Analysis Parameters

Instrument

Conditions

Gas flow (mL/min)	Sample Uptake (s)	Rinse (s)	Read delay (s)	Replicates (#)	Replicate time (s)	Pump speed (%)	Wavelength (nm)
100	40.00	90.00	53.00	4	1.50	50	253.65

Instrumental Zero

Zero before first sample:

No

Zero periodically:

/es

Before each calibration.

Baseline Correction

#1 Start time (s) #1 End time (s) #2 Start time (s) #2 End time (s)
25.00 29.00

Standby Mode

Enabled: Yes

Standby Options: pump slow

Autodilution

Enabled: No Condition: Tube # range:

If no autodilution tubes remaining

Calibration

Settings

Algorithm	Through blank	Weighted fit	Cal. Type	Racalibration rate	Reslope rate	Reslope standard
Linear	No	No	Normal	0	0	N/A

Limits

Calibratio	n slope	Res	lope	Coeff. of
Lower (%)	Upper (%)	Lower (%)	Upper (%)	Determination
20	150	75	125	0.99500

Error action: Flag and continue

QC

GLP Override: Yes

QC Tests

CCB

Concentration

(ppb)

0.2000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

ICB

Concentration

(ppb)

0.2000

Failure flag: Z

Error action for manually inserted QC: Stop analysis

CCV

Concentration

Low Limit

High Limit

(ppb)

%

%

5.0000

80.0000

120.0000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

ICV

Concentration

Low Limit

High Limit

(ppb)

%

%

7.0000

90.0000

110.0000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

CRDL

Concentration

Low Limit

High Limit

(ppb)

%

%

0.2000

70.0000

130.0000

Failure flag: Y

Error action for manually inserted QC: Stop analysis

December 19, 2008

Vista Project I.D.: 31269

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on December 17, 2008 under your Project Name "IRL1721". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Manue Morer

neat:

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 12/17/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

31269-001 IRL1721-01

SECTION II

Project 31269 Page 3 of 216

Method Blank					EPA Method 1613
Matrix: Aqueous		QC Batch No.:	1770	Lab Sample: 0-MB001	
Sample Size: 1.00 L		Date Extracted:	17-Dec-08	Date Analyzed DB-5: 18-Dec-08	Date Analyzed DB-225: NA
Analyte Conc.	Conc. (ug/L)	DL a EMPC	b Qualifiers	Labeled Standard	%R LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.000000058		<u>IS</u> 13C-2,3,7,8-TCDD	94.0 25 - 164
1,2,3,7,8-PeCDD	ND	0.00000250		13C-1,2,3,7,8-PeCDD	101 25 - 181
1,2,3,4,7,8-HxCDD	ND	0.00000182		13C-1,2,3,4,7,8-HxCDD	84.4 32 - 141
1,2,3,6,7,8-HxCDD	ND	0.00000171		13C-1,2,3,6,7,8-HxCDD	95.7 28 - 130
1,2,3,7,8,9-HxCDD	ND	0.00000164		13C-1,2,3,4,6,7,8-HpCDD	89.5 23 - 140
1,2,3,4,6,7,8-HpCDD	ND	0.00000279		13C-OCDD	74.1 17 - 157
OCDD	ND	0.00000430		13C-2,3,7,8-TCDF	92.8 24 - 169
2,3,7,8-TCDF	ND	0.000000887		13C-1,2,3,7,8-PeCDF	90.1 24 - 185
1,2,3,7,8-PeCDF	ND	0.00000118		13C-2,3,4,7,8-PeCDF	97.0 21 - 178
2,3,4,7,8-PeCDF	ND	0.00000107		13C-1,2,3,4,7,8-HxCDF	91.1 26 - 152
1,2,3,4,7,8-HxCDF	ND	0.000000512		13C-1,2,3,6,7,8-HxCDF	85.9 26 - 123
1,2,3,6,7,8-HxCDF	ND	0.000000592		13C-2,3,4,6,7,8-HxCDF	86.9 28 - 136
2,3,4,6,7,8-HxCDF	ND	0.0000000696		13C-1,2,3,7,8,9-HxCDF	89.9 29 - 147
1,2,3,7,8,9-HxCDF	ND	0.00000105		13C-1,2,3,4,6,7,8-HpCDF	80.2 28 - 143
1,2,3,4,6,7,8-HpCDF	ND	0.00000153		13C-1,2,3,4,7,8,9-HpCDF	83.2 26 - 138
1,2,3,4,7,8,9-HpCDF	ND	0.00000182		13C-OCDF	78.0 17 - 157
OCDF	ND	0.00000159		CRS 37CI-2,3,7,8-TCDD	95.0 35 - 197
Totals				Footnotes	
Total TCDD	ND	0.000000058		a. Sample specific estimated detection limit.	
Total PeCDD	ND	0.00000250		b. Estimated maximum possible concentration.	
Total HxCDD	ND	0.00000172		c. Method detection limit.	
Total HpCDD	ND	0.00000279		d. Lower control limit - upper control limit.	
Total TCDF	ND	0.000000887			
Total PeCDF	ND	0.00000218			
Total HxCDF	ND	0.000000692			
Total HpCDF	ND	0.00000166			
Analyst: MAS				Approved By: William J. Luksemburg	aksemburg 19-Dec-2008 11:12

OPR Results					EPA M	EPA Method 1613	3
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	1770 17-Dec-08	Lab Sample: 0-OPR001 Date Analyzed DB-5: 18-Dec-08	Date Analyzed DB-225:		NA
Analyte	Spike Conc.	Spike Conc. Conc. (ng/mL)	OPR Limits	Labeled Standard	%R LC	LCL-UCL Qualifier	ualifier
2,3,7,8-TCDD	10.0	8.63	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	89.2 2.	25 - 164	
1,2,3,7,8-PeCDD	50.0	47.8	35 - 71	13C-1,2,3,7,8-PeCDD	96.7 2:	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	46.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	77.1 33	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	46.3	38 - 67	13C-1,2,3,6,7,8-HxCDD	91.1 2	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	45.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	84.0 2.	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	46.3	35 - 70	13C-OCDD	67.9	17 - 157	
OCDD	100	95.6	78 - 144	13C-2,3,7,8-TCDF	88.6 2.	24 - 169	
2,3,7,8-TCDF	10.0	8.58	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	88.4 2.	24 - 185	
1,2,3,7,8-PeCDF	50.0	46.7	40 - 67	13C-2,3,4,7,8-PeCDF	91.1 2	21 - 178	
2,3,4,7,8-PeCDF	50.0	48.7	34 - 80	13C-1,2,3,4,7,8-HxCDF	88.6 2.	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	45.2	36 - 67	13C-1,2,3,6,7,8-HxCDF	81.1 2	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	47.5	42 - 65	13C-2,3,4,6,7,8-HxCDF	81.0 28	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	45.7	35 - 78	13C-1,2,3,7,8,9-HxCDF	83.5	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	46.6	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	74.7	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	45.0	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	79.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	44.9	39 - 69	13C-OCDF	73.1 1	17 - 157	
OCDF	100	89.5	63 - 170	<u>CRS</u> 37CI-2,3,7,8-TCDD	84.0 3.	35 - 197	

