APPENDIX

Project 31222 Page 7 of 215

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-2008
State of Arizona	AZ0639
State of Arkansas, DEQ	08-043-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	N/A
State of Connecticut	PH-0182
State of Florida, DEP	E87777
State of Indiana Department of Health	C-CA-02
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA08000
State of Louisiana, DEQ	01977
State of Maine	2008024
State of Michigan	9932
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	NFESC413
State of Nevada	CA004132007A
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-006
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	TN02996
State of Texas	T104704189-08-TX
U.S. Army Corps of Engineers	N/A
State of Utah	CA16400
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine IRK2832

31222

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone: (916) 673-1520

Fax: (916) 673-0106

Project Location: CA - CALIFORNIA Receipt Temperature: 1. % °C

Receipt Temperature: 1.

Analysis	Units	Due	Expires	Comments
Sample ID: IRK2832-01	Water		Sampled: 11/26/08 09:15	Instant Nofication
1613-Dioxin-HR-Alta	ug/l	12/09/08	12/03/08 09:15	J flags,17 congeners,no TEQ,uq/L,sub=Vista
Level 4 Data Package - Ou	it N/A	12/09/08	12/24/08 09:15	regagie, odb viola
Containers Supplied: 1 L Amber (C)	1 L Amber (D)			

Date/Time

Received By

Date/Time

¹¹⁰⁴ Page 1 of 1

Released By Project 31222

Page 10 of 215

SAMPLE LOG-IN CHECKLIST

Vista Analytical Laborator

Vista Project #:	3122	7	_		TAT Unsfe	ecific labora
Samples Arrival:	Date/Time	0859	Initials:	≀	-ocation: പറ Shelf/Rack:	
Logged In:	Date/Time	104 os	Initials:	$\sqrt{}$	ocation: દા જાન્નિક Shelf/Rack:	N 3-3-B1
l		LIDO	0 1	D	Hand	0.11

Delivered By: **UPS** Cal DHL Other Delivered Preservation: Blue Ice Dry Ice None 1.8 Time: 0904 Thermometer ID: IR-1 Temp °C YES / NO NA Adequate Sample Volume Received? Holding Time Acceptable? Shipping Container(s) Intact? Shipping Custody Seals Intact? Shipping Documentation Present? Trk# 7961 4775 5447 Airbill Sample Container Intact?

If Chlorinated or Drinking Water		~	/			
Na₂S₂O₃ Preservation Document	ted?	coc		nple ainer	None	
Shipping Container	Vista	Client	Retain	Return	Dispose	е

Comments:

Sample Custody Seals Intact?

Chain of Custody / Sample Documentation Present?

COC Anomaly/Sample Acceptance Form completed?

APPENDIX G

Section 16

Outfall 010 - BMP Effectiveness, November 26, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project: BMP Effectiveness

Monitoring Program

Sampled: 11/26/08

Received: 11/26/08

Issued: 12/09/08 15:01

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY IDCLIENT IDMATRIXIRK2851-01010 EFF-1Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRK2851

Sampled: 11/26/08

Received: 11/26/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK2851-01 (010 EFF-1 - Wa Reporting Units: g/cc	iter)								
Density	Displacement	8L09076	N/A	NA	0.99	1	12/09/08	12/09/08	
Sample ID: IRK2851-01 (010 EFF-1 - Wa Reporting Units: mg/l	iter)								
Sediment	ASTM D3977	8L09085	10	10	ND	1	12/09/08	12/09/08	

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRK2851 Received: 11/26/08

Sampled: 11/26/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result %RE	C Limits	RPD	Limit	Qualifiers
Batch: 8L09076 Extracted: 12/	/09/08									
Duplicate Analyzed: 12/09/2008 (8	L09076-DUP1)				Sou	rce: IRK2873-0	1			
Density	1.01	NA	N/A	g/cc		1.01		0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Sampled: 11/26/08 Report Number: IRK2851 Received: 11/26/08

