APPENDIX G

Section 6

Outfall 009 – March 25 & 26, 2012 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-6513-1

Client Project/Site: Boeing SSFL outfalls

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 4/27/2012 10:49:14 AM

Debby Wilson
Project Manager I
debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Delby Wilson

6

Debby Wilson Project Manager I 4/27/2012 10:49:14 AM -

9

10

11

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	6
Chronicle	9
QC Sample Results	11
QC Association	23
Definitions	27
Certification Summary	28
Subcontract Data	29
Chain of Custody	70
Receipt Checklists	72

6

8

40

11

12

Sample Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-6513-1	Outfall 009 Grab	Water	03/25/12 12:05	03/26/12 08:30
440-6603-1	Outfall 009 Composite	Water	03/25/12 17:48	03/26/12 16:50
440-6603-2	Trip Blank	Water	03/26/12 13:15	03/26/12 16:50

_

4

_

9

10

Case Narrative

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Job ID: 440-6513-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-6513-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

HPLC

Method(s) 300.0: Results exceeded the linear range for chloride and sulfate in the MS/MSD for batch 15487 and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in the associated method blank (MB) have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

Some analytes in the MB are reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

/

4

5

6

10

11

12

Client Sample Results

Client: MWH Americas Inc

TestAmerica Job ID: 440-6513-1

Project/Site: Boeing SSFL outfalls

Client Sample ID: Outfall 009 Grab

Date Collected: 03/25/12 12:05 Date Received: 03/26/12 08:30 Lab Sample ID: 440-6513-1

Matrix: Water

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	ND		4.7	1.3	mg/L		04/02/12 06:52	04/02/12 07:28	1

Client Sample ID: Outfall 009 Composite

Date Collected: 03/25/12 17:48

Date Received: 03/26/12 16:50

Lab Sample ID: 440-6603-1

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography									
An	alyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ch	loride	1.4	0.50	0.40	mg/L			03/27/12 01:57	1
Ni	trate Nitrite as N	0.27	0.26	0.19	mg/L			03/27/12 01:57	1
Su	ilfate	3.0	0.50	0.40	mg/L			03/27/12 01:57	1

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B)

Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000037	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
Total TCDD	ND		0.000010	0.0000037	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,7,8-PeCDD	ND		0.000050	0.0000067	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
Total PeCDD	ND		0.000050	0.0000067	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,4,7,8-HxCDD	ND		0.000050	0.0000033	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,6,7,8-HxCDD	0.0000050	J	0.000050	0.0000028	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,7,8,9-HxCDD	0.0000047	J	0.000050	0.0000027	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
Total HxCDD	0.000030	J	0.000050	0.0000029	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,4,6,7,8-HpCDD	0.00011	В	0.000050	0.0000036	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
Total HpCDD	0.00029	В	0.000050	0.0000036	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
OCDD	0.0012	В	0.00010	0.000013	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
2,3,7,8-TCDF	ND		0.000010	0.0000063	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
Total TCDF	ND		0.000010	0.0000063	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,7,8-PeCDF	ND		0.000050	0.0000070	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
2,3,4,7,8-PeCDF	ND		0.000050	0.0000070	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
Total PeCDF	ND		0.000050	0.0000070	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,4,7,8-HxCDF	ND		0.000050	0.0000046	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,6,7,8-HxCDF	ND		0.000050	0.0000042	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
2,3,4,6,7,8-HxCDF	ND		0.000050	0.0000043	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,7,8,9-HxCDF	ND		0.000050	0.0000061	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
Total HxCDF	0.000019	J	0.000050	0.0000047	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,4,6,7,8-HpCDF	0.000028	J	0.000050	0.000038	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
1,2,3,4,7,8,9-HpCDF	ND		0.000050	0.0000056	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
Total HpCDF	0.000070	J	0.000050	0.0000046	ug/L		04/02/12 10:00	04/03/12 21:47	0.97
OCDF	0.000073	JB	0.00010	0.0000044	ug/L		04/02/12 10:00	04/03/12 21:47	0.97

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	94		35 - 197	04/02/12 10:00	04/03/12 21:47	0.97
Internal Standard	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	82		25 - 164	04/02/12 10:00	04/03/12 21:47	0.97
13C-1,2,3,7,8-PeCDD	78		25 - 181	04/02/12 10:00	04/03/12 21:47	0.97
13C-1,2,3,4,7,8-HxCDD	75		32 - 141	04/02/12 10:00	04/03/12 21:47	0.97
13C-1,2,3,6,7,8-HxCDD	96		28 - 130	04/02/12 10:00	04/03/12 21:47	0.97
13C-1,2,3,4,6,7,8-HpCDD	86		23 - 140	04/02/12 10:00	04/03/12 21:47	0.97
13C-OCDD	98		17 _ 157	04/02/12 10:00	04/03/12 21:47	0.97
13C-2,3,7,8-TCDF	91		24 - 169	04/02/12 10:00	04/03/12 21:47	0.97

TestAmerica Irvine 4/27/2012

Page 6 of 73

2

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Client Sample ID: Outfall 009 Composite

Date Collected: 03/25/12 17:48 Date Received: 03/26/12 16:50 Lab Sample ID: 440-6603-1

Matrix: Water

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Internal Standard	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDF	88	24 - 185	04/02/12 10:00	04/03/12 21:47	0.97
13C-2,3,4,7,8-PeCDF	96	21 - 178	04/02/12 10:00	04/03/12 21:47	0.97
13C-1,2,3,6,7,8-HxCDF	117	26 - 123	04/02/12 10:00	04/03/12 21:47	0.97
13C-2,3,4,6,7,8-HxCDF	116	28 - 136	04/02/12 10:00	04/03/12 21:47	0.97
13C-1,2,3,7,8,9-HxCDF	99	29 - 147	04/02/12 10:00	04/03/12 21:47	0.97
13C-1,2,3,4,6,7,8-HpCDF	102	28 - 143	04/02/12 10:00	04/03/12 21:47	0.97
13C-1,2,3,4,7,8,9-HpCDF	97	26 - 138	04/02/12 10:00	04/03/12 21:47	0.97
13C-1,2,3,4,7,8-HxCDF	94	26 - 152	04/02/12 10:00	04/03/12 21:47	0.97

Method: 200.8 - Metals (ICP/MS) - Total Recoverable

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.12	J,DX	1.0	0.10	ug/L		03/29/12 13:39	03/29/12 23:30	1
Copper	5.1		2.0	0.50	ug/L		03/29/12 13:39	03/29/12 23:30	1
Lead	7.2		1.0	0.20	ug/L		03/29/12 13:39	03/29/12 23:30	1
Antimony	0.51	J,DX	2.0	0.30	ug/L		03/29/12 13:39	03/29/12 23:30	1
Thallium	ND		1.0	0.20	ug/L		03/29/12 13:39	03/29/12 23:30	1
									

Method: 200.8 - Metals (ICP/MS) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		03/29/12 13:59	03/29/12 20:54	1
Copper	3.2		2.0	0.50	ug/L		03/29/12 13:59	03/29/12 20:54	1
Lead	0.76	J,DX	1.0	0.20	ug/L		03/29/12 13:59	03/29/12 20:54	1
Antimony	0.39	J,DX	2.0	0.30	ug/L		03/29/12 13:59	03/29/12 20:54	1
Thallium	ND		1.0	0.20	ug/L		03/29/12 13:59	03/29/12 20:54	1

Method: 245.1 - Mercury (CVAA)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND ND	0.20	0.10 ug/L		03/27/12 15:45	03/28/12 09:34	1

Method: 245.1 - Mercury (CVAA) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	כ	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.10	ug/L		03/27/12 16:44	03/28/12 11:12	1

General Chemistry

Analyte	Result Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	47	10	10 n	mg/L			03/29/12 08:49	1
Total Suspended Solids	33	10	10 n	mg/L			03/27/12 15:57	1
Cyanide, Total	ND	0.0050	0.0030 n	mg/L		03/30/12 11:21	03/30/12 13:52	1

Method: Gamma Spec K-40 CS-137 - General Sub Contract Method

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137	-0.34	0	pCi/L		U		03/29/12 00:00	03/30/12 00:00	1
Potassium-40	7.55	0	pCi/L		U		03/29/12 00:00	03/30/12 00:00	1

Method: Gross Alpha and Beta - Gross Alpha/Beta

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gross Alpha	2.31	0	pCi/L	J		04/11/12 00:00	04/13/12 09:12	1
Gross Beta	2.88	0	pCi/L	J		04/11/12 00:00	04/13/12 09:12	1

Method: Radium 226 - General Sub Contract Method

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-226	0.026	0	pCi/L		U		04/12/12 00:00	04/12/12 13:19	1

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Client Sample ID: Outfall 009 Composite

Date Collected: 03/25/12 17:48 Date Received: 03/26/12 16:50

Lab Sample ID: 440-6603-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-228	0.114	0	pCi/L		U		04/06/12 00:00	04/06/12 13:23	1
Method: Strontium 90 - Ge	eneral Sub Contract N	lethod							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0: " 00	-0.094		~C:/I		U		04/06/12 00:00	04/06/12 07:23	
-			pCi/L		U		04/00/12 00:00	04/00/12 07.23	ı
Strontium-90 Method: Tritium - General Analyte	Sub Contract Method		PCI/L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: Tritium - General	Sub Contract Method	Qualifier	·	MDL		D			Dil Fac
Method: Tritium - General Analyte	Sub Contract Method Result 9.52	Qualifier 0	RL pCi/L	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: Tritium - General Analyte Tritium	Sub Contract Method Result 9.52 ned - General Sub Con	Qualifier 0	RL pCi/L		Unit U	D_	Prepared	Analyzed	Dil Fac

Client Sample ID: Trip Blank Lab Sample ID: 440-6603-2 **Matrix: Water**

Date Collected: 03/26/12 13:15

Date Received: 03/26/12 16:50

Strontium-90

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137	0.208	0	pCi/L		U		03/29/12 00:00	03/30/12 00:00	1
Potassium-40	5.5	0	pCi/L		U		03/29/12 00:00	03/30/12 00:00	1
Method: Gross Alpha and	l Beta - Gross Alpha/E	Beta							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gross Alpha	0.096	0	pCi/L		U		04/11/12 00:00	04/13/12 09:12	1
Gross Beta	0.1	0	pCi/L		U		04/11/12 00:00	04/13/12 09:12	1
Method: Radium 226 - Ge	neral Sub Contract M	ethod							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-226	0.033	0	pCi/L		U		04/12/12 00:00	04/12/12 13:19	1
Method: Radium 228 - RA	D-226-228 combined								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-228	-0.115	0	pCi/L		U		04/06/12 00:00	04/06/12 13:23	1
- Method: Strontium 90 - G	eneral Sub Contract N	/lethod							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: Uranium, Combined - Ger	neral Sub Co	ntract Meth	od						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Uranium, Total	0	0	pCi/L		U		04/02/12 00:00	04/02/12 01:51	1

pCi/L

0.114 0

U

04/06/12 00:00

04/06/12 07:23

Lab Chronicle

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls TestAmerica Job ID: 440-6513-1

Client Sample ID: Outfall 009 Grab

Date Collected: 03/25/12 12:05 Date Received: 03/26/12 08:30

Lab Sample ID: 440-6513-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	1664A			1055 mL	1000 mL	16822	04/02/12 06:52	DA	TAL IRV
Total/NA	Analysis	1664A		1			16825	04/02/12 07:28	DA	TAL IRV

Lab Sample ID: 440-6603-1

Client Sample ID: Outfall 009 Composite Date Collected: 03/25/12 17:48 Matrix: Water

Date Received: 03/26/12 16:50

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Init Amo		Fin Amo		Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	1	mL	1.0	mL	15486	03/27/12 01:57	NN	TAL IRV
Total/NA	Analysis	300.0		1	1	mL	1.0	mL	15487	03/27/12 01:57	NN	TAL IRV
Total	Prep	3542			1030.6	mL	20	uL	2093092_P	04/02/12 10:00	TL	TAL WS
Total	Analysis	1613B		0.97					2093092	04/03/12 21:47	GSV	TAL WS
Total/NA	Prep	245.1			20	mL	20	mL	15846	03/27/12 15:45	DB	TAL IRV
Total/NA	Analysis	245.1		1					16071	03/28/12 09:34	DB	TAL IRV
Dissolved	Prep	245.1			20	mL	20	mL	15817	03/27/12 16:44	DB	TAL IRV
Dissolved	Analysis	245.1		1					16071	03/28/12 11:12	DB	TAL IRV
Dissolved	Prep	200.2			50	mL	50	mL	16348	03/29/12 13:59	SC	TAL IRV
Dissolved	Analysis	200.8		1					16526	03/29/12 20:54	RC	TAL IRV
Total Recoverable	Prep	200.2			50	mL	50	mL	16339	03/29/12 13:39	SC	TAL IRV
Total Recoverable	Analysis	200.8		1					16526	03/29/12 23:30	RC	TAL IRV
Total/NA	Analysis	SM 2540D		1	100	mL	100	mL	15851	03/27/12 15:57	DK	TAL IRV
Total/NA	Analysis	SM 2540C		1	100	mL	100	mL	16272	03/29/12 08:49	XL	TAL IRV
Total/NA	Prep	Distill/CN			50	mL	50	mL	16584	03/30/12 11:21	PQI	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1					16619	03/30/12 13:52	PQI	TAL IRV
Total/NA	Prep	General Prep		1					8603_P	03/29/12 00:00		Eber-Ric
Total/NA	Analysis	Gamma Spec K-40 CS-137		1					8603	03/30/12 00:00	LS	Eber-Ric
Total/NA	Prep	General Prep		1					8603_P	04/11/12 00:00		Eber-Ric
Total/NA	Analysis	Gross Alpha and Beta		1					8603	04/13/12 09:12	DVP	Eber-Ric
Total/NA	Prep	General Prep		1					8603_P	04/12/12 00:00		Eber-Ric
Total/NA	Analysis	Radium 226		1					8603	04/12/12 13:19	TM	Eber-Ric
Total/NA	Prep	General Prep		1					8603_P	04/06/12 00:00		Eber-Ric
Total/NA	Analysis	Radium 228		1					8603	04/06/12 13:23	ASM	Eber-Ric
Total/NA	Analysis	Strontium 90		1					8603	04/06/12 07:23	SK	Eber-Ric
Total/NA	Prep	General Prep		1					8603_P	04/13/12 00:00		Eber-Ric
Total/NA	Analysis	Tritium		1					8603	04/14/12 09:59	WL	Eber-Ric
Total/NA	Prep	General Prep		1					8603_P	04/02/12 00:00		Eber-Ric
Total/NA	Analysis	Uranium, Combined		1					8603	04/02/12 01:43	LS	Eber-Ri

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Lab Sample ID: 440-6603-2

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 03/26/12 13:15

Date Received: 03/26/12 16:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	General Prep		1			8603_P	03/29/12 00:00		Eber-Rich
Total/NA	Analysis	Gamma Spec K-40 CS-137		1			8603	03/30/12 00:00	LS	Eber-Rich
Total/NA	Prep	General Prep		1			8603_P	04/11/12 00:00		Eber-Rich
Total/NA	Analysis	Gross Alpha and Beta		1			8603	04/13/12 09:12	DVP	Eber-Rich
Total/NA	Prep	General Prep		1			8603_P	04/12/12 00:00		Eber-Rich
Total/NA	Analysis	Radium 226		1			8603	04/12/12 13:19	TM	Eber-Rich
Total/NA	Prep	General Prep		1			8603_P	04/06/12 00:00		Eber-Rich
Total/NA	Analysis	Radium 228		1			8603	04/06/12 13:23	ASM	Eber-Rich
Total/NA	Analysis	Strontium 90		1			8603	04/06/12 07:23	SK	Eber-Rich
Total/NA	Prep	General Prep		1			8603_P	04/02/12 00:00		Eber-Rich
Total/NA	Analysis	Uranium, Combined		1			8603	04/02/12 01:51	LS	Eber-Rich

Laboratory References:

Eber-Rich = Eberline - Richmond, 2030 Wright Avenue, Richmond, CA 94804

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL WSC = TestAmerica West Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

_

6

9

10

11

12

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 440-15486/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 15486

мв мв

Result Qualifier RL Analyte MDL Unit D Analyzed Dil Fac Prepared 0.26 03/26/12 11:36 Nitrate Nitrite as N ND 0.19 mg/L

Lab Sample ID: LCS 440-15486/2

Matrix: Water

Analysis Batch: 15486

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 2.65 2.56 mg/L 97 90 - 110

Lab Sample ID: 440-6574-J-11 MS

Matrix: Water

Analysis Batch: 15486

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit D %Rec Limits 4.3 265 35.2 LN Nitrate Nitrite as N mg/L

Lab Sample ID: 440-6574-J-11 MSD

Matrix: Water

Analysis Batch: 15486

RPD Sample Sample Spike MSD MSD %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Nitrate Nitrite as N 4.3 26.5 35.8 ma/L 119 80 120 20

Lab Sample ID: MB 440-15487/3

Matrix: Water

Analysis Batch: 15487

MR MR

Qualifier RL MDL Unit D Dil Fac Analyte Result Prepared Analyzed 0.50 Chloride ND 0.40 mg/L 03/26/12 11:36 ND 0.50 03/26/12 11:36 Sulfate 0.40 mg/L

Lab Sample ID: LCS 440-15487/2

Matrix: Water

Analysis Batch: 15487

LCS LCS Spike %Rec. Result Analyte Added Qualifier Unit %Rec Chloride 5.00 4.75 mg/L 95 90 - 110 Sulfate 10.0 9.50 mg/L 95 90 - 110

Lab Sample ID: MB 440-15723/3

Matrix: Water

Analysis Batch: 15723

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND 0.26 0.19 mg/L 03/27/12 10:40

> TestAmerica Irvine 4/27/2012

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 440-15723/10 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 15723

Spike LCS LCS %Rec. Added Analyte Result Qualifier Limits Unit D %Rec Nitrate Nitrite as N 2.65 101 90 - 110 2.67 mg/L

Lab Sample ID: 440-6603-1 MS

Client Sample ID: Outfall 009 Composite **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 15723

MS %Rec. Sample Sample Spike Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits Nitrate Nitrite as N ND 2.65 2.82 mg/L 106 80 - 120

Lab Sample ID: 440-6603-1 MSD

Client Sample ID: Outfall 009 Composite **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 15723

Spike MSD MSD %Rec. RPD Sample Sample Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Nitrate Nitrite as N ND 2.65 2.79 105 mg/L

Lab Sample ID: MB 440-15724/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 15724

MB MB

Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Chloride ND 0.50 0.40 mg/L 03/27/12 10:40 Sulfate ND 0.50 0.40 mg/L 03/27/12 10:40

Lab Sample ID: LCS 440-15724/10 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 15724

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 5.00	4.95		mg/L		99	90 - 110	
Sulfate	10.0	10.4		mg/L		104	90 - 110	

Lab Sample ID: 440-6603-1 MS Client Sample ID: Outfall 009 Composite Prep Type: Total/NA

Matrix: Water

Analysis Batch: 15724

-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	1.5		5.00	6.20		mg/L		93	80 - 120		_
Sulfate	4.1		10.0	13.7		mg/L		97	80 - 120		

Lab Sample ID: 440-6603-1 MSD Client Sample ID: Outfall 009 Composite

Matrix: Water

Analysis Batch: 15724

, , , , , , , , , , , , , , , , , , , ,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1.5		5.00	6.14		mg/L		92	80 - 120	1	20
Sulfate	4.1		10.0	13.8		ma/L		97	80 - 120	0	20

TestAmerica Irvine 4/27/2012

Prep Type: Total/NA

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

13C-1,2,3,4,7,8-HxCDF

IAMERICA 300 ID. 440-03 IS- I

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B)

Lab Sample ID: G2D020000092B	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total
Analysis Batch: 2093092	Prep Batch: 2093092_P
MB MB	

Analysis Batch: 2093092	MB	МВ						Prep Batch: 209	93092_P
Analyte		Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000078	ug/L		04/02/12 10:00	04/03/12 20:21	1
Total TCDD	ND		0.000010	0.0000078	ug/L		04/02/12 10:00	04/03/12 20:21	1
1,2,3,7,8-PeCDD	ND		0.000050	0.0000096	ug/L		04/02/12 10:00	04/03/12 20:21	1
Total PeCDD	ND		0.000050	0.0000096	ug/L		04/02/12 10:00	04/03/12 20:21	1
1,2,3,4,7,8-HxCDD	ND		0.000050	0.0000073	ug/L		04/02/12 10:00	04/03/12 20:21	1
1,2,3,6,7,8-HxCDD	ND		0.000050	0.0000059	ug/L		04/02/12 10:00	04/03/12 20:21	1
1,2,3,7,8,9-HxCDD	ND		0.000050	0.0000058	ug/L		04/02/12 10:00	04/03/12 20:21	1
Total HxCDD	ND		0.000050	0.0000058	ug/L		04/02/12 10:00	04/03/12 20:21	1
1,2,3,4,6,7,8-HpCDD	0.0000038	J	0.000050	0.0000033	ug/L		04/02/12 10:00	04/03/12 20:21	1
Total HpCDD	0.000066	J	0.000050	0.0000033	ug/L		04/02/12 10:00	04/03/12 20:21	1
OCDD	0.000016	JQ	0.00010	0.000013	ug/L		04/02/12 10:00	04/03/12 20:21	1
2,3,7,8-TCDF	ND		0.000010	0.0000032			04/02/12 10:00	04/03/12 20:21	1
Total TCDF	ND		0.000010	0.0000032			04/02/12 10:00	04/03/12 20:21	1
1,2,3,7,8-PeCDF	ND		0.000050	0.000013			04/02/12 10:00	04/03/12 20:21	1
2,3,4,7,8-PeCDF	ND		0.000050	0.000014	-		04/02/12 10:00	04/03/12 20:21	1
Total PeCDF	ND		0.000050	0.000013			04/02/12 10:00	04/03/12 20:21	1
1,2,3,4,7,8-HxCDF	ND		0.000050	0.0000070	ug/L		04/02/12 10:00	04/03/12 20:21	1
1,2,3,6,7,8-HxCDF	ND		0.000050	0.0000068	•		04/02/12 10:00	04/03/12 20:21	1
2,3,4,6,7,8-HxCDF	ND		0.000050	0.0000064			04/02/12 10:00	04/03/12 20:21	1
1,2,3,7,8,9-HxCDF	ND		0.000050	0.0000091	•		04/02/12 10:00	04/03/12 20:21	1
Total HxCDF	ND		0.000050	0.0000064	•		04/02/12 10:00	04/03/12 20:21	1
1,2,3,4,6,7,8-HpCDF	ND		0.000050	0.0000053			04/02/12 10:00	04/03/12 20:21	1
1,2,3,4,7,8,9-HpCDF	ND		0.000050	0.0000076	•		04/02/12 10:00	04/03/12 20:21	1
Total HpCDF	ND		0.000050	0.0000053	•		04/02/12 10:00	04/03/12 20:21	1
OCDF	0.0000032	JQ	0.00010	0.0000075			04/02/12 10:00	04/03/12 20:21	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	97		35 - 197				04/02/12 10:00	04/03/12 20:21	1
	MB	MB							
Internal Standard	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	64		25 - 164				04/02/12 10:00	04/03/12 20:21	1
13C-1,2,3,7,8-PeCDD	67		25 - 181				04/02/12 10:00	04/03/12 20:21	1
13C-1,2,3,4,7,8-HxCDD	56		32 - 141				04/02/12 10:00	04/03/12 20:21	1
13C-1,2,3,6,7,8-HxCDD	85		28 - 130				04/02/12 10:00	04/03/12 20:21	1
13C-1,2,3,4,6,7,8-HpCDD	78		23 - 140				04/02/12 10:00	04/03/12 20:21	1
13C-OCDD	83		17 _ 157				04/02/12 10:00	04/03/12 20:21	1
13C-2,3,7,8-TCDF	66		24 - 169				04/02/12 10:00	04/03/12 20:21	1
13C-1,2,3,7,8-PeCDF	72		24 - 185				04/02/12 10:00	04/03/12 20:21	1
13C-2,3,4,7,8-PeCDF	75		21 - 178				04/02/12 10:00	04/03/12 20:21	1
13C-1,2,3,6,7,8-HxCDF	95		26 - 123				04/02/12 10:00	04/03/12 20:21	1
13C-2,3,4,6,7,8-HxCDF	101		28 - 136				04/02/12 10:00	04/03/12 20:21	1
13C-1,2,3,7,8,9-HxCDF	93		29 - 147				04/02/12 10:00	04/03/12 20:21	1

TestAmerica Irvine 4/27/2012

04/03/12 20:21

04/03/12 20:21

04/03/12 20:21

04/02/12 10:00

04/02/12 10:00

04/02/12 10:00

Page 13 of 73

28 - 143

26 - 138

26 - 152

86

86

Client Sample ID: Lab Control Sample

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls

Lab Sample ID: G2D020000092C

2

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Matrix: Water Prep Type: Total Analysis Batch: 2093092 Prep Batch: 2093092 P LCS LCS Spike %Rec. Result Qualifier Limits Analyte Added Unit D %Rec 2,3,7,8-TCDD 0.000200 0.000229 ug/L 114 67 - 158 1,2,3,7,8-PeCDD 0.00100 0.00123 123 70 - 142 ug/L 1,2,3,4,7,8-HxCDD 0.00100 0.00118 ug/L 118 70 - 164 1,2,3,6,7,8-HxCDD 0.00100 0.00120 ug/L 120 76 - 134 1,2,3,7,8,9-HxCDD 0.00100 0.00138 ug/L 138 64 - 162 1,2,3,4,6,7,8-HpCDD 0.00100 0.00127 B ug/L 127 70 - 140 OCDD 0.00244 B 78 - 144 0.00200 ug/L 122 2,3,7,8-TCDF 0.000200 0.000226 ug/L 113 75 - 158 0.00100 0.00116 116 80 - 134

1,2,3,7,8-PeCDF ug/L 0.00100 0.00108 108 68 - 160 2,3,4,7,8-PeCDF ug/L 1,2,3,4,7,8-HxCDF 0.00100 0.00112 ug/L 112 72 - 1341,2,3,6,7,8-HxCDF 0.00100 0.00121 ug/L 121 84 - 130 2,3,4,6,7,8-HxCDF 0.00100 0.00117 ug/L 117 70 - 156 1,2,3,7,8,9-HxCDF 0.00100 0.00121 ug/L 121 78 - 130 1,2,3,4,6,7,8-HpCDF 0.00100 0.00118 ug/L 118 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.00117 ug/L 117 78 - 138 OCDF 0.00200 0.00250 B ug/L 125 63 - 170

 Surrogate
 %Recovery
 Qualifier
 Limits

 37CI4-2,3,7,8-TCDD
 94
 31 - 191

LCS LCS Internal Standard %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 71 20 _ 175 13C-1,2,3,7,8-PeCDD 70 21 - 227 13C-1,2,3,4,7,8-HxCDD 70 21 - 193 13C-1,2,3,6,7,8-HxCDD 82 25 - 163 13C-1,2,3,4,6,7,8-HpCDD 78 26 - 166 13C-OCDD 89 13 - 199 13C-2,3,7,8-TCDF 76 22 - 152 13C-1,2,3,7,8-PeCDF 74 21 - 192 13C-2,3,4,7,8-PeCDF 82 13 - 328 13C-1,2,3,6,7,8-HxCDF 107 21 - 159 13C-2,3,4,6,7,8-HxCDF 104 22 - 176 89 17 - 205 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 92 21 - 158 91 13C-1,2,3,4,7,8,9-HpCDF 20 - 186

88

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 440-16339/1-A

Matrix: Water

13C-1,2,3,4,7,8-HxCDF

Analysis Batch: 16526

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 16339

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		03/29/12 13:39	03/29/12 23:25	1
Copper	ND		2.0	0.50	ug/L		03/29/12 13:39	03/29/12 23:25	1
Lead	ND		1.0	0.20	ug/L		03/29/12 13:39	03/29/12 23:25	1

19 - 202

TestAmerica Irvine 4/27/2012

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls TestAmerica Job ID: 440-6513-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 440-16339/1-A

Matrix: Water

Analysis Batch: 16526

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 16339

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		2.0	0.30	ug/L		03/29/12 13:39	03/29/12 23:25	1
Thallium	ND		1.0	0.20	ug/L		03/29/12 13:39	03/29/12 23:25	1

Lab Sample ID: LCS 440-16339/2-A

Matrix: Water

Analysis Batch: 16526

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 16339

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits Cadmium 80.0 78.3 ug/L 98 85 - 115 80.0 80.7 Copper ug/L 101 85 - 115 80.0 83.9 Lead ug/L 105 85 - 115 80.4 Antimony 80.0 ug/L 100 85 - 115 Thallium 80.0 84.1 ug/L 105 85 - 115

Lab Sample ID: 440-6603-1 MS

Matrix: Water

Analysis Batch: 16526

Client Sample ID: Outfall 009 Composite

Prep Type: Total Recoverable

Prep Batch: 16339

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	0.12	J,DX	80.0	77.5		ug/L		97	70 - 130	
Copper	5.1		80.0	84.1		ug/L		99	70 - 130	
Lead	7.2		80.0	90.9		ug/L		105	70 - 130	
Antimony	0.51	J,DX	80.0	76.7		ug/L		95	70 - 130	
Thallium	ND		80.0	83.2		ug/L		104	70 - 130	

Lab Sample ID: 440-6603-1 MSD

Matrix: Water

Analysis Batch: 16526

Client Sample ID: Outfall 009 Composite

Prep Type: Total Recoverable

Prep Batch: 16339

Allalysis Dalcil. 10320									FIE	Datell.	10333	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Cadmium	0.12	J,DX	80.0	76.5		ug/L		96	70 - 130	1	20	
Copper	5.1		80.0	81.5		ug/L		95	70 - 130	3	20	
Lead	7.2		80.0	89.1		ug/L		102	70 - 130	2	20	
Antimony	0.51	J,DX	80.0	76.0		ug/L		94	70 - 130	1	20	
Thallium	ND		80.0	82.3		ug/L		103	70 - 130	1	20	

Lab Sample ID: MB 440-15847/1-B

Matrix: Water

Analysis Batch: 16526

Client Sample ID: Method Blank

Prep Type: Dissolved

Prep Batch: 16348

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		03/29/12 13:59	03/29/12 20:49	1
Copper	ND		2.0	0.50	ug/L		03/29/12 13:59	03/29/12 20:49	1
Lead	ND		1.0	0.20	ug/L		03/29/12 13:59	03/29/12 20:49	1
Antimony	ND		2.0	0.30	ug/L		03/29/12 13:59	03/29/12 20:49	1
Thallium	ND		1.0	0.20	ug/L		03/29/12 13:59	03/29/12 20:49	1

TestAmerica Irvine 4/27/2012

_

6

9

10

12

1 ~

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 440-15847/2-B **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Dissolved Analysis Batch: 16526** Prep Batch: 16348

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	80.0	76.9		ug/L		96	85 - 115	
Copper	80.0	81.0		ug/L		101	85 - 115	
Lead	80.0	80.5		ug/L		101	85 - 115	
Antimony	80.0	78.5		ug/L		98	85 - 115	
Thallium	80.0	81.2		ug/L		101	85 - 115	
				. 5				

Lab Sample ID: 440-6603-1 MS

Analysis Batch: 16526

Client Sample ID: Outfall 009 Composite **Matrix: Water Prep Type: Dissolved**

Prep Batch: 16348

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	ND		80.0	76.0		ug/L		95	70 - 130	
Copper	3.2		80.0	82.9		ug/L		100	70 - 130	
Lead	0.76	J,DX	80.0	80.4		ug/L		100	70 - 130	
Antimony	0.39	J,DX	80.0	78.7		ug/L		98	70 - 130	
Thallium	ND		80.0	79.7		ug/L		100	70 - 130	

Lab Sample ID: 440-6603-1 MSD

Matrix: Water

Analysis Batch: 16526

Client Sample ID: Outfall 009 Composite

Prep Type: Dissolved

Prep Batch: 16348

	Fieb	battii.	10340
	%Rec.		RPD
%Rec	Limits	RPD	Limit
96	70 - 130	1	20
99	70 - 130	1	20
100	70 - 130	1	20
98	70 - 130	0	20
101	70 - 130	2	20
	96 99 100 98	%Rec. %Rec Limits 96 70 - 130 99 70 - 130 100 70 - 130 98 70 - 130	%Rec Limits RPD 96 70 - 130 1 99 70 - 130 1 100 70 - 130 1 98 70 - 130 0

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 440-15846/1-A Client Sample ID: Method Blank

Matrix: Water

Matrix: Water

Analysis Batch: 16071

Prep Type: Total/NA

Prep Batch: 15846

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND ND	0.20	0.10 ug/L		03/27/12 15:45	03/28/12 09:04	1

Lab Sample ID: LCS 440-15846/2-A **Client Sample ID: Lab Control Sample**

Analysis Batch: 16071

Prep Batch: 15846

Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec 8.00 7.23 85 - 115 Mercury ug/L

мв мв

Lab Sample ID: 440-6289-H-1-C MS

Matrix: Water

Analysis Batch: 16071

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 15846

Allalysis Datoll. 10071									1 100	Datell. 15	0
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	0.11	J,DX	8.00	6.99		ug/L		86	70 - 130		

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls

Mercury

TestAmerica Job ID: 440-6513-1

85 - 115

Client Sample ID: Matrix Spike

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 16822

3

Method: 245.1 - Mercury (CVAA) (Continued)

Lab Sample ID: 440-6289-H-1-D MS	D									Clie	nt Sa	ample ID:	Matrix Spi		
Matrix: Water													Prep Ty	•	
Analysis Batch: 16071													Prep	Batch:	15846
	Sample	Sam	ple	Spike		MSD	MSD)					%Rec.		RPD
Analyte	Result	Qual	ifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Mercury	0.11	J,DX		8.00		7.15			ug/L		_	88	70 - 130	2	20
Lab Sample ID: MB 440-15609/1-B												Client Sa	ample ID: N	lethod	Blank
Matrix: Water													Prep Typ	e: Diss	solved
Analysis Batch: 16071													Prep	Batch:	15817
		MB	MB												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyze	d	Dil Fac
Mercury		ND			0.20		0.10	ug/L			03/2	7/12 14:04	03/28/12 1	0:13	1
Lab Sample ID: LCS 440-15609/2-B										С	lient	Sample	ID: Lab Co	ntrol S	ample
Matrix: Water													Prep Typ	e: Diss	solved
Analysis Batch: 16071													Prep	Batch:	15817
-				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		

Matrix: Water Analysis Batch: 16071										ype: Diss p Batch:	
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	0.11	IDX	8.00	7.06		ua/l		87	70 130		

7.24

ug/L

8.00

Lab Sample ID: 440-6518-C-1-	D MSD						Client Sa	ample ID	D: Matrix Sp	oike Dup	licate
Matrix: Water									Prep Ty	pe: Diss	olved
Analysis Batch: 16071									Prep	Batch:	15817
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.11	J,DX	8.00	7.28		ug/L		90	70 - 130	3	20

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 440-16822/1-A

Matrix: Water

Analyte

HEM

Analysis Batch: 16825

Lab Sample ID: 440-6518-C-1-C MS

	MB	MB							
Analyte	Result	Qualifier	RL	MDI	_ Unit	D	Prepared	Analyzed	Dil Fac
HEM	ND		5.0	1.4	1 mg/L		04/02/12 06:52	04/02/12 07:28	1
Lab Sample ID: LCS 440-16822/2-A						C	lient Sample I	D: Lab Control	Sample
Matrix: Water								Prep Type: 7	Γotal/NA
Analysis Batch: 16825								Prep Batcl	n: 16822
			Spike	LCS LC	S			%Rec.	

Result Qualifier

18.4

Unit

mg/L

%Rec

Limits

78 - 114

Added

20.0

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls TestAmerica Job ID: 440-6513-1

Prep Type: Total/NA

Prep Type: Total/NA

Method: 1664A - HEM and SGT-HEM (Continued)

Lab Sample ID: LCSD 440-16822/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 16825** Prep Batch: 16822 LCSD LCSD

Spike Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec HEM 20.0 78 - 114 0 18.4 mg/L 92

Lab Sample ID: 440-6449-A-7-A MS Client Sample ID: Matrix Spike

Matrix: Water

Analysis Batch: 16825

Prep Batch: 16822 Sample Sample Spike MS MS Result Qualifier Result Qualifier Added Unit %Rec Limits 100 20.0 119 BB mg/L 85 78 - 114

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 440-16272/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analyte

HEM

Analysis Batch: 16272

MR MR

Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac 10 Total Dissolved Solids ND 10 mg/L 03/29/12 08:49

Lab Sample ID: LCS 440-16272/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 16272

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits 1000 1020 Total Dissolved Solids mg/L 102 90 _ 110

Lab Sample ID: 440-6685-A-1 DU **Client Sample ID: Duplicate**

Matrix: Water

Analysis Batch: 16272

Sample Sample DU DU RPD Result Qualifier Result Qualifier RPD Limit Analyte Unit Total Dissolved Solids 1100 1100 mg/L 10

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-15851/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 15851

MB MB

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Suspended Solids ND 10 10 mg/L 03/27/12 15:57

Lab Sample ID: LCS 440-15851/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 15851

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Total Suspended Solids 1000 990 99 85 - 115 mg/L

Client: MWH Americas Inc

Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 16584

Prep Batch: 16584

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: 440-6406-A-1 DU

Matrix: Water

Analysis Batch: 15851

Client Sample ID: Duplicate Prep Type: Total/NA Sample Sample DU DU RPD

Result Qualifier RPD Result Qualifier D Limit Analyte Unit 18.0 0 10 **Total Suspended Solids** 18 mg/L

Method: SM 4500 CN E - Cyanide, Total (Low Level)

Lab Sample ID: MB 440-16584/1-A

Matrix: Water

Analysis Batch: 16619

мв мв

Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Cyanide, Total ND 0.0050 0.0030 mg/L 03/30/12 11:21 03/30/12 13:51

Lab Sample ID: LCS 440-16584/2-A

Matrix: Water

Analysis Batch: 16619

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Total 0.100 0.104 mg/L 104 90 - 110

Lab Sample ID: 440-6261-A-1-A MS

Matrix: Water

Analysis Batch: 16619

Prep Batch: 16584 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits ND 0.100 0.0787 Cyanide, Total mg/L 70 - 115

Lab Sample ID: 440-6261-A-1-B MSD

Matrix: Water

Analysis Batch: 16619

Sample Sample Spike MSD MSD %Rec. Added Result Qualifier Result Qualifier %Rec Limits RPD Analyte Unit D 0.100 82 Cyanide, Total ND 0.0821 mg/L 70 - 115

Method: Gross Alpha and Beta - Gross Alpha/Beta

Lab Sample ID: S203085-04 Client Sample ID: Method Blank

Matrix: WATER

Analysis Batch: 8603

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137	0.856	0	pCi/L		U		03/29/12 00:00	03/30/12 00:00	1
Potassium-40	-5.14	0	pCi/L		U		03/29/12 00:00	03/30/12 00:00	1

Lab Sample ID: S203085-04

Matrix: WATER

Analysis Batch: 8603

Blank Blank

Result Qualifier Analyte RL MDL Unit Analyzed Dil Fac D Prepared 0 0 pCi/L U 04/02/12 00:00 04/02/12 02:04 Uranium, Total

> TestAmerica Irvine 4/27/2012

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prep Batch: 16584

RPD

Limit

Client Sample ID: Method Blank

Prep Batch: 8603 P

Prep Type: Total/NA

Prep Batch: 8603 P

Client: MWH Americas Inc

Analyte

Uranium, Total

TestAmerica Job ID: 440-6513-1 Project/Site: Boeing SSFL outfalls

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

Lab Sample ID: S203085-04									Cli	ient Sa	ample ID: Metho	od Blank
Matrix: WATER											Prep Type:	
Analysis Batch: 8603											Prep Batch:	
7 maryoro Batom occo	Blank	Blank									. Top Batom	. 0000
Analyte		Qualifier	RL		MDL	Unit		D	Prep	ared	Analyzed	Dil Fac
Strontium-90	0.023		pCi/L			U			04/06/12		04/06/12 07:23	1
Cuontam 30	0.020	O	powe			O			04/00/12	2 00.00	04/00/12 07:20	
Lab Sample ID: S203085-04									Cli	ient Sa	ample ID: Metho	nd Blank
Matrix: WATER									0.1	ioni o	Prep Type:	
Analysis Batch: 8603											Prep Batch:	
Alialysis Batcii. 6003	Blank	Blank									Prep Batch	. 0003_F
Analyte		Qualifier	RL		MDI	Unit		D	Prep	arad	Analyzod	Dil Fac
	-0.071				MIDL	U					Analyzed	1
Radium-228	-0.071	U	pCi/L			U			04/06/12	2 00:00	04/06/12 13:23	1
Lab Sample ID: \$202085 04									CI	iont Co	ample ID: Methe	d Blank
Lab Sample ID: S203085-04									CII	ient Sa	ample ID: Metho	
Matrix: WATER											Prep Type:	
Analysis Batch: 8603	B	B									Prep Batch	: 8603_P
		Blank						_	_			
Analyte		Qualifier	RL		MDL	Unit		D	Prep		Analyzed	Dil Fac
Radium-226	-0.017	0	pCi/L			U			04/12/12	2 00:00	04/12/12 13:19	1
									01			L DI L
Lab Sample ID: S203085-04									CII	ient Sa	ample ID: Metho	
Matrix: WATER											Prep Type:	
Analysis Batch: 8603											Prep Batch	: 8603_P
	Blank	Blank										
Analyte	Result	Qualifier	RL		MDL	Unit		D	Prep	ared	Analyzed	Dil Fac
Gross Alpha	0.133	0	pCi/L			U			04/11/12	2 00:00	04/13/12 09:12	1
Gross Beta	0.016	0	pCi/L			U			04/11/12	2 00:00	04/13/12 09:12	1
Г												
Lab Sample ID: S203085-04									Cli	ient Sa	ample ID: Metho	
Matrix: WATER											Prep Type:	
Analysis Batch: 8603											Prep Batch	: 8603_P
		Blank										
Analyte	Result	Qualifier	RL		MDL	Unit		D	Prep	ared	Analyzed	Dil Fac
Tritium	1.03	0	pCi/L			U			04/13/12	2 00:00	04/14/12 09:59	1
Γ												
Lab Sample ID: S203085-03								C	lient Sa	ample	ID: Lab Control	-
Matrix: WATER											Prep Type:	
Analysis Batch: 8603											Prep Batch	: 8603_P
			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result		lifier	Unit		D %	6Rec	Limits	
Cesium-137			83		122						120 - 0	
Cobalt-60			83	90.2	109					80	120 - 0	
Lab Cample ID: 0000005 00									Niews C:		ID. Lab Carte	Comment
Lab Sample ID: S203085-03								C	ment Sa	ampie	ID: Lab Control	-
Matrix: WATER											Prep Type:	
Analysis Batch: 8603											Prep Batch	: 8603_P
			Cuilea	1.00							W/Dee	

%Rec.