Approved By: William J. Luksemburg 19-Dec-2008 11:12

Analyst: MAS

Sample ID: IRL1	IRL1721-01							EPA M	EPA Method 1613
Client Data Name: Test Am Project: IRL1721	Test America-Irvine, CA IRL 1721		Sample Data Matrix:	Aqueous	Laboratory Data Lab Sample:	31269-001	Date Received:	sived:	17-Dec-08
ollected: ollected:	15-Dec-08 1058		Sample Size:	1.04 L	QC Batch No.: Date Analyzed DB-5:	1770 18-Dec-08	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225:	17-Dec-08 NA
Analyte	Conc. (ug/L)	DF a	$\mathbf{EMPC}^{\mathbf{b}}$	Qualifiers	Labeled Standard	lard	%R	rct-nct _q	Qualifiers
2,3,7,8-TCDD	ND	0.000000837	3.7		<u>IS</u> 13C-2,3,7,8-TCDD	DD	94.8	25 - 164	
1,2,3,7,8-PeCDD	ND	0.00000249	•		13C-1,2,3,7,8-PeCDD	eCDD	6.96	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.00000404			13C-1,2,3,4,7,8-HxCDD	-HxCDD	80.4	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.0000039			13C-1,2,3,6,7,8-HxCDD	-HxCDD	9.96	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.00000370	0		13C-1,2,3,4,6,7,8-HpCDD	,8-НрСDD	83.5	23 - 140	
1,2,3,4,6,7,8-HpCDD	ND	0.00000706	,5		13C-OCDD		71.2	17 - 157	
OCDD	0.0000314			ſ	13C-2,3,7,8-TCDF	DF	93.7	24 - 169	
2,3,7,8-TCDF	ND	0.000000735	35		13C-1,2,3,7,8-PeCDF	eCDF	92.4	24 - 185	
1,2,3,7,8-PeCDF	ND	0.0000020			13C-2,3,4,7,8-PeCDF	eCDF	6.06	21 - 178	
2,3,4,7,8-PeCDF	ND	0.00000223	~		13C-1,2,3,4,7,8-HxCDF	-HxCDF	85.0	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.00000138	~		13C-1,2,3,6,7,8-HxCDF	-HxCDF	81.6	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.00000142	67		13C-2,3,4,6,7,8-HxCDF	-HxCDF	82.3	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.0000017	-		13C-1,2,3,7,8,9-HxCDF	-HxCDF	86.2	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.00000269	•		13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	82.5	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.00000204	-		13C-1,2,3,4,7,8,9-HpCDF	,9-HpCDF	7.77	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.00000283	8		13C-OCDF		71.6	17 - 157	
OCDF	ND	0.00000749	(CRS 37Cl-2,3,7,8-TCDD	CDD	92.5	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.000000837	3.7		a. Sample specific estimated detection limit.	ed detection limit.			
Total PeCDD	ND	0.00000406	9		b. Estimated maximum possible concentration.	ssible concentration.			
Total HxCDD	ND	0.00000389			c. Method detection limit.				
Total HpCDD	0.00000847				d. Lower control limit - upper control limit.	per control limit.			
Total TCDF	ND	0.00000111							
Total PeCDF	ND	0.00000299							
Total HxCDF	ND	0.00000176							
Total HpCDF	ND	0.00000238	~						
Analyst: MAS					Approved By:	William J. Luksemburg	semburg	19-Dec-2008 11:12	11:12

Analyst: MAS

Project 31269

APPENDIX

Project 31269 Page 7 of 216

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-2008
State of Arizona	AZ0639
State of Arkansas, DEQ	08-043-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	N/A
State of Connecticut	PH-0182
State of Florida, DEP	E87777
State of Indiana Department of Health	C-CA-02
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA08000
State of Louisiana, DEQ	01977
State of Maine	2008024
State of Michigan	9932
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	NFESC413
State of Nevada	CA004132007A
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-006
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	TN02996
State of Texas	T104704189-08-TX
U.S. Army Corps of Engineers	N/A
State of Utah	CA16400
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine **IRL1721**

31269

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone: (916) 673-1520

Fax: (916) 673-0106

Project Location: CA - CALIFORNIA

Receipt Temperature: 14 °C

Analysis	Units	Due	Expires	Comments
Sample ID: IRL1721-01	Water		Sampled: 12/15/08 1	0:58
1613-Dioxin-HR-Alta	ug/l	12/22/08	12/22/08 10:58	J flags,17 congeners,no
Level 4 + EDD-OUT	N/A	12/22/08	01/12/09 10:58	TEQ,ug/L,sub=Vista Excel EDD email to pm,Include Std logs for LvI IV
Containers Supplied:				
1 L Amber (AB)	1 L Amber (A	AC)		

Released By

Prejects@1/269

Date/Time

Date/Time

Received By

Received By

Page 10 of 216

SAMPLE LOG-IN CHECKLIST

Vista Project #:	3126	1			TAT	50	lays	_
	Date/Time		Initials:		Location	: _/	RZ	
Samples Arrival:	12/17/08	0918	C		Shelf/Ra	ck:	NA	
Logged In:	Date/Time	8 0935	Initials:	_/	Location Shelf/Ra		R-2 2-3	,
Delivered By:	FedEx	UPS	Cal	DHL		and vered	Oth	ner
Preservation:	Ice) Ві	ue Ice	Dı	y ice		None	
Temp °C		Time: ()	7		Thermor	neter II	D: IR-	2
e de Arabanda de Maria		/ /	7	1 1 00	<u> </u>	YES	NO	NA
Adequate Sample	Volume Recei	ived? (Ad	5 60	PHES		\checkmark	/_	\Box
Holding Time Acceptable?						<u>/</u>		
Shipping Contained	r(s) Intact?					<u> </u>	/	
Shipping Custody	Seals Intact?							
Shipping Documen	itation Presen	t?					7	
Airbill	Trk# 7	961 90	99 85	H		\sim		
Sample Container Intact?								
Sample Custody S	eals Intact?							
Chain of Custody /	Sample Docu	<u>ımentatio</u> n Pr	esent?			✓		
COC Anomaly/Sar	nple Acceptar	nce Form com	pleted?					
If Chlorinated or Di	rinking Water	Samples, Acc	ceptable Pre	servatio	on?			
Na ₂ S ₂ O ₃ Preservat	ion Documen	ted?	coc		Sample Container		None	•
Shipping Containe	r	Vista	Client	Reta	in Re	turn	Disp	oose

