# FOURTH QUARTER 2011 ANALYTICAL LABORATORY REPORTS, CHAIN-OFCUSTODY, AND VALIDATION REPORTS

#### TABLE OF CONTENTS

#### Section No.

Report

Outfall 009 – October 5, 2011 - MECX Data Validation Report 1 2 Outfall 009 – October 5, 6, & 7, 2011 - Test America Analytical Laboratory Report Outfall 009 – November 6, 2011 - MECX Data Validation Report 3 4 Outfall 009 – November 4, 5, & 6, 2011 - Test America Analytical Laboratory Report Outfall 009 – November 12, 2011 - MECX Data Validation Report 5 6 Outfall 009 - November 12, 13, & 14, 2011 - Test America Analytical Laboratory Report Outfall 009 – November 20, 2011 - MECX Data Validation Report 7 8 Outfall 009 – November 20 & 21, 2011 - Test America Analytical Laboratory Report Outfall 009 – December 12, 2011 - MECX Data Validation Report 9 Outfall 009 - December 12, 13, & 14, 2011 - Test America Analytical Laboratory Report 10 Outfall 019 - October 19 & 20, 2011 - MECX Data Validation Report 11 Outfall 019 - October 19, 20, & 21, 2011 - Test America Analytical Laboratory Report 12 Outfall 019 – November 17, 2011 - MECX Data Validation Report 13 Outfall 019 - November 16, 17, & 18, 2011 - Test America Analytical Laboratory Report 14 Arrovo Simi-Frontier Park – November 10, 2011 - MECX Data Validation Report 15 16 Arroyo Simi-Frontier Park – November 10, 2011 - Test America Analytical Laboratory

# **Section 1**

Outfall 009 – October 5, 2011 MEC<sup>X</sup> Data Validation Report



# DATA VALIDATION REPORT

# **Boeing SSFL NPDES**

SAMPLE DELIVERY GROUP: IUJ0496

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IUJ0496 Project Manager: B. Kelly

Matrix: Water

QC Level: IV
No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

| Client ID                  | Laboratory ID | Sub-Laboratory<br>ID       | Matrix | Collected | Method                                                                                          |
|----------------------------|---------------|----------------------------|--------|-----------|-------------------------------------------------------------------------------------------------|
| Outfall 009<br>(Composite) | IUJ0496-02    | 8691-001,<br>G1J080434-001 | Water  | 5:54:00   | 314.0, 900. 901.1, 903.1, 904, 905, 906, EPA 245.1, EPA 245.1 Diss, 1613B, SM 2540D, ASTM D5174 |

#### II. Sample Management

No anomalies were observed regarding sample management. The samples were received above the temperature limit at TestAmerica-Irvine, as the samples had insufficient time to cool in transit from the field. The samples in this SDG were received at TestAmerica-West Sacramento within the temperature limits of 4°C ±2°C. Eberline did not note the temperature upon receipt; however, due to the nonvolatile nature of the analytes, no qualifications were required. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon receipt at TestAmerica-West Sacramento and Eberline. If necessary, the client ID was added to the sample result summary by the reviewer.

Project: SSFL NPDES SDG: IUJ0496

#### **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

Project: SSFL NPDES SDG: IUJ0496

#### **Qualification Code Reference Table**

| Qualifier | Organics                                                                             | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                         | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                            | The sequence or number of<br>standards used for the calibration<br>was incorrect              |
| С         | Calibration %RSD or %D was noncompliant.                                             | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                           | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results.       | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike<br>Duplicate %R was not within control<br>limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                                | MS recovery was poor.                                                                         |
| Е         | Not applicable.                                                                      | Duplicates showed poor agreement.                                                             |
| I         | Internal standard performance was unsatisfactory.                                    | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                      | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                              | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                       | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                                  | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                              | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                         | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                                  | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                            | Not applicable.                                                                               |

Project: SSFL NPDES SDG: IUJ0496

DATA VALIDATION REPORT

#### **Qualification Code Reference Table Cont.**

D The analysis with this flag should not The analysis with this flag should not be used because another more be used because another more technically sound analysis is technically sound analysis is available. available. Ρ Instrument performance for Post Digestion Spike recovery was pesticides was poor. not within control limits. **DNQ** The reported result is above the The reported result is above the method detection limit but is less than method detection limit but is less than the reporting limit. the reporting limit. \*11, \*111 Unusual problems found with the Unusual problems found with the data that have been described in data that have been described in Section II, "Sample Management," or Section II, "Sample Management," Section III, "Method Analyses." The or Section III, "Method Analyses." number following the asterisk (\*) will The number following the asterisk indicate the report section where a (\*) will indicate the report section description of the problem can be where a description of the problem found. can be found.

DATA VALIDATION REPORT SDG: IUJ0496

#### III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: November 14, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects above the EDL for 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, total HxCDF, and OCDD. 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, and total HxCDF were not detected in the associated sample. The concentration for OCDD in the method blank was insufficient to qualify the sample result for OCDD.

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613, and RPDs were within the laboratory control limit of ≤50%.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled internal standard recoveries for the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Individual isomers reported as EMPCs were qualified as estimated nondetects, "UJ," at the level of the EMPC. The total for HpCDF consisted only of the individual isomer qualified as an EMPC, and was therefore also qualified as an estimated nondetect, "UJ." The total for HpCDD was qualified as an estimated detect, "UJ," Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

#### B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks

Date Reviewed: November 14, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this analysis.

• Calibration: Calibration criteria were met. Mercury initial calibration r<sup>2</sup> values were ≥0.995 and all initial and continuing calibration recoveries were within 85-115%. CRI recoveries were within the control limits of 70-130%.

- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: November 14, 2011

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

 Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were preserved within five days of collection and analyzed within 180 days of collection.

• Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

Detector efficiencies were greater than 20%. The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG. All RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

o Field Duplicates: There were no field duplicate samples identified for this SDG.

#### D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: November 14, 2011

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC<sup>X</sup> Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 314.0 and SM2540D, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, seven days for TSS and 28 days for perchlorate, were met.
- Calibration: Calibration criteria were met. All Initial calibration r² values were ≥0.995. The
  perchlorate IPC-MA recovery was above the control limit at 121%; however, perchlorate
  was not detected in the site sample. The ICCS recovery was within 75-125% and the ICV
  and CCV recoveries were within 85-115%. The balance calibration check logs were
  acceptable.
- Blanks: The method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The TSS recovery was within laboratoryestablished QC limits. Perchlorate recoveries were within 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG for perchlorate. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

o Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms 1UJ0496

| Analysis Metho   | od 900         |                 |           |          |                 |                  |                         |                     |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Sample Name      | Outfall 009 (C | Composite       | ) Matri   | іх Туре: | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Gross Alpha      | 12587461       | 1.49            | 3         | 0.327    | pCi/L           | Jb               | J                       | DNQ                 |
| Gross Beta       | 12587472       | 2.95            | 4         | 0.798    | pCi/L           | Jb               | J                       | DNQ                 |
| Analysis Metho   | od 901.1       |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | Composite       | ) Matri   | ix Type: | WATER           | 7                | /alidation Le           | vel: IV             |
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Cesium-137       | 10045973       | ND              | 20        | 1.06     | pCi/L           | U                | U                       |                     |
| Potassium-40     | 13966002       | ND              | 25        | 13       | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od 903.1       |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | Composite       | ) Matri   | ix Type: | WATER           | 7                | /alidation Le           | vel: IV             |
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium-226       | 13982633       | 0.219           | 1         | 0.703    | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od 904         |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | Composite       | ) Matri   | ix Type: | WATER           | 1                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium-228       | 15262201       | 0.062           | 1         | 0.382    | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od 905         |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | Composite       | ) Matri   | ix Type: | WATER           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Strontium-90     | 10098972       | -0.047          | 2         | 0.824    | pCi/L           | U                | U                       |                     |

# Analysis Method 906

| Sample Name      | Outfall 009 (0 | Composite       | ) Matri   | x Type:  | WATER           | 7                | alidation Le            | vel: IV             |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Tritium          | 10028178       | -66.2           | 500       | 206      | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od ASTN        | 15174-          | 91        |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (  | Composite       | ) Matri   | x Type:  | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Uranium, Total   | NA             | 0.07            | 1         | 0.022    | pCi/L           | Jb               |                         |                     |
| Analysis Metho   | od EPA.        | 245.1           |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | ) Matri   | x Type:  | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20      | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | od EPA.        | 245.1-L         | )iss      |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | ) Matri   | x Type:  | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20      | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | od EPA.        | 314.0           |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | ) Matri   | x Type:  | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUJ0496-02     | Sam             | ple Date: | 10/5/201 | 1 5:54:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result          | RL        | MDL      | Result          | Lab              | Validation              | Validation          |
|                  |                | Value           |           |          | Units           | Qualifier        | Qualifier               | Notes               |

# Analysis Method EPA-5 1613B

| Sample Name            | Outfall 009 (C | Composite       | ) Matri   | x Type: \ | WATER           | V                | Validation Le           | vel: IV             |
|------------------------|----------------|-----------------|-----------|-----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:       | IUJ0496-02     | Sam             | ple Date: | 10/5/2011 | 5:54:00 PM      |                  |                         |                     |
| Analyte                | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| ,2,3,4,6,7,8-HpCDD     | 35822-46-9     | 2.5e-005        | 0.00005   | 0.0000055 | ug/L            | J                | J                       | DNQ                 |
| 1,2,3,4,6,7,8-HpCDF    | 67562-39-4     | ND              | 0.00005   | 0.0000073 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,4,7,8,9-HpCDF    | 55673-89-7     | ND              | 0.00005   | 0.00001   | ug/L            |                  | U                       |                     |
| ,2,3,4,7,8-HxCDD       | 39227-28-6     | ND              | 0.00005   | 0.0000064 | ug/L            |                  | U                       |                     |
| ,2,3,4,7,8-HxCDF       | 70648-26-9     | ND              | 0.00005   | 0.000008  | ug/L            |                  | U                       |                     |
| ,2,3,6,7,8-HxCDD       | 57653-85-7     | ND              | 0.00005   | 0.0000064 | ug/L            |                  | U                       |                     |
| ,2,3,6,7,8-HxCDF       | 57117-44-9     | ND              | 0.00005   | 0.0000072 | ug/L            |                  | U                       |                     |
| ,2,3,7,8,9-HxCDD       | 19408-74-3     | ND              | 0.00005   | 0.0000054 | ug/L            |                  | U                       |                     |
| ,2,3,7,8,9-HxCDF       | 72918-21-9     | ND              | 0.00005   | 0.000009  | ug/L            |                  | U                       |                     |
| ,2,3,7,8-PeCDD         | 40321-76-4     | ND              | 0.00005   | 0.000012  | ug/L            |                  | U                       |                     |
| ,2,3,7,8-PeCDF         | 57117-41-6     | ND              | 0.00005   | 0.000014  | ug/L            |                  | U                       |                     |
| 2,3,4,6,7,8-HxCDF      | 60851-34-5     | ND              | 0.00005   | 0.0000072 | ug/L            |                  | U                       |                     |
| ,3,4,7,8-PeCDF         | 57117-31-4     | ND              | 0.00005   | 0.000016  | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDD           | 1746-01-6      | ND              | 0.00001   | 0.0000043 | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDF           | 51207-31-9     | ND              | 0.00001   | 0.0000053 | ug/L            |                  | U                       |                     |
| OCDD                   | 3268-87-9      | 0.00023         | 0.0001    | 0.000017  | ug/L            | В                |                         |                     |
| OCDF                   | 39001-02-0     | ND              | 0.0001    | 0.00001   | ug/L            | J, Q             | UJ                      | *III                |
| Total HpCDD            | 37871-00-4     | 5.1e-005        | 0.00005   | 0.0000055 | ug/L            | J, Q             | J                       | DNQ, *III           |
| Total HpCDF            | 38998-75-3     | ND              | 0.00005   | 0.0000085 | ug/L            | J, Q             | UJ                      | *III                |
| Total HxCDD            | 34465-46-8     | ND              | 0.00005   | 0.0000054 | ug/L            |                  | U                       |                     |
| Total HxCDF            | 55684-94-1     | ND              | 0.00005   | 0.0000072 | ug/L            |                  | U                       |                     |
| Total PeCDD            | 36088-22-9     | ND              | 0.00005   | 0.000012  | ug/L            |                  | U                       |                     |
| Total PeCDF            | 30402-15-4     | ND              | 0.00005   | 0.000014  | ug/L            |                  | U                       |                     |
| Total TCDD             | 41903-57-5     | ND              | 0.00001   | 0.0000043 | ug/L            |                  | U                       |                     |
| Total TCDF             | 55722-27-5     | ND              | 0.00001   | 0.0000053 | ug/L            |                  | U                       |                     |
| Analysis Metho         | od SM 25       | 540D            |           |           |                 |                  |                         |                     |
| Sample Name            | Outfall 009 (C | Composite       | ) Matri   | x Type:   | Water           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name:       | IUJ0496-02     | Sam             | ple Date: | 10/5/2011 | 5:54:00 PM      |                  |                         |                     |
| Analyte                | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Suspended Solids | TSS            | 6.0             | 10        | 1.0       | mg/l            | Ja               | J                       | DNQ                 |