Limits

120 - 0

%Rec

80

Spike

Added

107

LCS LCS

60.5 56.5

Result Qualifier

Unit

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls TestAmerica Job ID: 440-6513-1

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

Lab Sample ID: S203085-03					Client	Sample	e ID: Lab Cor	ntrol Sample
Matrix: WATER							Prep Ty	pe: Total/NA
Analysis Batch: 8603								tch: 8603_P
	Spike	LCS	LCS				%Rec.	_
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Strontium-90	102	8.54	8.36			80	120 - 0	
Lab Sample ID: S203085-03					Client	Sample	e ID: Lab Cor	ntrol Sample
Matrix: WATER						_	Prep Ty	pe: Total/NA
Analysis Batch: 8603							Prep Ba	tch: 8603 P
	Spike	LCS	LCS				%Rec.	_
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Radium-228	109	4.82	4.44			60	140 - 0	
Lab Sample ID: S203085-03					Client	Sample	e ID: Lab Cor	ntrol Sample
Matrix: WATER							Prep Ty	pe: Total/NA
Analysis Batch: 8603							Prep Ba	tch: 8603_P
	Spike	LCS	LCS				%Rec.	_
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Radium-226	99	55	55.7			80	120 - 0	
Lab Sample ID: S203085-03					Client	Sample	e ID: Lab Cor	ntrol Sample
Matrix: WATER							Prep Ty	pe: Total/NA

Watrix: WATER							Prep Tyl	pe: Total/NA
Analysis Batch: 8603							Prep Ba	tch: 8603_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gross Alpha	115	38.9	33.7			70	130 - 0	
Gross Beta	100	28.4	28.3			70	130 _ 0	
Lab Cample ID: \$202095-02					Clions	Campl	o ID: Lab Car	tral Sample

Lab Sample ID: \$203085-03					Cilent	Sample	e ID: Lab (Control Sample
Matrix: WATER							Prep	Type: Total/NA
Analysis Batch: 8603							Prep	Batch: 8603_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tritium	91	334	367	J		80	120 - 0	

Lab Sample ID: S203085-05	Client Sample ID: OUTFALL 009 (440-6603-1) DU
•	
Matrix: WATER	Prep Type: Total/NA

Prep Batch: 8603_P **Analysis Batch: 8603** Sample Sample **Duplicate Duplicate** RPD RPD Limit

Analyte	Result	Qualifier	Result	Qualifier	Unit	D	
Cesium-137	-0.34	0	-0.36	0	U		
Potassium-40	7.55	0	13.4	0	U		

Lab Sample ID: S203085-05 Client Sample ID: OUTFALL 009 (440-6603-1) DU **Matrix: WATER** Prep Type: Total/NA **Analysis Batch: 8603** Prep Batch: 8603 P

-	Sample	Sample	Duplicate	Duplicate			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Uranium, Total	0.137	0	0.134	0	J			

Limit

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls

Analyte

Radium-228

Lab Sample ID: S203085-05

Client Sample ID: OUTFALL 009 (440-6603-1) DU

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

Result Qualifier

0.114 0

Lab Sample ID: S203085-05					Client S	ample ID: OU	JTFALL 009 (440-660:	3-1) DU
Matrix: WATER							Prep Type: To	otal/NA
Analysis Batch: 8603							Prep Batch:	8603_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Strontium-90	-0.094	0	 0.159	0	U			

	Lab Sample ID: S203085-05		Client Sample ID: OUTFALL 009 (440-6603-1) DU
	Matrix: WATER		Prep Type: Total/NA
	Analysis Batch: 8603		Prep Batch: 8603_P
ı	Sample	Sample Duplicate	Duplicate RPD

Result Qualifier

0.063 0

Unit

U

Lab Sample ID: S203085-05	Client Sample ID: OUTFALL 009 (440-6603-1) DU
Matrix: WATER	Prep Type: Total/NA

Analysis Batch: 8603							Prep Batch: 80	603_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Radium-226	0.026	0	-0.157	0	U			

								
Lab Sample ID: S203085-05					Client Sa	mple ID: OU	TFALL 009 (440-660	3-1) DU
Matrix: WATER							Prep Type: T	otal/NA
Analysis Batch: 8603							Prep Batch:	8603_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Tritium	9.52	0	23.2	0	U			

Matrix: WATER							Prep Type: To	otal/NA
Analysis Batch: 8603							Prep Batch: 8	3603_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Gross Alpha	2.31	0	 2.15	0	J			
Gross Beta	2.88	0	2.67	0	J			

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls

HPLC/IC

Analysis Batch: 15486

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6574-J-11 MS	Matrix Spike	Total/NA	Water	300.0	
440-6574-J-11 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
440-6603-1	Outfall 009 Composite	Total/NA	Water	300.0	
LCS 440-15486/2	Lab Control Sample	Total/NA	Water	300.0	
MB 440-15486/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 15487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1	Outfall 009 Composite	Total/NA	Water	300.0	
LCS 440-15487/2	Lab Control Sample	Total/NA	Water	300.0	
MB 440-15487/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 15723

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1 MS	Outfall 009 Composite	Total/NA	Water	300.0	
440-6603-1 MSD	Outfall 009 Composite	Total/NA	Water	300.0	
LCS 440-15723/10	Lab Control Sample	Total/NA	Water	300.0	
MB 440-15723/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 15724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1 MS	Outfall 009 Composite	Total/NA	Water	300.0	
440-6603-1 MSD	Outfall 009 Composite	Total/NA	Water	300.0	
LCS 440-15724/10	Lab Control Sample	Total/NA	Water	300.0	
MB 440-15724/3	Method Blank	Total/NA	Water	300.0	

Specialty Organics

Analysis Batch: 2093092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1	Outfall 009 Composite	Total	Water	1613B	
G2D020000092B	Method Blank	Total	Water	1613B	
G2D020000092C	Lab Control Sample	Total	Water	1613B	

Prep Batch: 2093092_P

Lab Sample ID 440-6603-1	Client Sample ID Outfall 009 Composite	Prep Type Total	Matrix Water	Method 3542	Prep Batch
G2D020000092B	Method Blank	Total	Water	3542	
G2D020000092C	Lab Control Sample	Total	Water	3542	

Metals

Prep Batch: 15817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6518-C-1-C MS	Matrix Spike	Dissolved	Water	245.1	
440-6518-C-1-D MSD	Matrix Spike Duplicate	Dissolved	Water	245.1	
440-6603-1	Outfall 009 Composite	Dissolved	Water	245.1	
LCS 440-15609/2-B	Lab Control Sample	Dissolved	Water	245.1	
MB 440-15609/1-B	Method Blank	Dissolved	Water	245.1	

TestAmerica Irvine 4/27/2012

QC Association Summary

Client: MWH Americas Inc
Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Metals (Continued)

Prep Batch: 15846

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6289-H-1-C MS	Matrix Spike	Total/NA	Water	245.1	
440-6289-H-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	
440-6603-1	Outfall 009 Composite	Total/NA	Water	245.1	
LCS 440-15846/2-A	Lab Control Sample	Total/NA	Water	245.1	
MB 440-15846/1-A	Method Blank	Total/NA	Water	245.1	

Analysis Batch: 16071

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6289-H-1-C MS	Matrix Spike	Total/NA	Water	245.1	15846
440-6289-H-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	15846
440-6518-C-1-C MS	Matrix Spike	Dissolved	Water	245.1	15817
440-6518-C-1-D MSD	Matrix Spike Duplicate	Dissolved	Water	245.1	15817
440-6603-1	Outfall 009 Composite	Total/NA	Water	245.1	15846
440-6603-1	Outfall 009 Composite	Dissolved	Water	245.1	15817
LCS 440-15609/2-B	Lab Control Sample	Dissolved	Water	245.1	15817
LCS 440-15846/2-A	Lab Control Sample	Total/NA	Water	245.1	15846
MB 440-15609/1-B	Method Blank	Dissolved	Water	245.1	15817
MB 440-15846/1-A	Method Blank	Total/NA	Water	245.1	15846

Prep Batch: 16339

Γ	011 1 0 1 ID				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1	Outfall 009 Composite	Total Recoverable	Water	200.2	
440-6603-1 MS	Outfall 009 Composite	Total Recoverable	Water	200.2	
440-6603-1 MSD	Outfall 009 Composite	Total Recoverable	Water	200.2	
LCS 440-16339/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-16339/1-A	Method Blank	Total Recoverable	Water	200.2	

Prep Batch: 16348

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1	Outfall 009 Composite	Dissolved	Water	200.2	
440-6603-1 MS	Outfall 009 Composite	Dissolved	Water	200.2	
440-6603-1 MSD	Outfall 009 Composite	Dissolved	Water	200.2	
LCS 440-15847/2-B	Lab Control Sample	Dissolved	Water	200.2	
MB 440-15847/1-B	Method Blank	Dissolved	Water	200.2	

Analysis Batch: 16526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1	Outfall 009 Composite	Dissolved	Water	200.8	16348
440-6603-1	Outfall 009 Composite	Total Recoverable	Water	200.8	16339
440-6603-1 MS	Outfall 009 Composite	Total Recoverable	Water	200.8	16339
440-6603-1 MS	Outfall 009 Composite	Dissolved	Water	200.8	16348
440-6603-1 MSD	Outfall 009 Composite	Total Recoverable	Water	200.8	16339
440-6603-1 MSD	Outfall 009 Composite	Dissolved	Water	200.8	16348
LCS 440-15847/2-B	Lab Control Sample	Dissolved	Water	200.8	16348
LCS 440-16339/2-A	Lab Control Sample	Total Recoverable	Water	200.8	16339
MB 440-15847/1-B	Method Blank	Dissolved	Water	200.8	16348
MB 440-16339/1-A	Method Blank	Total Recoverable	Water	200.8	16339

A

-

9

10

12

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls

General Chemistry

Analysis Batch: 15851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6406-A-1 DU	Duplicate	Total/NA	Water	SM 2540D	
440-6603-1	Outfall 009 Composite	Total/NA	Water	SM 2540D	
LCS 440-15851/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 440-15851/1	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 16272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batc	h
440-6603-1	Outfall 009 Composite	Total/NA	Water	SM 2540C	_
440-6685-A-1 DU	Duplicate	Total/NA	Water	SM 2540C	
LCS 440-16272/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 440-16272/1	Method Blank	Total/NA	Water	SM 2540C	

Prep Batch: 16584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6261-A-1-A MS	Matrix Spike	Total/NA	Water	Distill/CN	
440-6261-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/CN	
440-6603-1	Outfall 009 Composite	Total/NA	Water	Distill/CN	
LCS 440-16584/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
MB 440-16584/1-A	Method Blank	Total/NA	Water	Distill/CN	

Analysis Batch: 16619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6261-A-1-A MS	Matrix Spike	Total/NA	Water	SM 4500 CN E	16584
440-6261-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CN E	16584
440-6603-1	Outfall 009 Composite	Total/NA	Water	SM 4500 CN E	16584
LCS 440-16584/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	16584
MB 440-16584/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	16584

Prep Batch: 16822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6449-A-7-A MS	Matrix Spike	Total/NA	Water	1664A	
440-6513-1	Outfall 009 Grab	Total/NA	Water	1664A	
LCS 440-16822/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 440-16822/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	
MB 440-16822/1-A	Method Blank	Total/NA	Water	1664A	

Analysis Batch: 16825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6449-A-7-A MS	Matrix Spike	Total/NA	Water	1664A	16822
440-6513-1	Outfall 009 Grab	Total/NA	Water	1664A	16822
LCS 440-16822/2-A	Lab Control Sample	Total/NA	Water	1664A	16822
LCSD 440-16822/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	16822
MB 440-16822/1-A	Method Blank	Total/NA	Water	1664A	16822

Subcontract

Analysis Batch: 8603

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1	Outfall 009 Composite	Total/NA	Water	Gamma Spec	8603_P
				K-40 CS-137	
440-6603-1	Outfall 009 Composite	Total/NA	Water	Gross Alpha	8603_P
				and Beta	

TestAmerica Irvine 4/27/2012

QC Association Summary

Client: MWH Americas Inc
Project/Site: Boeing SSFL outfalls

TestAmerica Job ID: 440-6513-1

Subcontract (Continued)

Analysis Batch: 8603 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1	Outfall 009 Composite	Total/NA	Water	Radium 226	8603_P
440-6603-1	Outfall 009 Composite	Total/NA	Water	Radium 228	8603_P
440-6603-1	Outfall 009 Composite	Total/NA	Water	Strontium 90	8603_P
440-6603-1	Outfall 009 Composite	Total/NA	Water	Tritium	8603_P
440-6603-1	Outfall 009 Composite	Total/NA	Water	Uranium, Combined	8603_P
440-6603-2	Trip Blank	Total/NA	Water	Gamma Spec K-40 CS-137	8603_P
440-6603-2	Trip Blank	Total/NA	Water	Gross Alpha and Beta	8603_P
440-6603-2	Trip Blank	Total/NA	Water	Radium 226	8603_P
440-6603-2	Trip Blank	Total/NA	Water	Radium 228	8603_P
440-6603-2	Trip Blank	Total/NA	Water	Strontium 90	8603_P
440-6603-2	Trip Blank	Total/NA	Water	Uranium, Combined	8603_P
S203085-03	Lab Control Sample	Total/NA	WATER	Gross Alpha and Beta	8603_P
S203085-04	Method Blank	Total/NA	WATER	Gross Alpha and Beta	8603_P
S203085-05	OUTFALL 009 (440-6603-1) DU	Total/NA	WATER	Gross Alpha and Beta	8603_P

Prep Batch: 8603_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6603-1	Outfall 009 Composite	Total/NA	Water	General Prep	
440-6603-2	Trip Blank	Total/NA	Water	General Prep	
S203085-03	Lab Control Sample	Total/NA	WATER	General Prep	
S203085-04	Method Blank	Total/NA	WATER	General Prep	
S203085-05	OUTFALL 009 (440-6603-1) DU	Total/NA	WATER	General Prep	

3

__

5

7

8

46

11

12

Definitions/Glossary

Client: MWH Americas Inc

TestAmerica Job ID: 440-6513-1 Project/Site: Boeing SSFL outfalls

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
LN	MS and/or MSD below acceptance limits. See Blank Spike (LCS)

DIOXIN O.......

Quaimer	Qualifier Description
J	Estimated result. Result is less than the reporting limit.
Р	

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Q Estimated maximum possible concentration (EMPC).

Ovelities December

Metals

Qualifier	Qualifier Description
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL

General Chemistry

Qualifier	Qualifier Description
ВВ	Sample > 4X spike concentration

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\times	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample

EDL **Estimated Detection Limit**

EPA United States Environmental Protection Agency

MDL Method Detection Limit Minimum Level (Dioxin) ML

NDNot detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

Quality Control QC Reporting Limit RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Client: MWH Americas Inc Project/Site: Boeing SSFL outfalls

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Irvine	Arizona	State Program	9	AZ0671
TestAmerica Irvine	California	LA Cty Sanitation Districts	9	10256
TestAmerica Irvine	California	NELAC	9	1108CA
TestAmerica Irvine	California	State Program	9	2706
TestAmerica Irvine	Guam	State Program	9	Cert. No. 12.002r
TestAmerica Irvine	Hawaii	State Program	9	N/A
TestAmerica Irvine	Nevada	State Program	9	CA015312007A
TestAmerica Irvine	New Mexico	State Program	6	N/A
TestAmerica Irvine	Northern Mariana Islands	State Program	9	MP0002
TestAmerica Irvine	Oregon	NELAC	10	4005
TestAmerica Irvine	USDA	Federal		P330-09-00080
TestAmerica West Sacramento	A2LA	DoD ELAP		2928-01
TestAmerica West Sacramento	Alaska (UST)	State Program	10	UST-055
TestAmerica West Sacramento	Arizona	State Program	9	AZ0708
TestAmerica West Sacramento	Arkansas DEQ	State Program	6	88-0691
TestAmerica West Sacramento	California	NELAC	9	1119CA
TestAmerica West Sacramento	California	NELAC Primary AB	9	MP0007
TestAmerica West Sacramento	Colorado	State Program	8	N/A
TestAmerica West Sacramento	Connecticut	State Program	1	PH-0691
TestAmerica West Sacramento	Florida	NELAC	4	E87570
TestAmerica West Sacramento	Georgia	State Program	4	960
TestAmerica West Sacramento	Guam	State Program	9	N/A
TestAmerica West Sacramento	Hawaii	State Program	9	N/A
TestAmerica West Sacramento	Illinois	NELAC	5	200060
TestAmerica West Sacramento	Kansas	NELAC	7	E-10375
TestAmerica West Sacramento	Louisiana	NELAC	6	30612
TestAmerica West Sacramento	Michigan	State Program	5	9947
TestAmerica West Sacramento	Nevada	State Program	9	CA44
TestAmerica West Sacramento	New Jersey	NELAC	2	CA005
TestAmerica West Sacramento	New Mexico	State Program	6	N/A
TestAmerica West Sacramento	New York	NELAC	2	11666
TestAmerica West Sacramento	Northern Mariana Islands	State Program	9	MP0007
TestAmerica West Sacramento	Oregon	NELAC	10	CA200005
TestAmerica West Sacramento	Pennsylvania	NELAC	3	68-01272
TestAmerica West Sacramento	South Carolina	State Program	4	87014
TestAmerica West Sacramento	Texas	NELAC	6	T104704399-08-TX
TestAmerica West Sacramento	US Fish & Wildlife	Federal		LE148388-0
TestAmerica West Sacramento	USDA	Federal		P330-09-00055
TestAmerica West Sacramento	Utah	NELAC	8	QUAN1
TestAmerica West Sacramento	Virginia	State Program	3	178
TestAmerica West Sacramento	Washington	State Program	10	C581
TestAmerica West Sacramento	West Virginia	State Program	3	9930C
TestAmerica West Sacramento	West Virginia DEP	State Program	3	334
TestAmerica West Sacramento	Wisconsin	State Program	5	998204680
TestAmerica West Sacramento	Wyoming	State Program	8	8TMS-Q

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

3

4

9

10

11

12

Toll Free (800) 841-5487 www.eberlineservices.com

April 18, 2012

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine 44002624

Eberline Analytical Report S203085-8603

Sample Delivery Group 8603

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Project No. 44002624. The samples were received on March 28, 2012.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

Joseph Verville

Client Services Manager

NJV/mw

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

April 18, 2012

1.0 General Comments

Sample delivery group 8603 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The samples were received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the samples as received i.e. the samples were not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, and duplicate analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2σ error (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

2

4

- 0

10

11

Test America Project No. 44002624

Case Narrative, page 2

April 18, 2012

4.0 Analysis Notes

- **4.1 Gross Alpha/Gross Beta Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4** Radium-226 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.7 Gamma Spectroscopy** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

n fruite		
Joseph Verville	Date	
Client Services Manager		

Page 31 of 73

. -

1

5

6

9

10

4.0

EBERLINE ANALYTICAL SDG 8603

SDG 8603 Contact Joseph Verville Client <u>Test America, Inc.</u> Contract <u>44002624</u>

SUMMARY DATA SECTION

TABLE OF	C O	N T	E N	T S	
About this section	*	٠	•	•	1
Sample Summaries		i.	i.		3
Prep Batch Summary	(*)	:• :	(0.7)	• :	5
Work Summary		٠	•	•	6
Method Blanks	: •	5. 3 .8	3.5	19 3	8
Lab Control Samples	N 4 0	/(*)	6 €0	•	9
Duplicates	•	٠	•	٠	10
Data Sheets	(1€)	(.9)	1.0	193	11
Method Summaries	%€ 3	() (()	₹¥2	(4)	13
Report Guides	•		•	•	21
End of Section	((●)	23€1	₩.	2.■2	35

Prepared by

Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06
Report date 04/18/12

2

3

4

7

9

10

12

EBERLINE ANALYTICAL

SDG 8603

SDG 8603

Contact Joseph Verville

REPORT GUIDE

Client Test America, Inc.

Contract 44002624

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 1

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

4

5

6

<u>و</u>

9

11

EBERLINE ANALYTICAL

SDG 8603

SDG 8603

Contact Joseph Verville

GUIDE, cont. Client Test America, Inc.

Contract 44002624

ABOUT THE DATA SUMMARŸ SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES Page 2 SUMMARY DATA SECTION Page 2

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-RG Version 3.06 Report date <u>04/18/12</u>

SDG 8603

SDG 8603
Contact Joseph Verville

LAB SAMPLE SUMMARY

Client Test America, Inc.
Contract 44002624

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF CUSTODY	COLLECTED
S203085-01	OUTFALL 009 (440-6603-1)	BOEING-SSFL	WATER			440-6603-1	03/25/12 17:48
S203085-02	TRIP-BLANK (440-6603-2)	BOEING-SSFL	WATER			440-6603-1	03/27/12 13:45
S203085-03	Lab Control Sample		WATER				
S203085-04	Method Blank		WATER				
\$203085-05	Duplicate (S203085-01)	BOEING-SSFL	WATER				03/25/12 17:48

LAB SUMMARY
Page 1
SUMMARY DATA SECTION

Page 3

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-LS
Version 3.06

Report date 04/18/12

Л

5

7

Ö

10

11

SDG 8603

SDG <u>8603</u>
Contact <u>Joseph Verville</u>

QC SUMMARY

Client Test America, Inc.
Contract 44002624

5

QC ВАТСН	CHAIN OF	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8603	440-6603-1	OUTFALL 009 (440-6603-1) TRIP-BLANK (440-6603-2)	WATER WATER		10.0 L 10.0 L		03/28/12	3	\$203085-01 \$203085-02	8603-001 8603-002
		Method Blank Lab Control Sample Duplicate (S203085-01)	WATER WATER WATER		10.0 L		03/28/12	3	S203085-04 S203085-03 S203085-05	8603-004 8603-003 8603-005

40

11

12

13

QC SUMMARY Page 1
SUMMARY DATA SECTION
Page 4

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-QS</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

SDG 8603

SDG	8603	
Contact	<u>Joseph</u>	Verville

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

			PREPARATION	ERROR.			- PLA	NCHETS	ANALYZ	ED —	QUALI-
TEST	MATRIX	METHOD	BATCH	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Beta	Counting										
AC	WATER	Radium-228 in Water	7271-130	10.4	2	···		1	1	1/1	
SR	WATER	Strontium-90 in Water	7271-130	10.4	2			1	1	1/1	
Gas F	roportion	al Counting									
80A	WATER	Gross Alpha in Water	7271-130	20.6	2			1	1	1/1	
80B	WATER	Gross Beta in Water	7271-130	11.0	2			1	1	1/1	
Gamma	Spectros	сору									
GAM	WATER	Gamma Emitters in Water	7271-130	7.0	2			1	1	1/1	
Kinet	ic Phosph	orimetry									
U_T	WATER	Uranium, Total	7271-130		2			1	1.	1/1	
Liquí	d Scintil	lation Counting									
Н	WATER	Tritium in Water	7271-130	10.0	1			1	1	1/1	
Rador	n Counting										
RA	WATER	Radium-226 in Water	7271-130	16.4	2			1	1	1/1	

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-PBS

 Version
 3.06

 Report date
 04/18/12

SDG 8603

SDG 8603
Contact Joseph Verville

LAB WORK SUMMARY

Client Test America, Inc.

Contract <u>44002624</u>

LAB SAMPLE COLLECTED RECEIVED	CLIENT SAMPLE ID LOCATION CUSTODY SAS	no	MATRIX	PLANCHET	TEST	SUF- FIX	ANALYZED	REVIEWED	ву	METHOD
S203085-01	OUTFALL 009 (440-660	3-1)		8603-001	80A/80		04/13/12	04/13/12	BW	Gross Alpha in Water
03/25/12	BOEING-SSFL		WATER	8603-001	80B/80		04/13/12	04/13/12	BW	Gross Beta in Water
03/28/12	440-6603-1			8603-001	AC		04/06/12	04/09/12	BW	Radium-228 in Water
				8603-001	GAM		03/30/12	04/03/12	MWT	Gamma Emitters in Water
				8603-001	H		04/14/12	04/17/12	BW	Tritium in Water
				8603-001	RA		04/12/12	04/12/12	BW	Radium-226 in Water
				8603-001	SR		04/06/12	04/11/12	BW	Strontium-90 in Water
				8603-001	U_T		04/02/12	04/02/12	₿₩	Uranium, Total
S203085-02	TRIP-BLANK (440-6603	3-2)		8603-002	80A/80		04/13/12	04/13/12	BW	Gross Alpha in Water
03/27/12	BOEING-SSFL		WATER	8603-002	80B/80		04/13/12	04/13/12	BW	Gross Beta in Water
03/28/12	440-6603-1			8603-002	AC		04/06/12	04/09/12	BW	Radium-228 in Water
				8603-002	GAM		03/30/12	04/03/12	MWT	Gamma Emitters in Water
				8603-002	RA		04/12/12	04/12/12	BW	Radium-226 in Water
				8603-002	SR		04/06/12	04/11/12	BW	Strontium-90 in Water
				8603-002	T_U		04/02/12	04/02/12	BW	Uranium, Total
S203085-03	Lab Control Sample			8603-003	80A/80		04/13/12	04/13/12	BW	Gross Alpha in Water
			WATER	8603-003	80B/80		04/13/12	04/13/12	B₩	Gross Beta in Water
				8603-003	AC		04/06/12	04/09/12	BW	Radium-228 in Water
				8603-003	GAM		03/30/12	04/03/12	MWT	Gamma Emitters in Water
				8603-003	H		04/14/12	04/17/12	BW	Tritium in Water
				8603-003	RA .		04/12/12	04/12/12	BW	Radium-226 in Water
				8603-003	SR		04/06/12	04/11/12	BW	Strontium-90 in Water
				8603-003	U_T		04/02/12	04/02/12	BW	Uranium, Total
S203085-04	Method Blank			8603-004	80A/80		04/13/12	04/13/12	BW	Gross Alpha in Water
			WATER	8603-004	80B/80		04/13/12	04/13/12	BW	Gross Beta in Water
				8603-004	AC		04/06/12	04/09/12	BW	Radium-228 in Water
				8603-004	GAM		03/30/12	04/03/12	MWT	Gamma Emitters in Water
				8603-004	Ħ		04/14/12	04/17/12	BW	Tritium in Water
				8603-004	RA		04/12/12	04/12/12	₿₩	Radium-226 in Water
				8603-004	SR		04/06/12	04/11/12	BW	Strontium-90 in Water
				8603-004	U_T		04/02/12	04/02/12	₿₩	Uranium, Total

WORK SUMMARY

Page 1

SUMMARY DATA SECTION

Page 6

Lab id EAS
Protocol \overline{TA} Version \overline{Ver} 1.0
Form $\overline{DVD-LWS}$ Version $\overline{3.06}$ Report date $\overline{04/18/12}$

J

_

8

11

12

1,

SDG 8603

SDG <u>8603</u>
Contact <u>Joseph Verville</u>

WORK SUMMARY, cont.

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

LAB SAMPLE	CLIENT SAMPLE	ID								
COLLECTED	LOCATION		MATRIX			SUF-				
RECEIVED	CUSTODY	SAS no		PLANCHET	TEST	FIX	ANALYZED	REVIEWED	BY	METHOD
S203085-05	Duplicate (S20	3085-01)		8603-005	80A/80		04/14/12	04/14/12	вw	Gross Alpha in Water
03/25/12	BOEING-SSFL		WATER	8603-005	80B/80		04/14/12	04/14/12	BW	Gross Beta in Water
03/28/12				8603-005	AC		04/06/12	04/09/12	BW	Radium-228 in Water
				8603-005	GAM		04/02/12	04/03/12	MWI	Gamma Emitters in Water
				8603-005	H		04/14/12	04/17/12	BW	Tritium in Water
				8603-005	RA		04/12/12	04/12/12	BW	Radium-226 in Water
				8603-005	SR.		04/06/12	04/11/12	BW	Strontium-90 in Water
				8603-005	ד_ט		04/02/12	04/02/12	BW	Uranium, Total

TEST SAS no	COUNTS	OF TESTS BY	SAMPLE TYPE CLIENT MORE I	RE BLANK	LCS	DUP SPIKE	TOTAL
80A/80	Gross Alpha in Water	900.0	2	1	ı	1	5
80B/80	Gross Beta in Water	900.0	2	1	1	1	5
AC	Radium-228 in Water	904.0	2	1	1	1	5
GAM	Gamma Emitters in Water	901.1	2	1	1	1	5
H	Tritium in Water	906.0	1	1	1	1	4
RA	Radium-226 in Water	903.1	2	1	1	1	5
SR	Strontium-90 in Water	905.0	2	1	1	1	5
U_T	Uranium, Total	D5174	2	1	1	1	5
TOTALS			15	8	8	8	39

WORK SUMMARY

Page 2

SUMMARY DATA SECTION

Page 7

9

4

5

7

9

11

8603-004

METHOD BLANK

Method Blank

	8603 Joseph Verville		Test America, Inc. 44002624
Lab sample id Dept sample id	<u>\$203085-04</u>	Client sample id Material/Matrix	Method Blank

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.133	0.30	0.496	3.00	ט	80A
Gross Beta	12587472	0.016	0.49	0.821	4.00	U	80B
Tritium	10028178	1.03	15	26.0	500	U	H
Radium-226	13982633	-0.017	0.27	0.496	1.00	U	RA
Radium-228	15262201	-0.071	0.17	0.382	1.00	U	AC
Strontium-90	10098972	0.023	0.20	0.370	2.00	U	SR
Uranium, Total		0	0.007	0.017	1.00	U	UΤ
Potassium-40	13966002	-5.14	19	_35.1	25.0	U	GAM
Cesium-137	10045973	0.856	1.2	1.98	20.0	υ	GAM

QC-BLANK #81443

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 04/18/12

4

3

E

6

8

10

46

SDG 8603

8603-003

Lab Control Sample

LAB CONTROL SAMPLE

 SDG
 8603
 Client
 Test America, Inc.

 Contact
 Joseph Verville
 Contract
 44002624

 Lab sample id
 S203085-03
 Client sample id
 Lab Control Sample

 Dept sample id
 8603-003
 Material/Matrix
 WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ IMTS (TOTAL)	PROTOCOI LIMITS
Gross Alpha	38.9	2.0	0.577	3.00		80A	33.7	1.3	115	75-125	70-130
Gross Beta	28.4	1.2	0.803	4.00		80B	28.3	1.1	100	88-112	70-130
Tritium	334	25	27.2	500	J	Н	367	15	91	88-112	80-120
Radium-226	55.0	2.1	0.749	1.00		RA	55.7	2.2	99	83-117	80-120
Radium-228	4.82	0.46	0.360	1.00		AC	4.44	0.18	109	84-116	60-140
Strontium-90	8.54	0.55	0.236	2.00		SR	8.36	0.33	102	87-113	80-120
Uranium, Total	60.5	6.9	0.172	1.00		u_t	56.5	2.3	107	87-113	80-120
Cobalt-60	90.2	8.7	2.89	10.0		GAM	109	4.4	83	89-111	80-120
Cesium-137	101	3.3	2.73	20.0		GAM	122	4.9	83	92-108	80-120

QC-LCS #81442

LAB CONTROL SAMPLES

Page 1

SUMMARY DATA SECTION

Page 9

5

6

ا

46

11

8603-005

OUTFALL 009 (440-6603-1)

DUPLICATE

SDG 8603

Contact Joseph Verville

DUPLICATE

Lab sample id <u>\$203085-05</u> Dept sample id 8603-005

ORIGINAL

Dept sample id 8603-001

Lab sample id <u>S203085-01</u>

Received 03/28/12

Client Test America, Inc.

Contract 44002624

Client sample id OUTFALL 009 (440-6603-1)

Location/Matrix BOEING-SSFL

Collected/Volume 03/25/12 17:48 10.0 L

Chain of custody id 440-6603-1

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3 o TOT	DER σ
Gross Alpha	2.15	0,44	0.320	3.00	J	80A	2.31	0.45	0.328	J	7	61	0.4
Gross Beta	2.67	0.57	0.807	4.00	J	80B	2.88	0.62	0.885	J	8	51	0.4
Tritium	23.2	94	157	500	U	Н	9.52	95	161	U	-		0.2
Radium-226	-0.157	0.27	0.536	1.00	U	RA	0.026	0.27	0.492	U	-		1.0
Radium-228	0.063	0.14	0.371	1.00	U	AC	0.114	0.15	0.367	U	-		0.5
Strontium-90	0.159	0.34	0.726	2.00	U	SR	-0.094	0.43	1.02	U	-		0.9
Uranium, Total	0.134	0.016	0.017	1.00	J	U_T	0.137	0.016	0.017	J	2	25	0.3
Potassium-40	13.4	15	26.0	25.0	U	GAM	7.55	16	27.8	U	-		0.5
Cesium-137	-0.360	7.0	1.76	20.0	U	GAM	-0.340	1.7	3.06	Ü	-		0

QC-DUP#1 81444

DUPLICATES Page 1

SUMMARY DATA SECTION

Page 10

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-DUP Version 3.06 Report date <u>04/18/12</u>

8603-001

OUTFALL 009 (440-6603-1)

DATA SHEET

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	2.31	0.45	0.328	3.00	J	80A
Gross Beta	12587472	2.88	0.62	0.885	4.00	J	80B
Tritium	10028178	9.52	95	161	500	U	H
Radium-226	13982633	0.026	0.27	0.492	1.00	U	RA
Radium-228	15262201	0.114	0.15	0.367	1.00	U	AC
Strontium-90	10098972	-0.094	0.43	1.02	2.00	υ	SR
Uranium, Total		0.137	0.016	0.017	1.00	J	UΤ
Potassium-40	13966002	7.55	1.6	27.8	25.0	U	GAM
Cesium-137	10045973	-0.340	1.7	3.06	20.0	U	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-DS</u>
Version <u>3.06</u>
Report date <u>04/18/12</u>

5

6

0

9

11

8603-002

DATA SHEET

TRIP-BLANK (440-6603-2)

	8603 Joseph Verville		Test America, Inc. 44002624	
Lab sample id Dept sample id Received		Location/Matrix	03/27/12 13:45 10.0 1	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.096	0.13	0.221	3.00	U	80A
Gross Beta	12587472	0.100	0.56	0.932	4.00	U	80B
Radium-226	13982633	0.033	0.32	0.563	1.00	ΰ	RA
Radium-228	15262201	-0.115	0.14	0.391	1.00	U	AC
Strontium-90	10098972	0.114	0.49	1.07	2.00	U	SR
Uranium, Total		0	0.007	0.017	1.00	U	U T
Potassium-40	13966002	5.50	20	35.2	25.0	U	GAM
Cesium-137	10045973	0.208	1.7	2.98	20.0	U	GAM

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

3

7

9

10

19

SDG 8603

Test <u>AC</u> Matrix <u>WATER</u>

SDG <u>8603</u>

Contact <u>Joseph Verville</u>

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client <u>Test America</u>, <u>Inc</u>. Contract <u>44002624</u>

Δ

RESULTS

AB RAW SUF-

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Radium-228
Preparation	n batch 727	1-130		
S203085-01		8603-001	OUTFALL 009 (440-6603-1)	U
S203085-02		8603-002	TRIP-BLANK (440-6603-2)	U
S203085-03		8603-003	Lab Control Sample	ok
S203085-04		8603-004	Method Blank	U
S203085-05		8603-005	Duplicate (S203085-01)	- U
Nominal val	lues and li	mits from m	ethod RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD							ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	Ŷi	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7271-130 2σ prep error 1).4 % Re	ference	Lab N	oteboo	No.	7271	pg.024	k					
S203085-01	OUTFALL 009 (440-6603-1)	0.367	1.80			80		150			12	04/06/12	04/06	GRB-230
S203085-02	TRIP-BLANK (440-6603-2)	0.391	1.80			81		150			10	04/06/12	04/06	GRB-231
S203085-03	Lab Control Sample	0.360	1.80			82		150				04/06/12	04/06	GRB-232
S203085-04	Method Blank	0.382	1.80			83		150				04/06/12	04/06	GRB-225
\$203085-05	Duplicate (S203085-01)	0.371	1.80			82		150			12	04/06/12	04/06	GRB-227
Nominal val	ues and limits from method	1.00	1.80			30-10	5	50			180			

PROCEDURES REFERENCE 904.0

DWP-894 Sequential Separation of Actinium-228 and

Radium-226 in Drinking Water (>1 Liter Aliquot),
rev 5

AVERAGES ± 2 SD MDA 0.374 ± 0.025
FOR 5 SAMPLES YIELD 82 ± 2

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 13

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LMS

 Version 3.06

 Report date 04/18/12

Test <u>SR</u> Matrix <u>WATER</u>

SDG <u>8603</u>

Contact <u>Joseph Verville</u>

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER BETA COUNTING Client Test America, Inc.

Contract 44002624

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	rontium-90	
Preparation	ı batch 727	1-130			
S203085-01		8603-001	OUTFALL 009 (440-6603-1)	Ŭ	
S203085-02		8603-002	TRIP-BLANK (440-6603-2)	U	
S203085-03		8603-003	Lab Control Sample	ok	
S203085-04		8603-004	Method Blank	U	
S203085-05		8603-005	Duplicate (S203085-01)	- U	

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	AIEPD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	왕	બ	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
					•				-						
Preparation	batch 727	$1-130$ 2σ prep error	10.4 % Re	ference	Lab N	lotebool	No.	7271	pg.024	ŀ					
S203085-01		OUTFALL 009 (440-6603-1	1.02	0.500			78		50			12	04/06/12	04/06	GRB-225
S203085-02		TRIP-BLANK (440-6603-2)	1.07	0.500			71		50			10	04/06/12	04/06	GRB-227
5203085-03		Lab Control Sample	0.236	1.00			83		72				04/06/12	04/06	GRB-228
S203085-04		Method Blank	0.370	1.00			80		100				04/06/12	04/06	GRB-207
S203085-05		Duplicate (S203085-01)	0.726	0.500			75		50			12	04/06/12	04/06	GRB-228
			-												
Nominal val	ues and li	mits from method	2.00	1.00			30-10	5	50			180			

PROCEDURES REFERENCE 905.0

CP-380 Strontium in Water Samples, rev 5

AVERAGES ± 2 SD MDA 0.684 ± 0.750
FOR 5 SAMPLES YIELD 77 ± 9

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 14

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

Lab id EAS

9

5

7

8

10

11

SDG 8603

Test 80A Matrix WATER

SDG 8603

Contact Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER

GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

RESULTS

LAB	RAW SUF-				
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Alpha	
Preparation	batch 727	1-130			
S203085-01	80	8603-001	OUTFALL 009 (440-6603-1)) 2.31 J	
S203085-02	80	8603-002	TRIP-BLANK (440-6603-2)	Ω	
\$203085-03	80	8603-003	Lab Control Sample	ok	
S203085-04	80	8603-004	Method Blank	U ·	
S203085-05	80	8603-005	Duplicate (S203085-01)	ok I	
Nominal val	ues and li	mits from m	ethod RDLs (pCi/L)	3.00	

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	949	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
	I	7. 122	5 B D		T - 1- 1	T - d l '	- 37- 1	2001	004						
Preparation	batch 727	1-130 2σ prep error 20	-6 % Re	erence	Lab r	ocenoo.	C NO.	1211	pg.024	£					
S203085-01	80	OUTFALL 009 (440-6603-1)	0.328	0.300			14		400			19	04/11/12	04/13	GRB-101
S203085-02	80	TRIP-BLANK (440-6603-2)	0.221	0.300			0		400			17	04/11/12	04/13	GRB-103
S203085-03	80	Lab Control Sample	0.577	0.300			62		400				04/11/12	04/13	GRB-104
S203085-04	80	Method Blank	0.496	0.300			62		400				04/11/12	04/13	GRB-109
S203085-05	80	Duplicate (S203085-01)	0.320	0.300			13		400			20	04/11/12	04/14	GRB-111
Nominal val	lues and li	mits from method	3.00	0.300			0-25	0	100			180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water, rev 10

AVERAGES ± 2 SD MDA 0.388 ± 0.289
FOR 5 SAMPLES RESIDUE 30 ± 59

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 15

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-LMS
Version 3.06

Report date 04/18/12

SDG 8603

Test 80B Matrix WATER SDG 8603 Contact Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER GAS PROPORTIONAL COUNTING

Client Test America, Inc. Contract <u>44002624</u>

RESULTS

LAB RAW SUF-

SAMPLE ID TEST FIX PLANCHET Gross Beta CLIENT SAMPLE ID Preparation batch 7271-130

S203085-01 80 8603-001 OUTFALL, 009 (440-6603-1) 2.88 J S203085-02 80 8603-002 TRIP-BLANK (440-6603-2) U Lab Control Sample ok \$203085-03 80 8603-003 S203085-04 80 8603-004 Method Blank Ų 8603-005 Duplicate (S203085-01) ok S203085-05 80

Nominal values and limits from method RDLs (pCi/L) 4.00

METHOD PERFORMANCE

ALIQ PREP DILU- RESID EFF COUNT FWHM DRIFT DAYS ANAL-RAW SUF-MDA pCi/L FAC TION % min keV KeV HELD PREPARED YZED DETECTOR SAMPLE ID TEST FIX CLIENT SAMPLE ID mg Preparation batch 7271-130 2σ prep error 11.0 % Reference Lab Notebook No. 7271 pg.024 OUTFALL 009 (440-6603-1) 0.885 0.300 14 400 19 04/11/12 04/13 GRB-101 S203085-01 80 S203085-02 80 TRIP-BLANK (440-6603-2) 0.932 0.300 0 400 17 04/11/12 04/13 GRB-103 62 400 04/11/12 04/13 GRB-104 0.803 0.300 \$203085-03 80 Lab Control Sample S203085-04 80 Method Blank 0.821 0.300 62 400 04/11/12 04/13 GRB-109 13 20 04/11/12 04/14 GRB-111 \$203085-05 80 Duplicate (\$203085-01) 0.807 0.300 400 Nominal values and limits from method 4.00 0.300 0-250 100 180

J

PROCEDURES REFERENCE 900.0

> DWP-121 Gross Alpha and Gross Beta in Drinking Water,

> > rev 10

AVERAGES ± 2 SD FOR 5 SAMPLES

MDA 0.850 ± 0.113

RESIDUE 30 ± 59

METHOD SUMMARIES

Page 4

SUMMARY DATA SECTION

Page 16

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date 04/18/12

SDG 8603

Test GAM Matrix WATER
SDG 8603

Contact Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

Client Test America, Inc.
Contract 44002624

4

RESULTS

SAMPLE ID TEST	FIX PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium-137
Preparation batch	h 7271-130			
S203085-01	8603-001	OUTFALL 009 (440-6603-1)		Ū
S203085-02	8603-002	TRIP-BLANK (440-6603-2)		U
S203085-03	8603-003	Lab Control Sample	ok	ok
S203085-04	8603-004	Method Blank		U
S203085-05	8603-005	Duplicate (S203085-01)		- Ü

METHOD PERFORMANCE

	SUF- T FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		YIELD		COUNT min	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation bat	ch 7271-130 2σ prep error 7.	0 % R	eference	Lab 1	Notebool	. No.	7271	pg.024	1		·		
S203085-01	OUTFALL 009 (440-6603-1)		2.00					400		5	03/29/12	03/30	MB,G1,0
5203085-02	TRIP-BLANK (440-6603-2)		2.00					400		3	03/29/12	03/30	MB,G2,0
S203085-03	Lab Control Sample		2.00					400			03/29/12	03/30	MB,G3,0
S203085-04	Method Blank		2.00					400			03/29/12	03/30	MB,G4,0
S203085-05	Duplicate (\$203085-01)		2.00					400		8	03/29/12	04/02	MB,G8,0
	and limits from method	6.00	2.00					400		 180			

PROCEDURES REFERENCE 901.1

DWP-100 Preparation of Drinking Water Samples for Gamma Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 17

SDG 8603

Test U T Matrix WATER

SDG 8603

Contact Joseph Verville

LAB METHOD SUMMARY

URANIUM, TOTAL
KINETIC PHOSPHORIMETRY

Client <u>Test America</u>, <u>Inc</u>.

Contract <u>44002624</u>

RESULTS

LAB	RAW SUF-			Uranium,
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Total
	1-4-1-200	1 120		
Preparation	i baten 727.	L-130		
S203085-01		8603-001	OUTFALL 009 (440-6603-1)	0.137 J
S203085-02		8603-002	TRIP-BLANK (440-6603-2)	Ū
S203085-03		8603-003	Lab Control Sample	ok .
S203085-04		8603-004	Method Blank	Ü
S203085-05		8603-005	Duplicate (S203085-01)	ok J
Nominal val	lues and lin	mits from m	nethod RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF-	CLIENT SAMPLE ID	MDA pCi/L	AL _I IQ L	PREP FAC		YIELD %	EFF %	COUNT min	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	ı batch 727	1-130 20 prep error	Re	ference	Lab N	loteboo.	c No.	7271	pg.024	1				
S203085-01		OUTFALL 009 (440-6603-1)	0.017	0.0200							8	04/02/12	04/02	KPA-001
S203085-02		TRIP-BLANK (440-6603-2)	0.017	0.0200							6	04/02/12	04/02	KPA-001
5203085-03		Lab Control Sample	0.172	0.0200								04/02/12	04/02	KPA-001
S203085-04		Method Blank	0.017	0.0200								04/02/12	04/02	KPA-001
S203085-05		Duplicate (S203085-01)	0.017	0.0200							8	04/02/12	04/02	KPA-001
Nominal va	ues and li	mits from method	1.00	0.0200							180			

PROCEDURES REFERENCE D5174

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 18

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-LMS
Version 3.06

Report date 04/18/12

3

4

0

9

11

SDG 8603

LAB METHOD SUMMARY

TRITIUM IN WATER
LIQUID SCINTILLATION COUNTING

Client <u>Test America</u>, <u>Inc.</u>

Contract 44002624

RESULTS

AB RAW SUF-

SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Tritium Preparation batch 7271-130 S203085-01 8603-001 OUTFALL 009 (440-6603-1) 8603-003 Lab Control Sample ok J S203085-03 S203085-04 8603-004 Method Blank S203085-05 Duplicate (S203085-01) 8603-005 U Nominal values and limits from method RDLs (pCi/L) 500

METHOD PERFORMANCE

LAB	RAW SUF-			MDA	ALIQ	PREP	DILU-	AIEID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAM	PLE ID	pCi/I	L	FAC	TION	જ	olo	nin	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 727	1-130 2	σ prep error l	0.0 %	Reference	Lab M	Ioteboo	k No.	7271	pg.024	Į.	·				
\$203085-01		OUTFALL 00	9 (440-6603-1)	161	0.0100			100		150			20	04/13/12	04/14	LSC-004
5203085-03		Lab Contro	l Sample	27.2	0.605			10		150				04/13/12	04/14	LSC-004
S203085-04		Method Bla	nk	26.0	0.605			10		150				04/13/12	04/14	LSC-004
\$203085-05		Duplicate	(S203085-01)	157	0.0100			100		150			20	04/13/12	04/14	LSC-004
Nominal val	ues and li	mits from m	ethod	500	0.605					100			180			

PROCEDURES REFERENCE 906.0

DWP-212 Tritium in Drinking Water by Distillation, rev 8

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 19

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 04/18/12

2

4

5

7

9

11

Test <u>RA</u> Matrix <u>WATER</u>
SDG <u>8603</u>

Contact Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER RADON COUNTING Client Test America, Inc.

Contract 44002624

RESULTS

LAB RAW SUF-

SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Radium-226 Preparation batch 7271-130 8603-001 \$203085-01 OUTFALL 009 (440-6603-1) U TRIP-BLANK (440-6603-2) U 5203085-02 8603-002 8603-003 Lab Control Sample ok S203085-03 8603-004 Method Blank S203085-04 S203085-05 8603-005 Duplicate (S203085-01) Nominal values and limits from method RDLs (pCi/L) 1.00

METHOD PERFORMANCE

RAW SUF-MDA ALIQ PREP DILU- YIELD EFF COUNT FWHM DRIFT DAYS ANAL-SAMPLE ID TEST FIX CLIENT SAMPLE ID pCi/L L FAC TION 뫙 % min keV KeV HELD PREPARED YZED DETECTOR 2σ prep error 16.4 % Reference Lab Notebook No. 7271 pg.024 Preparation batch 7271-130 OUTFALL 009 (440-6603-1) 0.492 0.100 100 136 18 04/12/12 04/12 RN-010 S203085-01 100 136 16 04/12/12 04/12 RN-016 TRIP-BLANK (440-6603-2) 0.563 0.100 S203085-02 04/12/12 04/12 RN-009 S203085-03 Lab Control Sample 0.749 0.100 100 136 04/12/12 04/12 RN-013 0.496 0.100 100 136 S203085-04 Method Blank \$203085-05 Duplicate (S203085-01) 0.536 0.100 100 136 18 04/12/12 04/12 RN-015 100 180 Nominal values and limits from method 1.00 0.100

PROCEDURES REFERENCE 903.1

DWP-881A Ra-226 Screening in Drinking Water, rev 6

AVERAGES ± 2 SD MDF FOR 5 SAMPLES YIELD

MDA 0.567 ± 0.212 YIELD 100 ± 0

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 20

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 04/18/12

2

5

4

6

8

10

11

4.0

SDG 8603

SDG <u>8603</u>

Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>. Contract 44002624

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.

QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.

* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 21

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/18/12

3

-

7

10

Ш

SDG 8603

Contact Joseph Verville

REPORT GUIDE

Client Test America, Inc.