Comments:

APPENDIX G

Section 22

Outfall 014, November 4, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRK0247

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRK0247

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRK0247
Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 014	IRK0247-01	31128-001	Water	11/04/08 0925	180.1, 300.0, 245.1, 1613B, 8315M

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-Irvine, TestAmerica-Denver, Truesdail, and Vista within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered to TestAmerica-Irvine, TestAmerica-Denver, and Truesdail, custody seals were not required. Custody seals were intact upon arrival at Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRK0247

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
:	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRK0247

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORTProject:SSFL NPDESDATA VALIDATION REPORTSDG:IRK0247

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRK0247

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight

Date Reviewed: December 17, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: OCDD was reported in the method blank at 0.00000405 μg/L; however, the concentration of OCDD in the sample exceeded five times the amount in the method blank

Project: SSFL NPDES DATA VALIDATION REPORT SDG: IRK0247

and required no qualification. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC Any remaining detects were used to evaluate the associated site samples. data. Following are findings associated with field QC samples:
 - o Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. **EPA METHOD 8315M—Hydrazines**

Reviewed By: P. Meeks

Date Reviewed: December 30, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MECX MECX Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 8315M, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was derivitized within three days of collection and analyzed within 3 days of derivitization.
- Calibration: Calibration criteria were met. The initial calibration r² values were ≥0.995 and the ICV and QCS recoveries were within 85-115%.

6 Revision 0 1421

Project: SSFL NPDES DATA VALIDATION REPORT SDG IRK0247

Blanks: The method blank had no target compound detects above the MDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG. All recoveries and RPDs were within laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

C. **EPA METHOD 245.1—Mercury**

Reviewed By: P. Meeks

Date Reviewed: December 30, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MECX Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (07/02).

Holding Times: The analytical holding time, 28 days for mercury, was met.

- Tuning: Not applicable to this method.
- Calibration: Calibration criteria were met. The mercury initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 85-115%. The CRA recovery was within the control limit of 70-130%.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRK0247

Blanks: There were no applicable detects in the method blanks or CCBs.

- Interference Check Samples: Not applicable to this method.
- Blank Spikes and Laboratory Control Samples: The recovery was within the laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG. The total mercury MS recovery was below the control limit at 87%; therefore, nondetected total mercury was qualified as estimated, "UJ." Remaining recoveries and both RPDs were within the laboratory-established control limits.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this method.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summaries were verified against the raw data. No transcription errors or calculation errors were noted. Any detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: December 30, 2008

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 180.1 and 300.0, and the National Functional Guidelines for Inorganic Data Review (07/02).

DATA VALIDATION REPORT SDG: SSFL NPDES

SDG: IRK0247

 Holding Times: Analytical holding times, 48 hours from collection for nitrate and turbidity and 28 days for nitrate/nitrite, were met.

- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summary were verified against the raw data. No transcription errors or
 calculation errors were noted. Both nitrate and nitrate/nitrite were analyzed at 20× dilutions
 in order to report the analytes within the linear range of the calibration. Any detects
 reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ,"
 in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Sample ID: IRK(IRK0247-01 Outter U 014	HIO						EPA Method 1613	1613
Client Data Name: Test Ame Project: IRK0247 Date Collected: 4-Nov-08 Time Collected: 0925	Test America-Irvine, CA IRK0247 4-Nov-08 0925		Sample Data Matrix: Sample Size:	Aqueous 1.03 L	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	31128-001 1678 14-Nov-08	Date Received: Date Extracted: Date Analyzed DB-225:		6-Nov-08 12-Nov-08 NA
Analyte	Conc. (ug/L)	DF a	EMPC ^b	Qualifiers	Labeled Standard	P.	%R LCL	LCL-UCL ^d Oualifiers	iers
2,3,7,8-TCDD	ON SE	0.000000157	57		IS 13C-2,3,7,8-TCDD	0		25 - 164	
1,2,3,7,8-PeCDD	NO US/STITU	0.000000172	0.000000688	889	13C-1,2,3,7,8-PeCDD	מת.	72 4 37	25 - 181 32 - 141	-
1,2,3,6,7,8-HxCDD	0000102	MEG	200000	I one	13C-1,2,3,6,7,8-HxCDD	хСДД		28 - 130	
1,2,3,7,8,9-HxCDD	5/4/	,	0.00000111	-	13C-1,2,3,4,6,7,8-HpCDD	НрСDD		23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000233 True	436		ſ	13C-0CDD		60.6	17 - 157	-
ОСDD	0.000278			В	13C-2,3,7,8-TCDF	ĽL.		24 - 169	
2,3,7,8-TCDF	NO ON	0.000000134	34		13C-1,2,3,7,8-PeCDF	CDF	77.7 24	24 - 185	
1,2,3,7,8-PeCDF	N QN	0.000000113	13		13C-2,3,4,7,8-PeCDF	CDF	79.6 21	21 - 178	
2,3,4,7,8-PeCDF	N Q	0.000000106	90		13C-1,2,3,4,7,8-HxCDF	(xCDF	68.7 26	26 - 152	
1,2,3,4,7,8-HxCDF	N Q	0.000000000	76		13C-1,2,3,6,7,8-HxCDF	(xCDF	62.1 26	26 - 123	240
1,2,3,6,7,8-HxCDF	QN QN	0.000000101	10		13C-2,3,4,6,7,8-HxCDF	EXCDF	63.6 28	28 - 136	
2,3,4,6,7,8-HxCDF	S S	0.000000110	10		13C-1,2,3,7,8,9-HxCDF	KCDF	70.9 29	29 - 147	
1,2,3,7,8,9-HxCDF	NO ON	0.000000140	40		13C-1,2,3,4,6,7,8-HpCDF	-HpCDF	64.3 28	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000169 5/67/5 DAM	DIG.		J	13C-1,2,3,4,7,8,9-HpCDF	-HpCDF	66.5 26	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND U.	0.000000202	02		13C-OCDF		60.8	17 - 157	
OCDF	ND KS/ALL		0.00000391	168	CRS 37CI-2,3,7,8-TCDD	ΩΩ	98.4 35	35 - 197	
Totals					Footnotes				
Total TCDD	NO ON	0.000000157	57		a. Sample specific estimated detection limit.	detection limit.			
Total PeCDD	NO ON	0.000000172	72		b. Estimated maximum possible concentration.	lble concentration.			
Total HxCDD	0.00000528		0.00000708	802	c. Method detection limit.				
Total HpCDD	0.0000569				d. Lower control limit - upper control limit.	r control limit.			
Total TCDF		0.000000134	34						
Total PeCDF	NO ON	0.000000110	10						
Total HxCDF	0.000000672								
Total HpCDF	0.00000371								
Analyst: JMH			A. A.	2-17-28	Approved By:	William J. Luksemburg		20-Nov-2008 15:33	

