	-		03/26/13 12:03	03/28/13 20:38	
Indeno[1,2,3-cd]pyrene	ND		2.00	0.100			03/26/13 12:03	03/28/13 20:38	
Isophorone	ND		1.00	0.100	-		03/26/13 12:03	03/28/13 20:38	
4-Methylphenol	ND		5.00	0.200	-		03/26/13 12:03	03/28/13 20:38	
Naphthalene Nitrobenzene	ND ND		1.00 1.00	0.100 0.100			03/26/13 12:03 03/26/13 12:03	03/28/13 20:38 03/28/13 20:38	

TestAmerica Irvine

А

5

7

_

10

4.0

14

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-94270/1-A

Matrix: Water

Analysis Batch: 94968

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 94270 ac 1

Dil Fac

1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Nitrophenol	ND		2.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
4-Nitrophenol	ND		5.00	2.50	ug/L		03/26/13 12:03	03/28/13 20:38	
N-Nitrosodimethylamine	ND		2.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
N-Nitrosodiphenylamine	ND		1.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
N-Nitrosodi-n-propylamine	ND		2.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
Pentachlorophenol	ND		2.00	0.400	ug/L		03/26/13 12:03	03/28/13 20:38	•
Phenanthrene	ND		0.500	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
Phenol	ND		1.00	0.300	ug/L		03/26/13 12:03	03/28/13 20:38	
Pyrene	ND		0.500	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
1,2,4-Trichlorobenzene	ND		1.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
2,4,6-Trichlorophenol	ND		1.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	· · · · · · · · ·
2-Methylphenol	ND		2.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
4-Chloroaniline	ND		2.00	0.300	ug/L		03/26/13 12:03	03/28/13 20:38	•
2-Methylnaphthalene	ND		1.00	0.200	ug/L		03/26/13 12:03	03/28/13 20:38	· · · · · · · · ·
2-Nitroaniline	ND		5.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
3-Nitroaniline	ND		5.00	1.00	ug/L		03/26/13 12:03	03/28/13 20:38	•
Dibenzofuran	ND		0.500	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	
4-Nitroaniline	ND		5.00	0.500	ug/L		03/26/13 12:03	03/28/13 20:38	
Benzo[g,h,i]perylene	ND		5.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	•
Benzyl alcohol	ND		5.00	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	· · · · · · · · ·
bis (2-chloroisopropyl) ether	ND		0.500	0.100	ug/L		03/26/13 12:03	03/28/13 20:38	

Limits

50 - 120

30 - 120

40 - 120

45 - 120

50 ₋ 125 Terphenyl-d14 97 Phenol-d6 35 - 120 79

MB MB

85

82

94

88

Qualifier

%Recovery

Analysis Batch: 94968

Lab Sample ID: LCS 440-94270/2-A

Surrogate

2-Fluorobiphenyl 2-Fluorophenol

Nitrobenzene-d5

Matrix: Water

2,4,6-Tribromophenol

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 94270

Analyzed

03/28/13 20:38

03/28/13 20:38

03/28/13 20:38

03/28/13 20:38

03/28/13 20:38

03/28/13 20:38

Prepared

03/26/13 12:03

03/26/13 12:03

03/26/13 12:03

03/26/13 12:03

03/26/13 12:03

03/26/13 12:03

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	10.0	8.565		ug/L		86	57 - 120	
Acenaphthylene	10.0	8.784		ug/L		88	60 _ 120	
Aniline	10.0	8.165	J,DX	ug/L		82	53 - 120	
Anthracene	10.0	8.975		ug/L		90	62 _ 120	
Benzidine	10.0	2.824	J,DX	ug/L		28	20 - 168	
Benzo[a]anthracene	10.0	9.160		ug/L		92	62 _ 120	
Benzo[b]fluoranthene	10.0	8.256		ug/L		83	46 - 125	
Benzo[k]fluoranthene	10.0	8.251		ug/L		83	61 - 127	
Benzoic acid	10.0	8.242		ug/L		82	20 _ 120	
Benzo[a]pyrene	10.0	8.298		ug/L		83	66 - 130	
Bis(2-chloroethoxy)methane	10.0	8.388		ug/L		84	57 ₋ 120	
Bis(2-chloroethyl)ether	10.0	8.177		ug/L		82	54 - 120	
Bis(2-ethylhexyl) phthalate	10.0	11.43		ug/L		114	61 - 126	

TestAmerica Irvine

Client: MWH Americas Inc

Matrix: Water

Lab Sample ID: LCS 440-94270/2-A

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 94968							Prep Type: Total/N/ Prep Batch: 9427		
•	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
4-Bromophenyl phenyl ether	10.0	8.494		ug/L		85	58 - 120		
Butyl benzyl phthalate	10.0	11.03		ug/L		110	57 ₋ 129		
4-Chloro-3-methylphenol	10.0	9.238		ug/L		92	46 - 123		
2-Chloronaphthalene	10.0	7.700		ug/L		77	54 - 120		
2-Chlorophenol	10.0	7.729		ug/L		77	20 - 122		
4-Chlorophenyl phenyl ether	10.0	8.471		ug/L		85	50 - 122		
Chrysene	10.0	9.278		ug/L		93	63 - 120		
Dibenz(a,h)anthracene	10.0	7.201		ug/L		72	56 - 124		
Di-n-butyl phthalate	10.0	9.790		ug/L		98	60 - 126		
1,2-Dichlorobenzene	10.0	6.142		ug/L		61	43 - 120		
1,3-Dichlorobenzene	10.0	5.681		ug/L		57	41 - 120		
1,4-Dichlorobenzene	10.0	5.884		ug/L		59	41 - 120		
3,3'-Dichlorobenzidine	10.0	4.914	J,DX	ug/L		49	25 _ 135		
2,4-Dichlorophenol	10.0	7.902		ug/L		79	21 - 132		
Diethyl phthalate	10.0	8.808		ug/L		88	44 - 131		
2,4-Dimethylphenol	10.0	7.827		ug/L		78	51 - 120		
Dimethyl phthalate	10.0	8.971		ug/L		90	33 - 140		
4,6-Dinitro-2-methylphenol	10.0	8.925		ug/L		89	22 - 147		
2,4-Dinitrophenol	10.0	7.541		ug/L		75	20 - 134		
2,4-Dinitrotoluene	10.0	8.273		ug/L		83	65 - 120		
2,6-Dinitrotoluene	10.0	8.438		ug/L		84	65 - 120		
Di-n-octyl phthalate	10.0	9.668		ug/L		97	63 - 130		
1,2-Diphenylhydrazine(as	10.0	9.461		ug/L		95	59 - 124		
Azobenzene)									
Fluoranthene	10.0	9.576		ug/L		96	64 - 120		
Fluorene	10.0	8.802		ug/L		88	52 - 120		
Hexachlorobenzene	10.0	8.296		ug/L		83	61 - 120		
Hexachlorobutadiene	10.0	5.006		ug/L		50	34 - 120		
Hexachloroethane	10.0	5.273		ug/L		53	34 - 120		
Hexachlorocyclopentadiene	10.0	3.823	J,DX	ug/L		38	23 - 120		
Indeno[1,2,3-cd]pyrene	10.0	7.796		ug/L		78	59 - 128		
Isophorone	10.0	9.574		ug/L		96	50 - 120		
4-Methylphenol	10.0	7.935		ug/L		79	50 - 120		
Naphthalene	10.0	7.914		ug/L		79	52 - 120		
Nitrobenzene	10.0	8.145		ug/L		81	52 - 120		
2-Nitrophenol	10.0	8.051		ug/L		81	21 - 132		
4-Nitrophenol	10.0	7.291		ug/L		73	20 _ 151		
N-Nitrosodimethylamine	10.0	7.536		ug/L		75	20 - 143		
N-Nitrosodiphenylamine	10.0	8.221		ug/L		82	58 - 120		
N-Nitrosodi-n-propylamine	10.0	9.165		ug/L		92	60 - 120		
Pentachlorophenol	10.0	7.896		ug/L		79	20 - 137		
Phenanthrene	10.0	9.076		ug/L		91	62 - 120		
Phenol	10.0	7.572		ug/L		76	20 - 120		
Pyrene	10.0	10.47		ug/L		105	54 - 120		
1,2,4-Trichlorobenzene	10.0	5.969		ug/L		60	44 - 120		
2,4,6-Trichlorophenol	10.0	8.445		ug/L		84	20 - 139		
2-Methylphenol	10.0	7.949		ug/L		79	47 - 120		
4-Chloroaniline	10.0	8.853		ug/L		89	52 - 120		

TestAmerica Irvine

Spike

Added

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

LCS LCS

7.726

8.397

7.923

8.676

7.263

8.776

8.991

8.492

ug/L

ug/L

Result Qualifier

TestAmerica Job ID: 440-40328-1

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-94270/2-A

Matrix: Water

2-Methylnaphthalene

Benzo[g,h,i]perylene

bis (2-chloroisopropyl) ether

Analyte

2-Nitroaniline

3-Nitroaniline

Dibenzofuran

4-Nitroaniline

Benzyl alcohol

Analysis Batch: 94968

Client: MWH Americas Inc

Client Sample ID: Lab Control Sample Prep Type: Total/NA

50 - 120

45 - 120

				Batch: 94270
			%Rec.	
Unit	D	%Rec	Limits	
ug/L		77	55 - 120	
ug/L		84	60 - 135	
ug/L		79	63 - 123	
ug/L		87	60 - 120	
ug/L		73	60 - 126	
ug/L		88	52 - 136	

90

85

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	81		50 - 120
2-Fluorophenol	74		30 - 120
2,4,6-Tribromophenol	99		40 - 120
Nitrobenzene-d5	86		45 - 120
Terphenyl-d14	93		50 - 125
Phenol-d6	80		35 - 120

Lab Sample ID: 440-41729-J-3-C MS

Matrix: Water

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Analysis Batch: 94968									Prep Ba	atch: 94270
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	ND		9.71	8.151		ug/L		84	60 - 120	
Acenaphthylene	ND		9.71	8.256		ug/L		85	60 - 120	
Aniline	ND		9.71	5.217	J,DX	ug/L		54	35 _ 120	
Anthracene	ND		9.71	7.022		ug/L		72	65 _ 120	
Benzidine	ND		9.71	ND	LN	ug/L		0	30 - 160	
Benzo[a]anthracene	ND		9.71	6.235	LN	ug/L		64	65 - 120	
Benzo[b]fluoranthene	ND		9.71	5.131	LN	ug/L		53	55 _ 125	
Benzo[k]fluoranthene	ND		9.71	4.782	LN	ug/L		49	55 _ 125	
Benzoic acid	ND		9.71	15.23	LM	ug/L		157	25 _ 125	
Benzo[a]pyrene	ND		9.71	3.518	LN	ug/L		36	55 _ 130	
Bis(2-chloroethoxy)methane	ND		9.71	8.524		ug/L		88	50 - 120	
Bis(2-chloroethyl)ether	ND		9.71	7.621		ug/L		78	50 _ 120	
Bis(2-ethylhexyl) phthalate	3.94	J,DX	9.71	5.536	LN	ug/L		16	65 _ 130	
4-Bromophenyl phenyl ether	ND		9.71	8.163		ug/L		84	60 - 120	
Butyl benzyl phthalate	ND		9.71	10.66		ug/L		110	55 _ 130	
4-Chloro-3-methylphenol	ND		9.71	9.583		ug/L		99	60 - 120	
2-Chloronaphthalene	ND		9.71	7.409		ug/L		76	60 - 120	
2-Chlorophenol	ND		9.71	7.188		ug/L		74	45 _ 120	
4-Chlorophenyl phenyl ether	ND		9.71	8.362		ug/L		86	65 _ 120	
Chrysene	ND		9.71	5.822	LN	ug/L		60	65 _ 120	
Dibenz(a,h)anthracene	ND		9.71	3.502	LN	ug/L		36	45 - 135	
Di-n-butyl phthalate	0.821	J,DX	9.71	9.104		ug/L		85	60 - 125	
1,2-Dichlorobenzene	ND		9.71	7.302		ug/L		75	40 - 120	
1,3-Dichlorobenzene	ND		9.71	5.676		ug/L		58	35 _ 120	
1,4-Dichlorobenzene	ND		9.71	5.846		ug/L		60	35 - 120	
3,3'-Dichlorobenzidine	ND		9.71	ND	LN	ug/L		0	45 - 135	

TestAmerica Irvine

Page 33 of 64

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-41729-J-3-C MS

Matrix: Water

Surrogate

2-Fluorobiphenyl

2-Fluorophenol

2,4,6-Tribromophenol

Client: MWH Americas Inc

Client Sample ID: Matrix Spike **Prep Type: Total/NA**

Analysis Batch: 94968	0	0	0						Prep Batch:	9427
Analyte	•	Sample Qualifier	Spike Added	MS	MS Qualifier	Unit	D	%Rec	%Rec. Limits	
Analyte 2,4-Dichlorophenol	ND	- Qualifier	9.71	8.294	Qualifier	ug/L	— -	85	55 ₋ 120	
Diethyl phthalate	1.13		9.71	9.738		ug/L		89	55 ₋ 120	
* *	ND		9.71	3.120	LNI			32	40 - 120	
2,4-Dimethylphenol					LIN	ug/L			30 - 120	
Dimethyl phthalate	0.502		9.71	9.181		ug/L		89	45 - 120	
4,6-Dinitro-2-methylphenol	ND		9.71	7.785		ug/L		80		
2,4-Dinitrophenol	ND		9.71	8.447		ug/L		87	40 - 120	
2,4-Dinitrotoluene	ND		9.71	8.482		ug/L		87	65 - 120	
2,6-Dinitrotoluene	ND		9.71	8.840	. =	ug/L		91	65 _ 120	
Di-n-octyl phthalate	ND		9.71		J,DX LN	ug/L		46	65 - 135	
1,2-Diphenylhydrazine(as	ND		9.71	8.556		ug/L		88	60 - 120	
Azobenzene) Fluoranthene	ND		9.71	8.162		ug/L		84	60 - 120	
Fluorene	ND		9.71	8.790				91	65 ₋ 120	
						ug/L				
Hexachlorobenzene	ND		9.71	6.420		ug/L		66	60 - 120	
Hexachlorobutadiene	ND		9.71	5.444		ug/L		56	40 - 120	
Hexachloroethane	ND		9.71	5.264	151/	ug/L		54	35 - 120	
Hexachlorocyclopentadiene	ND		9.71		J,DX	ug/L		47	25 _ 120	
Indeno[1,2,3-cd]pyrene	ND		9.71	3.240	LN	ug/L		33	40 - 135	
Isophorone	ND		9.71	9.538		ug/L		98	50 - 120	
4-Methylphenol	ND		9.71	6.897		ug/L		71	50 - 120	
Naphthalene	ND		9.71	7.505		ug/L		77	55 - 120	
Nitrobenzene	ND		9.71	12.00	LM	ug/L		124	55 - 120	
2-Nitrophenol	ND		9.71	8.071		ug/L		83	50 - 120	
4-Nitrophenol	ND		9.71	10.70		ug/L		110	45 - 120	
N-Nitrosodimethylamine	ND		9.71	6.580		ug/L		68	45 - 120	
N-Nitrosodiphenylamine	ND		9.71	2.793	LN	ug/L		29	60 - 120	
N-Nitrosodi-n-propylamine	ND		9.71	9.216		ug/L		95	45 - 120	
Pentachlorophenol	ND		9.71	10.59		ug/L		109	24 - 121	
Phenanthrene	ND		9.71	8.766		ug/L		90	65 - 120	
Phenol	1.16		9.71	8.789		ug/L		79	40 - 120	
Pyrene	ND		9.71	8.940		ug/L		92	55 - 125	
1,2,4-Trichlorobenzene	ND		9.71	6.264		ug/L		65	45 - 120	
2,4,6-Trichlorophenol	ND		9.71	8.814		ug/L		91	55 - 120	
2-Methylphenol	ND		9.71	6.857		ug/L		71	50 - 120	
4-Chloroaniline	ND		9.71	ND	LN	ug/L		0	55 - 120	
2-Methylnaphthalene	ND		9.71	7.744		ug/L		80	55 - 120	
2-Nitroaniline	ND		9.71	4.708	J,DX LN	ug/L		48	65 - 120	
3-Nitroaniline	ND		9.71	ND	LN	ug/L		0	60 - 120	
Dibenzofuran	ND		9.71	8.539		ug/L		88	65 _ 120	
4-Nitroaniline	ND		9.71		LN	ug/L		0	55 ₋ 125	
Benzo[g,h,i]perylene	ND		9.71		J,DX LN	ug/L		35	45 - 135	
Benzyl alcohol		J,DX	9.71	9.542		ug/L		93	40 - 120	
bis (2-chloroisopropyl) ether	ND	-,	9.71	8.567		ug/L		88	45 - 120	
	.40		3.7 1	0.007		~g, L				
	MS	MS								