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 11/26/08

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRK2851 Received: 11/26/08

Certification Summary

TestAmerica Irvine

Displacement

Method	Matrix	Nelac	California
ASTM D3977	Water		

Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

											· ,			-1		, _T				-, -	T			- ,			_	<i>-</i> لــــــــــــــــــــــــــــــــــــ	3			\mathcal{Y}
Page 1 of 1		Eloto modinas.	Temp = \mathbf{Z}	Hu	_	Comments	and the second s	Address of the second s		A STATE OF THE STA																			Turn around Time: (check) 24 Hours 5 Days	48 Hours 10 Days	72 Hours Normal X	Sample Integrity: (check) Intact On ice: 7 (
	ANALYSIS REQUIRED																ø												1423		:	5 2045
SRM)																						Date/Time:	176/58	Óate/Tíme:		Date/Time: 11-26-05
CHAIN OF CUSTODY FORM			-MT2.	ent C, A	SS) L	2 bəbnəd loitstinəd (7991-77	noO	×	1	×			× >	< ×	-			1	+	15 ×	+	-	X 61	×		22 ×	23	TY T	80° (MZ			1/20
OF CUS	na BMP	Effectiveness Monitoring			er: 91	15	ervative	None	None Page	None	None	None	None	None	None	None	None	None	None	Nene	None	None	None	None	None	None	None	None Decision By	The same	Received By	- -	Received By
CHAIN	Project Boeing BMP	Effectivenes	Program		Phone Number: (626) 568-6691	Fax Number: (626) 568-6515	Sampling Date/Time	11/16/08-0315 None								/													ac / 1/20		(12/20)	:e:
20							# of Cont.	-		-	-	-	-	-		/ ₋	-	٢	-	- -	-	-	-	-	-	-	- ,	1	Date/ilme	Date/Time	\ <u>\</u>	Date/Time
ersion 12/20/(Suite 200	oseph Doak	nwyn Kelly	nage	Container Type	500 mL Poly	500 ml Poly	500 mL Poly	500 mL Poly	500 mL Poly	380 mL Poly	500 mE 2019	500 ml Polv	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	80-0-7-	747	\	
rica 🗸	ddrace.	ia lia	Avenue, 107	ontact: J	jer: Bro	N	Sample Matrix	M	14/	3	₹	/>	X	3	3 3	: >	3	>	3	3	× ×	: ≥	8	8	Α	>	≥ :	×.	r z	\	3	
DO J Test America version 12/20/07	Client Name/Address	MWH-Arcadia	618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	Sampler: R. Banasa	Sample Description	010 EFF-1	0.00 5.00	010 EFE.2	010 EFF-5	010 EFF-6	010 EFF-7	010 EFF-8	010 EFF-9	010 EFF-11	010 EFF-12	010 EFF-13	010 EFF-14	010 EFF-15	010 EFF-16 010 FFF-17	010 EFE-18	010 EFF-19	010 EFF-20	010 EFF-21	010 EFF-22	010 EFF-23	010 EFF-24	Kellpaulshed By	Relinquished By	Area Re	Refinquished By

APPENDIX G

Section 17

Outfall 010, December 15, 2008 MEC^{X} Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRL1710

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRL1710
Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 010	IRL1710-01	D8L170248-001, 31264-001, F8L170170-001	Water	12/15/08 1050	245.1, 245.1 (Diss.), 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 908.0, 1613B

II. Sample Management

No anomalies were observed regarding sample management. The samples were received at TestAmerica-Irvine, TestAmerica-St. Louis, and Vista within the temperature limit of $4\pm2^{\circ}C$ and received at TestAmerica-Denver below the control limit; however, the samples were not noted to be damaged or frozen. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at TestAmerica-Denver, TestAmerica-St. Louis, and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

3

DATA VALIDATION REPORTProject:SSFL NPDESSDG:IRL1710

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: S. Dellamia

Date Reviewed: January 21, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

5

Project: SSFL NPDES

DATA VALIDATION REPORT SDG: IRL1710

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Total HpCDD detected in sample Outfall010 below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. The EMPC value for Total HpCDF in sample Outfall 010 was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks

Date Reviewed: January 6, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this method.
- Calibration: Calibration criteria were met. The mercury initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 85-115%. The CRA and check standard were recovered within the control limit of 70-130%.

Blanks: There were no applicable detects in the method blanks or CCBs.

- Interference Check Samples: Not applicable to this method.
- Blank Spikes and Laboratory Control Samples: The recovery was within the laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this method.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summaries were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: January 26, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

 Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha, gross beta radium-226, radium-228, strontium-90, and total uranium were prepared within the five-day holding time for unpreserved samples. The aliquot for

7

gamma spectroscopy was prepared beyond the five-day holding time for unpreserved samples; therefore, the nondetected results for these analytes were qualified as estimated, "UJ."

• Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, the nondetected gross alpha in the sample was qualified as estimated, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium chemical yield was marginally less than 60%, at 59%, but was considered acceptable. The strontium and radium-226 continuing calibration results were within the laboratory control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Radium-226 and radium-228 were detected in the method blanks but were not detected in the sample. There were no other analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The radium-226 LCS recovery was 52%; therefore, the nondetected result for radium-226 was qualified as estimated, "UJ." The radium-226 and radium-228 LCS/LCSD RPDs were 53% and 38%, respectively; therefore, the nondetected results for radium-226 and radium-228 were qualified as estimated, "UJ." The remaining recoveries and the strontium-90 RPD were within laboratory-established control limits.
- Laboratory Duplicates: No duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: A matrix spike analysis was performed on the sample in this SDG for tritium. The recovery was within the laboratory established control limits.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Total uranium, normally reported in aqueous units, was converted to pCi/L using a conversion factor for naturally occurring uranium. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

