WASTE CHARACTERIZATION: IN-SITU SOIL LOCATED AT ISRA AREA II
PLANNED EXCAVATION ELV-1D POND (SHALLOW SOILS)

Introduction

This report presents supporting detailed information for the in-situ characterization of prospective soil wastes from the planned ISRA excavation at ELV-1D in SSFL Area II. Soil samples for this characterization were collected on July 28, 2009 and on October 7, 2013.

Background

In-situ characterization was performed on soil destined to be excavated from designated locations in SSFL Area II in accordance with the ISRA Workplan. A step-by-step approach was followed to accomplish characterization of the soil prior to excavation. The first step was to review available information regarding historical area usage and existing analytical data from past soil sampling in the applicable SSFL Area II locations. The objective was to identify all substances that could have an impact on the determination of whether soil in each planned excavation footprint was hazardous or not.

The next step was to develop a random sampling plan for each of the planned excavation footprints to determine whether any of the identified substances are present at concentrations that require further investigation. An evaluation of the results of the initial random sampling was performed to determine whether the data was adequate for waste characterization based on the exhibited variance of any detected analytes and the relative difference between detected concentrations and regulatory thresholds. The soil was characterized non-hazardous when analyte concentrations among the samples exhibited a reasonably small variance and there was satisfactory margin between the mean of the samples and applicable regulatory thresholds. Otherwise, additional samples were collected and subjected to analysis or the soil was characterized as hazardous.

The review of historical information and existing analytical data relevant to planned excavation in the general ELV-1D area was based largely on the Group 2 RFI results. Evaluation of these data and other sources of relevant information suggested that soils here should be managed as two distinct areas, the former pond and the drainage.

For the ELV-1D POND, Volatile Organic Compounds (VOC), Regulated metals, and Semi-Volatile Organic Compounds (SVOC) were identified as potential impacts that should be addressed in the excavation footprint. Initially, a random sampling plan was developed for collection of eight (8) samples from the planned excavation footprint. The samples were analyzed for VOCs, CAM 17 metals, and SVOCs. A 96-hour Acute Aquatic Toxicity LC50 (Fish Bioassay) was also run on two of the samples. Excavation work at the site did not actually commence for some time.

Two additional samples were collected four years later during excavation activity, when photoionization detector monitoring indicated an increase in VOC presence. The intent of this sampling was to more clearly differentiate the boundaries of elevated VOC soil from lower concentration VOC soil for waste disposal facility profiling purposes. All samples were collected, contained, and handled according to field practice requirements in SW-846.
Results

Analytical results for the ELV-1D POND planned excavation area are presented in TestAmerica report ISG2199 issued on 8/13/09. Later sampling results are found in GEL Laboratories report 335054 issued on 10/11/13 (total concentrations) and 335824 issued on 10/23/13 (TCLP results). The results exhibited elevated concentrations of Lead, with a maximum of 217 mg/kg. As this detection originated in one of the samples collected only for profiling purposes, no California WET leachate test was performed. Rather, leachate testing was limited to the TCLP to determine whether the waste was RCRA regulated. A TCLP result of 0.0425 mg/L was obtained, below the RCRA hazardous waste limit of 5 mg/L for Lead.

Other elevated Lead concentrations were detected at 99 mg/kg, 87 mg/kg, and 82 mg/kg in the original waste characterization samples. These concentrations fell below RCRA thresholds requiring TCLP testing, but did exceed California STLC thresholds requiring the California WET leachate test. All of these samples were subjected to the WET, resulting in respective Lead concentrations of 1.8 mg/L, 3.6 mg/L, and 1.8 mg/L for the three elevated Lead samples. These results did not exceed the California STLC hazardous waste limit for Lead of 5 mg/L.

Elevated Chromium was also detected. Chromium was detected elevated concentrations of 105 mg/kg, 55 mg/kg, and 51 mg/kg. Again, the maximum concentration of 105 mg/kg was detected in one of the samples collected for profiling purposes. Consequently, only TCLP results were needed to determine whether the waste was RCRA regulated or not. The TCLP concentration was 0.0115 mg/L, well below the 5 mg/L hazardous waste limit. The two remaining elevated Chromium concentrations related to the original characterization samples and were below the RCRA threshold for TCLP testing. California WET results were 0.45 mg/L and 0.66 mg/L, well below the STLC threshold for hazardous waste of 5 mg/L. Other regulated metals were below applicable regulatory thresholds.

SVOCs were detected, but all analytes were below 1 mg/kg individually, with the exception of Benzoic Acid, which is not directly regulated as a hazardous waste. It was detected ranging from 0.35 mg/kg to 5.420 mg/kg. When excluding Benzoic Acid, the collective concentration of all other detected SVOCs is 0.2823 mg/kg.

Both samples that were tested passed the Fish Bioassay.