TestAmerica Irvine

Page 34 of 64

Limits

50 - 120

30 - 120

40 - 120

%Recovery Qualifier

79

73

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-41729-J-3-C MS

Lab Sample ID: 440-41729-K-3-B MSD

Matrix: Water

Analysis Batch: 94968

Client Sample ID: Matrix Spike **Prep Type: Total/NA**

Prep Batch: 94270

MS MS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	88		45 - 120
Terphenyl-d14	56		50 - 125
Phenol-d6	80		35 - 120

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 94270

Matrix: Water

Analysis Batch: 94968

Analysis Batch: 94968										Batch:	
	-	Sample	Spike	MSD					%Rec.		RPD
Analyte	Result	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	ND		9.52	7.961		ug/L		84	60 - 120	2	25
Acenaphthylene	ND		9.52	8.330		ug/L		87	60 - 120	1	25
Aniline	ND		9.52	ND	LN	ug/L		0	35 - 120	NC	30
Anthracene	ND		9.52	7.728		ug/L		81	65 _ 120	10	25
Benzidine	ND		9.52	ND	LN	ug/L		0	30 - 160	NC	35
Benzo[a]anthracene	ND		9.52	6.536		ug/L		69	65 - 120	5	20
Benzo[b]fluoranthene	ND		9.52	4.560	LN	ug/L		48	55 - 125	12	25
Benzo[k]fluoranthene	ND		9.52	4.536	LN	ug/L		48	55 - 125	5	30
Benzoic acid	ND		9.52	16.23	LM	ug/L		170	25 - 125	6	30
Benzo[a]pyrene	ND		9.52	3.865	LN	ug/L		41	55 ₋ 130	9	25
Bis(2-chloroethoxy)methane	ND		9.52	8.637		ug/L		91	50 - 120	1	25
Bis(2-chloroethyl)ether	ND		9.52	7.150		ug/L		75	50 - 120	6	25
Bis(2-ethylhexyl) phthalate	3.94	J,DX	9.52	7.480	LN BA	ug/L		37	65 - 130	30	25
4-Bromophenyl phenyl ether	ND		9.52	7.974		ug/L		84	60 - 120	2	25
Butyl benzyl phthalate	ND		9.52	10.98		ug/L		115	55 - 130	3	25
4-Chloro-3-methylphenol	ND		9.52	9.933		ug/L		104	60 - 120	4	25
2-Chloronaphthalene	ND		9.52	6.816		ug/L		72	60 - 120	8	20
2-Chlorophenol	ND		9.52	7.054		ug/L		74	45 - 120	2	25
4-Chlorophenyl phenyl ether	ND		9.52	8.195		ug/L		86	65 - 120	2	25
Chrysene	ND		9.52	6.145		ug/L		65	65 - 120	5	25
Dibenz(a,h)anthracene	ND		9.52	6.053	BA	ug/L		64	45 - 135	53	30
Di-n-butyl phthalate	0.821	J,DX	9.52	9.209		ug/L		88	60 - 125	1	25
1,2-Dichlorobenzene	ND		9.52	7.211		ug/L		76	40 - 120	1	25
1,3-Dichlorobenzene	ND		9.52	5.323		ug/L		56	35 - 120	6	25
1,4-Dichlorobenzene	ND		9.52	5.362		ug/L		56	35 - 120	9	25
3,3'-Dichlorobenzidine	ND		9.52	ND	LN	ug/L		0	45 - 135	NC	25
2,4-Dichlorophenol	ND		9.52	8.548		ug/L		90	55 ₋ 120	3	25
Diethyl phthalate	1.13		9.52	10.42		ug/L		97	55 - 120	7	30
2,4-Dimethylphenol	ND		9.52	7.257	BA	ug/L		76	40 - 120	80	25
Dimethyl phthalate	0.502		9.52	13.01	LM BA	ug/L		131	30 - 120	34	30
4,6-Dinitro-2-methylphenol	ND		9.52	6.199		ug/L		65	45 - 120	23	25
2,4-Dinitrophenol	ND		9.52	7.950		ug/L		83	40 - 120	6	25
2,4-Dinitrotoluene	ND		9.52	8.138		ug/L		85	65 - 120	4	25
2,6-Dinitrotoluene	ND		9.52	9.087		ug/L		95	65 _ 120	3	20
Di-n-octyl phthalate	ND		9.52	5.305	LN	ug/L		56	65 - 135	18	20
1,2-Diphenylhydrazine(as	ND		9.52	8.658		ug/L		91	60 - 120	1	25
Azobenzene)						ū					
Fluoranthene	ND		9.52	7.724		ug/L		81	60 - 120	6	25
Fluorene	ND		9.52	8.621		ug/L		91	65 _ 120	2	25

TestAmerica Irvine

Page 35 of 64

4/3/2013

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client: MWH Americas Inc

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-41729-K-3-B MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 94968 Prep Batch: 94270

Analysis Batch: 94966									Prep Batch		
	Sample	•	Spike		MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachlorobenzene	ND		9.52	6.466		ug/L		68	60 - 120	1	25
Hexachlorobutadiene	ND		9.52	5.010		ug/L		53	40 - 120	8	25
Hexachloroethane	ND		9.52	5.046		ug/L		53	35 - 120	4	25
Hexachlorocyclopentadiene	ND		9.52	3.962	J,DX	ug/L		42	25 - 120	15	30
Indeno[1,2,3-cd]pyrene	ND		9.52	5.345	BA	ug/L		56	40 - 135	49	30
Isophorone	ND		9.52	8.811		ug/L		93	50 - 120	8	25
4-Methylphenol	ND		9.52	7.880		ug/L		83	50 - 120	13	25
Naphthalene	ND		9.52	7.116		ug/L		75	55 - 120	5	25
Nitrobenzene	ND		9.52	11.83	LM	ug/L		124	55 - 120	1	25
2-Nitrophenol	ND		9.52	7.621		ug/L		80	50 - 120	6	25
4-Nitrophenol	ND		9.52	12.76	LM	ug/L		134	45 - 120	18	30
N-Nitrosodimethylamine	ND		9.52	6.110		ug/L		64	45 - 120	7	25
N-Nitrosodiphenylamine	ND		9.52	1.510	LN BA	ug/L		16	60 - 120	60	25
N-Nitrosodi-n-propylamine	ND		9.52	9.142		ug/L		96	45 - 120	1	25
Pentachlorophenol	ND		9.52	11.25		ug/L		118	24 - 121	6	25
Phenanthrene	ND		9.52	8.694		ug/L		91	65 - 120	1	25
Phenol	1.16		9.52	7.790		ug/L		70	40 - 120	12	25
Pyrene	ND		9.52	10.86		ug/L		114	55 - 125	19	25
1,2,4-Trichlorobenzene	ND		9.52	5.822		ug/L		61	45 - 120	7	20
2,4,6-Trichlorophenol	ND		9.52	8.894		ug/L		93	55 - 120	1	30
2-Methylphenol	ND		9.52	7.525		ug/L		79	50 - 120	9	25
4-Chloroaniline	ND		9.52	ND	LN	ug/L		0	55 - 120	NC	25
2-Methylnaphthalene	ND		9.52	7.586		ug/L		80	55 - 120	2	20
2-Nitroaniline	ND		9.52	1.863	J,DX LN BA	ug/L		20	65 - 120	87	25
3-Nitroaniline	ND		9.52	ND	LN	ug/L		0	60 - 120	NC	25
Dibenzofuran	ND		9.52	8.420		ug/L		88	65 - 120	1	25
4-Nitroaniline	ND		9.52	ND	LN	ug/L		0	55 - 125	NC	25
Benzo[g,h,i]perylene	ND		9.52	5.856	BA	ug/L		61	45 - 135	53	30
Benzyl alcohol	0.561	J,DX	9.52	9.495		ug/L		94	40 - 120	0	30
bis (2-chloroisopropyl) ether	ND		9.52	8.471		ug/L		89	45 - 120	1	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	81		50 - 120
2-Fluorophenol	66		30 - 120
2,4,6-Tribromophenol	113		40 - 120
Nitrobenzene-d5	87		45 - 120
Terphenyl-d14	70		50 - 125
Phenol-d6	76		35 - 120

Method: 608 - Organochlorine Pesticides in Water

Lab Sample ID: MB 440-90661/1-A Client Sample ID: Method Blank

Matrix: Water Analysis Batch: 90808

MB MB Analyte

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chlordane (technical) ND 0.10 0.080 ug/L 03/10/13 12:49 03/11/13 15:17

TestAmerica Irvine

Page 36 of 64

4/3/2013

Prep Type: Total/NA

Prep Batch: 90661

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 608 - Organochlorine Pesticides in Water (Continued)

Lab Sample ID: MB 440-90661/1-A

Matrix: Water

Analysis Batch: 90808

Client: MWH Americas Inc

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 90661

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dieldrin	ND		0.0050	0.0020	ug/L		03/10/13 12:49	03/11/13 15:17	1
Toxaphene	ND		0.50	0.25	ug/L		03/10/13 12:49	03/11/13 15:17	1
4,4'-DDD	ND		0.0050	0.0040	ug/L		03/10/13 12:49	03/11/13 15:17	1
4,4'-DDE	ND		0.0050	0.0030	ug/L		03/10/13 12:49	03/11/13 15:17	1
4,4'-DDT	ND		0.010	0.0040	ug/L		03/10/13 12:49	03/11/13 15:17	1
alpha-BHC	ND		0.0050	0.0025	ug/L		03/10/13 12:49	03/11/13 15:17	1
gamma-BHC (Lindane)	ND		0.010	0.0030	ug/L		03/10/13 12:49	03/11/13 15:17	1
Endrin aldehyde	ND		0.010	0.0020	ug/L		03/10/13 12:49	03/11/13 15:17	1
delta-BHC	ND		0.0050	0.0035	ug/L		03/10/13 12:49	03/11/13 15:17	1
Aldrin	ND		0.0050	0.0015	ug/L		03/10/13 12:49	03/11/13 15:17	1
Endosulfan sulfate	ND		0.010	0.0030	ug/L		03/10/13 12:49	03/11/13 15:17	1
Endosulfan I	ND		0.0050	0.0030	ug/L		03/10/13 12:49	03/11/13 15:17	1
Endrin	ND		0.0050	0.0020	ug/L		03/10/13 12:49	03/11/13 15:17	1
Endosulfan II	ND		0.0050	0.0020	ug/L		03/10/13 12:49	03/11/13 15:17	1
beta-BHC	ND		0.010	0.0040	ug/L		03/10/13 12:49	03/11/13 15:17	1
Heptachlor	ND		0.010	0.0030	ug/L		03/10/13 12:49	03/11/13 15:17	1
Heptachlor epoxide	ND		0.0050	0.0025	ug/L		03/10/13 12:49	03/11/13 15:17	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

35 - 115

Lab Sample ID: LCS 440-90661/2-A

Matrix: Water

Tetrachloro-m-xylene

Analysis Batch: 90808

Client Sample ID: Lab Control Sample Prep Type: Total/NA

03/10/13 12:49 03/11/13 15:17

Prep Batch: 90661

/ indigoto Batom Cocco						. Top Batom coot		
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dieldrin	0.500	0.505		ug/L		101	55 - 115	
4,4'-DDD	0.500	0.528		ug/L		106	55 - 120	
4,4'-DDE	0.500	0.523		ug/L		105	50 - 120	
4,4'-DDT	0.500	0.543		ug/L		109	55 ₋ 120	
alpha-BHC	0.500	0.486		ug/L		97	45 _ 115	
gamma-BHC (Lindane)	0.500	0.493		ug/L		99	45 _ 115	
Endrin aldehyde	0.500	0.509		ug/L		102	50 - 120	
delta-BHC	0.500	0.517		ug/L		103	55 ₋ 115	
Aldrin	0.500	0.473		ug/L		95	40 - 115	
Endosulfan sulfate	0.500	0.511		ug/L		102	60 _ 120	
Endosulfan I	0.500	0.486		ug/L		97	55 ₋ 115	
Endrin	0.500	0.511		ug/L		102	55 - 115	
Endosulfan II	0.500	0.504		ug/L		101	55 ₋ 120	
beta-BHC	0.500	0.497		ug/L		99	55 ₋ 115	
Heptachlor	0.500	0.469		ug/L		94	45 - 115	
Heptachlor epoxide	0.500	0.493		ug/L		99	55 ₋ 115	

•	ᡣ᠙	LCS
		LUS

79

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	82		35 - 115

TestAmerica Irvine

2

5

6

8

10

12

14

15

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client: MWH Americas Inc

Method: 608 - Organochlorine Pesticides in Water (Continued)

Lab Sample ID: 440-39926-A-1-A MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 90808** Prep Batch: 90661

Spike MS MS Sample Sample Result Qualifier Result Qualifier Added %Rec Limits Analyte Unit Dieldrin ND 0.500 0.438 ug/L 88 50 - 120 4,4'-DDD ND ug/L 0.500 0.487 97 50 - 125 4,4'-DDE ND 0.500 0.448 ug/L 90 45 - 125 4,4'-DDT ND 0.500 0.481 ug/L 96 50 - 125 alpha-BHC 0.028 0.500 0.367 ug/L 68 40 - 120 gamma-BHC (Lindane) ND 0.500 0.387 ug/L 77 40 - 120 Endrin aldehyde ND 0.500 0.431 86 45 - 125 ug/L delta-BHC 0.411 ND 0.500 ug/L 82 50 - 120 Aldrin ND 0.500 0.367 73 35 - 120 ug/L ug/L Endosulfan sulfate ND 0.500 0.508 102 55 - 125 Endosulfan I ND 0.500 0.421 ug/L 84 50 - 120Endrin ND 0.500 0.499 ug/L 100 50 - 120 ug/L Endosulfan II ND 0.500 0.475 95 50 - 125 beta-BHC 0.018 J,DX PI 0.500 0.396 ug/L 76 50 - 120 Heptachlor ND 0.500 0.390 78 40 - 120 ug/L 0.500 86 50 - 120 Heptachlor epoxide ND 0.429 ug/L MS MS