8

Project: SSFL NPDES DATA VALIDATION REPORT SDG: IRL1710

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

9 Revision 2 1123

		100)					
Client Data		- L	Sample Data		Laboratory Data			
_	Test America-Irvine, CA		Matrix.	Aqueous	Lab Sample: 3126	31264-001 D	Date Received:	17-Dec-08
Date Collected: 15-I Time Collected: 1050	15-Dec-08		Sample Size:	1.02 L	QC Barch No.: 1770 Date Analyzed DB-5: 18-De	80-2	Date Extracted: Date Analyzed DB-225:	17-Dec-08
Analyte	Conc. (ug/L)	DI a	EMPC ^b	Qualifiers	Labeled Standard	6	%R LCL-UG	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	N ON	0.000000544	544		IS 13C-2,3,7,8-TCDD		97.8 25 - 164	4
1,2,3,7,8-PeCDD	ND	0.00000167	7.		13C-1,2,3,7,8-PeCDD		105 25 - 181	-
1,2,3,4,7,8-HxCDD	ND	0.00000288	88		13C-1,2,3,4,7,8-HxCDD		84.2 32 - 141	-
1,2,3,6,7,8-HxCDD	ND	0.00000257	1.1		13C-1,2,3,6,7,8-HxCDD		94.0 28-130	0
1,2,3,7,8,9-HxCDD	ND	0.00000252	.2		13C-1,2,3,4,6,7,8-HpCDD	Q	86.9 23 - 140	0
1,2,3,4,6,7,8-HpCDD	ND 🛧	0.0000123	82		13C-OCDD		71.2 17-157	2
OCDD	0.0000601				13C-2,3,7,8-TCDF		95.3 24-169	•
2,3,7,8-TCDF	NO Z	0.0000000540	40		13C-1,2,3,7,8-PeCDF		95.9 24-185	16
1,2,3,7,8-PeCDF	ND	0.00000112	2		13C-2,3,4,7,8-PeCDF		97.1 21-178	~
2,3,4,7,8-PeCDF	ND	0.00000117	7		13C-1,2,3,4,7,8-HxCDF		91.9 26-152	61
1,2,3,4,7,8-HxCDF	ND	0.000000771	71		13C-1,2,3,6,7,8-HxCDF		85.8 26-123	_
1,2,3,6,7,8-HxCDF	ND	0.000000898	86		13C-2,3,4,6,7,8-HxCDF		84.1 28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.00000110	0		13C-1,2,3,7,8,9-HxCDF		89.1 29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.00000167	7		13C-1,2,3,4,6,7,8-HpCDF		84.6 28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.00000269	6		13C-1,2,3,4,7,8,9-HpCDF		83.9 26-138	
1,2,3,4,7,8,9-HpCDF	ND	0.00000330	0		13C-OCDF		73.2 17-157	
OCDF	ND w	0.0000127			CRS 37CI-2,3,7,8-TCDD	0,	90.6 35 - 197	
Totals					Footnotes			
Total TCDD	ND C	0.000000544	44		a. Sample specific estimated detection limit.	limit.		
Total PeCDD	- QN	0.00000167	7		b. Estimated maximum possible concentration.	ntration.		
Total HxCDD	→ QN	0.00000265	5		c. Method detection limit,			
Total HpCDD	0.00000814	07/3			d. Lower control limit - upper control limit.	imit.		
Total TCDF	ND ON	0.000000540	40					
Total PeCDF	- QN	0.00000252	2					
Total HxCDF	ND ON	0.00000107	7					
Total HnCDF	ND 11/1/1/1		0.00000427	7				

Analyst: MAS

LEVEL

Approved By: William J. Luksemburg 19-Dec-2008 11:18

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Sampled: 12/15/08

Arcadia, CA 91007

Received: 12/15/08

Attention: Bronwyn Kelly

Report Number: IRL1710

MCAWW 245.1

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID:	IRL1710-01 (Outfall 010	- Water) - cont.								
Reporti	ing Units: ug/L									
Mercury	U	MCAWW 245.1	8353495	0.027	0.2	ND	1	12/18/08	12/18/08	

TestAmerica Irvine

Joseph Doak Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 010

Sampled: 12/15/08

Attention: Bronwyn Kelly

Report Number: IRL1710

Received: 12/15/08

MCAWW 245.1-Diss

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRL1710-01 (Outfall 010	- Water) - cont.								
Reporting Units: ug/L									
Mercury-diss 🔱	MCAWW 245.1-Diss	8353517	0.027	0.2	ND	1	12/18/08	12/18/08	

LEVELIV

TestAmerica Irvine

Joseph Doak Project Manager

Outfall 010

TestAmerica Irvine

Client Sample ID: IRL1710-01

Radiochemistry

Lab Sample ID: F8L170170-001

K4VKX WATER

Work Order: K Matrix: W Date Collected:

12/15/08 1050

Date Received:

12/17/08 0930

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & Hits	by EPA 901	.1 MOD	р	Ci/L	Batch #	8359107	Yld %
Cesium 137 UJ/H	-1.1	υ	8.5	20.0	16	12/24/08	01/10/09
Potassium 40 🌡 🌡	-90	U	590		250	12/24/08	01/10/09
Gross Alpha/Beta EP	A 900		р	Ci/L	Batch #	8353165	Yld %
Gross Alpha UT/R.	0.39	U	0.91	3.00	1.6	12/18/08	12/21/08
Gross Beta	4.51		0.96	4.00	0.94	12/18/08	12/21/08
Radium 226 by EPA	903.0 MOD		р	Ci/L	Batch #	8352386	Yld % 86
Radium (226) U丁/し、物	0.048	υ	0.046	1.00	0.070	12/17/08	01/12/09
Radium 228 by GFPC	EPA 904 MOD		р	Ci/L	Batch #	8352387	Yld % 66
Radium 228 OJ /朱Ⅲ	-0.07	υ.	0.26	1.00	0.48	12/17/08	01/09/09
TRITIUM (Distill) b	y EPA 906.0	MOD	p	Ci/L	Batch #	9012073	¥ld %
Tritium U	10	υ-	190	500	340	01/12/09	01/13/09
SR-90 BY GFPC EPA-	905 MOD		p	Ci/L	Batch #	8352461	Yld % 53
Strontium 90 U	0.22	U	0.45	3.00	0.76	12/17/08	01/10/09
Total Uranium by KF	A ASTM 5174	-91	р	Ci/L	Batch #	8354127	Yld %
Total Uranium ()	0.156	U	0.016	0.693	0.21	12/19/08	12/21/08

LEVEL IV

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

U Result is less than the sample detection limit.