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 · www.truesdail.com

Established 1931

TestAmerica Analytical-Irvine Client:

17461 Derlan Avenue, Suite 100 Irvine, CA 92614-5817

Water / 1 Sample

Sample:

Attention:

Joseph Doak

8315 (Modified)

IRK0247

P.O. Number:

Project Name:

IRK0247

Hydrazines

Investigation: Method Number:

REPORT

November 10, 2008 979607 Laboratory No: Report Date:

November 5, 2008 November 5, 2008 November 4, 2008

November 6, 2008

rg/L Units: Reported By:

Extraction Date: Analysis Date: Receiving Date: Sampling Date:

Analytical Results

		and the second s				The second secon	The second secon
		Sample	Dilution	Monomethyl	u-Dimethyl	Hydrazine	Qualifier
Sample ID	Sample Descript	Amount (mL)	Factor	Hydrazine	Hydrazine		Codes
707848-MB	Method Blank	100	1	平QN	*QN	≯ QN	None
279607 ⊜∟5	+{-21 014 IRK0247-01	. 100	1	O QN	D GN	⊃ QN	None
MDL				0.56	0.32	0.15	
Pol	0.0000			5.0	5.0	1.00	
Cample Deporting imite	oring I mite			0	0	00 7	

Note: Results based on detector #1 (UV=365nm) data.

Analytical Services, Truesdail Laboratories, Inc. Mona Nassimi, Manager

"Analysis not validated

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

17461 Derian Avenue, Suite 100, Irvinc, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Project ID: Routine Outfall 014

APTF Test Stand

Sampled: 11/04/08

Arcadia, CA 91007

Report Number: IRK0247

Received: 11/04/08

Attention: Bronwyn Kelly

MCAWW 245.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK0247-01 (Outfall 01	4 - Water) - cont.								
Reporting Units: ug/L Mercury	MCAWW 245.1	8315137	0.027	0.2	ND	1	11/12/08	11/12/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 014

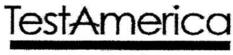
618 Michillinda Avenue, Suite 200

APTF Test Stand

Sampled: 11/04/08

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IRK0247

Received: 11/04/08


MCAWW 245.1 (Diss)

Analyte	Method Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK0247-01 (Outfall	014 - Water) - cont.							
Reporting Units: ug/L Mercury-diss	MCAWW 245.1 (Diss) 8315146	0.027	0.2	ND	1	11/12/08	11/12/08	

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

INORGANICS

		** 1.		11200					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK0247-01 (Outfall 014 -	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8K13049	1.3	4.7	1.4	1	11/13/08	11/13/08	J
Grease)									
Ammonia-N (Distilled)	SM4500NH3-C	8K05114	0.50	0.50	ND	1	11/05/08	11/05/08	
Biochemical Oxygen Demand	SM5210B	8K05133	0.50	2.0	1.8	1	11/05/08	11/10/08	J
Chloride	EPA 300.0	8K04068	0.25	0.50	26	1	11/04/08	11/04/08	
Fluoride	SM 4500-F-C	8K05004	0.020	0.10	0.38	1	11/05/08	11/05/08	
Nitrate-N	EPA 300.0	8K04068	1.2	2.2	9.3	20	11/04/08	11/04/08	
Nitrite-N %	EPA 300.0	8K04068	0.090	0.15	ND	1	11/04/08	11/04/08	
Nitrate/Nitrite-N	EPA 300.0	8K04068	3.0	5.2	9.3	20	11/04/08	11/04/08	
Sulfate **	EPA 300.0	8K04068	0.20	0.50	22	1	11/04/08	11/04/08	
Total Dissolved Solids	SM2540C	8K06055	10	10	210	1	11/06/08	11/06/08	
Total Suspended Solids	SM 2540D	8K11075	10	10	ND	1	11/11/08	11/11/08	
Sample ID: IRK0247-01 (Outfall 014 -	Water)								
Reporting Units: ml/l									
Total Settleable Solids +	SM2540F	8K05070	0.10	0.10	ND	3	11/05/08	11/05/08	
Sample ID: IRK0247-01 (Outfall 014 -	Water)								
Reporting Units: NTU									
Turbidity	EPA 180.1	8K05073	0.040	1.0	10	1	11/05/08	11/05/08	
Sample ID: IRK0247-01 (Outfall 014 -	Water)								
Reporting Units: ug/l								100121200	
Perchlorate ————————————————————————————————————	EPA 314.0	8K07091	0.90	4.0	ND	1	11/07/08	11/08/08	

LEVEL IV

*Analysis not validated

TestAmerica Irvine

Joseph Doak Project Manager

The results perion only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRK0247 <Page 9 of 38>

APPENDIX G

Section 23

Outfall 014, November 4, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 014

618 Michillinda Avenue, Suite 200 APTF Test Stand

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 11/04/08

Received: 11/04/08 Issued: 11/13/08 15:20

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This is a Partial Report pending Dioxin, Hydrazine and Mercury data from the subcontract laboratories.