Only trace concentrations of VOCs were detected. Four samples exhibited TCE ranging from 0.0038 mg/kg to 0.082 mg/kg. Historical background information indicated that the pond area may have been exposed to spent TCE solvent in the past. For this reason, the soil was characterized as impacted by RCRA Listed waste. Other detected VOCs included cis-1,2-Dichloroethylene in one sample at 0.00275 mg/kg. 1,2,4-Trichlorobenzene was detected in two of the samples at 0.00076 mg/kg and at 0.0019 mg/kg, while 1,2,3-Trichlorobenzene was detected in one sample at 0.0033 mg/kg. Acetone was also present, with detections in 4 samples ranging from 16 mg/kg to 29 mg/kg.
Determination

According to analytical results and generator knowledge, the soil in the planned excavation footprint of SSFL Area II ELV-1D POND:

- Is a RCRA F001/F002 Listed Waste (analytical results and generator knowledge)
- Is Not ignitable (generator knowledge)
- Is Not corrosive (generator knowledge)
- Is Not reactive (generator knowledge)
- Is Not toxic (analytical results)
 - Is Not Extremely or Acutely Hazardous Waste
 - Does Not exceed any RCRA or Title 22 thresholds
 - Is Not subject to the Prop. 65 listing
 - Is Not subject to Title 22 Appendix X list
 - Is Not known by experience or testing to pose a hazard to human health or environment because of its carcinogenicity, acute toxicity, chronic toxicity, bio-accumulative properties, or persistence in the environment.

The ELV-1D POND shallow soil is HAZARDOUS.
Outfall 009
Waste Characterization
Sample Locations for ELV-1D

Base Map Legend
- Administrative Area
- Boundary
- RFI Site Boundary
- NPDES Outfall
- Surface Water Pathway
- Surface Water Divide
- A/C Paving

Figure Legend
- Gray shading indicates sample not analyzed
- Green shading indicates sample only analyzed for radionuclides
- Blue shading indicates sample associated with deep soils waste certification

Note:
1. Aerial imagery from 2010 Sage Consulting.
2. Topographic contours from 2010 Sage Consulting.

FIGURE 1

Figure: Planned ISRA Excavation Boundary
Sample Location

Path: T:\projects\rock3\ISRA\Figures\Boeing\ELV-1D\ELV-1D_WasteCharc.mxd
Date: 11/5/2013