APPENDIX G

Section 18

Outfall 010, December 15, 2008
Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 12/15/08

Received: 12/15/08

Issued: 01/29/09 14:05

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This report has been revised to correct the Total Uranium units to pCi/L per client request (the original

incorrect report from TestAmerica St. Louis Laboratory has been removed).

LABORATORY IDCLIENT IDMATRIXIRL1710-01Outfall 010Water

Reviewed By:

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

history

TAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRL1710-01 (Outfall 010 - W	ater)								
Reporting Units: ug/l									
Antimony	EPA 200.8	8L16092	0.20	2.0	0.36	1	12/16/08	12/17/08	J
Cadmium	EPA 200.8	8L16092	0.11	1.0	ND	1	12/16/08	12/17/08	
Copper	EPA 200.8	8L16092	0.75	2.0	1.5	1	12/16/08	12/17/08	J
Lead	EPA 200.8	8L16092	0.30	1.0	0.53	1	12/16/08	12/17/08	J
Thallium	EPA 200.8	8L16092	0.20	1.0	ND	1	12/16/08	12/17/08	

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRL1710

Sampled: 12/15/08
Received: 12/15/08

Arcadia, CA 91007 Report Number: IRL1710
Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRL1710-01 (Outfall 010 - V	Vater) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	8L17121	0.20	2.0	0.52	1	12/17/08	12/18/08	B, J
Cadmium	EPA 200.8-Diss	8L17121	0.11	1.0	ND	1	12/17/08	12/18/08	
Copper	EPA 200.8-Diss	8L17121	0.75	2.0	1.1	1	12/17/08	12/18/08	B, J
Lead	EPA 200.8-Diss	8L17121	0.30	1.0	ND	1	12/17/08	12/18/08	
Thallium	EPA 200.8-Diss	8L17121	0.20	1.0	ND	1	12/17/08	12/18/08	

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRL1710

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/15/08

Received: 12/15/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRL1710-01 (Outfall 010 - V	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8L19123	1.3	4.8	3.3	1	12/19/08	12/19/08	B, J
Grease)									
Chloride	EPA 300.0	8L15075	2.5	5.0	32	10	12/15/08	12/16/08	
Nitrate/Nitrite-N	EPA 300.0	8L16086	0.15	0.26	1.2	1	12/16/08	12/16/08	
Sulfate	EPA 300.0	8L15075	0.20	0.50	24	1	12/15/08	12/16/08	
Total Dissolved Solids	SM2540C	8L16052	10	10	190	1	12/16/08	12/17/08	