### Section 2

Outfall 009 – October 5, 6, & 7, 2011
Test America Analytical Laboratory Report



#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 10/05/11-10/07/11

Received: 10/05/11

Issued: 10/31/11 11:32

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### **CASE NARRATIVE**

SAMPLE RECEIPT: Samples were received intact, at 7°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. Results were qualified where the

sample container did not meet the method preservation requirements. Cyanide bottle was received

unpreserved. Sample was adjusted to ph >12 before analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/05/11-10/07/11

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

Attention: Bronwyn Kelly

ADDITIONAL INFORMATION:

WATER, 1613B, Dioxins/Furans with Totals

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

Some analytes are reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

The internal standard recoveries for 13C-1,2,3,4,7,8-HxCDD, 13C-1,2,3,4,6,7,8-HpCDF and 13C-1,2,3,4,7,8,9-HpCDF in the method blank (MB) are below the method criteria. Data quality is not considered affected if the internal standard signal-to-noise ratio is greater than 10:1, which is achieved for all internal standards in the MB. All detection limits are below the lower calibration limit and there is no adverse impact on data quality.

| LABORATORY ID | CLIENT ID               | MATRIX |
|---------------|-------------------------|--------|
| IUJ0496-01    | Outfall 009 (Grab)      | Water  |
| IUJ0496-02    | Outfall 009 (Composite) | Water  |
| IUJ0496-03    | Trip Blank              | Water  |

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

**TestAmerica Irvine** 

Debby Wilson

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

Attention: Bronwyn Kelly

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                              | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUJ0496-01 (Outfall 009 ( |           |         | Sample       | ed: 10/05/11       | l                |                    |         |                  |                    |
| Reporting Units: mg/l                |           |         |              |                    |                  |                    |         |                  |                    |
| Hexane Extractable Material (Oil &   | EPA 1664A | 11J2486 | 1.3          | 4.8                | ND               | 1                  | DA      | 10/20/11         |                    |
| Grease)                              |           |         |              |                    |                  |                    |         |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

Attention: Bronwyn Kelly

#### **METALS**

| Analyte                               | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUJ0496-02 (Outfall 009 (C |           |         | Sample       | ed: 10/05/11       |                  |                    |         |                  |                    |
| Reporting Units: ug/l                 |           |         |              |                    |                  |                    |         |                  |                    |
| Mercury                               | EPA 245.1 | 11J1828 | 0.10         | 0.20               | ND               | 1                  | DB      | 10/18/11         |                    |
| Antimony                              | EPA 200.8 | 11J1997 | 0.30         | 2.0                | 0.57             | 1                  | NH      | 10/18/11         | Ja                 |
| Cadmium                               | EPA 200.8 | 11J1997 | 0.10         | 1.0                | ND               | 1                  | NH      | 10/18/11         |                    |
| Copper                                | EPA 200.8 | 11J1997 | 0.50         | 2.0                | 6.5              | 1                  | NH      | 10/18/11         |                    |
| Lead                                  | EPA 200.8 | 11J1997 | 0.20         | 1.0                | 2.7              | 1                  | NH      | 10/18/11         |                    |
| Thallium                              | EPA 200.8 | 11J1997 | 0.20         | 1.0                | ND               | 1                  | NH      | 10/18/11         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

Project ID: Semi-Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

Attention: Bronwyn Kelly

#### **DISSOLVED METALS**

| Analyte                                | Method         | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|----------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUJ0496-02 (Outfall 009 (Co |                |         | Sample       | d: 10/05/11        |                  |                    |         |                  |                    |
| Reporting Units: ug/l                  |                |         |              |                    |                  |                    |         |                  |                    |
| Mercury                                | EPA 245.1-Diss | 11J1450 | 0.10         | 0.20               | ND               | 1                  | db      | 10/13/11         |                    |
| Antimony                               | EPA 200.8-Diss | 11J2148 | 0.30         | 2.0                | 0.65             | 1                  | KB1     | 10/18/11         | Ja                 |
| Cadmium                                | EPA 200.8-Diss | 11J2148 | 0.10         | 1.0                | ND               | 1                  | KB1     | 10/18/11         |                    |
| Copper                                 | EPA 200.8-Diss | 11J2148 | 0.50         | 2.0                | 6.2              | 1                  | KB1     | 10/18/11         |                    |
| Lead                                   | EPA 200.8-Diss | 11J2148 | 0.20         | 1.0                | 0.94             | 1                  | KB1     | 10/18/11         | Ja                 |
| Thallium                               | EPA 200.8-Diss | 11J2148 | 0.20         | 1.0                | ND               | 1                  | KB1     | 10/18/11         |                    |



Arcadia, CA 91007

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

Project ID: Semi-Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Report Number: IUJ0496 Received: 10/05/11

**INORGANICS** 

| Analyte                              | Method              | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|---------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUJ0496-02 (Outfall 009 ( |                     |         | Sample       | ed: 10/05/11       | l                |                    |         |                  |                    |
| Reporting Units: mg/l                |                     |         |              |                    |                  |                    |         |                  |                    |
| Chloride                             | EPA 300.0           | 11J0660 | 0.30         | 0.50               | 2.6              | 1                  | NN      | 10/06/11         |                    |
| Nitrate/Nitrite-N                    | EPA 300.0           | 11J0660 | 0.15         | 0.26               | 0.70             | 1                  | NN      | 10/06/11         |                    |
| Sulfate                              | EPA 300.0           | 11J0660 | 0.30         | 0.50               | 6.5              | 1                  | NN      | 10/06/11         |                    |
| <b>Total Dissolved Solids</b>        | SM2540C             | 11J1361 | 1.0          | 10                 | 55               | 1                  | MC      | 10/12/11         |                    |
| <b>Total Suspended Solids</b>        | SM 2540D            | 11J1120 | 1.0          | 10                 | 6.0              | 1                  | DK1     | 10/10/11         | Ja                 |
| Sample ID: IUJ0496-02 (Outfall 009 ( | Composite) - Water) |         |              |                    | Sample           | ed: 10/05/11       | l       |                  |                    |
| Reporting Units: ug/l                |                     |         |              |                    |                  |                    |         |                  |                    |
| Perchlorate                          | EPA 314.0           | 11J0762 | 0.95         | 4.0                | ND               | 1                  | MN      | 10/07/11         |                    |
| Total Cyanide                        | SM4500CN-E          | 11J2262 | 2.2          | 5.0                | ND               | 1                  | SLA     | 10/19/11         | M1, pH, P          |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

|                                                                 |        |       | 8691         |                    |                  |                    |         |                  |                    |
|-----------------------------------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                                                         | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUJ0496-02 (Outfall 009 (Composite) - Water) - cont. |        |       |              |                    | Sample           | d: 10/05/11        |         |                  |                    |
| Reporting Units: pCi/L                                          |        |       |              |                    |                  |                    |         |                  |                    |
| Uranium, Total                                                  | 8691   | 8691  | 0.022        | 1                  | 0.07             | 1                  | LS      | 10/12/11         | Jb                 |
| Sample ID: IUJ0496-03 (Trip Blank - Water)                      |        |       |              |                    | Sample           | d: 10/07/11        |         |                  |                    |
| Reporting Units: pCi/L                                          |        |       |              |                    |                  |                    |         |                  |                    |
| Uranium, Total                                                  | 8691   | 8691  | 0.022        | 1                  | ND               | 1                  | LS      | 10/12/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

Project ID: Semi-Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

|                                                                 |        |       | 900          |                    |                  |                    |         |                  |                    |
|-----------------------------------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                                                         | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUJ0496-02 (Outfall 009 (C                           |        |       | Sample       | ed: 10/05/1        | 1                |                    |         |                  |                    |
| Reporting Units: pCi/L                                          |        |       |              |                    |                  |                    |         |                  |                    |
| Gross Alpha                                                     | 900    | 8691  | 0.327        | 3                  | 1.49             | 1                  | DVP     | 10/14/11         | Jb                 |
| Gross Beta                                                      | 900    | 8691  | 0.798        | 4                  | 2.95             | 1                  | DVP     | 10/14/11         | Jb                 |
| Sample ID: IUJ0496-03 (Trip Blank - V<br>Reporting Units: pCi/L | Water) |       |              |                    | Sample           | ed: 10/07/1        | 1       |                  |                    |
| Gross Alpha                                                     | 900    | 8691  | 0.297        | 3                  | 0.003            | 1                  | DVP     | 10/14/11         | U                  |
| Gross Beta                                                      | 900    | 8691  | 0.794        | 4                  | 0.008            | 1                  | DVP     | 10/14/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

|                                       |        |       | 901.1        | l                  |                  |                    |         |                  |                    |
|---------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                               | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUJ0496-02 (Outfall 009 (C |        |       | Sample       | ed: 10/05/1        | 1                |                    |         |                  |                    |
| Reporting Units: pCi/L                |        |       |              |                    |                  |                    |         |                  |                    |
| Cesium-137                            | 901.1  | 8691  | 1.06         | 20                 | ND               | 1                  | LS      | 10/14/11         | U                  |
| Potassium-40                          | 901.1  | 8691  | 13           | 25                 | ND               | 1                  | LS      | 10/14/11         | U                  |
| Sample ID: IUJ0496-03 (Trip Blank - V | Vater) |       |              |                    | Sample           | ed: 10/07/1        | 1       |                  |                    |
| Reporting Units: pCi/L                |        |       |              |                    |                  |                    |         |                  |                    |
| Cesium-137                            | 901.1  | 8691  | 3.06         | 20                 | ND               | 1                  | LS      | 10/14/11         | U                  |
| Potassium-40                          | 901.1  | 8691  | 93.3         | 25                 | ND               | 1                  | LS      | 10/14/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