Note:
1. Aerial imagery from 2010 Sage Consulting.
2. Topographic contours from 2010 Sage Consulting.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>TLC</th>
<th>StLC</th>
<th>TCLP Result</th>
<th>TCLP</th>
<th>STLC</th>
<th>TCLP Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony mg/kg</td>
<td>500</td>
<td>150</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.88</td>
</tr>
<tr>
<td>Arsenic mg/kg</td>
<td>500</td>
<td>50</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3.6</td>
</tr>
<tr>
<td>Barium mg/kg</td>
<td>10,000</td>
<td>1,000</td>
<td>2,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>54</td>
</tr>
<tr>
<td>Beryllium mg/kg</td>
<td>75</td>
<td>7.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.39</td>
</tr>
<tr>
<td>Cadmium mg/kg</td>
<td>100</td>
<td>10</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.1</td>
</tr>
<tr>
<td>Chromium mg/kg</td>
<td>500</td>
<td>50</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>Chromium-STLC mg/L</td>
<td>--</td>
<td>--</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.45</td>
</tr>
<tr>
<td>Lead mg/kg</td>
<td>1,000</td>
<td>50</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>18</td>
</tr>
<tr>
<td>Lead-STLC mg/L</td>
<td>--</td>
<td>--</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.8</td>
</tr>
<tr>
<td>Mercury mg/kg</td>
<td>20</td>
<td>2</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.0092</td>
</tr>
<tr>
<td>Molybdenum mg/kg</td>
<td>3,500</td>
<td>3,500</td>
<td></td>
<td>0.71</td>
<td>0.79</td>
<td><0.20</td>
<td>7.9</td>
</tr>
<tr>
<td>Nickel mg/kg</td>
<td>2,000</td>
<td>200</td>
<td></td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>Selenium mg/kg</td>
<td>100</td>
<td>10</td>
<td>20</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver mg/kg</td>
<td>500</td>
<td>50</td>
<td>100</td>
<td><0.80</td>
<td><0.80</td>
<td><0.80</td>
<td>2.4</td>
</tr>
<tr>
<td>Thallium mg/kg</td>
<td>700</td>
<td>70</td>
<td></td>
<td><0.80</td>
<td><0.80</td>
<td><0.80</td>
<td><0.80</td>
</tr>
<tr>
<td>Vanadium mg/kg</td>
<td>2,400</td>
<td>240</td>
<td></td>
<td>26</td>
<td>29</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>Zinc mg/kg</td>
<td>5,000</td>
<td>2,500</td>
<td></td>
<td>350</td>
<td>160</td>
<td>57</td>
<td>350</td>
</tr>
<tr>
<td>SVOCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Diphenylnaphthalene ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 (<50)</td>
<td><660 (<100)</td>
<td><330 (<50)</td>
<td><660 (<100)</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 (<50)</td>
<td><660 (<120)</td>
<td><330 (<50)</td>
<td><660 (<100)</td>
</tr>
<tr>
<td>1,2-Diphenylhydrazine/Azobenzene ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 (<50)</td>
<td><660 (<120)</td>
<td><330 (<50)</td>
<td><660 (<100)</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 (<50)</td>
<td><660 (<180)</td>
<td><330 (<50)</td>
<td><660 (<180)</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 (<50)</td>
<td><660 (<150)</td>
<td><330 (<50)</td>
<td><660 (<150)</td>
</tr>
<tr>
<td>1-Methylnaphthalene ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1-Naphthalimide ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 (<130)</td>
<td><660 (<260)</td>
<td><330 (<130)</td>
<td><660 (<260)</td>
</tr>
<tr>
<td>2,4-Dichlorophenol ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 (<75)</td>
<td><660 (<150)</td>
<td><330 (<75)</td>
<td><660 (<150)</td>
</tr>
<tr>
<td>2,4-Dichlorophenol ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 (<60)</td>
<td><660 (<120)</td>
<td><330 (<60)</td>
<td><660 (<120)</td>
</tr>
<tr>
<td>2,4-Dinitrophenol ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><660 (<110)</td>
<td><1300 (<220)</td>
<td><660 (<110)</td>
<td><1300 (<220)</td>
</tr>
<tr>
<td>2,4-Dinitrophenol ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><660 (<110)</td>
<td><1300 (<220)</td>
<td><660 (<110)</td>
<td><1300 (<220)</td>
</tr>
<tr>
<td>2-Chloronaphthalene ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 (<85)</td>
<td><660 (<130)</td>
<td><330 (<85)</td>
<td><660 (<130)</td>
</tr>
<tr>
<td>Object Name</td>
<td>ISWC0061</td>
<td>ISWC0062</td>
<td>ISWC0063</td>
<td>ISWC0064</td>
<td>ISWC0065</td>
<td>ISWC0066</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Sample Depth (feet):</td>
<td>0 - 0.6</td>
<td>1 - 1.6</td>
<td>1 - 1.7</td>
<td>1 - 1.8</td>
<td>1 - 2</td>
<td>0 - 0.9</td>
<td></td>
</tr>
<tr>
<td>Analyte</td>
<td>UNITS</td>
<td>TTLC</td>
<td>WET</td>
<td>TCLP</td>
<td>STLC</td>
<td>TCLP</td>
<td></td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2-Naphthylamine</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>ug/kg</td>
<td>10,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3,5-Dimethylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4-Aminobiphenyl</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4-Bromophenyl phenyl ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4-Chlorophenyl phenyl ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Acetophenone</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Aniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Anthracene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Benzidine</td>
<td>ug/kg</td>
<td>10,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Bis(2-chloroethoxy)methane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Bis(2-chloroisopropyl)ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Caprolactam</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Results:
- All values are in ug/kg.
- Values in parentheses indicate the detection limit.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>TTC</th>
<th>CET</th>
<th>TCLP</th>
<th>STLC</th>
<th>TCLP</th>
<th>Result</th>
<th>Result</th>
<th>Result</th>
<th>Result</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbazole</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <75</td>
<td><330 <75</td>
<td><660 <150</td>
<td><330 <75</td>
<td><330 <75</td>
</tr>
<tr>
<td>Chrysene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><420 <100</td>
<td><420 <100</td>
<td><840 <200</td>
<td><420 <100</td>
<td><630 <150</td>
</tr>
<tr>
<td>Dibenzo[a,h]anthracene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <60</td>
<td><330 <60</td>
<td><660 <120</td>
<td><330 <60</td>
<td><500 <90</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <95</td>
<td><330 <95</td>
<td><660 <190</td>
<td><330 <95</td>
<td><500 <140</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <85</td>
<td><330 <85</td>
<td><660 <130</td>
<td><330 <85</td>
<td><500 <140</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <90</td>
<td><330 <90</td>
<td><660 <180</td>
<td><330 <90</td>
<td><500 <140</td>
</tr>
<tr>
<td>Di-n-octyl phthalate</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <90</td>
<td><330 <90</td>
<td><660 <180</td>
<td><330 <90</td>
<td><500 <140</td>
</tr>
<tr>
<td>Diphenylamine</td>
<td>ug/kg</td>
<td>--</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <70</td>
<td><330 <70</td>
<td><660 <140</td>
<td><330 <70</td>
<td><500 <140</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <70</td>
<td><330 <70</td>
<td><660 <140</td>
<td><330 <70</td>
<td><500 <140</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>2,600</td>
<td>--</td>
<td>--</td>
<td><330 <70</td>
<td><330 <70</td>
<td><660 <140</td>
<td><330 <70</td>
<td><500 <140</td>
<td></td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ug/kg</td>
<td>--</td>
<td>10,000</td>
<td>--</td>
<td>--</td>
<td><330 <60</td>
<td><330 <60</td>
<td><660 <120</td>
<td><330 <60</td>
<td><500 <140</td>
<td></td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><830 <90</td>
<td><830 <90</td>
<td><1700 <180</td>
<td><830 <90</td>
<td><1200 <140</td>
<td></td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>ug/kg</td>
<td>--</td>
<td>60,000</td>
<td>--</td>
<td>--</td>
<td><660 <85</td>
<td><660 <85</td>
<td><11000 <120</td>
<td><660 <85</td>
<td><3300 <95</td>
<td></td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <130</td>
<td><330 <130</td>
<td><660 <260</td>
<td><330 <130</td>
<td><500 <200</td>
<td></td>
</tr>
<tr>
<td>Isophorone</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <60</td>
<td><330 <60</td>
<td><660 <120</td>
<td><330 <60</td>
<td><500 <90</td>
<td></td>
</tr>
<tr>
<td>m,p-Cresols</td>
<td>ug/kg</td>
<td>--</td>
<td>4,000,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <60</td>
<td><330 <60</td>
<td><660 <120</td>
<td><330 <60</td>
<td><500 <90</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>40,000</td>
<td>--</td>
<td>--</td>
<td><330 <70</td>
<td><330 <70</td>
<td><660 <140</td>
<td><330 <70</td>
<td><500 <140</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>ug/kg</td>
<td>--</td>
<td>10,000</td>
<td>--</td>
<td>--</td>
<td><330 <55</td>
<td><330 <55</td>
<td><660 <110</td>
<td><330 <55</td>
<td><500 <82</td>
<td></td>
</tr>
<tr>
<td>N-Nitroso-di-n-propylamine</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><250 <70</td>
<td><250 <70</td>
<td><500 <140</td>
<td><250 <70</td>
<td><380 <100</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <80</td>
<td><330 <80</td>
<td><660 <160</td>
<td><330 <80</td>
<td><500 <120</td>
<td></td>
</tr>
<tr>
<td>p-(Dimethylamino)azoobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><830 <150</td>
<td><830 <150</td>
<td><1700 <300</td>
<td><830 <150</td>
<td><1200 <220</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>ug/kg</td>
<td>17,000</td>
<td>17,000</td>
<td>2,000,000</td>
<td>--</td>
<td><830 <150</td>
<td><830 <150</td>
<td><1700 <300</td>
<td><830 <150</td>
<td><1200 <220</td>
<td></td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <60</td>
<td><330 <60</td>
<td><660 <120</td>
<td><330 <60</td>
<td><500 <90</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <90</td>
<td><330 <90</td>
<td><660 <180</td>
<td><330 <90</td>
<td><500 <90</td>
<td></td>
</tr>
<tr>
<td>Pyrene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><330 <60</td>
<td><330 <60</td>
<td><660 <160</td>
<td><330 <60</td>
<td><300 <82</td>
<td></td>
</tr>
<tr>
<td>Pyridine</td>
<td>ug/kg</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 <0.63</td>
<td><2.2 <0.63</td>
<td><2.5 <0.71</td>
<td><1.9 <0.55</td>
<td><2.2 <0.63</td>
</tr>
<tr>
<td>VOCs</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 <0.78</td>
<td><1.1 <0.78</td>
<td><0.97 <0.68</td>
<td><1.1 <0.77</td>
<td><1.2 <0.86</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 <0.97</td>
<td><1.1 <0.97</td>
<td><0.97 <0.84</td>
<td><1.1 <0.96</td>
<td><1.2 <1.1</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 <0.97</td>
<td><1.1 <0.97</td>
<td><0.97 <0.84</td>
<td><1.1 <0.96</td>
<td><1.2 <1.1</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 <0.56</td>
<td><1.2 <0.62</td>
<td><0.97 <0.49</td>
<td><1.1 <0.55</td>
<td><1.2 <0.62</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ug/kg</td>
<td>--</td>
<td>14,000</td>
<td>--</td>
<td>--</td>
<td><2.2 <0.67</td>
<td><2.5 <0.75</td>
<td><1.9 <0.58</td>
<td><2.2 <0.66</td>
<td><2.5 <0.74</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloropropane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 <0.45</td>
<td><1.2 <0.50</td>
<td><0.97 <0.39</td>
<td><1.1 <0.44</td>
<td><1.2 <0.49</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 <1.1</td>
<td><2.2 <1.1</td>
<td><1.9 <0.97</td>
<td><2.2 <1.1</td>
<td><2.3 <1.2</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 <1.1</td>
<td><2.5 <1.2</td>
<td><1.9 <0.97</td>
<td><2.2 <1.1</td>
<td><2.3 <1.2</td>
</tr>
</tbody>
</table>