Contract 44002624

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 22

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-RG

 Version 3.06

 Report date 04/18/12

3

4

5

8

10

11

12

Ш

SDG <u>8603</u>

Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 23

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/18/12

3

4

5

9

10

46

SDG 8603

Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES
Page 4
SUMMARY DATA SECTION
Page 24

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

Page 56 of 73

4/27/2012

3

4

5

6

8

9

11

SDG 8603

SDG <u>8603</u>

Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

DATA SHEET

J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- ${\tt X}\,$ Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES

Page 5

SUMMARY DATA SECTION

Page 25

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/18/12

6

8

9

11

12

SDG 8603

SDG <u>8603</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES

Page 6

SUMMARY DATA SECTION

Page 26

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

6

9

10

SDG <u>8603</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION
Page 27

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

9

4

5

0

8

40

11

SDG 8603

SDG 8603 Contact Joseph Verville

REPORT GUIDE

Client Test America, Inc. Contract 44002624

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES Page 8 SUMMARY DATA SECTION Page 28

Lab id <u>EAS</u> Protocol TA Version Ver 1.0 Form DVD-RG Version 3.06 Report date 04/18/12

SDG 8603

SDG 8603

Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 29

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

3

4

5

9

8

10

11

SDG <u>8603</u>

Contact Joseph Verville

REPORT GUIDE

Client Test America, Inc.

Contract <u>44002624</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10

SUMMARY DATA SECTION

Page 30

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

-

g

SDG 8603

SDG <u>8603</u>

Contact Joseph Verville

GUIDE, cont.

Client Test America, Inc.

Contract <u>44002624</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 31

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/18/12

3

4

5

7

8

10

11

12

1,

SDG 8603

SDG 8603

Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract 44002624

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 32

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/18/12

1

5

6

8

10

11

SDG 8603

SDG 8603

Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION

Page 33

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

1

5

6

8

11

SDG <u>8603</u>

Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1÷3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES

Page 14

SUMMARY DATA SECTION

Page 34

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/18/12</u>

3

4

5

7

8

46

11

12

Ш

SDG 8603

SDG <u>8603</u>
Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 35

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/18/12

2

5

6

8

9

11

12

TestAmerica Irvine

—	0
of Custody	j (1)
/ Record	00-085

17461 Derian Ave Suite 100 Irvine, CA 92614-5817			C	Chain of Custody Re	f Cu	sto	dy I	Rec	cord	Q								$\bar{\mathfrak{g}}$	10	2		$\bar{\alpha}$		C	IC	^
Phone (949) 261-1022 Fax (949) 260-3297	Panala.			- -	-						2	1		2			5		Cleve A Li	57 6	20.486	Contraction	101.00	OO NO.	93.0	_
Client Information (Sub Contract Lab)	Sampler:			Wilson,	/: in, Debby	¥					Can	Carrier Tracking No(s):	cking r	(s):			2 4	40° N	COC No: 440-3172,1						ĺ	77/
	Phone:			E-Mail: debby	E-Mail: debby.wilson@testamericainc.	@testa	meric	ainc.	com								ס"ָס	age:	Page: Page 1 of 1	_						4 //
Company: Eberline Services									ıalysis		Requested	sted					3 4	Job #: 440-6(Job #: 440-6603-1	_						
Address: 2030 Wright Avenue,	Due Date Requested: 4/2/2012	ţţ;															D D	reserv	Preservation Codes: A - HCL M	n Co	des:	± px	ž D			
City:	TAT Requested (days):	lys):															() (0)	- NaOH	- NaOH - Zn Acetate	æ	0 = :	None	02			
State, Zip: CA, 94804																	mo	Nat	D - Nitric Acid E - NaHSO4	_	οp	P - Na204S Q - Na2SO3	03 03			
	PO#:																L G T	F - MeOH G - Amchlor	불물물	Ė	·σπ	H2SC	2SO:	F	Ė	
Email:	WO#:	ļ			10	a	mbined	0			SC IC-40						AP GARAGE	7-D4	I - Ice J - DI Water	2	<	U - Acelone V - MCAA	one A	U - Acetone V - MCAA	9	
Project Name: Boeino SSFL outfalls	Project #: 44002624				ear.		m Co	tium 9	m		па ор					g signalis	t sales	99	K-EDTA L-EDA		7.5	- other (specify)	Spec (spec	₹)		
	SSOW#:	:			15 (V		Radii	Stror	Tritiu		Gain						-	Other:								
			Sample	Matrix	illerii nalisia	NTRACT	NTRACT	NTRACT	NTRACT	NTRACT	NTRACT						Vumber									
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time))	ž.	35.		SUBC	SUBC	SUBC		SUBC				-		Total		Spec	ial h	pecial Instructions/Note	ctio	ns/N	ote:		
		17:48	Preserva	I(c) III Oe o(c)	×												¥		100	4,5		Die Ba	e de la compa			70
Outfall 009 (440-6603-1)	3/25/12	17:48 Pacific		Water		×	×	×	×	×	×			<u> </u>	<u> </u>		Ю									6
Trip Blank (440-6603-2)	3/27/12	13:45 Pacific		Water		×	×	×	×	×	×				_									The second		- 00
																745-24										200
																Sales A										· ·
																Valletinis										
				artual e de culte dispute e artificaçõe de desde de la desde de desde de desde de desde de desde de desde de d																						1
							 		ļ	_																1
						 	<u> </u>			<u> </u>	-	<u> </u>		_	_									Ì		
to the state of th											-			L	L	***	90.00									
Possible Hazard Identification Unconfirmed					Sam	Sample Disposal (A Return To Clien	le Disposal (A Return To Clien		fee m f	may be	Disposal	assessed Disposal E	difsan Bvlab	samples Lab		_₽	retained Archive	tained longer Archive For	ē	than	1 mc	month) Months	ths			
Deliverable Requested: I, II, III, IV, Other (specify)					Spec	Special Instructions/QC	ructio	ns/Q(Rec	Requirements	ents:															
Empty Kit Relinquished by:		Date:			Time:							Meth	Method of Shipment	hipme	nt:											
Smile	Date/Time:/	2 17	0 0,	Company		Received by	7		X					Date/Time:	, VS	O.	\sim	D,	∇	133	15	ompany	*			
Relinquished by: FED D	Date/Time:	170	09 30	Company	70	Received by:	_	文	> ,					Date/Time:	ime	28		7	og mo	Z	္ပင္ပ	E	3	TIPS TOUR	m	
Relinquished by:	Date/Time: {			Company	70	Received by:	by:							Date/Time:	ime:		1				ဂ္ဂ	Company	~			
Custody Seals Intact: Custody Seal No					0	Cooler Temperature(s)	mperat	ure(s)	°C and	Other	and Other Remarks:	S:														

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client:	TOSI	Mutric	.\ .\	_ City	MINE	State	A	
Date/Ti	ime rece	eived 03/28/12	COC N	10. 440	112 3172			
		No. LECHES			s) P.O. R		[] No[]	
				INSPE	ECTION			•
1.	Custoc	ly seals on ship	ping container i	intact?		Yes {√]]	No[] N/A	[2]
2.	Custoc	ly seals on ship	ping container	dated & sign	ed?	Yes [x]	No[] N/A	[]
3.	Custod	ly seals on san	nple containers i	intact?		Yes []	No[] N/A	[%]
4.	Custod	ly seals on san	nple containers	dated & sign	ed?	Yes []	No[] N/A	[*]
5.		g material is:		0		(Wet[]	Dry [X]	/
6.	Numbe	er of samples in	shipping conta	iner: Z	Sample Mat	rix <u>W</u>		
7.	Numbe	r of containers	per sample:		_ (Or see CoC	<u>*</u>		
8.	Sample	es are in correc	t container		Yes [🖍]	No []		
9.		vork agrees wit			Yes [🌾]			
10.					Rad labels []			
11.					ng[] Broker			1
12.	Sample	es are: Preser	ved [/] Not p	reserved [7	4] pH <u>& V MA</u> Pr	eservative #N	03	
13,	Describ	oe any anomali	es:		/			
					. , , , , , , , , , , , , , , , , , , ,			
14.		18	апу anomalies?	Ye	1 1			
15.	Inspect	ed by	4	Date:	63 28 17 Time	a: \000		
Custo		Beta/Gamma	Ion Chamber		Customer	Beta/Gamma	Ion Chamber	
Sampi	e No.	cpm	mR/hr	Wipe	Sample No.	cpm	mR/hr	wipe
Are Stre	1) UES	780						
on Cham	ber Ser.	No		<u>_</u>	Calibration date			
lipha Met	ter Ser. N	No	A	5777	Calibration date			
leta/Gam	ıma Mete	er Ser. No	/''ऽ	048V	Calibration date	06 DEC	1	
							,	

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

Test America Version 7/19/2010

440 -651 3Page 1 of 2

Client Name/Address:	ress:		Ī	Project:									ANAL	ANALYSIS REQUIRED	UIREE					
MWH-Arcadia				Boeing-SSFL NPDES	IPDES		-			_	_	-		_						
618 Michillinda A	S ev	200		Routine Outfall 009	600 1		_											İΞ	Field readings:	
Arcadia, CA 91007	07			GRAB Stormwater at SM-13	214/213								<u>.</u> .					<u>: -) </u>	(Log in and include in	clude in
Test America Contact: Debby Wilson	ntact: De	sbby Wilk			2										**			<u> </u>	o dilipi nod	0
							(N								***			<u> </u>	Temp °F = 76	و
							13H-											<u>ā</u> .	O'L = Hd	
Project Manager: Bronwyn Kelly	Bronwy	n Kelly		Phone Number:			1 99													
Sampler P. F. RANGE	ري لا	42.46		(626) 568-6691 Eax Number		7	ı) əsi			<u>-</u>					<u></u>			Έ	Time of readings =	^{= گ} ورگر
)			(626) 568-6515			Sere							***						ı
Sample Sa Description	Sample C Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Öil &												Comments	ents
Ontfall 009	× =	1L Amber	73	3-25-00/	HG	1A, 1B	×				·									
	-																			
								-							-					
								_		-										
	-									-										
												\vdash								
																				:
	The	se Samp	oles a	re the Grab Po	ortion of O	utfall 009 fo	r this s	torm e	rent. Cα	mposit	e sam	les wil	follow	and are	to be	added to	this w	ork orde	-	
Relinquished By	K		Date/Ti	Date/Time: 3-35-30/2 Received By Date/Time: (Check) 72 Hour. 7275-7 (10 Date/Time: Check) 72 Hour. 10 Date/Time: 6 Day Norm	-3012	Received By	4		Date へ	Time:	Z	2 4 4	m-around Hour:	Date/Time: (Check) 24 Hour: Check)	72.	72 Hour	I	0 N	10 Day:	
Relinquished			Date/Time:	ime:	***************************************	Received By			Date/	Date/Time:		Ī	3			 				
		B	É	13 6-8K		南	- American	55	3	2))57	<u>(Se</u>	S	act:	Tdge 3(2) (8,0) Intent.		On Ice:	1	C	5	
Relinduished By	و	7/2	Date/Time:	Date/Time:	(,)	Received By			Date,	Date/Time:	6	ă ž	rta Require	Date/Time: Data Requirements: (Check) A A A A A A A A A		All evel IV		Ž	NPDES Level IV:	¥
2 2 2	7	7	3						<u> </u>	7)	<u>></u>			-1					

CHAIN OF CUSTODY FORM

Test America Version 7/19/2010

Page 2 of 2

		Comments				111111111111111111111111111111111111111				Filter w/ln 24hrs of receipt at lab	Unfiltered and unpreserved	analysis	Only test if first or second rain			11.000	-		The state of the s	11.0		10 Day:	Normal:			NPDES Level IV:	
ANALYSIS REQUIRED																			and the state of t	is storm event.	These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event.	und time: (Check)	48 Hour: 5 Day:	Sample Integrity; (Check) Intect. On les:		Data Requirements: (Check) No Level IV:	62
<i>b</i>	lstoT ,(0. ß (1.80€)	, Sr-90 (905 226 (903.0 oi 9, Uranium (9	(0.00e)eriqilA ((0.30e) (S-H) m 2 mulbsA bənir (0.40e) 8SS mu 5 0.10e) 7E1-2 ə 0.10e) 7E1-3 ə əbi	Trifiur Comb Radiu 40, C							>	<		×	Appell in Appell					COC Page 2 of 2 list the Composite Samples for Outfall 009 for this storm event.	C Page 1 of 2 for Outfa	7-22-2	0.	3.26-12	and the second s		
		als: Sb, Cd,		,20T Total Total				×	×	×										Composite Sample	work order for CO	Date Tinge		Deferrime:	Date/Filme:)	
	Total Recoverable Metals: Sb, Cd, Cu, Pb, Hg, Tl TCDD (and all congeners)				×	×	×							<u> </u>						2 list the	the same	1	C				
	7			Bottle #	2A	2B	3A, 3B	4A, 4B	5	9	47	7B	α	6	Line and the second					Page 2 of	added/to	Received By		Received By	Received By	\	
	DES 009 17/6/ W-13			Preservative	HNO3	HNO3	None	None	None	None	None	None	None.	NaOH						၁၀၁	e must be	7		=\ -		7	
Project:	Boeing-SSFL NPDES Routine Outfall 009 COMPOSITE - + + Stormwater at SW-13		Phone Number: (626) 568-6691 Fax Number: (626) 568-6515		3-25-2012							·	-	3-25-40/2							Ihes	3-26-20	() . ()	Date/Time: 7-26-12			
4	<u>ഷ്ഭ്ഠ്ത്</u>		<u> </u>	# of Cont.		ţ	2	2	1	-	₩.	-	4	_ 								Date/Time:		te/Time	Date/Time		
	ite 200	Debby Wilso	wyn Kelly ~B 6D PA XN E	Container #	1L Poly	1L Poly	1L Amber	500 mL Paly	500 mL Poly	1L Poly	2.5 Gal Cube	500 mL Amber	1 Gal Poly	500 mL Polv								Da		Da Da	Dai		
dress:	Ave, Su 007	ontact:	F. Bron	Sample Matrix	W	W	W	W	W	>	3	>	λλ	8								\ \	1		100000	.	
Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007	Test America Contact: Debby Wilson	Project Manager: Bronwyn Kelly Sampler: Rick ひんがらり Axのはたい PA XN 后	Sample Sample Description	Outfall 009	Outfall 009 Dup	Ouffall 009	Ontfall 009	Outfall 009	Ontfall 009		Outfall 009	Oou fleshing	Ontfall 009								Relinquished By	And I	Relinguished By	Relinquished By		

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-6513-1

Login Number: 6513 List Source: TestAmerica Irvine

List Number: 1 Creator: Kim, Will

Cleator. Killi, Will		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	Rick Banaga
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

5

6

8

10

11

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-6513-1

Login Number: 6603 List Source: TestAmerica Irvine

List Number: 1 Creator: Kim. Will

Creator: Kim, Will		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	Rick Banaga
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

6

0

. .

12

APPENDIX G

Section 7

Outfall 009 – March 27, 2012 Test America Analytical Laboratory Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-6740-1

Client Project/Site: Boeing SSFL NPDES-Outfall 009

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 4/11/2012 3:26:42 PM

Debby Wilson
Project Manager I
debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Debby Wilson Project Manager I 4/11/2012 3:26:42 PM

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Client: MWH Americas Inc Project/Site: Boeing SSFL NPDES-Outfall 009 TestAmerica Job ID: 440-6740-1

Table of Contents

Cover Page	
Table of Contents	3
Sample Summary	4
Client Sample Results	
Chronicle	
QC Association	7
Definitions	
Certification Summary	9
Subcontract Data	
Chain of Custody	11
Receint Checklists	12

4

6

R

9

10

Sample Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES-Outfall 009

TestAmerica Job ID: 440-6740-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-6740-1	Outfall 009	Water	03/27/12 13:55	03/27/12 18:45

3

А

-

6

8

9

10

Client Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES-Outfall 009

TestAmerica Job ID: 440-6740-1

Client Sample ID: Outfall 009 Lab Sample ID: 440-6740-1

Date Collected: 03/27/12 13:55 Matrix: Water

Date Received: 03/27/12 18:45

Method: SM 9221E - Coliforms, Fecal (Multiple-Tube Fermentation)										
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac	
Coliform, Fecal	50				MPN/100mL			03/27/12 19:05	1	

Method: SM 9221F - E.Coli (Multipl	e-Tube Fermentation; EC-N	IUG)					
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Escherichia coli	9.0	2.0	2.0 MPN/100ml			03/27/12 19:05	1

3

4

5

7

Q

9

10

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES-Outfall 009

TestAmerica Job ID: 440-6740-1

Lab Sample ID: 440-6740-1

Matrix: Water

Client Sample ID: Outfall 009
Date Collected: 03/27/12 13:55
Date Received: 03/27/12 18:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 9221E		1	100 mL	100 mL	16102		AK	TAL IRV
							(Start)	03/27/12 19:05		
							(End)	03/30/12 15:52		
Total/NA	Analysis	SM 9221F		1	100 mL	100 mL	16104		AK	TAL IRV
							(Start)	03/27/12 19:05		
							(End)	03/30/12 15:52		

Laboratory References:

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

QC Association Summary

Client: MWH Americas Inc TestAmerica Job ID: 440-6740-1

Project/Site: Boeing SSFL NPDES-Outfall 009

Biology

Analysis Batch: 16102

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6740-1	Outfall 009	Total/NA	Water	SM 9221F	

Analysis Batch: 16104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6740-1	Outfall 009	Total/NA	Water	SM 9221F	

4

7

8

9

Definitions/Glossary

Client: MWH Americas Inc

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-6740-1 Project/Site: Boeing SSFL NPDES-Outfall 009

Glossary

TEF

TEQ

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis ₩ %R Percent Recovery CNF Contains no Free Liquid DL, RA, RE, IN Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample EDL **Estimated Detection Limit** United States Environmental Protection Agency EPA MDL Method Detection Limit MLMinimum Level (Dioxin) Not detected at the reporting limit (or MDL or EDL if shown) ND PQL Practical Quantitation Limit QC **Quality Control** RLReporting Limit RPD Relative Percent Difference, a measure of the relative difference between two points

Certification Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES-Outfall 009

TestAmerica Job ID: 440-6740-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Irvine	Arizona	State Program	9	AZ0671
TestAmerica Irvine	California	LA Cty Sanitation Districts	9	10256
TestAmerica Irvine	California	NELAC	9	1108CA
TestAmerica Irvine	California	State Program	9	2706
TestAmerica Irvine	Guam	State Program	9	Cert. No. 12.002r
TestAmerica Irvine	Hawaii	State Program	9	N/A
TestAmerica Irvine	Nevada	State Program	9	CA015312007A
TestAmerica Irvine	New Mexico	State Program	6	N/A
TestAmerica Irvine	Northern Mariana Islands	State Program	9	MP0002
TestAmerica Irvine	Oregon	NELAC	10	4005
TestAmerica Irvine	USDA	Federal		P330-09-00080

Accreditation may not be offered or required for all methods and analytes reported in this package . Please contact your project manager for the laboratory's current list of certified methods and analytes.

-

4

5

7

8

a

16

EMSL Analytical, Inc.

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675/ 786-0262

http://www.emsl.com E-mail: MicrobiologyLab@emsl.com

Client: TestAmerica Irvine **EMSL Order ID:** 371204889 17461 Derian Avenue Suite 100 **Date Received:** 3/29/2012 Irvine, CA 92614 **Date Analyzed:** 3/30/2012 **Date Reported:** 4/2/2012 Attn.

Project: 44002624/Boeing SSFL NPDES-Outfall 009 **Date Amended:**

Real-Time PCR Analysis for Human Bacteroides

(Based on a published method SAM: 348 - 357, 2010), EMSL Test Code: M199, Revision No. 3, 04/18/2011)

Lab Sample Number	Client Sample ID	Location	Amount Received	Amount Sampled	CEs /100 mL
4889-1	Outfall 009 (440-6740-1)		Water 250 ml	Water 250 ml	None Detected

EMSL maintains liability limited to cost of analysis. Interpretation of the data contained in this report is the responsibility of the client. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. The above test report relates only to the items tested. EMSL bears no responsibility for sample collection activities or analytical method limitations.

Note: The PCR primer is HF183 and the qPCR probe and primer was evaluated in 2010 by EPA scientists. The real-time PCR based on HF183 detects human specific total bacteroides predominantly with minor cross-detections on chicken and dog fecal materials. CEs: Cell Equivalents, measured by PCR using genomic DNA standards.

USEPA License No: 0240-02

Quar L:

Quanyi "Charlie" Li, Ph.D. Director, PCR and DNA Analysis Lab

	#r at SW-13 mber: 6691 er: 6515									Field (Log	Field readings:
	SW-13									Field (Log	freadings:
_ <u>+</u>	SW-13					_	_			(Log	i opuloui pac ai
<u>_</u>	Presentation				_				_	_	ווו שנות וווכיותם זוו
L =	Proceeding			_						repo	report Temp and pH)
Cont.	Proceeding			ue						Tem	Temp °F =
Cont.	Praearuafi		(122i)	ewn						H H	11
# of Cont.	Presentati			'se						<u>.</u>	
# of # 1	15 Presentativ		2) mnoi (1529)	nodale						Time	Time of readings =
Sample Container # of Matrix Type Cont. W 125 mL Poly 1 W 125 mL Poly 1	Precentativ			-Bate					-		
W 125 mL Poly 1 W 125 mL Poly 1		Bottle #		-TSM							Comments
W 125 mL Poly 1	12 Na2S203	τ-	×								
	/ J Na2S203	2	×								
Outfall 009 W 125 mL Poly 1 5 7 7 5 7	None None	m		×							Deliver to lab ASAP
Date/Time:	3-27-8-64-8	Received By			Date/Time:	5	Turn-around time: (Check)	(Check)			
Rish Kish	9	THE STATE OF THE S			IN S	in in	24 Hour:	1 1	72 Hour 5 Day:	10 Day:	×
Relinquished By Bate/Time 2 - 2 7	7.18 7.48	Received By C	Bar	E	Date/Time:	47	Sample Integrity: (Check)	(Check)	On Ice:	ı	
Relinquished By Date/Time:	<u>«</u>	Received By			Date/Time:	,	Data Requirements: (Check)	ıts: (Check)			
							No Level IV:		All Level IV:	NPDE	NPDES Level IV:

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-6740-1

Login Number: 6740 List Source: TestAmerica Irvine

List Number: 1 Creator: Perez, Angel

Creator: Perez, Angei		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

3

4

5

7

9

10

1.

APPENDIX G

Section 8

Outfall 019 – February 28 & 29, 2012 MEC^X Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: 440-3913-1

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00 Sample Delivery Group: 440-3913-1

Project Manager: B. Kelly Matrix: Water

QC Level: IV
No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 019 Composite	440-4065-1	800279-01, G2C020438-001, S203010-01	Water		180.1, 314.0, 900. 901.1, 903.1, 904, 905, 906, 245.1, 245.1 Diss, 1613B, 8315M, SM 2340B, SM5310B, ASTM D-5174
Outfall 019 Grab	440-3913-9	N/A	Water	2/28/2012 12:10:00 PM	120.1

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact (except as noted below), on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at Eberline and TestAmerica-West Sacramento. As the samples were couriered to TestAmerica-Irvine and Truesdail, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

According to the Case Narrative, the Composite sample was originally received at Eberline on March 13, 2012; however, the sample had leaked into the shipping cooler and a replacement sample was received on March 7, 2012. Review of the COC indicated the sample was received at Eberline on March 7, but a notation on the Sample Receipt Checklist indicated the replacement was received on March 3.

Project: SSFL NPDES
DATA VALIDATION REPORT SDG: 440-3913-1

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 10, 2012

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had a detect reported below the EDL for 1,2,3,6,7,8-HxCDF, and detects above the EDL for 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,4,6,7,8-HpCDF, and 1,2,3,4,7,8,9-HpCDF and their totals. OCDD and OCDF were also reported above the EDL. Some method blank results were reported as EMPCs; however, due to the extent of the method blank contamination, the reviewer

deemed it appropriate to use all method blank results to qualify sample results. Any sample results for method blank contaminants were qualified as nondetected, "U," at the EDL if reported below the EDL, or at the level of contamination. All detected total results associated with method blank contamination were also qualified as nondetected, "U," as the peaks comprising the totals in the sample were present at comparable concentrations in the method blank.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The labeled internal standard recoveries for the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

Individual isomer EMPCs qualified as nondetected for method blank contamination were not further qualified as EMPCs.

B. EPA METHOD 8315M—Hydrazines

Reviewed By: P. Meeks

Date Reviewed: April 10, 2012

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 8315M, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: The hydrazine sample was originally derivitized within three days of collection; however, according to the case narrative, the associated LCS failed. The sample was re-derivitized two days beyond the holding time, with acceptable LCS results. As the sample was derivitized beyond the holding time, the hydrazine results (all nondetects) were qualified as estimated, "UJ." The sample was analyzed within three days of derivitization.
- Calibration: Calibration criteria were met. The initial calibration r² values were ≥0.995. The ICV, CCV and QCS recoveries were within 85-115%.
- Blanks: Hydrazine was not detected in the method blank.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG. Recoveries and RPDs were within the laboratory-established control limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Review of the sample, LCS, and LCSD chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibrations and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

C. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 9, 2012

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP metals and 85-115% for mercury. One magnesium CRDL recovery exceeded the control limit at 148%; however, as the sample result was >3× the reporting limit, no qualifications were required. The remaining CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Total and dissolved zinc were detected with the method blanks at 10.4 and 21.3 μg/L; respectively; therefore, total and dissolved zinc in the sample were qualified as nondetected, "U." Dissolved boron was detected in the method blank and total arsenic was detected in a bracketing CCB at 37.1 and 8.4 μg/L, respectively, therefore, dissolved boron and total arsenic in the sample were qualified as nondetected, "U." Method blanks and CCBs had no other applicable detects.
- Interference Check Samples: Recoveries were within the method-established control limits. There were no target compounds present in the ICSA solution at concentrations above the MDLs; however, the most common interferent, iron, was not detected in the site sample.
- Blank Spikes and Laboratory Control Samples: Dissolved calcium was detected above the control limit at 129%; therefore, dissolved calcium in the sample was qualified as estimated, "J." The remaining recoveries were within laboratory-established QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the total analytes. Recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer

was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks Date Reviewed: April 9, 2012

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Calibration criteria were met. The initial calibration r² values were ≥0.995 and
 the initial calibration recovery was within 90-110%. Both continuing calibration recoveries
 were nominally below the control limit at 88% and 89%; therefore, nondetected perchlorate
 in the sample was qualified as estimated, "UJ." The IPC recovery was within the methodestablished control limit of 80-120% and the ICCS recovery was within the method control
 limits of 75-125%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The recovery was within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on

the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the reporting limit.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

E. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: April 10, 2012

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were preserved within the five-day holding time.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as estimated, "UJ." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

• Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for all analytes. All RPDs were within the laboratory-established control limits.

- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

F. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 9, 2012

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 180.1, and SM5310B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, 48 hours for turbidity and 28 days for conductivity and TOC, were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%.
- Blanks: TOC was reported in the method blank and bracketing CCB at -0.9 mg/L; therefore, TOC detected in the sample was qualified as estimated, "J." Method blanks and CCBs had no other detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.

• Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for conductivity. The RPD was within the laboratory-established control limits.

- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG for the validated analyses. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms 440-3913-1

Analysis Method 120.1

Sample Name Outfall 019 Grab Matrix Type: Water Validation Level: IV

Lab Sample Name: 440-3913-9 **Sample Date:** 2/28/2012 12:10:00 PM

Analyte CAS No Result RL MDL Result Lab Validation Value Units Qualifier Qualifier Notes

Specific Conductance STL00244 830 1.0 1.0 umhos/c

Analysis Method 1613B

Sample Name Outfall 019 Composite Matrix Type: Water Validation Level: IV

Lab Sample Name: 440-4065-1 **Sample Date:** 2/29/2012 11:30:00 AM

Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.000050	0.0000017	ug/L		U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.000050	0.0000009	ug/L		U	В
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.000050	0.0000015	ug/L		U	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.000050	0.0000006	ug/L		U	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.000050	0.0000005	ug/L		U	В
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.000050	0.0000005	ug/L		U	
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.000050	0.0000005	ug/L		U	
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.000050	0.0000005	ug/L		U	
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.000050	0.0000007	ug/L		U	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.000050	0.0000017	ug/L		U	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.000050	0.0000013	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.000050	0.0000005	ug/L		U	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.000050	0.0000014	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.000010	0.0000012	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.000010	0.0000006	ug/L		U	
OCDD	3268-87-9	ND	0.00010	0.0000020	ug/L		U	В
OCDF	39001-02-0	ND	0.00010	0.0000029	ug/L		U	В
Total HpCDD	37871-00-4	ND	0.000050	0.0000017	ug/L		U	В
Total HpCDF	38998-75-3	ND	0.000050	0.0000009	ug/L		U	В
Total HxCDD	34465-46-8	ND	0.000050	0.0000005	ug/L		U	
Total HxCDF	55684-94-1	ND	0.000050	0.0000005	ug/L		U	В
Total PeCDD	36088-22-9	ND	0.000050	0.0000017	ug/L		U	
Total PeCDF	30402-15-4	ND	0.000050	0.0000013	ug/L		U	
Total TCDD	41903-57-5	ND	0.000010	0.0000012	ug/L		U	
Total TCDF	55722-27-5	ND	0.000010	0.0000006	ug/L		U	

Sample Name	Outfall 019 C	omnosite	Matri	іх Туре:	Water	7	alidation Le	vel: IV
-	440-4065-1	•					anaanon De	, ci
Lab Sample Name:	440-4005-1	Sam	ple Date:	2/29/201.	2 11:30:00 A	IVI		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Turbidity	STL00189	0.090	0.10	0.040	NTU		J	DNQ
Analysis Metho	od 200.7	Rev 4.	4					
Sample Name	Outfall 019 C	omposite	Matri	іх Туре:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-4065-1	Sam	ple Date:	2/29/2012	2 11:30:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Arsenic	7440-38-2	ND	10	7.0	ug/L		U	В
Arsenic, Dissolved	7440-38-2	ND	10	7.0	ug/L		U	
Barium	7440-39-3	0.026	0.010	0.0060	mg/L			
Barium, Dissolved	7440-39-3	0.025	0.010	0.0060	mg/L			
Beryllium	7440-41-7	ND	2.0	0.90	ug/L		U	
Beryllium, Dissolved	7440-41-7	ND	2.0	0.90	ug/L		U	
Boron	7440-42-8	ND	0.050	0.020	mg/L		U	
Boron, Dissolved	7440-42-8	ND	0.050	0.020	mg/L		U	В
Calcium	7440-70-2	100	0.10	0.050	mg/L			
Calcium, Dissolved	7440-70-2	94	0.10	0.050	mg/L		J	L
Chromium	7440-47-3	2.3	5.0	2.0	ug/L		J	DNQ
Chromium, Dissolved	7440-47-3	ND	5.0	2.0	ug/L		U	
Cobalt	7440-48-4	ND	10	2.0	ug/L		U	
Cobalt, Dissolved	7440-48-4	ND	10	2.0	ug/L		U	
Iron	7439-89-6	ND	0.040	0.015	mg/L		U	
Iron, Dissolved	7439-89-6	ND	0.040	0.015	mg/L		U	
Magnesium	7439-95-4	24	0.020	0.012	mg/L			
Magnesium, Dissolved	7439-95-4	24	0.020	0.012	mg/L			
Manganese	7439-96-5	ND	20	7.0	ug/L		U	
Manganese, Dissolved	7439-96-5	ND	20	7.0	ug/L		U	
Nickel	7440-02-0	ND	10	2.0	ug/L		U	
Nickel, Dissolved	7440-02-0	2.1	10	2.0	ug/L		J	DNQ
Silver	7440-22-4	ND	10	6.0	ug/L		U	
Silver, Dissolved	7440-22-4	ND	10	6.0	ug/L		U	
Vanadium	7440-62-2	ND	10	3.0	ug/L		U	
Vanadium, Dissolved	7440-62-2	ND	10	3.0	ug/L		U	
Zinc	7440-66-6	ND	20	6.0	ug/L		U	В
Zinc, Dissolved	7440-66-6	ND	20	6.0	ug/L		U	В

Analysis Method 245.1

Sample Name	Outfall 019 Composite Matrix Type: Water					Validation Level: IV			
Lab Sample Name:	440-4065-1 Sample Date: 2/29/2012 11:30:00 A					M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Mercury	7439-97-6	ND	0.20	0.10	ug/L		U		
Mercury, Dissolved	7439-97-6	0.23	0.20	0.10	ug/L				
Analysis Method	d 314.0)							
Sample Name	Outfall 019 Composite Matrix			x Type:	Type: Water Validation Level: IV				
Lab Sample Name:	440-4065-1	Sam	ple Date:	2/29/2012	2 11:30:00 A	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Perchlorate	14797-73-0	ND	4.0	0.95	ug/L		UJ	С	
Analysis Method	d Gami	na Spec	c K-40	CS-13	7				
Sample Name	Outfall 019 Composite Matrix Type: Water Validation Level:						vel: IV		
Lab Sample Name:	440-4065-1	Sam	ple Date:	2/29/2012	2 11:30:00 A	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Cesium-137	10045973	0.622	20.0	1.54	pCi/L		U		
Potassium-40	13966002	1.26	25.0	30.0	pCi/L		U		
Analysis Method	d Gross	s Alpha	and Be	eta					
Sample Name	Outfall 019 Composite Matrix			x Type:	Water	Validation Level: IV			
Lab Sample Name:	440-4065-1 Sample Date: 2/29/2012 11:30:00 A					M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Gross Alpha	12587461	0.091	3.00	2.13	pCi/L		UJ	С	
Gross Beta	12587472	2.6	4.00	2.09	pCi/L		J	DNQ	
Analysis Method	d Radii	ım-226							
•	Outfall 019 Composite Matrix Type: Water				Water	Validation Level: IV			
Sample Name	Outfall 019 C	composite	Matri	x Type:	vv ater		anuation Le	VCI	
Sample Name Lab Sample Name:	Outfall 019 C	-			2 11:30:00 A		andation Le	, , , , , , , , , , , , , , , , , , ,	
•		-					Validation Qualifier	Validation Notes	

Analysis Method Radium-228

maiysis memoa	Maui	<i>IIII-22</i> 0						
Sample Name	Outfall 019 C	omposite	Matri	x Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	440-4065-1	Sam	ple Date:	2/29/201	2 11:30:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-228	15262201	0.022	1.00	0.329	pCi/L		U	
Analysis Method	SM 2	340B						
Sample Name	Outfall 019 C	omposite	Matri	х Туре:	Water	7	alidation Le	vel: IV
Lab Sample Name:	440-4065-1	Sam	ple Date:	2/29/201	2 11:30:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Hardness, as CaCO3	STL00009	350	0.33	0.17	mg/L			
Hardness, as CaCO3, Dissolv	ed STL00009	330	0.33	0.17	mg/L			
Analysis Method	SM 5.	310B						
Sample Name	Outfall 019 C	omposite	Matri	x Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	440-4065-1	Sam	ple Date:	2/29/201	2 11:30:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Total Organic Carbon	7440-44-0	1.5	1.0	0.75	mg/L		J	В
Analysis Method	l Stron	tium 90)					
Sample Name	Outfall 019 C	omposite	Matri	x Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	440-4065-1	Sam	ple Date:	2/29/201	2 11:30:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	0.242	2.00	0.958	pCi/L		U	
Analysis Method	l Tritiu	ım						
Sample Name	Outfall 019 C	omposite	Matri	x Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	440-4065-1	Sam	ple Date:	2/29/201	2 11:30:00 A	M		
	CACNI	Dogult	RL	MDL	Result	Lab	Volidation	Validation
Analyte	CAS No	Result Value	KL	NIDL	Units	Qualifier	Validation Qualifier	Notes

Analysis Method Uranium, Combined

Sample Name	Outfall 019 C	Composite	Matr	іх Туре:	Water	7	Validation Le	evel: IV
Lab Sample Name:	440-4065-1	Sam	ple Date:	2/29/2012	2 11:30:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total	NA	1.22	1.00	0.018	pCi/L			

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 3/20/2012

Page 1 of 2

Laboratory No. 800279

Client: TestAmerica Analytical - Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Attention: Debby Wilson

Project Name: Boeing SSFL

Project Number: 44002624

P.O. Number: 440-4065-1

Release Number: 440-4065-1

Samples Received on 3/2/2012 10:00:00 AM

Field ID Lab ID Collected Matrix Outfall 019 Composite Outfall 019 Composite 800279-001 02/29/2012 11:30 Water Batch 709811 EPA 8315 M-Hydrazines (water) Parameter Unit Analyzed DF MDL RL Result UT/H 03/06/2012 20:08 0.439 800279-001 Hydrazine ug/L 1 0.439 1.00 Monomethyl Hydrazine ug/L 03/06/2012 20:08 1 1.77 5.00 1.77 Unsymmetrical Dimethyl Hydrazine ug/L 03/06/2012 20:08 1 1.13 5.00 1.13 Method Blank Parameter DF Unit Result 1 ND Hydrazine ug/L Monomethyl Hydrazine ug/L 1 ND 1 ND Unsymmetrical Dimethyl Hydr: ug/L Lab Control Sample DF Expected Recovery Acceptance Range Parameter Unit Result 50 - 150 10.0 99.9 ug/L 1 9.99 Hydrazine 50 - 15050.0 93.6 1 46.8 Monomethyl Hydrazine ug/L 50 - 150 45.8 50.0 91.6 Unsymmetrical Dimethyl Hydr: ug/L 1 Lab Control Sample Duplicate Acceptance Range DF Result Expected Recovery Parameter Unit 50 - 150 Hydrazine ug/L 1 8.50 10.0 85.0 99.4 50 - 15049.7 50.0 Monomethyl Hydrazine ug/L 1 47.2 50.0 94.4 50 - 150 Unsymmetrical Dimethyl Hydr: ug/L

LEVEL IV

* Analysis not validated

APPENDIX G

Section 9

Outfall 019 – February 28 & 29, 2012
Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-3913-1 Client Project/Site: Boeing SSFL

Revision: 2

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 4/27/2012 7:02:10 AM

Debby Wilson
Project Manager I
debby.wilson@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Delby Wilson

Debby Wilson Project Manager I 4/27/2012 7:02:10 AM

9

10

11

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	7
Chronicle	16
QC Sample Results	19
QC Association	55
Definitions	64
Certification Summary	66
Subcontract Data	67
Chain of Custody	119
Receipt Checklists	122

5

6

8

46

11

12

Sample Summary

Matrix

Water

Water

Water

Water

Client: MWH Americas Inc Project/Site: Boeing SSFL

Client Sample ID

Outfall 019 Grab

Outfall 019 Composite

Trip Blanks

Trip Blank

Lab Sample ID

440-3913-9

440-3913-11

440-4065-1

440-4065-3

TestAmerica Job ID: 440-3913-1

Collected	Received
02/28/12 12:10	02/28/12 17:05
02/28/12 12:10	02/28/12 17:05

02/29/12 11:30

02/29/12 10:33

3

4

02/29/12 17:55

02/29/12 17:55

5

8

9

10

Case Narrative

Client: MWH Americas Inc

TestAmerica Job ID: 440-3913-1

Project/Site: Boeing SSFL

Job ID: 440-3913-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-3913-1

Comments

Revised report to include nitrobenzene.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 624: The continuing calibration verification (CCV) for Acrolein associated with batch 10368 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 625: The continuing calibration verification (CCV) for benzidine associated with batch 11972 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 625, 8015, 608: There was no MS/MSD analyzed with this batch due to insufficient sample volume. See LCS/LCSD.

Method(s) 625: The continuing calibration verification (CCV) for 4-chlorophenyl phenyl ether and indeno (1,2,3-cd)pyrene associated with batch 11433 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 625: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 11972 exceeded control limits for the following analytes: Benzidine. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 625: The following sample(s) was diluted due to the nature of the sample matrix: Outfall 019 Composite (440-4065-1). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

HPLC

Method(s) 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 10205 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC VOA

Method(s) 8015B: Surrogate recovery was outside acceptance limits for the following matrix spike/matrix spike duplicate (MS/MSD) sample(s): (440-4070-8 MS), (440-4070-8 MSD). The parent sample's surrogate recovery was within limits. The MS/MSD sample has been qualified and reported.

No other analytical or quality issues were noted.

GC Semi VOA

No analytical or quality issues were noted.

2

3

4

_

8

4.0

11

12

Case Narrative

Client: MWH Americas Inc
Project/Site: Boeing SSFL
TestAmerica Job ID: 440-3913-1

Job ID: 440-3913-1 (Continued)

Laboratory: TestAmerica Irvine (Continued)

Metals

No analytical or quality issues were noted.

General Chemistry

Method(s) 1664A: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 12658. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

No other analytical or quality issues were noted.

Biology

No analytical or quality issues were noted.

WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank (MB) have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

Some analytes in this sample and the MB are reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

_

7

8

1 1

12

Client: MWH Americas Inc Project/Site: Boeing SSFL

GRO (C4-C12)

Client Sample ID: Outfall 019 Grab

Date Collected: 02/28/12 12:10 Date Received: 02/28/12 17:05 Lab Sample ID: 440-3913-9

Matrix: Water

c 5

6

8

10

12

Ц

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.30	ug/L			03/11/12 21:38	1
2-Chloroethyl vinyl ether	ND		2.0	1.8	ug/L			02/29/12 23:47	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.30	ug/L			03/11/12 21:38	1
Acrolein	ND		5.0	4.0	ug/L			02/29/12 23:47	1
1,1,2-Trichloroethane	ND		0.50	0.30	ug/L			03/11/12 21:38	1
Acrylonitrile	ND		2.0	1.2	ug/L			02/29/12 23:47	1
1,1-Dichloroethane	ND		0.50	0.40	ug/L			03/11/12 21:38	1
Trichlorotrifluoroethane(F-113)	ND		2.0	0.50	ug/L			03/11/12 21:38	1
1,1-Dichloroethene	ND		0.50	0.42	ug/L			03/11/12 21:38	1
1,2-Dichlorobenzene	ND		0.50	0.32	ug/L			03/11/12 21:38	1
1,2-Dichloroethane	ND		0.50	0.28	ug/L			03/11/12 21:38	1
1,2-Dichloropropane	ND		0.50		ug/L			03/11/12 21:38	1
1,3-Dichlorobenzene	ND		0.50		ug/L			03/11/12 21:38	1
1,4-Dichlorobenzene	ND		0.50		ug/L			03/11/12 21:38	1
Benzene	ND		0.50		ug/L			03/11/12 21:38	1
Bromoform	ND		0.50		ug/L			03/11/12 21:38	1
1,2-Dichloro-1,1,2-trifluoroethane	ND		2.0		ug/L			03/11/12 21:38	1
Bromomethane	ND		0.50		ug/L			03/11/12 21:38	1
Carbon tetrachloride	ND		0.50		ug/L			03/11/12 21:38	1
Chlorobenzene	ND		0.50		ug/L			03/11/12 21:38	1
Dibromochloromethane	ND		0.50		ug/L			03/11/12 21:38	1
Chloroethane	ND		0.50		ug/L ug/L			03/11/12 21:38	
Chloroform	ND		0.50		ug/L			03/11/12 21:38	1
Chloromethane	ND		0.50		ug/L			03/11/12 21:38	1
cis-1,3-Dichloropropene	ND		0.50		ug/L ug/L			03/11/12 21:38	
Bromodichloromethane	ND		0.50		ug/L			03/11/12 21:38	1
	ND ND		0.50		ug/L ug/L			03/11/12 21:38	1
Ethylbenzene Methylana Chlorida									
Methylene Chloride	ND		1.0		ug/L			03/11/12 21:38	1
Tetrachloroethene	ND		0.50		ug/L			03/11/12 21:38	1
Toluene	ND		0.50		ug/L			03/11/12 21:38	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			03/11/12 21:38	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			03/11/12 21:38	1
Trichlorofluoromethane	ND		0.50		ug/L			03/11/12 21:38	
Vinyl chloride	ND		0.50		ug/L			03/11/12 21:38	1
Trichloroethene	ND		0.50		ug/L			03/11/12 21:38	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			03/11/12 21:38	1
Cyclohexane	ND		2.0		ug/L			03/11/12 21:38	1
Xylenes, Total	ND		1.0	0.90	ug/L			03/11/12 21:38	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	108		80 - 120					02/29/12 23:47	1
Dibromofluoromethane (Surr)	102		80 - 120					02/29/12 23:47	1
4-Bromofluorobenzene (Surr)	114		80 - 120					03/11/12 21:38	1
Dibromofluoromethane (Surr)	117		80 - 120					03/11/12 21:38	1
Toluene-d8 (Surr)	102		80 - 120					03/11/12 21:38	1
Method: 8015B - Gasoline Rang									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			0.050	0.005	//			02/40/42 42-52	

03/10/12 13:52

0.050

0.025 mg/L

ND

Client: MWH Americas Inc Project/Site: Boeing SSFL TestAmerica Job ID: 440-3913-1

Client Sample ID: Outfall 019 Grab

Date Collected: 02/28/12 12:10 Date Received: 02/28/12 17:05 Lab Sample ID: 440-3913-9

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		65 - 140					03/10/12 13:52	1
Methods 9015D Discol Dans	o Organico (DBO)	(CC)							
Method: 8015B - Diesel Rang		Qualifier	DI.	MDL	l lmi4	D	Duamanad	Amalumad	Dil Fac
Analyte		Qualifier	RL			- —	Prepared	Analyzed	Dil Fac
C13-C28	ND		0.48	0.096	mg/L		03/05/12 09:35	03/06/12 04:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane	85		45 - 120				03/05/12 09:35	03/06/12 04:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fac
HEM	ND		4.7	1.3	mg/L		03/12/12 09:31	03/12/12 14:19	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	830		1.0	1.0	umhos/cm			03/12/12 09:15	1
Settleable Solids	ND		0.10	0.10	mL/L/Hr			02/29/12 08:53	1
Method: SM 9221E - Coliform	s Focal (Multiple-	Tubo Form	ontation)						
Analyte		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Coliform, Fecal	0.00				MPN/100mL			02/28/12 18:02	1
	Bulkinia Tula Famo		C MUC)						
Method: SM 9221F - E.Coli (N		•	,			_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Escherichia coli	ND		2.0	2.0	MPN/100mL			02/28/12 18:02	1

Client Sample ID: Trip Blanks

Date Collected: 02/28/12 12:10

Date Received: 02/28/12 17:05

Lab Sample ID: 440-3913-11

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.30	ug/L			03/11/12 17:26	1
2-Chloroethyl vinyl ether	ND		2.0	1.8	ug/L			03/01/12 01:42	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.30	ug/L			03/11/12 17:26	1
Acrolein	ND		5.0	4.0	ug/L			03/01/12 01:42	1
1,1,2-Trichloroethane	ND		0.50	0.30	ug/L			03/11/12 17:26	1
Acrylonitrile	ND		2.0	1.2	ug/L			03/01/12 01:42	1
1,1-Dichloroethane	ND		0.50	0.40	ug/L			03/11/12 17:26	1
Trichlorotrifluoroethane(F-113)	ND		2.0	0.50	ug/L			03/11/12 17:26	1
1,1-Dichloroethene	ND		0.50	0.42	ug/L			03/11/12 17:26	1
1,2-Dichlorobenzene	ND		0.50	0.32	ug/L			03/11/12 17:26	1
1,2-Dichloroethane	ND		0.50	0.28	ug/L			03/11/12 17:26	1
1,2-Dichloropropane	ND		0.50	0.35	ug/L			03/11/12 17:26	1
1,3-Dichlorobenzene	ND		0.50	0.35	ug/L			03/11/12 17:26	1
1,4-Dichlorobenzene	ND		0.50	0.37	ug/L			03/11/12 17:26	1
Benzene	ND		0.50	0.28	ug/L			03/11/12 17:26	1
Bromoform	ND		0.50	0.40	ug/L			03/11/12 17:26	1
1,2-Dichloro-1,1,2-trifluoroethane	ND		2.0	1.1	ug/L			03/11/12 17:26	1
Bromomethane	ND		0.50	0.42	ug/L			03/11/12 17:26	1
Carbon tetrachloride	ND		0.50	0.28	ug/L			03/11/12 17:26	1
Chlorobenzene	ND		0.50	0.36	ug/L			03/11/12 17:26	1
Dibromochloromethane	ND		0.50	0.40	ug/L			03/11/12 17:26	1
Chloroethane	ND		0.50	0.40	ug/L			03/11/12 17:26	1
Chloroform	ND		0.50	0.33	ug/L			03/11/12 17:26	1

Client: MWH Americas Inc Project/Site: Boeing SSFL

Lab Sample ID: 440-3913-11

Matrix: Water

Client Sample ID: Trip Blanks

Date Collected: 02/28/12 12:10 Date Received: 02/28/12 17:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		0.50	0.40	ug/L			03/11/12 17:26	1
cis-1,3-Dichloropropene	ND		0.50	0.22	ug/L			03/11/12 17:26	1
Bromodichloromethane	ND		0.50	0.30	ug/L			03/11/12 17:26	1
Ethylbenzene	ND		0.50	0.25	ug/L			03/11/12 17:26	
Methylene Chloride	ND		1.0	0.95	ug/L			03/11/12 17:26	
Tetrachloroethene	ND		0.50	0.32	ug/L			03/11/12 17:26	
Toluene	ND		0.50	0.36	ug/L			03/11/12 17:26	•
trans-1,2-Dichloroethene	ND		0.50	0.30	ug/L			03/11/12 17:26	
trans-1,3-Dichloropropene	ND		0.50	0.32	ug/L			03/11/12 17:26	•
Trichlorofluoromethane	ND		0.50	0.34	ug/L			03/11/12 17:26	
Vinyl chloride	ND		0.50	0.40	ug/L			03/11/12 17:26	
Trichloroethene	ND		0.50	0.26	ug/L			03/11/12 17:26	•
cis-1,2-Dichloroethene	ND		0.50	0.32	ug/L			03/11/12 17:26	
Cyclohexane	ND		2.0	0.40	ug/L			03/11/12 17:26	
Xylenes, Total	ND		1.0	0.90	ug/L			03/11/12 17:26	

%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
100	80 - 120	03/01/12 01:42	
101	80 - 120	03/01/12 01:42	1
115	80 - 120	03/11/12 17:26	1
115	80 - 120	03/11/12 17:26	1
101	80 - 120	03/11/12 17:26	1
	100 101 115 115	100 80 - 120 101 80 - 120 115 80 - 120 115 80 - 120	100 80 - 120 03/01/12 01:42 101 80 - 120 03/01/12 01:42 115 80 - 120 03/11/12 17:26 115 80 - 120 03/11/12 17:26

Client Sample ID: Outfall 019 Composite

Date Collected: 02/29/12 11:30

Date Received: 02/29/12 17:55

Lab Sample ID: 440-4065-1

Analyzed

Prepared

Matrix: Water

Dil Fac

Method: 8260B SIM - Volatile Orga					
Analyte	Result	Qualifier	RL	MDL U	nit D
1,4-Dioxane	ND		2.0	1.0 u	g/L

 1,4-Dioxane
 ND
 2.0
 1.0 ug/L
 03/01/12 23:34
 1

 Surrogate
 %Recovery Dibromofluoromethane (Surr)
 Limits
 Prepared
 Analyzed
 Dil Fac

 Dibromofluoromethane (Surr)
 111
 80 - 120
 03/01/12 23:34
 1

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Acenaphthylene	ND		47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Anthracene	ND		47.4	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
Benzidine	ND	LQ	94.8	47.4	ug/L		03/04/12 18:28	03/08/12 18:10	5
Benzo[a]anthracene	ND		47.4	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
Benzo[a]pyrene	ND		47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Benzo[b]fluoranthene	ND		47.4	9.48	ug/L		03/04/12 18:28	03/08/12 18:10	5
Benzo[g,h,i]perylene	ND		47.4	19.0	ug/L		03/04/12 18:28	03/08/12 18:10	5
Benzo[k]fluoranthene	ND		47.4	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
Bis(2-chloroethoxy)methane	ND		47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Bis(2-chloroethyl)ether	ND		47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
bis (2-chloroisopropyl) ether	ND		47.4	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
Bis(2-ethylhexyl) phthalate	ND		237	19.0	ug/L		03/04/12 18:28	03/08/12 18:10	5
4-Bromophenyl phenyl ether	ND		47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Butyl benzyl phthalate	ND		94.8	19.0	ug/L		03/04/12 18:28	03/08/12 18:10	5
4-Chloro-3-methylphenol	ND		94.8	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5

Client: MWH Americas Inc Project/Site: Boeing SSFL

2-Fluorobiphenyl

2-Fluorobiphenyl

2-Fluorophenol

2-Fluorophenol

Nitrobenzene-d5

2,4,6-Tribromophenol

2,4,6-Tribromophenol

Client Sample ID: Outfall 019 Composite

Date Collected: 02/29/12 11:30 Date Received: 02/29/12 17:55 Lab Sample ID: 440-4065-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chloronaphthalene	ND ND	47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
2-Chlorophenol	ND	47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
4-Chlorophenyl phenyl ether	ND	47.4	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
Chrysene	ND	47.4	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
Dibenz(a,h)anthracene	ND	94.8	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
1,2-Dichlorobenzene	ND	47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
1,3-Dichlorobenzene	ND	47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
1,4-Dichlorobenzene	ND	47.4	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
3,3'-Dichlorobenzidine	ND	94.8	35.5	ug/L		03/04/12 18:28	03/08/12 18:10	5
2,4-Dichlorophenol	ND	47.4	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
Diethyl phthalate	ND	47.4	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
2,4-Dimethylphenol	ND	94.8	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
Dimethyl phthalate	ND	47.4	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
Di-n-butyl phthalate	ND	94.8	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
4,6-Dinitro-2-methylphenol	ND	94.8	19.0	ug/L		03/04/12 18:28	03/08/12 18:10	5
2,4-Dinitrophenol	ND	94.8	37.9	ug/L		03/04/12 18:28	03/08/12 18:10	5
2,4-Dinitrotoluene	ND	47.4	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
2,6-Dinitrotoluene	ND	47.4	9.48	ug/L		03/04/12 18:28	03/08/12 18:10	5
Di-n-octyl phthalate	ND	94.8	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
1,2-Diphenylhydrazine(as	ND	94.8	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
Azobenzene)								
Fluoranthene	ND	47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Fluorene	ND	47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Hexachlorobenzene	ND	47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Hexachlorobutadiene	ND	47.4	19.0	ug/L		03/04/12 18:28	03/08/12 18:10	5
Hexachlorocyclopentadiene	ND	94.8	23.7	ug/L		03/04/12 18:28	03/08/12 18:10	5
Hexachloroethane	ND	47.4	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
Indeno[1,2,3-cd]pyrene	ND	94.8	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
Isophorone	ND	47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Naphthalene	ND	47.4	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
Nitrobenzene	ND	94.8	14.2	ug/L		03/04/12 18:28	03/08/12 18:10	5
2-Nitrophenol	ND	47.4	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
4-Nitrophenol	ND	94.8	26.1	ug/L		03/04/12 18:28	03/08/12 18:10	5
N-Nitrosodimethylamine	ND	94.8	11.8	ug/L		03/04/12 18:28	03/09/12 18:25	5
N-Nitrosodi-n-propylamine	ND	47.4	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
N-Nitrosodiphenylamine	ND	47.4	9.48	ug/L		03/04/12 18:28	03/08/12 18:10	5
Pentachlorophenol	ND	94.8	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
Phenanthrene	ND	47.4	16.6	ug/L		03/04/12 18:28	03/08/12 18:10	5
Phenol	ND	47.4	9.48	ug/L		03/04/12 18:28	03/08/12 18:10	5
Pyrene	ND	47.4	19.0	ug/L		03/04/12 18:28	03/08/12 18:10	5
1,2,4-Trichlorobenzene	ND	47.4	11.8	ug/L		03/04/12 18:28	03/08/12 18:10	5
2,4,6-Trichlorophenol	ND	94.8		ug/L		03/04/12 18:28	03/08/12 18:10	5

TestAmerica Irvine 4/27/2012

5

5

5

5

5

5

03/08/12 18:10

03/09/12 18:25

03/08/12 18:10

03/09/12 18:25

03/08/12 18:10

03/09/12 18:25

03/08/12 18:10

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

Page 10 of 123

50 - 120

50 - 120

30 - 120

30 - 120

40 - 120

40 - 120

45 - 120

62

57

62

64

80

77

73

3

5

6

8

10

12

1,

Client: MWH Americas Inc Project/Site: Boeing SSFL

Client Sample ID: Outfall 019 Composite

Date Collected: 02/29/12 11:30 Date Received: 02/29/12 17:55

Lab Sample ID: 440-4065-1

Matrix: Water

d)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	85		45 - 120	03/04/12 18:28	03/09/12 18:25	5
Terphenyl-d14	61		50 - 125	03/04/12 18:28	03/08/12 18:10	5
Terphenyl-d14	47	AZ	50 - 125	03/04/12 18:28	03/09/12 18:25	5
Phenol-d6	67		35 - 120	03/04/12 18:28	03/08/12 18:10	5
Phenol-d6	66		35 _ 120	03/04/12 18:28	03/09/12 18:25	5

Method: 608 PCB LL - Polychlorinated Biphenyls (PCBs) Low level

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		0.47	0.24	ug/L		03/04/12 12:36	03/05/12 15:06	1
Aroclor 1221	ND		0.47	0.24	ug/L		03/04/12 12:36	03/05/12 15:06	1
Aroclor 1232	ND		0.47	0.24	ug/L		03/04/12 12:36	03/05/12 15:06	1
Aroclor 1242	ND		0.47	0.24	ug/L		03/04/12 12:36	03/05/12 15:06	1
Aroclor 1248	ND		0.47	0.24	ug/L		03/04/12 12:36	03/05/12 15:06	1
Aroclor 1254	ND		0.47	0.24	ug/L		03/04/12 12:36	03/05/12 15:06	1
Aroclor 1260	ND		0.47	0.24	ug/L		03/04/12 12:36	03/05/12 15:06	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	90		45 - 120	03/04/12 12:36	03/05/12 15:06	1

Method: 608 Pesticides - Organochlorine Pesticides Low level

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0047	0.0038	ug/L		03/04/12 12:36	03/05/12 13:27	1
4,4'-DDE	ND		0.0047	0.0028	ug/L		03/04/12 12:36	03/05/12 13:27	1
4,4'-DDT	ND		0.0094	0.0038	ug/L		03/04/12 12:36	03/05/12 13:27	1
Aldrin	ND		0.0047	0.0014	ug/L		03/04/12 12:36	03/05/12 13:27	1
alpha-BHC	ND		0.0047	0.0024	ug/L		03/04/12 12:36	03/05/12 13:27	1
beta-BHC	ND		0.0094	0.0038	ug/L		03/04/12 12:36	03/05/12 13:27	1
Chlordane (technical)	ND		0.094	0.0075	ug/L		03/04/12 12:36	03/05/12 13:27	1
delta-BHC	ND		0.0047	0.0033	ug/L		03/04/12 12:36	03/05/12 13:27	1
Dieldrin	ND		0.0047	0.0019	ug/L		03/04/12 12:36	03/05/12 13:27	1
Endosulfan I	ND		0.0047	0.0028	ug/L		03/04/12 12:36	03/05/12 13:27	1
Endosulfan II	ND		0.0047	0.0019	ug/L		03/04/12 12:36	03/05/12 13:27	1
Endosulfan sulfate	ND		0.0094	0.0028	ug/L		03/04/12 12:36	03/05/12 13:27	1
Endrin	ND		0.0047	0.0019	ug/L		03/04/12 12:36	03/05/12 13:27	1
Endrin aldehyde	ND		0.0094	0.0019	ug/L		03/04/12 12:36	03/05/12 13:27	1
gamma-BHC (Lindane)	ND		0.0094	0.0028	ug/L		03/04/12 12:36	03/05/12 13:27	1
Heptachlor	ND		0.0094	0.0028	ug/L		03/04/12 12:36	03/05/12 13:27	1
Heptachlor epoxide	ND		0.0047	0.0024	ug/L		03/04/12 12:36	03/05/12 13:27	1
Toxaphene	ND		0.47	0.24	ug/L		03/04/12 12:36	03/05/12 13:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: 218.6 - Chromium, Hexavalent (Ion Chromatography)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND -	1.0	0.25 ug/L			02/29/12 21:21	1

Method: 300.0 - Anions, Ion Chromatography

Tetrachloro-m-xylene

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	44		25	20	mg/L			02/29/12 23:09	50
Nitrate as N	0.13		0.11	0.080	mg/L			02/29/12 22:56	1
Nitrate Nitrite as N	ND		0.26	0.19	mg/L			02/29/12 22:56	1

Client Sample Results

Client: MWH Americas Inc Project/Site: Boeing SSFL

TestAmerica Job ID: 440-3913-1

Lab Sample ID: 440-4065-1

Matrix: Water

Client Sample ID: Outfall 019 Composite

Date Collected: 02/29/12 11:30 Date Received: 02/29/12 17:55

Method: 300.0 - Anions, Ion Chromatography (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	160		25	20	mg/L			02/29/12 23:09	50
Nitrite as N	ND		0.15	0.11	mg/L			02/29/12 22:56	1

Method: 314.0 - Perchlorate (IC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L			03/01/12 14:37	1

Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000012	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
Total TCDD	ND		0.000010	0.0000012	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,7,8-PeCDD	ND		0.000050	0.0000017	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
Total PeCDD	ND		0.000050	0.0000017	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,4,7,8-HxCDD	ND		0.000050	0.00000065	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,6,7,8-HxCDD	ND		0.000050	0.00000059	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,7,8,9-HxCDD	ND		0.000050	0.00000054	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
Total HxCDD	ND		0.000050	0.00000054	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,4,6,7,8-HpCDD	0.0000015	JQB	0.000050	0.0000017	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
Total HpCDD	0.0000029	JQB	0.000050	0.0000017	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
OCDD	0.000016	JB	0.00010	0.0000020	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
2,3,7,8-TCDF	ND		0.000010	0.00000069	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
Total TCDF	ND		0.000010	0.00000069	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,7,8-PeCDF	ND		0.000050	0.0000013	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
2,3,4,7,8-PeCDF	ND		0.000050	0.0000014	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
Total PeCDF	ND		0.000050	0.0000013	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,4,7,8-HxCDF	0.0000013	JB	0.000050	0.00000055	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,6,7,8-HxCDF	ND		0.000050	0.00000051	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
2,3,4,6,7,8-HxCDF	ND		0.000050	0.00000054	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,7,8,9-HxCDF	ND		0.000050	0.00000072	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
Total HxCDF	0.0000027	JB	0.000050	0.00000051	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,4,6,7,8-HpCDF	0.00000061	JQB	0.000050	0.00000096	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
1,2,3,4,7,8,9-HpCDF	ND		0.000050	0.0000015	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
Total HpCDF	0.0000019	JQB	0.000050	0.00000096	ug/L		03/02/12 09:00	03/06/12 00:06	1.01
OCDF	0.0000021	JQB	0.00010	0.0000029	ug/L		03/02/12 09:00	03/06/12 00:06	1.01

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	90		35 - 197	03/02/12 09:00	03/06/12 00:06	1.01
Internal Standard	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	59		25 - 164	03/02/12 09:00	03/06/12 00:06	1.01
13C-1,2,3,7,8-PeCDD	61		25 - 181	03/02/12 09:00	03/06/12 00:06	1.01
13C-1,2,3,4,7,8-HxCDD	66		32 - 141	03/02/12 09:00	03/06/12 00:06	1.01
13C-1,2,3,6,7,8-HxCDD	65		28 - 130	03/02/12 09:00	03/06/12 00:06	1.01
13C-1,2,3,4,6,7,8-HpCDD	61		23 - 140	03/02/12 09:00	03/06/12 00:06	1.01
13C-OCDD	53		17 _ 157	03/02/12 09:00	03/06/12 00:06	1.01
13C-2,3,7,8-TCDF	54		24 - 169	03/02/12 09:00	03/06/12 00:06	1.01
13C-1,2,3,7,8-PeCDF	58		24 - 185	03/02/12 09:00	03/06/12 00:06	1.01
13C-2,3,4,7,8-PeCDF	63		21 - 178	03/02/12 09:00	03/06/12 00:06	1.01
13C-1,2,3,6,7,8-HxCDF	68		26 - 123	03/02/12 09:00	03/06/12 00:06	1.01
13C-2,3,4,6,7,8-HxCDF	69		28 - 136	03/02/12 09:00	03/06/12 00:06	1.01
13C-1,2,3,7,8,9-HxCDF	64		29 - 147	03/02/12 09:00	03/06/12 00:06	1.01

Client: MWH Americas Inc Project/Site: Boeing SSFL

Client Sample ID: Outfall 019 Composite

Date Collected: 02/29/12 11:30 Date Received: 02/29/12 17:55 Lab Sample ID: 440-4065-1

Matrix: Water

Internal Standard	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDF	60	28 - 143	03/02/12 09:00	03/06/12 00:06	1.01
13C-1,2,3,4,7,8,9-HpCDF	56	26 - 138	03/02/12 09:00	03/06/12 00:06	1.01
13C-1,2,3,4,7,8-HxCDF	67	26 - 152	03/02/12 09:00	03/06/12 00:06	1.01

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.4	J,DX	10	7.0	ug/L		03/06/12 08:54	03/13/12 23:31	
Boron	ND		0.050	0.020	mg/L		03/06/12 08:54	03/14/12 17:08	
Barium	0.026		0.010	0.0060	mg/L		03/06/12 08:54	03/13/12 23:31	
Beryllium	ND		2.0	0.90	ug/L		03/06/12 08:54	03/13/12 23:31	
Calcium	100		0.10	0.050	mg/L		03/06/12 08:54	03/14/12 17:08	
Cobalt	ND		10	2.0	ug/L		03/06/12 08:54	03/13/12 23:31	
Chromium	2.3	J,DX	5.0	2.0	ug/L		03/06/12 08:54	03/13/12 23:31	
Iron	ND		0.040	0.015	mg/L		03/06/12 08:54	03/13/12 23:31	
Magnesium	24		0.020	0.012	mg/L		03/06/12 08:54	03/13/12 23:31	
Manganese	ND		20	7.0	ug/L		03/06/12 08:54	03/13/12 23:31	
Nickel	ND		10	2.0	ug/L		03/06/12 08:54	03/13/12 23:31	
Vanadium	ND		10	3.0	ug/L		03/06/12 08:54	03/13/12 23:31	
Zinc	10	J,DX	20	6.0	ug/L		03/06/12 08:54	03/13/12 23:31	
Silver	ND		10	6.0	ua/L		03/06/12 08:54	03/13/12 23:31	

Method: 200.7 Re	ev 4.4 - Metais	(ICP) - DI	ssoived
Analyte			Result Qu

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		10	7.0	ug/L		03/06/12 11:52	03/08/12 12:09	1
Boron	0.022	J,DX MB	0.050	0.020	mg/L		03/06/12 11:52	03/08/12 12:09	1
Barium	0.025		0.010	0.0060	mg/L		03/06/12 11:52	03/08/12 12:09	1
Beryllium	ND		2.0	0.90	ug/L		03/06/12 11:52	03/08/12 12:09	1
Calcium	94	MB LQ	0.10	0.050	mg/L		03/06/12 11:52	03/08/12 12:09	1
Cobalt	ND		10	2.0	ug/L		03/06/12 11:52	03/08/12 12:09	1
Chromium	ND		5.0	2.0	ug/L		03/06/12 11:52	03/08/12 12:09	1
Iron	ND		0.040	0.015	mg/L		03/06/12 11:52	03/08/12 12:09	1
Magnesium	24	MB	0.020	0.012	mg/L		03/06/12 11:52	03/08/12 12:09	1
Manganese	ND	LQ	20	7.0	ug/L		03/06/12 11:52	03/08/12 12:09	1
Nickel	2.1	J,DX	10	2.0	ug/L		03/06/12 11:52	03/08/12 12:09	1
Vanadium	ND		10	3.0	ug/L		03/06/12 11:52	03/08/12 12:09	1
Zinc	7.7	J,DX MB	20	6.0	ug/L		03/06/12 11:52	03/08/12 12:09	1
Silver	ND		10	6.0	ug/L		03/06/12 11:52	03/08/12 12:09	1

Mctilod: 200.0 - Mctais (101 /MO) - 10ta	INCCOVE	Iddic							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		03/05/12 14:20	03/06/12 15:13	1
Copper	1.0	J,DX	2.0	0.50	ug/L		03/05/12 14:20	03/06/12 15:13	1
Lead	ND		1.0	0.20	ug/L		03/05/12 14:20	03/06/12 15:13	1
Antimony	ND		2.0	0.30	ug/L		03/05/12 14:20	03/06/12 15:13	1
Selenium	ND		2.0	0.50	ug/L		03/05/12 14:20	03/06/12 15:13	1
Thallium	ND		1.0	0.20	ug/L		03/05/12 14:20	03/06/12 15:13	1

Method:	200 8 -	Metals	(ICP/MS)	- Dissolved
Metriou.	200.0 -	IVICIAIS	LICE/IVIS	1 - DI33017EU

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		03/06/12 11:26	03/06/12 23:24	1
Copper	1.4	J,DX	2.0	0.50	ug/L		03/06/12 11:26	03/06/12 23:24	1

2

TestAmerica Job ID: 440-3913-1

Client: MWH Americas Inc Project/Site: Boeing SSFL

Client Sample ID: Outfall 019 Composite

Date Collected: 02/29/12 11:30 Date Received: 02/29/12 17:55 Lab Sample ID: 440-4065-1

. Matrix: Water

Method: 200.8 - Metals (ICP/MS) - D Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND		1.0	0.20	ug/L		03/06/12 11:26	03/06/12 23:24	
Antimony	ND		2.0	0.30	ug/L		03/06/12 11:26	03/06/12 23:24	
Selenium	ND		2.0	0.50	ug/L		03/06/12 11:26	03/06/12 23:24	
Thallium	ND		1.0	0.20	ug/L		03/06/12 11:26	03/06/12 23:24	
Mothod: 245.1 Moroury (CVAA)									
Method: 245.1 - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.20	0.10	ug/L		03/01/12 17:42	03/02/12 20:11	
Method: 245.1 - Mercury (CVAA) - D	Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.23		0.20	0.10	ug/L		03/06/12 15:05	03/07/12 13:30	
Mathadi CM 2240D Tatal Handrag	- / C-CO2)							
Method: SM 2340B - Total Hardnes Analyte	•	Qualifier	on RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Hardness, as CaCO3	350		0.33	0.17	mg/L			03/16/12 16:07	
Method: SM 2340B - Total Hardnes	•	. •			11-4	5	Duan	Amal:	D" -
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Hardness, as CaCO3	330		0.33	0.17	mg/L			03/16/12 16:13	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Turbidity	0.090	J,DX	0.10	0.040	NTU			03/01/12 11:50	
Total Dissolved Solids	570		10	10	mg/L			03/05/12 10:41	
Total Suspended Solids	ND		10	10	mg/L			03/05/12 19:15	
Cyanide, Total	ND		5.0	3.0	ug/L		03/02/12 19:45	03/02/12 21:48	
Ammonia (as N)	0.280	J,DX	0.400	0.157	mg/L		03/01/12 15:53	03/01/12 20:05	
Total Organic Carbon	1.5		1.0	0.75	mg/L			03/06/12 11:17	
Methylene Blue Active Substances	ND		0.10	0.050	mg/L			03/01/12 20:02	
Biochemical Oxygen Demand	ND		2.0	0.50	mg/L			03/02/12 10:43	
Method: Gamma Spec K-40 CS-137	7 - General S	uh Contract I	Method						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cesium-137	0.622		0.66		pCi/L	<u>-</u>	03/14/12 00:00	03/17/12 00:00	
Potassium-40	1.26		17		pCi/L		03/14/12 00:00	03/17/12 00:00	
- -									
Method: Gross Alpha and Beta - Gi						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Gross Alpha	0.091		1.2		pCi/L		03/15/12 00:00	03/19/12 16:41	
Gross Beta	2.6	J	1.3		pCi/L		03/15/12 00:00	03/19/12 16:41	
Method: Radium-226 - RAD-226-22	8 combined								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Radium-226	0.1	U	0.35		pCi/L		03/21/12 00:00	03/21/12 13:09	-
Method: Radium-228 - General Sub	Contract M	ethod							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
			0.12		pCi/L		03/19/12 00:00	03/19/12 12:43	
Radium-228	0.022	U	0.12				00/10/12 00:00		
Radium-228			0.12				00, 10, 12 00.00		
	b Contract N		RL	MDL		D	Prepared	Analyzed	Dil Fa

2

TestAmerica Job ID: 440-3913-1

Client: MWH Americas Inc Project/Site: Boeing SSFL

Client Sample ID: Outfall 019 Composite

Date Collected: 02/29/12 11:30 Date Received: 02/29/12 17:55 Lab Sample ID: 440-4065-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tritium	-57.9	U	87		pCi/L		03/13/12 00:00	03/13/12 19:51	1
– Method: Uranium, Comb	ined - General Sub Co.	ntract Method							
Method: Uranium, Comb Analyte		ntract Method Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: Trip Blank

Date Collected: 02/29/12 10:33

Date Received: 02/29/12 17:55

Lab Sample ID:	440-4065-3
	Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137	-0.323	U	0.93		pCi/L		03/14/12 00:00	03/17/12 00:00	1
Potassium-40	19.9	U	32		pCi/L		03/14/12 00:00	03/17/12 00:00	1
Method: Gross Alpha and Beta - G	ross Alpha/E	Beta							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gross Alpha	-0.054	U	0.19		pCi/L		03/15/12 00:00	03/19/12 16:41	1
Gross Beta	0.221	U	0.66		pCi/L		03/15/12 00:00	03/19/12 16:41	1
Method: Radium 226 - General Sul	Contract M	ethod							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-226	0.022	U	0.25		pCi/L		03/21/12 00:00	03/21/12 13:09	1
Method: Radium 228 - RAD-226-22	8 combined								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-228	-0.108	U	0.099		pCi/L		03/19/12 00:00	03/19/12 12:43	1
Method: Strontium 90 - General Sເ	ıb Contract N	/lethod							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium-90	-0.166	U	0.26		pCi/L		03/16/12 00:00	03/16/12 09:46	1
Method: Uranium, Combined - Ger	neral Sub Co	ntract Method	d						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: MWH Americas Inc Project/Site: Boeing SSFL

Lab Sample ID: 440-3913-9

Lab Sample ID: 440-3913-11

Lab Sample ID: 440-4065-1

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: Outfall 019 Grab

Date Collected: 02/28/12 12:10 Date Received: 02/28/12 17:05

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 624 10368 02/29/12 23:47 MR TAL IRV Analysis 10 mL 10 mL Total/NA Analysis 624 10 mL 12466 03/11/12 21:38 RM TAL IRV 1 10 mL Total/NA 12427 03/10/12 13:52 Analysis 8015B 1 10 mL 10 mL TN TAL IRV Total/NA Prep 3510C 1040 mL mL 11076 03/05/12 09:35 TAL IRV Total/NA Analysis 8015B 11254 03/06/12 04:41 ES TAL IRV 1 Total/NA Analysis SM 2540F 1 1000 mL 1000 mL 10176 02/29/12 08:53 RR TAL IRV Total/NA 120.1 12569 03/12/12 09:15 XL TAL IRV Analysis 1 Total/NA Prep 1664A 1055 mL 1000 mL 12574 03/12/12 09:31 TAL IRV Total/NA 12658 TAL IRV Analysis 1664A 03/12/12 14:19 DA Total/NA Analysis SM 9221E 100 mL 100 mL 10219 PΡ TAL IRV 02/28/12 18:02 (Start) (End) 03/02/12 15:40 100 mL Total/NA Analysis SM 9221F 100 mL 10220 AK TAL IRV (Start) 02/28/12 18:02 (End) 03/02/12 15:40

Client Sample ID: Trip Blanks

Date Collected: 02/28/12 12:10

Date Received: 02/28/12 17:05

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	10 mL	10 mL	10368	03/01/12 01:42	MR	TAL IRV
Total/NA	Analysis	624		1	10 mL	10 mL	12466	03/11/12 17:26	RM	TAL IRV

Client Sample ID: Outfall 019 Composite

Date Collected: 02/29/12 11:30

Date Received: 02/29/12 17:55

	Batch	Batch		Dil	Initi	ial	Fin	al	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amo	unt	Amo	unt	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM		1	10	mL	10	mL	10469	03/01/12 23:34	GK	TAL IR\
Total/NA	Prep	625			1055	mL	2	mL	11009	03/04/12 18:28	DM	TAL IR
Total/NA	Analysis	625		5					11972	03/08/12 18:10	Al	TAL IR\
Total/NA	Analysis	625		5					12240	03/09/12 18:25	UP	TAL IR\
Total/NA	Prep	608			1060	mL	2	mL	10989	03/04/12 12:36	AB	TAL IR
Total/NA	Analysis	608 Pesticides		1					11073	03/05/12 13:27	DD	TAL IR
Total/NA	Analysis	608 PCB LL		1					11085	03/05/12 15:06	DD	TAL IR
Total/NA	Analysis	300.0		1	1	mL	1.0		10204	02/29/12 22:56	NN	TAL IR
Total/NA	Analysis	300.0		50	1	mL	1.0	mL	10205	02/29/12 23:09	NN	TAL IR
Total/NA	Analysis	218.6		1	10	mL	10	mL	10382	02/29/12 21:21	SL	TAL IR
Total/NA	Analysis	314.0		1	5	mL	1.0	mL	10437	03/01/12 14:37	MN	TAL IR
Total	Prep	3542			985.3	mL	20	uL	2062105_P	03/02/12 09:00	TL	TAL W
Total	Analysis	1613B		1.01					2062105	03/06/12 00:06	LLH	TAL W
Total/NA	Prep	245.1			20	mL	20	mL	10633	03/01/12 17:42	SN	TAL IR
	- 1											

6

5

6

7

10

Client: MWH Americas Inc
Project/Site: Boeing SSFL

Client Sample ID: Outfall 019 Composite

Total/NA

Analysis Uranium, Combined

Date Collected: 02/29/12 11:30
Date Received: 02/29/12 17:55

Lab Sample ID: 440-4065-1

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Init Amo		Fin Amo		Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	245.1		1					10858	03/02/12 20:11	DB	TAL IRV
Total Recoverable	Prep	200.2			50	mL	50	mL	11154	03/05/12 14:20	YS	TAL IRV
Total Recoverable	Analysis	200.8		1					11472	03/06/12 15:13	NH	TAL IRV
Dissolved	Prep	200.2			50	mL	50	mL	11400	03/06/12 11:26	EN	TAL IRV
Dissolved	Analysis	200.8		1					11615	03/06/12 23:24	NH	TAL IRV
Dissolved	Prep	245.1			20	mL	20	mL	11466	03/06/12 15:05	SN	TAL IRV
Dissolved	Analysis	245.1		1					11794	03/07/12 13:30	DB	TAL IRV
Dissolved	Prep	200.2			50	mL	50	mL	11406	03/06/12 11:52	EN	TAL IRV
Dissolved	Analysis	200.7 Rev 4.4		1					12020	03/08/12 12:09	VS	TAL IRV
Total Recoverable	Prep	200.2			50	mL	50	mL	11339	03/06/12 08:54	EN	TAL IRV
Total Recoverable	Analysis	200.7 Rev 4.4		1					13069	03/13/12 23:31	DP	TAL IRV
Total Recoverable	Analysis	200.7 Rev 4.4		1					13269	03/14/12 17:08	TK	TAL IRV
Total/NA	Analysis	SM 2340B		1					13789	03/16/12 16:07	DT	TAL IRV
Dissolved	Analysis	SM 2340B		1					13799	03/16/12 16:13	DT	TAL IRV
Total/NA	Prep	245.1			20	mL	20	mL	18451	04/09/12 15:50	SN	TAL IRV
Total/NA	Analysis	245.1		1					18539	04/09/12 17:48	DB	TAL IRV
Dissolved	Prep	245.1			20	mL	20	mL	18443	04/09/12 14:51	SN	TAL IRV
Dissolved	Analysis	245.1		1					18539	04/09/12 18:00	DB	TAL IRV
Total/NA	Analysis	180.1		1					10520	03/01/12 11:50	RR	TAL IRV
Total/NA	Analysis	SM 5540C		1	100	mL	100	mL	10656	03/01/12 20:02	NP	TAL IRV
Total/NA	Prep	SM 4500 NH3 B			50	mL	50	mL	10587	03/01/12 15:53	NP	TAL IRV
Total/NA	Analysis	SM 4500 NH3 C		1					10665	03/01/12 20:05	NP	TAL IRV
Total/NA	Analysis	SM5210B		1					10741	03/02/12 10:43	QPD	TAL IRV
Total/NA	Prep	Distill/CN			50	mL	50	mL	10790	03/02/12 19:45	PQI	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1					10872	03/02/12 21:48	PQI	TAL IRV
Total/NA	Analysis	SM 2540C		1	100	mL	100	mL	11105	03/05/12 10:41	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	100	mL	100	mL	11241	03/05/12 19:15	DK	TAL IRV
Total/NA	Analysis	SM 5310B		1	1.0	mL	1.0	mL	11428	03/06/12 11:17	FZ	TAL IRV
Total/NA	Prep	General Prep		1					8600 P	03/14/12 00:00		Eberline
Total/NA	Analysis	Gamma Spec K-40 CS-137		1					8600	03/17/12 00:00	RFM	Eberline
Total/NA	Prep	General Prep		1					8600_P	03/15/12 00:00		Eberline
Total/NA	Analysis	Gross Alpha and Beta		1					8600	03/19/12 16:41	DVP	Eberline
Total/NA	Prep	General Prep		1					8600_P	03/21/12 00:00		Eberline
Total/NA	Analysis	Radium-226		1					8600	03/21/12 13:09	ASM	Eberline
Total/NA	Prep	General Prep		1					8600_P	03/19/12 00:00		Eberline
Total/NA	Analysis	Radium-228		1					8600	03/19/12 12:43	ASM	Eberline
Total/NA	Prep	General Prep		1					8600_P	03/16/12 00:00		Eberline
Total/NA	Analysis	Strontium 90		1					8600	03/16/12 09:46	WL	Eberline
Total/NA	Prep	General Prep		1					8600_P	03/13/12 00:00		Eberline
Total/NA	Analysis	Tritium		1					8600	03/13/12 19:51	WL	Eberline

C

9

10

12

Eberline

8600

03/19/12 09:38 LS

Client: MWH Americas Inc

Project/Site: Boeing SSFL

Lab Sample ID: 440-4065-3

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 02/29/12 10:33

Date Received: 02/29/12 17:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	General Prep		1			8600_P	03/14/12 00:00		Eberline
Total/NA	Analysis	Gamma Spec K-40 CS-137		1			8600	03/17/12 00:00	RFM	Eberline
Total/NA	Prep	General Prep		1			8600_P	03/15/12 00:00		Eberline
Total/NA	Analysis	Gross Alpha and Beta		1			8600	03/19/12 16:41	DVP	Eberline
Total/NA	Prep	General Prep		1			8600_P	03/21/12 00:00		Eberline
Total/NA	Analysis	Radium 226		1			8600	03/21/12 13:09	ASM	Eberline
Total/NA	Prep	General Prep		1			8600_P	03/19/12 00:00		Eberline
Total/NA	Analysis	Radium 228		1			8600	03/19/12 12:43	ASM	Eberline
Total/NA	Prep	General Prep		1			8600_P	03/16/12 00:00		Eberline
Total/NA	Analysis	Strontium 90		1			8600	03/16/12 09:46	WL	Eberline
Total/NA	Analysis	Uranium, Combined		1			8600	03/19/12 09:54	LS	Eberline

Laboratory References:

= Truesdail Laboratories Inc, 14201 Franklin Ave, Tustin, CA 92780

Eberline = Eberline Services, 7021 Pan American Fwy NE, Albuquerque, NM 87109

SC0127 = Aquatic Testing Laboratories, 4350 Transport #107, Ventura, CA 93003

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL WSC = TestAmerica West Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-10368/5

Matrix: Water

Analysis Batch: 10368

Client	Sample	ID:	Meth	od	Blank
	Pre	ep T	ype:	Tot	tal/NA

-	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chloroethyl vinyl ether	ND	2.0	1.8	ug/L			02/29/12 22:04	1
Acrolein	ND	5.0	4.0	ug/L			02/29/12 22:04	1
Acrylonitrile	ND	2.0	1.2	ug/L			02/29/12 22:04	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		80 - 120		02/29/12 22:04	1
Dibromofluoromethane (Surr)	97		80 - 120		02/29/12 22:04	1

Lab Sample ID: LCS 440-10368/6 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10368

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Chloroethyl vinyl ether	25.0	29.7		ug/L		119	25 - 170	
Acrylonitrile	25.0	23.8		ug/L		95	40 - 160	

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 109 80 - 120 Dibromofluoromethane (Surr) 100 80 - 120

Lab Sample ID: 440-3913-9 MS Client Sample ID: Outfall 019 Grab **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 10368

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Chloroethyl vinyl ether	ND		25.0	31.4		ug/L		126	25 - 170	
Acrylonitrile	ND		25.0	24.5		ug/L		98	40 - 160	
	MS	MS								

	INIO INIO	WIG			
Surrogate	%Recovery Qu	alifier	Limits		
Toluene-d8 (Surr)	108		80 - 120		
Dibromofluoromethane (Surr)	100		80 - 120		

Lab Sample ID: 440-3913-9 MSD Client Sample ID: Outfall 019 Grab Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10368

7 maryolo Batom 10000	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Chloroethyl vinyl ether	ND		25.0	26.2		ug/L		105	25 - 170	18	25
Acrylonitrile	ND		25.0	19.0		ug/L		76	40 - 160	25	40

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120

TestAmerica Irvine 4/27/2012

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-12466/4	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 12466	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.30	ug/L			03/11/12 11:39	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.30	ug/L			03/11/12 11:39	1
1,1,2-Trichloroethane	ND		0.50	0.30	ug/L			03/11/12 11:39	1
1,1-Dichloroethane	ND		0.50	0.40	ug/L			03/11/12 11:39	1
Trichlorotrifluoroethane(F-113)	ND		2.0	0.50	ug/L			03/11/12 11:39	1
1,1-Dichloroethene	ND		0.50	0.42	ug/L			03/11/12 11:39	1
1,2-Dichlorobenzene	ND		0.50	0.32	ug/L			03/11/12 11:39	1
1,2-Dichloroethane	ND		0.50	0.28	ug/L			03/11/12 11:39	1
1,2-Dichloropropane	ND		0.50	0.35	ug/L			03/11/12 11:39	1
1,3-Dichlorobenzene	ND		0.50	0.35	ug/L			03/11/12 11:39	1
1,4-Dichlorobenzene	ND		0.50	0.37	ug/L			03/11/12 11:39	1
Benzene	ND		0.50	0.28	ug/L			03/11/12 11:39	1
Bromoform	ND		0.50	0.40	ug/L			03/11/12 11:39	1
1,2-Dichloro-1,1,2-trifluoroethane	ND		2.0	1.1	ug/L			03/11/12 11:39	1
Bromomethane	ND		0.50	0.42	ug/L			03/11/12 11:39	1
Carbon tetrachloride	ND		0.50	0.28	ug/L			03/11/12 11:39	1
Chlorobenzene	ND		0.50	0.36	ug/L			03/11/12 11:39	1
Dibromochloromethane	ND		0.50	0.40	ug/L			03/11/12 11:39	1
Chloroethane	ND		0.50	0.40	ug/L			03/11/12 11:39	1
Chloroform	ND		0.50	0.33	ug/L			03/11/12 11:39	1
Chloromethane	ND		0.50	0.40	ug/L			03/11/12 11:39	1
cis-1,3-Dichloropropene	ND		0.50	0.22	ug/L			03/11/12 11:39	1
Bromodichloromethane	ND		0.50	0.30	ug/L			03/11/12 11:39	1
Ethylbenzene	ND		0.50	0.25	ug/L			03/11/12 11:39	1
Methylene Chloride	ND		1.0	0.95	ug/L			03/11/12 11:39	1
Tetrachloroethene	ND		0.50	0.32	ug/L			03/11/12 11:39	1
Toluene	ND		0.50	0.36	ug/L			03/11/12 11:39	1
trans-1,2-Dichloroethene	ND		0.50	0.30	ug/L			03/11/12 11:39	1
trans-1,3-Dichloropropene	ND		0.50	0.32	ug/L			03/11/12 11:39	1
Trichlorofluoromethane	ND		0.50	0.34	ug/L			03/11/12 11:39	1
Vinyl chloride	ND		0.50	0.40	ug/L			03/11/12 11:39	1
Trichloroethene	ND		0.50	0.26	ug/L			03/11/12 11:39	1
cis-1,2-Dichloroethene	ND		0.50	0.32	ug/L			03/11/12 11:39	1
Cyclohexane	ND		2.0	0.40	ug/L			03/11/12 11:39	1
Xylenes, Total	ND		1.0	0.90	ug/L			03/11/12 11:39	1

 0

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113	80 - 120		03/11/12 11:39	1
Dibromofluoromethane (Surr)	100	80 - 120		03/11/12 11:39	1
Toluene-d8 (Surr)	101	80 120		03/11/12 11:30	1

Lab Sample ID: LCS 440-12466/5

Matrix: Water

Analysis Batch: 12466

Analysis Baton: 12-400							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.4		ug/L		98	65 - 135
1,1,2,2-Tetrachloroethane	25.0	23.6		ug/L		94	55 - 130
1,1,2-Trichloroethane	25.0	22.5		ug/L		90	70 - 125

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-12466/5

Matrix: Water

Analysis Batch: 12466

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	24.3		ug/L		97	70 - 125	
1,1-Dichloroethene	25.0	28.8		ug/L		115	70 - 125	
1,2-Dichlorobenzene	25.0	26.0		ug/L		104	75 - 120	
1,2-Dichloroethane	25.0	21.4		ug/L		86	60 - 140	
1,2-Dichloropropane	25.0	23.5		ug/L		94	70 - 125	
1,3-Dichlorobenzene	25.0	26.3		ug/L		105	75 - 120	
1,4-Dichlorobenzene	25.0	26.1		ug/L		104	75 _ 120	
Benzene	25.0	24.1		ug/L		96	70 - 120	
Bromoform	25.0	24.0		ug/L		96	55 - 130	
Bromomethane	25.0	19.7		ug/L		79	65 _ 140	
Carbon tetrachloride	25.0	24.5		ug/L		98	65 - 140	
Chlorobenzene	25.0	26.9		ug/L		108	75 - 120	
Dibromochloromethane	25.0	24.5		ug/L		98	70 - 140	
Chloroethane	25.0	17.5		ug/L		70	60 - 140	
Chloroform	25.0	23.7		ug/L		95	70 - 130	
Chloromethane	25.0	17.8		ug/L		71	50 - 140	
cis-1,3-Dichloropropene	25.0	23.4		ug/L		94	75 - 125	
Bromodichloromethane	25.0	23.3		ug/L		93	70 - 135	
Ethylbenzene	25.0	27.2		ug/L		109	75 - 125	
Methylene Chloride	25.0	22.5		ug/L		90	55 - 130	
Tetrachloroethene	25.0	27.5		ug/L		110	70 - 125	
Toluene	25.0	24.7		ug/L		99	70 - 120	
trans-1,2-Dichloroethene	25.0	26.4		ug/L		106	70 - 125	
trans-1,3-Dichloropropene	25.0	23.3		ug/L		93	70 - 125	
Trichlorofluoromethane	25.0	27.7		ug/L		111	65 _ 145	
Vinyl chloride	25.0	18.8		ug/L		75	55 - 135	
Trichloroethene	25.0	26.1		ug/L		104	70 - 125	
cis-1,2-Dichloroethene	25.0	26.0		ug/L		104	70 - 125	

75.0

79.7

ug/L

106

70 - 125

Client Sample ID: Matrix Spike

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		80 - 120
Dibromofluoromethane (Surr)	98		80 - 120
Toluene-d8 (Surr)	104		80 - 120

Lab Sample ID: 440-4348-C-1 MS

Matrix: Water

Xylenes, Total

Analysis Batch: 12466

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		25.0	24.5		ug/L		98	65 - 140	
1,1,2,2-Tetrachloroethane	ND		25.0	23.2		ug/L		93	55 - 135	
1,1,2-Trichloroethane	ND		25.0	25.4		ug/L		102	65 - 130	
1,1-Dichloroethane	ND		25.0	25.7		ug/L		103	65 - 130	
1,1-Dichloroethene	3.4		25.0	31.0		ug/L		110	60 - 130	
1,2-Dichlorobenzene	ND		25.0	26.6		ug/L		106	75 - 125	
1,2-Dichloroethane	ND		25.0	24.2		ug/L		97	60 - 140	
1,2-Dichloropropane	ND		25.0	25.7		ug/L		103	65 - 130	
1,3-Dichlorobenzene	ND		25.0	26.8		ug/L		107	75 - 125	