LABORATORY IDCLIENT IDMATRIXIRK0247-01Outfall 014WaterIRK0247-02Trip BlanksWater

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 014

APTF Test Stand

Sampled: 11/04/08 Report Number: IRK0247 Received: 11/04/08

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

EXTRACTABLE FUEL HYDROCARBONS (EPA 8015 CADHS Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK0247-01 (Outfall 014 -	Water)								
Reporting Units: mg/l									
DRO (C13 - C28)	EPA 8015B MOD.	8K06073	0.094	0.094	ND	0.943	11/06/08	11/11/08	
Surrogate: n-Octacosane (40-125%)					78 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 014

APTF Test Stand

Sampled: 11/04/08 Report Number: IRK0247 Received: 11/04/08

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

VOLATILE FUEL HYDROCARBONS (EPA 5030/8015)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRK0247-01 (Outfall 014 - Wa	ter) - cont.								
Reporting Units: mg/l									
GRO (C4 - C12)	EPA 8015B	8K10042	0.030	0.050	ND	1	11/10/08	11/10/08	
Surrogate: 4-BFB (FID) (65-140%)					98 %				

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK0247-01 (Outfall 014 - Wa	ter) - cont.								
Reporting Units: ug/l									
1,2-Dibromoethane (EDB)	EPA 624	8K09012	0.40	0.50	ND	1	11/09/08	11/09/08	
1,2,3-Trichloropropane	EPA 624	8K09012	0.40	1.0	ND	1	11/09/08	11/09/08	
Di-isopropyl Ether (DIPE)	EPA 624	8K09012	0.25	0.50	ND	1	11/09/08	11/09/08	
Methyl-tert-butyl Ether (MTBE)	EPA 624	8K09012	0.32	0.50	ND	1	11/09/08	11/09/08	
tert-Butanol (TBA)	EPA 624	8K09012	6.5	10	ND	1	11/09/08	11/09/08	
Surrogate: 4-Bromofluorobenzene (80-120%	<i>6)</i>				94 %				
Surrogate: Dibromofluoromethane (80-120%)	6)				99 %				
Surrogate: Toluene-d8 (80-120%)					91 %				
Sample ID: IRK0247-02 (Trip Blanks - Wa	nter)								
Reporting Units: ug/l									
1,2-Dibromoethane (EDB)	EPA 624	8K09012	0.40	0.50	ND	1	11/09/08	11/09/08	
1,2,3-Trichloropropane	EPA 624	8K09012	0.40	1.0	ND	1	11/09/08	11/09/08	
Di-isopropyl Ether (DIPE)	EPA 624	8K09012	0.25	0.50	ND	1	11/09/08	11/09/08	
Methyl-tert-butyl Ether (MTBE)	EPA 624	8K09012	0.32	0.50	ND	1	11/09/08	11/09/08	
tert-Butanol (TBA)	EPA 624	8K09012	6.5	10	ND	1	11/09/08	11/09/08	
Surrogate: 4-Bromofluorobenzene (80-120%	<i>6)</i>				93 %				
Surrogate: Dibromofluoromethane (80-120%)	6)				92 %				
Surrogate: Toluene-d8 (80-120%)					91 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 014

APTF Test Stand

Sampled: 11/04/08 Report Number: IRK0247 Received: 11/04/08

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

1,4-DIOXANE BY DIRECT INJECTION GCMS - SINGLE ION MONITORING (SIM)

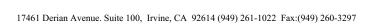
			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRK0247-01 (Outfall 014 - V	Vater)								
Reporting Units: ug/l									
1,4-Dioxane	EPA 8260B-SIM	8K12018	1.0	2.0	ND	1	11/12/08	11/12/08	
Surrogate: Dibromofluoromethane (80-12	10%)				106 %				

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

APTF Test Stand


Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK0247-01 (Outfall 014 - Wat	er) - cont.							3	-
Reporting Units: ug/l									
Naphthalene	EPA 625	8K09025	2.8	9.4	ND	0.943	11/09/08	11/11/08	
N-Nitrosodimethylamine	EPA 625	8K09025	2.4	19	ND	0.943	11/09/08	11/11/08	
Surrogate: 2,4,6-Tribromophenol (40-120%)					97 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					78 %				
Surrogate: 2-Fluorophenol (30-120%)					74 %				
Surrogate: Nitrobenzene-d5 (45-120%)					81 %				
Surrogate: Phenol-d6 (35-120%)					79 %				
Surrogate: Terphenyl-d14 (50-125%)					104 %				

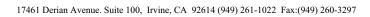
618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

APTF Test Stand


Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK0247-01 (Outfall 01	4 - Water) - cont.								
Reporting Units: mg/l									
Boron	EPA 200.7	8K05118	0.020	0.050	0.14	1	11/05/08	11/06/08	В
Sample ID: IRK0247-01 (Outfall 01	4 - Water)								
Reporting Units: ug/l									
Cadmium	EPA 200.8	8K05119	0.11	1.0	0.56	1	11/05/08	11/05/08	J
Copper	EPA 200.8	8K05119	0.75	2.0	2.0	1	11/05/08	11/05/08	
Lead	EPA 200.8	8K05119	0.30	1.0	0.84	1	11/05/08	11/07/08	J
Selenium	EPA 200.8	8K05119	0.30	2.0	0.32	1	11/05/08	11/05/08	J
Zinc	EPA 200.8	8K05119	2.5	20	19	1	11/05/08	11/05/08	B, J