Notes:
- TCLP: Toxicity Characterization Leachate Procedure
- STLC: Solid Waste Leachate Characterization Procedure
- Concentration units: ug/kg (micrograms per kilogram)
- The values in the table represent concentration ranges for each analyte.
- The table includes results for various ISRCs and dates.
<table>
<thead>
<tr>
<th>Object Name: ISWC0061</th>
<th>ISWC0062</th>
<th>ISWC0063</th>
<th>ISWC0064</th>
<th>ISWC0065</th>
<th>ISWC0066</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISWC0062S001</td>
<td>1 - 0.6</td>
</tr>
<tr>
<td>ISWC0063S001</td>
<td>1 - 0.6</td>
</tr>
<tr>
<td>ISWC0064S001</td>
<td>1 - 1.7</td>
</tr>
<tr>
<td>ISWC0065S001</td>
<td>1 - 0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>UNITS</th>
<th>TCLP</th>
<th>WET</th>
<th>TLR</th>
<th>STLC</th>
<th>TCLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.2</td>
<td><1.9</td>
<td><2.2</td>
<td><2.2</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.7</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>ug/kg</td>
<td><0.89</td>
<td><1.2</td>
<td><0.78</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>2-Chloro-1,1,1-trifluoroethane</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.84</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ug/kg</td>
<td><1.0</td>
<td><1.2</td>
<td><0.88</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ug/kg</td>
<td><5.6</td>
<td><6.2</td>
<td><4.9</td>
<td><5.5</td>
<td><6.2</td>
</tr>
<tr>
<td>Acetone</td>
<td>ug/kg</td>
<td><10,000</td>
<td><1.1</td>
<td><0.78</td>
<td><1.1</td>
<td><0.78</td>
</tr>
<tr>
<td>Benzene</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>ug/kg</td>
<td><5.8</td>
<td><6.2</td>
<td><4.9</td>
<td><5.5</td>
<td><6.2</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>Chlorotrifluoroethylene</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.81</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.53</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ug/kg</td>
<td><1.1</td>
<td><1.2</td>
<td><0.78</td>
<td><1.1</td>
<td><1.2</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>Di-isopropyl Ether (DIPE)</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
<tr>
<td>Ethyl tert-Butyl Ether (ETBE)</td>
<td>ug/kg</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
</tr>
</tbody>
</table>
Analyte Results