|                                                         | 903.1  |       |              |                    |                  |                    |         |                  |                    |  |  |
|---------------------------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|--|
| Analyte                                                 | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |  |
| Sample ID: IUJ0496-02 (Outfall 009 (Composite) - Water) |        |       |              | Sampled: 10/05/11  |                  |                    |         |                  |                    |  |  |
| Reporting Units: pCi/L                                  |        |       |              |                    |                  |                    |         |                  |                    |  |  |
| Radium-226                                              | 903.1  | 8691  | 0.703        | 1                  | 0.219            | 1                  | TM      | 10/19/11         | U                  |  |  |
| Sample ID: IUJ0496-03 (Trip Blank - Water)              |        |       |              |                    | Sample           | d: 10/07/11        | l       |                  |                    |  |  |
| Reporting Units: pCi/L                                  |        |       |              |                    |                  |                    |         |                  |                    |  |  |
| Radium-226                                              | 903.1  | 8691  | 0.742        | 1                  | -0.05            | 1                  | TM      | 10/19/11         | U                  |  |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

|                                                                                |        |       | 904          |                    |                  |                    |         |                  |                    |
|--------------------------------------------------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                                                                        | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUJ0496-02 (Outfall 009 (Composite) - Water) Reporting Units: pCi/L |        |       |              |                    | Sample           | ed: 10/05/11       |         |                  |                    |
| Radium-228                                                                     | 904    | 8691  | 0.382        | 1                  | 0.062            | 1                  | ASM     | 10/25/11         | U                  |
| Sample ID: IUJ0496-03 (Trip Blank - Wate<br>Reporting Units: pCi/L             | r)     |       |              |                    | Sample           | ed: 10/07/11       |         |                  |                    |
| Radium-228                                                                     | 904    | 8691  | 0.407        | 1                  | -0.216           | 1                  | ASM     | 10/25/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

|                                           |        |       | 905          |                    |                  |                    |         |                  |                    |
|-------------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                                   | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUJ0496-02 (Outfall 009 (Comp  |        |       | Sample       | d: 10/05/11        |                  |                    |         |                  |                    |
| Reporting Units: pCi/L                    |        |       |              |                    |                  |                    |         |                  |                    |
| Strontium-90                              | 905    | 8691  | 0.824        | 2                  | -0.047           | 1                  | WL      | 10/14/11         | U                  |
| Sample ID: IUJ0496-03 (Trip Blank - Water | r)     |       |              |                    | Sample           | d: 10/07/11        |         |                  |                    |
| Reporting Units: pCi/L<br>Strontium-90    | 905    | 8691  | 1.14         | 2                  | -0.015           | 1                  | WL      | 10/14/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 10/05/11-10/07/11

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

| 906                                                     |        |       |              |                    |                  |                    |         |                  |                    |  |
|---------------------------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|
| Analyte                                                 | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |
| Sample ID: IUJ0496-02 (Outfall 009 (Composite) - Water) |        |       |              |                    | Sample           | d: 10/05/11        |         |                  |                    |  |
| Reporting Units: pCi/L Tritium                          | 906    | 8691  | 206          | 500                | -66.2            | 1                  | WL      | 10/13/11         | U                  |  |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

#### EPA-5 1613Bx

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method              | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUJ0496-02 (Outfall 009 (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Composite) - Water) | - cont. |              |                    | Sample           | ed: 10/05/11       | 1       |                  |                    |
| Reporting Units: ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | -                |                    |         |                  |                    |
| 1,2,3,4,6,7,8-HpCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA-5 1613B         | 1292103 | 0.0000055    | 0.00005            | 2.5e-005         | 0.99               | GV      | 10/20/11         | J                  |
| 1,2,3,4,6,7,8-HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA-5 1613B         | 1292103 | 0.0000073    | 0.00005            | 8e-006           | 0.99               | GV      | 10/20/11         | J, Q               |
| 1,2,3,4,7,8,9-HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA-5 1613B         | 1292103 | 0.00001      | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA-5 1613B         | 1292103 | 0.0000064    | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 1,2,3,4,7,8-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA-5 1613B         | 1292103 | 0.000008     | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 1,2,3,6,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA-5 1613B         | 1292103 | 0.0000064    | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 1,2,3,6,7,8-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA-5 1613B         | 1292103 | 0.0000072    | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 1,2,3,7,8,9-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA-5 1613B         | 1292103 | 0.0000054    | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 1,2,3,7,8,9-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA-5 1613B         | 1292103 | 0.000009     | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 1,2,3,7,8-PeCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-5 1613B         | 1292103 | 0.000012     | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 1,2,3,7,8-PeCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-5 1613B         | 1292103 | 0.000014     | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 2,3,4,6,7,8-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA-5 1613B         | 1292103 | 0.0000072    | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 2,3,4,7,8-PeCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA-5 1613B         | 1292103 | 0.000016     | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 2,3,7,8-TCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EPA-5 1613B         | 1292103 | 0.0000043    | 0.00001            | ND               | 0.99               | GV      | 10/20/11         |                    |
| 2,3,7,8-TCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EPA-5 1613B         | 1292103 | 0.0000053    | 0.00001            | ND               | 0.99               | GV      | 10/20/11         |                    |
| OCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA-5 1613B         | 1292103 | 0.000017     | 0.0001             | 0.00023          | 0.99               | GV      | 10/20/11         | В                  |
| OCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA-5 1613B         | 1292103 | 0.00001      | 0.0001             | 1.2e-005         | 0.99               | GV      | 10/20/11         | J, Q               |
| Total HpCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA-5 1613B         | 1292103 | 0.0000055    | 0.00005            | 5.1e-005         | 0.99               | GV      | 10/20/11         | J, Q               |
| Total HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA-5 1613B         | 1292103 | 0.0000085    | 0.00005            | 8e-006           | 0.99               | GV      | 10/20/11         | J, Q               |
| Total HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA-5 1613B         | 1292103 | 0.0000054    | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| Total HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA-5 1613B         | 1292103 | 0.0000072    | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| Total PeCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA-5 1613B         | 1292103 | 0.000012     | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| Total PeCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA-5 1613B         | 1292103 | 0.000014     | 0.00005            | ND               | 0.99               | GV      | 10/20/11         |                    |
| Total TCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPA-5 1613B         |         | 0.0000043    |                    | ND               | 0.99               | GV      | 10/20/11         |                    |
| Total TCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPA-5 1613B         | 1292103 | 0.0000053    | 0.00001            | ND               | 0.99               | GV      | 10/20/11         |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-140%)             |         |              |                    | 51 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 48 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 45 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 51 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 52 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 55 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 58 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                 |         |              |                    | 50 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDD (25-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 47 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDF (24-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 43 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 55 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF (21-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 42 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDD (25-164%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 51 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDF (24-169%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |         |              |                    | 48 %             |                    |         |                  |                    |
| Surrogate: 13C-OCDD (17-157%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                   |         |              |                    | 48 %             |                    |         |                  |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7%)                 |         |              |                    | 75 %             |                    |         |                  |                    |
| The state of the s | *                   |         |              |                    |                  |                    |         |                  |                    |

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/05/11-10/07/11

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

Attention: Bronwyn Kelly

#### SHORT HOLD TIME DETAIL REPORT

| Sample ID: Outfall 009 (Composite) (IUJ049) | Hold Time<br>(in days)<br>6-02) - Water | Date/Time<br>Sampled | Date/Time<br>Received | Date/Time<br>Extracted | Date/Time<br>Analyzed |
|---------------------------------------------|-----------------------------------------|----------------------|-----------------------|------------------------|-----------------------|
| EPA 300.0                                   | 2                                       | 10/05/2011 17:54     | 10/05/2011 18:45      | 10/06/2011 19:30       | 10/06/2011 20:43      |
| Filtration                                  | 1                                       | 10/05/2011 17:54     | 10/05/2011 18:45      | 10/06/2011 22:24       | 10/06/2011 22:26      |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496

Received: 10/05/11

## METHOD BLANK/QC DATA

### HEXANE EXTRACTABLE MATERIAL

|                                            |          | Reporting |     |       |         | Spike | Source |      | %REC   |     | RPD   | Data       |
|--------------------------------------------|----------|-----------|-----|-------|---------|-------|--------|------|--------|-----|-------|------------|
| Analyte                                    | Result   | Limit     | MDL | Units | Analyst | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11J2486 Extracted: 10/20/11         | <u>L</u> |           |     |       |         |       |        |      |        |     |       |            |
| Blank Analyzed: 10/20/2011 (11J2486-B      | BLK1)    |           |     |       |         |       |        |      |        |     |       |            |
| Hexane Extractable Material (Oil & Grease) | ND       | 5.0       | 1.4 | mg/l  | DA      |       |        |      |        |     |       |            |
| LCS Analyzed: 10/20/2011 (11J2486-BS       | 51)      |           |     |       |         |       |        |      |        |     |       | MNR1       |
| Hexane Extractable Material (Oil & Grease) | 20.7     | 5.0       | 1.4 | mg/l  | DA      | 20.0  |        | 104  | 78-114 |     |       |            |
| LCS Dup Analyzed: 10/20/2011 (11J248       | 86-BSD1) |           |     |       |         |       |        |      |        |     |       |            |
| Hexane Extractable Material (Oil & Grease) | 20.2     | 5.0       | 1.4 | mg/l  | DA      | 20.0  |        | 101  | 78-114 | 2   | 11    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