TestAmerica Irvine 4/27/2012

Page 21 of 123

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-4348-C-1 MS

Matrix: Water

Analysis Batch: 12466

Client Sample ID: Matrix Spike Prep Type: Total/NA

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier %Rec Limits Unit 1,4-Dichlorobenzene ND 25.0 26.1 104 75 - 125 ug/L Benzene ND 25.0 24.6 ug/L 98 65 - 125 25.4 Bromoform ND 25.0 102 ug/L 55 - 135 Bromomethane ND 25.0 24.0 ug/L 96 55 - 145 Carbon tetrachloride ND 25.0 24.0 96 65 - 140 ug/L Chlorobenzene ND 25.0 26.6 ug/L 106 75 - 125 Dibromochloromethane ND 25.0 26.6 ug/L 106 65 - 140 Chloroethane ND 25.0 20.7 ug/L 83 55 - 140 Chloroform 0.68 25.0 26.7 ug/L 104 65 - 135 75 45 - 145 Chloromethane ND 25.0 18.8 ug/L cis-1,3-Dichloropropene ND 25.0 25.8 ug/L 103 70 - 130 25.0 25.6 102 Bromodichloromethane ND ug/L 70 - 135 ND 25.0 104 Ethylbenzene 25.9 ug/L 65 - 130 Methylene Chloride ND 25.0 25.0 100 50 - 135 ug/L Tetrachloroethene 29 25.0 51.4 91 65 - 130 ug/L Toluene ND 25.0 25.2 ug/L 101 70 - 125 trans-1,2-Dichloroethene ND 25.0 26.6 106 65 - 130 ug/L 25.0 26.6 65 - 135

25.0

25.0

25.0

25.0

75.0

27.2

20.7

53.5

28.3

77.5

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

MS MS

ND

ND

ND

29

ND

ND

Surrogate	%Recovery Qualifie	r Limits
4-Bromofluorobenzene (Surr)	111	80 - 120
Dibromofluoromethane (Surr)	107	80 - 120
Toluene-d8 (Surr)	104	80 - 120

Lab Sample ID: 440-4348-C-1 MSD

Matrix: Water

Analysis Batch: 12466

trans-1,3-Dichloropropene

Trichlorofluoromethane

cis-1.2-Dichloroethene

Vinyl chloride

Trichloroethene

Xylenes, Total

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

60 - 145

45 - 140

65 - 125

65 - 130

60 - 130

106

109

83

98

113

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		25.0	24.4		ug/L		98	65 - 140	0	20
1,1,2,2-Tetrachloroethane	ND		25.0	23.0		ug/L		92	55 - 135	1	30
1,1,2-Trichloroethane	ND		25.0	25.3		ug/L		101	65 - 130	0	25
1,1-Dichloroethane	ND		25.0	25.7		ug/L		103	65 - 130	0	20
1,1-Dichloroethene	3.4		25.0	31.1		ug/L		111	60 - 130	0	20
1,2-Dichlorobenzene	ND		25.0	26.2		ug/L		105	75 - 125	2	20
1,2-Dichloroethane	ND		25.0	24.0		ug/L		96	60 - 140	1	20
1,2-Dichloropropane	ND		25.0	25.3		ug/L		101	65 - 130	2	20
1,3-Dichlorobenzene	ND		25.0	26.2		ug/L		105	75 - 125	2	20
1,4-Dichlorobenzene	ND		25.0	25.7		ug/L		103	75 - 125	2	20
Benzene	ND		25.0	24.3		ug/L		97	65 - 125	1	20
Bromoform	ND		25.0	26.0		ug/L		104	55 - 135	2	25
Bromomethane	ND		25.0	23.4		ug/L		94	55 - 145	3	25
Carbon tetrachloride	ND		25.0	24.3		ug/L		97	65 - 140	1	25
Chlorobenzene	ND		25.0	26.6		ug/L		106	75 - 125	0	20

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-4348-C-1 MSD

Matrix: Water

Analysis Batch: 12466

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Samp	e Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte Resu	It Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibromochloromethane N	D	25.0	26.9		ug/L		108	65 - 140	1	25
Chloroethane	D	25.0	20.4		ug/L		82	55 - 140	1	25
Chloroform 0.6	8	25.0	26.5		ug/L		103	65 - 135	1	20
Chloromethane	D	25.0	18.4		ug/L		74	45 - 145	2	25
cis-1,3-Dichloropropene	D	25.0	26.0		ug/L		104	70 - 130	1	20
Bromodichloromethane	D	25.0	25.7		ug/L		103	70 - 135	0	20
Ethylbenzene N	D	25.0	26.0		ug/L		104	65 - 130	0	20
Methylene Chloride	D	25.0	25.1		ug/L		100	50 - 135	0	20
Tetrachloroethene	9	25.0	50.5		ug/L		87	65 - 130	2	20
Toluene	D	25.0	25.0		ug/L		100	70 - 125	1	20
trans-1,2-Dichloroethene	D	25.0	26.3		ug/L		105	65 - 130	1	20
trans-1,3-Dichloropropene N	D	25.0	26.5		ug/L		106	65 - 135	0	25
Trichlorofluoromethane N	D	25.0	26.9		ug/L		108	60 - 145	1	25
Vinyl chloride N	D	25.0	20.2		ug/L		81	45 - 140	2	30
Trichloroethene	9	25.0	52.4		ug/L		94	65 - 125	2	20
cis-1,2-Dichloroethene N	D	25.0	28.1		ug/L		112	65 - 130	1	20
Xylenes, Total	D	75.0	78.0		ug/L		104	60 - 130	1	20

MSD MSD

MB MB

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		80 - 120
Dibromofluoromethane (Surr)	107		80 - 120
Toluene-d8 (Surr)	105		80 - 120

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-10469/3

Matrix: Water

Analysis Batch: 10469

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		2.0	1.0	ug/L			03/01/12 12:56	1
	MB	MB							

Surrogate %Recovery Qualifier Limits Analyzed Dil Fac Prepared 80 - 120 Dibromofluoromethane (Surr) 102 03/01/12 12:56

Lab Sample ID: LCS 440-10469/4

Matrix: Water

Analysis Batch: 10469

	Бріке	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	10.0	10.2		ug/L		102	70 - 125	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	100		80 - 120

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-3827-B-3 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 10469

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	ND		10.0	11.5		ug/L		115	70 - 130	

MS MS

Surrogate %Recovery Qualifier Limits 80 - 120 Dibromofluoromethane (Surr) 107

Lab Sample ID: 440-3827-B-3 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10469

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	ND		10.0	11.8		ug/L		118	70 - 130	3	30

MSD MSD

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 108 80 - 120

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-11009/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 11972 Prep Batch: 11009

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
Acenaphthylene	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
Anthracene	ND		10.0	2.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
Benzidine	ND		20.0	10.0	ug/L		03/04/12 18:28	03/08/12 15:46	1
Benzo[a]anthracene	ND		10.0	2.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
Benzo[a]pyrene	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
Benzo[b]fluoranthene	ND		10.0	2.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
Benzo[g,h,i]perylene	ND		10.0	4.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
Benzo[k]fluoranthene	ND		10.0	2.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
Bis(2-chloroethoxy)methane	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
Bis(2-chloroethyl)ether	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
bis (2-chloroisopropyl) ether	ND		10.0	2.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
Bis(2-ethylhexyl) phthalate	ND		50.0	4.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
4-Bromophenyl phenyl ether	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
Butyl benzyl phthalate	ND		20.0	4.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
4-Chloro-3-methylphenol	ND		20.0	2.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
2-Chloronaphthalene	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
2-Chlorophenol	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
4-Chlorophenyl phenyl ether	ND		10.0	2.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
Chrysene	ND		10.0	2.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
Dibenz(a,h)anthracene	ND		20.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
1,2-Dichlorobenzene	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
1,3-Dichlorobenzene	ND		10.0	3.00	ug/L		03/04/12 18:28	03/08/12 15:46	1
1,4-Dichlorobenzene	ND		10.0	2.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
3,3'-Dichlorobenzidine	ND		20.0	7.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
2,4-Dichlorophenol	ND		10.0	3.50	ug/L		03/04/12 18:28	03/08/12 15:46	1
Diethyl phthalate	ND		10.0	3.50	ug/L		03/04/12 18:28	03/08/12 15:46	1

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

ND

ND

ND

ND

ND

ND

ND

NΠ

ND

ND

MB MB

Lab Sample ID: MB 440-11009/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 11972** Prep Batch: 11009 MB MB Result Qualifier RL MDL Unit Prepared Dil Fac Analyte D Analyzed 2,4-Dimethylphenol 20.0 ND ug/L 03/04/12 18:28 03/08/12 15:46 3.50 Dimethyl phthalate ND 10.0 2.50 ug/L 03/04/12 18:28 03/08/12 15:46 ND 20.0 Di-n-butyl phthalate 3.00 ug/L 03/04/12 18:28 03/08/12 15:46 4,6-Dinitro-2-methylphenol ND 20.0 4.00 ug/L 03/04/12 18:28 03/08/12 15:46 2,4-Dinitrophenol ND 20.0 8.00 03/04/12 18:28 03/08/12 15:46 ug/L 2,4-Dinitrotoluene ND 10.0 3.50 ug/L 03/04/12 18:28 03/08/12 15:46 2.00 2,6-Dinitrotoluene ND 10.0 ug/L 03/04/12 18:28 03/08/12 15:46 Di-n-octyl phthalate ND 20.0 3.50 ug/L 03/04/12 18:28 03/08/12 15:46 ND 20.0 2 50 ug/L 03/04/12 18:28 03/08/12 15:46 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene ND 10.0 3.00 ug/L 03/04/12 18:28 03/08/12 15:46 Fluorene ND 10.0 3.00 ug/L 03/04/12 18:28 03/08/12 15:46 Hexachlorobenzene ND 10.0 3.00 ug/L 03/04/12 18:28 03/08/12 15:46 ND Hexachlorobutadiene 10.0 4.00 ug/L 03/04/12 18:28 03/08/12 15:46 Hexachlorocyclopentadiene ND 20.0 5.00 03/04/12 18:28 03/08/12 15:46 ug/L Hexachloroethane ND 10.0 3.50 ug/L 03/04/12 18:28 03/08/12 15:46 Indeno[1,2,3-cd]pyrene ND 20.0 3.50 03/04/12 18:28 03/08/12 15:46 ug/L ND 10.0 03/04/12 18:28 03/08/12 15:46 Isophorone 3.00 ug/L Naphthalene ND 10.0 3.00 ug/L 03/04/12 18:28 03/08/12 15:46

20.0

10.0

20.0

10.0

10.0

20.0

10.0

10.0

10.0

10.0

20.0

3.00 ug/L

3.50 ug/L

5.50

3.50 ug/L

2.00 ug/L

3.50

3.50 ug/L

2.00

4.00 ug/L

2.50 ug/L

4.50 ug/L

ug/L

ug/L

ug/L

2,4,6-Trichlorophenol	ND

	IVIB	IVIB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	89		50 - 120	03/04/12 18:28	03/08/12 15:46	1
2-Fluorophenol	70		30 - 120	03/04/12 18:28	03/08/12 15:46	1
2,4,6-Tribromophenol	101		40 - 120	03/04/12 18:28	03/08/12 15:46	1
Nitrobenzene-d5	75		45 - 120	03/04/12 18:28	03/08/12 15:46	1
Terphenyl-d14	106		50 - 125	03/04/12 18:28	03/08/12 15:46	1
Phenol-d6	70		35 - 120	03/04/12 18:28	03/08/12 15:46	1

Lab Sample ID: MB 440-11009/1-A

Matrix: Water

Nitrobenzene

2-Nitrophenol

4-Nitrophenol

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

1,2,4-Trichlorobenzene

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Analysis Batch: 12240

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 11009

03/08/12 15:46

03/08/12 15:46

03/08/12 15:46

03/08/12 15:46

03/08/12 15:46

03/08/12 15:46

03/08/12 15:46

03/08/12 15:46

03/08/12 15:46

03/08/12 15:46

03/08/12 15:46

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

03/04/12 18:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodimethylamine	ND		20.0	2.50	ug/L		03/04/12 18:28	03/09/12 17:22	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85		50 - 120	03/04/12 18:28	03/09/12 17:22	1
2-Fluorophenol	57		30 - 120	03/04/12 18:28	03/09/12 17:22	1

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 440-11009/1-A

Matrix: Water

Analysis Batch: 12240

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 11009

	III D	III D				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	111		40 - 120	03/04/12 18:28	03/09/12 17:22	1
Nitrobenzene-d5	89		45 - 120	03/04/12 18:28	03/09/12 17:22	1
Terphenyl-d14	89		50 ₋ 125	03/04/12 18:28	03/09/12 17:22	1
Phenol-d6	67		35 - 120	03/04/12 18:28	03/09/12 17:22	1

Spike

LCS LCS

Lab Sample ID: LCS 440-11009/2-A

Matrix: Water

2,4-Dinitrotoluene

2,6-Dinitrotoluene

Azobenzene)

Fluoranthene

Fluorene

Di-n-octyl phthalate

Hexachlorobenzene

1,2-Diphenylhydrazine(as

Analysis Batch: 11972

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 11009

%Rec.

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	100	93.00		ug/L		93	60 - 120	
Acenaphthylene	100	105.0		ug/L		105	60 - 120	
Anthracene	100	101.2		ug/L		101	65 - 120	
Benzidine	100	172.6	LQ	ug/L		173	30 - 160	
Benzo[a]anthracene	100	101.6		ug/L		102	65 - 120	
Benzo[a]pyrene	100	106.2		ug/L		106	55 - 130	
Benzo[b]fluoranthene	100	103.0		ug/L		103	55 _ 125	
Benzo[g,h,i]perylene	100	108.4		ug/L		108	45 - 135	
Benzo[k]fluoranthene	100	104.4		ug/L		104	50 _ 125	
Bis(2-chloroethoxy)methane	100	83.80		ug/L		84	55 - 120	
Bis(2-chloroethyl)ether	100	82.20		ug/L		82	50 - 120	
bis (2-chloroisopropyl) ether	100	77.80		ug/L		78	45 - 120	
Bis(2-ethylhexyl) phthalate	100	110.8		ug/L		111	65 - 130	
4-Bromophenyl phenyl ether	100	96.00		ug/L		96	60 - 120	
Butyl benzyl phthalate	100	114.2		ug/L		114	55 - 130	
4-Chloro-3-methylphenol	100	90.20		ug/L		90	60 - 120	
2-Chloronaphthalene	100	91.40		ug/L		91	60 - 120	
2-Chlorophenol	100	79.60		ug/L		80	45 - 120	
4-Chlorophenyl phenyl ether	100	98.20		ug/L		98	65 - 120	
Chrysene	100	104.0		ug/L		104	65 - 120	
Dibenz(a,h)anthracene	100	109.4		ug/L		109	50 - 135	
1,2-Dichlorobenzene	100	70.60		ug/L		71	40 - 120	
1,3-Dichlorobenzene	100	66.60		ug/L		67	35 - 120	
1,4-Dichlorobenzene	100	69.80		ug/L		70	35 - 120	
3,3'-Dichlorobenzidine	100	82.00		ug/L		82	45 - 135	
2,4-Dichlorophenol	100	89.40		ug/L		89	55 - 120	
Diethyl phthalate	100	97.80		ug/L		98	55 - 120	
2,4-Dimethylphenol	100	81.80		ug/L		82	40 - 120	
Dimethyl phthalate	100	98.20		ug/L		98	30 - 120	
Di-n-butyl phthalate	100	102.4		ug/L		102	60 - 125	
4,6-Dinitro-2-methylphenol	100	116.6		ug/L		117	45 - 120	
2,4-Dinitrophenol	100	97.00		ug/L		97	40 - 120	

TestAmerica Irvine 4/27/2012

108

102

117

83

104

98

98

65 - 120

65 - 120

65 - 135

60 - 120

60 - 120

65 - 120

60 - 120

100

100

100

100

100

100

100

107.8

102.4

117.0

82.60

104.0

97.60

98.00

ug/L

ug/L

ug/L ug/L

ug/L

ug/L

ug/L

Client: MWH Americas Inc Project/Site: Boeing SSFL

TestAmerica Job ID: 440-3913-1

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-11009/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 11972** Prep Batch: 11009

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hexachlorobutadiene	100	70.40		ug/L		70	40 - 120	
Hexachlorocyclopentadiene	100	64.40		ug/L		64	25 _ 120	
Hexachloroethane	100	61.00		ug/L		61	35 _ 120	
Indeno[1,2,3-cd]pyrene	100	110.2		ug/L		110	45 - 135	
Isophorone	100	85.80		ug/L		86	50 - 120	
Naphthalene	100	84.60		ug/L		85	55 - 120	
2-Nitrophenol	100	86.40		ug/L		86	50 - 120	
4-Nitrophenol	100	87.00		ug/L		87	45 - 120	
N-Nitrosodi-n-propylamine	100	88.60		ug/L		89	45 - 120	
N-Nitrosodiphenylamine	100	90.80		ug/L		91	60 - 120	
Pentachlorophenol	100	91.40		ug/L		91	24 - 121	
Phenanthrene	100	97.80		ug/L		98	65 _ 120	
Phenol	100	67.20		ug/L		67	40 - 120	
Pyrene	100	110.6		ug/L		111	55 - 125	
1,2,4-Trichlorobenzene	100	74.00		ug/L		74	45 - 120	
2,4,6-Trichlorophenol	100	94.80		ug/L		95	55 - 120	

LCS LCS %Recovery Qualifier Surrogate Limits 2-Fluorobiphenyl 96 50 - 120 2-Fluorophenol 73 30 - 120 2,4,6-Tribromophenol 108 40 - 120 Nitrobenzene-d5 81 45 - 120 Terphenyl-d14 117 50 - 125 Phenol-d6 75 35 - 120

Lab Sample ID: LCS 440-11009/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 12240

Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit 100 N-Nitrosodimethylamine 81.40 ug/L 81 45 _ 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	92		50 - 120
2-Fluorophenol	62		30 - 120
2,4,6-Tribromophenol	117		40 - 120
Nitrobenzene-d5	98		45 - 120
Terphenyl-d14	91		50 - 125
Phenol-d6	74		35 - 120

Lab Sample ID: LCSD 440-11009/3-A **Matrix: Water**

Analysis Batch: 11972

Prep Batch: 11009 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Limits RPD Limit Unit %Rec 100 91.40 60 - 120 2 20 Acenaphthene ug/L 91 100 102.2 102 Acenaphthylene ug/L 60 - 120 3 20 Anthracene 100 96.40 ug/L 96 65 - 120 5 20 Benzidine 100 165.2 LQ ug/L 165 30 - 160

> TestAmerica Irvine 4/27/2012

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Batch: 11009

Spike

LCSD LCSD

TestAmerica Job ID: 440-3913-1

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab	Sample	ID:	LCSD	440-1	I1009/3-A	
-----	--------	-----	------	-------	-----------	--

Matrix: Water

Analysis Batch: 11972

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Prep Batch: 11009

	Бріке	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Benzo[a]anthracene	100	96.20	ug/L		96	65 - 120	5	20
Benzo[a]pyrene	100	101.0	ug/L		101	55 - 130	5	25
Benzo[b]fluoranthene	100	100.2	ug/L		100	55 - 125	3	25
Benzo[g,h,i]perylene	100	103.2	ug/L		103	45 - 135	5	25
Benzo[k]fluoranthene	100	99.80	ug/L		100	50 - 125	5	20
Bis(2-chloroethoxy)methane	100	81.60	ug/L		82	55 - 120	3	20
Bis(2-chloroethyl)ether	100	79.00	ug/L		79	50 - 120	4	20
bis (2-chloroisopropyl) ether	100	78.00	ug/L		78	45 - 120	0	20
Bis(2-ethylhexyl) phthalate	100	107.8	ug/L		108	65 - 130	3	20
4-Bromophenyl phenyl ether	100	94.80	ug/L		95	60 - 120	1	25
Butyl benzyl phthalate	100	106.2	ug/L		106	55 - 130	7	20
4-Chloro-3-methylphenol	100	89.40	ug/L		89	60 - 120	1	25
2-Chloronaphthalene	100	90.00	ug/L		90	60 - 120	2	20
2-Chlorophenol	100	79.20	ug/L		79	45 - 120	1	25
4-Chlorophenyl phenyl ether	100	93.40	ug/L		93	65 - 120	5	20
Chrysene	100	98.80	ug/L		99	65 - 120	5	20
Dibenz(a,h)anthracene	100	101.4	ug/L		101	50 - 135	8	25
1,2-Dichlorobenzene	100	68.80	ug/L		69	40 - 120	3	25
1,3-Dichlorobenzene	100	64.80	ug/L		65	35 - 120	3	25
1,4-Dichlorobenzene	100	67.00	ug/L		67	35 - 120	4	25
3,3'-Dichlorobenzidine	100	82.60	ug/L		83	45 - 135	1	25
2,4-Dichlorophenol	100	86.60	ug/L		87	55 - 120	3	20
Diethyl phthalate	100	93.80	ug/L		94	55 - 120	4	30
2,4-Dimethylphenol	100	78.60	ug/L		79	40 - 120	4	25
Dimethyl phthalate	100	95.20	ug/L		95	30 - 120	3	30
Di-n-butyl phthalate	100	99.20	ug/L		99	60 - 125	3	20
4,6-Dinitro-2-methylphenol	100	111.4	ug/L		111	45 - 120	5	25
2,4-Dinitrophenol	100	95.20	ug/L		95	40 - 120	2	25
2,4-Dinitrotoluene	100	100.8	ug/L		101	65 - 120	7	20
2,6-Dinitrotoluene	100	98.20	ug/L		98	65 - 120	4	20
Di-n-octyl phthalate	100	111.4	ug/L		111	65 - 135	5	20
1,2-Diphenylhydrazine(as	100	79.00	ug/L		79	60 - 120	4	25
Azobenzene)								
Fluoranthene	100	97.80	ug/L		98	60 - 120	6	20
Fluorene	100	91.60	ug/L		92	65 - 120	6	20
Hexachlorobenzene	100	97.40	ug/L		97	60 - 120	1	20
Hexachlorobutadiene	100	66.40	ug/L		66	40 - 120	6	25
Hexachlorocyclopentadiene	100	66.00	ug/L		66	25 - 120	2	30
Hexachloroethane	100	58.80	ug/L		59	35 - 120	4	25
Indeno[1,2,3-cd]pyrene	100	107.6	ug/L		108	45 - 135	2	25
Isophorone	100	82.20	ug/L		82	50 - 120	4	20
Naphthalene	100	81.60	ug/L		82	55 - 120	4	20
2-Nitrophenol	100	85.00	ug/L		85	50 - 120	2	25
4-Nitrophenol	100	86.00	ug/L		86	45 - 120	1	30
N-Nitrosodi-n-propylamine	100	85.00	ug/L		85	45 - 120	4	20

TestAmerica Irvine 4/27/2012

2

20

25

20

25

88.80

87.60

94.00

66.00

102.6

ug/L

ug/L

ug/L

ug/L

ug/L

89

88

94

66

103

60 - 120

24 - 121

65 - 120

40 - 120

55 - 125

100

100

100

100

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

82

108

72

Lab Sample ID: LCSD 440-11009/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 11972** Prep Batch: 11009 LCSD LCSD Spike **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 1,2,4-Trichlorobenzene 100 71.00 71 45 - 120 20 ug/L 4 2,4,6-Trichlorophenol 100 95.00 ug/L 95 55 - 120 LCSD LCSD %Recovery Qualifier Surrogate Limits 2-Fluorobiphenyl 95 50 - 120 2-Fluorophenol 70 30 - 120 2,4,6-Tribromophenol 107 40 - 120

LCSD LCSD

82.00

Result Qualifier

Unit

ug/L

D

%Rec

82

45 - 120

50 - 125

35 - 120

Spike

Added

100

Lab Sample ID: LCSD 440-11009/3-A

Matrix: Water

Nitrobenzene-d5

Terphenyl-d14

Phenol-d6

Analyte

Analysis Batch: 12240

N-Nitrosodimethylamine

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 11009

> %Rec. RPD Limits RPD Limit 45 - 120

LCSD LCSD Surrogate %Recovery Qualifier Limits 2-Fluorobiphenyl 90 50 - 120 55 2-Fluorophenol 30 - 120 2,4,6-Tribromophenol 115 40 - 120 Nitrobenzene-d5 100 45 - 120 Terphenyl-d14 87 50 - 125 Phenol-d6 70 35 - 120

Method: 8015B - Gasoline Range Organics - (GC)

Lab Sample ID: MB 440-12427/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 12427

MR MR MDL Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac GRO (C4-C12) ND 0.050 0.025 mg/L 03/10/12 13:19

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 103 65 - 140 03/10/12 13:19

MB MB

Lab Sample ID: LCS 440-12427/2

Matrix: Water

Analysis Batch: 12427

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	[%Re	c Limits	
GRO (C4-C12)	0.800	0.698		mg/L		8	7 80 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	120		65 - 140

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Lab Sample ID: 440-4070-A-8 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 12427

Sample Sample Spike MS MS %Rec. Result Qualifier Added Limits Result Qualifier D %Rec Analyte Unit 0.800 65 - 140 GRO (C4-C12) 0.051 0.662 mg/L 76

MS MS %Recovery Qualifier Limits Surrogate 147 AY 65 - 140 4-Bromofluorobenzene (Surr)

Lab Sample ID: 440-4070-A-8 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 12427

MSD MSD RPD Sample Sample Spike %Rec. Qualifier Added RPD Limit Analyte Result Result Qualifier Limits Unit %Rec GRO (C4-C12) 0.800 79 20 0.051 0.687 mg/L 65 _ 140

MSD MSD Surrogate %Recovery Qualifier Limits 65 - 140 4-Bromofluorobenzene (Surr) 144 AY

Method: 608 PCB LL - Polychlorinated Biphenyls (PCBs) Low level

Lab Sample ID: MB 440-10989/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 11085** Prep Batch: 10989 мв мв

		··· ·							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		0.50	0.25	ug/L		03/04/12 12:36	03/05/12 11:37	1
Aroclor 1221	ND		0.50	0.25	ug/L		03/04/12 12:36	03/05/12 11:37	1
Aroclor 1232	ND		0.50	0.25	ug/L		03/04/12 12:36	03/05/12 11:37	1
Aroclor 1242	ND		0.50	0.25	ug/L		03/04/12 12:36	03/05/12 11:37	1
Aroclor 1248	ND		0.50	0.25	ug/L		03/04/12 12:36	03/05/12 11:37	1
Aroclor 1254	ND		0.50	0.25	ug/L		03/04/12 12:36	03/05/12 11:37	1
Aroclor 1260	ND		0.50	0.25	ug/L		03/04/12 12:36	03/05/12 11:37	1

MB MB %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 45 - 120 03/04/12 12:36 DCB Decachlorobiphenyl (Surr) 77 03/05/12 11:37

Lab Sample ID: LCS 440-10989/5-A

Matrix: Water

Analysis Batch: 11085

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 10989

Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits Aroclor 1016 4.00 2.71 ug/L 68 50 - 115 Aroclor 1260 4.00 78 3.11 ug/L 60 - 120

LCS LCS Surrogate %Recovery Qualifier Limits 45 _ 120 DCB Decachlorobiphenyl (Surr) 75

TestAmerica Job ID: 440-3913-1

Prep Type: Total/NA

Method: 608 PCB LL - Polychlorinated Biphenyls (PCBs) Low level (Continued)

Lab Sample ID: 440-3893-L-5-A MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 11085** Prep Batch: 10989

		Sample	Sample	Spike	MS	MS				%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Aroclor 1016	ND		3.81	2.54		ug/L		67	45 - 120	
١	Aroclor 1260	ND		3.81	2.97		ug/L		78	55 - 125	

MS MS %Recovery Qualifier Surrogate I imits DCB Decachlorobiphenyl (Surr) 72 45 - 120

Lab Sample ID: 440-3893-L-5-B MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Analysis Batch: 11085

Prep Batch: 10989 MSD MSD RPD Sample Sample Spike %Rec. Result Qualifier Result Qualifier Limit Analyte Added Unit D %Rec Limits **RPD** Aroclor 1016 ND 3.81 3.06 80 45 - 120 18 30 ug/L Aroclor 1260 ND 3.81 3.52 ug/L 92 55 - 125 17

MSD MSD Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 87 45 - 120

Method: 608 Pesticides - Organochlorine Pesticides Low level

Lab Sample ID: MB 440-10989/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 11073								Prep Batch	າ: 10989
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0050	0.0040	ug/L		03/04/12 12:36	03/05/12 12:18	1
4,4'-DDE	ND		0.0050	0.0030	ug/L		03/04/12 12:36	03/05/12 12:18	1
4,4'-DDT	ND		0.010	0.0040	ug/L		03/04/12 12:36	03/05/12 12:18	1
Aldrin	ND		0.0050	0.0015	ug/L		03/04/12 12:36	03/05/12 12:18	1
alpha-BHC	ND		0.0050	0.0025	ug/L		03/04/12 12:36	03/05/12 12:18	1
beta-BHC	ND		0.010	0.0040	ug/L		03/04/12 12:36	03/05/12 12:18	1
Chlordane (technical)	ND		0.10	0.0080	ug/L		03/04/12 12:36	03/05/12 12:18	1
delta-BHC	ND		0.0050	0.0035	ug/L		03/04/12 12:36	03/05/12 12:18	1
Dieldrin	ND		0.0050	0.0020	ug/L		03/04/12 12:36	03/05/12 12:18	1
Endosulfan I	ND		0.0050	0.0030	ug/L		03/04/12 12:36	03/05/12 12:18	1
Endosulfan II	ND		0.0050	0.0020	ug/L		03/04/12 12:36	03/05/12 12:18	1
Endosulfan sulfate	ND		0.010	0.0030	ug/L		03/04/12 12:36	03/05/12 12:18	1
Endrin	ND		0.0050	0.0020	ug/L		03/04/12 12:36	03/05/12 12:18	1
Endrin aldehyde	ND		0.010	0.0020	ug/L		03/04/12 12:36	03/05/12 12:18	1
gamma-BHC (Lindane)	ND		0.010	0.0030	ug/L		03/04/12 12:36	03/05/12 12:18	1
Heptachlor	ND		0.010	0.0030	ug/L		03/04/12 12:36	03/05/12 12:18	1
Heptachlor epoxide	ND		0.0050	0.0025	ug/L		03/04/12 12:36	03/05/12 12:18	1
Toxaphene	ND		0.50	0.25	ug/L		03/04/12 12:36	03/05/12 12:18	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	128	PLAY	35 - 115				03/04/12 12:36	03/05/12 12:18	1

Client Sample ID: Matrix Spike

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 608 Pesticides - Organochlorine Pesticides Low level (Continued)

Lab Sample ID: LCS 440-10989/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 11073** Prep Batch: 10989

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	0.500	0.426		ug/L		85	55 _ 120	
4,4'-DDE	0.500	0.408		ug/L		82	50 - 120	
4,4'-DDT	0.500	0.385		ug/L		77	55 - 120	
Aldrin	0.500	0.398		ug/L		80	40 - 115	
alpha-BHC	0.500	0.423		ug/L		85	45 - 115	
beta-BHC	0.500	0.413		ug/L		83	55 - 115	
delta-BHC	0.500	0.448		ug/L		90	55 - 115	
Dieldrin	0.500	0.397		ug/L		79	55 - 115	
Endosulfan I	0.500	0.380		ug/L		76	55 - 115	
Endosulfan II	0.500	0.384		ug/L		77	55 - 120	
Endosulfan sulfate	0.500	0.384		ug/L		77	60 - 120	
Endrin	0.500	0.375		ug/L		75	55 - 115	
Endrin aldehyde	0.500	0.385		ug/L		77	50 - 120	
gamma-BHC (Lindane)	0.500	0.424		ug/L		85	45 - 115	
Heptachlor	0.500	0.395		ug/L		79	45 - 115	
Heptachlor epoxide	0.500	0.393		ug/L		79	55 - 115	

LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 76 35 - 115

Lab Sample ID: 440-3893-J-5-A MS

Matrix: Water Prep Type: Total/NA **Analysis Batch: 11073** Prep Batch: 10989

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	ND		0.481	0.405		ug/L		84	50 - 125
4,4'-DDE	ND		0.481	0.387		ug/L		80	45 - 125
4,4'-DDT	ND		0.481	0.378		ug/L		79	50 - 125
Aldrin	ND		0.481	0.390		ug/L		81	35 - 120
alpha-BHC	ND		0.481	0.410		ug/L		85	40 - 120
beta-BHC	ND		0.481	0.406		ug/L		84	50 - 120
delta-BHC	ND		0.481	0.436		ug/L		91	50 - 120
Dieldrin	ND		0.481	0.384		ug/L		80	50 - 120
Endosulfan I	ND		0.481	0.360		ug/L		75	50 - 120
Endosulfan II	ND		0.481	0.370		ug/L		77	50 - 125
Endosulfan sulfate	ND		0.481	0.374		ug/L		78	55 - 125
Endrin	ND		0.481	0.384		ug/L		80	50 - 120
Endrin aldehyde	ND		0.481	0.352		ug/L		73	45 - 125
gamma-BHC (Lindane)	ND		0.481	0.414		ug/L		86	40 - 120
Heptachlor	ND		0.481	0.397		ug/L		83	40 - 120
Heptachlor epoxide	ND		0.481	0.382		ug/L		79	50 - 120
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						

	MS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	76		35 - 115

Client: MWH Americas Inc Project/Site: Boeing SSFL

Matrix: Water

Lab Sample ID: 440-3893-J-5-B MSD

Method: 608 Pesticides - Organochlorine Pesticides Low level (Continued)

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Analysis Batch: 11073									Prep	Batch:	10989
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	ND		0.476	0.395		ug/L		83	50 - 125	3	30
4,4'-DDE	ND		0.476	0.372		ug/L		78	45 - 125	4	30
4,4'-DDT	ND		0.476	0.362		ug/L		76	50 - 125	4	30
Aldrin	ND		0.476	0.358		ug/L		75	35 - 120	8	30
alpha-BHC	ND		0.476	0.377		ug/L		79	40 - 120	8	30
beta-BHC	ND		0.476	0.379		ug/L		80	50 - 120	7	30
delta-BHC	ND		0.476	0.412		ug/L		87	50 - 120	6	30
Dieldrin	ND		0.476	0.369		ug/L		77	50 - 120	4	30
Endosulfan I	ND		0.476	0.344		ug/L		72	50 - 120	5	30
Endosulfan II	ND		0.476	0.359		ug/L		75	50 - 125	3	30
Endosulfan sulfate	ND		0.476	0.361		ug/L		76	55 - 125	3	30
Endrin	ND		0.476	0.367		ug/L		77	50 - 120	5	30
Endrin aldehyde	ND		0.476	0.338		ug/L		71	45 - 125	4	30
gamma-BHC (Lindane)	ND		0.476	0.385		ug/L		81	40 - 120	7	30
Heptachlor	ND		0.476	0.364		ug/L		76	40 - 120	9	30
Heptachlor epoxide	ND		0.476	0.363		ug/L		76	50 - 120	5	30
	MSD	MSD									

Method: 8015B - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

71

Lab Sample ID: MB 440-11076/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Limits

35 - 115

Tetrachloro-m-xylene

Surrogate

Analysis Batch: 11254

MB MB RL MDL Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed C13-C28 0.50 ND 0.10 mg/L 03/05/12 09:35 03/05/12 23:29

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 03/05/12 09:35 03/05/12 23:29 n-Octacosane 84 45 _ 120

Lab Sample ID: LCS 440-11076/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 11254 Prep Batch: 11076 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits C10-C28 1.00 0.762 76 40 - 115 mg/L

LCS LCS

Surrogate %Recovery Qualifier Limits n-Octacosane 82 45 - 120

Lab Sample ID: LCSD 440-11076/3-A

Matrix: Water

Prep Type: Total/NA Analysis Batch: 11254 Prep Batch: 11076 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Limit C10-C28 0.846 85 1.00 mg/L 40 - 115 10

Client Sample ID: Lab Control Sample Dup

Client: MWH Americas Inc Project/Site: Boeing SSFL

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 440-11076/3-A

Matrix: Water

Analysis Batch: 11254

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 11076

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

LCSD LCSD

Surrogate **%Recovery Qualifier** Limits n-Octacosane 92 45 - 120

Method: 218.6 - Chromium, Hexavalent (Ion Chromatography)

Lab Sample ID: MB 440-10382/3

Matrix: Water

Analysis Batch: 10382

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chromium, hexavalent 1.0 02/29/12 18:37 ND 0.25 ug/L

LCS LCS

Lab Sample ID: LCS 440-10382/2

Matrix: Water

Analysis Batch: 10382

Spike Added Result Qualifier Analyte Unit %Rec 50.0 49.8 100 90 - 110 Chromium, hexavalent ug/L

Lab Sample ID: 440-4058-D-3 MS

Matrix: Water

Analysis Batch: 10382

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chromium, hexavalent 0.98 J,DX 50.0 50.8 100 90 - 110 ug/L

Lab Sample ID: 440-4058-D-3 MSD

Matrix: Water

Analysis Batch: 10382

Sample Sample Spike MSD MSD %Rec. RPD Added Result Qualifier Result Qualifier Limits RPD Limit D %Rec Analyte Unit 50.0 50.0 98 Chromium, hexavalent 0.98 J,DX ug/L 90 - 110 10

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 440-10204/3

Matrix: Water

Analysis Batch: 10204

Client Sample ID: Method Blank Prep Type: Total/NA

mg/L

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.11 Nitrate as N 0.080 mg/L 02/29/12 11:37 Nitrate Nitrite as N ND 0.26 0.19 mg/L 02/29/12 11:37 Nitrite as N ND 0.15 0.11 02/29/12 11:37

Lab Sample ID: LCS 440-10204/7

Matrix: Water

Analysis Batch: 10204

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 1.13 1.16 mg/L 103 90 - 110 Nitrate Nitrite as N 2 65 2 73 103 90 - 110 mg/L

> TestAmerica Irvine 4/27/2012

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 440-10204/7 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 10204

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Nitrite as N 1.52 1 57 103 90 - 110 mg/L

Lab Sample ID: 440-4034-G-1 MS

Matrix: Water

Analysis Batch: 10204

Analysis Baton. 10204									
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Nitrate as N	0.10	J,DX	1.13	1.09		mg/L		87	80 - 120
Nitrate Nitrite as N	ND		2.65	2.73		mg/L		103	80 - 120
Nitrite as N	ND		1.52	1.64		mg/L		108	80 - 120

Lab Sample ID: 440-4034-G-1 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 10204

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Analyte Added Result Qualifier %Rec Limits RPD Limit Unit D 1.13 Nitrate as N 0.10 J,DX 1.19 mg/L 96 80 - 120 9 20 Nitrate Nitrite as N ND 2.65 2.99 80 - 120 20 mg/L 113 9 Nitrite as N ND 1.52 1.80 mg/L 118 80 - 120 9 20

Lab Sample ID: MB 440-10205/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10205

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.40	mg/L			02/29/12 11:37	1
Sulfate	ND		0.50	0.40	mg/L			02/29/12 11:37	1

MD MD

Lab Sample ID: LCS 440-10205/7 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10205

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
Chloride	5.00	5.06		mg/L	101	90 - 110	
Sulfate	10.0	10.4		mg/L	104	90 - 110	

Method: 314.0 - Perchlorate (IC)

Lab Sample ID: MB 440-10437/6 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10437									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L			03/01/12 09:26	1

Lab Sample ID: LCS 440-10437/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10437

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perchlorate	25.0	24.0		ug/L		96	85 - 115	

TestAmerica Job ID: 440-3913-1

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Method: 314.0 - Perchlorate (IC) (Continued)

Lab Sample ID: 440-3307-A-1 MS

Matrix: Water

Analysis Batch: 10437

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	9	%Rec	Limits	
Perchlorate	2.4	J,DX	25.0	22.9		ug/L		82	80 - 120	

Lab Sample ID: 440-3307-A-1 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10437

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perchlorate	2.4	J,DX	25.0	23.6		ug/L		85	80 - 120	3	20

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B)

Lab Sample ID: G2C020000105B Client Sample ID: Method Blank **Matrix: Water Prep Type: Total**

Analysis Batch: 2062105								Prep Batch: 206	S2105_P
	MB	MB						•	_
Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000010	ug/L		03/02/12 09:00	03/05/12 19:39	1
Total TCDD	ND		0.000010	0.0000010	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,7,8-PeCDD	ND		0.000050	0.0000015	ug/L		03/02/12 09:00	03/05/12 19:39	1
Total PeCDD	ND		0.000050	0.0000015	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,4,7,8-HxCDD	ND		0.000050	0.0000013	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,6,7,8-HxCDD	ND		0.000050	0.0000012	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,7,8,9-HxCDD	ND		0.000050	0.0000011	ug/L		03/02/12 09:00	03/05/12 19:39	1
Total HxCDD	ND		0.000050	0.0000011	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,4,6,7,8-HpCDD	0.0000022	J	0.000050	0.0000016	ug/L		03/02/12 09:00	03/05/12 19:39	1
Total HpCDD	0.0000046	J	0.000050	0.0000016	ug/L		03/02/12 09:00	03/05/12 19:39	1
OCDD	0.000024	J	0.00010	0.000018	ug/L		03/02/12 09:00	03/05/12 19:39	1
2,3,7,8-TCDF	ND		0.000010	0.00000099	ug/L		03/02/12 09:00	03/05/12 19:39	1
Total TCDF	ND		0.000010	0.00000099	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,7,8-PeCDF	ND		0.000050	0.0000011	ug/L		03/02/12 09:00	03/05/12 19:39	1
2,3,4,7,8-PeCDF	ND		0.000050	0.0000013	ug/L		03/02/12 09:00	03/05/12 19:39	1
Total PeCDF	ND		0.000050	0.0000011	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,4,7,8-HxCDF	0.0000013	J	0.000050	0.00000064	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,6,7,8-HxCDF	0.00000052	JQ	0.000050	0.00000058	ug/L		03/02/12 09:00	03/05/12 19:39	1
2,3,4,6,7,8-HxCDF	ND		0.000050	0.00000058	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,7,8,9-HxCDF	0.00000075	JQ	0.000050	0.00000073	ug/L		03/02/12 09:00	03/05/12 19:39	1
Total HxCDF	0.0000034	JQ	0.000050	0.00000058	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,4,6,7,8-HpCDF	0.0000014	JQ	0.000050	0.00000051	ug/L		03/02/12 09:00	03/05/12 19:39	1
1,2,3,4,7,8,9-HpCDF	0.00000089	JQ	0.000050	0.00000067	ug/L		03/02/12 09:00	03/05/12 19:39	1
Total HpCDF	0.0000030	JQ	0.000050	0.00000051	ug/L		03/02/12 09:00	03/05/12 19:39	1
OCDF	0.0000025	JQ	0.00010	0.0000021	ug/L		03/02/12 09:00	03/05/12 19:39	1
	MB	MB							

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	91		35 - 197	03/02/12 09:00	03/05/12 19:39	1
	MB	MB				

	III D	III D				
Internal Standard	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	67		25 - 164	03/02/12 09:00	03/05/12 19:39	1
13C-1,2,3,7,8-PeCDD	77		25 - 181	03/02/12 09:00	03/05/12 19:39	1
13C-1,2,3,4,7,8-HxCDD	74		32 - 141	03/02/12 09:00	03/05/12 19:39	1
	13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	Internal Standard %Recovery 13C-2,3,7,8-TCDD 67 13C-1,2,3,7,8-PeCDD 77	Internal Standard %Recovery Qualifier 13C-2,3,7,8-TCDD 67 13C-1,2,3,7,8-PeCDD 77	Internal Standard %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 67 25 - 164 13C-1,2,3,7,8-PeCDD 77 25 - 181	Internal Standard %Recovery Qualifier Limits Prepared 13C-2,3,7,8-TCDD 67 25 - 164 03/02/12 09:00 13C-1,2,3,7,8-PeCDD 77 25 - 181 03/02/12 09:00	13C-2,3,7,8-TCDD 67 25 - 164 03/02/12 09:00 03/05/12 19:39 13C-1,2,3,7,8-PeCDD 77 25 - 181 03/02/12 09:00 03/05/12 19:39

TestAmerica Irvine 4/27/2012

Page 36 of 123

TestAmerica Job ID: 440-3913-1

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: G2C020000105B

Matrix: Water

Analysis Batch: 2062105

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 2062105_P

	MB	MB				
Internal Standard	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,6,7,8-HxCDD	72		28 - 130	03/02/12 09:00	03/05/12 19:39	1
13C-1,2,3,4,6,7,8-HpCDD	72		23 - 140	03/02/12 09:00	03/05/12 19:39	1
13C-OCDD	73		17 - 157	03/02/12 09:00	03/05/12 19:39	1
13C-2,3,7,8-TCDF	63		24 - 169	03/02/12 09:00	03/05/12 19:39	1
13C-1,2,3,7,8-PeCDF	71		24 - 185	03/02/12 09:00	03/05/12 19:39	1
13C-2,3,4,7,8-PeCDF	70		21 - 178	03/02/12 09:00	03/05/12 19:39	1
13C-1,2,3,6,7,8-HxCDF	77		26 - 123	03/02/12 09:00	03/05/12 19:39	1
13C-2,3,4,6,7,8-HxCDF	82		28 - 136	03/02/12 09:00	03/05/12 19:39	1
13C-1,2,3,7,8,9-HxCDF	83		29 - 147	03/02/12 09:00	03/05/12 19:39	1
13C-1,2,3,4,6,7,8-HpCDF	67		28 - 143	03/02/12 09:00	03/05/12 19:39	1
13C-1,2,3,4,7,8,9-HpCDF	71		26 - 138	03/02/12 09:00	03/05/12 19:39	1
13C-1,2,3,4,7,8-HxCDF	72		26 - 152	03/02/12 09:00	03/05/12 19:39	1