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 35 - 115 53

Lab Sample ID: 440-39926-A-1-B MSD

Matrix: Water

Analysis Batch: 90808	Sample	Sample	Spike	MSD	MSD				Prep Batch: 90661		
									%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dieldrin	ND		0.500	0.427		ug/L		85	50 - 120	3	30
4,4'-DDD	ND		0.500	0.483		ug/L		97	50 - 125	1	30
4,4'-DDE	ND		0.500	0.431		ug/L		86	45 - 125	4	30
4,4'-DDT	ND		0.500	0.456		ug/L		91	50 - 125	5	30
alpha-BHC	ND		0.500	0.363		ug/L		73	40 - 120	1	30
gamma-BHC (Lindane)	ND		0.500	0.380		ug/L		76	40 - 120	2	30
Endrin aldehyde	ND		0.500	0.409		ug/L		82	45 - 125	5	30
delta-BHC	ND		0.500	0.405		ug/L		81	50 - 120	1	30
Aldrin	ND		0.500	0.362		ug/L		72	35 - 120	1	30
Endosulfan sulfate	ND		0.500	0.486		ug/L		97	55 - 125	4	30
Endosulfan I	ND		0.500	0.411		ug/L		82	50 - 120	2	30
Endrin	ND		0.500	0.475		ug/L		95	50 - 120	5	30
Endosulfan II	ND		0.500	0.455		ug/L		91	50 - 125	4	30
beta-BHC	0.0084	J,DX PI	0.500	0.394		ug/L		77	50 - 120	1	30
Heptachlor	ND		0.500	0.386		ug/L		77	40 - 120	1	30
Heptachlor epoxide	ND		0.500	0.418		ug/L		84	50 - 120	3	30

MSD MSD %Recovery Qualifier Surrogate Limits Tetrachloro-m-xylene 54 35 - 115

TestAmerica Irvine

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 608 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 440-90661/1-A

Matrix: Water

Analysis Batch: 90786

Client: MWH Americas Inc

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 90661

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		0.50	0.25	ug/L		03/10/13 12:49	03/11/13 12:39	1
Aroclor 1221	ND		0.50	0.25	ug/L		03/10/13 12:49	03/11/13 12:39	1
Aroclor 1232	ND		0.50	0.25	ug/L		03/10/13 12:49	03/11/13 12:39	1
Aroclor 1242	ND		0.50	0.25	ug/L		03/10/13 12:49	03/11/13 12:39	1
Aroclor 1248	ND		0.50	0.25	ug/L		03/10/13 12:49	03/11/13 12:39	1
Aroclor 1254	ND		0.50	0.25	ug/L		03/10/13 12:49	03/11/13 12:39	1
Aroclor 1260	ND		0.50	0.25	ug/L		03/10/13 12:49	03/11/13 12:39	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl (Surr) 45 _ 120 03/10/13 12:49 03/11/13 12:39 78

Lab Sample ID: LCS 440-90661/5-A

Matrix: Water

Analysis Batch: 90786

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 90661

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Aroclor 1016 4.00 3.37 84 50 - 115 ug/L Aroclor 1260 4.00 3.55 ug/L 89 60 - 120

LCS LCS

%Recovery Qualifier Limits Surrogate 45 _ 120 DCB Decachlorobiphenyl (Surr) 87

Lab Sample ID: 440-39926-A-1-C MS

Matrix: Water

Analysis Batch: 90786

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 90661

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aroclor 1016	ND		4.00	2.95		ug/L		74	45 - 120
Aroclor 1260	ND		4.00	3.10		ug/L		77	55 - 125
	MS	MS							
Surrogate	%Recovery		Limits						

45 - 120

Lab Sample ID: 440-39926-A-1-D MSD

Matrix: Water

Analysis Batch: 90786

DCB Decachlorobiphenyl (Surr)

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 90661

	Sample	Sample	Spike	MSD	MSD			%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	%Rec	Limits	RPD	Limit	
Aroclor 1016	ND		4.00	2.98		ug/L	 75	45 - 120	1	30	
Aroclor 1260	ND		4.00	3.11		ug/L	78	55 - 125	0	25	

MSD MSD Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 78 45 - 120

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Arroyo Simi-FP

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 218.6 - Chromium, Hexavalent (Ion Chromatography)

Lab Sample ID: MB 440-90811/34

Matrix: Water

Analysis Batch: 90811

мв мв

Result Qualifier RL Dil Fac Analyte MDL Unit D Prepared Analyzed 1.0 0.25 ug/L 03/11/13 21:15 Chromium, hexavalent ND

Lab Sample ID: LCS 440-90811/35

Matrix: Water

Analysis Batch: 90811

LCS LCS %Rec. Spike Added Analyte Result Qualifier Unit %Rec Limits Chromium, hexavalent 50.0 51.1 ug/L 102 90 - 110

Lab Sample ID: 440-40328-1 MS

Matrix: Water

Analysis Batch: 90811

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit %Rec Limits Chromium, hexavalent 0.39 J,DX BU 50.0 51.7 103 ug/L 90 - 110

Lab Sample ID: 440-40328-1 MSD

Matrix: Water

Analysis Batch: 90811

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	0.39	J,DX BU	50.0	52.4		ug/L		104	90 - 110	1	10

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-12332/1-A

Matrix: Water

Analysis Batch: 12476								Prep Batch	n: 12332
	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000006	ug/L		03/14/13 08:56	03/16/13 10:32	1
2,3,7,8-TCDF	ND		0.000010	0.0000009	ug/L		03/14/13 08:56	03/16/13 10:32	1
1,2,3,7,8-PeCDD	ND		0.000050	7 0.0000009	ug/L		03/14/13 08:56	03/16/13 10:32	1
1,2,3,7,8-PeCDF	ND		0.000050	0.0000007	ua/L		03/14/13 08:56	03/16/13 10:32	1
				5					
2,3,4,7,8-PeCDF	ND		0.000050	0.0000007 4	ug/L		03/14/13 08:56	03/16/13 10:32	1
1,2,3,4,7,8-HxCDD	ND		0.000050	0.0000008	ug/L		03/14/13 08:56	03/16/13 10:32	1
1,2,3,6,7,8-HxCDD	ND		0.000050	0.0000006	ug/L		03/14/13 08:56	03/16/13 10:32	1
1,2,3,7,8,9-HxCDD	ND		0.000050	0.0000006	ug/L		03/14/13 08:56	03/16/13 10:32	1
1,2,3,4,7,8-HxCDF	ND		0.000050	7 0.0000007	ua/L		03/14/13 08:56	03/16/13 10:32	1
				4					
1,2,3,6,7,8-HxCDF	ND		0.000050	0.0000006	ug/L		03/14/13 08:56	03/16/13 10:32	1
I and the second se				•					

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client: MWH Americas Inc

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-12332/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA Analysis Batch: 12476** Prep Batch: 12332

7 may 5 10 2 mon 12 m 5	МВ	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDF	ND		0.000050	0.0000009	ug/L		03/14/13 08:56	03/16/13 10:32	1
2,3,4,6,7,8-HxCDF	ND		0.000050	0.0000006	ug/L		03/14/13 08:56	03/16/13 10:32	1
1,2,3,4,6,7,8-HpCDD	ND		0.000050	0.0000013	ug/L		03/14/13 08:56	03/16/13 10:32	1
1,2,3,4,6,7,8-HpCDF	ND		0.000050	0.0000012	ug/L		03/14/13 08:56	03/16/13 10:32	1
1,2,3,4,7,8,9-HpCDF	ND		0.000050	0.0000020	ug/L		03/14/13 08:56	03/16/13 10:32	1
OCDD	0.0000395	J,DX	0.00010	0.0000014	ug/L		03/14/13 08:56	03/16/13 10:32	1
OCDF	0.00000218	J,DX q	0.00010	0.0000018	ug/L		03/14/13 08:56	03/16/13 10:32	1
Total TCDD	ND		0.000010	0.0000006	ug/L		03/14/13 08:56	03/16/13 10:32	1
Total TCDF	ND		0.000010	0.0000009	ug/L		03/14/13 08:56	03/16/13 10:32	1
Total PeCDD	ND		0.000050	0.0000009	ug/L		03/14/13 08:56	03/16/13 10:32	1
Total PeCDF	ND		0.000050	0.0000007	ug/L		03/14/13 08:56	03/16/13 10:32	1
Total HxCDD	ND		0.000050	0.0000006	ug/L		03/14/13 08:56	03/16/13 10:32	1
Total HxCDF	ND		0.000050	0.0000006	ug/L		03/14/13 08:56	03/16/13 10:32	1
Total HpCDD	ND		0.000050	0.0000013	ug/L		03/14/13 08:56	03/16/13 10:32	1
Total HpCDF	ND		0.000050	0.0000012	ug/L		03/14/13 08:56	03/16/13 10:32	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	62		25 - 164				03/14/13 08:56	03/16/13 10:32	1
13C-2,3,7,8-TCDF	60		24 - 169				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,7,8-PeCDD	65		25 - 181				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,7,8-PeCDF	53		24 - 185				03/14/13 08:56	03/16/13 10:32	1
13C-2,3,4,7,8-PeCDF	58		21 - 178				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,4,7,8-HxCDD	51		32 - 141				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,6,7,8-HxCDD	63		28 - 130				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,4,7,8-HxCDF	51		26 - 152				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,6,7,8-HxCDF	63		26 - 123				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,7,8,9-HxCDF	52		29 - 147				03/14/13 08:56	03/16/13 10:32	1
13C-2,3,4,6,7,8-HxCDF	60		28 - 136				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,4,6,7,8-HpCDD	50		23 - 140				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,4,6,7,8-HpCDF	51		28 - 143				03/14/13 08:56	03/16/13 10:32	1
13C-1,2,3,4,7,8,9-HpCDF	43		26 - 138				03/14/13 08:56	03/16/13 10:32	1
13C-OCDD	40		17 - 157				03/14/13 08:56	03/16/13 10:32	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
27C/4 2 2 7 9 TCDD			25 107				02/44/42 00:56	02/46/42 40:22	

37CI4-2,3,7,8-TCDD 83 35 - 197

Lab Sample ID: LCS 320-12332/2-A

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 12476** Prep Batch: 12332 %Rec. Spike LCS LCS

Analyte Added Result Qualifier Unit %Rec Limits 2,3,7,8-TCDD 0.000200 0.000184 ug/L 92 67 - 158

TestAmerica Irvine

Client Sample ID: Lab Control Sample

Page 41 of 64

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client: MWH Americas Inc

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-12332/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 12476** Prep Batch: 12332

Analyte Added Result Qualifier Unit D %Rec Limits 2,3,7,8-TCDF 0.000200 0.000162 ug/L 81 75 - 158 1,2,3,7,8-PeCDD 0.00100 0.000917 ug/L 92 70 - 142 1,2,3,7,8-PeCDF 0.00100 0.000998 ug/L 100 68 - 160 1,2,3,4,7,8-PeCDF 0.00100 0.00105 ug/L 105 70 - 164 1,2,3,4,7,8-HxCDD 0.00100 0.000936 ug/L 94 76 - 134 1,2,3,6,7,8-HxCDD 0.00100 0.00101 ug/L 94 76 - 134 1,2,3,7,8,9-HxCDF 0.00100 0.000913 ug/L 91 72 - 134 1,2,3,6,7,8-HxCDF 0.00100 0.000911 ug/L 91 72 - 134 1,2,3,6,7,8-HxCDF 0.00100 0.000911 ug/L 91 84 - 130 1,2,3,7,8,9-HxCDF 0.00100 0.000991 ug/L 89 78 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L		Spike	LCS LC	S		%Rec.	
1,2,3,7,8-PeCDD 0.00100 0.000917 ug/L 92 70 - 142 1,2,3,7,8-PeCDF 0.00100 0.000981 ug/L 98 80 - 134 2,3,4,7,8-PeCDF 0.00100 0.000998 ug/L 100 68 - 160 1,2,3,4,7,8-HxCDD 0.00100 0.00105 ug/L 94 76 - 134 1,2,3,7,8,9-HxCDD 0.00100 0.00101 ug/L 101 64 - 162 1,2,3,4,7,8-HxCDF 0.00100 0.000913 ug/L 91 72 - 134 1,2,3,7,8,9-HxCDF 0.00100 0.000911 ug/L 91 84 - 130 1,2,3,7,8,9-HxCDF 0.00100 0.000890 ug/L 89 78 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 89 70 - 156 1,2,3,4,6,7,8-HpCDF 0.00100 0.000891 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000952 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000952 ug/L 97 78 - 138 OCDD 0.00200 0.00200 0.00202	Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits	
1,2,3,7,8-PeCDF 0.00100 0.000981 ug/L 98 80 - 134 2,3,4,7,8-PeCDF 0.00100 0.000998 ug/L 100 68 - 160 1,2,3,4,7,8-HxCDD 0.00100 0.00105 ug/L 105 70 - 164 1,2,3,6,7,8-HxCDD 0.00100 0.00101 ug/L 94 76 - 134 1,2,3,7,8,9-HxCDF 0.00100 0.00101 ug/L 101 64 - 162 1,2,3,4,7,8-HxCDF 0.00100 0.00913 ug/L 91 72 - 134 1,2,3,7,8,9-HxCDF 0.00100 0.009911 ug/L 91 84 - 130 1,2,3,4,6,7,8-HxCDF 0.00100 0.000890 ug/L 89 78 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 89 70 - 156 1,2,3,4,6,7,8-HpCDF 0.00100 0.000966 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000975 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00200 0.00175	2,3,7,8-TCDF	0.000200	0.000162	ug/L	81	75 - 158	
2,3,4,7,8-PeCDF 0.00100 0.000998 ug/L 100 68 - 160 1,2,3,4,7,8-HxCDD 0.00100 0.00105 ug/L 105 70 - 164 1,2,3,6,7,8-HxCDD 0.00100 0.00100 ug/L 94 76 - 134 1,2,3,7,8,9-HxCDD 0.00100 0.00101 ug/L 101 64 - 162 1,2,3,4,7,8-HxCDF 0.00100 0.000913 ug/L 91 72 - 134 1,2,3,7,8,9-HxCDF 0.00100 0.000911 ug/L 89 78 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.000890 ug/L 89 70 - 156 1,2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 89 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000966 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000975 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 87 63 - 170	1,2,3,7,8-PeCDD	0.00100	0.000917	ug/L	92	70 - 142	
1,2,3,4,7,8-HxCDD 0.00100 0.00105 ug/L 105 70 - 164 1,2,3,6,7,8-HxCDD 0.00100 0.000936 ug/L 94 76 - 134 1,2,3,7,8,9-HxCDD 0.00100 0.00101 ug/L 101 64 - 162 1,2,3,4,7,8-HxCDF 0.00100 0.000913 ug/L 91 72 - 134 1,2,3,7,8,9-HxCDF 0.00100 0.000911 ug/L 89 78 - 130 1,2,3,7,8,9-HxCDF 0.00100 0.000890 ug/L 89 78 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 89 70 - 156 1,2,3,4,6,7,8-HpCDF 0.00100 0.000966 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000975 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,7,8-PeCDF	0.00100	0.000981	ug/L	98	80 - 134	
1,2,3,6,7,8-HxCDD 0.00100 0.000936 ug/L 94 76 - 134 1,2,3,7,8,9-HxCDD 0.00100 0.00101 ug/L 101 64 - 162 1,2,3,4,7,8-HxCDF 0.00100 0.000913 ug/L 91 72 - 134 1,2,3,7,8,9-HxCDF 0.00100 0.000911 ug/L 89 78 - 130 1,2,3,7,8,9-HxCDF 0.00100 0.000890 ug/L 89 78 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 89 70 - 156 1,2,3,4,6,7,8-HpCDD 0.00100 0.000966 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000952 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	2,3,4,7,8-PeCDF	0.00100	0.000998	ug/L	100	68 - 160	
1,2,3,7,8,9-HxCDD 0.00100 0.00101 ug/L 101 64 - 162 1,2,3,4,7,8-HxCDF 0.00100 0.000913 ug/L 91 72 - 134 1,2,3,6,7,8-HxCDF 0.00100 0.000911 ug/L 89 78 - 130 1,2,3,7,8,9-HxCDF 0.00100 0.000890 ug/L 89 70 - 156 2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDD 0.00100 0.000966 ug/L 95 82 - 122 1,2,3,4,6,7,8-HpCDF 0.00100 0.000952 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,4,7,8-HxCDD	0.00100	0.00105	ug/L	105	70 - 164	
1,2,3,4,7,8-HxCDF 0.00100 0.000913 ug/L 91 72 - 134 1,2,3,6,7,8-HxCDF 0.00100 0.000911 ug/L 91 84 - 130 1,2,3,7,8,9-HxCDF 0.00100 0.000890 ug/L 89 78 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 89 70 - 156 1,2,3,4,6,7,8-HpCDD 0.00100 0.000966 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000952 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,6,7,8-HxCDD	0.00100	0.000936	ug/L	94	76 - 134	
1,2,3,6,7,8-HxCDF 0.00100 0.000911 ug/L 91 84 - 130 1,2,3,7,8,9-HxCDF 0.00100 0.000890 ug/L 89 78 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 89 70 - 156 1,2,3,4,6,7,8-HpCDD 0.00100 0.000966 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000952 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,7,8,9-HxCDD	0.00100	0.00101	ug/L	101	64 - 162	
1,2,3,7,8,9-HxCDF 0.00100 0.000890 ug/L 89 78 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 89 70 - 156 1,2,3,4,6,7,8-HpCDD 0.00100 0.000966 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000952 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,4,7,8-HxCDF	0.00100	0.000913	ug/L	91	72 ₋ 134	
2,3,4,6,7,8-HxCDF 0.00100 0.000891 ug/L 89 70 - 156 1,2,3,4,6,7,8-HpCDD 0.00100 0.000966 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000952 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,6,7,8-HxCDF	0.00100	0.000911	ug/L	91	84 - 130	
1,2,3,4,6,7,8-HpCDD 0.00100 0.000966 ug/L 97 70 - 140 1,2,3,4,6,7,8-HpCDF 0.00100 0.000952 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,7,8,9-HxCDF	0.00100	0.000890	ug/L	89	78 - 130	
1,2,3,4,6,7,8-HpCDF 0.00100 0.000952 ug/L 95 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	2,3,4,6,7,8-HxCDF	0.00100	0.000891	ug/L	89	70 - 156	
1,2,3,4,7,8,9-HpCDF 0.00100 0.000975 ug/L 97 78 - 138 OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,4,6,7,8-HpCDD	0.00100	0.000966	ug/L	97	70 - 140	
OCDD 0.00200 0.00202 ug/L 101 78 - 144 OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,4,6,7,8-HpCDF	0.00100	0.000952	ug/L	95	82 - 122	
OCDF 0.00200 0.00175 ug/L 87 63 - 170	1,2,3,4,7,8,9-HpCDF	0.00100	0.000975	ug/L	97	78 - 138	
· ·	OCDD	0.00200	0.00202	ug/L	101	78 ₋ 144	
100 100	OCDF	0.00200	0.00175	ug/L	87	63 - 170	
103 103		LCS LCS					