#### **METALS**

| Analyte                                           | Result        | Reporting<br>Limit |      | Units | Analyst | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------------------|---------------|--------------------|------|-------|---------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11J1828 Extracted: 10/14/11                | _             |                    |      |       |         |                |                  |      |                |     |              |                    |
| Blank Analyzed: 10/18/2011 (11J1828-B             | I <b>K</b> 1) |                    |      |       |         |                |                  |      |                |     |              |                    |
| Mercury                                           | ND            | 0.20               | 0.10 | ug/l  | DB      |                |                  |      |                |     |              |                    |
| LCS Analyzed: 10/18/2011 (11J1828-BS              | 1)            |                    |      |       |         |                |                  |      |                |     |              |                    |
| Mercury                                           | 8.18          | 0.20               | 0.10 | ug/l  | DB      | 8.00           |                  | 102  | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 10/18/2011 (11J            | 1828-MS1)     |                    |      |       |         | Source:        | IUJ0434-         | 02   |                |     |              |                    |
| Mercury                                           | 8.38          | 0.20               | 0.10 | ug/l  | DB      | 8.00           | ND               | 105  | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 10/18/2011             | (11J1828-N    | ISD1)              |      |       |         | Source:        | IUJ0434-         | 02   |                |     |              |                    |
| Mercury                                           | 8.28          | 0.20               | 0.10 | ug/l  | DB      | 8.00           | ND               | 103  | 70-130         | 1   | 20           |                    |
| Batch: 11J1997 Extracted: 10/17/11                | _             |                    |      |       |         |                |                  |      |                |     |              |                    |
| Plank Analyzadi 10/19/2011 (11 I1007 P            | I I/1)        |                    |      |       |         |                |                  |      |                |     |              |                    |
| Blank Analyzed: 10/18/2011 (11J1997-B<br>Antimony | ND            | 2.0                | 0.30 | ug/l  | NH      |                |                  |      |                |     |              |                    |
| Cadmium                                           | ND            | 1.0                | 0.10 | ug/l  | NH      |                |                  |      |                |     |              |                    |
| Copper                                            | ND            | 2.0                | 0.50 | ug/l  | NH      |                |                  |      |                |     |              |                    |
| Lead                                              | ND            | 1.0                | 0.20 | ug/l  | NH      |                |                  |      |                |     |              |                    |
| Thallium                                          | ND            | 1.0                | 0.20 | ug/l  | NH      |                |                  |      |                |     |              |                    |
| LCS Analyzed: 10/18/2011 (11J1997-BS)             | 1)            |                    |      |       |         |                |                  |      |                |     |              |                    |
| Antimony                                          | 84.0          | 2.0                | 0.30 | ug/l  | NH      | 80.0           |                  | 105  | 85-115         |     |              |                    |
| Cadmium                                           | 83.4          | 1.0                | 0.10 | ug/l  | NH      | 80.0           |                  | 104  | 85-115         |     |              |                    |
| Copper                                            | 81.7          | 2.0                | 0.50 | ug/l  | NH      | 80.0           |                  | 102  | 85-115         |     |              |                    |
| Lead                                              | 83.3          | 1.0                | 0.20 | ug/l  | NH      | 80.0           |                  | 104  | 85-115         |     |              |                    |
| Thallium                                          | 83.8          | 1.0                | 0.20 | ug/l  | NH      | 80.0           |                  | 105  | 85-115         |     |              |                    |

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

#### **METALS**

|                                            | ]          | Reporting |      |       |         | Spike   | Source   |      | %REC   |     | RPD   | Data       |
|--------------------------------------------|------------|-----------|------|-------|---------|---------|----------|------|--------|-----|-------|------------|
| Analyte                                    | Result     | Limit     | MDL  | Units | Analyst | Level   | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11J1997 Extracted: 10/17/11         | _          |           |      |       |         |         |          |      |        |     |       |            |
| Matrix Sailes Assalement, 10/10/2011 (111) | 1007 MC1)  |           |      |       |         | C       | 11111700 | 0.0  |        |     |       |            |
| Matrix Spike Analyzed: 10/18/2011 (11J     | ,          |           |      |       |         |         | IUJ1790- |      |        |     |       |            |
| Antimony                                   | 87.3       | 4.0       | 0.60 | ug/l  | NH      | 80.0    | 1.55     | 107  | 70-130 |     |       |            |
| Cadmium                                    | 79.5       | 2.0       | 0.20 | ug/l  | NH      | 80.0    | ND       | 99   | 70-130 |     |       |            |
| Copper                                     | 87.0       | 4.0       | 1.0  | ug/l  | NH      | 80.0    | 12.3     | 93   | 70-130 |     |       |            |
| Lead                                       | 80.5       | 2.0       | 0.40 | ug/l  | NH      | 80.0    | 0.886    | 100  | 70-130 |     |       |            |
| Thallium                                   | 81.4       | 2.0       | 0.40 | ug/l  | NH      | 80.0    | 0.523    | 101  | 70-130 |     |       |            |
| Matrix Spike Analyzed: 10/18/2011 (11J     | 1997-MS2)  |           |      |       |         | Source: | IUJ1790- | 07   |        |     |       |            |
| Antimony                                   | 88.2       | 4.0       | 0.60 | ug/l  | NH      | 80.0    | 1.35     | 109  | 70-130 |     |       |            |
| Cadmium                                    | 81.0       | 2.0       | 0.20 | ug/l  | NH      | 80.0    | ND       | 101  | 70-130 |     |       |            |
| Copper                                     | 82.0       | 4.0       | 1.0  | ug/l  | NH      | 80.0    | 5.34     | 96   | 70-130 |     |       |            |
| Lead                                       | 80.3       | 2.0       | 0.40 | ug/l  | NH      | 80.0    | 0.489    | 100  | 70-130 |     |       |            |
| Thallium                                   | 81.1       | 2.0       | 0.40 | ug/l  | NH      | 80.0    | ND       | 101  | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 10/18/2011      | (11J1997-M | (SD1)     |      |       |         | Source: | IUJ1790- | 06   |        |     |       |            |
| Antimony                                   | 87.1       | 4.0       | 0.60 | ug/l  | NH      | 80.0    | 1.55     | 107  | 70-130 | 0.2 | 20    |            |
| Cadmium                                    | 80.0       | 2.0       | 0.20 | ug/l  | NH      | 80.0    | ND       | 100  | 70-130 | 0.6 | 20    |            |
| Copper                                     | 88.1       | 4.0       | 1.0  | ug/l  | NH      | 80.0    | 12.3     | 95   | 70-130 | 1   | 20    |            |
| Lead                                       | 80.8       | 2.0       | 0.40 | ug/l  | NH      | 80.0    | 0.886    | 100  | 70-130 | 0.3 | 20    |            |
| Thallium                                   | 80.4       | 2.0       | 0.40 | ug/l  | NH      | 80.0    | 0.523    | 100  | 70-130 | 1   | 20    |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

| Analyte                                | Result     | Reporting<br>Limit |      | Units | Analyst | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|------|-------|---------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11J1450 Extracted: 10/12/11     | _          |                    |      |       |         |                |                  |      |                |     |              |                    |
| Blank Analyzed: 10/13/2011 (11J1450-B  | LK1)       |                    |      |       |         |                |                  |      |                |     |              |                    |
| Mercury                                | ND         | 0.20               | 0.10 | ug/l  | db      |                |                  |      |                |     |              |                    |
| LCS Analyzed: 10/13/2011 (11J1450-BS)  | 1)         |                    |      |       |         |                |                  |      |                |     |              |                    |
| Mercury                                | 7.51       | 0.20               | 0.10 | ug/l  | db      | 8.00           |                  | 94   | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 10/13/2011 (11J | 1450-MS1)  |                    |      |       |         | Source:        | IUJ0486-         | 01   |                |     |              |                    |
| Mercury                                | 7.48       | 0.20               | 0.10 | ug/l  | db      | 8.00           | ND               | 94   | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 10/13/2011  | (11J1450-M | ISD1)              |      |       |         | Source:        | IUJ0486-         | 01   |                |     |              |                    |
| Mercury                                | 7.38       | 0.20               | 0.10 | ug/l  | db      | 8.00           | ND               | 92   | 70-130         | 1   | 20           |                    |
| Batch: 11J2148 Extracted: 10/18/11     | _          |                    |      |       |         |                |                  |      |                |     |              |                    |
| Blank Analyzed: 10/18/2011 (11J2148-B  | LK1)       |                    |      |       |         |                |                  |      |                |     |              |                    |
| Antimony                               | ND         | 2.0                | 0.30 | ug/l  | KB1     |                |                  |      |                |     |              |                    |
| Cadmium                                | ND         | 1.0                | 0.10 | ug/l  | KB1     |                |                  |      |                |     |              |                    |
| Copper                                 | ND         | 2.0                | 0.50 | ug/l  | KB1     |                |                  |      |                |     |              |                    |
| Lead                                   | ND         | 1.0                | 0.20 | ug/l  | KB1     |                |                  |      |                |     |              |                    |
| Thallium                               | ND         | 1.0                | 0.20 | ug/l  | KB1     |                |                  |      |                |     |              |                    |
| LCS Analyzed: 10/18/2011 (11J2148-BS)  | 1)         |                    |      |       |         |                |                  |      |                |     |              |                    |
| Antimony                               | 83.1       | 2.0                | 0.30 | ug/l  | KB1     | 80.0           |                  | 104  | 85-115         |     |              |                    |
| Cadmium                                | 81.4       | 1.0                | 0.10 | ug/l  | KB1     | 80.0           |                  | 102  | 85-115         |     |              |                    |
| Copper                                 | 80.7       | 2.0                | 0.50 | ug/l  | KB1     | 80.0           |                  | 101  | 85-115         |     |              |                    |
| Lead                                   | 77.9       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           |                  | 97   | 85-115         |     |              |                    |
| Thallium                               | 79.8       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           |                  | 100  | 85-115         |     |              |                    |

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

| Analyte                                   | Result     | Reporting<br>Limit | MDL  | Units | Analyst | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|------------|--------------------|------|-------|---------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| <b>Batch: 11J2148 Extracted: 10/18/11</b> | <u>-</u>   |                    |      |       |         |                |                  |      |                |     |              |                    |
| Matrix Spike Analyzed: 10/18/2011 (11JZ   | 2148-MS1)  |                    |      |       |         | Source:        | IUJ0496-         | 02   |                |     |              |                    |
| Antimony                                  | 83.3       | 2.0                | 0.30 | ug/l  | KB1     | 80.0           | 0.648            | 103  | 70-130         |     |              |                    |
| Cadmium                                   | 80.0       | 1.0                | 0.10 | ug/l  | KB1     | 80.0           | ND               | 100  | 70-130         |     |              |                    |
| Copper                                    | 86.0       | 2.0                | 0.50 | ug/l  | KB1     | 80.0           | 6.21             | 100  | 70-130         |     |              |                    |
| Lead                                      | 78.4       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           | 0.941            | 97   | 70-130         |     |              |                    |
| Thallium                                  | 78.7       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           | ND               | 98   | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 10/18/2011     | (11J2148-N | ASD1)              |      |       |         | Source:        | IUJ0496-         | 02   |                |     |              |                    |
| Antimony                                  | 84.1       | 2.0                | 0.30 | ug/l  | KB1     | 80.0           | 0.648            | 104  | 70-130         | 1   | 20           |                    |
| Cadmium                                   | 82.5       | 1.0                | 0.10 | ug/l  | KB1     | 80.0           | ND               | 103  | 70-130         | 3   | 20           |                    |
| Copper                                    | 87.9       | 2.0                | 0.50 | ug/l  | KB1     | 80.0           | 6.21             | 102  | 70-130         | 2   | 20           |                    |
| Lead                                      | 80.5       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           | 0.941            | 99   | 70-130         | 3   | 20           |                    |
| Thallium                                  | 81.2       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           | ND               | 102  | 70-130         | 3   | 20           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