Lab Sample ID: G2C020000105C

Matrix: Water

Analysis Batch: 2062105

Client Sample ID: Lab Control Sample **Prep Type: Total**

Prep Batch: 2062105 P

Analysis Batch. 2002105	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
2,3,7,8-TCDD	0.000200	0.000185		ug/L		92	67 - 158
1,2,3,7,8-PeCDD	0.00100	0.000991		ug/L		99	70 - 142
1,2,3,4,7,8-HxCDD	0.00100	0.000949		ug/L		95	70 - 164
1,2,3,6,7,8-HxCDD	0.00100	0.00104		ug/L		104	76 - 134
1,2,3,7,8,9-HxCDD	0.00100	0.00104		ug/L		104	64 - 162
1,2,3,4,6,7,8-HpCDD	0.00100	0.00102	В	ug/L		102	70 - 140
OCDD	0.00200	0.00216	В	ug/L		108	78 - 144
2,3,7,8-TCDF	0.000200	0.000198		ug/L		99	75 - 158
1,2,3,7,8-PeCDF	0.00100	0.00101		ug/L		101	80 - 134
2,3,4,7,8-PeCDF	0.00100	0.000994		ug/L		99	68 - 160
1,2,3,4,7,8-HxCDF	0.00100	0.00102	В	ug/L		102	72 - 134
1,2,3,6,7,8-HxCDF	0.00100	0.00106	В	ug/L		106	84 - 130
2,3,4,6,7,8-HxCDF	0.00100	0.00104		ug/L		104	70 - 156
1,2,3,7,8,9-HxCDF	0.00100	0.00107	В	ug/L		107	78 ₋ 130
1,2,3,4,6,7,8-HpCDF	0.00100	0.00102	В	ug/L		102	82 - 122
1,2,3,4,7,8,9-HpCDF	0.00100	0.000949	В	ug/L		95	78 - 138
OCDF	0.00200	0.00223	В	ug/L		111	63 - 170

LCS	LCS
-----	-----

Surrogate	%Recovery	Qualifier	Limits
37CI4-2,3,7,8-TCDD	104		31 - 191

Internal Standard	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	61		20 - 175
13C-1,2,3,7,8-PeCDD	76		21 - 227
13C-1,2,3,4,7,8-HxCDD	75		21 - 193
13C-1,2,3,6,7,8-HxCDD	71		25 - 163
13C-1,2,3,4,6,7,8-HpCDD	72		26 - 166
13C-OCDD	73		13 - 199
13C-2,3,7,8-TCDF	55		22 - 152
13C-1,2,3,7,8-PeCDF	67		21 - 192

TestAmerica Job ID: 440-3913-1

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: G2C020000105C **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total**

Prep Batch: 2062105_P Analysis Batch: 2062105

	LCS	LCS	
Internal Standard	%Recovery	Qualifier	Limits
13C-2,3,4,7,8-PeCDF	72		13 - 328
13C-1,2,3,6,7,8-HxCDF	76		21 - 159
13C-2,3,4,6,7,8-HxCDF	80		22 - 176
13C-1,2,3,7,8,9-HxCDF	81		17 - 205
13C-1,2,3,4,6,7,8-HpCDF	69		21 - 158
13C-1,2,3,4,7,8,9-HpCDF	71		20 - 186
13C-1,2,3,4,7,8-HxCDF	74		19 - 202

Lab Sample ID: G2C020000105L Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total**

Analysis Batch: 2062105							Prep Bate	ch: 2062	105_P
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	0.000200	0.000188		ug/L		94	67 - 158	1.9	50
1,2,3,7,8-PeCDD	0.00100	0.000997		ug/L		100	70 - 142	0.54	50
1,2,3,4,7,8-HxCDD	0.00100	0.000885		ug/L		88	70 - 164	7.0	50
1,2,3,6,7,8-HxCDD	0.00100	0.00110		ug/L		110	76 - 134	6.3	50
1,2,3,7,8,9-HxCDD	0.00100	0.00103		ug/L		103	64 - 162	0.96	50
1,2,3,4,6,7,8-HpCDD	0.00100	0.00101	В	ug/L		101	70 - 140	0.67	50
OCDD	0.00200	0.00248	В	ug/L		124	78 - 144	14	50
2,3,7,8-TCDF	0.000200	0.000201		ug/L		101	75 - 158	1.4	50
1,2,3,7,8-PeCDF	0.00100	0.00101		ug/L		101	80 - 134	0.55	50
2,3,4,7,8-PeCDF	0.00100	0.000995		ug/L		99	68 - 160	0.050	50
1,2,3,4,7,8-HxCDF	0.00100	0.00101	В	ug/L		101	72 - 134	0.90	50
1,2,3,6,7,8-HxCDF	0.00100	0.00106	В	ug/L		106	84 - 130	0.080	50
2,3,4,6,7,8-HxCDF	0.00100	0.00108		ug/L		108	70 - 156	4.1	50
1,2,3,7,8,9-HxCDF	0.00100	0.00111	В	ug/L		111	78 - 130	3.6	50
1,2,3,4,6,7,8-HpCDF	0.00100	0.000988	В	ug/L		99	82 - 122	3.1	50
1,2,3,4,7,8,9-HpCDF	0.00100	0.000977	В	ug/L		98	78 - 138	2.9	50
OCDF	0.00200	0.00224	В	ua/L		112	63 - 170	0.67	50

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
37CI4-2,3,7,8-TCDD	107		31 - 191

	LCSD	LCSD	
Internal Standard	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	48		20 - 175
13C-1,2,3,7,8-PeCDD	62		21 - 227
13C-1,2,3,4,7,8-HxCDD	68		21 - 193
13C-1,2,3,6,7,8-HxCDD	58		25 - 163
13C-1,2,3,4,6,7,8-HpCDD	61		26 - 166
13C-OCDD	56		13 - 199
13C-2,3,7,8-TCDF	41		22 - 152
13C-1,2,3,7,8-PeCDF	55		21 - 192
13C-2,3,4,7,8-PeCDF	60		13 - 328
13C-1,2,3,6,7,8-HxCDF	65		21 - 159
13C-2,3,4,6,7,8-HxCDF	66		22 - 176
13C-1,2,3,7,8,9-HxCDF	62		17 - 205
13C-1,2,3,4,6,7,8-HpCDF	57		21 - 158

_

Client: MWH Americas Inc Project/Site: Boeing SSFL TestAmerica Job ID: 440-3913-1

9

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: G2C020000105L

Matrix: Water

Analysis Batch: 2062105

Client Sample ID: Lab Control Sample Dup Prep Type: Total

Prep Batch: 2062105_P

LCSD LCSD

 Internal Standard
 %Recovery
 Qualifier
 Limits

 13C-1,2,3,4,7,8,9-HpCDF
 58
 20 - 186

 13C-1,2,3,4,7,8-HxCDF
 61
 19 - 202

ch: 2062105_P

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 440-11339/1-A

Matrix: Water

Analysis Batch: 13142

Client Sample ID: Method Blank
Prep Type: Total Recoverable
D D. (. l 44000

Prep Batch: 11339

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		10	7.0	ug/L		03/06/12 08:54	03/13/12 22:18	1
Boron	0.0301	J,DX	0.050	0.020	mg/L		03/06/12 08:54	03/13/12 22:18	1
Barium	ND		0.010	0.0060	mg/L		03/06/12 08:54	03/13/12 22:18	1
Beryllium	ND		2.0	0.90	ug/L		03/06/12 08:54	03/13/12 22:18	1
Calcium	ND		0.10	0.050	mg/L		03/06/12 08:54	03/13/12 22:18	1
Cobalt	ND		10	2.0	ug/L		03/06/12 08:54	03/13/12 22:18	1
Chromium	ND		5.0	2.0	ug/L		03/06/12 08:54	03/13/12 22:18	1
Iron	ND		0.040	0.015	mg/L		03/06/12 08:54	03/13/12 22:18	1
Magnesium	ND		0.020	0.012	mg/L		03/06/12 08:54	03/13/12 22:18	1
Manganese	ND		20	7.0	ug/L		03/06/12 08:54	03/13/12 22:18	1
Nickel	2.39	J,DX	10	2.0	ug/L		03/06/12 08:54	03/13/12 22:18	1
Vanadium	ND		10	3.0	ug/L		03/06/12 08:54	03/13/12 22:18	1
Zinc	10.4	J,DX	20	6.0	ug/L		03/06/12 08:54	03/13/12 22:18	1
Silver	ND		10	6.0	ug/L		03/06/12 08:54	03/13/12 22:18	1

Lab Sample ID: MB 440-11339/1-A

Matrix: Water

Analysis Batch: 13269

Client Sample ID: Method Blank
Prep Type: Total Recoverable

Prep Batch: 11339

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.0297	J,DX	0.050	0.020	mg/L		03/06/12 08:54	03/14/12 16:48	1
Calcium	ND		0.10	0.050	mg/L		03/06/12 08:54	03/14/12 16:48	1

Lab Sample ID: MB 440-11339/1-A

Matrix: Water

Analysis Batch: 13645

Client Sample ID: Method Blank	
Prep Type: Total Recoverable	
Prep Batch: 11339	

		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	ND		10	7.0	ug/L		03/06/12 08:54	03/15/12 19:04	1
	Boron	0.0295	J,DX	0.050	0.020	mg/L		03/06/12 08:54	03/15/12 19:04	1
	Barium	ND		0.010	0.0060	mg/L		03/06/12 08:54	03/15/12 19:04	1
	Beryllium	ND		2.0	0.90	ug/L		03/06/12 08:54	03/15/12 19:04	1
	Calcium	ND		0.10	0.050	mg/L		03/06/12 08:54	03/15/12 19:04	1
	Cobalt	ND		10	2.0	ug/L		03/06/12 08:54	03/15/12 19:04	1
	Chromium	ND		5.0	2.0	ug/L		03/06/12 08:54	03/15/12 19:04	1
	Magnesium	ND		0.020	0.012	mg/L		03/06/12 08:54	03/15/12 19:04	1
	Manganese	ND		20	7.0	ug/L		03/06/12 08:54	03/15/12 19:04	1
	Nickel	ND		10	2.0	ug/L		03/06/12 08:54	03/15/12 19:04	1
	Vanadium	ND		10	3.0	ug/L		03/06/12 08:54	03/15/12 19:04	1
	Zinc	ND		20	6.0	ug/L		03/06/12 08:54	03/15/12 19:04	1
ľ										

Client: MWH Americas Inc Project/Site: Boeing SSFL

140-0310-1

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: MB 440-11339/1-A

Matrix: Water

Analysis Batch: 13645

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 11339

 Analyte
 Result
 Qualifier
 RL
 MDL Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Silver
 ND
 10
 6.0
 ug/L
 03/06/12 08:54
 03/15/12 19:04
 1

MB MB

Lab Sample ID: LCS 440-11339/2-A

Matrix: Water

Analysis Batch: 13142

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 11339

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	500	552		ug/L		110	85 - 115	
Barium	0.500	0.552		mg/L		110	85 - 115	
Beryllium	500	543		ug/L		109	85 - 115	
Cobalt	500	539		ug/L		108	85 - 115	
Chromium	500	559		ug/L		112	85 - 115	
Iron	0.500	0.558		mg/L		112	85 - 115	
Magnesium	2.50	2.81		mg/L		112	85 - 115	
Manganese	500	541		ug/L		108	85 - 115	
Nickel	500	546		ug/L		109	85 - 115	
Vanadium	500	552		ug/L		110	85 - 115	
Zinc	500	550		ug/L		110	85 - 115	
Silver	250	273		ug/L		109	85 - 115	

Lab Sample ID: LCS 440-11339/2-A

Matrix: Water

Analysis Batch: 13269

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 11339

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Boron 0.500 0.545 mg/L 109 85 - 115 Calcium 2.50 2.73 109 85 - 115 mg/L

Lab Sample ID: LCS 440-11339/2-A

Matrix: Water

Analysis Batch: 13645

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	500	511		ug/L		102	85 _ 115	
Boron	0.500	0.526		mg/L		105	85 _ 115	
Barium	0.500	0.509		mg/L		102	85 _ 115	
Beryllium	500	516		ug/L		103	85 _ 115	
Calcium	2.50	2.72		mg/L		109	85 - 115	
Cobalt	500	502		ug/L		100	85 _ 115	
Chromium	500	519		ug/L		104	85 _ 115	
Magnesium	2.50	2.62		mg/L		105	85 _ 115	
Manganese	500	562		ug/L		112	85 _ 115	
Nickel	500	506		ug/L		101	85 - 115	
Vanadium	500	503		ug/L		101	85 _ 115	
Zinc	500	489		ug/L		98	85 _ 115	
Silver	250	246		ug/L		98	85 - 115	

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 440-4065-1 MS

Matrix: Water

Analysis Batch: 13069

Client Sample ID: Outfall 019 Composite **Prep Type: Total Recoverable**

Prep Batch: 11339

Sa	ample	Sample	Spike	MS	MS				%Rec.	
Analyte F	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	7.4	J,DX	500	596		ug/L		118	70 - 130	
Barium	0.026		0.500	0.570		mg/L		109	70 - 130	
Beryllium	ND		500	565		ug/L		113	70 - 130	
Cobalt	ND		500	528		ug/L		106	70 - 130	
Chromium	2.3	J,DX	500	582		ug/L		116	70 - 130	
Iron	ND		0.500	0.568		mg/L		114	70 - 130	
Magnesium	24		2.50	25.7	ВВ	mg/L		70	70 - 130	
Manganese	ND		500	553		ug/L		111	70 - 130	
Nickel	ND		500	535		ug/L		107	70 - 130	
Vanadium	ND		500	563		ug/L		113	70 - 130	
Zinc	10	J,DX	500	544		ug/L		107	70 - 130	
Silver	ND		250	274		ug/L		109	70 - 130	

Lab Sample ID: 440-4065-1 MS

Matrix: Water

Analysis Batch: 13269

Cample Sample

Client Sample ID: Outfall 019 Composite **Prep Type: Total Recoverable**

Prep Batch: 11339

	Sample	Sample	Бріке	IVIO	INIO				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	ND		0.500	0.565		mg/L		113	70 - 130	
Calcium	100		2.50	112	BB	mg/L		371	70 - 130	

Lab Sample ID: 440-4065-1 MSD

Matrix: Water

Analysis Batch: 13069

Client Sample ID: Outfall 019 Composite **Prep Type: Total Recoverable** Prep Batch: 11339

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	7.4	J,DX	500	588		ug/L		116	70 - 130	1	20
Barium	0.026		0.500	0.584		mg/L		111	70 - 130	2	20
Beryllium	ND		500	556		ug/L		111	70 - 130	2	20
Cobalt	ND		500	521		ug/L		104	70 - 130	1	20
Chromium	2.3	J,DX	500	584		ug/L		116	70 - 130	0	20
Iron	ND		0.500	0.546		mg/L		109	70 - 130	4	20
Magnesium	24		2.50	25.9	BB	mg/L		78	70 - 130	1	20
Manganese	ND		500	552		ug/L		110	70 - 130	0	20
Nickel	ND		500	530		ug/L		106	70 - 130	1	20
Vanadium	ND		500	577		ug/L		115	70 - 130	2	20
Zinc	10	J,DX	500	550		ug/L		108	70 - 130	1	20
Silver	ND		250	273		ug/L		109	70 - 130	0	20
						-					

Lab Sample ID: 440-4065-1 MSD

Matrix: Water

Analysis Batch: 13269

Client Sample ID: Outfall 019 Composite **Prep Type: Total Recoverable**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Boron	ND		0.500	0.577		mg/L		115	70 - 130	2	20	
Calcium	100		2.50	113	BB	mg/L		426	70 - 130	1	20	

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 440-4070-L-9-B MS

Matrix: Water

Analysis Batch: 13069

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable**

Prep Batch: 11339

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	21		500	580		ug/L		112	70 - 130	
Barium	0.10		0.500	0.613		mg/L		102	70 - 130	
Beryllium	ND		500	531		ug/L		106	70 - 130	
Cobalt	3.0	J,DX	500	490		ug/L		97	70 - 130	
Chromium	2.8	J,DX	500	545		ug/L		108	70 - 130	
Iron	0.15		0.500	0.668		mg/L		104	70 - 130	
Magnesium	110		2.50	106	ВВ	mg/L		11	70 - 130	
Manganese	210		500	719		ug/L		102	70 - 130	
Nickel	32		500	524		ug/L		98	70 - 130	
Vanadium	130		500	663		ug/L		107	70 - 130	
Zinc	ND		500	510		ug/L		102	70 - 130	
Silver	ND		250	267		ug/L		107	70 - 130	

Lab Sample ID: 440-4070-L-9-C MSD

Matrix: Water

Analysis Batch: 13069

Client Sample ID: Matrix Spike Duplicate **Prep Type: Total Recoverable**

Prep Batch: 11339

Allalysis Datell. 13003									rieh	Datell.	11333
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	21		500	591		ug/L		114	70 - 130	2	20
Barium	0.10		0.500	0.635		mg/L		107	70 - 130	4	20
Beryllium	ND		500	547		ug/L		109	70 - 130	3	20
Cobalt	3.0	J,DX	500	507		ug/L		101	70 - 130	3	20
Chromium	2.8	J,DX	500	566		ug/L		113	70 - 130	4	20
Iron	0.15		0.500	0.708		mg/L		112	70 - 130	6	20
Magnesium	110		2.50	108	BB	mg/L		83	70 - 130	2	20
Manganese	210		500	740		ug/L		106	70 - 130	3	20
Nickel	32		500	542		ug/L		102	70 - 130	3	20
Vanadium	130		500	689		ug/L		112	70 - 130	4	20
Zinc	ND		500	750	LM RA	ug/L		150	70 - 130	38	20
Silver	ND		250	276		ug/L		110	70 - 130	3	20

Lab Sample ID: MB 440-10331/1-C

Matrix: Water

Analysis Batch: 12020

Client Sample ID: Method Blank

Prep Type: Dissolved

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		10	7.0	ug/L		03/06/12 11:52	03/08/12 11:35	1
Boron	0.0371	J,DX	0.050	0.020	mg/L		03/06/12 11:52	03/08/12 11:35	1
Barium	ND		0.010	0.0060	mg/L		03/06/12 11:52	03/08/12 11:35	1
Beryllium	ND		2.0	0.90	ug/L		03/06/12 11:52	03/08/12 11:35	1
Cobalt	ND		10	2.0	ug/L		03/06/12 11:52	03/08/12 11:35	1
Chromium	ND		5.0	2.0	ug/L		03/06/12 11:52	03/08/12 11:35	1
Manganese	ND		20	7.0	ug/L		03/06/12 11:52	03/08/12 11:35	1
Nickel	ND		10	2.0	ug/L		03/06/12 11:52	03/08/12 11:35	1
Vanadium	ND		10	3.0	ug/L		03/06/12 11:52	03/08/12 11:35	1
Zinc	21.3		20	6.0	ug/L		03/06/12 11:52	03/08/12 11:35	1
Silver	ND		10	6.0	ug/L		03/06/12 11:52	03/08/12 11:35	1

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 440-10331/2-C Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Dissolved** Analysis Batch: 12020 Prep Batch: 11406 Spike LCS LCS %Rec.

	эріке	LUS	LUS				70Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	500	518		ug/L		104	85 _ 115	
Boron	0.500	0.544		mg/L		109	85 ₋ 115	
Barium	0.500	0.529		mg/L		106	85 _ 115	
Beryllium	500	523		ug/L		105	85 _ 115	
Calcium	2.50	3.23	LQ	mg/L		129	85 - 115	
Cobalt	500	514		ug/L		103	85 _ 115	
Chromium	500	541		ug/L		108	85 - 115	
Iron	0.500	0.554		mg/L		111	85 _ 115	
Magnesium	2.50	2.73		mg/L		109	85 _ 115	
Nickel	500	527		ug/L		105	85 - 115	
Vanadium	500	523		ug/L		105	85 _ 115	
Zinc	500	521		ug/L		104	85 _ 115	
Silver	250	261		ug/L		104	85 - 115	

Lab Sample ID: 440-3909-L-1-D MS

Matrix: Water

Client Sample ID: Matrix Spike **Prep Type: Dissolved**

Analysis Batch: 12020									Prep Ba	atch: 11406
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		500	515		ug/L		103	70 - 130	
Boron	0.30	MB	0.500	0.841		mg/L		107	70 - 130	
Barium	0.34		0.500	0.857		mg/L		104	70 - 130	
Beryllium	ND		500	523		ug/L		105	70 - 130	
Calcium	140	MB LQ	2.50	143	BB	mg/L		-65	70 - 130	
Cobalt	ND		500	478		ug/L		96	70 - 130	
Chromium	ND		500	534		ug/L		107	70 - 130	
Iron	0.21		0.500	0.741		mg/L		105	70 - 130	
Magnesium	41	MB	2.50	43.2	BB	mg/L		86	70 - 130	
Manganese	51		500	618		ug/L		113	70 - 130	
Nickel	2.8	J,DX	500	487		ug/L		97	70 - 130	
Vanadium	ND		500	533		ug/L		107	70 - 130	
Zinc	ND		500	494		ug/L		99	70 - 130	
Silver	ND		250	270		ug/L		108	70 - 130	

Lab Sample ID: 440-3909-L-1-E MSD

Matrix: Water

Analysis Batch: 12020

Client Sample ID: Matrix Spike Duplicate **Prep Type: Dissolved**

Prep Batch: 11406

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		500	509		ug/L		102	70 - 130	1	20
Boron	0.30	MB	0.500	0.818		mg/L		103	70 - 130	3	20
Barium	0.34		0.500	0.846		mg/L		102	70 - 130	1	20
Beryllium	ND		500	518		ug/L		104	70 - 130	1	20
Calcium	140	MB LQ	2.50	140	BB	mg/L		-188	70 - 130	2	20
Cobalt	ND		500	471		ug/L		94	70 - 130	1	20
Chromium	ND		500	525		ug/L		105	70 - 130	2	20
Iron	0.21		0.500	0.513	AY RA	mg/L		60	70 - 130	36	20
Magnesium	41	MB	2.50	42.6	BB	mg/L		66	70 - 130	1	20
Manganese	51		500	610		ug/L		112	70 - 130	1	20
Nickel	2.8	J,DX	500	479		ug/L		95	70 - 130	2	20

TestAmerica Irvine

Page 43 of 123

4/27/2012

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 440-3909-L-1-E MSD

Matrix: Water

Analysis Batch: 12020

Client Sample ID: Matrix Spike Duplicate **Prep Type: Dissolved**

Prep Batch: 11406

	Sample	Sample	Spike	MSD	MSD					%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	ı) %R	ec	Limits	RPD	Limit	
Vanadium	ND		500	521		ug/L		1	04	70 - 130	2	20	
Zinc	ND		500	482		ug/L			96	70 - 130	2	20	
Silver	ND		250	263		ug/L		1	05	70 - 130	3	20	

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 440-11154/1-A

Matrix: Water

Analysis Batch: 11472

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 11154

мв мв Analyte Result Qualifier RLMDL Unit D Prepared Dil Fac Analyzed 03/05/12 14:20 Cadmium ND 1.0 0.10 ug/L 03/06/12 14:09 03/05/12 14:20 Copper ND 2.0 0.50 ug/L 03/06/12 14:09 03/06/12 14:09 ND 03/05/12 14:20 Lead 1.0 0.20 ug/L ND 03/05/12 14:20 03/06/12 14:09 Antimony 2.0 0.30 ug/L Selenium ND 03/05/12 14:20 03/06/12 14:09 2.0 0.50 ug/L Thallium ND 03/05/12 14:20 03/06/12 14:09 1.0 0.20 ug/L

Lab Sample ID: LCS 440-11154/2-A

Matrix: Water

Analysis Batch: 11472

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 11154

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	80.0	79.6		ug/L		100	85 - 115	
Copper	80.0	80.6		ug/L		101	85 - 115	
Lead	80.0	81.5		ug/L		102	85 - 115	
Antimony	80.0	81.4		ug/L		102	85 - 115	
Selenium	80.0	81.5		ug/L		102	85 - 115	
Thallium	80.0	81.1		ug/L		101	85 - 115	

Lab Sample ID: 440-4377-A-4-B MS

Matrix: Water

Analysis Batch: 11472

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable** Prep Batch: 11154

Analysis Baton. 11412									1 10	p Baton. 11104
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	ND		80.0	73.7		ug/L		92	70 - 130	
Copper	8.2		80.0	46.7	LN	ug/L		48	70 - 130	
Lead	ND		80.0	70.5		ug/L		88	70 - 130	
Antimony	ND		80.0	82.4		ug/L		103	70 - 130	
Selenium	ND		80.0	9.33	LN	ug/L		12	70 - 130	
Thallium	ND		80.0	70.9		ug/L		89	70 - 130	

Lab Sample ID: 440-4377-A-4-C MSD

Matrix: Water

Analysis Batch: 11472

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Prep Batch: 11154

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		80.0	71.4		ug/L		89	70 - 130	3	20
Copper	8.2		80.0	44.9	AY	ug/L		46	70 - 130	4	20
Lead	ND		80.0	70.1		ug/L		88	70 - 130	1	20

TestAmerica Irvine 4/27/2012

Page 44 of 123

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 440-4377-A-4-C MSD

Matrix: Water

Analysis Batch: 11472

Client Sample ID: Matrix Spike Duplicate **Prep Type: Total Recoverable**

Prep Batch: 11154

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		80.0	81.1		ug/L		101	70 - 130	2	20
Selenium	ND		80.0	9.27	AY	ug/L		12	70 - 130	1	20
Thallium	ND		80.0	70.7		ug/L		88	70 - 130	0	20

Lab Sample ID: MB 440-10742/1-C

Matrix: Water

Analysis Batch: 11615

Client Sample ID: Method Blank **Prep Type: Dissolved**

Prep Batch: 11400

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		03/06/12 11:26	03/06/12 23:01	1
Copper	ND		2.0	0.50	ug/L		03/06/12 11:26	03/06/12 23:01	1
Lead	ND		1.0	0.20	ug/L		03/06/12 11:26	03/06/12 23:01	1
Antimony	ND		2.0	0.30	ug/L		03/06/12 11:26	03/06/12 23:01	1
Selenium	ND		2.0	0.50	ug/L		03/06/12 11:26	03/06/12 23:01	1
Thallium	ND		1.0	0.20	ug/L		03/06/12 11:26	03/06/12 23:01	1

MR MR

Lab Sample ID: LCS 440-10742/2-C

Matrix: Water

Analysis Batch: 11615

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Prep Batch: 11400

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Cadmium 80.0 73.9 ug/L 92 85 - 115 Copper 80.0 82.8 ug/L 104 85 - 115 Lead 80.0 79.5 ug/L 99 85 - 115 80.0 77.5 97 Antimony ug/L 85 - 115 Selenium 80.0 80.5 101 85 - 115 ug/L Thallium 80.0 81.1 85 - 115 ug/L 101

Lab Sample ID: 440-3724-B-1-D MS

Matrix: Water

Analysis Batch: 11615

Client Sample ID: Matrix Spike **Prep Type: Dissolved**

Prep Batch: 11400

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	0.147		80.0	71.9		ug/L		90	70 - 130	
Copper	10.9		80.0	80.1		ug/L		86	70 - 130	
Lead	-0.00300		80.0	70.4		ug/L		88	70 - 130	
Antimony	0.474		80.0	80.6		ug/L		100	70 - 130	
Selenium	4.36		80.0	87.0		ug/L		103	70 - 130	
Thallium	0.128		80.0	70.2		ug/L		88	70 - 130	

Lab Sample ID: 440-3724-B-1-E MSD

Matrix: Water

Analysis Batch: 11615

Client Sample ID: Matrix Spike Duplicate **Prep Type: Dissolved**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	0.147		80.0	71.3		ug/L		89	70 - 130	1	20
Copper	10.9		80.0	78.4		ug/L		84	70 - 130	2	20
Lead	-0.00300		80.0	69.2		ug/L		86	70 - 130	2	20
Antimony	0.474		80.0	81.1		ug/L		101	70 - 130	1	20
Selenium	4.36		80.0	86.5		ug/L		103	70 - 130	1	20
Thallium	0.128		80.0	69.9		ug/L		87	70 - 130	0	20

Client: MWH Americas Inc Project/Site: Boeing SSFL

Analyte

Mercury

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 440-10633/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 10858** Prep Batch: 10633 мв мв

Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed 0.20 03/01/12 17:42 03/02/12 19:41 ND 0.10 ug/L

Lab Sample ID: LCS 440-10633/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 10858** Prep Batch: 10633

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Mercury 8.00 8.84 ug/L 110 85 - 115

Lab Sample ID: 440-3916-B-1-B MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 10858 Prep Batch: 10633

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 8.00 8.63 108 Mercury ug/L 70 - 130

Lab Sample ID: 440-3916-B-1-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 10858** Prep Batch: 10633 Sample Sample Spike MSD MSD %Rec. RPD Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD Limit ND 8.00 10.1 Mercury ug/L 127 70 130 16

Lab Sample ID: MB 440-10742/1-D Client Sample ID: Method Blank **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 11794 Prep Batch: 11466 MR MR

Result Qualifier RL MDL Unit Analyte Prepared Dil Fac Analyzed 0.20 0.109 J,DX 03/06/12 15:05 03/07/12 13:25 Mercury 0.10 ug/L

Lab Sample ID: LCS 440-10742/2-D Client Sample ID: Lab Control Sample **Matrix: Water**

Prep Type: Dissolved Analysis Batch: 11794 Prep Batch: 11466 Spike LCS LCS

Added Analyte Result Qualifier Unit %Rec Limits 8.00 96 Mercury 7 64 ug/L 85 - 115

Lab Sample ID: 440-4065-1 MS Client Sample ID: Outfall 019 Composite **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 11794 Prep Batch: 11466 MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Mercury ND BU IH 8.00 7.49 ug/L 91 70 - 130

Lab Sample ID: 440-4065-1 MSD Client Sample ID: Outfall 019 Composite **Matrix: Water Prep Type: Dissolved** Analysis Batch: 11794 Prep Batch: 11466 Spike MSD MSD %Rec. RPD Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Mercury ND BU IH 8.00 7.62 ug/L 70 - 130 2

TestAmerica Job ID: 440-3913-1

Client Sample ID: Outfall 019 Grab

Prep Type: Total/NA

Prep Batch: 12574

Prep Type: Total/NA

Method: 120.1 - Conductivity, Specific Conductance

Lab Sample ID: MB 440-12569/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 12569

мв мв

Result Qualifier RL RL Unit Analyte D Analyzed Dil Fac Prepared 1.0 1.0 umhos/cm 03/12/12 09:15 Specific Conductance ND

Lab Sample ID: LCS 440-12569/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 12569

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Specific Conductance	 501	536		umhos/cm	_	107	90 - 110	

Lab Sample ID: 440-3913-9 DU

Matrix: Water

Analysis Batch: 12569

Camania Camania DII DII

	Sample	Sample	טע	DU				KPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Specific Conductance	830		835		umhos/cm		 0.6	5

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 440-12574/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 12658

MB MB

Analyte	Result Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac	
HEM	ND ND	5.0	1.4	mg/L	_	03/12/12 09:31	03/12/12 14:19	1	

Lab Sample ID: LCS 440-12574/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 12658

Prep Batch: 12574 Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec

Analyte Limits HEM 20.0 18.7 78 - 114 mg/L 93

Lab Sample ID: LCSD 440-12574/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 12658 Prep Batch: 12574 LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Unit Analyte D %Rec Limits RPD Limit HEM 20.0 19.1 mg/L 95 78 - 114

Method: 180.1 - Turbidity, Nephelometric

Lab Sample ID: MB 440-10520/6 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 10520

мв мв Analyte Result Qualifier RL MDL Unit

Prepared Analyzed Dil Fac Turbidity ND 0.10 0.040 NTU 03/01/12 11:50

Prep Type: Total/NA

Client: MWH Americas Inc

TestAmerica Job ID: 440-3913-1

Method: 180.1 - Turbidity, Nephelometric (Continued)

Lab Sample ID: MRL 440-10520/4 MRL Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 10520

Project/Site: Boeing SSFL

Spike MRL MRL %Rec. Added Limits Analyte Result Qualifier Unit D %Rec 1.00 NTU 107 Turbidity 1.07

Lab Sample ID: 440-4064-C-5 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10520

DU DU Sample Sample RPD Result Qualifier Analyte Result Qualifier Unit RPD Limit Turbidity 0.040 J.DX 0.0400 J,DX NTU 20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 440-11105/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 11105

MR MR Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac Total Dissolved Solids 10 ND 10 mg/L 03/05/12 10:41

Lab Sample ID: LCS 440-11105/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 11105

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits 1000 980 Total Dissolved Solids mg/L 90 - 110

Lab Sample ID: 440-3781-A-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 11105

Sample Sample וום וום RPD RPD Result Qualifier Result Qualifier Limit Analyte Unit Total Dissolved Solids 390 382 mg/L 10

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-11241/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 11241

MB MB Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Suspended Solids ND 10 10 mg/L 03/05/12 19:15

Lab Sample ID: LCS 440-11241/2 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 11241

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Total Suspended Solids 1000 1000 100 85 - 115 mg/L

Prep Type: Total/NA

TestAmerica Job ID: 440-3913-1

Prep Type: Total/NA

Client Sample ID: Matrix Spike

03/01/12 20:05

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 10790

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: 440-4112-B-1 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 11241

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Suspended Solids	29		30.0		mg/L		 3	10

Method: SM 4500 CN E - Cyanide, Total (Low Level)

Lab Sample ID: MB 440-10790/1-A Client Sample ID: Method Blank

Matrix: Water

Analyte

Cyanide, Total

Analysis Batch: 10845

мв мв Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 5.0 3.0 ug/L 03/02/12 14:45 03/02/12 17:31

Lab Sample ID: LCS 440-10790/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10845

Prep Batch: 10790 LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Total 100 100 ug/L 100 90 - 110

Lab Sample ID: 440-3897-G-1-A MS

ND

Matrix: Water

Analysis Batch: 10845

Prep Batch: 10790 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 100 Cyanide, Total 101 101 70 - 115 ug/L

Lab Sample ID: 440-3897-G-1-B MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Analysis Batch: 10845 Prep Batch: 10790 Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 100 Cyanide, Total ND 101 ug/L 101 70 - 115 0

Method: SM 4500 NH3 C - Ammonia

Lab Sample ID: MB 440-10587/1-A Client Sample ID: Method Blank

Matrix: Water

Ammonia (as N)

Analyte

Analysis Batch: 10665

Prep Type: Total/NA Prep Batch: 10587 MB MB Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac

0.157

mg/L

03/01/12 15:53

0.400 Lab Sample ID: LCS 440-10587/2-A Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA **Analysis Batch: 10665** Prep Batch: 10587

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Ammonia (as N) 10.0 9.520 95 85 - 115 mg/L

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: SM 4500 NH3 C - Ammonia (Continued)

Lab Sample ID: 440-4065-1 MS Client Sample ID: Outfall 019 Composite **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 10665** Prep Batch: 10587

Spike MS MS Sample Sample Added Result Qualifier Result Qualifier Limits Analyte Unit D %Rec 10.0 Ammonia (as N) 0.280 J,DX 9.520 mg/L 92 70 - 120

Lab Sample ID: 440-4065-1 MSD

Client Sample ID: Outfall 019 Composite

Matrix: Water Analysis Batch: 10665 Prep Type: Total/NA Prep Batch: 10587

Prep Type: Total/NA

Prep Type: Total/NA

Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Ammonia (as N) JDX 10.0 9.520 mg/L 92 70 - 120 15

Method: SM 5310B - Organic Carbon, Total (TOC)

Lab Sample ID: MB 440-11428/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 11428

MR MR

Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac 1.0 Total Organic Carbon ND 0.75 mg/L 03/06/12 10:33

Lab Sample ID: LCS 440-11428/2 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 11428

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Analyte 10.0 10.6 Total Organic Carbon mg/L 106 90 - 110

Lab Sample ID: 440-4207-A-1 MS Client Sample ID: Matrix Spike

Matrix: Water

Analysis Batch: 11428

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Total Organic Carbon 5.00 ND 5.56 mg/L 111 80 - 120

Lab Sample ID: 440-4207-A-1 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 11428

Sample Sample Spike MSD MSD %Rec. RPD RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Limit mg/L **Total Organic Carbon** ND 5.00 5.53 111 80 - 120 20

Method: SM 5540C - Methylene Blue Active Substances (MBAS)

Lab Sample ID: MB 440-10656/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 10656

Prep Type: Total/NA

мв мв

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Methylene Blue Active Substances ND 0.10 0.050 mg/L 03/01/12 20:02

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: SM 5540C - Methylene Blue Active Substances (MBAS) (Continued)

USB USB

Lab Sample ID: LCS 440-10656/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 10656

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 0.250 90 - 110 0.252 mg/L 101 Methylene Blue Active

Substances

Lab Sample ID: 440-4065-1 MS Client Sample ID: Outfall 019 Composite

Matrix: Water Prep Type: Total/NA

Analysis Batch: 10656

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 0.250 0.252 mg/L 101 50 - 125 Methylene Blue Active Substances

Lab Sample ID: 440-4065-1 MSD

Client Sample ID: Outfall 019 Composite

Matrix: Water Prep Type: Total/NA

Analysis Batch: 10656

MSD MSD %Rec. RPD Sample Sample Spike Result Qualifier Added Result Qualifier RPD Limit Analyte Unit D %Rec Limits ND 0.250 0.265 mg/L 106 50 - 125 5 20 Methylene Blue Active Substances

Method: SM5210B - BOD, 5 Day

Lab Sample ID: USB 440-10741/1 USB Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 10741

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed ND 2 0 **Biochemical Oxygen Demand** 0.50 mg/L 03/02/12 10:43

Lab Sample ID: LCS 440-10741/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 10741

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 199 204 103 85 - 115 **Biochemical Oxygen Demand** mg/L

Lab Sample ID: LCSD 440-10741/5

Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 10741

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit

Biochemical Oxygen Demand 199 200 mg/L 101 85 - 115 20

Method: Gross Alpha and Beta - Gross Alpha/Beta

Lab Sample ID: S203010-04 Client Sample ID: Method Blank **Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 8600 Prep Batch: 8600_P Blank Blank

MDL Unit Analyte Qualifier Result Prepared Analyzed Tritium -8.59 10 pCi/L 03/13/12 00:00 03/13/12 19:51

Client: MWH Americas Inc Project/Site: Boeing SSFL

Tritium

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

<u> </u>		-	•						
Lab Sample ID: S203010-04							Client Sa	mple ID: Metho	od Blank
Matrix: WATER								Prep Type: 7	Γotal/NA
Analysis Batch: 8600								Prep Batch:	8600_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium-90	-0.103	U	0.13		pCi/L		03/16/12 00:00	03/16/12 09:46	1
Lab Sample ID: S203010-04							Client Sa	mple ID: Metho	od Blank
Matrix: WATER								Prep Type: 1	Γotal/NA
Analysis Batch: 8600								Prep Batch:	
-	Blank	Blank						-	_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137	0.32	U	1.6		pCi/L		03/14/12 00:00	03/19/12 00:00	1
Potassium-40	12.7	U	18		pCi/L		03/14/12 00:00	03/19/12 00:00	1
Lab Sample ID: S203010-04							Client Sa	mple ID: Metho	od Blank
Matrix: WATER								Prep Type: 1	
Analysis Batch: 8600								Prep Batch:	
•	Blank	Blank						•	_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Uranium, Total	0	U	0.008		pCi/L		03/19/12 00:00	03/19/12 10:40	1
Lab Sample ID: S203010-04							Client Sa	mple ID: Metho	od Blank
Matrix: WATER								Prep Type: 1	
Analysis Batch: 8600								Prep Batch:	8600 P
•	Blank	Blank						•	_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-228	-0.088	U	0.13		pCi/L		03/19/12 00:00	03/19/12 12:43	1
Lab Sample ID: S203010-04							Client Sa	mple ID: Metho	od Blank
Matrix: WATER								Prep Type: 1	Γotal/NA
Analysis Batch: 8600								Prep Batch:	8600_P
-	Blank	Blank						-	_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gross Alpha	0.093	U	0.26		pCi/L		03/15/12 00:00	03/19/12 16:54	1
Gross Beta	-0.344	U	0.58		pCi/L		03/15/12 00:00	03/19/12 16:54	1
Lab Sample ID: S203010-04							Client Sa	mple ID: Metho	od Blank
Matrix: WATER								Prep Type: 7	Γotal/NA
Analysis Batch: 8600								Prep Batch:	8600_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-226	0.054	U	0.33		pCi/L		03/21/12 00:00	03/21/12 13:09	1
Lab Sample ID: S203010-03						C	lient Sample I	D: Lab Control	Sample
Matrix: WATER								Prep Type: 7	Γotal/NA
Analysis Batch: 8600								Prep Batch:	8600_P
			Spike	LCS LCS				%Rec.	
Analyte			Added	Result Qua	lifier	Unit	D %Rec	Limits	

80 120 - 0

92

338 J

pCi/L

LCS LCS

LCS LCS

LCS LCS

LCS LCS

LCS LCS

LCS LCS

56.9

Result Qualifier

Qualifier

Result

40.4

27 4

3.97

Result Qualifier

57.4

Result Qualifier

153

136

Result Qualifier

7.54

Result Qualifier

Unit

pCi/L

Unit

pCi/L

pCi/L

Unit

pCi/L

Unit

pCi/L

Unit

pCi/L

pCi/L

Unit

pCi/L

D

D

D

D

D

D

%Rec

%Rec

%Rec

%Rec

%Rec

%Rec

80

Client Sample ID: OUTFALL 019 COMPOSITE DU

70

70

60

80

80

80

80

Spike

Added

Spike

Added

104

103

Spike

Added

100

Spike

habbΔ

Spike

Added

120

96

Spike

Added

102

89

88

TestAmerica Job ID: 440-3913-1

Prep Type: Total/NA

Prep Batch: 8600_P

Prep Type: Total/NA

Prep Batch: 8600_P

Prep Type: Total/NA

Prep Batch: 8600_P

Prep Type: Total/NA

Prep Batch: 8600 P

Client Sample ID: Lab Control Sample

Limits

Client Sample ID: Lab Control Sample

Limits

120 - 0

120 - 0

Client Sample ID: Lab Control Sample

%Rec.

Limits

Client Sample ID: Lab Control Sample

%Rec.

Limits

140 - 0

Limits

130 - 0

130 - 0

120 - 0

120 - 0

Client: MWH Americas Inc Project/Site: Boeing SSFL

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

Lab Sample ID: S203010-03

Matrix: WATER

Matrix: WATER

Matrix: WATER

Analysis Batch: 8600

Analysis Batch: 8600

Analyte

Analyte

Cesium-137

Cobalt-60

Analyte

Analyte

Analyte

Analyte

Analyte

Tritium

Radium-226

Gross Alpha

Gross Beta

Radium-228

Uranium, Total

Matrix: WATER

Matrix: WATER

Matrix: WATER

Analysis Batch: 8600

Analysis Batch: 8600

Analysis Batch: 8600

Strontium-90

Analysis Batch: 8600

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 8600_P %Rec.

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 8600 P %Rec.