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK0247-01 (Outfall 014	- Water) - cont.								
Reporting Units: mg/l									
Boron	EPA 200.7-Diss	8K05122	0.020	0.050	0.14	1	11/05/08	11/07/08	
Sample ID: IRK0247-01 (Outfall 014	- Water)								
Reporting Units: ug/l									
Cadmium	EPA 200.8-Diss	8K05121	0.11	1.0	0.56	1	11/05/08	11/05/08	J
Copper	EPA 200.8-Diss	8K05121	0.75	2.0	1.3	1	11/05/08	11/05/08	J
Lead	EPA 200.8-Diss	8K05121	0.30	1.0	ND	1	11/05/08	11/05/08	
Selenium	EPA 200.8-Diss	8K05121	0.30	2.0	ND	1	11/05/08	11/05/08	
Zinc	EPA 200.8-Diss	8K05121	2.5	20	24	1	11/05/08	11/05/08	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK0247-01 (Outfall 014 -	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil & Grease)	EPA 1664A	8K13049	1.3	4.7	1.4	1	11/13/08	11/13/08	J
Ammonia-N (Distilled)	SM4500NH3-C	8K05114	0.50	0.50	ND	1	11/05/08	11/05/08	
Biochemical Oxygen Demand	SM5210B	8K05133	0.50	2.0	1.8	1	11/05/08	11/10/08	J
Chloride	EPA 300.0	8K04068	0.25	0.50	26	1	11/04/08	11/04/08	
Fluoride	SM 4500-F-C	8K05004	0.020	0.10	0.38	1	11/05/08	11/05/08	
Nitrate-N	EPA 300.0	8K04068	1.2	2.2	9.3	20	11/04/08	11/04/08	
Nitrite-N	EPA 300.0	8K04068	0.090	0.15	ND	1	11/04/08	11/04/08	
Nitrate/Nitrite-N	EPA 300.0	8K04068	3.0	5.2	9.3	20	11/04/08	11/04/08	
Sulfate	EPA 300.0	8K04068	0.20	0.50	22	1	11/04/08	11/04/08	
Total Dissolved Solids	SM2540C	8K06055	10	10	210	1	11/06/08	11/06/08	
Total Suspended Solids	SM 2540D	8K11075	10	10	ND	1	11/11/08	11/11/08	
Sample ID: IRK0247-01 (Outfall 014 -	Water)								
Reporting Units: ml/l Total Settleable Solids	SM2540F	8K05070	0.10	0.10	ND	1	11/05/08	11/05/08	
Sample ID: IRK0247-01 (Outfall 014 - Reporting Units: NTU	Water)								
Turbidity	EPA 180.1	8K05073	0.040	1.0	10	1	11/05/08	11/05/08	
Sample ID: IRK0247-01 (Outfall 014 - Reporting Units: ug/l	Water)								
Perchlorate	EPA 314.0	8K07091	0.90	4.0	ND	1	11/07/08	11/08/08	

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 014

APTF Test Stand Sampled: 11/04/08

Report Number: IRK0247 Received: 11/04/08

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 014 (IRK0247-01) - Wate	r				
EPA 180.1	2	11/04/2008 09:25	11/04/2008 17:10	11/05/2008 08:05	11/05/2008 09:25
EPA 300.0	2	11/04/2008 09:25	11/04/2008 17:10	11/04/2008 20:00	11/04/2008 23:15
Nitrite-N				11/04/2008 20:00	11/04/2008 23:02
Filtration	1	11/04/2008 09:25	11/04/2008 17:10	11/04/2008 20:52	11/04/2008 20:55
SM2540F	2	11/04/2008 09:25	11/04/2008 17:10	11/05/2008 08:35	11/05/2008 08:35
SM5210B	2	11/04/2008 09:25	11/04/2008 17:10	11/05/2008 16:00	11/10/2008 11:30

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

METHOD BLANK/QC DATA

EXTRACTABLE FUEL HYDROCARBONS (EPA 8015 CADHS Modified)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8K06073 Extracted: 11/06/08	<u> </u>										
Blank Analyzed: 11/11/2008 (8K06073-B	BLK1)										
DRO (C13 - C28)	ND	0.10	0.10	mg/l							
EFH (C13 - C40)	ND	0.10	0.10	mg/l							
Surrogate: n-Octacosane	0.184			mg/l	0.200		92	40-125			
LCS Analyzed: 11/11/2008 (8K06073-BS	51)										MNR1
EFH (C13 - C40)	0.566	0.10	0.10	mg/l	0.750		75	40-115			
Surrogate: n-Octacosane	0.174			mg/l	0.200		87	40-125			
LCS Dup Analyzed: 11/11/2008 (8K0607	(3-BSD1)										
EFH (C13 - C40)	0.486	0.10	0.10	mg/l	0.750		65	40-115	15	25	
Surrogate: n-Octacosane	0.164			mg/l	0.200		82	40-125			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/8015)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8K10042 Extracted: 11/10/0	<u>8</u>										
DI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NT 174\										
Blank Analyzed: 11/10/2008 (8K10042-I	SLKI)										
GRO (C4 - C12)	ND	0.050	0.030	mg/l							
Surrogate: 4-BFB (FID)	0.00731			mg/l	0.0100		73	65-140			
LCS Analyzed: 11/10/2008 (8K10042-BS	S1)										
GRO (C4 - C12)	0.706	0.050	0.030	mg/l	0.800		88	80-120			
Surrogate: 4-BFB (FID)	0.0132			mg/l	0.0100		132	65-140			
Matrix Spike Analyzed: 11/10/2008 (8K	10042-MS1)				Sou	rce: IRK	0413-07				
GRO (C4 - C12)	0.228	0.050	0.030	mg/l	0.220	ND	103	65-140			
Surrogate: 4-BFB (FID)	0.0130			mg/l	0.0100		130	65-140			
Matrix Spike Dup Analyzed: 11/10/2008	8 (8K10042-M	ISD1)			Sou	rce: IRK	0413-07				
GRO (C4 - C12)	0.219	0.050	0.030	mg/l	0.220	ND	100	65-140	4	20	
Surrogate: 4-BFB (FID)	0.0123			mg/l	0.0100		123	65-140			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

APTF Test Stand

Sampled: 11/04/08 Report Number: IRK0247 Received: 11/04/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8K09012 Extracted: 11/09/03	3_										
Blank Analyzed: 11/09/2008 (8K09012-F	BLK1)										
1,2-Dibromoethane (EDB)	ND	0.50	0.40	ug/l							
1,2,3-Trichloropropane	ND	1.0	0.40	ug/l							
Di-isopropyl Ether (DIPE)	ND	0.50	0.25	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	0.50	0.32	ug/l							
tert-Butanol (TBA)	ND	10	6.5	ug/l							
Surrogate: 4-Bromofluorobenzene	23.2			ug/l	25.0		93	80-120			
Surrogate: Dibromofluoromethane	23.1			ug/l	25.0		93	80-120			
Surrogate: Toluene-d8	22.8			ug/l	25.0		91	80-120			
LCS Analyzed: 11/09/2008 (8K09012-BS	51)										
1,2-Dibromoethane (EDB)	25.6	0.50	0.40	ug/l	25.0		102	75-125			
1,2,3-Trichloropropane	30.9	1.0	0.40	ug/l	25.0		124	60-130			
Di-isopropyl Ether (DIPE)	18.0	0.50	0.25	ug/l	25.0		72	60-135			
Methyl-tert-butyl Ether (MTBE)	24.8	0.50	0.32	ug/l	25.0		99	60-135			
tert-Butanol (TBA)	160	10	6.5	ug/l	125		128	70-135			
Surrogate: 4-Bromofluorobenzene	24.4			ug/l	25.0		98	80-120			
Surrogate: Dibromofluoromethane	23.8			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	23.4			ug/l	25.0		94	80-120			
Matrix Spike Analyzed: 11/09/2008 (8K)	09012-MS1)				Sou	rce: IRK	0241-02				
1,2-Dibromoethane (EDB)	23.8	0.50	0.40	ug/l	25.0	ND	95	70-130			
1,2,3-Trichloropropane	20.2	1.0	0.40	ug/l	25.0	ND	81	55-135			
Di-isopropyl Ether (DIPE)	17.3	0.50	0.25	ug/l	25.0	ND	69	60-140			
Methyl-tert-butyl Ether (MTBE)	22.8	0.50	0.32	ug/l	25.0	ND	91	55-145			
tert-Butanol (TBA)	410	10	6.5	ug/l	125	ND	328	65-140			MI
Surrogate: 4-Bromofluorobenzene	25.0			ug/l	25.0		100	80-120			
Surrogate: Dibromofluoromethane	25.2			ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	23.4			ug/l	25.0		93	80-120			