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	69		20 - 175
13C-2,3,7,8-TCDF	62		22 - 152
13C-1,2,3,7,8-PeCDD	80		21 - 227
13C-1,2,3,7,8-PeCDF	64		21 - 192
13C-2,3,4,7,8-PeCDF	66		13 - 328
13C-1,2,3,4,7,8-HxCDD	70		21 - 193
13C-1,2,3,6,7,8-HxCDD	79		25 - 163
13C-1,2,3,4,7,8-HxCDF	66		19 - 202
13C-1,2,3,6,7,8-HxCDF	76		21 - 159
13C-1,2,3,7,8,9-HxCDF	66		17 - 205
13C-2,3,4,6,7,8-HxCDF	73		22 - 176
13C-1,2,3,4,6,7,8-HpCDD	73		26 - 166
13C-1,2,3,4,6,7,8-HpCDF	68		21 - 158
13C-1,2,3,4,7,8,9-HpCDF	62		20 - 186
13C-OCDD	57		13 - 199
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
37CI4-2,3,7,8-TCDD	82		35 - 197

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 440-92737/1-A

Matrix: Water

Analysis Batch: 92891

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 92737

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.050	0.040	mg/L		03/19/13 14:45	03/19/13 20:29	1
Arsenic	ND		0.010	0.0070	mg/L		03/19/13 14:45	03/19/13 20:29	1
Boron	ND		0.050	0.020	mg/L		03/19/13 14:45	03/19/13 20:29	1
Beryllium	ND		0.0020	0.00090	mg/L		03/19/13 14:45	03/19/13 20:29	1

TestAmerica Irvine

Page 42 of 64

QC Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: MB 440-92737/1-A

Matrix: Water

Analysis Batch: 92891

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 92737

	мв	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	ND		0.10	0.050	mg/L		03/19/13 14:45	03/19/13 20:29	1
Chromium	ND		0.0050	0.0020	mg/L		03/19/13 14:45	03/19/13 20:29	1
Iron	ND		0.040	0.015	mg/L		03/19/13 14:45	03/19/13 20:29	1
Magnesium	ND		0.020	0.012	mg/L		03/19/13 14:45	03/19/13 20:29	1
Nickel	ND		0.010	0.0020	mg/L		03/19/13 14:45	03/19/13 20:29	1
Vanadium	ND		0.010	0.0030	mg/L		03/19/13 14:45	03/19/13 20:29	1
Zinc	ND		0.020	0.0090	mg/L		03/19/13 14:45	03/19/13 20:29	1
Silver	ND		0.010	0.0060	mg/L		03/19/13 14:45	03/19/13 20:29	1
Hardness, as CaCO3	ND		0.33	0.17	mg/L		03/19/13 14:45	03/19/13 20:29	1

Lab Sample ID: LCS 440-92737/2-A

Matrix: Water

Analysis Batch: 92891

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 92737

Alialysis Dalcii. 3203 i							Fieb D	alcii. 32131
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	0.500	0.497		mg/L	 _	99	85 - 115	
Arsenic	0.500	0.495		mg/L		99	85 - 115	
Boron	0.500	0.495		mg/L		99	85 _ 115	
Beryllium	0.500	0.510		mg/L		102	85 - 115	
Calcium	2.50	2.56		mg/L		103	85 _ 115	
Chromium	0.500	0.512		mg/L		102	85 _ 115	
Iron	0.500	0.500		mg/L		100	85 - 115	
Magnesium	2.50	2.61		mg/L		104	85 _ 115	
Nickel	0.500	0.526		mg/L		105	85 _ 115	
Vanadium	0.500	0.508		mg/L		102	85 ₋ 115	
Zinc	0.500	0.491		mg/L		98	85 - 115	
Silver	0.250	0.253		mg/L		101	85 - 115	
└								

Lab Sample ID: 440-40328-1 MS

Matrix: Water

Analysis Batch: 92891

Client Sample ID: Arroyo Simi-FP **Prep Type: Total Recoverable** Prep Batch: 92737

Analysis Daton, 32031									i ieb De	11011. 32/3/
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	6.0		0.500	9.11	BB	mg/L		620	70 - 130	
Arsenic	ND		0.500	0.515		mg/L		103	70 - 130	
Boron	0.20		0.500	0.712		mg/L		103	70 - 130	
Beryllium	ND		0.500	0.524		mg/L		105	70 - 130	
Calcium	58		2.50	59.7	BB	mg/L		52	70 - 130	
Chromium	0.014		0.500	0.525		mg/L		102	70 - 130	
Iron	9.3		0.500	10.8	ВВ	mg/L		305	70 - 130	
Magnesium	17		2.50	19.5	BB	mg/L		119	70 - 130	
Nickel	0.014		0.500	0.524		mg/L		102	70 - 130	
Vanadium	0.028		0.500	0.557		mg/L		106	70 _ 130	
Zinc	0.052		0.500	0.542		mg/L		98	70 - 130	
Silver	ND		0.250	0.251		mg/L		101	70 - 130	

Page 43 of 64

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 440-40328-1 MSD

Matrix: Water

Analysis Batch: 92891

Client: MWH Americas Inc

Client Sample ID: Arroyo Simi-FP **Prep Type: Total Recoverable**

Prep Batch: 92737

Analysis Daton, 52001									ı icp	Dateii.	32101
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	6.0		0.500	12.7	BB BA	mg/L		1344	70 - 130	33	20
Arsenic	ND		0.500	0.524		mg/L		105	70 - 130	2	20
Boron	0.20		0.500	0.735		mg/L		107	70 - 130	3	20
Beryllium	ND		0.500	0.539		mg/L		108	70 - 130	3	20
Calcium	58		2.50	61.0	BB	mg/L		102	70 - 130	2	20
Chromium	0.014		0.500	0.539		mg/L		105	70 - 130	3	20
Iron	9.3		0.500	13.5	BB BA	mg/L		847	70 - 130	22	20
Magnesium	17		2.50	20.1	BB	mg/L		141	70 - 130	3	20
Nickel	0.014		0.500	0.534		mg/L		104	70 - 130	2	20
Vanadium	0.028		0.500	0.578		mg/L		110	70 - 130	4	20
Zinc	0.052		0.500	0.570		mg/L		104	70 - 130	5	20
Silver	ND		0.250	0.257		mg/L		103	70 - 130	2	20

Lab Sample ID: MB 440-91577/1-D

Matrix: Water

Analysis Batch: 92623

Client Sample ID: Method Blank **Prep Type: Dissolved**

Prep Batch: 92375

Analysis Batch: 92623								Prep Batci	n: 92375
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		50	40	ug/L		03/18/13 08:20	03/18/13 18:19	1
Arsenic	ND		10	7.0	ug/L		03/18/13 08:20	03/18/13 18:19	1
Boron	ND		0.050	0.020	mg/L		03/18/13 08:20	03/18/13 18:19	1
Beryllium	ND		2.0	0.90	ug/L		03/18/13 08:20	03/18/13 18:19	1
Calcium	ND		0.10	0.050	mg/L		03/18/13 08:20	03/18/13 18:19	1
Chromium	ND		5.0	2.0	ug/L		03/18/13 08:20	03/18/13 18:19	1
Iron	ND		0.040	0.015	mg/L		03/18/13 08:20	03/18/13 18:19	1
Magnesium	ND		0.020	0.012	mg/L		03/18/13 08:20	03/18/13 18:19	1
Nickel	ND		10	2.0	ug/L		03/18/13 08:20	03/18/13 18:19	1
Vanadium	ND		10	3.0	ug/L		03/18/13 08:20	03/18/13 18:19	1
Zinc	ND		20	9.0	ug/L		03/18/13 08:20	03/18/13 18:19	1
Silver	ND		10	6.0	ug/L		03/18/13 08:20	03/18/13 18:19	1
Hardness, as CaCO3	ND		0.33	0.17	mg/L		03/18/13 08:20	03/18/13 18:19	1

Lab Sample ID: LCS 440-91577/2-D

Matrix: Water

Analysis Batch: 92623

Client Sample ID: Lab Control Sample
Prep Type: Dissolved
Prep Batch: 92375

Analysis Batch: 92623							Prep Batc	n: 923/5
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	500	462		ug/L		92	85 - 115	
Arsenic	500	485		ug/L		97	85 _ 115	
Boron	0.500	0.468		mg/L		94	85 _ 115	
Beryllium	500	503		ug/L		101	85 - 115	
Calcium	2.50	2.61		mg/L		104	85 _ 115	
Chromium	500	498		ug/L		100	85 _ 115	
Iron	0.500	0.523		mg/L		105	85 ₋ 115	
Magnesium	2.50	2.51		mg/L		100	85 _ 115	
Nickel	500	515		ug/L		103	85 - 115	
Vanadium	500	501		ug/L		100	85 ₋ 115	
Zinc	500	474		ug/L		95	85 _ 115	

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client: MWH Americas Inc

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 440-91577/2-D			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Dissolved
Analysis Batch: 92623			Prep Batch: 92375
	Spike	LCS LCS	%Rec.

	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Į	Silver	 250	245		ug/L	_	98	85 - 115	
ſ	_								

Lab Sample ID: 440-40193-AL-4-C MS Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 92623 Prep Batch: 92375

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	ND		500	419		ug/L		84	70 - 130	
Arsenic	ND		500	556		ug/L		111	70 - 130	
Boron	0.46		0.500	0.980		mg/L		104	70 - 130	
Beryllium	ND		500	538		ug/L		108	70 - 130	
Chromium	ND		500	527		ug/L		105	70 - 130	
Iron	0.41		0.500	1.03		mg/L		122	70 - 130	
Nickel	2.6	J,DX	500	499		ug/L		99	70 - 130	
Vanadium	ND		500	564		ug/L		113	70 - 130	
Zinc	ND		500	508		ug/L		102	70 - 130	
Silver	ND		250	250		ug/L		100	70 - 130	

Lab Sample ID: 440-40193-AL-4-C MS ^2 Client Sample ID: Matrix Spike

Matrix: Water

Analysis Batch: 92798 Prep Batch: 92375

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	490		2.50	484	BB	mg/L		-84	70 - 130	
Magnesium	220		2.50	225	BB	mg/L		161	70 - 130	

Lab Sample ID: 440-40193-AL-4-D MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Dissolved**

Analysis Batch: 92623 Prep Batch: 92375

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	ND		500	433		ug/L		87	70 - 130	3	20
Arsenic	ND		500	532		ug/L		106	70 - 130	4	20
Boron	0.46		0.500	0.994		mg/L		107	70 - 130	1	20
Beryllium	ND		500	514		ug/L		103	70 - 130	4	20
Chromium	ND		500	509		ug/L		102	70 - 130	4	20
Iron	0.41		0.500	1.01		mg/L		120	70 - 130	1	20
Nickel	2.6	J,DX	500	483		ug/L		96	70 - 130	3	20
Vanadium	ND		500	539		ug/L		108	70 - 130	5	20
Zinc	ND		500	492		ug/L		98	70 - 130	3	20
Silver	ND		250	256		ug/L		102	70 - 130	2	20

Lab Sample ID: 440-40193-AL-4-D MSD ^2 Client Sample ID: Matrix Spike Duplicate **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 92798 Prep Batch: 92375

•	Sample	Sample	Spike	MSD	MSD				%Rec.	'	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	490		2.50	477	BB	mg/L		-358	70 - 130	1	20
Magnesium	220		2.50	218	BB	mg/L		-114	70 - 130	3	20

TestAmerica Irvine

Page 45 of 64

Prep Type: Dissolved

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 440-92787/1-A

Lab Sample ID: LCS 440-92787/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 92959