Sampled: 12/15/08

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRL1710 Received: 12/15/08

Attention: Bronwyn Kelly

DIOXIN (EPA 1613)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
·		Dutti	Limit	Limit	Itesuit	1 40001	Latractea	maryzea	C
Sample ID: IRL1710-01 (Outfall 010	- Water) - cont.								
Reporting Units: ug/L	4642.01 1 770.41						4.5.4.5.000	12/10/00	
2,3,7,8-TCDD	1613-Dioxin-HR Alta	1770		40.00000488	ND	1	12/17/08	12/18/08	
1,2,3,7,8-PeCDD	1613-Dioxin-HR Alta	1770		70.0000244	ND	1	12/17/08	12/18/08	
1,2,3,4,7,8-HxCDD	1613-Dioxin-HR Alta	1770		80.0000244	ND	1	12/17/08	12/18/08	
1,2,3,6,7,8-HxCDD	1613-Dioxin-HR Alta	1770		70.0000244	ND	1	12/17/08	12/18/08	
1,2,3,7,8,9-HxCDD	1613-Dioxin-HR Alta	1770		20.0000244	ND	1	12/17/08	12/18/08	
1,2,3,4,6,7,8-HpCDD	1613-Dioxin-HR Alta	1770		3 0.0000244	ND	1	12/17/08	12/18/08	
OCDD	1613-Dioxin-HR Alta	1770		50.0000488		1	12/17/08	12/18/08	
2,3,7,8-TCDF	1613-Dioxin-HR Alta	1770		40.00000488	ND	1	12/17/08	12/18/08	
1,2,3,7,8-PeCDF	1613-Dioxin-HR Alta	1770		20.0000244	ND	1	12/17/08	12/18/08	
2,3,4,7,8-PeCDF	1613-Dioxin-HR Alta	1770		70.0000244	ND	1	12/17/08	12/18/08	
1,2,3,4,7,8-HxCDF	1613-Dioxin-HR Alta	1770		710.0000244	ND	1	12/17/08	12/18/08	
1,2,3,6,7,8-HxCDF	1613-Dioxin-HR Alta	1770		980.0000244	ND	1	12/17/08	12/18/08	
2,3,4,6,7,8-HxCDF	1613-Dioxin-HR Alta	1770	0.000001	1 0.0000244	ND	1	12/17/08	12/18/08	
1,2,3,7,8,9-HxCDF	1613-Dioxin-HR Alta	1770	0.0000016	70.0000244	ND	1	12/17/08	12/18/08	
1,2,3,4,6,7,8-HpCDF	1613-Dioxin-HR Alta	1770	0.0000026	90.0000244	ND	1	12/17/08	12/18/08	
1,2,3,4,7,8,9-HpCDF	1613-Dioxin-HR Alta	1770	0.000003	3 0.0000244	ND	1	12/17/08	12/18/08	
OCDF	1613-Dioxin-HR Alta	1770	0.000012	7 0.0000488	ND	1	12/17/08	12/18/08	
Total TCDD	1613-Dioxin-HR Alta	1770	.00000054	40.00000488	ND	1	12/17/08	12/18/08	
Total PeCDD	1613-Dioxin-HR Alta	1770	.0000016	7 0.0000244	ND	1	12/17/08	12/18/08	
Total HxCDD	1613-Dioxin-HR Alta	1770	.0000025	2 0.0000244	ND	1	12/17/08	12/18/08	
Total HpCDD	1613-Dioxin-HR Alta	1770	.0000123	0.0000244	0.00000814	1	12/17/08	12/18/08	
Total TCDF	1613-Dioxin-HR Alta	1770	.00000054	40.0000488	ND	1	12/17/08	12/18/08	
Total PeCDF	1613-Dioxin-HR Alta	1770	.00000112	2 0.0000244	ND	1	12/17/08	12/18/08	
Total HxCDF	1613-Dioxin-HR Alta	1770	.00000077	10.0000244	ND	1	12/17/08	12/18/08	
Total HpCDF	1613-Dioxin-HR Alta	1770	.00000269	9 0.0000244	ND	1	12/17/08	12/18/08	
Surrogate: 13C-2,3,7,8-TCDD (25-16	4%)				97.8 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-	-181%)				105 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (3					84.2 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (2					94 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	,				86.9 %				
Surrogate: 13C-OCDD (17-157%)					71.2 %				
Surrogate: 13C-2,3,7,8-TCDF (24-16)	9%)				95.3 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-					95.9 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-					97.1 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (2					91.9 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (2					85.8 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (2					84.1 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (2					89.1 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF					84.6 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF					83.9 %				
Surrogate: 13C-0CDF (17-157%)	(=0 100/0)				73.2 %				
2 ogaic. 130 00D1 (17 13770)					, 5.2 /0				

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

DIOXIN (EPA 1613)

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: IRL1710-01 (Outfall 010 - Water) - cont.

Reporting Units: ug/L

Surrogate: 37Cl-2,3,7,8-TCDD (35-197%) 90.6 %

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

MCAWW 245.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: IRL1710-01 (Outfall 010 - V	Vater) - cont.								
Reporting Units: ug/L									
Mercury	MCAWW 245.1	8353495	0.027	0.2	ND	1	12/18/08	12/18/08	

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

MCAWW 245.1-Diss

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRL1710-01 (Outfall 010	- Water) - cont.								
Reporting Units: ug/L Mercury-diss	MCAWW 245.1-Diss	8353517	0.027	0.2	ND	1	12/18/08	12/18/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 010 (IRL1710-01) - Wate	r				
EPA 300.0	2	12/15/2008 10:50	12/15/2008 18:15	12/16/2008 13:00	12/16/2008 14:18

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710 Received: 12/15/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8L16092 Extracted: 12/16/08	_										
Blank Analyzed: 12/17/2008 (8L16092-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.20	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 12/17/2008 (8L16092-BS)											
Antimony	83.1	2.0	0.20	ug/l	80.0		104	85-115			
Cadmium	81.2	1.0	0.20	ug/1 ug/1	80.0		104	85-115			
Copper	78.8	2.0	0.75	ug/l	80.0		99	85-115			
Lead	79.1	1.0	0.75	ug/1	80.0		99	85-115			
Thallium	81.4	1.0	0.20	ug/1	80.0		102	85-115			
		1.0	0.20	ug/1				05 115			
Matrix Spike Analyzed: 12/17/2008 (8L1						rce: IRL1	721-01				
Antimony	82.4	2.0	0.20	ug/l	80.0	2.39	100	70-130			
Cadmium	79.8	1.0	0.11	ug/l	80.0	2.50	97	70-130			
Copper	81.9	2.0	0.75	ug/l	80.0	4.87	96	70-130			
Lead	81.9	1.0	0.30	ug/l	80.0	2.16	100	70-130			
Thallium	85.6	1.0	0.20	ug/l	80.0	ND	107	70-130			
Matrix Spike Analyzed: 12/17/2008 (8L1	6092-MS2)				Sou	rce: IRL1	706-01				
Antimony	84.1	2.0	0.20	ug/l	80.0	0.415	105	70-130			
Cadmium	81.1	1.0	0.11	ug/l	80.0	ND	101	70-130			
Copper	78.8	2.0	0.75	ug/l	80.0	0.930	97	70-130			
Lead	82.0	1.0	0.30	ug/l	80.0	ND	102	70-130			
Thallium	84.1	1.0	0.20	ug/l	80.0	ND	105	70-130			
Matrix Spike Dup Analyzed: 12/17/2008	(8L16092-M	SD1)			Sou	rce: IRL1	721-01				
Antimony	86.2	2.0	0.20	ug/l	80.0	2.39	105	70-130	5	20	
Cadmium	82.8	1.0	0.11	ug/l	80.0	2.50	100	70-130	4	20	
Copper	84.2	2.0	0.75	ug/l	80.0	4.87	99	70-130	3	20	
Lead	86.4	1.0	0.30	ug/l	80.0	2.16	105	70-130	5	20	
Thallium	90.1	1.0	0.20	ug/l	80.0	ND	113	70-130	5	20	