Limits 120 - 0

> Prep Type: Total/NA Prep Batch: 8600 P

RPD

RPD Limit

Lab Sample ID: S203010-05 **Matrix: WATER Analysis Batch: 8600**

Sample Sample Result Qualifier -57.9 U

Duplicate Duplicate Result Qualifier -104 U

Unit pCi/L

D

TestAmerica Irvine 4/27/2012

Client: MWH Americas Inc
Project/Site: Boeing SSFL
TestAmerica Jo

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

1.22

Uranium, Total

Lab Sample ID: S203010-05		Client Sample ID: OUTFALL 019 COMPOSITE DU
Matrix: WATER		Prep Type: Total/NA
Analysis Batch: 8600		Prep Batch: 8600_P
Sample	Sample Dupl	licate Duplicate RPD

	Sample Sai	inibie	Duplicate	Duplicate				KFD
Analyte	Result Qua	ıalifier	Result	Qualifier	Unit	D	RPD	Limit
Strontium-90	0.242 U		0.067	U	pCi/L			

Lab Sample ID: S203010-05

Matrix: WATER

Analysis Batch: 8600

Client Sample ID: OUTFALL 019 COMPOSITE DU
Prep Type: Total/NA
Prep Batch: 8600_P

	Sample	Sample	Duplicate	Duplicate					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Cesium-137	0.622	U	0.616	U	pCi/L				
Potassium-40	1 26	H	17 3	11	nCi/I				

Lab Sample ID: S203010-05		C	lient Sample	D: OUTFALL (J19 COMPOSIT	E DU
Matrix: WATER				1	Prep Type: Tota	al/NA
Analysis Batch: 8600					Prep Batch: 86	00_P
Sample	Sample Dupl	licate Duplicate				RPD
Analyte Result	Qualifier R	Result Qualifier	Unit	D	RPD	Limit

1.23

pCi/L

Lab Sample ID: S203010-05	Client Sample ID: OUTFALL 019 COMPO	SITE DU
Matrix: WATER	Prep Type: 1	otal/NA
Analysis Batch: 8600	Prep Batch:	8600_P
Sample Sample	Duplicate Duplicate	RPD

	Sample	Sample	Duplicate	Duplicate				KPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD) Limit
Radium-228	0.022	U	0.004	U	pCi/L			

Lab Sample ID: S203010-05	Lab Sample ID: S203010-05				Client Sample ID: OUTFALL 019 COMPOSITE DU						
Matrix: WATER							Prep Type: Total/NA				
Analysis Batch: 8600							Prep Batch: 8600_P				
-	Sample	Sample	Duplicate	Duplicate			RPD				
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD Limit				
Gross Alpha	0.091	U	1.08	U	pCi/L						
Gross Beta	2.6	J	3.3	J	pCi/L						

Lab Sample ID: S203010-05				Client Sample ID: OUTFALL 019 COMPOSITE D					
Matrix: WATER							Prep Type: To	tal/NA	
Analysis Batch: 8600							Prep Batch: 8	600_P	
	Sample	Sample	Duplicate	Duplicate				RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
Radium-226	0.1	U	-0.117	U	pCi/L				

1

_

Ω

10

11

12

13

Client: MWH Americas Inc Project/Site: Boeing SSFL

GC/MS VOA

Analysis Batch: 10368

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	624	
440-3913-9 MS	Outfall 019 Grab	Total/NA	Water	624	
440-3913-9 MSD	Outfall 019 Grab	Total/NA	Water	624	
440-3913-11	Trip Blanks	Total/NA	Water	624	
LCS 440-10368/6	Lab Control Sample	Total/NA	Water	624	
MB 440-10368/5	Method Blank	Total/NA	Water	624	

Analysis Batch: 10469

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3827-B-3 MS	Matrix Spike	Total/NA	Water	8260B SIM	· · · · · · · · · · · · · · · · · · ·
440-3827-B-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	
440-4065-1	Outfall 019 Composite	Total/NA	Water	8260B SIM	
LCS 440-10469/4	Lab Control Sample	Total/NA	Water	8260B SIM	
MB 440-10469/3	Method Blank	Total/NA	Water	8260B SIM	

Analysis Batch: 12466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	624	
440-3913-11	Trip Blanks	Total/NA	Water	624	
440-4348-C-1 MS	Matrix Spike	Total/NA	Water	624	
440-4348-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	624	
LCS 440-12466/5	Lab Control Sample	Total/NA	Water	624	
MB 440-12466/4	Method Blank	Total/NA	Water	624	

GC/MS Semi VOA

Prep Batch: 11009

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	625	
LCS 440-11009/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 440-11009/3-A	Lab Control Sample Dup	Total/NA	Water	625	
MB 440-11009/1-A	Method Blank	Total/NA	Water	625	

Analysis Batch: 11972

İ	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	440-4065-1	Outfall 019 Composite	Total/NA	Water	625	11009
	LCS 440-11009/2-A	Lab Control Sample	Total/NA	Water	625	11009
İ	LCSD 440-11009/3-A	Lab Control Sample Dup	Total/NA	Water	625	11009
	MB 440-11009/1-A	Method Blank	Total/NA	Water	625	11009

Analysis Batch: 12240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	625	11009
LCS 440-11009/2-A	Lab Control Sample	Total/NA	Water	625	11009
LCSD 440-11009/3-A	Lab Control Sample Dup	Total/NA	Water	625	11009
MB 440-11009/1-A	Method Blank	Total/NA	Water	625	11009

GC VOA

Analysis Batch: 12427

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	8015B	

4

6

0

11

12

1

QC Association Summary

Client: MWH Americas Inc
Project/Site: Boeing SSFL
TestAmerica Job ID: 440-3913-1

GC VOA (Continued)

Analysis Batch: 12427 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4070-A-8 MS	Matrix Spike	Total/NA	Water	8015B	
440-4070-A-8 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B	
LCS 440-12427/2	Lab Control Sample	Total/NA	Water	8015B	
MB 440-12427/3	Method Blank	Total/NA	Water	8015B	

GC Semi VOA

Prep Batch: 10989

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3893-J-5-A MS	Matrix Spike	Total/NA	Water	608	
440-3893-J-5-B MSD	Matrix Spike Duplicate	Total/NA	Water	608	
440-3893-L-5-A MS	Matrix Spike	Total/NA	Water	608	
440-3893-L-5-B MSD	Matrix Spike Duplicate	Total/NA	Water	608	
440-4065-1	Outfall 019 Composite	Total/NA	Water	608	
LCS 440-10989/2-A	Lab Control Sample	Total/NA	Water	608	
LCS 440-10989/5-A	Lab Control Sample	Total/NA	Water	608	
MB 440-10989/1-A	Method Blank	Total/NA	Water	608	

Analysis Batch: 11073

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3893-J-5-A MS	Matrix Spike	Total/NA	Water	608 Pesticides	10989
440-3893-J-5-B MSD	Matrix Spike Duplicate	Total/NA	Water	608 Pesticides	10989
440-4065-1	Outfall 019 Composite	Total/NA	Water	608 Pesticides	10989
LCS 440-10989/2-A	Lab Control Sample	Total/NA	Water	608 Pesticides	10989
MB 440-10989/1-A	Method Blank	Total/NA	Water	608 Pesticides	10989

Prep Batch: 11076

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
	440-3913-9	Outfall 019 Grab	Total/NA	Water	3510C
ı	LCS 440-11076/2-A	Lab Control Sample	Total/NA	Water	3510C
	LCSD 440-11076/3-A	Lab Control Sample Dup	Total/NA	Water	3510C
١	MB 440-11076/1-A	Method Blank	Total/NA	Water	3510C

Analysis Batch: 11085

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3893-L-5-A MS	Matrix Spike	Total/NA	Water	608 PCB LL	10989
440-3893-L-5-B MSD	Matrix Spike Duplicate	Total/NA	Water	608 PCB LL	10989
440-4065-1	Outfall 019 Composite	Total/NA	Water	608 PCB LL	10989
LCS 440-10989/5-A	Lab Control Sample	Total/NA	Water	608 PCB LL	10989
MB 440-10989/1-A	Method Blank	Total/NA	Water	608 PCB LL	10989

Analysis Batch: 11254

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	8015B	11076
LCS 440-11076/2-A	Lab Control Sample	Total/NA	Water	8015B	11076
LCSD 440-11076/3-A	Lab Control Sample Dup	Total/NA	Water	8015B	11076
MB 440-11076/1-A	Method Blank	Total/NA	Water	8015B	11076

4

6

9

10

15

13

TestAmerica Irvine 4/27/2012

Client: MWH Americas Inc Project/Site: Boeing SSFL

HPLC/IC

Analysis Batch: 10204

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4034-G-1 MS	Matrix Spike	Total/NA	Water	300.0	
440-4034-G-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
440-4065-1	Outfall 019 Composite	Total/NA	Water	300.0	
LCS 440-10204/7	Lab Control Sample	Total/NA	Water	300.0	
MB 440-10204/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 10205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	300.0	
LCS 440-10205/7	Lab Control Sample	Total/NA	Water	300.0	
MB 440-10205/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 10382

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4058-D-3 MS	Matrix Spike	Total/NA	Water	218.6	
440-4058-D-3 MSD	Matrix Spike Duplicate	Total/NA	Water	218.6	
440-4065-1	Outfall 019 Composite	Total/NA	Water	218.6	
LCS 440-10382/2	Lab Control Sample	Total/NA	Water	218.6	
MB 440-10382/3	Method Blank	Total/NA	Water	218.6	

Analysis Batch: 10437

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3307-A-1 MS	Matrix Spike	Total/NA	Water	314.0	
440-3307-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	314.0	
440-4065-1	Outfall 019 Composite	Total/NA	Water	314.0	
LCS 440-10437/4	Lab Control Sample	Total/NA	Water	314.0	
MB 440-10437/6	Method Blank	Total/NA	Water	314.0	

Specialty Organics

Analysis Batch: 2062105

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total	Water	1613B	
G2C020000105B	Method Blank	Total	Water	1613B	
G2C020000105C	Lab Control Sample	Total	Water	1613B	
G2C020000105L	Lab Control Sample Dup	Total	Water	1613B	

Prep Batch: 2062105_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total	Water	3542	
G2C020000105B	Method Blank	Total	Water	3542	
G2C020000105C	Lab Control Sample	Total	Water	3542	
G2C020000105L	Lab Control Sample Dup	Total	Water	3542	

Metals

Prep Batch: 10633

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3916-B-1-B MS	Matrix Spike	Total/NA	Water	245.1	
440-3916-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	
440-4065-1	Outfall 019 Composite	Total/NA	Water	245.1	
LCS 440-10633/2-A	Lab Control Sample	Total/NA	Water	245.1	

TestAmerica Irvine 4/27/2012

Page 57 of 123

Client: MWH Americas Inc Project/Site: Boeing SSFL

Metals (Continued)

Prep Batch: 10633 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 440-10633/1-A	Method Blank	Total/NA	Water	245.1	

Analysis Batch: 10858

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3916-B-1-B MS	Matrix Spike	Total/NA	Water	245.1	10633
440-3916-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	10633
440-4065-1	Outfall 019 Composite	Total/NA	Water	245.1	10633
LCS 440-10633/2-A	Lab Control Sample	Total/NA	Water	245.1	10633
MB 440-10633/1-A	Method Blank	Total/NA	Water	245.1	10633

Prep Batch: 11154

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total Recoverable	Water	200.2	
440-4377-A-4-B MS	Matrix Spike	Total Recoverable	Water	200.2	
440-4377-A-4-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.2	
LCS 440-11154/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-11154/1-A	Method Blank	Total Recoverable	Water	200.2	

Prep Batch: 11339

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total Recoverable	Water	200.2	
440-4065-1 MS	Outfall 019 Composite	Total Recoverable	Water	200.2	
440-4065-1 MSD	Outfall 019 Composite	Total Recoverable	Water	200.2	
440-4070-L-9-B MS	Matrix Spike	Total Recoverable	Water	200.2	
440-4070-L-9-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.2	
LCS 440-11339/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-11339/1-A	Method Blank	Total Recoverable	Water	200.2	

Prep Batch: 11400

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3724-B-1-D MS	Matrix Spike	Dissolved	Water	200.2	
440-3724-B-1-E MSD	Matrix Spike Duplicate	Dissolved	Water	200.2	
440-4065-1	Outfall 019 Composite	Dissolved	Water	200.2	
LCS 440-10742/2-C	Lab Control Sample	Dissolved	Water	200.2	
MB 440-10742/1-C	Method Blank	Dissolved	Water	200.2	

Prep Batch: 11406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3909-L-1-D MS	Matrix Spike	Dissolved	Water	200.2	
440-3909-L-1-E MSD	Matrix Spike Duplicate	Dissolved	Water	200.2	
440-4065-1	Outfall 019 Composite	Dissolved	Water	200.2	
LCS 440-10331/2-C	Lab Control Sample	Dissolved	Water	200.2	
MB 440-10331/1-C	Method Blank	Dissolved	Water	200.2	

Prep Batch: 11466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Dissolved	Water	245.1	
440-4065-1 MS	Outfall 019 Composite	Dissolved	Water	245.1	
440-4065-1 MSD	Outfall 019 Composite	Dissolved	Water	245.1	
LCS 440-10742/2-D	Lab Control Sample	Dissolved	Water	245.1	
MB 440-10742/1-D	Method Blank	Dissolved	Water	245.1	

TestAmerica Irvine 4/27/2012

QC Association Summary

Client: MWH Americas Inc
Project/Site: Boeing SSFL
TestAmerica Job ID: 440-3913-1

Metals (Continued)

Analysis Batch: 11472	Analy	ysis	Batch	ո։ 1	1472
-----------------------	-------	------	--------------	------	------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total Recoverable	Water	200.8	11154
440-4377-A-4-B MS	Matrix Spike	Total Recoverable	Water	200.8	11154
440-4377-A-4-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.8	11154
LCS 440-11154/2-A	Lab Control Sample	Total Recoverable	Water	200.8	11154
MB 440-11154/1-A	Method Blank	Total Recoverable	Water	200.8	11154

Analysis Batch: 11615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3724-B-1-D MS	Matrix Spike	Dissolved	Water	200.8	11400
440-3724-B-1-E MSD	Matrix Spike Duplicate	Dissolved	Water	200.8	11400
440-4065-1	Outfall 019 Composite	Dissolved	Water	200.8	11400
LCS 440-10742/2-C	Lab Control Sample	Dissolved	Water	200.8	11400
MB 440-10742/1-C	Method Blank	Dissolved	Water	200.8	11400

Analysis Batch: 11794

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Dissolved	Water	245.1	11466
440-4065-1 MS	Outfall 019 Composite	Dissolved	Water	245.1	11466
440-4065-1 MSD	Outfall 019 Composite	Dissolved	Water	245.1	11466
LCS 440-10742/2-D	Lab Control Sample	Dissolved	Water	245.1	11466
MB 440-10742/1-D	Method Blank	Dissolved	Water	245.1	11466

Analysis Batch: 12020

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3909-L-1-D MS	Matrix Spike	Dissolved	Water	200.7 Rev 4.4	11406
440-3909-L-1-E MSD	Matrix Spike Duplicate	Dissolved	Water	200.7 Rev 4.4	11406
440-4065-1	Outfall 019 Composite	Dissolved	Water	200.7 Rev 4.4	11406
LCS 440-10331/2-C	Lab Control Sample	Dissolved	Water	200.7 Rev 4.4	11406
MB 440-10331/1-C	Method Blank	Dissolved	Water	200.7 Rev 4.4	11406

Analysis Batch: 13069

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total Recoverable	Water	200.7 Rev 4.4	11339
440-4065-1 MS	Outfall 019 Composite	Total Recoverable	Water	200.7 Rev 4.4	11339
440-4065-1 MSD	Outfall 019 Composite	Total Recoverable	Water	200.7 Rev 4.4	11339
440-4070-L-9-B MS	Matrix Spike	Total Recoverable	Water	200.7 Rev 4.4	11339
440-4070-L-9-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7 Rev 4.4	11339

Analysis Batch: 13142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 440-11339/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	11339
MB 440-11339/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	11339

Analysis Batch: 13269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total Recoverable	Water	200.7 Rev 4.4	11339
440-4065-1 MS	Outfall 019 Composite	Total Recoverable	Water	200.7 Rev 4.4	11339
440-4065-1 MSD	Outfall 019 Composite	Total Recoverable	Water	200.7 Rev 4.4	11339
LCS 440-11339/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	11339
MB 440-11339/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	11339

3

4

5

8

4 6

13

Client: MWH Americas Inc Project/Site: Boeing SSFL

Metals (Continued)

Analysis Batch: 13645

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 440-11339/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	11339
MB 440-11339/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	11339

Analysis Batch: 13789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	SM 2340B	

Analysis Batch: 13799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Dissolved	Water	SM 2340B	

Prep Batch: 18443

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
440-4065-1	Outfall 019 Composite	Dissolved	Water	245.1	<u> </u>
440-4065-1 MS	Outfall 019 Composite	Dissolved	Water	245.1	
440-4065-1 MSD	Outfall 019 Composite	Dissolved	Water	245.1	
LCS 440-10742/2-E	Lab Control Sample	Dissolved	Water	245.1	
MB 440-10742/1-E	Method Blank	Dissolved	Water	245.1	

Prep Batch: 18451

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	245.1	
440-4065-1 MS	Outfall 019 Composite	Total/NA	Water	245.1	
440-4065-1 MSD	Outfall 019 Composite	Total/NA	Water	245.1	
LCS 440-18451/2-A	Lab Control Sample	Total/NA	Water	245.1	
MB 440-18451/1-A	Method Blank	Total/NA	Water	245.1	

Analysis Batch: 18539

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	245.1	18451
440-4065-1	Outfall 019 Composite	Dissolved	Water	245.1	18443
440-4065-1 MS	Outfall 019 Composite	Total/NA	Water	245.1	18451
440-4065-1 MS	Outfall 019 Composite	Dissolved	Water	245.1	18443
440-4065-1 MSD	Outfall 019 Composite	Total/NA	Water	245.1	18451
440-4065-1 MSD	Outfall 019 Composite	Dissolved	Water	245.1	18443
LCS 440-10742/2-E	Lab Control Sample	Dissolved	Water	245.1	18443
LCS 440-18451/2-A	Lab Control Sample	Total/NA	Water	245.1	18451
MB 440-10742/1-E	Method Blank	Dissolved	Water	245.1	18443
MB 440-18451/1-A	Method Blank	Total/NA	Water	245.1	18451

General Chemistry

Analysis Batch: 10176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	SM 2540F	

Analysis Batch: 10520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4064-C-5 DU	Duplicate	Total/NA	Water	180.1	
440-4065-1	Outfall 019 Composite	Total/NA	Water	180.1	
MB 440-10520/6	Method Blank	Total/NA	Water	180.1	
MRL 440-10520/4 MRL	Lab Control Sample	Total/NA	Water	180.1	

TestAmerica Irvine 4/27/2012

Client: MWH Americas Inc Project/Site: Boeing SSFL

General Chemistry (Continued)

Prep Batch: 10587

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	SM 4500 NH3 B
440-4065-1 MS	Outfall 019 Composite	Total/NA	Water	SM 4500 NH3 B
440-4065-1 MSD	Outfall 019 Composite	Total/NA	Water	SM 4500 NH3 B
LCS 440-10587/2-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 B
MB 440-10587/1-A	Method Blank	Total/NA	Water	SM 4500 NH3 B

Analysis Batch: 10656

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	SM 5540C	
440-4065-1 MS	Outfall 019 Composite	Total/NA	Water	SM 5540C	
440-4065-1 MSD	Outfall 019 Composite	Total/NA	Water	SM 5540C	
LCS 440-10656/4	Lab Control Sample	Total/NA	Water	SM 5540C	
MB 440-10656/3	Method Blank	Total/NA	Water	SM 5540C	

Analysis Batch: 10665

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	SM 4500 NH3 C	10587
440-4065-1 MS	Outfall 019 Composite	Total/NA	Water	SM 4500 NH3 C	10587
440-4065-1 MSD	Outfall 019 Composite	Total/NA	Water	SM 4500 NH3 C	10587
LCS 440-10587/2-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 C	10587
MB 440-10587/1-A	Method Blank	Total/NA	Water	SM 4500 NH3 C	10587

Analysis Batch: 10741

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	SM5210B	
LCS 440-10741/4	Lab Control Sample	Total/NA	Water	SM5210B	
LCSD 440-10741/5	Lab Control Sample Dup	Total/NA	Water	SM5210B	
USB 440-10741/1 USB	Method Blank	Total/NA	Water	SM5210B	

Prep Batch: 10790

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3897-G-1-A MS	Matrix Spike	Total/NA	Water	Distill/CN	
440-3897-G-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/CN	
440-4065-1	Outfall 019 Composite	Total/NA	Water	Distill/CN	
LCS 440-10790/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
MB 440-10790/1-A	Method Blank	Total/NA	Water	Distill/CN	

Analysis Batch: 10845

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3897-G-1-A MS	Matrix Spike	Total/NA	Water	SM 4500 CN E	10790
440-3897-G-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CN E	10790
LCS 440-10790/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	10790
MB 440-10790/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	10790

Analysis Batch: 10872

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	SM 4500 CN E	10790

Analysis Batch: 11105

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3781-A-1 DU	Duplicate	Total/NA	Water	SM 2540C	
440-4065-1	Outfall 019 Composite	Total/NA	Water	SM 2540C	

9

11

12

1.

Client: MWH Americas Inc Project/Site: Boeing SSFL

General Chemistry (Continued)

Analysis Batch: 11105 (Continued)

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	LCS 440-11105/2	Lab Control Sample	Total/NA	Water	SM 2540C	
1	MB 440-11105/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 11241

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	SM 2540D
440-4112-B-1 DU	Duplicate	Total/NA	Water	SM 2540D
LCS 440-11241/2	Lab Control Sample	Total/NA	Water	SM 2540D
MB 440-11241/1	Method Blank	Total/NA	Water	SM 2540D

Analysis Batch: 11428

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	SM 5310B	
440-4207-A-1 MS	Matrix Spike	Total/NA	Water	SM 5310B	
440-4207-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 5310B	
LCS 440-11428/2	Lab Control Sample	Total/NA	Water	SM 5310B	
MB 440-11428/1	Method Blank	Total/NA	Water	SM 5310B	
_					

Analysis Batch: 12569

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	120.1	
440-3913-9 DU	Outfall 019 Grab	Total/NA	Water	120.1	
LCS 440-12569/2	Lab Control Sample	Total/NA	Water	120.1	
MB 440-12569/1	Method Blank	Total/NA	Water	120.1	

Prep Batch: 12574

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	1664A
LCS 440-12574/2-A	Lab Control Sample	Total/NA	Water	1664A
LCSD 440-12574/3-A	Lab Control Sample Dup	Total/NA	Water	1664A
MB 440-12574/1-A	Method Blank	Total/NA	Water	1664A

Analysis Batch: 12658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	1664A	12574
LCS 440-12574/2-A	Lab Control Sample	Total/NA	Water	1664A	12574
LCSD 440-12574/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	12574
MB 440-12574/1-A	Method Blank	Total/NA	Water	1664A	12574

Biology

Analysis Batch: 10219

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	SM 9221E	

Analysis Batch: 10220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-3913-9	Outfall 019 Grab	Total/NA	Water	SM 9221F	

QC Association Summary

Client: MWH Americas Inc
Project/Site: Boeing SSFL
TestAmerica Job ID: 440-3913-1

Subcontract

Analysis Batch: 8600

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	Gamma Spec	8600_P
				K-40 CS-137	
440-4065-1	Outfall 019 Composite	Total/NA	Water	Gross Alpha	8600_P
				and Beta	
440-4065-1	Outfall 019 Composite	Total/NA	Water	Radium-226	8600_P
440-4065-1	Outfall 019 Composite	Total/NA	Water	Radium-228	8600_P
440-4065-1	Outfall 019 Composite	Total/NA	Water	Strontium 90	8600_P
440-4065-1	Outfall 019 Composite	Total/NA	Water	Tritium	8600_P
440-4065-1	Outfall 019 Composite	Total/NA	Water	Uranium,	8600_P
				Combined	
440-4065-3	Trip Blank	Total/NA	Water	Gamma Spec	8600_P
				K-40 CS-137	
440-4065-3	Trip Blank	Total/NA	Water	Gross Alpha	8600_P
				and Beta	
440-4065-3	Trip Blank	Total/NA	Water	Radium 226	8600_P
440-4065-3	Trip Blank	Total/NA	Water	Radium 228	8600_P
440-4065-3	Trip Blank	Total/NA	Water	Strontium 90	8600_P
440-4065-3	Trip Blank	Total/NA	Water	Uranium,	8600_P
				Combined	
S203010-03	Lab Control Sample	Total/NA	WATER	Gross Alpha	8600_P
				and Beta	
S203010-04	Method Blank	Total/NA	WATER	Gross Alpha	8600_P
				and Beta	
S203010-05	OUTFALL 019 COMPOSITE DU	Total/NA	WATER	Gross Alpha	8600_P
				and Beta	

Prep Batch: 8600_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-4065-1	Outfall 019 Composite	Total/NA	Water	General Prep	
440-4065-3	Trip Blank	Total/NA	Water	General Prep	
S203010-03	Lab Control Sample	Total/NA	WATER	General Prep	
S203010-04	Method Blank	Total/NA	WATER	General Prep	
S203010-05	OUTFALL 019 COMPOSITE DU	Total/NA	WATER	General Prep	

9

4

5

a

10

1:

Client: MWH Americas Inc Project/Site: Boeing SSFL

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
LQ	LCS/LCSD recovery above method control limits

ΑZ Surrogate recover outside of acceptance limits due to matrix interference

GC VOA

Qualifier **Qualifier Description**

AY Matrix Interference suspected

GC Semi VOA

AY Matrix Interference suspected

ы Primary and confirm results varied by > than 40% RPD

HPLC/IC

Qualifier **Qualifier Description**

J,DX Estimated value; value < lowest standard (MQL), but >than MDL

DIOXIN

Qualifier Qual	ifier Description
----------------	-------------------

J Estimated result. Result is less than the reporting limit.

В Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Q Estimated maximum possible concentration (EMPC).

Metals

JQ

MB Analyte present in the method blank

LQ LCS/LCSD recovery above method control limits

Estimated value; value < lowest standard (MQL), but >than MDL J.DX

BB Sample > 4X spike concentration

AY Matrix Interference suspected

RA RPD exceeds limits due to matrix interference. % recoveries were within limits

LM MS and/or MSD above acceptance limits. See Blank Spike (LCS) LN MS and/or MSD below acceptance limits. See Blank Spike (LCS)

General Chemistry

Qualifier **Qualifier Description**

J,DX Estimated value; value < lowest standard (MQL), but >than MDL

Subcontract

Qualifier Qualifier Description

Ū The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CNF Contains no Free Liquid

DL, RA, RE, IN Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample

FDI **Estimated Detection Limit**

EPA United States Environmental Protection Agency

MDL Method Detection Limit ML Minimum Level (Dioxin)

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

TestAmerica Irvine 4/27/2012

Definitions/Glossary

Client: MWH Americas Inc TestAmerica Job ID: 440-3913-1

Project/Site: Boeing SSFL

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
QC	Quality Control	
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Client: MWH Americas Inc Project/Site: Boeing SSFL

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Irvine	Arizona	State Program	9	AZ0671
TestAmerica Irvine	California	LA Cty Sanitation Districts	9	10256
TestAmerica Irvine	California	NELAC	9	1108CA
TestAmerica Irvine	California	State Program	9	2706
TestAmerica Irvine	Guam	State Program	9	Cert. No. 12.002r
TestAmerica Irvine	Hawaii	State Program	9	N/A
TestAmerica Irvine	Nevada	State Program	9	CA015312007A
TestAmerica Irvine	New Mexico	State Program	6	N/A
TestAmerica Irvine	Northern Mariana Islands	State Program	9	MP0002
TestAmerica Irvine	Oregon	NELAC	10	4005
TestAmerica Irvine	USDA	Federal		P330-09-00080
TestAmerica West Sacramento	A2LA	A2LA		MP0007
TestAmerica West Sacramento	A2LA	DoD ELAP		2928-01
TestAmerica West Sacramento	Alaska (UST)	State Program	10	UST-055
TestAmerica West Sacramento	Arizona	State Program	9	AZ0708
TestAmerica West Sacramento	Arkansas DEQ	State Program	6	88-0691
TestAmerica West Sacramento	California	NELAC	9	1119CA
TestAmerica West Sacramento	Colorado	State Program	8	N/A
TestAmerica West Sacramento	Connecticut	State Program	1	PH-0691
TestAmerica West Sacramento	Florida	NELAC	4	E87570
TestAmerica West Sacramento	Georgia	State Program	4	960
TestAmerica West Sacramento	Guam	State Program	9	N/A
restAmerica West Sacramento	Hawaii	State Program	9	N/A
TestAmerica West Sacramento	Illinois	NELAC	5	200060
TestAmerica West Sacramento	Kansas	NELAC	7	E-10375
TestAmerica West Sacramento	Louisiana	NELAC	6	30612
TestAmerica West Sacramento	Michigan	State Program	5	9947
TestAmerica West Sacramento	Nevada	State Program	9	CA44
TestAmerica West Sacramento	New Jersey	NELAC	2	CA005
TestAmerica West Sacramento	New Mexico	State Program	6	N/A
TestAmerica West Sacramento	New York	NELAC	2	11666
TestAmerica West Sacramento	Oregon	NELAC	10	CA200005
TestAmerica West Sacramento	Pennsylvania	NELAC	3	68-01272
TestAmerica West Sacramento	South Carolina	State Program	4	87014
TestAmerica West Sacramento	Texas	NELAC	6	T104704399-08-TX
TestAmerica West Sacramento	US Fish & Wildlife	Federal		LE148388-0
TestAmerica West Sacramento	USDA	Federal		P330-09-00055
TestAmerica West Sacramento	Utah	NELAC	8	QUAN1
TestAmerica West Sacramento	Virginia	State Program	3	178
TestAmerica West Sacramento	Washington	State Program	10	C581
TestAmerica West Sacramento	West Virginia	State Program	3	9930C
FestAmerica West Sacramento	West Virginia DEP	State Program	3	334
FestAmerica West Sacramento	Wisconsin	State Program	5	998204680
. 355 anonou Troot Odordinonto		Otato i rogiani	•	000201000

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

3

4

6

9

10

11

12

13

EBERLINE ANALYTICAL CORPORATION

2030 Wright Avenue Richmond, California 94894-3849

April 17, 2012

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine 44002624

Eberline Analytical Report S203010-8600

Sample Delivery Group 8600

Dear Ms. Wilson:

Enclosed is a revised Level IV CLP-like data package (on CD) for two water samples received under Test America Project No. 44002624. The samples were received on March 7, 2012 and originally reported on March 28, 2012.

The original data package included gamma spectroscopy results for Co60 that were not requested on the COC. Those results have been removed. No other revisions were made.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

Joseph Verville

Client Services Manager

NJV/mw

Enclosure: Level IV CLP-like Data Package CD

1.0 General Comments

Sample delivery group 8600 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The samples were received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the samples as received i.e. the samples were not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

Sample OUTFALL 019 COMPOSITE was originally received on March 13 however the sample container was compromised and the sample volume had leaked into shipping cooler. A replacement sample was received on March 7, 2012.

2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, and duplicate analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2σ error (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

-

4

Ę

6

8

9

11

12

Test America Test America Project No. 44002624

Case Narrative, page 2

March 28, 2012

4.0 **Analysis Notes**

- 4.1 Gross Alpha/Gross Beta Analysis - No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.2 Tritium Analysis - No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.3 Strontium-90 Analysis - No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.4 Radium-226 Analysis – No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.5 Radium-228 Analysis - No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis - No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy – No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

5.0 **Case Narrative Certification Statement**

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

Joseph Verville

Client Services Manager

Page 69 of 123

SDG <u>8600</u> Contact <u>Joseph Verville</u> Client <u>Test America, Inc.</u> Contract <u>44002624</u>

SUMMARY DATA SECTION

TABLE OF	C O	N T	E N	T S	
About this section		æ		,	1
Sample Summaries	(a)			٠	3
Prep Batch Summary		•		•	5
Work Summary		: * :3	•	*	6
Method Blanks	1940	310	1917	*	8
Lab Control Samples	•	•	•	٠	9
Duplicates	(*)	٠	16 (2)	(9 6))	10
Data Sheets	5 4 0	•	*	36 1	11
Method Summaries	(4)		(4)	3.	13
Report Guides	(●)		36 0	1901	21
End of Section			•	3	35

Prepared by

Reviewed by $^{\ell}$

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06Report date 04/17/12

6

9

11

SDG 8600

Contact Joseph Verville

REPORT GUIDE Client Test America, Inc.

Contract <u>44002624</u>

DATA SECTION ABOUT THE SUMMARY

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 1

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-RG Version 3.06 Report date <u>04/17/12</u>

SDG 8600

SDG <u>8600</u>

Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>

Contract 44002624

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 2

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/17/12

4

5

7

8

10

11

SDG 8600

SDG 8600
Contact Joseph Verville

LAB SAMPLE SUMMARY

Client <u>Test America</u>, <u>Inc</u>.

Contract <u>44002624</u>

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF CUSTODY	COLLECTED
S203010-01	OUTFALL 019 COMPOSITE	Boeing-SSFL	WATER			440-2062.1	02/29/12 11:30
S203010-02	TRIP-BLANK (440-4065-3)	Boeing-SSFL	WATER			440-2062.1	02/29/12 10:33
S203010-03	Lab Control Sample		WATER				
S203010-04	Method Blank		WATER				
S203010-05	Duplicate (S203010-01)	Boeing-SSFL	WATER				02/29/12 11:30

LAB SUMMARY Page 1

SUMMARY DATA SECTION

Page 3

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-LS

Version 3.06

Report date 04/17/12

SDG 8600

SDG <u>8600</u>
Contact <u>Joseph Verville</u>

QC SUMMARY

Client Test America, Inc.
Contract 44002624

QC BATCH	CHAIN OF CUSTODY	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT
8600	440-2062.1	OUTFALL 019 COMPOSITE TRIP-BLANK (440-4065-3)	WATER WATER		10.0 L		03/07/12	7 7	S203010-01 S203010-02	8600-001 8600-002
		Method Blank Lab Control Sample Duplicate (S203010-01)	WATER WATER WATER		10.0 L		03/07/12	7	S203010-04 S203010-03 S203010-05	8600-004 8600-003 8600-005

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

5

7

9

11

12

SDG 8600

SDG	8600	
Contact	<u>Joseph</u>	Verville

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

			PREPARATION	ERROR			- PLA	NCHETS A	ANALYZ	ED —	QUALI-
TEST	MATRIX	METHOD	BATCH	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Beta	Counting										
AC	WATER	Radium-228 in Water	7726-030	10.4	2			1	1	1/1	
SR	WATER	Strontium-90 in Water	7726-030	10.4	2			1	1	1/1	
Gas E	roportiona	l Counting									
80A	WATER	Gross Alpha in Water	7726-030	20.6	2			1	1	1/1	
80B	WATER	Gross Beta in Water	7726-030	11.0	2			1	1	1/1	
Gamma	Spectroso	сору									
GAM	WATER	Gamma Emitters in Water	7726-030	7.0	2			1	1	1/1	
Kinet	ic Phospho	orimetry							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
U_T	WATER	Uranium, Total	7726-030		2			1	1	1/1	
Liqui	d Scintill	lation Counting									
H	WATER	Tritium in Water	7726-030	10.0	1			1	1	1/1	
Rador	Counting										
RA	WATER	Radium-226 in Water	7726-030	16.4	2			1	1	1/1	

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-PBS
Version 3.06

Report date 04/17/12

2

5

7

ŏ

10

11

SDG 8600

SDG 8600
Contact Joseph Verville

LAB WORK SUMMARY

Client Test America, Inc.

Contract 44002624

LAB SAMPLE COLLECTED RECEIVED	CLIENT SAMPLE ID LOCATION CUSTODY SAS no	MATRIX	PLANCHET	TEST	SUF-	ANALYZED	REVIEWED	вч	METHOD
S203010-01	OUTFALL 019 COMPOSITE		8600-001	80A/80		03/19/12	03/20/12	BW	Gross Alpha in Water
02/29/12	Boeing-SSFL	WATER	8600-001	80B/80		03/19/12	03/20/12	BW	Gross Beta in Water
03/07/12	440-2062.1		8600-001	AC		03/19/12	03/21/12	BW	Radium-228 in Water
30, 31,	*** ***-		8600-001	GAM		03/17/12	03/20/12	CSS	Gamma Emitters in Water
			8600-001	Н		03/13/12	03/19/12	BW	Tritium in Water
•			8600-001	RA		03/21/12	03/21/12	BW	Radium-226 in Water
			8600-001	SR.			03/21/12	BW	Strontium-90 in Water
			8600-001	U_T			03/19/12	CSS	Uranium, Total
S203010-02	TRIP-BLANK (440-4065-3)		8600-002	80A/80		03/19/12	03/20/12	BW	Gross Alpha in Water
02/29/12	Boeing-SSFL	WATER	8600~002	80B/80		03/19/12	03/20/12	BW	Gross Beta in Water
03/07/12	440-2062.1		8600-002	AC		03/19/12	03/21/12	BW	Radium-228 in Water
			8600-002	GAM		03/17/12	03/20/12	CSS	Gamma Emitters in Water
			8600-002	RA		03/21/12	03/21/12	BW	Radium-226 in Water
			8600-002	SR		03/16/12	03/21/12	BW	Strontium-90 in Water
			8600-002	U_T		03/19/12	03/19/12	CSS	Uranium, Total
S203010-03	Lab Control Sample		8600-003	80A/80		03/19/12	03/20/12	BW	Gross Alpha in Water
		WATER	8600-003	80B/80		03/19/12	03/20/12	BW	Gross Beta in Water
			8600-003	AC		03/19/12	03/21/12	BW	Radium-228 in Water
			8600-003	GAM		03/17/12	03/20/12	CSS	Gamma Emitters in Water
			8600-003	H		03/13/12	03/19/12	BW	Tritium in Water
			8600-003	RA		03/21/12	03/21/12	BW	Radium-226 in Water
			8600-003	SR		03/16/12	03/21/12	${\tt BW}$	Strontium-90 in Water
			8600-003	U_T		03/19/12	03/19/12	CSS	Uranium, Total
5203010-04	Method Blank	H 11 301 1 1001 1	8600-004	80A/80		03/19/12	03/20/12	BW	Gross Alpha in Water
		WATER	8600-004	80B/80		03/19/12	03/20/12	BW	Gross Beta in Water
			8600-004	AC		03/19/12	03/21/12	BW	Radium-228 in Water
			8600-004	GAM		03/19/12	03/20/12	CSS	Gamma Emitters in Water
			8600-004	H		03/13/12	03/19/12	BW	Tritium in Water
			8600-004	RA		03/21/12	03/21/12	BW	Radium-226 in Water
			8600-004	SR		03/16/12	03/21/12	ВW	Strontium-90 in Water
			8600-004	U_T		03/19/12	03/19/12	CSS	Uranium, Total

WORK SUMMARY

Page 1

SUMMARY DATA SECTION

Page 6

 3

4

6

9

SDG 8600

SDG 8600 Contact Joseph Verville

WORK SUMMARY, cont.

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

LAB SAMPLE CLIENT SAMPLE ID SUF-COLLECTED LOCATION MATRIX METHOD RECEIVED CUSTODY SAS no PLANCHET TEST FIX ANALYZED REVIEWED BY S203010-05 Duplicate (S203010-01) 8600-005 80A/80 03/19/12 03/20/12 BW Gross Alpha in Water 02/29/12 Boeing-SSFL WATER 8600-005 80B/80 03/19/12 03/20/12 BW Gross Beta in Water 03/07/12 03/19/12 03/21/12 BW 8600-005 $\mathbb{A}\mathbb{C}$ Radium-228 in Water 8600-005 03/19/12 03/20/12 CSS Gamma Emitters in Water 03/13/12 03/19/12 BW 8600-005 Tritium in Water H 8600-005 03/21/12 03/21/12 BW Radium-226 in Water 8600-005 03/16/12 03/21/12 BW Strontium-90 in Water SR 8600-005 $\mathtt{U}_{-}\mathtt{T}$ 03/19/12 03/19/12 CSS Uranium, Total

TEST	SAS no	COUNTS METHOD	OF TESTS BY	SAMPLE TYPE CLIENT MORE	RE BLANK	LCS	DUP SPIKE	TOTAL
								Π_
80A/80		Gross Alpha in Water	900.0	2	1	1	1	5
80B/80		Gross Beta in Water	900.0	2	1	1	1	5
AC		Radium-228 in Water	904.0	2	1	1	1	5
GAM		Gamma Emitters in Water	901.1	2	1	1	1	5
H		Tritium in Water	906.0	1	1	1	1	4
RA		Radium-226 in Water	903.1	2	1	1	1	5
SR		Strontium-90 in Water	905.0	2	1	1	1	5
U_T		Uranium, Total	D5174	2	1	1	1	5
TOTALS				15	8	8	8	39

WORK SUMMARY

Page 2

SUMMARY DATA SECTION

Page 7

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 04/17/12

Page 77 of 123

4/27/2012

2

4

6

9

11

8600-004

METHOD BLANK

Method Blank

SDG <u>8600</u>	Client <u>Test </u>	America, Inc.
Contact Joseph Ver	ville Contract 44002	524
Lab sample id <u>S203010-04</u>	_ Client sample id <u>Metho</u>	i Blank
Dept sample id 8600-004	Material/Matrix	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.093	0.26	0.477	3.00	U	80A
Gross Beta	12587472	-0.344	0.58	0.983	4.00	U	80B
Tritium	10028178	-8.59	10	17.2	500	U	Н
Radium-226	13982633	0.054	0.33	0.590	1.00	U	RA
Radium-228	15262201	-0.088	0.13	0.354	1.00	U	AC
Strontium-90	10098972	-0.103	0.13	0.353	2.00	U	SR
Uranium, Total		0	0.008	0.018	1.00	U	U_T
Potassium-40	13966002	12.7	18	30.4	25.0	U	GAM
Cesium-137	10045973	0.320	1.6	2.83	20.0	U	GAM

QC-BLANK #81258

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 04/17/12

9

5

0

8

10

11

SDG 8600

8600-003

Lab Control Sample

LAB CONTROL SAMPLE

 SDG
 8600
 Client
 Test America, Inc.

 Contact
 Joseph Verville
 Contract
 44002624

 Lab sample id
 \$203010-03
 Client sample id
 Lab Control Sample

 Dept sample id
 8600-003
 Material/Matrix
 WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOJ LIMITS
Gross Alpha	40.4	2.2	0.520	3.00		80A	33.7	1.3	120	74-126	70-130
Gross Beta	27.4	1.2	0.944	4.00		80B	28.4	1.1	96	88-112	70-130
Tritium	338	24	24.9	500	J	Н	369	15	92	88-112	80-120
Radium-226	56.9	2,2	0.752	1.00		RA	55.7	2.2	102	82-118	80-120
Radium-228	3.97	0.089	0.316	1.00		AC	4.47	0.18	89	90-110	60-140
Strontium-90	7.54	0.68	0.344	2.00		SR	8.52	0.34	88	87-113	80-120
Uranium, Total	57.4	6.5	0.178	1.00		U_T	57.5	2.3	100	88-112	80-120
Cobalt-60	136	6.1	5.02	10.0		GAM	132	5.3	103	91-109	80-120
Cesium-137	153	3.6	5.03	20.0		GAM	147	5.9	104	91-109	80-120

QC-LCS #81257

LAB CONTROL SAMPLES

Page 1

SUMMARY DATA SECTION

Page 9

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LCS</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

-5

6

9

10

12

8600-005

DUPLICATE

OUTFALL 019 COMPOSITE

SDG 8600

Client Test America, Inc.

Contact Joseph Verville

Contract <u>44002624</u>

DUPLICATE

ORIGINAL

Client sample id OUTFALL 019 COMPOSITE

Lab sample id <u>S203010-05</u>

Lab sample id S203010-01 Dept sample id 8600-001

Dept sample id 8600-005

Location/Matrix Boeing-SSFL Collected/Volume <u>02/29/12 11:30</u> <u>10.0 L</u>

Received 03/07/12

Chain of custody id 440-2062.1

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ TOT	DER σ
Gross Alpha	1.08	0.97	1.70	3.00	U	80A	0.091	1.2	2.13	Ū	-		1.3
Gross Beta	3.30	1.2	1.83	4.00	J	80B	2.60	1.3	2.09	J	24	93	0.8
Tritium	-104	85	150	500	Ü	H	-57.9	87	151	U	-		0.8
Radium-226	-0.117	0.34	0.653	1.00	U	RA	0.100	0.35	0.616	U	-		0.9
Radium-228	0.004	0.13	0.346	1.00	U	AC	0.022	0.12	0.329	U	-		0.2
Strontium-90	0.067	0.34	0.744	2.00	U	SR	0.242	0.45	0.958	U	-		0.6
Uranium, Total	1.23	0.13	0.018	1.00		U_T	1.22	0.13	0.018		1	23	0.1
Potassium-40	17.3	21	34.8	25.0	U	GAM	1.26	17	30.0	U	-		1.2
Cesium-137	0.616	1.6	2.79	20.0	U	GAM	0.622	0.66	1.54	U	_		0

QC-DUP#1 81259

DUPLICATES

Page 1

SUMMARY DATA SECTION

Page 10

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-DUP Version 3.06 Report date 04/17/12

8600-001

DATA SHEET

OUTFALL 019 COMPOSITE

	8600 Joseph Verville		Test America, Inc. 44002624	
Lab sample id Dept sample id Received	8600-001 03/07/12	Location/Matrix	02/29/12 11:30 10.0 L	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Clara - D Janko	12587461	0.091	1.2	2.13	3.00	U	80A
Gross Alpha Gross Beta	12587461	2.60	1.3	2.13	4.00	J	80B
Tritium	10028178	-57.9	87	151	500	U	Н
Radium-226	13982633	0.100	0.35	0.616	1.00	Ū	RA
Radium-228	15262201	0.022	0.12	0.329	1.00	U	AC
Strontium-90	10098972	0.242	0.45	0.958	2.00	U	SR
Uranium, Total		1.22	0.13	0.018	1.00		U_T
Potassium-40	13966002	1.26	17	30.0	25.0	U	GAM
Cesium-137	10045973	0.622	0.66	1.54	20.0	U	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-DS

 Version
 3.06

 Report date
 04/17/12

3

5

7

Ö

10

10

SDG 8600

8600-002

TRIP-BLANK (440-4065-3)

DATA SHEET

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.054	0.19	0.357	3.00	Ū	80A
Gross Beta	12587472	0.221	0.66	1.07	4.00	U	80B
Radium-226	13982633	0.022	0.25	0.474	1.00	Ŭ	RA
Radium-228	15262201	-0.108	0.098	0.284	1.00	U	. AC
Strontium-90	10098972	-0.166	0.26	0.683	2.00	U	SR
Uranium, Total		0	0.008	0.018	1.00	U	UT
Potassium-40	13966002	19.9	32	54.1	25.0	Ū	GAM
Cesium-137	10045973	-0.323	0.93	2.43	20.0	U	GAM

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 04/17/12

2

4

5

7

Ŏ

10

4.0

SDG 8600

Test AC Matrix WATER

SDG 8600

Contact Joseph Verville

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client <u>Test America</u>, <u>Inc</u>.

Contract 44002624

RESULTS

LAB RAW SUF-

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Radium-228	
Preparation	batch 772	6-030			
S203010-01		8600-001	OUTFALL 019 COMPOSITE	Ū	
S203010-02		8600-002	TRIP-BLANK (440-4065-3)	U	
S203010-03		8600-003	Lab Control Sample	ok	
S203010-04		8600-004	Method Blank	υ	
S203010-05		8600-005	Duplicate (S203010-01)	- U	

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	%	EFF %		FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 772	6-030 2σ prep error 10	.4 % Rei	Eerence	Lab 1	Notebool	c 7724	pg.	119					
S203010-01		OUTFALL 019 COMPOSITE	0.329	1.80			82		150		19	03/19/12	03/19	GRB-221
S203010-02		TRIP-BLANK (440-4065-3)	0.284	1.80			98		150		19	03/19/12	03/19	GRB-222
\$203010-03		Lab Control Sample	0.316	1.80			86		150			03/19/12	03/19	GRB-223
5203010-04		Method Blank	0.354	1.80			81		150			03/19/12	03/19	GRB-224
\$203010-05		Duplicate (\$203010-01)	0.346	1.80			80		150		19	03/19/12	03/19	GRB-225
Nominal val	lues and li	mits from method	1.00	1.80			30-10	5	50		 180			

PROCEDURES REFERENCE 904.0

DWP-894 Sequential Separation of Actinium-228 and Radium-226 in Drinking Water (>1 Liter Aliquot), rev 5

AVERAGES ± 2 SD MDA 0.326 ± 0.055 FOR 5 SAMPLES YIELD 85 ± 15

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 13

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

3

0

8

10

11

SDG 8600

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER
BETA COUNTING

Client <u>Test America, Inc.</u>

Contract 44002624

RESULTS

SAMPLE ID I	TEST FIX PLANCHET	CLIENT SAMPLE ID	Strontium-90
Preparation l	batch 7726-030		
\$203010-01	8600-001	OUTFALL 019 COMPOSITE	ប៊
S203010-02	8600-002	TRIP-BLANK (440-4065-3)	U
S203010-03	8600-003	Lab Control Sample	ok
S203010-04	8600-004	Method Blank	U
S203010-05	8600-005	Duplicate (S203010-01)	- U

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	9/0	뢍	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	a batch 7726-030 2σ prep err	or 10.4 % Re	ference	Lab 1	Notebool	7724	pg.	119						
S203010-01	OUTFALL 019 COMPOSIT	E 0.958	0.500			94		50			16	03/16/12	03/16	GRB-229
S203010-02	TRIP-BLANK (440-4065	0.683	0.500			95		50			16	03/16/12	03/16	GRB-221
S203010-03	Lab Control Sample	0.344	1.00			90		50				03/16/12	03/16	GRB-222
S203010-04	Method Blank	0.353	1,00			91		50				03/16/12	03/16	GRB-223
S203010-05	Duplicate (S203010-0	0.744	0.500			93		50			16	03/16/12	03/16	GRB-224
Nominal val	ues and limits from method	2.00	1.00			30-109	5	50			180			

PROCEDURES REFERENCE 905.0

CP-380 Strontium in Water Samples, rev 5

AVERAGES ± 2 SD MDA __0.616 ± __0.530 FOR 5 SAMPLES YIELD __93 __ ± __4

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 14

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

4

5

7

10

Ш

SDG 8600

Test 80A Matrix WATER
SDG 8600

Contact Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

RESULTS

LAB RAW SUF-

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Alp	pha
Preparation	batch 772	6-030			
S203010-01	80	8600-001	OUTFALL 019 COMPOSITE	Ū	
S203010-02	80	8600-002	TRIP-BLANK (440-4065-3)	U	
S203010-03	80	8600-003	Lab Control Sample	ok	
S203010-04	80	8600-004	Method Blank	U	
S203010-05	80	8600-005	Duplicate (S203010-01)	- U	j

METHOD PERFORMANCE

LAB R	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID I	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	8	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation b	batch 7726	5-030 2σ prep error 2	0.6 % Re:	ference	Lab N	oteboo	k 7724	pg.	119						
S203010-01 8	80	OUTFALL 019 COMPOSITE	2.13	0.135			97		400			19	03/15/12	03/19	GRB-105
S203010-02 8	80	TRIP-BLANK (440-4065-3)	0.357	0.300			2		400			19	03/15/12	03/19	GRB-107
S203010-03 8	80	Lab Control Sample	0.520	0.300			60		400				03/15/12	03/19	GRB-101
S203010-04 8	80	Method Blank	0.477	0.300			62		400				03/15/12	03/19	GRB-103
S203010-05 8	80	Duplicate (S203010-01)	1.70	0.135			97		400			19	03/15/12	03/19	GRB-104

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA 1.04 ± 1.64 FOR 5 SAMPLES RESIDUE 64 ± 78

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 15

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

3

4

5

7

4.4

12

SDG 8600

Test 80B Matrix WATER SDG 8600 Contact Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER GAS PROPORTIONAL COUNTING Client Test America, Inc.