Analysis Batch: 92959

Client: MWH Americas Inc

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 92787

MB	MR							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.0	0.10	ug/L		03/19/13 17:23	03/20/13 10:53	1
ND		1.0	0.20	ug/L		03/19/13 17:23	03/20/13 10:53	1
ND		2.0	0.30	ug/L		03/19/13 17:23	03/20/13 10:53	1
ND		2.0	0.50	ug/L		03/19/13 17:23	03/20/13 10:53	1
ND		1.0	0.20	ug/L		03/19/13 17:23	03/20/13 10:53	1
	Result ND ND ND ND	ND ND ND	Result Qualifier RL ND 1.0 ND 1.0 ND 2.0 ND 2.0	Result Qualifier RL MDL ND 1.0 0.10 ND 1.0 0.20 ND 2.0 0.30 ND 2.0 0.50	Result Qualifier RL MDL Unit ND 1.0 0.10 ug/L ND 1.0 0.20 ug/L ND 2.0 0.30 ug/L ND 2.0 0.50 ug/L	Result Qualifier RL MDL Unit D ND 1.0 0.10 ug/L ND 1.0 0.20 ug/L ND 2.0 0.30 ug/L ND 2.0 0.50 ug/L	Result Qualifier RL MDL Unit D Prepared ND 1.0 0.10 ug/L 03/19/13 17:23 ND 1.0 0.20 ug/L 03/19/13 17:23 ND 2.0 0.30 ug/L 03/19/13 17:23 ND 2.0 0.50 ug/L 03/19/13 17:23	Result Qualifier RL MDL unit ug/L D Prepared 03/19/13 17:23 Analyzed 03/20/13 10:53 ND 1.0 0.10 ug/L 03/19/13 17:23 03/20/13 10:53 ND 1.0 0.20 ug/L 03/19/13 17:23 03/20/13 10:53 ND 2.0 0.30 ug/L 03/19/13 17:23 03/20/13 10:53 ND 2.0 0.50 ug/L 03/19/13 17:23 03/20/13 10:53

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 92787

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	80.0	80.5		ug/L		101	85 - 115	
Lead	80.0	78.9		ug/L		99	85 - 115	
Antimony	80.0	80.4		ug/L		100	85 - 115	
Selenium	80.0	79.0		ug/L		99	85 - 115	
Thallium	80.0	78.0		ug/L		97	85 - 115	

Lab Sample ID: 440-40328-1 MS

Matrix: Water

Analysis Batch: 92959

Prep Type: Total Recoverable

Prep Batch: 92787

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	0.68	J,DX	80.0	103		ug/L		128	70 - 130	
Lead	4.9		80.0	107		ug/L		128	70 - 130	
Antimony	0.87	J,DX	80.0	83.6		ug/L		103	70 - 130	
Selenium	3.2	J,DX	80.0	102		ug/L		124	70 - 130	
Thallium	ND		80.0	102		ug/L		127	70 - 130	

Lab Sample ID: 440-40328-1 MSD

Matrix: Water

Analysis Batch: 92959

Client Sample ID: Arroyo Simi-FP

Client Sample ID: Arroyo Simi-FP

Prep Type: Total Recoverable

Prep Batch: 92787

7 mary or Datom C2000										- Dato		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Cadmium	0.68	J,DX	80.0	98.3		ug/L		122	70 - 130	5	20	
Lead	4.9		80.0	101		ug/L		121	70 - 130	5	20	
Antimony	0.87	J,DX	80.0	78.5		ug/L		97	70 - 130	6	20	
Selenium	3.2	J,DX	80.0	96.4		ug/L		117	70 - 130	6	20	
Thallium	ND		80.0	97.0		ug/L		121	70 - 130	5	20	

Lab Sample ID: MB 440-93130/1-A

Matrix: Water

Analysis Batch: 93289

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 93130

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	1.76	J,DX	2.0	0.50	ug/L		03/20/13 19:03	03/21/13 09:48	1

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Client: MWH Americas Inc

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 440-93130/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 93289** Prep Batch: 93130 Spike LCS LCS

Added Result Qualifier Limits Analyte Unit D %Rec 80.0 85 - 115 Copper 85.5 ug/L 107

Lab Sample ID: 440-40945-A-3-B MS ^5 Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 93289** Prep Batch: 93130

Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits Copper 3.3 J,DX MB 80.0 82.1 ug/L 98 70 - 130

Lab Sample ID: 440-40945-A-3-C MSD ^5 Client Sample ID: Matrix Spike Duplicate **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 93289** Prep Batch: 93130 Spike MSD MSD Sample Sample %Rec. RPD

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 3.3 J,DX MB 80.0 88.7 107 Copper ug/L 70 - 130

Lab Sample ID: MB 440-91577/1-J Client Sample ID: Method Blank

Matrix: Water Prep Type: Dissolved Analysis Batch: 93128 Prep Batch: 93021

MB MB Qualifier RL **MDL** Unit Prepared Dil Fac Analyte Result Analyzed Cadmium ND 1.0 0.10 ug/L 03/20/13 13:48 03/20/13 18:44 Copper ND 2.0 0.50 ug/L 03/20/13 13:48 03/20/13 18:44 ND 1.0 0.20 03/20/13 18:44 Lead ug/L 03/20/13 13:48 ND Antimony 2.0 0.30 ug/L 03/20/13 13:48 03/20/13 18:44 Selenium ND 2.0 0.50 ug/L 03/20/13 13:48 03/20/13 18:44 Thallium ND 1.0 0.20 ug/L 03/20/13 13:48 03/20/13 18:44

Lab Sample ID: LCS 440-91577/2-J Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 93128 Prep Batch: 93021

7 maryolo Batom CC 120								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	80.0	79.0		ug/L		99	85 _ 115	
Copper	80.0	79.7		ug/L		100	85 - 115	
Lead	80.0	79.3		ug/L		99	85 - 115	
Antimony	80.0	80.3		ug/L		100	85 - 115	
Selenium	80.0	79.4		ug/L		99	85 ₋ 115	
Thallium	80.0	80.9		ug/L		101	85 - 115	

Lab Sample ID: 440-40328-1 MS Client Sample ID: Arroyo Simi-FP **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 93128 Prep Batch: 93021

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	0.11	J,DX	80.0	75.6		ug/L		94	70 - 130	
Copper	4.3		80.0	80.3		ug/L		95	70 - 130	
Lead	ND		80.0	75.4		ug/L		94	70 - 130	
Antimony	0.52	J,DX	80.0	79.3		ug/L		98	70 - 130	

TestAmerica Irvine

4/3/2013

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 440-40328-1 MS Client Sample ID: Arroyo Simi-FP **Matrix: Water Prep Type: Dissolved** Prep Batch: 93021

Analysis Batch: 93128

Client: MWH Americas Inc

MS MS Sample Sample Spike Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits 80.0 Selenium 2 1 77 4 94 70 - 130 ug/L Thallium ND 80.0 77.1 ug/L 96 70 - 130

Lab Sample ID: 440-40328-1 MSD Client Sample ID: Arroyo Simi-FP

Matrix: Water

Prep Type: Dissolved Prep Batch: 93021 **Analysis Batch: 93128** MSD MSD Sample Sample Spike %Rec. RPD Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 0.11 J,DX 80.0 75.5 ug/L 94 70 - 130 0 20

Analyte Cadmium 80.0 Copper 4.3 78.6 ug/L 93 70 - 1302 20 Lead ND 80.0 75.3 ug/L 94 70 - 130 20 0.52 J,DX 70 - 130 Antimony 80.0 80.1 ug/L 99 20 Selenium 2 1 80.0 77.1 ug/L 94 70 - 130 20 Thallium NΠ 80.0 77.2 70 - 130 20 ug/L n

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 440-92502/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 93279

MB MB Result Qualifier RL Analyte MDL Unit D Prepared Analyzed Dil Fac

Mercury ND 0.20 0.10 ug/L 03/20/13 12:27 03/20/13 18:42

Lab Sample ID: LCS 440-92502/2-A **Matrix: Water**

Analysis Batch: 93279

Prep Batch: 92502 Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Mercury 8.00 7.81 ug/L 98 85 - 115

Lab Sample ID: 440-40019-AN-3-D MS Client Sample ID: Matrix Spike

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 93279** Prep Batch: 92502 MS MS Spike %Rec. Sample Sample Result Qualifier Added Result Qualifier %Rec Analyte Unit

8.00

ug/L

Lab Sample ID: 440-40019-AN-3-E MSD Client Sample ID: Matrix Spike Duplicate

8.00

ND

Matrix: Water

Mercury

Prep Type: Total/NA **Analysis Batch: 93279** Prep Batch: 92502 Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Limit Mercury ND 8.00 7.85 98 20 ug/L 70 - 130

TestAmerica Irvine

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

70 - 130

Prep Batch: 92502

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Method: 245.1 - Mercury (CVAA) (Continued)

Lab Sample ID: MB 440-91577/1-I **Matrix: Water**

Analysis Batch: 93120

мв мв

Sample Sample

Sample Sample

ND

Result Qualifier

ND

Result Qualifier

Client Sample ID: Method Blank **Prep Type: Dissolved**

Client Sample ID: Lab Control Sample

Limits

85 - 115

Client Sample ID: Arroyo Simi-FP

Prep Batch: 92967

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.20 Mercury ND 0.10 ug/L 03/20/13 12:27 03/20/13 16:14

Lab Sample ID: LCS 440-91577/2-I

Matrix: Water

Analysis Batch: 93120

Spike

Added

8.00

8.00

LCS LCS

Result Qualifier

Prep Type: Dissolved

%Rec

100

99

Prep Batch: 92967

Lab Sample ID: 440-40328-1 MS

Matrix: Water

Analyte

Mercury

Analyte

Mercury

Mercury

Analysis Batch: 93120

Spike Added

MS MS Result Qualifier 7.83

8.00

Unit D %Rec ug/L

Unit

ug/L

Limits 70 - 130

Prep Batch: 92967 %Rec.

Prep Type: Dissolved

Lab Sample ID: 440-40328-1 MSD

Matrix: Water

Analysis Batch: 93120

Analyte

Spike Added 8.00

MSD MSD Result Qualifier 7.93

Unit %Rec ug/L

%Rec. Limits

Client Sample ID: Method Blank

Client Sample ID: Arroyo Simi-FP

RPD Limit 70 _ 130 20

Prep Type: Total/NA

Prep Batch: 92967

Prep Type: Dissolved

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-91279/1

Matrix: Water

Analysis Batch: 91279

MR MR

Analyte **Total Suspended Solids** Result Qualifier ND

RL 10 MDL Unit 10 mg/L Prepared

Dil Fac Analyzed

03/12/13 20:09

Limits

85 - 115

Lab Sample ID: LCS 440-91279/2 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 91279

Analyte **Total Suspended Solids**

Spike Added 1000

LCS LCS Result Qualifier 991

Unit mg/L

D %Rec 99

%Rec.

Prep Type: Total/NA

Lab Sample ID: 440-40430-A-1 DU

Matrix: Water

Analyte

Analysis Batch: 91279

Total Suspended Solids

Sample Sample Result Qualifier

130

DU DU Result Qualifier

135

Unit D mg/L

Prep Type: Total/NA

Client Sample ID: Duplicate

RPD Limit

RPD

QC Sample Results

Client: MWH Americas Inc TestAmerica Job ID: 440-40328-1

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: SM 4500 CN E - Cyanide, Total (Low Level)

Lab Sample ID: MB 440-90885/1-A **Matrix: Water**

Analysis Batch: 90984

Prep Type: Total/NA Prep Batch: 90885

мв мв

Result Qualifier RL MDL Unit Analyte D Prepared Dil Fac Analyzed 5.0 3.0 ug/L 03/11/13 15:04 03/11/13 21:37 Cyanide, Total ND

Lab Sample ID: LCS 440-90885/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Prep Batch: 90885

Analysis Batch: 90984

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Total 100 97.2 ug/L 97 90 - 110

Lab Sample ID: 440-39884-B-1-B MS Client Sample ID: Matrix Spike

Matrix: Water

Analysis Batch: 90984 Spike MS MS

%Rec. Sample Sample Result Qualifier Added Result Qualifier Unit %Rec Limits Cyanide, Total ND 100 102 102 70 - 115 ug/L

Lab Sample ID: 440-39884-B-1-C MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 90984

Prep Batch: 90885 Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Limit Unit %Rec Limits Cyanide, Total ND 100 104 104 2 ug/L 70 _ 115 15

TestAmerica Irvine

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 90885

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

GC/MS VOA

Analysis Batch: 90650

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40019-S-1 MS	Matrix Spike	Total/NA	Water	624	
440-40019-S-1 MSD	Matrix Spike Duplicate	Total/NA	Water	624	
440-40328-1	Arroyo Simi-FP	Total/NA	Water	624	
LCS 440-90650/6	Lab Control Sample	Total/NA	Water	624	
MB 440-90650/5	Method Blank	Total/NA	Water	624	

Analysis Batch: 92541

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
440-40328-1	Arroyo Simi-FP	Total/NA	Water	624	
440-40534-D-1 MS	Matrix Spike	Total/NA	Water	624	
440-40534-D-1 MSD	Matrix Spike Duplicate	Total/NA	Water	624	
LCS 440-92541/5	Lab Control Sample	Total/NA	Water	624	
MB 440-92541/4	Method Blank	Total/NA	Water	624	

GC/MS Semi VOA

Prep Batch: 90585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-39233-Q-6-A MS	Matrix Spike	Total/NA	Water	525.2	
440-40328-1	Arroyo Simi-FP	Total/NA	Water	525.2	
LCS 440-90585/2-A	Lab Control Sample	Total/NA	Water	525.2	
LCSD 440-90585/3-A	Lab Control Sample Dup	Total/NA	Water	525.2	
MB 440-90585/1-A	Method Blank	Total/NA	Water	525.2	

Analysis Batch: 90937

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 440-90585/2-A	Lab Control Sample	Total/NA	Water	525.2	90585
LCSD 440-90585/3-A	Lab Control Sample Dup	Total/NA	Water	525.2	90585
MB 440-90585/1-A	Method Blank	Total/NA	Water	525.2	90585

Prep Batch: 91160

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total/NA	Water	625	
LCS 440-91160/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 440-91160/3-A	Lab Control Sample Dup	Total/NA	Water	625	
MB 440-91160/1-A	Method Blank	Total/NA	Water	625	

Analysis Batch: 91197

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-39233-Q-6-A MS	Matrix Spike	Total/NA	Water	525.2	90585
440-40328-1	Arroyo Simi-FP	Total/NA	Water	525.2	90585

Analysis Batch: 91851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 440-90585/2-A	Lab Control Sample	Total/NA	Water	525.2	90585
LCSD 440-90585/3-A	Lab Control Sample Dup	Total/NA	Water	525.2	90585
MB 440-90585/1-A	Method Blank	Total/NA	Water	525.2	90585

TestAmerica Irvine

Page 51 of 64

6

6

9

10

12

. .