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08 Received: 12/15/08

Report Number: IRL1710

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8L17121 Extracted: 12/17/08											
	-										
Blank Analyzed: 12/18/2008 (8L17121-Bl	LK1)										
Antimony	0.481	2.0	0.20	ug/l							J
Cadmium	ND	1.0	0.11	ug/l							
Copper	1.97	2.0	0.75	ug/l							J
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 12/18/2008 (8L17121-BS)	1)										
Antimony	82.2	2.0	0.20	ug/l	80.0		103	85-115			
Cadmium	81.0	1.0	0.11	ug/l	80.0		101	85-115			
Copper	81.1	2.0	0.75	ug/l	80.0		101	85-115			
Lead	85.0	1.0	0.30	ug/l	80.0		106	85-115			
Thallium	89.6	1.0	0.20	ug/l	80.0		112	85-115			
Matrix Spike Analyzed: 12/18/2008 (8L1	7121-MS1)				Sou	rce: IRL	1362-01				
Antimony	79.1	2.0	0.20	ug/l	80.0	0.572	98	70-130			
Cadmium	74.4	1.0	0.11	ug/l	80.0	ND	93	70-130			
Copper	72.4	2.0	0.75	ug/l	80.0	1.31	89	70-130			
Lead	75.0	1.0	0.30	ug/l	80.0	ND	94	70-130			
Thallium	79.7	1.0	0.20	ug/l	80.0	ND	100	70-130			
Matrix Spike Dup Analyzed: 12/18/2008	(8L17121-MS	SD1)			Sou	rce: IRL	1362-01				
Antimony	88.0	2.0	0.20	ug/l	80.0	0.572	109	70-130	11	20	
Cadmium	82.4	1.0	0.11	ug/l	80.0	ND	103	70-130	10	20	
Copper	79.1	2.0	0.75	ug/l	80.0	1.31	97	70-130	9	20	
Lead	81.5	1.0	0.30	ug/l	80.0	ND	102	70-130	8	20	
Thallium	88.2	1.0	0.20	ug/l	80.0	ND	110	70-130	10	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8L15075 Extracted: 12/15/08	-										
D											
Blank Analyzed: 12/15/2008 (8L15075-Bl	,										
Chloride	ND	0.50	0.25	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 12/15/2008 (8L15075-BS))										
Chloride	4.94	0.50	0.25	mg/l	5.00		99	90-110			
Sulfate	10.1	0.50	0.20	mg/l	10.0		101	90-110			
Matrix Spike Analyzed: 12/15/2008 (8L1:	5075-MS1)				Sou	rce: IRL1	1621-01				
Chloride	116	20	10	mg/l	50.0	71.2	89	80-120			
Sulfate	845	20	8.0	mg/l	100	757	88	80-120			MHA
Matrix Spike Analyzed: 12/15/2008 (8L1:	5075-MS2)				Sou	rce: IRL1	1706-01				
Chloride	5.40	0.50	0.25	mg/l	5.00	0.625	95	80-120			
Sulfate	14.0	0.50	0.20	mg/l	10.0	4.57	95	80-120			
Matrix Spike Dup Analyzed: 12/15/2008	(8L15075-MS	SD1)			Sou	rce: IRL1	1621-01				
Chloride	111	20	10	mg/l	50.0	71.2	80	80-120	4	20	
Sulfate	834	20	8.0	mg/l	100	757	77	80-120	1	20	MHA
Batch: 8L16052 Extracted: 12/16/08	-										
Blank Analyzed: 12/16/2008 (8L16052-Bl	.K1)										
Total Dissolved Solids	ND	10	10	ma/1							
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 12/16/2008 (8L16052-BS1	1)										
Total Dissolved Solids	996	10	10	mg/l	1000		100	90-110			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8L16052 Extracted: 12/16/08	<u>8</u>										
Duplicate Analyzed: 12/16/2008 (8L160	52-DUP1)				Sou	rce: IRL	1707-01				
Total Dissolved Solids	569	10	10	mg/l		577			1	10	
Batch: 8L16086 Extracted: 12/16/08	<u>3</u>										
Blank Analyzed: 12/16/2008 (8L16086-E	BLK1)										
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Batch: 8L19123 Extracted: 12/19/08	<u>3</u>										
Blank Analyzed: 12/19/2008 (8L19123-E	BLK1)										
Hexane Extractable Material (Oil & Grease)	3.50	5.0	1.4	mg/l							J
LCS Analyzed: 12/19/2008 (8L19123-BS	51)										MNR1
Hexane Extractable Material (Oil & Grease)	21.4	5.0	1.4	mg/l	20.2		106	78-114			
LCS Dup Analyzed: 12/19/2008 (8L1912	23-BSD1)										
Hexane Extractable Material (Oil & Grease)	21.9	5.0	1.4	mg/l	20.2		108	78-114	2	11	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Report Number: IRL1710