Contract 44002624

RESULTS

RAW SUF-SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Gross Beta Preparation batch 7726-030 S203010-01 80 8600-001 OUTFALL 019 COMPOSITE 2.60 J S203010-02 80 8600-002 TRIP-BLANK (440-4065-3) U S203010-03 80 8600-003 Lab Control Sample 8600-004 Method Blank S203010-04 80 IJ S203010-05 80 8600-005 Duplicate (S203010-01)

4.00

RDLs (pCi/L)

METHOD PERFORMANCE

Nominal values and limits from method

LAB	RAW SUF-	-	MDA	ALIQ	PREP	DILU~	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	왕	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	n batch 772	26-030 2σ prep error 1	1.0 % Re	ference	Lab N	ioteboo.	t 7724	pg.	119						
S203010-01	80	OUTFALL 019 COMPOSITE	2.09	0.135			97		400			19	03/15/12	03/19	GRB-105
S203010-02	80	TRIP-BLANK (440-4065-3)	1.07	0.300			2		400			19	03/15/12	03/19	GRB-107
S203010-03	80	Lab Control Sample	0.944	0.300			60		400				03/15/12	03/19	GRB-101
S203010-04	80	Method Blank	0.983	0.300			62		400				03/15/12	03/19	GRB-103
S203010-05	80	Duplicate (S203010-01)	1.83	0.135			97		400			19	03/15/12	03/19	GRB-104
Nominal va	lues and 1:	imits from method	4.00	0.300			0-25	0	100			180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

MDA 1.38 ± 1.07 AVERAGES ± 2 SD FOR 5 SAMPLES RESIDUE 64 ± 78

METHOD SUMMARIES

SUMMARY DATA SECTION

Page 16

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>04/17/12</u>

SDG 8600

Test GAM Matrix WATER SDG 8600 Contact Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER GAMMA SPECTROSCOPY

Client Test America, Inc. Contract 44002624

RESULTS

S203010-04

RAW SUF-SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Cobalt-60 Preparation batch 7726-030

S203010-01 8600-001 OUTFALL 019 COMPOSITE S203010-02 8600-002 TRIP-BLANK (440-4065-3) S203010-03 8600-003 Lab Control Sample

8600-004

S203010-05 8600-005 Duplicate (S203010-01)

Nominal values and limits from method

RDLs (pCi/L)

Method Blank

10.0

20.0

Cesium-137

U

Ü

ok

U

METHOD PERFORMANCE

MDAALIQ PREP DILU- YIELD EFF COUNT FWHM DRIFT DAYS RAW SUF-ANAL-SAMPLE ID TEST FIX CLIENT SAMPLE ID pCi/L FAC TION % min keV KeV HELD PREPARED YZED L DETECTOR Preparation batch 7726-030 2σ prep error 7.0 % Reference Lab Notebook 7724 pg. 119 S203010-01 OUTFALL 019 COMPOSITE 2.00 17 03/14/12 03/17 MB,G8,0 TRIP-BLANK (440-4065-3) 2,00 400 17 03/14/12 03/17 MB,G5,0 S203010-02 S203010-03 Lab Control Sample 2.00 400 03/14/12 03/17 MB,G6,0 S203010-04 Method Blank 2.00 03/14/12 03/19 MB,G3,0 400 S203010-05 Duplicate (S203010-01) 2.00 400 19 03/14/12 03/19 MB,G4,0 Nominal values and limits from method 6.00 2.00 400 180

PROCEDURES REFERENCE 901.1

DWP-100

Preparation of Drinking Water Samples for Gamma

Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 17

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>04/17/12</u>

SDG 8600

Test <u>U T</u> Matrix <u>WATER</u>

SDG <u>8600</u>

Contact <u>Joseph Verville</u>

LAB METHOD SUMMARY

URANIUM, TOTAL

KINETIC PHOSPHORIMETRY

Client Test America, Inc.
Contract 44002624

4

RESULTS

LAB	RAW SUF-		Uranium,	
SAMPLE ID	TEST FIX PLANCHET	CLIENT SAMPLE ID	Total	
Dronaration	n batch 7726-030			
*				
S203010-01	8600-001	OUTFALL 019 COMPOSITE	1.22	
S203010-02	8600-002	TRIP-BLANK (440-4065-3)	U	
S203010-03	8600-003	Lab Control Sample	ok	
\$203010-04	8600-004	Method Blank	U	
S203010-05	8600-005	Duplicate (S203010-01)	ok	
	,			—
Nominal val	lues and limits from	method RDLs (pCi/L)	1.00	

METHOD PERFORMANCE

	RAW SUF- IEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	%	EFF %		FWHM keV		PREPARED	ANAL- YZED	DETECTOR
					·····								
Preparation 1	batch 7726-030 2σ prep error	Rei	erence	Lab N	oteboo	k 7724	pg.	119					
\$203010-01	OUTFALL 019 COMPOSITE	0.018 0	.0200							19	03/19/12	03/19	KPA-001
S203010-02	TRIP-BLANK (440-4065-3)	0.018 0	.0200							19	03/19/12	03/19	KPA-001
S203010-03	Lab Control Sample	0.178 0	.0200								03/19/12	03/19	KPA-001
S203010-04	Method Blank	0.018 0	.0200								03/19/12	03/19	KPA-001
S203010-05	Duplicate (S203010-01)	0.018 0	.0200							19	03/19/12	03/19	KPA-001
				_						 		.	
Nominal value	es and limits from method	1.00 0	.0200							180			

PROCEDURES REFERENCE D5174

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 18

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 04/17/12

5

7

9

11

SDG 8600

LAB METHOD SUMMARY

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

Client Test America, Inc. Contract 44002624

RESULTS

RAW SUF-

SDG <u>8600</u>

Test H Matrix WATER

Contact Joseph Verville

SAMPLE ID TEST I	FIX PLANCHET	CLIENT SAMPLE ID	Trit	ium
Preparation batch	7726-030			
S203010-01	8600-001	OUTFALL 019 COMPOSITE	U	
\$203010-03	8600-003	Lab Control Sample	ok.	J
S203010-04	8,600-004	Method Blank	U	
S203010-05	8600-005	Duplicate (S203010-01)		U

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	$_{\mathrm{EFF}}$	COUNT	$FW\!H\!M$	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	%	옿	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	n batch 7726-030 2σ prep erro	r 10.0 % Re	ference	Lab N	lotebool	k 7724	pg.	119						
S203010-01	OUTFALL 019 COMPOSITE	151	0.0100			100		150			13	03/13/12	03/13	LSC-007
\$203010-03	Lab Control Sample	24.9	0.605			10		150				03/13/12	03/13	LSC-007
5203010-04	Method Blank	17.2	0.605			10		300				03/13/12	03/13	LSC-007
S203010-05	Duplicate (S203010-01) 150	0.0100			100		150			13	03/13/12	03/13	LSC-007
Nominal val	lues and limits from method	500	0.605					100			180			

PROCEDURES	REFERENCE	906.0	
	DWP-212	Tritium in Drinking Water by Distillation, re	v 8

AVERAGES ± 2 SD	MDA	85.8	±	150
FOR 4 SAMPLES	YIELD	55	±	104

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 19

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>04/17/12</u>

SDG 8600

RADON COUNTING

LAB METHOD SUMMARY

RADIUM-226 IN WATER

Client Test America, Inc.

Contract 44002624

Test RA Matrix WATER SDG 8600 Contact Joseph Verville

RESULTS

RAW SUF-

SAMPLE ID TEST F	'IX PLANCHET	CLIENT SAMPLE ID	Radium-226
Preparation batch	7726-030		
\$203010-01	8600-001	OUTFALL 019 COMPOSITE	U
S203010-02	8600-002	TRIP-BLANK (440-4065-3)	σ
S203010-03	8600-003	Lab Control Sample	ok
S203010-04	8600-004	Method Blank	U
S203010-05	8600-005	Duplicate (S203010-01)	- Ŭ

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLI	ENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		YIELD	EFF %		FWHM keV			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7726-03	0 2σ prep error	16.4 % Re	eference	Lab N	loteboo	k 7724	pg.	119						
S203010-01	OUT	FALL 019 COMPOSITE	0.616	0.100			100		121			21	03/21/12	03/21	RN-014
S203010-02	TRI	P-BLANK (440-4065-3	0.474	0.100			100		121			21	03/21/12	03/21	RN-010
S203010-03	Lab	Control Sample	0.752	0.100			100		121				03/21/12	03/21	RN-009
S203010-04	Met	hod Blank	0.590	0.100			100		121				03/21/12	03/21	RN-013
S203010-05	Dup	licate (S203010-01)	0.653	0.100			100		121			21	03/21/12	03/21	RN-016
Nominal val	ues and limits	from method	1.00	0.100					100		•	180			

PROCEDURES REFERENCE 903.1 Ra-226 Screening in Drinking Water, rev 6 DWP-881A

MDA __0.617 ± __0.202 AVERAGES ± 2 SD YIELD 100 ± 0 FOR 5 SAMPLES

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 20

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>04/17/12</u>

SDG 8600

SDG 8600 Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>. Contract 44002624

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.

QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.

* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 21

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

1

E

6

8

10

11

SDG <u>8600</u>

Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u>

Contract <u>44002624</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

Lab id <u>EAS</u> Protocol <u>TA</u>

Version Ver 1.0

Form DVD-RG Version 3.06

Report date <u>04/17/12</u>

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 22

5

6

ا

9

11

12

SDG 8600

SDG <u>8600</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 23

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/17/12

4

7

Ŏ

10

11

SDG 8600

SDG <u>8600</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES
Page 4
SUMMARY DATA SECTION
Page 24

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

4

5

7

0

10

11

SDG 8600

SDG <u>8600</u>
Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc</u> Contract <u>44002624</u>

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 25

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

1

6

R

9

11

12

Ш

SDG 8600

SDG <u>8600</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 26

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

3

4

6

0

9

11

SDG 8600

SDG <u>8600</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc.</u> Contract 44002624

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION
Page 27

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/17/12

6

ا

9

11

12

Ш

SDG 8600

SDG <u>8600</u>

Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>.

Contract 44002624

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 28

Lab id \overline{EAS} Protocol \overline{TA} Version \overline{Ver} 1.0
Form \overline{DVD} -RG
Version $\overline{3.06}$ Report date $\underline{04/17/12}$

4

1

9

12

L

SDG 8600

SDG 8600 Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract 44002624

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 29

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

Page 99 of 123

4/27/2012

2

4

5

6

8

3

11

SDG 8600

SDG <u>8600</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>.

Contract 44002624

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

Lab id <u>EAS</u> Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u> Version <u>3.06</u>

Report date <u>04/17/12</u>

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 30

- 5

4

6

R

11

SDG 8600

SDG <u>8600</u>

Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>

Contract <u>44002624</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 31

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/17/12</u>

Page 101 of 123

4/27/2012

3

4

7

Q

10

SDG 8600

SDG 8600 Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>. Contract <u>44002624</u>

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 32

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>04/17/12</u>

Δ

5

7

8

10

46

EBERLINE ANALYTICAL

SDG 8600

SDG <u>8600</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 33

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/17/12

1

5

6

8

10

EBERLINE ANALYTICAL

SDG 8600

SDG 8600
Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract 44002624

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1 \div 3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples!

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 34

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>04/17/12</u>

4

3

7

9

10

19

EBERLINE ANALYTICAL

SDG 8600

SDG <u>8600</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 35

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/17/12

2

4

5

7

8

11

COMPANION OF **TestAmerica** THE LEADER IN ENVIRONMENTAL TESTING P - Na204S Q - Na2S03 R - Na2S2S03 S - H2S04 I - TSP Dotecatydrate U - Acetone W - ph 4-5 Z - other (specify) Special Instructions/Note: Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Preservation Codes: 17:00 T A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - Mar OAH
G - Amchlor
G - Amchlor
H - Ascorbic Acid 0420 Page 1 of 1 Job #: COC No: 440-2062.1 440-4065-1 J - DI-Water Archive For Total Number of containers Date/Time: Date/Time: Method of Shipment: 3600 Carrier Tracking No(s): Disposal By Lab Analysis Requested Cooler Temperature(s) °C and Other Remarks: Special Instructions/OC Requirements: SUBCONTRACTI Gross Alpha × \times Chain of Custody Record multinT \TOASTNOOSUS × × Lab PM:
Wilson, Debby
E-Mair
debby, wilson@testamericainc.com × Received by 12 Received by: 7-8 × × × × Received by: × × × × Time: {W=water, S=solid, O=wastefoll, Matrix Water Water ompany Pacific Preservation 10:33 Type (C=comp, G=grab) P0: 1 Sample 04 60 Sample Pacific Date: (AT Requested (days): Due Dafe Requested: 3/14/2012 70/60 Sample Date 2/29/12 2/29/12 Project #: 44002624 Date/Time: Date/Time; Phone: WO #: # 0c Client Information (Sub Contract Lab) Jeliverable Requested: I, II, III, IV, Other (specify) Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297 Sample Identification - Client ID (Lab ID) Custody Seals Intact: Custody Seal No. Outfall 019 Composite (440-4065-1) Possible Hazard Identification Feb OD TestAmerica Irvine 17461 Derian Ave Suite 100 Nddress: 7021 Pan American Fwy NE, Empty Kit Relinquished by: Trip Blank (440-4065-3) Shipping/Receiving Company: Eberline Services City. Albuquerque Project Name: Boeing SSFL Boeing SSFL State, Zip: NM, 87109 elinquished by: Relinquished by: Unconfirmed Relinquished by hone: 4/27/2012

-					 _
æ e	В	E	R	L.I Avere	

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

								
					RVINE	Stat	e_CA_	
		eived <u>3/3/1,</u>						
Contai	ner I.D.	No. Icl ok	ed Requeste	ed TAT (Da	ys) P.O. F	Received Yes	[] No[]	
				INSI	PECTION			
1.	Custo	dy seals on ship	oping container	intact?		Yes [√]	No[] N/A	[]
2.	Custo	dy seals on ship	pping container	dated & sig	gned?	Yes [V]	No[] N/A	
3.	Custo	dy seals on san	nple containers	intact?		Yes []	No[] N/A	7
4.	Custo	ty seals on saп	nple containers	dated & sig	ned?	Yes[]	No[] N/A	I/I
5.		g material is:			A.	Wet[]	Dry[]	2/2
6.	Numbe	er of samples in	shipping conta	ainer:	2 Sample Mat	rix WAS	FER	<i>/n</i> -
7.	Numbe	er of containers	per sample: _		(Or see CoC)		
8.	Sample	es are in correc	t container		Yes [$ u$]	No[]		
9,	Paperv	vork agrees wit	h samples?		Yes [🗸	No[]		
10.					Rad labels []			
11.					king [v] Broker]
12.	Sample	es are: Preser	ved [] Not;	preserved	[] pH Pr	eservative		
13.	A	oe any anomali		1	/ .	1		
					leak	and .	STORA SE	
		VV tep	arafe .	confe	rinco			
					,			
14.	Was P	M. notified of a	any anomalies?	' Y	es[V], No[] Date _ <	3/5712	
15.	inspect	ed by	- Ha	Date	:: <u>3/1/</u> /2 Time	e: <u>//-'0</u>	<u> </u>	
Custo Sampi		Beta/Gamma cpm	Ion Chamber mR/hr	Wipe	Customer Sample No.	Beta/Gamma	ion Chamber	
	reede	/ 0.	777 577	V1,50	Sample No.	cpm	mR/hr	wipe
ACC VE	acce	9 -00						
	······································						!	
					· · · · · · · · · · · · · · · · · · ·	·		
on Chaml	ber Ser.	No			Calibration data			
lpha Met					Calibration date Calibration date			
		er Ser. No/	100482		Calibration date	6 Dec	2011	
					· · · · · · · · · · · · · · · · · · ·			

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client: TEST AUETUCA City /RUINE State CA Date/Time received 63 07 12 6920 Coc No. 44 0026 24	-
Container I.D. No. CE CHEST Requested TAT (Days) P.O. Received Yes [] No []	_
INSPECTION	
1. Custody seals on shipping container intact? Yes [4] No [] N/A []	
2. Custody seals on shipping container dated & signed? Yes [X] No [] N/A []	
3. Custody seals on sample containers intact? Yes [] No [] N/A [🔭]	
4. Custody seals on sample containers dated & signed? Yes [] No [] N/A []	
5. Packing material is: Wet [] Dry [x]	
6. Number of samples in shipping container: Sample Matrix W	
7. Number of containers per sample: (Or see CoC)	
8. Samples are in correct container Yes [*] No []	
9. Paperwork agrees with samples? Yes [1 No []	
10. Samples have: Tape [] Hazard labels [] Rad labels [] Appropriate sample labels [火]	
[11. Samples are: In good condition [] Leaking [] Broken Container [] Missing []	
12. Samples are: Preserved [/] Not preserved [] pH (Preservative 103	
1.13 Describe any anomalian:	_
Replacement from Broken Jamps	L.
percipt on 3/3/12 and	
14. Was P.M. notified of any anomalies? Yes [,] No [] Date	
15. Inspected by Date: 0767 Time: 100	
Customer Beta/Gamma Ion/Chamber Customer Beta/Gamma Ion Chamber	
Sample No. cpm mR/hr Wipe Sample No. cpm mR/hr wipe	
Au Shuputs LSD	
lon Chamber Ser. No Calibration date	
Alpha Meter Ser, No.	
Beta/Gamma Meter Ser. No. 10048 Calibration date 06 DEC //	

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

COMPANY **TestAmerica** THE LEADER IN ERVIRONMENTAL LESTING N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2SO3
S - H2SO4
T - TSP Dodecanydrate
U - Acetone
W - ph 4-5
Z - other (specify) Months D'company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Return To Client Disposal By Lab Archive For Mon Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - MeOH
G - Amchlor
H - Ascorbic Acid 0420 COC No: 440-2062.1 Job #: 440-4065-1 Page: Page 1 of 1 I - Ice J - Di-Water Total Numberof containers is 5 Date/Time: Date/Time: Method of Shipment: 8600 Carrier Tracking No(s): Analysis Requested Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: SUBCONTRACTI Gross Alpha \times × Chain of Custody Record CUBCONTRACT\ Tritium × × E-маії: debby.wilson@testamericainc.com \times × × × SUBCONTRACT/ Radium Co Received by: × Received by: × × Lab PM: Wilson, Debby × × Time: (Wrwater, Srsolid, Orwastefoll, Matrix Water Water Company Preservator Type (C=comp, 1207 G=grab) Sample 04 60 Sample Pacific 10:33 Pacific Date: FAT Requested (days): Due Date Requested; 3/14/2012 70/60 Sample Date 2/29/12 2/29/12 Project #; 44002624 Date/Time: Phone: ₩OW # O Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297 Custody Seal No.: Sample Identification - Client ID (Lab ID) Outfall 019 Composite (440-4065-1) 2 Barel Possible Hazard Identification Fer O TestAmerica Irvine 17461 Derian Ave Suite 100 Address: 7021 Pan American Ewy NE, Empty Kit Relinquished by: Custody Seals Intact: △ Yes △ No Trip Blank (440-4065-3) Shipping/Receiving Company: Eberline Services City: Albuquerque Relinquished by: Project Name: Boeing SSFL Boeing SSFL State, Zip: NM, 87109 Relinquished by: Relinquished by: Inconfirmed

Page 109 of 123

4/27/2012

Ø EBE	ERLINE	_

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

			FLICA			Star	te_ <u>CA</u> _		
Date/T	ime rece	ived <u>3/3/1.</u>	<u>2</u> coc	No. 440.	-1917.1				
Contai	ner I.D. I	No. Icl de	Request	ed TAT (Day	s) P.O. I	Received Yes	[] No[]		
					ECTION			-	
1.	Custod	y seals on shi	oping container	intact?		Yes V	No[] N/A	A	
2.	Custod	y seals on ship	oping container	dated & sigr	ned?	Yes [V	No[] N/A		
3.	Custod	y seals on san	nple containers	intact?		Yes[]	_	- 7	
4.	Custod	y seals on san	nple containers	dated & sigr	red?		No [] N/A		
5.		material is:				Wet []	Drv []	, ,	
6.	Numbe	r of samples ir	shipping conta	ainer:	∠ Sample Ma	trix WAS	TER	10/4 0	
7.	Numbe	r of containers	per sample: _		_ (Or see CoC				
8.		s are in correc			Yes [$\sqrt{1}$	/			
9.	Paperw	ork agrees wit	h samples?		Yes [🗸	F 4			
10.	Sample	s have: Tap	e[] Hazaro	labels[]	Rad labels []		mnle ishele T	/	
11.	Sample	s are: In g	ood condition [) Leaki	ng [V] Broker	Container I M	Missing [1	
12.	Sample	s are: Preser	ved [] Not	oreserved [] pH Pr	eservative	wasang [1	
13.	Describ	e any anomali	es:	•					
	Sample 440-4065-1 leak and STORAGE								
Jaugle 440-4065-1 leak and STORAGE									
						· · · · · · · · · · · · · · · · · · ·			
14.	Was P.I	M. notified of a	any anomalies?	Ye	s[i/ No!] Date <	3/1/12		
15.	inspecte	ed by	An		3/17/12 Time	· , ,	0		
Custo		Beta/Gamma	/						
Sampi		cpm	lon Chamber mR/hr	Wipe	Customer Sample No.	Beta/Gamma cpm	ion Chamber mR/hr	wipe	
Acc So	ruya	1 480							
	/								
	-								
									
	1								
			·			*			
on Chaml	oer Ser N	in .			Calibana				
Alpha Met				 	Calibration date				
		Ser. No/			Calibration date	(Ano	7		
- 310, 00(1)	1410101		00712		Calibration date	_ b Dec	2011		

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client	: TES	1 Autor	uc a	City/	RUINE	Stat	e CA	
Date/T	ime rece	eived 63 07 1	2 6970 CoC	No4	RUINE 1002624			
Conta	iner I.D.	No. 16 atte	ST Request	ed TAT (Day	/s) P.O.	Received Yes	[] No[]	
				INSP	ECTION	_		
1.	Custoo	dy seals on ship	pping container			Yes [🔨]	No[] N/A	, f T
2.	Custoo	dy seals on ship	pping container	dated & sigi	ned?	Yes [X]	=	. ,
3.	Custod	ly seals on san	nple containers	intact?		Yes []		
4.	Custod	ly seals on san	nple containers	dated & sign	ned?		No[] N/A	,
5.	Packin	g material is:		-		\Wet[]	Dry [] (1)/	, []
6.	Numbe	er of samples in	shipping cont	ainer: 2	Sample Ma	atrix ()	DIY [/]	
7.	Numbe	of containers	per sample:	1	(Or see CoC	1		
8.	Sample	es are in correc	t container		Yes [*]			
9.		vork agrees wit			Yes [/]			
10.	Sample	es have: Tap	e[] Hazarı	d labels []	Rad labels []	Appropriate sar	unle labeir (r.)	1
11.	Sample	es are: in g	ood condition [⊁l Leak	ing [] Broke	n Container III	, Missing [
12.	Sample	es are: Preser	ved [大] Not	preserved [] pH <1/p>	reservative (TA) 0 %	1
13.	Describ	e any anomali						
				Reploy	rement	from .	Braken S	am ster
	per	upt or	~ 3/3/1	2 and		1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	77/
	,							
14.	Was P.	M. notified of a	any anomalies'	? Ye	s[i] [No[Date		
15.	Inspect	ed by	Nes		1 1 50 KO	0011		
Custo					1181	ie		
Sampl		Beta/Gamma cpm	Ion\Chamber mR/hr	Wipe	Customer Sample No.	Beta/Gamma cpm	ion Chamber mR/hr	wipe
Au Sh	2) JUES	280					1111 0711	wipe
				<u> </u>				
ļ								
		 						
lon Chami	har Car 1	N.						
		No	, <u>, , , , , , , , , , , , , , , , , , </u>		Calibration date			
Alpha Met Beta/Gam		r Ser. No	1177	48 V	Calibration date			
_ 5.0, 5011	THE METE	, OEL, IND.		<u> </u>	Calibration date	U6 DEC	1/	

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

March 15, 2012

Client:

Test America

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Attention:

Debby Wilson

Project Name:

Boeing SSFL

Project Number: 44002624

Date Received:

3/2/2012

Truesdail Project:

800279

Samples Cross-reference

Truesdail ID	Client ID	Matrix	Date Sampled	Time Sampled	Analysis Requested
	Outfall 019 Composite (440-				
800279-01	4065-1)	Water	02/29/12	11:30	Hydrazines by EPA 8315M

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mod

Jeff Lee

Project Manager

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

March 15, 2012

Client:

Test America

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Attention:

Debby Wilson

Project Name: Project Number: **Boeing SSFL**

44002624

Date Received:

03/02/12

Truesdail Project:

800279

Case Narrative

Sample Receipt

The samples were received at 5.1 °C and in good condition. They were kept in a refrigerator until analysis. Thereafter, they are being kept in ambient storage for an additional 2 months before disposal. Any anomalies would be noted in the "Comments" section.

Analysis

The analysis was performed as requested on the chain-of-custody.

Quality Control

The analytical results for each batch of samples performed include one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one set of matrix spike/matrix spike duplicate (MS/MSD), and a reagent blank (Method blank). Any exceptions or problems would be noted in the "Comments" section.

Comments

The sample was sampled on 2/29/12 and Truesdail received the sample on Friday 03/02/12. Extraction of the sample began on Friday and completed on Saturday. The sample was analyzed immediately after completion of extraction. However, the quality control data failed. We re-extracted the sample on Monday which is out of holding time and completed the extraction by Tuesday. After the analysis is completed on Tuesday, all quality control parameters passed.

All quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

> Jeff Lee Project Manager

Tople

Page 113 of 123

4/27/2012

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 2

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 3/20/2012

Laboratory No. 800279

REPORT

Client: TestAmerica Analytical - Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Attention: Debby Wilson

Project Name: Boeing SSFL

Project Number: 44002624

P.O. Number: 440-4065-1

Release Number: 440-4065-1

Samples Received on 3/2/2012 10:00:00 AM

Field ID Lab ID Collected Matrix Outfall 019 Composite Outfall 019 Composite 02/29/2012 11:30 800279-001 Water EPA 8315 M-Hydrazines (water) Batch 709811 Parameter Unit DF Analyzed MDL RL Result 800279-001 Hydrazine ug/L 03/06/2012 20:08 1 0.439 1.00 0.439 Monomethyl Hydrazine ug/L 03/06/2012 20:08 1 1.77 5.00 1.77 Unsymmetrical Dimethyl Hydrazine ug/L 03/06/2012 20:08 1 1.13 5.00 1.13 Method Blank Parameter Unit DF Result Hydrazine ug/L 1 ND Monomethyl Hydrazine ug/L ND Unsymmetrical Dimethyl Hydr: ug/L 1 ND Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Range Hydrazine ug/L 1 9.99 10.0 99.9 50 - 150 Monomethyl Hydrazine ug/L 1 46.8 50.0 93.6 50 - 150Unsymmetrical Dimethyl Hydr: ug/L 1 45.8 50.0 91.6 50 - 150 Lab Control Sample Duplicate Parameter Unit DF Result Expected Recovery Acceptance Range Hydrazine ug/L 1 8.50 10.0 85.0 50 - 150 Monomethyl Hydrazine ug/L 1 49.7 50.0 99.4 50 - 150 Unsymmetrical Dimethyl Hydr: ug/L 1 47.2 50.0 94.4 50 - 150

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Page 114 of 123

4/27/2012

Λ

5

6

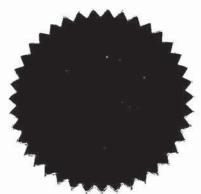
R

4.0

11

12

Report Continued


Client: TestAmerica Analytical - Irvine			Project Name: Project Number:	Boeing SSFL 44002624		Page 2 of 2 Printed 3/20/2012		
Matrix Spike						Lab ID = 800279-001		
Parameter	Unit D	F	Result	Expected/Added	Recovery	Acceptance Range		
Hydrazine	ug/L	1	9.94	10.0(10.0)	99.4	45 - 146		
Monomethyl Hydrazine	ug/L	1	53.9	50.0(50.0)	108.	7 - 149		
Unsymmetrical Dimethyl Hydra	ug/L	1	52.9	50.0(50.0)	106.	45 - 137		
Matrix Spike Duplicate						Lab ID = 800279-001		
Parameter	Unit D	F	Result	Expected/Added	Recovery	Acceptance Range		
Hydrazine	ug/L	1	11.0	10.0(10.0)	110.	45 - 146		
Monomethyl Hydrazine	ug/L	1	52.1	50.0(50.0)	104.	7 - 149		
Unsymmetrical Dimethyl Hydra	ug/L	1	54.5	50.0(50.0)	109	45 - 137		
MRCCS - Secondary								
Parameter	Unit D	F	Result	Expected	Recovery	Acceptance Range		
Hydrazine	ug/L	1	9.87	10.0	98.7	85 - 115		
Monomethyl Hydrazine	ug/L	1	45.8	50.0	91.6	85 - 115		
Unsymmetrical Dimethyl Hydra	ug/L	1	46.9	50.0	93.8	85 - 115		
MRCVS - Primary								
Parameter	Unit D	F	Result	Expected	Recovery	Acceptance Range		
Hydrazine	ug/L	1	5.01	5.00	100.	85 - 115		
Monomethyl Hydrazine	ug/L	1	25.9	25.0	104.	85 - 115		
Unsymmetrical Dimethyl Hydra	ug/L	1	25.3	25.0	101.	85 - 115		

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Jeff Lee

Assistant Project Manager

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

> **Test America** Client:

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Debby Wilson Boeing SSFL Attention: Project Name:

8315 (Modified) Hydrazines Method Number: Investigation

February 29, 2012 March 15, 2012 800279 Laboratory No: Report Date:

Sampling Date:

March 2, 2012 March 6, 2012 Receiving Date: Analysis Date:

Reported By:

Qualifier Codes and Definitions

Definition

Method Detection Limit Pal

Not Detected: Analyte is not detected at or above the method detection limit. Practical Quantitation Limit

Not Applicable

nitial Calibration Verification: First source calibration standard run at a mid-level spike prior to samples.

Quality Control Standard: Second source calibration standard run at a mid-level spike after all samples. ND N/A ICV QCS MB LCS (D) MS (D) RPD

Method Blank: Reagent water extracted and run with each batch of 20 samples to demonstrate that all analytes are not detected from the extraction process. -aboratory Control Spike: Second source standard spiked into blank matrix and extracted and run with each batch of 20 samples (run in duplicate).

Matrix Spike: Second source standard spiked into sample matrix and extracted and run with each batch of 20 samples (run in duplicate).

Relative Percent Difference: A calculated value of the deviation between the spikes and spike duplicates to measure precision.

J-flags: Any result found between the MDL and the PQL will be reported with a "J" attached.

Pass if within Control Limits; otherwise "Fail"

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Page 116 of 123

800279 Phone (949) 261-1022 Fax (949) 260-3297 TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

COC No: 440-1841.1 Carrier Tracking No(s) Lab PM: Wilson, Debby Phone: Client Information (Sub Contract Lab)

S - H2SO4 T - TSP Dodecahydrate U - Acetone V - MCAA W - ph 4-5 Z - other (specify) 4/27/2012 Special Instructions/Note: N - None O - AsNBO2 P - Na2O4S Q - Na2SO3 R - Na2S2SO3 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Special Instructions/QC Requirements: Preservation Codes. A - HCL
B - NaOH
C - Zn Acetate
D - Nitro Acid
E - NahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 00001 Job #: 440-4065-1 Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA For Sample Conditions See Form Attached Date/Time: Date/Time: Method of Shipment 0 Analysis Requested Rec'd 03/01/12 8236 8:0.027 Cooler Temperature(s) °C and Other Remarks: - BNG-E-Mail: debby.wilson@testamericainc.com Received by: 1 SUBCONTRACT/ Monomethylhydrazine Time: Page 117 of 123 Company Company Preservation Ooder Matrix Water Type (C=comp, G=grab) Sample 0000 Sample 11:30 Pacific Time Date: Due Date Requested: 3/14/2012 TAT Requested (days): (4) Sample Date 3-2-19 2/29/12 Project #: 44002624 SSOW#: WO#: PO#: Deliverable Reguested: I, II, M. IX, Other (specify) Custody Seals Intact: Custody Seal No.: Sample Identification - Client ID (Lab ID) Outfall 019 Composite (440-4065-1) Possible Hazard Identification Sompany: Truesdail Laboratories Inc Client Contact: Shipping/Receiving 14201 Franklin Ave, Boeing SSFL Boeing SSFL Jnconfirmed State, Zip: CA, 92780 elinquished Empty Ky City: Tustin hone:

Sample Integrity & Analysis Discrepancy Form

Clie	ent: Test America	Lab # 800249
Dat	e Delivered: 03 02 12 Time: 101 00 By: DMail DF	ield Service AClient
1.	Was a Chain of Custody received and signed?	ØYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	☐Yes ☐No ☐N/A
3.	Are there any special requirements or notes on the COC?	☐Yes ☐No ☐N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ☑N/A
5.	Were all requested analyses understood and acceptable?	daYes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? \(\frac{\mathcal{\infty}}{\colone{\chi}} \)	aYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	AYes UNO UN/A
8.	Were sample custody seals intact?	☐Yes ☐No ☑N/A
9.	Does the number of samples received agree with GOE	Yes DNO DNA
10.	Did sample labels correspond with the client in the client	CAYES DNO DNA
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Truesdail Client	☐Yes ☐No ☐N/A
12.	Were samples pH checked? pH =	☐Yes ☐No ÆN/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	akyes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): RUSH Std	€ Ves □No □N/A
15.	Sample Matrix: □Liquid □Drinking Water □Ground World □Sludge □Soil □Wipe □Paint □Solid □Sid	. 11/2 /24
16.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	L. Shabuwa

CHAIN OF CUSTODY FORM

MWVH-Arcadia Boeing-SSFL NPDES Annual Outfall 019 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Arcadia, CA 91007 Annual Outfall 019 Froject Manager: Bronwyn Kelly Sampler: Rampler: Rampler: Rampler Sample Sample Sample Sample Sample Container #ot Sampling Preserva Outfall 019 Phone Number: (626) 568-6691 Sample Sample Watrix Type Cont Outfall 019 VOAs 3 Arcadia Action None Outfall 019 Outfall 019 W VOAs 3 Arcadia Action Number: Holy Under Container #ot Sampling Preserva Sampling Preserva Number: Arcadia Action Num	99999999999999999999999999999999999999	,ASS1 noer		,					Field readings: (Log in and include in
Wilson Wilson Wilson (626) 568-6691 Fax Number: (626) 568-6515 Fax Number: (626) 568-6516 Fax Number: (626) 568-6516 Fax Number: (626) 568-6516 Fax Number: (626) 568-6516 Fax Number: (626) 568-6516 Fax Number: (626) 568-6516 Fax Number: (626) 568-6516 Fax Number: (626) 568-6516 Fax Number: (626) 568-6516 Fax Number: (626) 568-6516 Fax Number: (626) 568-6691 Fax Number: (627) 568-6691 Fax Number: (627) 568-6691 Fax Number: (627) 568-6691 Fax Number: (628) 568-6691 Fax Number: (628) 568-6691 Fax Number: (628) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629) 568-6691 Fax Number: (629)	rrvative CCI	,ASS1 noer				_	_		(Log in and include in
Phone Number: (626) 568-6691 Fax Number: (626) 568-6515 Sampling Date/Time 3.2 & 3.0/2		.ESI noər				•			report Temp and pH)
Phone Number: (626) 568-6691 Fax Number: (626) 568-6515 Gampling Properties 1	e Al		IEM)		21)	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			Temp °F = 63 © pH = 7.3 bO = 3.69 me/L
Fax Number: (626) 568-6515 Sampling Par Sampling Par 1	e la la la la la la la la la la la la la	V+V+SC <i>i</i> 3 + bb x\leues	spilo H-4991)		l əuì tə[/l (SM92				Total Residual Chlorine = %
#of Date/Time Pro 1.1 8-40/1.	live	pexsue	o2 elde esse10			26M2) i			Time of readings
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Cyclo		9108					Comments
0 1 2 2 5 5		×							
2 3 2 2 4		×							
2 2 2 2			×						
2 0 0	None 4A, 4B								
	HCI 5A, 5B		×						
3	HCI 6A, 6B, 6C	×							
	None 7A, 7B, 7C	×							
VOAs 1	HCI 8A			×					
VOAs 2	HCI 8B, 8C			×				-411	
1L Amber 1 N	None 9A				×				
1L Amber	None 9B				×				
125mL Poly 1 🔖 Na2	Na2S2O3 10				×				
125mL Poly 1 2.38.10 Naz	Na2S2O3 11					×			THE ASSOCIATION OF THE PROPERTY OF THE PROPERT
-									
	2000 1100		7				1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 24 72 12 12	
Date/Time: 12-28-24/1 Received	26/2 Recovery			Filme S	Turn-arol 24 Hour	Turn-around time: (Check) 24 Hour. 72 Hour.	Ow and are to p e: (Check) 72 Hour:	10 Day:	Appropries amples will follow and are to be added to this work order. Turn-around time: (Check) 10 Day: 10 Day:
Date/Time 2 - 25 - (2	Received By	, 2 2	Date O	Date/Time:	Sam	Integrity	neck)	, A	700
Date/Time:	Received By	2/2/2	_ 	I / > 0_ Date/Time:	intact:		On Ice:	S	Y.X
					Data No L	Data Requirements: (Check) No Level IV: All Level IV:	ments: (Check)All Level IV:	NPDES	NPDES Level IV:

Comments

2000

10 Day:

72 Hour. 5 Day:

24 Hour. 48 Hour.

Turn-around time: (Check)

17-67-2 mine 12:4S

These must be added to the same work order toy COC Page 1 of 3 for Outfall 019 for the same event. COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 019 for this storm event.

2-29-2012

Date/Time:

12:45

NPDES Level IV:

No Level IV: All Level IV:

Data Requirements: (Check)

Sample Integrity/(Check)

Date/Time

D. 2-24-12

iished By

				-	333									
ANALYSIS REQUIRED			-											
LYSIS R	otoluene, Bis(2- DMA, PCP (SVOCs 625)						8311							×
ANA	Pesticides + PP ~	BHC (808) + B	edqlA										×	
		(S.025) M-sino	mmA								Š	×		
1	/	SST , SQT , Viit	Turbic								×			
	-	e-N, Nitrite-N	Nitrat							×				
	, F, Perchlorate.√	O*; NO3+NO5-I	CI.' 2						×					
1		(SA8M) strasto	Surta					×						
	-(:	(20 degrees C	BOD				×							
	suetz) .	egnos lls bns) (TCDI			×								
	Netals: Cu, Pb, Hg, B, Be, Cd, Cr, Ni, Se,	Recoverable <i>I</i> / e, Mn, Sb, As, I, Zn, Co, V	Ba, F	×	/: *									
			Bottle #	12A	128	13A, 13B	41	15A, 15B	16A, 16B	17	18A, 18B	19	20A, 20B	21A, 21B
	019	33 VA	Preservative	HNO3	HNO ₃	None	None	None	None	None	None	H ₂ SO ₄	None	None
Project:	Boeing-SSFL NPDES Annual Outfall 019 COMPOSITE	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Sampling Date/Time	2.24.2012									4	7108.6T-C
	70 E 10 E 10 E 10 E 10 E 10 E 10 E 10 E		# of Cont.	+	1	2.	+	2 .	2.	1	2	-	2.	2
	ite 200 Debby Wil	wyn Kelly	Container Type	1L Poly	1L Poly	1L Amber	1L Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	1L Amber	1L Amber
Address:	dia a Ave, Su 91007 Contact:	Jer: Bron	Sample Matrix	Α.	W	M	W	W	w w	M	M	M	M	8
Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Debby Wilson	Project Manager: Bronwyn Kelly Sampler: Ricト Bare68	Sample Description	Outfall 019	Outfall 019 Dup	Outfall 019	Outfall 019	Outfall 019	Outfall 019	Outfall 019	Outfall 019	Outfall 019	Outfall 019	Outfall 019

α,
ς.
$\overline{}$
b
C
2
2
$\overline{}$
Œ
ğ
π
Δ

Test America version 7/19/2010

Client Name/Address:	ddress.			Project:	STEED PROPERTY.							ANALYSIS REQUIRED	SIS RE	QUIRE	Q			
MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007	Jia Ave, S 1007	Suite 200		Boeing-SSFL NPDES Annual Outfall 019 COMPOSITE	NPDES			1stoT ,((1100	, 68 , 8 , g	,II ,QA ,t						
Test America Contact: Debby Wilson	Contact	: Debby Wilk	son	4				2) St-98 (2012) 2) St-90 (905.0 26 (903.0 or 3) Uranium (90	e u		ils: Cn' bp' H	Cd, Cr, Ni, Se					Comments	
Project Manager: Bronwyn Kelly Sampler: Ric k Baxacの	er: Bro	nwyn Kelly		Phone Number: (626) 568-6691 Fax Number:	- L		∕ əu	(0.80e) (6- S muibsЯ		iyl Hydrazi	olved Meta	11101140	~ (9.8 ~	icity ~			11-112	
				(626) 568-6515	2		exoi	qlA ; H) rr benic	_	ttəm	ssiG	۷ '٥	175			_		
Sample Description	Sample Matrix	Container	# of Cont.	Sampling Date/Time	Preservative	Bottle #	۵-4'۱	Sross Tritiur Jeno Jeno Vadiu	CBS	onoN	Total	D 'u2		Syani				
Outfall 019	8	VOAs	6	1.05-85-C	HCI	22A, 22B, 22C	×						-	-				
Outfall 019	>	250 mL Glass	-		HCI	23		×							-			
Outfall 019	×	2.5 Gal Cube	-		None	24A		,					1 1				Unfiltered and unpreserved	erved
		500 mL Amber			None	24B		<									analysis	
Outfall 019	W	1L Amber	2		None	25A, 25B			×							-		
Outfall 019	W	1L Amber	2		None	26A, 26B				×						_		2002
Outfall 019	W	1 Gal Cube	-		None	27					×						Only test if first or second rain events of the year	ond rair
Outfall 019	8	1L Poly	-		None	28						×					Filter w/in 24hrs of receipt at lab	pt at lab
Outfall 019	×	500 mL Poly			None	29							×	-		-		
Outfall 019	W	500 mL Poly	-	A	NaOH	30							×					
Outfall 019	8	1 Gal Cube	•	1/06-84-6	None	31							H	×		\vdash		
			П				T				H	\dagger	\mathbb{H}	\perp		\mathbb{H}		11
				These must be added to the	t be added	d Page 3	of 3 a	COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 019 for this storm event. less must be added to the same fork order for COC Page 1 of 3 for Outfall 019 for the same even	Sampl	es for	prosite samples for Outfall 019 for this storm event.	19 for t	his sto	rm ev	ent.			
Relinquished By	8.	7	Date/Time:	1000 147 149	70/7	1	C		Date/Time: 2-2%-	20	35		Turn 24 H	Turn-around to 24 Hour.	eck)	10 Day.		
Relinquisted By	1	m	bate/Time:	24	5/2	Received By	55	Date/Time	Time:	160	57	S7.7	Sample Intact:	ple Integri	Sample Inlegrity, (Check) Intact: On Ice:	Î	1.	
de parendera		Š	Date/ Hitte	i e		кесегиед Бу		Date/ I'me	.ime:	£			Data	Requiren	Data Requirements: (Check) No Level IV: NPDES Level IV:	DES Level	×	
													-	SCHOOL STATES				

1 2 E

Page 121 of 123

4/27/2012

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-3913-1

Login Number: 3913 List Source: TestAmerica Irvine

List Number: 1 Creator: Van Banh, Vu

Creator. Vali Ballii, Vu		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

9

4

6

9

10

4.6

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-3913-1

Login Number: 4065 List Source: TestAmerica Irvine

List Number: 1

Creator: O'Donnell, Brandon R

Creator. O Donnen, Brandon K		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

2

1

5

6

8

10

11

12