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>TTLC</th>
<th>WET Leachate</th>
<th>TCLP</th>
<th>STLC</th>
<th>TCLP</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ug/kg</td>
<td>--</td>
<td>10,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>>2.2</td>
<td>>2.5</td>
<td>>1.9</td>
<td>>2.2</td>
<td>>2.5</td>
<td>>2.5</td>
</tr>
<tr>
<td>Isopropyl ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>m,p-Xylenes</td>
<td>ug/kg</td>
<td>--</td>
<td>4,000,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>>2.2</td>
<td>>2.5</td>
<td>>1.9</td>
<td>>2.2</td>
<td>>2.5</td>
<td>>2.5</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>Methyle chloride</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>>2.2</td>
<td>>2.5</td>
<td>>1.9</td>
<td>>2.2</td>
<td>>2.5</td>
<td>>2.5</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
<td><2.5</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>>1.1</td>
<td>>1.2</td>
<td>>0.97</td>
<td>>1.1</td>
<td>>1.2</td>
<td>>1.2</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>>1.1</td>
<td>>1.2</td>
<td>>0.97</td>
<td>>1.1</td>
<td>>1.2</td>
<td>>1.2</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
<td><2.5</td>
</tr>
<tr>
<td>Styrene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>tert-Amyl Methyl Ether (TAME)</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
<td><2.5</td>
</tr>
<tr>
<td>tert-Butanol (TBA)</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.5</td>
<td><0.6</td>
<td><0.5</td>
<td><0.5</td>
<td><0.6</td>
<td><0.6</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
<td><2.5</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ug/kg</td>
<td>--</td>
<td>14,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>Toluene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td><1.2</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ug/kg</td>
<td>2,040,000</td>
<td>2,040,000</td>
<td>10,000</td>
<td>--</td>
<td>--</td>
<td><1.1</td>
<td><1.2</td>
<td><0.97</td>
<td><1.1</td>
<td><1.2</td>
<td>0.96</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
<td><2.5</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><5.6</td>
<td><6.2</td>
<td><4.9</td>
<td><5.5</td>
<td><6.2</td>
<td><5.8</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2</td>
<td><2.5</td>
<td><1.9</td>
<td><2.2</td>
<td><2.5</td>
<td><2.5</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ug/kg</td>
<td>--</td>
<td>4,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><4.5</td>
<td><5.0</td>
<td><3.9</td>
<td><4.4</td>
<td><4.9</td>
<td><4.6</td>
</tr>
</tbody>
</table>