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
Batch: 8K09012 Extracted: 11/09/0							, , , , , , ,				C
Baten, 01109012 Enviaered, 11/09/00	<u> </u>										
Matrix Spike Dup Analyzed: 11/09/2008	(8K09012-M	SD1)			Sou	rce: IRK	0241-02				
1,2-Dibromoethane (EDB)	24.3	0.50	0.40	ug/1	25.0	ND	97	70-130	2	25	
1,2,3-Trichloropropane	20.4	1.0	0.40	ug/1	25.0	ND	82	55-135	1	30	
Di-isopropyl Ether (DIPE)	17.7	0.50	0.25	ug/1	25.0	ND	71	60-140	2	25	
Methyl-tert-butyl Ether (MTBE)	23.4	0.50	0.32	ug/1	25.0	ND	93	55-145	3	25	
tert-Butanol (TBA)	324	10	6.5	ug/1	125	ND	259	65-140	24	25	M1
Surrogate: 4-Bromofluorobenzene	25.2			ug/l	25.0		101	80-120			
Surrogate: Dibromofluoromethane	24.7			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	23.4			ug/l	25.0		94	80-120			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08 Received: 11/04/08

METHOD BLANK/QC DATA

1,4-DIOXANE BY DIRECT INJECTION GCMS - SINGLE ION MONITORING (SIM)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8K12018 Extracted: 11/12/08	<u>.</u>										
Blank Analyzed: 11/12/2008 (8K12018-B	LK1)										
1,4-Dioxane	ND	2.0	1.0	ug/l							
Surrogate: Dibromofluoromethane	1.03			ug/l	1.00		103	80-120			
LCS Analyzed: 11/12/2008 (8K12018-BS	1)										
1,4-Dioxane	8.38	2.0	1.0	ug/l	10.0		84	70-125			
Surrogate: Dibromofluoromethane	1.05			ug/l	1.00		105	80-120			
Matrix Spike Analyzed: 11/12/2008 (8K1	2018-MS1)				Sou	rce: IRK	0247-01				
1,4-Dioxane	8.68	2.0	1.0	ug/l	10.0	ND	87	70-130			
Surrogate: Dibromofluoromethane	1.09			ug/l	1.00		109	80-120			
Matrix Spike Dup Analyzed: 11/12/2008	(8K12018-M	SD1)			Sou	rce: IRK	0247-01				
1,4-Dioxane	8.90	2.0	1.0	ug/l	10.0	ND	89	70-130	3	30	
Surrogate: Dibromofluoromethane	1.10			ug/l	1.00		110	80-120			

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08 Received: 11/04/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8K09025 Extracted: 11/09/	08										
Blank Analyzed: 11/11/2008 (8K09025	-BLK1)										
Naphthalene	ND	10	3.0	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
Surrogate: 2,4,6-Tribromophenol	187			ug/l	200		94	40-120			
Surrogate: 2-Fluorobiphenyl	76.8			ug/l	100		77	50-120			
Surrogate: 2-Fluorophenol	134			ug/l	200		67	30-120			
Surrogate: Nitrobenzene-d5	78.5			ug/l	100		79	45-120			
Surrogate: Phenol-d6	145			ug/l	200		73	35-120			
Surrogate: Terphenyl-d14	103			ug/l	100		103	50-125			
LCS Analyzed: 11/11/2008 (8K09025-I	BS1)										MNR1
Naphthalene	66.4	10	3.0	ug/l	100		66	55-120			
N-Nitrosodimethylamine	66.4	20	2.5	ug/l	100		66	45-120			
Surrogate: 2,4,6-Tribromophenol	169			ug/l	200		85	40-120			
Surrogate: 2-Fluorobiphenyl	74.2			ug/l	100		74	50-120			
Surrogate: 2-Fluorophenol	108			ug/l	200		54	30-120			
Surrogate: Nitrobenzene-d5	75.9			ug/l	100		76	45-120			
Surrogate: Phenol-d6	123			ug/l	200		62	35-120			
Surrogate: Terphenyl-d14	92.0			ug/l	100		92	50-125			
LCS Dup Analyzed: 11/11/2008 (8K09)	025-BSD1)										
Naphthalene	68.3	10	3.0	ug/l	100		68	55-120	3	20	
N-Nitrosodimethylamine	65.4	20	2.5	ug/l	100		65	45-120	2	20	
Surrogate: 2,4,6-Tribromophenol	176			ug/l	200		88	40-120			
Surrogate: 2-Fluorobiphenyl	76.2			ug/l	100		76	50-120			
Surrogate: 2-Fluorophenol	112			ug/l	200		56	30-120			
Surrogate: Nitrobenzene-d5	77.1			ug/l	100		77	45-120			
Surrogate: Phenol-d6	133			ug/l	200		66	35-120			
Surrogate: Terphenyl-d14	98.7			ug/l	100		99	50-125			
0 1 7				J							