### **INORGANICS**

|                                        |            | Reporting |      |       |         | Spike   | Source   |      | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|------|-------|---------|---------|----------|------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL  | Units | Analyst | Level   | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11J0660 Extracted: 10/06/11     |            |           |      |       |         |         |          |      |        |     |       |            |
|                                        | -          |           |      |       |         |         |          |      |        |     |       |            |
| Blank Analyzed: 10/06/2011 (11J0660-B  | LK1)       |           |      |       |         |         |          |      |        |     |       |            |
| Chloride                               | ND         | 0.50      | 0.30 | mg/l  | NN      |         |          |      |        |     |       |            |
| Nitrate/Nitrite-N                      | ND         | 0.26      | 0.15 | mg/l  | NN      |         |          |      |        |     |       |            |
| Sulfate                                | ND         | 0.50      | 0.30 | mg/l  | NN      |         |          |      |        |     |       |            |
| LCS Analyzed: 10/06/2011 (11J0660-BS)  | 1)         |           |      |       |         |         |          |      |        |     |       |            |
| Chloride                               | 4.84       | 0.50      | 0.30 | mg/l  | NN      | 5.00    |          | 97   | 90-110 |     |       |            |
| Sulfate                                | 9.83       | 0.50      | 0.30 | mg/l  | NN      | 10.0    |          | 98   | 90-110 |     |       |            |
| Matrix Spike Analyzed: 10/06/2011 (11J | 0660-MS1)  |           |      |       |         | Source: | IUJ0598- | 01   |        |     |       |            |
| Chloride                               | 9.79       | 0.50      | 0.30 | mg/l  | NN      | 5.00    | 4.68     | 102  | 80-120 |     |       |            |
| Sulfate                                | 22.0       | 0.50      | 0.30 | mg/l  | NN      | 10.0    | 11.6     | 103  | 80-120 |     |       |            |
| Matrix Spike Analyzed: 10/06/2011 (11J | 0660-MS2)  |           |      |       |         | Source: | IUJ0759- | 01   |        |     |       |            |
| Chloride                               | 78.5       | 5.0       | 3.0  | mg/l  | NN      | 50.0    | 27.0     | 103  | 80-120 |     |       |            |
| Sulfate                                | 193        | 5.0       | 3.0  | mg/l  | NN      | 100     | 84.7     | 108  | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 10/06/2011  | (11J0660-M | ISD1)     |      |       |         | Source: | IUJ0598- | 01   |        |     |       |            |
| Chloride                               | 9.81       | 0.50      | 0.30 | mg/l  | NN      | 5.00    | 4.68     | 102  | 80-120 | 0.2 | 20    |            |
| Sulfate                                | 22.0       | 0.50      | 0.30 | mg/l  | NN      | 10.0    | 11.6     | 104  | 80-120 | 0.2 | 20    |            |
| Matrix Spike Dup Analyzed: 10/06/2011  | (11J0660-M | ISD2)     |      |       |         | Source: | IUJ0759- | 01   |        |     |       |            |
| Chloride                               | 78.0       | 5.0       | 3.0  | mg/l  | NN      | 50.0    | 27.0     | 102  | 80-120 | 0.7 | 20    |            |
| Sulfate                                | 192        | 5.0       | 3.0  | mg/l  | NN      | 100     | 84.7     | 107  | 80-120 | 0.5 | 20    |            |
| Batch: 11J0762 Extracted: 10/07/11     |            |           |      |       |         |         |          |      |        |     |       |            |
|                                        | -          |           |      |       |         |         |          |      |        |     |       |            |
| Blank Analyzed: 10/07/2011 (11J0762-B  | LK1)       |           |      |       |         |         |          |      |        |     |       |            |
| Perchlorate                            | ND         | 4.0       | 0.95 | ug/l  | mn      |         |          |      |        |     |       |            |

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

#### **INORGANICS**

|                                        | ]          | Reporting |      |       |         | Spike   | Source   |      | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|------|-------|---------|---------|----------|------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL  | Units | Analyst | Level   | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11J0762 Extracted: 10/07/11     | _          |           |      |       |         |         |          |      |        |     |       |            |
|                                        | _          |           |      |       |         |         |          |      |        |     |       |            |
| LCS Analyzed: 10/07/2011 (11J0762-BS   | 1)         |           |      |       |         |         |          |      |        |     |       |            |
| Perchlorate                            | 26.0       | 4.0       | 0.95 | ug/l  | mn      | 25.0    |          | 104  | 85-115 |     |       |            |
| Matrix Spike Analyzed: 10/07/2011 (11J | 0762-MS1)  |           |      |       |         | Source: | IUJ0724- | 02   |        |     |       |            |
| Perchlorate                            | 30.1       | 4.0       | 0.95 | ug/l  | mn      | 25.0    | 5.58     | 98   | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 10/07/2011  | (11J0762-M | (SD1)     |      |       |         | Source: | IUJ0724- | 02   |        |     |       |            |
| Perchlorate                            | 30.4       | 4.0       | 0.95 | ug/l  | mn      | 25.0    | 5.58     | 99   | 80-120 | 1   | 20    |            |
| Batch: 11J1120 Extracted: 10/10/11     | -          |           |      |       |         |         |          |      |        |     |       |            |
| Blank Analyzed: 10/10/2011 (11J1120-B  | LK1)       |           |      |       |         |         |          |      |        |     |       |            |
| Total Suspended Solids                 | ND         | 10        | 1.0  | mg/l  | DK1     |         |          |      |        |     |       |            |
| LCS Analyzed: 10/10/2011 (11J1120-BS)  | 1)         |           |      |       |         |         |          |      |        |     |       |            |
| Total Suspended Solids                 | 1000       | 10        | 1.0  | mg/l  | DK1     | 1000    |          | 100  | 85-115 |     |       |            |
| Duplicate Analyzed: 10/10/2011 (11J112 | 0-DUP1)    |           |      |       |         | Source: | IUJ0626- | 01   |        |     |       |            |
| Total Suspended Solids                 | 13.0       | 10        | 1.0  | mg/l  | DK1     |         | 13.0     |      |        | 0   | 10    |            |
| Batch: 11J1361 Extracted: 10/12/11     | _          |           |      |       |         |         |          |      |        |     |       |            |
| Blank Analyzed: 10/12/2011 (11J1361-B  | LK1)       |           |      |       |         |         |          |      |        |     |       |            |
| Total Dissolved Solids                 | ND         | 10        | 1.0  | mg/l  | MC      |         |          |      |        |     |       |            |
| LCS Analyzed: 10/12/2011 (11J1361-BS)  | 1)         |           |      |       |         |         |          |      |        |     |       |            |
| Total Dissolved Solids                 | 992        | 10        | 1.0  | mg/l  | MC      | 1000    |          | 99   | 90-110 |     |       |            |

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

### **INORGANICS**

|                                           |            | Reporting |     |       |         | Spike   | Source   |      | %REC   |     | RPD   | Data       |
|-------------------------------------------|------------|-----------|-----|-------|---------|---------|----------|------|--------|-----|-------|------------|
| Analyte                                   | Result     | Limit     | MDL | Units | Analyst | Level   | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 11J1361 Extracted: 10/12/11</b> | -          |           |     |       |         |         |          |      |        |     |       |            |
| Duplicate Analyzed: 10/12/2011 (11J136    | 1-DUP1)    |           |     |       |         | Source: | IUJ1148- | 06   |        |     |       |            |
| Total Dissolved Solids                    | 722        | 10        | 1.0 | mg/l  | MC      |         | 722      |      |        | 0   | 10    |            |
| Batch: 11J2262 Extracted: 10/18/11        | -          |           |     |       |         |         |          |      |        |     |       |            |
| Blank Analyzed: 10/19/2011 (11J2262-B     | LK1)       |           |     |       |         |         |          |      |        |     |       |            |
| Total Cyanide                             | ND         | 5.0       | 2.2 | ug/l  | SLA     |         |          |      |        |     |       |            |
| LCS Analyzed: 10/19/2011 (11J2262-BS)     | 1)         |           |     |       |         |         |          |      |        |     |       |            |
| Total Cyanide                             | 104        | 5.0       | 2.2 | ug/l  | SLA     | 100     |          | 104  | 90-110 |     |       |            |
| Matrix Spike Analyzed: 10/19/2011 (11J    | 2262-MS1)  |           |     |       |         | Source: | IUJ0496- | 02   |        |     |       |            |
| Total Cyanide                             | 109        | 5.0       | 2.2 | ug/l  | SLA     | 100     | ND       | 109  | 70-115 |     |       |            |
| Matrix Spike Dup Analyzed: 10/19/2011     | (11J2262-M | ISD1)     |     |       |         | Source: | IUJ0496- | 02   |        |     |       |            |
| Total Cyanide                             | 118        | 5.0       | 2.2 | ug/l  | SLA     | 100     | ND       | 118  | 70-115 | 8   | 15    | M1         |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

# METHOD BLANK/QC DATA

|                                         |        | Reporting |       |       |         | Spike     | Source   |      | %REC   |     | RPD   | Data       |
|-----------------------------------------|--------|-----------|-------|-------|---------|-----------|----------|------|--------|-----|-------|------------|
| Analyte                                 | Result | Limit     | MDL   | Units | Analyst | Level     | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 8691 Extracted: 10/12/11         |        |           |       |       |         |           |          |      |        |     |       |            |
| LCS Analyzed: 10/12/2011 (S110040-03)   |        |           |       |       |         | Source:   |          |      |        |     |       |            |
| Uranium, Total                          | 60.8   | 1         | 0.217 | pCi/L | LS      | 62        |          | 98   | 80-120 |     |       |            |
| Blank Analyzed: 10/12/2011 (S110040-04  | 1)     |           |       |       |         | Source:   |          |      |        |     |       |            |
| Uranium, Total                          | ND     | 1         | 0.022 | pCi/L | LS      |           |          |      | -      |     |       | U          |
| Duplicate Analyzed: 10/12/2011 (S11004) | 0-05)  |           |       |       |         | Source: 1 | IUJ0496- | 02   |        |     |       |            |
| Uranium, Total                          | 0.081  | 1         | 0.022 | pCi/L | LS      |           | 0.07     |      | -      | 15  |       | Jb         |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

# METHOD BLANK/QC DATA

| Analyte                                 | Result | Reporting<br>Limit | MDL   | Units | Analyst | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|--------|--------------------|-------|-------|---------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 8691 Extracted: 10/14/11         |        |                    |       |       |         |                |                  |      |                |     |              |                    |
| LCS Analyzed: 10/14/2011 (S110040-03)   |        |                    |       |       |         | Source:        |                  |      |                |     |              |                    |
| Gross Alpha                             | 38.9   | 3                  | 0.579 | pCi/L | DVP     | 33.7           |                  | 115  | 70-130         |     |              |                    |
| Gross Beta                              | 29.1   | 4                  | 0.862 | pCi/L | DVP     | 28.7           |                  | 101  | 70-130         |     |              |                    |
| Blank Analyzed: 10/14/2011 (S110040-04  | )      |                    |       |       |         | Source:        |                  |      |                |     |              |                    |
| Gross Alpha                             | 0.164  | 3                  | 0.553 | pCi/L | DVP     |                |                  |      | -              |     |              | U                  |
| Gross Beta                              | -0.111 | 4                  | 0.838 | pCi/L | DVP     |                |                  |      | -              |     |              | U                  |
| Duplicate Analyzed: 10/14/2011 (S11004) | 0-05)  |                    |       |       |         | Source:        | IUJ0496-         | 02   |                |     |              |                    |
| Gross Alpha                             | 1.44   | 3                  | 0.356 | pCi/L | DVP     |                | 1.49             |      | -              | 3   |              | Jb                 |
| Gross Beta                              | 3.65   | 4                  | 0.827 | pCi/L | DVP     |                | 2.95             |      | -              | 21  |              | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Received: 10/05/11