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

GC/MS Semi VOA (Continued)

Analysis Batch: 92112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total/NA	Water	625	91160
LCS 440-91160/2-A	Lab Control Sample	Total/NA	Water	625	91160
LCSD 440-91160/3-A	Lab Control Sample Dup	Total/NA	Water	625	91160
MB 440-91160/1-A	Method Blank	Total/NA	Water	625	91160

Prep Batch: 94270

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1 - RE	Arroyo Simi-FP	Total/NA	Water	625	
440-41729-J-3-C MS	Matrix Spike	Total/NA	Water	625	
440-41729-K-3-B MSD	Matrix Spike Duplicate	Total/NA	Water	625	
LCS 440-94270/2-A	Lab Control Sample	Total/NA	Water	625	
MB 440-94270/1-A	Method Blank	Total/NA	Water	625	

Analysis Batch: 94968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1 - RE	Arroyo Simi-FP	Total/NA	Water	625	94270
440-41729-J-3-C MS	Matrix Spike	Total/NA	Water	625	94270
440-41729-K-3-B MSD	Matrix Spike Duplicate	Total/NA	Water	625	94270
LCS 440-94270/2-A	Lab Control Sample	Total/NA	Water	625	94270
MB 440-94270/1-A	Method Blank	Total/NA	Water	625	94270

GC Semi VOA

Prep Batch: 90661

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-39926-A-1-A MS	Matrix Spike	Total/NA	Water	608	
440-39926-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	608	
440-39926-A-1-C MS	Matrix Spike	Total/NA	Water	608	
440-39926-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	608	
440-40328-1	Arroyo Simi-FP	Total/NA	Water	608	
LCS 440-90661/2-A	Lab Control Sample	Total/NA	Water	608	
LCS 440-90661/5-A	Lab Control Sample	Total/NA	Water	608	
MB 440-90661/1-A	Method Blank	Total/NA	Water	608	

Analysis Batch: 90786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-39926-A-1-C MS	Matrix Spike	Total/NA	Water	608	90661
440-39926-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	608	90661
440-40328-1	Arroyo Simi-FP	Total/NA	Water	608	90661
LCS 440-90661/5-A	Lab Control Sample	Total/NA	Water	608	90661
MB 440-90661/1-A	Method Blank	Total/NA	Water	608	90661

Analysis Batch: 90808

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-39926-A-1-A MS	Matrix Spike	Total/NA	Water	608	90661
440-39926-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	608	90661
LCS 440-90661/2-A	Lab Control Sample	Total/NA	Water	608	90661
MB 440-90661/1-A	Method Blank	Total/NA	Water	608	90661

TestAmerica Irvine

4/3/2013

Page 52 of 64

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

GC Semi VOA (Continued)

Analysis Batch: 91083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total/NA	Water	608	90661

HPLC/IC

Analysis Batch: 90811

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total/NA	Water	218.6	
440-40328-1 MS	Arroyo Simi-FP	Total/NA	Water	218.6	
440-40328-1 MSD	Arroyo Simi-FP	Total/NA	Water	218.6	
LCS 440-90811/35	Lab Control Sample	Total/NA	Water	218.6	
MB 440-90811/34	Method Blank	Total/NA	Water	218.6	

Specialty Organics

Prep Batch: 12332

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total/NA	Water	1613B	
LCS 320-12332/2-A	Lab Control Sample	Total/NA	Water	1613B	
MB 320-12332/1-A	Method Blank	Total/NA	Water	1613B	

Analysis Batch: 12476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total/NA	Water	1613B	12332
LCS 320-12332/2-A	Lab Control Sample	Total/NA	Water	1613B	12332
MB 320-12332/1-A	Method Blank	Total/NA	Water	1613B	12332

Metals

Analysis Batch: 90113

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total/NA	Water	SM 2340B	

Prep Batch: 92375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Dissolved	Water	200.2	
440-40193-AL-4-C MS	Matrix Spike	Dissolved	Water	200.2	
440-40193-AL-4-C MS ^2	Matrix Spike	Dissolved	Water	200.2	
440-40193-AL-4-D MSD	Matrix Spike Duplicate	Dissolved	Water	200.2	
440-40193-AL-4-D MSD ^2	Matrix Spike Duplicate	Dissolved	Water	200.2	
LCS 440-91577/2-D	Lab Control Sample	Dissolved	Water	200.2	
MB 440-91577/1-D	Method Blank	Dissolved	Water	200.2	

Prep Batch: 92502

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
440-40328-1	Arroyo Simi-FP	Total/NA	Water	245.1	_
440-40019-AN-3-D MS	Matrix Spike	Total/NA	Water	245.1	
440-40019-AN-3-E MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	
LCS 440-92502/2-A	Lab Control Sample	Total/NA	Water	245.1	
MB 440-92502/1-A	Method Blank	Total/NA	Water	245.1	

Page 53 of 64

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Metals (Continued)

Analysis Batch: 92623

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Dissolved	Water	200.7 Rev 4.4	92375
440-40193-AL-4-C MS	Matrix Spike	Dissolved	Water	200.7 Rev 4.4	92375
440-40193-AL-4-D MSD	Matrix Spike Duplicate	Dissolved	Water	200.7 Rev 4.4	92375
LCS 440-91577/2-D	Lab Control Sample	Dissolved	Water	200.7 Rev 4.4	92375
MB 440-91577/1-D	Method Blank	Dissolved	Water	200.7 Rev 4.4	92375

Prep Batch: 92737

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total Recoverable	Water	200.2	
440-40328-1 MS	Arroyo Simi-FP	Total Recoverable	Water	200.2	
440-40328-1 MSD	Arroyo Simi-FP	Total Recoverable	Water	200.2	
LCS 440-92737/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-92737/1-A	Method Blank	Total Recoverable	Water	200.2	

Prep Batch: 92787

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total Recoverable	Water	200.2	
440-40328-1 MS	Arroyo Simi-FP	Total Recoverable	Water	200.2	
440-40328-1 MSD	Arroyo Simi-FP	Total Recoverable	Water	200.2	
LCS 440-92787/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-92787/1-A	Method Blank	Total Recoverable	Water	200.2	

Analysis Batch: 92798

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method I	Prep Batch
440-40193-AL-4-C MS ^2	Matrix Spike	Dissolved	Water	200.7 Rev 4.4	92375
440-40193-AL-4-D MSD ^2	Matrix Spike Duplicate	Dissolved	Water	200.7 Rev 4.4	92375

Analysis Batch: 92891

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total Recoverable	Water	200.7 Rev 4.4	92737
440-40328-1 MS	Arroyo Simi-FP	Total Recoverable	Water	200.7 Rev 4.4	92737
440-40328-1 MSD	Arroyo Simi-FP	Total Recoverable	Water	200.7 Rev 4.4	92737
LCS 440-92737/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	92737
MB 440-92737/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	92737

Analysis Batch: 92959

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total Recoverable	Water	200.8	92787
440-40328-1 MS	Arroyo Simi-FP	Total Recoverable	Water	200.8	92787
440-40328-1 MSD	Arroyo Simi-FP	Total Recoverable	Water	200.8	92787
LCS 440-92787/2-A	Lab Control Sample	Total Recoverable	Water	200.8	92787
MB 440-92787/1-A	Method Blank	Total Recoverable	Water	200.8	92787

Prep Batch: 92967

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Dissolved	Water	245.1	
440-40328-1 MS	Arroyo Simi-FP	Dissolved	Water	245.1	
440-40328-1 MSD	Arroyo Simi-FP	Dissolved	Water	245.1	
LCS 440-91577/2-I	Lab Control Sample	Dissolved	Water	245.1	
MB 440-91577/1-I	Method Blank	Dissolved	Water	245.1	

TestAmerica Irvine

Page 54 of 64

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Metals (Continued)

Prep E	3atc	h: 93	02
--------	------	-------	----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Dissolved	Water	200.2	
440-40328-1 MS	Arroyo Simi-FP	Dissolved	Water	200.2	
440-40328-1 MSD	Arroyo Simi-FP	Dissolved	Water	200.2	
LCS 440-91577/2-J	Lab Control Sample	Dissolved	Water	200.2	
MB 440-91577/1-J	Method Blank	Dissolved	Water	200.2	

Analysis Batch: 93120

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Dissolved	Water	245.1	92967
440-40328-1 MS	Arroyo Simi-FP	Dissolved	Water	245.1	92967
440-40328-1 MSD	Arroyo Simi-FP	Dissolved	Water	245.1	92967
LCS 440-91577/2-I	Lab Control Sample	Dissolved	Water	245.1	92967
MB 440-91577/1-I	Method Blank	Dissolved	Water	245.1	92967

Analysis Batch: 93128

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Dissolved	Water	200.8	93021
440-40328-1 MS	Arroyo Simi-FP	Dissolved	Water	200.8	93021
440-40328-1 MSD	Arroyo Simi-FP	Dissolved	Water	200.8	93021
LCS 440-91577/2-J	Lab Control Sample	Dissolved	Water	200.8	93021
MB 440-91577/1-J	Method Blank	Dissolved	Water	200.8	93021

Prep Batch: 93130

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total Recoverable	Water	200.2	
440-40945-A-3-B MS ^5	Matrix Spike	Total Recoverable	Water	200.2	
440-40945-A-3-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	200.2	
LCS 440-93130/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-93130/1-A	Method Blank	Total Recoverable	Water	200.2	

Analysis Batch: 93279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total/NA	Water	245.1	92502
440-40019-AN-3-D MS	Matrix Spike	Total/NA	Water	245.1	92502
440-40019-AN-3-E MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	92502
LCS 440-92502/2-A	Lab Control Sample	Total/NA	Water	245.1	92502
MB 440-92502/1-A	Method Blank	Total/NA	Water	245.1	92502

Analysis Batch: 93289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total Recoverable	Water	200.8	93130
440-40945-A-3-B MS ^5	Matrix Spike	Total Recoverable	Water	200.8	93130
440-40945-A-3-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	200.8	93130
LCS 440-93130/2-A	Lab Control Sample	Total Recoverable	Water	200.8	93130
MB 440-93130/1-A	Method Blank	Total Recoverable	Water	200.8	93130

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Arroyo Simi-FP

TestAmerica Job ID: 440-40328-1

General Chemistry

Prep Batch: 90885

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-39884-B-1-B MS	Matrix Spike	Total/NA	Water	Distill/CN	
440-39884-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/CN	
440-40328-1	Arroyo Simi-FP	Total/NA	Water	Distill/CN	
LCS 440-90885/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
MB 440-90885/1-A	Method Blank	Total/NA	Water	Distill/CN	

Analysis Batch: 90984

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-39884-B-1-B MS	Matrix Spike	Total/NA	Water	SM 4500 CN E	90885
440-39884-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CN E	90885
440-40328-1	Arroyo Simi-FP	Total/NA	Water	SM 4500 CN E	90885
LCS 440-90885/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	90885
MB 440-90885/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	90885

Analysis Batch: 91279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40328-1	Arroyo Simi-FP	Total/NA	Water	SM 2540D	
440-40430-A-1 DU	Duplicate	Total/NA	Water	SM 2540D	
LCS 440-91279/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 440-91279/1	Method Blank	Total/NA	Water	SM 2540D	

Biology

440-40328-1

Analysis Batch: 90673

Lab Sample ID 440-40328-1	Client Sample ID Arroyo Simi-FP	Prep Type Total/NA	Matrix Water	Method SM 9221E	Prep Batch
Analysis Batch: 90674					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Total/NA

Water

SM 9221F

TestAmerica Irvine

_

6

0

40

11

12

1 /

Definitions/Glossary

Client: MWH Americas Inc TestAmerica Job ID: 440-40328-1

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Qualifiers

GC/MS VOA

Qualifier Qua	llifier Description

LH Surrogate Recoveries were higher than QC limits

GC/MS Semi VOA

Qualifier	Qualifier Description
LN	MS and/or MSD below acceptance limits. See Blank Spike (LCS)
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL
LG	LG=Surrogate recovery below the acceptance limits
BU	Sample was prepped beyond the specified holding time
LM	MS and/or MSD above acceptance limits. See Blank Spike (LCS)
BA	Relative percent difference out of control
LH	Surrogate Recoveries were higher than QC limits
HPLC/IC	

Quaimer	Qualifier Description
BU	Analyzed out of holding time
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL

Dioxin

Qualifier	Qualifier Description	
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL	
q	The isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio for these samples.	
MB	Analyte present in the method blank	
Madala		

Metals

Qualifier	Qualifier Description
BB	Sample > 4X spike concentration
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL
MB	Analyte present in the method blank
BA	Relative percent difference out of control

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Irvine

Page 57 of 64

6

4

5

7

10

13

Certification Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

TestAmerica Job ID: 440-40328-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-13
Arizona	State Program	9	AZ0671	10-13-13
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	03-28-13
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-13
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-13
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	DoD ELAP		2928-01	01-31-14
Alaska (UST)	State Program	10	UST-055	12-18-13
Arizona	State Program	9	AZ0708	08-11-13
Arkansas DEQ	State Program	6	88-0691	06-17-13
California	NELAP	9	1119CA	01-31-14
Colorado	State Program	8	N/A	08-31-13
Connecticut	State Program	1	PH-0691	06-30-13
Florida	NELAP	4	E87570	06-30-13
Guam	State Program	9	N/A	08-31-13
Hawaii	State Program	9	N/A	01-31-14
Illinois	NELAP	5	200060	03-17-14
Kansas	NELAP	7	E-10375	10-31-13
Louisiana	NELAP	6	30612	06-30-13
Michigan	State Program	5	9947	01-31-14
Nevada	State Program	9	CA44	07-31-13
New Jersey	NELAP	2	CA005	06-30-13
New York	NELAP	2	11666	05-01-13
Northern Mariana Islands	State Program	9	MP0007	02-01-14
Oregon	NELAP	10	CA200005	03-28-14
Pennsylvania	NELAP	3	68-01272	05-31-13
South Carolina	State Program	4	87014	06-30-13
Texas	NELAP	6	T104704399-08-TX	05-31-13
US Fish & Wildlife	Federal		LE148388-0	12-31-13
USDA	Federal		P330-11-00436	12-30-14
USEPA UCMR	Federal	1	CA00044	11-06-14
Utah	NELAP	8	QUAN1	01-31-14
Washington	State Program	10	C581	05-05-13
West Virginia	State Program	3	9930C	12-31-13
West Virginia DEP	State Program	3	334	07-31-13
Wyoming	State Program	8	8TMS-Q	01-31-14

TestAmerica Irvine

5

7

9

12

. .

EMSL Analytical, Inc.

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675/ 786-0262

http://www.emsl.com E-mail: MicrobiologyLab@emsl.com

 Client: TestAmerica Irvine
 EMSL Order ID: 611300335

 17461 Derian Avenue Suite 100
 Date Received: 3/12/2013

 Irvine , CA 92614
 Date Analyzed: 3/13/2013

 Attn. Debby Wilson
 Date Reported: 3/15/2013

Project: Boeing SSFL NPDES Annual Arroyo Simi-Fro/44002624 Date Amended:

Real-Time PCR Analysis for Human Bacteroides

(Based on a published method SAM: 348 - 357, 2010), EMSL Test Code: M199, Revision No. 3, 04/18/2011)

Client Sample ID	Sample Date and Time	Amount Amount Received Sampled	CEs /100 mL
Arroyo Simi-FP(440-40328-1)	3/8/2013 12:15 Pacific	Water 250 ml Water 250 ml	None Detected
	_		Client Sample ID Sample Date and Time Received Sampled

EMSL maintains liability limited to cost of analysis. Interpretation of the data contained in this report is the responsibility of the client. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. The above test report relates only to the items tested. EMSL bears no responsibility for sample collection activities or analytical method limitations.

Note: The PCR primer is HF183 and the qPCR probe and primer was evaluated in 2010 by EPA scientists. The real-time PCR based on HF183 detects human specific total bacteroides predominantly with minor cross-detections on chicken and dog fecal materials. CEs: Cell Equivalents, measured by PCR using genomic DNA standards.