TestAmerica Irvine

Joseph Doak Project Manager

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

APTF Test Stand

Sampled: 11/04/08 Report Number: IRK0247 Received: 11/04/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8K05118 Extracted: 11/05/08	_										
Blank Analyzed: 11/06/2008 (8K05118-B	I IZ1)										
Boron	0.0217	0.050	0.020	mg/l							J
LCS Analyzed: 11/06/2008 (8K05118-BS)	1)										
Boron	0.480	0.050	0.020	mg/l	0.500		96	85-115			
Matrix Spike Analyzed: 11/06/2008 (8K0	5118-MS1)				Sou	rce: IRK	0247-01				
Boron	0.604	0.050	0.020	mg/l	0.500	0.135	94	70-130			
Matrix Spike Analyzed: 11/06/2008 (8K0	5118-MS2)				Sou	rce: IRK	0115-01				
Boron	0.763	0.050	0.020	mg/l	0.500	0.305	92	70-130			
Matrix Spike Dup Analyzed: 11/06/2008	(8K05118-M	SD1)			Sou	rce: IRK	0247-01				
Boron	0.583	0.050	0.020	mg/l	0.500	0.135	90	70-130	3	20	
Batch: 8K05119 Extracted: 11/05/08	_										
Blank Analyzed: 11/05/2008 (8K05119-B	I I/1)										
Cadmium	ND	1.0	0.11	ug/l							
	ND ND	2.0	0.75	ug/l							
Copper Lead	ND ND	1.0	0.73	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	2.72	20	2.5	ug/l							J
LCS Analyzed: 11/05/2008 (8K05119-BS)	n										
Cadmium	80.2	1.0	0.11	ug/l	80.0		100	85-115			
Copper	83.5	2.0	0.75	ug/l	80.0		104	85-115			
Lead	79.9	1.0	0.30	ug/l	80.0		100	85-115			
Selenium	82.9	2.0	0.30	ug/l	80.0		104	85-115			
Zinc	85.8	20	2.5	ug/l	80.0		107	85-115			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTIN

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08 Received: 11/04/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8K05119 Extracted: 11/05/08	<u> </u>										
Matrix Spike Analyzed: 11/05/2008 (8K0)5119-MS1)				Sou	rce: IRJ3	004-01				
Cadmium	74.0	1.0	0.11	ug/l	80.0	ND	93	70-130			
Copper	78.2	2.0	0.75	ug/l	80.0	1.62	96	70-130			
Lead	68.9	1.0	0.30	ug/l	80.0	ND	86	70-130			
Selenium	75.9	2.0	0.30	ug/l	80.0	1.01	94	70-130			
Zinc	99.4	20	2.5	ug/l	80.0	29.1	88	70-130			
Matrix Spike Analyzed: 11/05/2008 (8K0)5119-MS2)				Sou	rce: IRJ3	009-04				
Cadmium	75.7	1.0	0.11	ug/l	80.0	0.756	94	70-130			
Copper	85.2	2.0	0.75	ug/l	80.0	7.96	97	70-130			
Lead	67.2	1.0	0.30	ug/l	80.0	0.378	84	70-130			
Selenium	77.9	2.0	0.30	ug/l	80.0	1.82	95	70-130			
Zinc	96.8	20	2.5	ug/l	80.0	29.7	84	70-130			
Matrix Spike Dup Analyzed: 11/05/2008	(8K05119-M	ISD1)			Sou	rce: IRJ3	004-01				
Cadmium	77.4	1.0	0.11	ug/l	80.0	ND	97	70-130	4	20	
Copper	82.1	2.0	0.75	ug/l	80.0	1.62	101	70-130	5	20	
Lead	72.1	1.0	0.30	ug/l	80.0	ND	90	70-130	4	20	
Selenium	79.0	2.0	0.30	ug/l	80.0	1.01	97	70-130	4	20	
Zinc	103	20	2.5	ug/l	80.0	29.1	93	70-130	4	20	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08 Received: 11/04/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8K05121 Extracted: 11/05/08											
Blank Analyzed: 11/05/2008 (8K05121-B	LK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 11/05/2008 (8K05121-BS	1)										
Cadmium	76.3	1.0	0.11	ug/l	80.0		95	85-115			
Copper	75.4	2.0	0.75	ug/l	80.0		94	85-115			
Lead	78.3	1.0	0.30	ug/l	80.0		98	85-115			
Selenium	77.7	2.0	0.30	ug/l	80.0		97	85-115			
Zinc	75.9	20	2.5	ug/l	80.0		95	85-115			
Matrix Spike Analyzed: 11/05/2008 (8K0	atrix Spike Analyzed: 11/05/2008 (8K05121-MS1)				Source: IRJ3018-01						
Cadmium	74.4	1.0	0.11	ug/l	80.0	ND	93	70-130			
Copper	76.0	2.0	0.75	ug/l	80.0	1.53	93	70-130			
Lead	70.7	1.0	0.30	ug/l	80.0	ND	88	70-130			
Selenium	75.7	2.0	0.30	ug/l	80.0	0.547	94	70-130			
Zinc	72.5	20	2.5	ug/l	80.0	ND	91	70-130			
Matrix Spike Dup Analyzed: 11/05/2008 (8K05121-MSD1)				Source: IRJ3018-01							
Cadmium	80.2	1.0	0.11	ug/l	80.0	ND	100	70-130	7	20	
Copper	82.2	2.0	0.75	ug/l	80.0	1.53	101	70-130	8	20	
Lead	78.1	1.0	0.30	ug/l	80.0	ND	98	70-130	10	20	
Selenium	80.2	2.0	0.30	ug/l	80.0	0.547	100	70-130	6	20	
Zinc	78.8	20	2.5	ug/l	80.0	ND	99	70-130	8	20	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IRK0247

Sampled: 11/04/08

Received: 11/04/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8K05122 Extracted: 11/05/08	<u> </u>										
Blank Analyzed: 11/07/2008 (8K05122-B	LK1)										
Boron	ND	0.050	0.020	mg/l							
LCS Analyzed: 11/07/2008 (8K05122-BS	1)										
Boron	0.461	0.050	0.020	mg/l	0.500		92	85-115			
Matrix Spike Analyzed: 11/07/2008 (8K05122-MS1)				Source: IRK0170-15							
Boron	14.0	0.25	0.10	mg/l	0.500	13.8	42	70-130			MHA
Matrix Spike Analyzed: 11/07/2008 (8K05122-MS2)				Source: IRK0170-02							
Boron	1.41	0.050	0.020	mg/l	0.500	0.904	102	70-130			
Matrix Spike Dup Analyzed: 11/07/2008 (8K05122-MSD1)					Source: IRK0170-15						
Boron	14.5	0.25	0.10	mg/l	0.500	13.8	137	70-130	3	20	MHA