# METHOD BLANK/QC DATA

Report Number: IUJ0496

### 901.1

| Analyte                                 | Result | Reporting<br>Limit | MDL  | Units | Analyst | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|--------|--------------------|------|-------|---------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| <b>Batch: 8691 Extracted: 10/11/11</b>  |        |                    |      |       |         |                |                  |      |                |     |              |                    |
| LCS Analyzed: 10/14/2011 (S110040-03)   |        |                    |      |       |         | Source:        |                  |      |                |     |              |                    |
| Cobalt-60                               | 110    | 10                 | 2.62 | pCi/L | LS      | 116            |                  | 95   | 80-120         |     |              |                    |
| Cesium-137                              | 122    | 20                 | 3.31 | pCi/L | LS      | 124            |                  | 98   | 80-120         |     |              |                    |
| Blank Analyzed: 10/14/2011 (S110040-04  | )      |                    |      |       |         | Source:        |                  |      |                |     |              |                    |
| Cesium-137                              | ND     | 20                 | 1.82 | pCi/L | LS      |                |                  |      | -              |     |              | U                  |
| Potassium-40                            | ND     | 25                 | 25.5 | pCi/L | LS      |                |                  |      | -              |     |              | U                  |
| Duplicate Analyzed: 10/15/2011 (S11004) | 0-05)  |                    |      |       |         | Source:        | IUJ0496-         | 02   |                |     |              |                    |
| Cesium-137                              | ND     | 20                 | 5.66 | pCi/L | LS      |                | 0                |      | -              | 0   |              | U                  |
| Potassium-40                            | ND     | 25                 | 85.2 | pCi/L | LS      |                | 0                |      | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

### 903.1

|                                        |        | Reporting |       |       |         | Spike   | Source   |      | %REC   |     | RPD   | Data       |
|----------------------------------------|--------|-----------|-------|-------|---------|---------|----------|------|--------|-----|-------|------------|
| Analyte                                | Result | Limit     | MDL   | Units | Analyst | Level   | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 8691 Extracted: 10/19/11        |        |           |       |       |         |         |          |      |        |     |       |            |
| LCS Analyzed: 10/19/2011 (S110040-03)  |        |           |       |       |         | Source: |          |      |        |     |       |            |
| Radium-226                             | 45.8   | 1         | 0.531 | pCi/L | TM      | 50.1    |          | 91   | 80-120 |     |       |            |
| Blank Analyzed: 10/19/2011 (S110040-04 | 1)     |           |       |       |         | Source: |          |      |        |     |       |            |
| Radium-226                             | 0.032  | 1         | 0.592 | pCi/L | TM      |         |          |      | -      |     |       | U          |
| Duplicate Analyzed: 10/19/2011 (S11004 | 0-05)  |           |       |       |         | Source: | IUJ0496- | 02   |        |     |       |            |
| Radium-226                             | 0.137  | 1         | 0.776 | pCi/L | TM      |         | 0.219    |      | -      | 0   |       | U          |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

|                                        |        | Reporting |       |       |         | Spike   | Source   |      | %REC   |     | RPD   | Data       |
|----------------------------------------|--------|-----------|-------|-------|---------|---------|----------|------|--------|-----|-------|------------|
| Analyte                                | Result | Limit     | MDL   | Units | Analyst | Level   | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 8691 Extracted: 10/25/11        |        |           |       |       |         |         |          |      |        |     |       |            |
| LCS Analyzed: 10/25/2011 (S110040-03)  | )      |           |       |       |         | Source: |          |      |        |     |       |            |
| Radium-228                             | 4.07   | 1         | 0.398 | pCi/L | ASM     | 4.69    |          | 87   | 60-140 |     |       |            |
| Blank Analyzed: 10/25/2011 (S110040-0- | 4)     |           |       |       |         | Source: |          |      |        |     |       |            |
| Radium-228                             | -0.12  | 1         | 0.373 | pCi/L | ASM     |         |          |      | -      |     |       | U          |
| Duplicate Analyzed: 10/25/2011 (S11004 | 0-05)  |           |       |       |         | Source: | IUJ0496- | 02   |        |     |       |            |
| Radium-228                             | 0.032  | 1         | 0.375 | pCi/L | ASM     |         | 0.062    |      | -      | 0   |       | U          |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

|                                        |        | Reporting |       |       |         | Spike   | Source   |      | %REC   |     | RPD   | Data       |
|----------------------------------------|--------|-----------|-------|-------|---------|---------|----------|------|--------|-----|-------|------------|
| Analyte                                | Result | Limit     | MDL   | Units | Analyst | Level   | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 8691 Extracted: 10/14/11</b> |        |           |       |       |         |         |          |      |        |     |       |            |
| LCS Analyzed: 10/14/2011 (S110040-03)  |        |           |       |       |         | Source: |          |      |        |     |       |            |
| Strontium-90                           | 21.8   | 2         | 0.628 | pCi/L | WL      | 18.9    |          | 115  | 80-120 |     |       |            |
| Blank Analyzed: 10/14/2011 (S110040-04 | 1)     |           |       |       |         | Source: |          |      |        |     |       |            |
| Strontium-90                           | -0.246 | 2         | 1.05  | pCi/L | WL      |         |          |      | -      |     |       | U          |
| Duplicate Analyzed: 10/14/2011 (S11004 | 0-05)  |           |       |       |         | Source: | IUJ0496- | 02   |        |     |       |            |
| Strontium-90                           | -0.003 | 2         | 0.684 | pCi/L | WL      |         | -0.047   |      | -      | 0   |       | U          |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

|                                        |        | Reporting |      |       |         | Spike     | Source   |      | %REC   |     | RPD   | Data       |
|----------------------------------------|--------|-----------|------|-------|---------|-----------|----------|------|--------|-----|-------|------------|
| Analyte                                | Result | Limit     | MDL  | Units | Analyst | Level     | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 8691 Extracted: 10/13/11</b> |        |           |      |       |         |           |          |      |        |     |       |            |
| LCS Analyzed: 10/13/2011 (S110040-03)  |        |           |      |       |         | Source:   |          |      |        |     |       |            |
| Tritium                                | 216    | 500       | 20.4 | pCi/L | WL      | 228       |          | 95   | 80-120 |     |       | Jb         |
| Blank Analyzed: 10/13/2011 (S110040-04 | 4)     |           |      |       |         | Source:   |          |      |        |     |       |            |
| Tritium                                | -9.95  | 500       | 20.1 | pCi/L | WL      |           |          |      | -      |     |       | U          |
| Duplicate Analyzed: 10/13/2011 (S11004 | 0-05)  |           |      |       |         | Source: 1 | IUJ0496- | 02   |        |     |       |            |
| Tritium                                | -99.6  | 500       | 204  | pCi/L | WL      |           | -66.2    |      | -      | 0   |       | U          |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

### EPA-5 1613Bx

|                                    |           | Reporting | <b>5</b> |              |         | Spike   | Source |      | %REC            |     | RPD   | Data       |
|------------------------------------|-----------|-----------|----------|--------------|---------|---------|--------|------|-----------------|-----|-------|------------|
| Analyte                            | Result    | Limit     | MDL      | Units        | Analyst | Level   | Result | %REC | Limits          | RPD | Limit | Qualifiers |
| Batch: 1292103 Extracted: 10/1     | 9/11      |           |          |              |         |         |        |      |                 |     |       |            |
| DI I A I I 10/20/2011 (C1 III      | 200001027 |           |          |              |         | a       |        |      |                 |     |       |            |
| Blank Analyzed: 10/20/2011 (G1J19  |           |           |          | -            | ~       | Source: |        |      |                 |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | ND        | 0.00005   | .000005  | _            | GV      |         |        |      | -               |     |       |            |
| 1,2,3,4,6,7,8-HpCDF                | ND        | 0.00005   | .000004  | _            | GV      |         |        |      | -               |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | ND        | 0.00005   | .000003  | -            | GV      |         |        |      | -               |     |       |            |
| 1,2,3,4,7,8-HxCDD                  | ND        | 0.00005   | .000004  | _            | GV      |         |        |      | -               |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | 4.2e-006  | 0.00005   | .000002  | U            | GV      |         |        |      | -               |     |       | J, Q       |
| 1,2,3,6,7,8-HxCDD                  | ND        | 0.00005   | .000003  | _            | GV      |         |        |      | -               |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | 1.8e-006  | 0.00005   | .000002  | _            | GV      |         |        |      | -               |     |       | J, Q       |
| 1,2,3,7,8,9-HxCDD                  | ND        | 0.00005   | .000003  | -            | GV      |         |        |      | -               |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | ND        | 0.00005   | .000003  | _            | GV      |         |        |      | -               |     |       |            |
| 1,2,3,7,8-PeCDD                    | ND        | 0.00005   | 0.000007 | _            | GV      |         |        |      | -               |     |       |            |
| 1,2,3,7,8-PeCDF                    | ND        | 0.00005   | .000006  | -            | GV      |         |        |      | -               |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | ND        | 0.00005   | .000002  | _            | GV      |         |        |      | -               |     |       |            |
| 2,3,4,7,8-PeCDF                    | ND        | 0.00005   | .000006  | ug/L         | GV      |         |        |      | -               |     |       |            |
| 2,3,7,8-TCDD                       | ND        | 0.00001   | .000005  | -            | GV      |         |        |      | -               |     |       |            |
| 2,3,7,8-TCDF                       | ND        | 0.00001   | .000005  | ug/L         | GV      |         |        |      | -               |     |       |            |
| OCDD                               | 2.4e-005  | 0.0001    | ).000007 | ug/L         | GV      |         |        |      | -               |     |       | J, Q       |
| OCDF                               | ND        | 0.0001    | 0.000012 | ug/L         | GV      |         |        |      | -               |     |       |            |
| Total HpCDD                        | ND        | 0.00005   | .000005  | ug/L         | GV      |         |        |      | -               |     |       |            |
| Total HpCDF                        | ND        | 0.00005   | .000003  | ug/L         | GV      |         |        |      | -               |     |       |            |
| Total HxCDD                        | ND        | 0.00005   | .000003  | ug/L         | GV      |         |        |      | -               |     |       |            |
| Total HxCDF                        | 6.1e-006  | 0.00005   | .000002  | ug/L         | GV      |         |        |      | -               |     |       | J, Q       |
| Total PeCDD                        | ND        | 0.00005   | 0.000007 | ug/L         | GV      |         |        |      | -               |     |       |            |
| Total PeCDF                        | ND        | 0.00005   | .000006  | ug/L         | GV      |         |        |      | -               |     |       |            |
| Total TCDD                         | ND        | 0.00001   | .000005  | ug/L         | GV      |         |        |      | -               |     |       |            |
| Total TCDF                         | ND        | 0.00001   | .000005  | ug/L         | GV      |         |        |      | -               |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00049   |           |          | ug/L         | GV      | 0.002   |        | 24   | 23-140          |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00053   |           |          | ug/L         | GV      | 0.002   |        | 27   | 28-143          |     |       | *          |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.0005    |           |          | ug/L         | GV      | 0.002   |        | 25   | 26-138          |     |       | *          |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00059   |           |          | ug/L         | GV      | 0.002   |        | 30   | 32-141          |     |       | *          |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00057   |           |          | ug/L         | GV      | 0.002   |        | 29   | 26-152          |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00066   |           |          | ug/L         | GV      | 0.002   |        | 33   | 28-130          |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00066   |           |          | ug/L         | GV      | 0.002   |        | 33   | 26-123          |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.0006    |           |          | ug/L         | GV      | 0.002   |        | 30   | 29-147          |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.00057   |           |          | ug/L         | GV      | 0.002   |        | 29   | 25-181          |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00057   |           |          | ug/L<br>ug/L | GV      | 0.002   |        | 29   | 24-185          |     |       |            |
| Sarrogaic. 13C-1,2,3,7,0-1 eCD1    | 0.00057   |           |          | ug/L         | ٥v      | 0.002   |        | 47   | 4 <b>7</b> -10J |     |       |            |