Sampled: 12/15/08 Received: 12/15/08

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1770 Extracted: 12/17/08											
Blank Analyzed: 12/18/2008 (MB001)					Sou	rce:					
2,3,7,8-TCDD	ND	0.00000500	.000000958	ug/L				50-150		25	
1,2,3,7,8-PeCDD	ND	0.0000250	0.0000025	ug/L				50-150		25	
1,2,3,4,7,8-HxCDD	ND	0.0000250	0.00000182	ug/L				50-150		25	
1,2,3,6,7,8-HxCDD	ND	0.0000250	0.00000171	ug/L				50-150		25	
1,2,3,7,8,9-HxCDD	ND	0.0000250	0.00000164	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDD	ND	0.0000250	0.00000279	ug/L				50-150		25	
OCDD	ND	0.0000500	0.0000043	ug/L				50-150		25	
2,3,7,8-TCDF	ND	0.00000500	.00000088′	ug/L				50-150		25	
1,2,3,7,8-PeCDF	ND	0.0000250	0.00000118	ug/L				50-150		25	
2,3,4,7,8-PeCDF	ND	0.0000250	0.00000107	ug/L				50-150		25	
1,2,3,4,7,8-HxCDF	ND	0.0000250	.000000512	ug/L				50-150		25	
1,2,3,6,7,8-HxCDF	ND	0.0000250	.000000592	ug/L				50-150		25	
2,3,4,6,7,8-HxCDF	ND	0.0000250	.000000690	ug/L				50-150		25	
1,2,3,7,8,9-HxCDF	ND	0.0000250	0.00000105	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDF	ND	0.0000250	0.00000153	ug/L				50-150		25	
1,2,3,4,7,8,9-HpCDF	ND	0.0000250	0.00000182	ug/L				50-150		25	
OCDF	ND	0.0000500	0.00000159	ug/L				50-150		25	
Total TCDD	ND	0.00000500	.000000958	ug/L				50-150		25	
Total PeCDD	ND	0.0000250	.0000025	ug/L				50-150		25	
Total HxCDD	ND	0.0000250	.00000164	ug/L				50-150		25	
Total HpCDD	ND	0.0000250	.00000279	ug/L				50-150		25	
Total TCDF	ND	0.00000500	.000000887	ug/L				50-150		25	
Total PeCDF	ND	0.0000250	.00000107	ug/L				50-150		25	
Total HxCDF	ND	0.0000250	.000000512	ug/L				50-150		25	
Total HpCDF	ND	0.0000250	.00000153	ug/L				50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	0.00188			ug/L	2000		94	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00202			ug/L	2000		101	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00169			ug/L	2000		84	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00191			ug/L	2000		96	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00179			ug/L	2000		90	50-150			
Surrogate: 13C-OCDD	0.00297			ug/L	4000		74	50-150			
Surrogate: 13C-2,3,7,8-TCDF	0.00186			ug/L	2000		93	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00180			ug/L	2000		90	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00194			ug/L	2000		97	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00182			ug/L	2000		91	50-150			

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

Sampled: 12/15/08

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Report Number: IRL1710

Received: 12/15/08

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
·	1105411	2	1,12,12	CIIICS	20,01	1105411	, 011 20	2111105			Quinities
Batch: 1770 Extracted: 12/17/08											
Blank Analyzed: 12/18/2008 (MB001)					Sou	ırce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00172			ug/L	2000		86	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00174			ug/L	2000		87	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00180			ug/L	2000		90	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00160			ug/L	2000		80	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00166			ug/L	2000		83	50-150			
Surrogate: 13C-OCDF	0.00312			ug/L	4000		78	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	0.000760			ug/L	800		95	50-150			
LCS Analyzed: 12/18/2008 (OPR001)					Sou	ırce:					
2,3,7,8-TCDD	8.63	5.00	0.840	ug/L	10		86	50-150		25	
1,2,3,7,8-PeCDD	47.8	25.0	1.59	ug/L	50		96	50-150		25	
1,2,3,4,7,8-HxCDD	46.8	25.0	1.18	ug/L	50		94	50-150		25	
1,2,3,6,7,8-HxCDD	46.3	25.0	1.69	ug/L	50		93	50-150		25	
1,2,3,7,8,9-HxCDD	45.7	25.0	1.18	ug/L	50		91	50-150		25	
1,2,3,4,6,7,8-HpCDD	46.3	25.0	2.01	ug/L	50		93	50-150		25	
OCDD	95.6	50.0	2.45	ug/L	100		96	50-150		25	
2,3,7,8-TCDF	8.58	5.00	0.970	ug/L	10		86	50-150		25	
1,2,3,7,8-PeCDF	46.7	25.0	1.09	ug/L	50		93	50-150		25	
2,3,4,7,8-PeCDF	48.7	25.0	1.48	ug/L	50		97	50-150		25	
1,2,3,4,7,8-HxCDF	45.2	25.0	1.06	ug/L	50		90	50-150		25	
1,2,3,6,7,8-HxCDF	47.5	25.0	0.730	ug/L	50		95	50-150		25	
2,3,4,6,7,8-HxCDF	45.7	25.0	1.26	ug/L	50		91	50-150		25	
1,2,3,7,8,9-HxCDF	46.6	25.0	0.940	ug/L	50		93	50-150		25	
1,2,3,4,6,7,8-HpCDF	45.0	25.0	1.70	ug/L	50		90	50-150		25	
1,2,3,4,7,8,9-HpCDF	44.9	25.0	0.960	ug/L	50		90	50-150		25	
OCDF	89.5	50.0	3.66	ug/L	100		90	50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	89.2			ug/L	100		89	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	96.7			ug/L	100		97	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	77.1			ug/L	100		77	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	91.1			ug/L	100		91	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	84.0			ug/L	100		84	50-150			
Surrogate: 13C-OCDD	136			ug/L	200		68	50-150			
Surrogate: 13C-2,3,7,8-TCDF	88.6			ug/L	100		89	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	88.4			ug/L	100		88	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	91.1			ug/L	100		91	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	88.6			ug/L	100		89	50-150			