USEPA License No: 0240-02

Quar L:

Quanyi "Charlie" Li, Ph.D. Director, PCR and DNA Analysis Lab 3

6

8

9

11

13

Page 1 of	Field readings:	Temp = 15.67°C	odity (CC	Time of readings = \2\3	Соттепts			Extract within 36-Hours of sampling					Deliver to lab ASAP						Turn around Time: (check) 24 Hours 5 Days	48 Hours 10 Days	72 Hours Normal	Sample Integrity: (check) Intact On Ioe:	Data Requirements: (check)
 	MED			əpin				-						_				×	Turn 24 H	### ### ### ### ### ### ### ### ### ##	72 H	Sam	Data
	ANALYSIS REQUIRED			VOCs (6						-					×	×	×		_				
	SIS	(0.00		Metals (_							×	^				\$.% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	NAL.	Human											×						~	2			
	<		3223)	ems) ilc	E. ci							×							ime:		<u>v</u>	ime:	
				oliloo le					-	×	×				-			_	Date/Time:	0 / / O	ב ת	Date/Time:	
FORM			anos lie	D (and	SST				×										7	`			
	(S.č	329) uo	nissiO ,	rpyrifos	СРЮ			×															
DY		(809) 8	esticides	CBs/Pe	4 dd		×													773			
STC		ε	OOSO 8	uess ss	Hard	×					-				٠,	.		+	L BY		ŝ	By	
F CUSTODY	otier				Bottle #	`* <u>*</u>	, 2A, 2B	3A, 3B [©]	4	* 5A, 5B	ş 9	, 4	8	6	10a, 10b	% 11a, 11b∤ 11c³	∘ 12a, 12b≀ 12c ⁶	13.	Redelived By	Col Colored	Keceived by	Received By	
CHAIN OF	NPDES O Simi-Fro		Jer. 391	: 515	Preservative	HNOs	None	Ϊ́Ο	None	None	Na2S203	Na2S203	None	HNO3	None	None	HCI	NaOH		70	37.7	2	
고 당	Project: Boeing-SSFL NPDES Annual Arrovo Simi-Frontier	Park	Phone Number: (626) 568-6691	Fax Number: (626) 568-6515	Sampling Date/Time	3/8/3						1		and Manager Survey of the Surv		1		\$ P	Date/Time:	13:3	Date/Time:	> (e/Time:	
19/2010					# of Cont.	-	2	8	-	2	٧	-	-	-	7	ო	က	-	ď	North Control of the		V	
est America version 7/19/2010	SS:	616 Michilinda Avenue, Suite 200 Arcadia, CA 91007	lest America Contact: Debby vviisori Project Manager: Bronwyn Kelly	Sampler: J. PA-C.K.C.S	Container Type	1L Poly	1L Amber	1L Amber	500 mL Poly	1L Amber	125 mL Polv	125 mL Polv	125 mL Poly	1L Poly	1L Amber	VOAs	VOAs	500 mL Poly	Priming the first of the control of) Id			<u> </u>
neric	ne/Addre cadia	191007	a Contact	走六	Sample Matrix	3	3	3	*	3	3	3	3	3	>	8	>	3	\$ \$		d By	9 P	
est Ar	Client Name/Address: MWH-Arcadia	rcadia, CA	est Americ roject Ma	ampler.	Sample Description	Arroyo Simi-FP	Arroyo	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Relinquished By	THE STATES	Relinguished By	Relinquished By	

Client: MWH Americas Inc

Job Number: 440-40328-1

Login Number: 40328 List Source: TestAmerica Irvine

List Number: 1 Creator: Perez, Angel

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	J. Parkes
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-40328-1

Login Number: 40328
List Source: TestAmerica Sacramento
List Number: 1
List Creation: 03/12/13 12:09 PM

Creator: Tecson, Jeffrey

Creator. recson, Jenrey		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	678733
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	1.1
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

4

6

8

10

12

13

Residual Chlorine Checked.

Client: MWH Americas Inc

TestAmerica Job ID: 440-40328-1 Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Water Prep Type: Total/NA

			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1
Lab Sample ID	Client Sample ID	(25-164)	(24-169)	(25-181)	(24-185)	(21-178)	(32-141)	(28-130)	(26-152)
440-40328-1	Arroyo Simi-FP	64	59	68	56	58	63	65	59
MB 320-12332/1-A	Method Blank	62	60	65	53	58	51	63	51
			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD	
Lab Sample ID	Client Sample ID	(26-123)	(29-147)	(28-136)	(23-140)	(28-143)	(26-138)	(17-157)	
440-40328-1	Arroyo Simi-FP	67	56	65	62	61	53	54	
MB 320-12332/1-A	Method Blank	63	52	60	50	51	43	40	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF

HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Water Prep Type: Total/NA

			Р	ercent Isotop	e Dilution Re	ecovery (Acc	eptance Limi	ts)	
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1
Lab Sample ID	Client Sample ID	(20-175)	(22-152)	(21-227)	(21-192)	(13-328)	(21-193)	(25-163)	(19-202)
LCS 320-12332/2-A	Lab Control Sample	69	62	80	64	66	70	79	66
			Р	ercent Isotop	e Dilution Re	ecovery (Acc	eptance Limi	ts)	
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD	
Lab Sample ID	Client Sample ID	(21-159)	(17-205)	(22-176)	(26-166)	(21-158)	(20-186)	(13-199)	
LCS 320-12332/2-A	Lab Control Sample	76	66	73	73	68	62	57	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF

TestAmerica Irvine

Page 63 of 64

Isotope Dilution Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES Annual Arroyo Simi-Fro

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

TestAmerica Job ID: 440-40328-1

APPENDIX G

Section 11

Arroyo Simi-Frontier Park – March 13, 2013 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-40769-1

Client Project/Site: Arroyro Simi-Frontier Park GRAB

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 3/23/2013 3:12:35 PM

Debby Wilson Project Manager I

debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Debby Wilson Project Manager I 3/23/2013 3:12:35 PM

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Page 2 of 14

Client: MWH Americas Inc Project/Site: Arroyro Simi-Frontier Park GRAB TestAmerica Job ID: 440-40769-1

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	6
Method Summary	7
Chronicle	8
QC Association	9
Definitions	10
Certification Summary	11
Subcontract Data	12
Chain of Custody	13
Receipt Checklists	14

5

4

5

7

0

10

11

1:

Sample Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-40769-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-40769-1	Arroyo Simi-FP	Water	03/13/13 13:25	03/13/13 19:30

3

А

5

7

10

11

Case Narrative

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-40769-1

Job ID: 440-40769-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-40769-1

Comments

No additional comments.

The sample was received on 3/13/2013 7:30 PM; the sample arrived in good condition, properly preserved and, where required, on ice.

The temperature of the cooler at receipt was 4.8° C.

No analytical or quality issues were noted.

Subcontract non-Sister

No analytical or quality issues were noted.

Client Sample Results

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

Client Sample ID: Arroyo Simi-FP

TestAmerica Job ID: 440-40769-1

Lab Sample ID: 440-40769-1

Lab Gampic 1D: 4-10-40703-1

Matrix: Water

Date Collected: 03/13/13 13:25 Date Received: 03/13/13 19:30

Method: SM 9221E - Coliforms, Fecal (Multiple-Tube Fermentation)										
Analyte	Result (Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Coliform, Fecal	80		2.0	2.0	MPN/100mL			03/13/13 20:40	1	
Method: SM 9221F - F Coli (Mult	tinle-Tube Forme	ntation: EC-I	MIIG)							

Method: SM 9221F - E.Coli (Multiple	e-Tube Fermentation; EC-						
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Escherichia coli	37	2.0	2.0 MPN/100mL			03/13/13 20:40	1

9

10

12

Method Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-40769-1

Method	Method Description	Protocol	Laboratory	
SM 9221E	Coliforms, Fecal (Multiple-Tube Fermentation)	SM	TAL IRV	
SM 9221F	E.Coli (Multiple-Tube Fermentation; EC-MUG)	SM	TAL IRV	
DNA-human	General Sub Contract Method	NONE	EMSL	
bacteriodes;				
FMSI				

Protocol References:

NONE = NONE

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675
TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

9

10

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

Client Sample ID: Arroyo Simi-FP

TestAmerica Job ID: 440-40769-1

Lab Sample ID: 440-40769-1

Matrix: Water

Date Collected: 03/13/13 13:25 Date Received: 03/13/13 19:30

	Batch	Batch Method F		Dil	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Prep Type	Type		Run	Factor						
Total/NA	Analysis	SM 9221E		1	100 mL	100 mL	91803		SK	TAL IRV
							(Start)	03/13/13 20:40		
							(End)	03/16/13 17:14		
Total/NA	Analysis	SM 9221F		1	100 mL	100 mL	91807		SK	TAL IRV
							(Start)	03/13/13 20:40		
							(End)	03/16/13 17:14		

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675 TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

QC Association Summary

Client: MWH Americas Inc TestAmerica Job ID: 440-40769-1

Project/Site: Arroyro Simi-Frontier Park GRAB

Biology

Analysis Batch: 91803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-40769-1	Arroyo Simi-FP	Total/NA	Water	SM 9221E	

Analysis Batch: 91807

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
ı	440-40769-1	Arroyo Simi-FP	Total/NA	Water	SM 9221F	

7

8

46

11

12

Definitions/Glossary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-40769-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Irvine

Δ

5

6

0

9

10

11

12

ш

Certification Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-40769-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-13
Arizona	State Program	9	AZ0671	10-13-13
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	03-28-13
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-13
New Mexico	State Program	6	N/A	03-28-13
Northern Mariana Islands	State Program	9	MP0002	03-28-13
Oregon	NELAP	10	4005	09-12-13
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

3

4

5

8

4.0

10

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675/ 786-0262

http://www.emsl.com E-mail: MicrobiologyLab@emsl.com

Project: Arroyro Simi-Frontier Park GRAB - 44002624 Date Amended:

Real-Time PCR Analysis for Human Bacteroides

Based on a published method SAM: 348 - 357, 2010), EMSL Test Code: M199, Revision No. 3, 04/18/2011

Lab Sample Number		Location	Amount Received	Amount Sampled	CEs /100 mL
611300355-1	Arroyo Simi-FP (440-40769-1)	Arroyo Simi-Frontier Park	125 ml	125 ml	None Detected

EMSL maintains liability limited to cost of analysis. Interpretation of the data contained in this report is the responsibility of the client. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. The above test report relates only to the items tested. EMSL bears no responsibility for sample collection activities or analytical method limitations.

Note: The PCR primer is HF183 and the qPCR probe and primer was evaluated in 2010 by EPA scientists. The real-time PCR based on HF183 detects human specific bacteroides predominantly with minor cross-detections on chicken and dog fecal materials. CEs: Cell Equivalents, measured by PCR using genomic DNA standards.

Quar L:

Quanyi "Charlie" Li, Ph.D. Director, DNA Analysis Laboratory

Client Name/Address:	Project.	!					יייייייייייייייייייייייייייייייייייייי		
MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007	Boeing- Arroyo GRAB	Boeing-SSFL NPDES Arroyo Simi-Frontier Park GRAB	Park						Field readings: (Log in and include in report Temp and pH)
Test America Contact: Debby Wilson				(12	nwsu				Temp °F ≈
Project Manager: Bronwyn Kelly	Phone	Phone Number:							ι Ε L
Sampler//·@codlera	Fax Number: (626) 568-65	(626) 568-6515 (626) 568-6515		moliform i (SM922	Bateriod				Time of readings =
Container Type # of (Sampling # of Cont. Date/Time	ne Preservative	Bottle #						Comments
125 mL Poly	1 0-18 200	Na2S203	-	×					
125 mL Poly	1	Na2S203	2	×					
125 mL Poly	40200	None None	က	_	×				Deliver to lab ASAP
	ļ								
	<u> </u>								
Date/Time:	Time:	50.2	Received By	Jana /		Date/Time: 3 - 13 - 13 - 13 - 13 - 13 - 13 - 13 -	Tum-around time: (Check) 24 Hour. 48 Hour.	5 Day:	10 Day:
Date/Time:		9:30	Received By	3		Date/Time:	Sample Integrity: (Check) Intact:	K) On los:	
Date/Time:			Received By			Date/Time: 19:	19:3 a Data Requirements: (Check)	. (X)	Try
					(, , ,	No Love IV	All level IV:	NPDES I PAGE IV

Client: MWH Americas Inc

Job Number: 440-40769-1

Login Number: 40769 List Source: TestAmerica Irvine

List Number: 1

Creator: Avila, Stephanie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Irvine

APPENDIX G

Section 12

Arroyo Simi-Frontier Park – March 18, 2013 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-41157-1

Client Project/Site: Arroyro Simi-Frontier Park GRAB

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 3/28/2013 7:16:14 PM

Debby Wilson Project Manager I

debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 440-41157-1

I certify under penalty of perjury that the information contained in this report and all attachments was produced

4

5

6

9

10

12

13

in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Debby Wilson Project Manager I 3/28/2013 7:16:14 PM Client: MWH Americas Inc Project/Site: Arroyro Simi-Frontier Park GRAB TestAmerica Job ID: 440-41157-1

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	6
Method Summary	7
Chronicle	8
QC Association	9
Definitions	10
Certification Summary	11
Subcontract Data	12
Chain of Custody	13
Receipt Checklists	14

Sample Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41157-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-41157-1	Arroyo Simi-FP	Water	03/18/13 13:40	03/18/13 18:05

3

6

8

9

4 4

12

Case Narrative

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41157-1

Job ID: 440-41157-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-41157-1

Comments

No additional comments.

The sample was received on 3/18/2013 6:05 PM; the sample arrived in good condition, properly preserved and, where required, on ice.

The temperature of the cooler at receipt was 3.8° C.

No analytical or quality issues were noted.

Subcontract non-Sister

No analytical or quality issues were noted.

Client Sample Results

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41157-1

Client Sample ID: Arroyo Simi-FP

Date Collected: 03/18/13 13:40 Date Received: 03/18/13 18:05 Lab Sample ID: 440-41157-1

Matrix: Water

Method: SM 9221E - Coliforms, Fed	al (Multiple-	Tube Ferment	ation)						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Coliform, Fecal	130		2.0	2.0	MPN/100mL			03/18/13 20:38	1

— Method: SM 9221F - E.Coli (Multiple	e-Tube Fermentation; E	C-MUG)					
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Escherichia coli	130	2.0	2.0 MPN/100mL			03/18/13 20:38	1

7

10

46

Method Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41157-1

Method	Method Description	Protocol	Laboratory
SM 9221E	Coliforms, Fecal (Multiple-Tube Fermentation)	SM	TAL IRV
SM 9221F	E.Coli (Multiple-Tube Fermentation; EC-MUG)	SM	TAL IRV
DNA-human	General Sub Contract Method	NONE	EMSL
bacteriodes;			
EMSI			

Protocol References:

NONE = NONE

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

3

4

O

Q

9

10

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

Client Sample ID: Arroyo Simi-FP

TestAmerica Job ID: 440-41157-1

Lab Sample ID: 440-41157-1

Matrix: Water

Date Collected: 03/18/13 13:40 Date Received: 03/18/13 18:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 9221E		1	100 mL	100 mL	92689		PP	TAL IRV
							(Start)	03/18/13 20:38		
							(End)	03/21/13 18:13		
Total/NA	Analysis	SM 9221F		1	100 mL	100 mL	92694		PP	TAL IRV
							(Start)	03/18/13 20:38		
							(End)	03/21/13 18:13		

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675 TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

QC Association Summary

Client: MWH Americas Inc TestAmerica Job ID: 440-41157-1

Project/Site: Arroyro Simi-Frontier Park GRAB

Biology

Analysis Batch: 92689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-41157-1	Arroyo Simi-FP	Total/NIA	Water	SM 0221E	

Analysis Batch: 92694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-41157-1	Arrovo Simi-FP	Total/NA	Water	SM 9221F	

5

4

5

6

Ω

9

44

12

Definitions/Glossary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-41157-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

4

5

6

8

9

. .