#### **TestAmerica Irvine**

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-A

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

RPD

Data

Received: 10/05/11

%REC

Spike Source

# METHOD BLANK/QC DATA

Report Number: IUJ0496

Reporting

#### EPA-5 1613Bx

|                                    |           | reporting | •        |       |         | Spike   | Source |      | OREC   |     | KI D  | Data       |
|------------------------------------|-----------|-----------|----------|-------|---------|---------|--------|------|--------|-----|-------|------------|
| Analyte                            | Result    | Limit     | MDL      | Units | Analyst | Level   | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 1292103 Extracted: 10/19    | 0/11      |           |          |       |         |         |        |      |        |     |       |            |
| Blank Analyzed: 10/20/2011 (G1J19  | 0000103B) |           |          |       |         | Source: |        |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00068   |           |          | ug/L  | GV      | 0.002   |        | 34   | 28-136 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.00068   |           |          | ug/L  | GV      | 0.002   |        | 34   | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.00067   |           |          | ug/L  | GV      | 0.002   |        | 34   | 25-164 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.00068   |           |          | ug/L  | GV      | 0.002   |        | 34   | 24-169 |     |       |            |
| Surrogate: 13C-OCDD                | 0.00081   |           |          | ug/L  | GV      | 0.00399 |        | 20   | 17-157 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.00062   |           |          | ug/L  | GV      | 0.0008  |        | 77   | 35-197 |     |       |            |
| LCS Analyzed: 10/20/2011 (G1J1900  | 000103C)  |           |          |       |         | Source: |        |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.00111   | 0.00005   | .000007  | ug/L  | GV      | 0.001   |        | 111  | 70-140 |     |       |            |
| 1,2,3,4,6,7,8-HpCDF                | 0.00113   | 0.00005   | .000006  | ug/L  | GV      | 0.001   |        | 113  | 82-122 |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | 0.00113   | 0.00005   | .000009  | ug/L  | GV      | 0.001   |        | 113  | 78-138 |     |       |            |
| 1,2,3,4,7,8-HxCDD                  | 0.00114   | 0.00005   | .000002  | ug/L  | GV      | 0.001   |        | 114  | 70-164 |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | 0.00113   | 0.00005   | .000008  | ug/L  | GV      | 0.001   |        | 113  | 72-134 |     |       | B          |
| 1,2,3,6,7,8-HxCDD                  | 0.000994  | 0.00005   | .000002  | ug/L  | GV      | 0.001   |        | 99   | 76-134 |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | 0.00113   | 0.00005   | 0.000007 | ug/L  | GV      | 0.001   |        | 113  | 84-130 |     |       | B          |
| 1,2,3,7,8,9-HxCDD                  | 0.00113   | 0.00005   | .000002  | ug/L  | GV      | 0.001   |        | 113  | 64-162 |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | 0.00114   | 0.00005   | .000008  | ug/L  | GV      | 0.001   |        | 114  | 78-130 |     |       |            |
| 1,2,3,7,8-PeCDD                    | 0.0011    | 0.00005   | .000007  | ug/L  | GV      | 0.001   |        | 110  | 70-142 |     |       |            |
| 1,2,3,7,8-PeCDF                    | 0.00111   | 0.00005   | .000009  | ug/L  | GV      | 0.001   |        | 111  | 80-134 |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | 0.00114   | 0.00005   | .000006  | ug/L  | GV      | 0.001   |        | 114  | 70-156 |     |       |            |
| 2,3,4,7,8-PeCDF                    | 0.00106   | 0.00005   | .000009  | ug/L  | GV      | 0.001   |        | 106  | 68-160 |     |       |            |
| 2,3,7,8-TCDD                       | 0.000205  | 0.00001   | .000005  | ug/L  | GV      | 0.0002  |        | 102  | 67-158 |     |       |            |
| 2,3,7,8-TCDF                       | 0.00024   | 0.00001   | .000007  | ug/L  | GV      | 0.0002  |        | 120  | 75-158 |     |       |            |
| OCDD                               | 0.00241   | 0.0001    | 0.000014 | ug/L  | GV      | 0.002   |        | 121  | 78-144 |     |       | В          |
| OCDF                               | 0.00269   | 0.0001    | 0.000019 | ug/L  | GV      | 0.002   |        | 134  | 63-170 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.000608  |           |          | ug/L  | GV      | 0.002   |        | 30   | 26-166 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00067   |           |          | ug/L  | GV      | 0.002   |        | 34   | 21-158 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.000634  |           |          | ug/L  | GV      | 0.002   |        | 32   | 20-186 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.000662  |           |          | ug/L  | GV      | 0.002   |        | 33   | 21-193 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.000595  |           |          | ug/L  | GV      | 0.002   |        | 30   | 19-202 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.000762  |           |          | ug/L  | GV      | 0.002   |        | 38   | 25-163 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.000718  |           |          | ug/L  | GV      | 0.002   |        | 36   | 21-159 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.000711  |           |          | ug/L  | GV      | 0.002   |        | 36   | 17-205 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.000577  |           |          | ug/L  | GV      | 0.002   |        | 29   | 21-227 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.000523  |           |          | ug/L  | GV      | 0.002   |        | 26   | 21-192 |     |       |            |
|                                    |           |           |          |       |         |         |        |      |        |     |       |            |

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

RPD

Data

Report Number: IUJ0496 Received: 10/05/11

## METHOD BLANK/QC DATA

### EPA-5 1613Bx

Spike

Source

Reporting

| Analyte                              | Result   | Limit | MDL | Units | Analyst | Level   | Result | %REC | Limits | RPD | Limit | Qualifiers |
|--------------------------------------|----------|-------|-----|-------|---------|---------|--------|------|--------|-----|-------|------------|
| Batch: 1292103 Extracted: 10/19/11   | <u>_</u> |       |     |       |         |         |        |      |        |     |       |            |
| LCS Analyzed: 10/20/2011 (G1J1900001 | 103C)    |       |     |       |         | Source: |        |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF     | 0.000738 |       |     | ug/L  | GV      | 0.002   |        | 37   | 22-176 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF       | 0.000641 |       |     | ug/L  | GV      | 0.002   |        | 32   | 13-328 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD          | 0.000545 |       |     | ug/L  | GV      | 0.002   |        | 27   | 20-175 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF          | 0.000549 |       |     | ug/L  | GV      | 0.002   |        | 28   | 22-152 |     |       |            |
| Surrogate: 13C-OCDD                  | 0.00106  |       |     | ug/L  | GV      | 0.00401 |        | 26   | 13-199 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD        | 0.000612 |       |     | ug/L  | GV      | 0.0008  |        | 77   | 31-191 |     |       |            |
|                                      |          |       |     |       |         |         |        |      |        |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Semi-Annual Outfall 009

Sampled: 10/05/11-10/07/11

Report Number: IUJ0496 Received: 10/05/11

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|            |          |                                          |       |        |     | Compliance |
|------------|----------|------------------------------------------|-------|--------|-----|------------|
| LabNumber  | Analysis | Analyte                                  | Units | Result | MRL | Limit      |
| IUJ0496-01 | 1664-HEM | Hexane Extractable Material (Oil & Greas | mg/l  | 0.19   | 4.8 | 15         |

## **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|            |                                |                        |       |        |      | Compliance |
|------------|--------------------------------|------------------------|-------|--------|------|------------|
| LabNumber  | Analysis                       | Analyte                | Units | Result | MRL  | Limit      |
| IUJ0496-02 | Antimony-200.8                 | Antimony               | ug/l  | 0.57   | 2.0  | 6          |
| IUJ0496-02 | Cadmium-200.8                  | Cadmium                | ug/l  | 0.068  | 1.0  | 4          |
| IUJ0496-02 | Chloride - 300.0               | Chloride               | mg/l  | 2.56   | 0.50 | 150        |
| IUJ0496-02 | Copper-200.8                   | Copper                 | ug/l  | 6.48   | 2.0  | 14         |
| IUJ0496-02 | Cyanide, Total-4500CN-E (5ppb) | Total Cyanide          | ug/l  | -2     | 5.0  | 9.5        |
| IUJ0496-02 | Lead-200.8                     | Lead                   | ug/l  | 2.71   | 1.0  | 5.2        |
| IUJ0496-02 | Mercury - 245.1                | Mercury                | ug/l  | 0.012  | 0.20 | 0.13       |
| IUJ0496-02 | Nitrogen, NO3+NO2 -N EPA 300.0 | ) Nitrate/Nitrite-N    | mg/l  | 0.70   | 0.26 | 10         |
| IUJ0496-02 | Perchlorate 314.0 - Default    | Perchlorate            | ug/l  | 0      | 4.0  | 6          |
| IUJ0496-02 | Sulfate-300.0                  | Sulfate                | mg/l  | 6.51   | 0.50 | 250        |
| IUJ0496-02 | TDS - SM2540C                  | Total Dissolved Solids | mg/l  | 55     | 10   | 850        |
| IUJ0496-02 | Thallium-200.8                 | Thallium               | ug/l  | 0.032  | 1.0  | 2          |
| IUJ0496-02 | TSS - SM2540D                  | Total Suspended Solids | mg/l  | 6.00   | 10   | 45         |

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|           |          |         |       |        |     | Compliance |
|-----------|----------|---------|-------|--------|-----|------------|
| LabNumber | Analysis | Analyte | Units | Result | MRL | Limit      |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/05/11-10/07/11

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

Attention: Bronwyn Kelly

## DATA QUALIFIERS AND DEFINITIONS

| Surrogate recovery is outside stated control illints. | * | Surrogate recovery | is outside stated control limits. |
|-------------------------------------------------------|---|--------------------|-----------------------------------|
|-------------------------------------------------------|---|--------------------|-----------------------------------|

**B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.

J Estimated result. Result is less than the reporting limit.

Ja Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
 MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

P The sample, as received, was not preserved in accordance to the referenced analytical method.