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1770 Extracted: 12/17/08											
LCS Analyzed: 12/18/2008 (OPR001)					Sou	rce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	81.1			ug/L	100		81	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	81.0			ug/L	100		81	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	83.5			ug/L	100		84	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	74.7			ug/L	100		75	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	79.5			ug/L	100		80	50-150			
Surrogate: 13C-OCDF	146			ug/L	200		73	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	33.6			ug/L	40		84	50-150			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

METHOD BLANK/QC DATA

MCAWW 245.1

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8353495 Extracted: 12/18/08											
Matrix Spike Dup Analyzed: 12/18/2008	(D8L17020000	1D)			Sou	rce: D8L	17020000	1			
Mercury	4.64	0.2	0.027	ug/L	5	ND	93	90-110	9	10	
Matrix Spike Analyzed: 12/18/2008 (D8I	.170200001S)				Sou	rce: D8L	17020000	1			
Mercury	4.24	0.2	0.027	ug/L	5	ND	85	90-110	9	10	N
Blank Analyzed: 12/18/2008 (D8L180000	495B)				Sou	rce:					
Mercury	ND	0.2	0.027	ug/L				-			
LCS Analyzed: 12/18/2008 (D8L1800004	95C)				Sou	rce:					
Mercury	4.59	0.2	0.027	ug/L	5		92	90-110			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

METHOD BLANK/QC DATA

MCAWW 245.1-Diss

Analyte <u>Batch: 8353517 Extracted: 12/18/08</u>	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Matrix Spike Dup Analyzed: 12/18/2008	(D8L17020000	1D)			Sour	rce: D8L	17020000	1			
Mercury-diss	4.37	0.2	0.027	ug/L	5	ND	87	90-110	9	10	N
Matrix Spike Analyzed: 12/18/2008 (D8L	170200001S)				Sour	rce: D8L	17020000	1			
Mercury-diss	4.8	0.2	0.027	ug/L	5	ND	96	90-110	9	10	
Blank Analyzed: 12/18/2008 (D8L180000	517B)				Sour	rce:					
Mercury-diss	ND	0.2	0.027	ug/L				-			
LCS Analyzed: 12/18/2008 (D8L1800005	17C)				Sour	rce:					
Mercury-diss	4.63	0.2	0.027	ug/L	5		93	90-110			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710 Received: 12/15/08

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	A malvaia	Amalasta	Units	Dogult	MRL	Compliance
LabNumber	Analysis	Analyte	Units	Result	WIKL	Limit
IRL1710-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	3.35	4.8	15
IRL1710-01	Antimony-200.8	Antimony	ug/l	0.36	2.0	6
IRL1710-01	Cadmium-200.8	Cadmium	ug/l	0.093	1.0	4
IRL1710-01	Chloride - 300.0	Chloride	mg/l	32	5.0	150
IRL1710-01	Copper-200.8	Copper	ug/l	1.52	2.0	14
IRL1710-01	Lead-200.8	Lead	ug/l	0.53	1.0	5.2
IRL1710-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	1.16	0.26	10
IRL1710-01	Sulfate-300.0	Sulfate	mg/l	24	0.50	250
IRL1710-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	193	10	850
IRL1710-01	Thallium-200.8	Thallium	ug/l	0.0025	1.0	2

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200 Sampled: 12/15/08

Arcadia, CA 91007 Report Number: IRL1710 Received: 12/15/08
Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

MWH-Pasadena/Boeing

N Spike sample recovery is outside control limits.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/15/08

Report Number: IRL1710

Received: 12/15/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 1664A	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical Perspectives

2714 Exchange Drive - Wilmington, NC 28405

Method Performed: 1613-Dioxin-HR Alta

Samples: IRL1710-01

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IRL1710-01

TestAmerica Denver

4955 Yarrow Street - Arvada, CO 80002

Method Performed: MCAWW 245.1

Samples: IRL1710-01

Method Performed: MCAWW 245.1-Diss

Samples: IRL1710-01

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200 Sampled: 12/15/08

Arcadia, CA 91007 Report Number: IRL1710 Received: 12/15/08
Attention: Bronwyn Kelly

TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Analysis Performed: Gamma Spec

Samples: IRL1710-01

Analysis Performed: Gross Alpha

Samples: IRL1710-01

Analysis Performed: Gross Beta

Samples: IRL1710-01

Analysis Performed: Radium, Combined

Samples: IRL1710-01

Analysis Performed: Strontium 90

Samples: IRL1710-01

Analysis Performed: Tritium

Samples: IRL1710-01

Analysis Performed: Uranium, Combined

Samples: IRL1710-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRL1710-01