Radionuclides

<table>
<thead>
<tr>
<th>Radionuclides</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Note: TCLP and WET leachate testing results are given as concentrations in ug/kg (micrograms per kilogram).
Analyte	**Units**	**WET TCLP**	**TCLP**^{STLC} **RESULT**^c	**TCLP**^{STLC} **RESULT**^c	**TCLP**^{TCLP} **RESULT**^c	**TCLP**^{TCLP} **RESULT**^c
Metals
Antimony | mg/kg | 500 | 150 | -- | -- | -- | 5.6 | <0.88 | 17.2 | 3.82
Arsenic | mg/kg | 500 | 50 | 100 | -- | -- | 3.1 | 3.9 | 6.07 | 2.25
Barium | mg/kg | 10,000 | 1,000 | 2,000 | -- | -- | 110 | 59 | 129 | 52.3
Beryllium | mg/kg | 75 | 7.5 | -- | -- | -- | 0.52 | 0.58 | 0.818 | 0.59
Cadmium | mg/kg | 100 | 10 | 20 | -- | -- | 4.7 | 1.1 | 8.2 | 1.06
Chromium | mg/kg | 500 | 50 | 100 | -- | -- | 44 | 24 | 105 | 19.2
Chromium-STLC | mg/L | -- | -- | -- | 5 | -- | -- | -- | -- | --
Chromium-TCLP | mg/L | -- | -- | -- | -- | 0.0115 | -- | -- | -- | --
Cobalt | mg/kg | 8,000 | 800 | -- | -- | -- | 5.4 | 4.6 | 10.8 | 8.84
Copper | mg/kg | 2,500 | 290 | -- | -- | -- | 30 | 15 | 80.2 | 18.3
Lead | mg/kg | 1,000 | 50 | 100 | -- | -- | 87 | 8.2 | 217 | 7.9
Lead-STLC | mg/L | -- | -- | 5 | -- | 1.8 | -- | -- | -- | --
Lead-TCLP | mg/L | -- | -- | -- | 5 | -- | -- | -- | -- | --
Mercury | mg/kg | 20 | 2 | 4 | -- | -- | 0.02 | 0.01 | 0.034 | 0.112
Molybdenum | mg/kg | 3,500 | 3,500 | -- | -- | -- | 2.7 | <0.20 | 7.43 | 3.58
Nickel | mg/kg | 2,000 | 200 | -- | -- | -- | 22 | 14 | 31.7 | 15.1
Selenium | mg/kg | 100 | 10 | 20 | -- | -- | 1.6 | <1.0 | <0.491 | <0.477
Silver | mg/kg | 500 | 50 | 100 | -- | -- | 0.82 | 0.82 | 3.96 | 0.226
Thallium | mg/kg | 700 | 70 | -- | -- | -- | <0.80 | <0.80 | 6.93 | 2.58
Vanadium | mg/kg | 2,400 | 240 | -- | -- | -- | 27 | 32 | 53.6 | 31.5
Zinc | mg/kg | 5,000 | 2,500 | -- | -- | -- | 950 | 120 | 779 | 170
SVOCs
1,1-Diphenylethylene | ug/kg | -- | -- | -- | -- | -- | -- | -- | <999 | <999
1,2,4-Trichlorobenzene | ug/kg | -- | -- | -- | -- | <330 (<50) | <330 (<50) | <999 | <999
1,2-Dichlorobenzene | ug/kg | -- | -- | -- | -- | <330 (<60) | <330 (<60) | <999 | <999
1,2-Diphenylhydrazine/Azobenzene | ug/kg | -- | -- | -- | -- | <330 (<60) | <330 (<60) | <999 | <999
1,3-Dichlorobenzene | ug/kg | -- | -- | -- | -- | <330 (<90) | <330 (<90) | <999 | <999
1,4-Dichlorobenzene | ug/kg | -- | -- | -- | -- | <330 (<65) | <330 (<65) | <999 | <999
1-Methylnaphthalene | ug/kg | -- | -- | -- | -- | -- | -- | -- | <999 | <999
1-Naphthylamine | ug/kg | -- | -- | -- | -- | -- | -- | -- | <999 | <999
2,4,5-Trichlorophenol | ug/kg | -- | -- | 8,000,000 | -- | <330 (<130) | <330 (<130) | <999 | <999
2,4,6-Trichlorophenol | ug/kg | -- | -- | 40,000 | -- | <330 (<75) | <330 (<75) | <999 | <999
2,4-Dichlorophenol | ug/kg | -- | -- | -- | -- | <330 (<60) | <330 (<60) | <999 | <999
2,4-Dimethylphenol | ug/kg | -- | -- | -- | -- | <330 (<100) | <330 (<100) | <999 | <999
2,4-Dinitrophenol | ug/kg | -- | -- | -- | -- | <660 (<110) | <660 (<110) | <999 | <999
2,4-Dinitrotoluene | ug/kg | -- | -- | 2,600 | -- | <330 (<80) | <330 (<80) | <999 | <999
2-Chloronaphthalene | ug/kg | -- | -- | -- | -- | <330 (<95) | <330 (<95) | <999 | <999

<table>
<thead>
<tr>
<th>Object Name:</th>
<th>ISWC0067</th>
<th>ISWC0068</th>
<th>ISWC0143</th>
<th>ISWC0144</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Depth (feet):</td>
<td>0 - 0.5</td>
<td>0 - 0.7</td>
<td>3.5 - 4.0</td>
<td>3.5 - 4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>TTLC</th>
<th>WET Leachate Testing Trigger</th>
<th>TCLP Leachate Testing Trigger</th>
<th>STLC</th>
<th>TCLP</th>
<th>Result</th>
<th>Result</th>
<th>Result</th>
<th>Result</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chlorophenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<70)</td>
<td>=<330 (<70)</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>130</td>
<td>=<330 (<70)</td>
<td><999</td>
<td><3.94</td>
<td><999</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<80)</td>
<td>=<330 (<80)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>2-Naphthylamine</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<60)</td>
<td>=<330 (<60)</td>
<td><1100</td>
<td><110</td>
<td><999</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<60)</td>
<td>=<330 (<60)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>ug/kg</td>
<td>10,000</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<830 (<150)</td>
<td>=<830 (<150)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<75)</td>
<td>=<330 (<75)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>3,5-Dimethylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<420 (<110)</td>
<td>=<420 (<110)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>4-Aminobiphenyl</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<75)</td>
<td>=<330 (<75)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<70)</td>
<td>=<330 (<70)</td>
<td><1330</td>
<td><133</td>
<td><999</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<120)</td>
<td>=<330 (<120)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>4-Chlorophenol phenyl ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<85)</td>
<td>=<330 (<85)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<80)</td>
<td>=<330 (<80)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<830 (<90)</td>
<td>=<830 (<90)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<830 (<140)</td>
<td>=<830 (<140)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<60)</td>
<td>=<330 (<60)</td>
<td><99.9</td>
<td><9.99</td>
<td><999</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<70)</td>
<td>=<330 (<70)</td>
<td><99.9</td>
<td><9.99</td>
<td><999</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Aniline</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<420 (<85)</td>
<td>=<420 (<85)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Anthracene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<80)</td>
<td>=<330 (<80)</td>
<td><99.9</td>
<td><9.99</td>
<td><999</td>
</tr>
<tr>
<td>Atrazine</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<1530</td>
<td>=<1530</td>
<td><999</td>
<td><9.99</td>
<td><999</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><830 (<680)</td>
<td><680 (<850)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<200)</td>
<td>=<330 (<200)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Benzoic acid (methyl)</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<70)</td>
<td>=<330 (<70)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<170 (<60)</td>
<td>=<170 (<60)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<60)</td>
<td>=<330 (<60)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<60)</td>
<td>=<330 (<60)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<60)</td>
<td>=<330 (<60)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<60)</td>
<td>=<330 (<60)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<60)</td>
<td>=<330 (<60)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>=<330 (<60)</td>
<td>=<330 (<60)</td>
<td><999</td>
<td><99.9</td>
<td><999</td>
</tr>
</tbody>
</table>
INTERIM SOURCE REMOVAL ACTION (ISRA) - OUTFALL 009