11

12

Certification Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41157-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-13
Arizona	State Program	9	AZ0671	10-13-13
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	03-28-13
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-13
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-13
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

-6

Λ

5

6

8

4.6

10

11

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675/ 786-0262

http://www.emsl.com E-mail: MicrobiologyLab@emsl.com

Project: Arroyro Simi-Frontier Park GRAB - 44002624 Date Amended:

Real-Time PCR Analysis for Human Bacteroides

Based on a published method SAM: 348 - 357, 2010), EMSL Test Code: M199, Revision No. 3, 04/18/2011

Lab Sample Number		Location	Amount Received	Amount Sampled	CEs /100 mL
611300383-1	Arroyo Simi-FP (440-41157-1)	Boeing SSFL	125 ml	125 ml	None Detected

EMSL maintains liability limited to cost of analysis. Interpretation of the data contained in this report is the responsibility of the client. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. The above test report relates only to the items tested. EMSL bears no responsibility for sample collection activities or analytical method limitations.

Note: The PCR primer is HF183 and the qPCR probe and primer was evaluated in 2010 by EPA scientists. The real-time PCR based on HF183 detects human specific bacteroides predominantly with minor cross-detections on chicken and dog fecal materials. CEs: Cell Equivalents, measured by PCR using genomic DNA standards.

Quar L:

Quanyi "Charlie" Li, Ph.D. Director, DNA Analysis Laboratory

Client: MWH Americas Inc

Job Number: 440-41157-1

Login Number: 41157 List Source: TestAmerica Irvine

List Number: 1

Creator: Chavez, Elizabeth

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	A. Goldenbery
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

TestAmerica Irvine

APPENDIX G

Section 13

Arroyo Simi-Frontier Park – March 22, 2013 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-41627-1

Client Project/Site: Arroyro Simi-Frontier Park GRAB

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Debby Wilson

Authorized for release by: 4/3/2013 2:31:48 PM

Debby Wilson Project Manager I

debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41627-1

7

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Delby Wilson

Debby Wilson Project Manager I 4/3/2013 2:31:48 PM

9

10

11

12

Client: MWH Americas Inc Project/Site: Arroyro Simi-Frontier Park GRAB TestAmerica Job ID: 440-41627-1

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	6
Method Summary	7
Chronicle	8
QC Association	9
Definitions	10
Certification Summary	11
Subcontract Data	12
Chain of Custody	13
Receipt Checklists	14

q

4

5

7

0

10

Sample Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41627-1

Lab Sample ID	le ID Client Sample ID Matrix	Matrix	Collected	Received
440-41627-1	Arroyo Simi-FP	Water	03/22/13 13:40	03/22/13 18:25

3

_

6

8

9

4 4

12

Case Narrative

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41627-1

Job ID: 440-41627-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-41627-1

Comments

No additional comments.

The sample was received on 3/22/2013 6:25 PM; the sample arrived in good condition, properly preserved and, where required, on ice.

The temperature of the cooler at receipt was 2.7° C.

No analytical or quality issues were noted.

Subcontract non-Sister

No analytical or quality issues were noted.

Client Sample Results

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

Client Sample ID: Arroyo Simi-FP

TestAmerica Job ID: 440-41627-1

Lab Sample ID: 440-41627-1

Matrix: Water

Date Collected: 03/22/13 13:40 Date Received: 03/22/13 18:25

Method: SM 9221E - Coliforms, Fecal (Multiple-Tube Fermentation)										
	Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Coliform, Fecal	30		2.0	2.0	MPN/100mL			03/22/13 18:47	1

– Method: SM 9221F - E.Coli (Multiple-Tube Fermentation; EC-MUG)									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Escherichia coli	30		2.0	2.0	MPN/100mL			03/22/13 18:47	1

Method Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41627-1

Method	Method Description	Protocol	Laboratory
SM 9221E	Coliforms, Fecal (Multiple-Tube Fermentation)	SM	TAL IRV
SM 9221F	E.Coli (Multiple-Tube Fermentation; EC-MUG)	SM	TAL IRV
DNA-human	General Sub Contract Method	NONE	EMSL
bacteriodes;			
EMSL			

Protocol References:

NONE = NONE

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

3

4

6

7

8

9

1 1

12

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41627-1

Client Sample ID: Arroyo Simi-FP

Lab Sample ID: 440-41627-1 Date Collected: 03/22/13 13:40

Matrix: Water Date Received: 03/22/13 18:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 9221E		1	100 mL	100 mL	94039		SK	TAL IRV
							(Start)	03/22/13 18:47		
							(End)	03/25/13 14:10		
Total/NA	Analysis	SM 9221F		1	100 mL	100 mL	94042		SK	TAL IRV
							(Start)	03/22/13 18:47		
							(End)	03/25/13 14:10		

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

QC Association Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41627-1

Biology

Analysis Batch: 94039

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-41627-1	Arroyo Simi-FP	Total/NA	Water	SM 9221E	

Analysis Batch: 94042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-41627-1	Arroyo Simi-FP	Total/NA	Water	SM 9221F	

3

4

7

8

10

Definitions/Glossary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-41627-1

Glossary

TEQ

Certification Summary

Client: MWH Americas Inc

Project/Site: Arroyro Simi-Frontier Park GRAB

TestAmerica Job ID: 440-41627-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-13
Arizona	State Program	9	AZ0671	10-13-13
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	03-28-13
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-13
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-13
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

3

4

5

6

8

9

10

11

12

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675/ 786-0262

http://www.emsl.com E-mail: MicrobiologyLab@emsl.com

Client: Test America - Irvine, CA
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn. Debby Wilson
EMSL Order ID: 611300406
Date Received: 3/26/2013
Date Analyzed: 3/27/2013
Date Reported: 3/29/2013

Project: Boeing SSFL Outfalls Date Amended:

Real-Time PCR Analysis for Human Bacteroides

Based on a published method SAM: 348 - 357, 2010), EMSL Test Code: M199, Revision No. 3, 04/18/2011

		VI. 340 - 337, 2010), LIVISL 1	Amount	Amount	CEs /100 mL
Lab Sample Number		Location	Received	Sampled	CES / 100 ML
	Arroyo Simi-FP				
611300406-1	(440-41627-1)	Boeing SSFL	125 ml	125 ml	None Detected

EMSL maintains liability limited to cost of analysis. Interpretation of the data contained in this report is the responsibility of the client. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. The above test report relates only to the items tested. EMSL bears no responsibility for sample collection activities or analytical method limitations.

Note: The PCR primer is HF183 and the qPCR probe and primer was evaluated in 2010 by EPA scientists. The real-time PCR based on HF183 detects human specific bacteroides predominantly with minor cross-detections on chicken and dog fecal materials. CEs: Cell Equivalents, measured by PCR using genomic DNA standards.

Quar L:

Quanyi "Charlie" Li, Ph.D. Director, DNA Analysis Laboratory

Client Name/Address	Project:	ANALY	ANALYSIS REQUIRED	
MA/H. Arcadia	Boeing-SSFL NPDES			:
618 Michillinda Ave, Suite 200 Arcadia, CA 91007	Arroyo Simi-Frontier Park GRAB			Field readings: (Log in and include in report Temp and pH)
Test America Contact: Debby Wilson				Temp °F =
Project Manager: Broowing Kelly	Phone Number:	,		ıı Ha
	(626) 568-6691	(12		Time of readings
Sampler: / (Control of the control	Fax Number: (626) 568-6515	coliform i (SM92 Baterioc	-	
Sample Sample Container Description Matrix Type # of Cont	Sampling Preservative Bottle#	E. col		Comments
 _	7 - 2 2 - 64-13 Na2S2O3 1	×		
Arroyo Simi-FP W 125 mL Poly 1	/ Na2S2O3 2	×		
Arrovo Simi-FP W 125 mL Poly 1	S None 3	×		Deliver to lab ASAP
F				
Page Page				
e 13				
of 1				
4				
Relind/shed/By Date/Time:	IS Received By	0	Turn-around time: (Check) 24 Hour. 72 Hour: 48 Hour: 5 Day:	10 Day; Normal:
Relinquished By Date/Time.	3/22/13 2:30 pm FAF	Date/Time: Sample Int.	Sample Integrity: (Check) Integrity: (Check) On Ice:	\
Reinquished By Date-Time;	Received By	Date/Time: Data Requirements: (Check)	rements: (Check) All Level IV:	NPDES Level IV:
3/2013	11 2	3.0°C/27		
	•			

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-41627-1

Login Number: 41627 List Source: TestAmerica Irvine

List Number: 1

Creator: Avila, Stephanie

oreator. Aviia, otephanie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	A.G
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

9

4 4

12

APPENDIX G

Section 14

Arroyo Simi-Frontier Park – March 27, 2013 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-42004-1

Client Project/Site: Boeing SSFL outfalls

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 4/4/2013 5:02:31 PM

Debby Wilson Project Manager I

debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

2

Delby Wilson

Debby Wilson Project Manager I

4/4/2013 5:02:31 PM

9

10

10

12

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls TestAmerica Job ID: 440-42004-1

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	6
Method Summary	7
Chronicle	8
QC Association	9
Definitions	10
Certification Summary	11
Subcontract Data	12
Chain of Custody	13
Receipt Checklists	14

4

7

9

10

12

Sample Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-42004-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-42004-1	Arroyo Simi-FP	Water	03/27/13 13:35	03/27/13 19:00

3

<u>၂</u>

4

5

ا

9

10

15

Case Narrative

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-42004-1

Job ID: 440-42004-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-42004-1

Comments

No additional comments.

The sample was received on 3/27/2013 7:00 PM; the sample arrived in good condition, properly preserved and, where required, on ice.

The temperature of the cooler at receipt was 4.1° C.

No analytical or quality issues were noted.

Subcontract non-Sister

No analytical or quality issues were noted.

Client Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-42004-1

Client Sample ID: Arroyo Simi-FP

Lab Sample ID: 440-42004-1 Date Collected: 03/27/13 13:35

Matrix: Water

Date Received: 03/27/13 19:00

Method: SM 9221E - Coliforms, Fed	cal (Multiple-	Tube Fermen	tation)						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Coliform, Fecal	130		2.0	2.0	MPN/100mL	_		03/27/13 19:25	1

<u> </u>									
Method: SM 9221F - E.Coli (Multipl	e-Tube Ferm	entation; EC-MUG)							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Escherichia coli	130		2.0	2.0	MPN/100mL	_		03/27/13 19:25	1

Method Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-42004-1

Method	Method Description	Protocol	Laboratory
SM 9221E	Coliforms, Fecal (Multiple-Tube Fermentation)	SM	TAL IRV
SM 9221F	E.Coli (Multiple-Tube Fermentation; EC-MUG)	SM	TAL IRV
DNA-human	General Sub Contract Method	NONE	EMSL
bacteriodes;			
EMSL			

Protocol References:

NONE = NONE

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

4

5

6

Q

9

10

12

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-42004-1

Lab Sample ID: 440-42004-1

Matrix: Water

Client Sample ID: Arroyo Simi-FP Date Collected: 03/27/13 13:35

Date Received: 03/27/13 19:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 9221E		1	100 mL	100 mL	94803		ST	TAL IRV
							(Start)	03/27/13 19:25		
							(End)	03/30/13 15:30		
Total/NA	Analysis	SM 9221F		1	100 mL	100 mL	94804		ST	TAL IRV
							(Start)	03/27/13 19:25		
							(End)	03/30/13 15:30		

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077, TEL (800)220-3675

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

7

0

9

10

12

QC Association Summary

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls TestAmerica Job ID: 440-42004-1

Biology

Analysis Batch: 94803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-42004-1	Arroyo Simi-FP	Total/NA	Water	SM 9221E	

Analysis Batch: 94804

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-42004-1	Arroyo Simi-FP	Total/NA	Water	SM 9221F	

- -

4

7

8

10

11

12

Definitions/Glossary

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-42004-1

Glossary

TEQ

-

6

9

10

11

12

Ш

Certification Summary

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls TestAmerica Job ID: 440-42004-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-13
Arizona	State Program	9	AZ0671	10-13-13
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	03-28-13 *
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-13
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-13
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Irvine

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675/ 786-0262

<u>http://www.emsl.com</u> E-mail: <u>MicrobiologyLab@emsl.com</u>

Client: Test America - Irvine, CA
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn. Debby Wilson
Project: Boeing SSFL Outfalls

EMSL Order ID: 611300438
Date Received: 3/29/2013
Date Analyzed: 4/2/2013
Date Reported: 4/2/2013
Date Amended:

Real-Time PCR Analysis for Human Bacteroides

Based on a published method SAM: 348 - 357, 2010), EMSL Test Code: M199, Revision No. 3, 04/18/2011

Lab Sample Number		Location	Amount Received	Amount Sampled	CEs /100 mL
611300438-1	Arroyo Simi-FP (440-42004-1)	Boeing SSFL	125 ml	125 ml	None Detected

EMSL maintains liability limited to cost of analysis. Interpretation of the data contained in this report is the responsibility of the client. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. The above test report relates only to the items tested. EMSL bears no responsibility for sample collection activities or analytical method limitations.

Note: The PCR primer is HF183 and the qPCR probe and primer was evaluated in 2010 by EPA scientists. The real-time PCR based on HF183 detects human specific bacteroides predominantly with minor cross-detections on chicken and dog fecal materials. CEs: Cell Equivalents, measured by PCR using genomic DNA standards.

Quar L:

Quanyi "Charlie" Li, Ph.D. Director, DNA Analysis Laboratory

Client Name/Address:	ldress:			Project:	טטטטע -						ANALYSIS REQUIRED	ÆD		
MWH-Arcadia 618 Michillinda Ave, Arcadia, CA 91007	a Ave, Sui 007	Suite 200		Boeing-Sort NFDES Arroyo Simi-Frontier GRAB	boeing-Sort Nroco Arroyo Simi-Frontier Park GRAB	ark							Field readings: (Log in and include in report Temp and pH)	
Test America Contact: Debby Wilson	ontact: 1	Jebby Wils	nos				(122	nemul					Temp °F ≡	
Project Manager: Bronwyn Kelly	r: Bron	wyn Kelly		Phone Number:	iber:								≡ Hd	
Sampler:				(626) 566-6691 Fax Number: (626) 568-6515	ਹੈ। ਨ1ਨ ਨ1ਨ		miotilo:	SZ6MS)					Time of readings =	
Sample	Sample	Container	# of Cont.	Sampling Date/Time	Preservative	Bottle #		-		13			Comments	
Arimis Overa	×	125 mL Poly			Na2S203	, -	╁	 						
Arroyo Simi-FP	×	125 mL Poly	۲ <u>خ</u>	× / 4 /	Na2S203	2		×						
Arrovo Simi-FP	×	125 mL Poly	- <u>-</u>	1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	None	3		×					Deliver to lab ASAP	
			-					- - -						
age														
3			-											
of 1								-						
4														
							+	-						
			_											
			Ë			Received By			Date/Time: "		Turn-around time; (Check)			
Relinquished By	Commence of the second second		Date/ LILIE	ni e		of carl	Z	N. A.	3-24-15	. ~	24 Hour.	72 Hour	10 Day:	
Relinquished By	(0	Date/Time	5 x 7 2 3		Received By	1	0	Date/Time:	74	Sample Integrity: (Check)			
Jan J	(//tun.		`	(4:4)			C. 1/2	777	. 1		Intact:	On loe:		
Rélinquished By		4	Date/Time:	à		Received By	,	:	Date/Time;		Data Requirements: (Check)	₽		
4/										. =	No Level IV:	All Level IV:	NPDES Level IV:	
74/2013								5	1.4/4.4					

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-42004-1

Login Number: 42004 List Source: TestAmerica Irvine

List Number: 1

Creator: Chavez, Elizabeth

Cleator. Chavez, Elizabeth		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	B. Barajas/D. Smith
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

А

5

7

10

4.6