WASTE CHARACTERIZATION SAMPLE RESULTS - ELV-1D (SHALLOW SOILS)

THE BOEING COMPANY

SANTA SUSANA FIELD LABORATORY

<table>
<thead>
<tr>
<th>Object Name:</th>
<th>ISWC0067</th>
<th>ISWC0068</th>
<th>ISWC0143</th>
<th>ISWC0144</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISRC0068S001</td>
<td>0 - 0.5</td>
<td>0 - 0.7</td>
<td>3.5 - 4.0</td>
<td>3.5 - 4.0</td>
</tr>
</tbody>
</table>

Analyte Details

<table>
<thead>
<tr>
<th>Analyte</th>
<th>UNITS</th>
<th>TTL</th>
<th>WET Leachate</th>
<th>TCLP Leachate</th>
<th>STLC</th>
<th>TCLP</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbazole</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><99.9</td>
<td><99.9</td>
<td><99.9</td>
</tr>
<tr>
<td>Chrysene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><99.9</td>
<td><99.9</td>
<td><99.9</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><240</td>
<td><240</td>
<td><99.9</td>
<td><99.9</td>
<td><99.9</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Pyrene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Diphenylamine</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>ug/kg</td>
<td>-</td>
<td>2,600</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><830</td>
<td><830</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Hexachloroethene</td>
<td>ug/kg</td>
<td>-</td>
<td>60,000</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Isophorone</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>m,p-Cresols</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,000,000</td>
<td>-</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Diphenyl</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><250</td>
<td><250</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>2,6-Dinitrophenol</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>2,6-Dinitrophenol</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><250</td>
<td><250</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>ug/kg</td>
<td>17,000</td>
<td>17,000</td>
<td>2,000,000</td>
<td>-</td>
<td><830</td>
<td><830</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Phenol</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><330</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Pyrene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>130</td>
<td><330</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
<tr>
<td>Pyridine</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td><999</td>
<td><999</td>
<td><999</td>
</tr>
</tbody>
</table>

VOCs

<table>
<thead>
<tr>
<th>Analyte</th>
<th>UNITS</th>
<th>TTL</th>
<th>WET Leachate</th>
<th>TCLP Leachate</th>
<th>STLC</th>
<th>TCLP</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><2.2</td>
<td><2.2</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><1.1</td>
<td><1.1</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><2.2</td>
<td><2.2</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><1.1</td>
<td><1.1</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><1.1</td>
<td><1.1</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><2.2</td>
<td><2.2</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><1.1</td>
<td><1.1</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><2.2</td>
<td><2.2</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ug/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><2.2</td>
<td><2.2</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
</tbody>
</table>

11/25/2013 Page 8 of 11
Analyte Results

<table>
<thead>
<tr>
<th>Object Name: ISWC0067</th>
<th>ISWC0068</th>
<th>ISWC0068S001</th>
<th>ISWC0143</th>
<th>ISWC0143S001</th>
<th>ISWC0144</th>
<th>ISWC0144S002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection Date: 7/28/2009</td>
<td>7/28/2009</td>
<td>10/7/2013</td>
<td>10/7/2013</td>
<td>10/7/2013</td>
<td>3.5 - 4.0</td>
<td>3.5 - 4.0</td>
</tr>
<tr>
<td>Sample Depth (feet): 0.0 - 0.5</td>
<td>0.0 - 0.7</td>
<td>3.5 - 4.0</td>
</tr>
<tr>
<td>ANALYTE</td>
<td>UNITS</td>
<td>TTLC</td>
<td>WET Leachate Testing Trigger</td>
<td>TCLP Leachate Testing Trigger</td>
<td>STLC</td>
<td>TCLP</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<1.1)</td>
<td><2.4 (<1.2)</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.88)</td>
<td><1.2 (<0.92)</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><11 (<17)</td>
<td><12 (<18)</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.88)</td>
<td><1.2 (<0.94)</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<1.1)</td>
<td><1.2 (<1.1)</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.68)</td>
<td><1.2 (<0.94)</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.88)</td>
<td><1.2 (<0.94)</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.70)</td>
<td><1.2 (<0.74)</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.93)</td>
<td><1.2 (<0.99)</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.70)</td>
<td><1.2 (<0.74)</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<1.0)</td>
<td><1.2 (<1.1)</td>
</tr>
<tr>
<td>2,2-Dichlorofluoroethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.66)</td>
<td><1.2 (<0.71)</td>
</tr>
<tr>
<td>2-Chloro-1,1,1-trifluoroethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2-Chloroethyl vinyl ether</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<0.98)</td>
<td><2.4 (<1.0)</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><11 (<10)</td>
<td><12 (<11)</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<0.82)</td>
<td><2.4 (<0.87)</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><5.5 (<5.0)</td>
<td><5.9 (<5.3)</td>
</tr>
<tr>
<td>Acetone</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><29</td>
</tr>
<tr>
<td>Benzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.55)</td>
<td><1.2 (<0.59)</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<0.93)</td>
<td><2.4 (<0.99)</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<1.0)</td>
<td><2.4 (<1.1)</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.55)</td>
<td><1.2 (<0.59)</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<0.98)</td>
<td><2.4 (<0.94)</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<1.0)</td>
<td><2.4 (<1.1)</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><5.5 (<1.1)</td>
<td><5.9 (<1.1)</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<0.55)</td>
<td><2.4 (<0.59)</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.58)</td>
<td><1.2 (<0.61)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.55)</td>
<td><1.2 (<0.59)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<1.1)</td>
<td><2.4 (<1.2)</td>
</tr>
<tr>
<td>Chlorotrichloroethylene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.92)</td>
<td><1.2 (<0.98)</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.49)</td>
<td><1.2 (<0.52)</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<0.77)</td>
<td><1.2 (<0.82)</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.1 (<1.0)</td>
<td><1.2 (<1.1)</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<1.7)</td>
<td><2.4 (<1.8)</td>
</tr>
<tr>
<td>Dichloropropanol</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<0.55)</td>
<td><2.4 (<0.59)</td>
</tr>
<tr>
<td>Ethyl tert-Butyl Ether (ETBE)</td>
<td>ug/kg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.2 (<0.64)</td>
<td><2.4 (<0.68)</td>
</tr>
<tr>
<td>Object Name:</td>
<td>Sample Name:</td>
<td>Collection Date:</td>
<td>Sample Depth (feet):</td>
<td>ISWC0067</td>
<td>ISWC0068</td>
<td>ISWC0143</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 - 0.5</td>
<td>0 - 0.7</td>
<td>3.5 - 4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>UNITS</th>
<th>TTLC</th>
<th>WET Leachate Testing Trigger 🌿</th>
<th>TCLP Leachate Testing Trigger 🌿</th>
<th>STLC</th>
<th>TCLP</th>
<th>RESULT ♦</th>
<th>RESULT ♦</th>
<th>RESULT ♦</th>
<th>RESULT ♦</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.55)</td>
<td><1.2 (<0.59)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ug/kg</td>
<td></td>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<0.88)</td>
<td><2.4 (<0.94)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Isopropl ether</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.60)</td>
<td><1.2 (<0.64)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Isopropylene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<0.88)</td>
<td><2.4 (<0.94)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>ug/kg</td>
<td></td>
<td>4,000,000</td>
<td></td>
<td></td>
<td></td>
<td><11 (<8.6)</td>
<td><12 (<7.1)</td>
<td><1.5</td>
<td><1.5</td>
</tr>
<tr>
<td>Methyl tert-butyl ether</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<1.1)</td>
<td><2.4 (<1.2)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Methylen chloride</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><11 (<7.2)</td>
<td><12 (<7.6)</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<1.2)</td>
<td><2.4 (<1.3)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<0.80)</td>
<td><2.4 (<0.85)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.55)</td>
<td><1.2 (<0.59)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.55)</td>
<td><1.2 (<0.59)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.80)</td>
<td><1.2 (<0.85)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<0.74)</td>
<td><2.4 (<0.79)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Styrene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.64)</td>
<td><1.2 (<0.69)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>tert-Butyltoluene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<0.71)</td>
<td><2.4 (<0.75)</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>tert-Amhyl Methyl Ether (TAME)</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><55 (<11)</td>
<td><59 (<12)</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>tert-Butanol (TBA)</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<0.69)</td>
<td><2.4 (<0.75)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ug/kg</td>
<td></td>
<td>14,000</td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.54)</td>
<td><1.2 (<0.58)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Toluene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.55)</td>
<td><1.2 (<0.59)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.77)</td>
<td><1.2 (<0.82)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.67)</td>
<td><1.2 (<0.72)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ug/kg</td>
<td></td>
<td>2,040,000</td>
<td></td>
<td></td>
<td></td>
<td><1.1 (<0.55)</td>
<td><1.2 (<0.59)</td>
<td>3.8</td>
<td>82</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<0.80)</td>
<td><2.4 (<0.84)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.5</td>
<td><1.5</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5.5 (<2.8)</td>
<td><5.9 (<2.9)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ug/kg</td>
<td></td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
<td><2.2 (<1.0)</td>
<td><2.4 (<1.1)</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>ug/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><4.4 (<1.4)</td>
<td><4.7 (<1.5)</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

RADIONUCLIDES

| | | | R | R | R | R |
Notes:
“-” - not analyzed / not applicable
< - Analyte not detected at or above the stated method detection limit.

- WET Leachate Testing Trigger = STLC limit * 10
- TCLP Leachate Testing Trigger = TCLP limit * 20

Waste characterization sample results not validated
ug/kg - micrograms per kilogram
mg/kg - milligrams per kilogram
mg/L - milligrams per liter

R - Radiological analysis performed on sample. Boeing has prepared a separate document that provides the radiological results and compares them to the draft provisional DTSC look-up table (LUT) values in order to determine if soil exceeds background as required for the NASA/DTSC Administrative Order on Consent (AOC).