**pH** pH = 7.0

**Q** Estimated maximum possible concentration (EMPC).

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the

limit.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Semi-Annual Outfall 009

Report Number: IUJ0496

Sampled: 10/05/11-10/07/11

Received: 10/05/11

Attention: Bronwyn Kelly

## **Certification Summary**

#### **TestAmerica Irvine**

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EDD + Level 4  | Water  | N/A   | N/A        |
| EPA 1664A      | Water  | X     | X          |
| EPA 200.8-Diss | Water  | X     | N/A        |
| EPA 200.8      | Water  | X     | N/A        |
| EPA 245.1-Diss | Water  | X     | N/A        |
| EPA 245.1      | Water  | X     | N/A        |
| EPA 300.0      | Water  | X     | N/A        |
| EPA 314.0      | Water  | X     | N/A        |
| Filtration     | Water  | N/A   | N/A        |
| SM 2540D       | Water  | X     | X          |
| SM2540C        | Water  | X     | N/A        |
| SM4500CN-E     | Water  | X     | N/A        |
|                |        |       |            |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

### **Subcontracted Laboratories**

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IUJ0496-02

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 009 MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200 Sampled: 10/05/11-10/07/11

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

Attention: Bronwyn Kelly

#### **Eberline Services - SUB**

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IUJ0496-02, IUJ0496-03

Analysis Performed: Gross Alpha

Samples: IUJ0496-02, IUJ0496-03

Analysis Performed: Gross Beta

Samples: IUJ0496-02, IUJ0496-03

Analysis Performed: Radium 226/228 Combined (AZ-MAP)

Samples: IUJ0496-02, IUJ0496-03

Analysis Performed: Strontium 90

Samples: IUJ0496-02, IUJ0496-03

Analysis Performed: Tritium Samples: IUJ0496-02

Analysis Performed: Uranium, Combined

Samples: IUJ0496-02, IUJ0496-03

#### TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed:

Samples: IUJ0496-02, IUJ0496-03

Method Performed: 900

Samples: IUJ0496-02, IUJ0496-03

Method Performed: 901.1

Samples: IUJ0496-02, IUJ0496-03

Method Performed: 903.1

Samples: IUJ0496-02, IUJ0496-03

Method Performed: 904

Samples: IUJ0496-02, IUJ0496-03

Method Performed: 905

Samples: IUJ0496-02, IUJ0496-03

Method Performed: 906

Samples: IUJ0496-02

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 10/05/11-10/07/11

Arcadia, CA 91007 Report Number: IUJ0496 Received: 10/05/11

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: IUJ0496-02

#### **TestAmerica Irvine**

IUJ 0496 Client Name/Address: ANALYSIS REQUIRED Project: MWH-Arcadia Boeing-SSFL NPDES Semi-Annual Outfall 009 618 Michillinda Ave, Suite 200 Field readings: GRAB Arcadia, CA 91007 (Log in and include in Stormwater at SW-13 report Temp and pH) Test America Contact: Debby Wilson Temp °F = **60** Grease (1664-HEM) pH = 7.1 Project Manager: Bronwyn Kelly Phone Number: (626) 568-6691 Time of readings = Sampler: Rick BAJACA Fax Number: 11:50 (626) 568-6515 ∞ Sample Sample Container Sampling Preservative Bottle # Comments ö Date/Time Description Matrix Type 16:50 Outfall 009 1L Amber 1A. 1B Х These Samples are the Grab Portion of Outfall 00% for this storm event. Composite samples will follow and are to be added to this work order. Date/Time: /8-5-201/ Turn-around time: (Check) Sample Integrity: (Check) Intact: Y On Ice: Y 7. 2°C Received By Date/Time: Data Requirements: (Check) 1015111 1895 All Level IV: \_\_\_\_\_ NPDES Level IV: \_\_\_\_ No Level IV:

# **CHAIN OF CUSTODY FORM**

| Client Name/A         | \ddress:         |                   |               | Project:              | · · · · · · · · · · · · · · · · · · · |            |                                            |                |                                                                         |          |                                                |                                                                                                                                                                                                           |              | Δ                                                | NALY    | SIS RE                                           | QUIRED  |                                                  |              |   |                                                      |
|-----------------------|------------------|-------------------|---------------|-----------------------|---------------------------------------|------------|--------------------------------------------|----------------|-------------------------------------------------------------------------|----------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------|---------|--------------------------------------------------|---------|--------------------------------------------------|--------------|---|------------------------------------------------------|
| MWH-Arcad             |                  |                   |               | Boeing-SSFL           | NPDES                                 |            |                                            |                |                                                                         |          | l –                                            |                                                                                                                                                                                                           |              | Ó                                                |         | CIO IXE                                          | COINCE  | <u> </u>                                         |              |   |                                                      |
| 618 Michillinda       |                  | uite 200          |               | i .                   | Semi-Annual Outfall 009 COMPOSITE     |            | 1, Pb,                                     |                |                                                                         |          | يَ                                             | Gross Alpha(900.0), Gross Beta(900.0),<br>Tritium (H-2) (906.0), Sr-90 (905.0), Total<br>Combined Radium 226 (903.0 or 903.1) &<br>Radium 228 (904.0), Uranium (908.0), K-<br>40, CS-137 (901.0 or 901.1) |              |                                                  | į       | i                                                |         |                                                  |              |   |                                                      |
| Arcadia, CA 9         | 91007            |                   |               |                       |                                       | $\omega$   | , Cu,                                      |                | 43                                                                      |          | J. D.                                          | 900.<br>1), T                                                                                                                                                                                             |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
| Test America          | Contact          | · Debby Wil       | son           | Storriwater at        | Stormwater at SW-13                   |            | ğ                                          |                | rate                                                                    |          | υ<br>υ                                         | eta(9                                                                                                                                                                                                     |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
| 1 cot / tine noa      | Comaci           | . DCDDy vvii      | 3011          |                       |                                       |            | Sb,                                        |                | 양                                                                       |          | ŏ                                              | s Be<br>0 (9<br>03.0<br>03.0<br>1)                                                                                                                                                                        |              |                                                  |         |                                                  | 1       | İ                                                |              |   |                                                      |
|                       |                  |                   |               |                       |                                       |            | tals:                                      | lers)          | Per                                                                     |          | 33                                             | Sr-9<br>Sr-9<br>6 (9<br>Oral                                                                                                                                                                              | ĺ            |                                                  |         |                                                  | 1       |                                                  |              | : | Comments                                             |
| Project Manag         | nor: Bro         | nwyn Kelly        |               | Phone Number          |                                       |            | ₩                                          | all congeners) | Z-Z                                                                     |          | etals                                          | 0), G<br>n 22,<br>0), G                                                                                                                                                                                   |              |                                                  |         | ľ                                                | ;       |                                                  |              |   | Comments                                             |
| '                     | •                | •                 |               | (626) 568-669         |                                       |            | apple                                      | 8              | 皇                                                                       |          | ∑<br>0                                         | 906<br>906<br>diur<br>904                                                                                                                                                                                 |              | _ <u>≥</u>                                       |         |                                                  |         |                                                  |              |   |                                                      |
| Sampler: R            | にたに              | SANAG             | 19            | Fax Number:           | •                                     |            | over                                       | ଷ              | ğ                                                                       |          | olve                                           | ha(9<br>-3) (-3) (1<br>1 Ra<br>28 (1) (9                                                                                                                                                                  |              | Š                                                |         | 1                                                |         |                                                  |              | 1 |                                                      |
|                       |                  |                   |               | (626) 568-651         | 5                                     |            | ) Še                                       | (an            | 7,                                                                      | TSS      | Diss                                           | Alpined ined The Strategy                                                                                                                                                                                 | <sub>8</sub> | ļ Ľ                                              |         |                                                  |         |                                                  |              |   |                                                      |
| Sample<br>Description | Sample<br>Matrix | Container<br>Type | # of<br>Cont. | Sampling<br>Date/Time | Preservative                          | Bottle #   | Total Recoverable Metals:<br>Hg, Ti        | TCDD (and      | CI', SO <sub>4</sub> , NO <sub>3</sub> +NO <sub>2</sub> -N, Perchlorate | TDS, TSS | Total Dissolved Metals: Sb, Cd, Cu, Pb, Hg, Tl | rross<br>rritiun<br>omb<br>adiu                                                                                                                                                                           | Cyanide      | Chronic Toxicity                                 |         |                                                  |         |                                                  |              |   |                                                      |
| Outfall 009           | W                | 1L Poly           | 1             | 19:5                  | HNO <sub>3</sub>                      | 2A         | X                                          | Η.             | 0                                                                       |          |                                                | Q F O K 4                                                                                                                                                                                                 | 0            | 0                                                |         | <del>                                     </del> | -       | <del>                                     </del> |              |   |                                                      |
| Outfall 009 Dup       | w                | 1L Poly           | 1             | 11.54                 | HNO <sub>3</sub>                      | 2B         | ×                                          |                |                                                                         | -        |                                                |                                                                                                                                                                                                           |              | <del>                                     </del> |         |                                                  |         | -                                                | <del> </del> |   |                                                      |
| Outfall 009           | w                | 1L Amber          | 2             | <del>  </del>         | None                                  | 3A, 3B     |                                            | ×              |                                                                         |          |                                                |                                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
| Outfall 009           | w                | 500 mL Poly       | 2             | T                     | None                                  | 4A, 4B     |                                            |                | х                                                                       | -        |                                                |                                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
| Outfall 009           | w                | 500 mL Poly       | 1             |                       | None                                  | 5          |                                            |                |                                                                         | х        |                                                |                                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
| Outfall 009           | w                | 1L Poly           | 1             |                       | None                                  | 6          |                                            |                |                                                                         |          | х                                              |                                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   | Filter w/in 24hrs of receipt at lab                  |
| Outfall 009           | w                | 2.5 Gal Cube      | 1             |                       | None                                  | 7A         |                                            |                |                                                                         |          |                                                | x                                                                                                                                                                                                         |              |                                                  |         |                                                  |         |                                                  |              |   | Unfiltered and unpreserved                           |
| Outrail 009           | **               | 500 mL Amber      | 1             | 1 /                   | None                                  | 7B         |                                            |                |                                                                         |          |                                                | 1 ^                                                                                                                                                                                                       |              |                                                  |         |                                                  |         | 1                                                |              |   | analysis                                             |
| Outfall 009           | w                | 500 mL Poly       | 1             | 7                     | NaOH                                  | 8          |                                            |                |                                                                         |          |                                                |                                                                                                                                                                                                           | x            |                                                  |         |                                                  | -       |                                                  |              |   |                                                      |
| Outfall 009           | w                | 1 Gal Poly        | 1             | 17:54                 | None                                  | 9          |                                            |                |                                                                         |          | -                                              |                                                                                                                                                                                                           |              | х                                                |         |                                                  |         |                                                  |              |   | Only test if first or second rain events of the year |
|                       |                  |                   |               |                       |                                       |            |                                            |                |                                                                         |          |                                                |                                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
|                       |                  |                   |               |                       |                                       |            |                                            |                |                                                                         |          |                                                |                                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
|                       | _                |                   |               |                       |                                       |            |                                            |                |                                                                         |          |                                                |                                                                                                                                                                                                           | <u> </u>     |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
|                       |                  |                   |               |                       |                                       |            |                                            |                |                                                                         |          |                                                |                                                                                                                                                                                                           |              |                                                  |         | İ                                                |         |                                                  |              |   |                                                      |
|                       |                  |                   |               |                       |                                       |            |                                            |                |                                                                         |          |                                                |                                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
|                       | <u></u>          |                   |               |                       |                                       |            |                                            |                |                                                                         |          |                                                |                                                                                                                                                                                                           | <u> </u>     |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
|                       |                  |                   |               |                       |                                       |            | _                                          |                |                                                                         |          |                                                | les for Outfall                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
| Relinquished By       |                  |                   | )ate/Ti       | me: 10 /              | ese must be                           | e added to | of the s                                   | ame v          | vork                                                                    | order    | for Co                                         | OC Page 1 of 2                                                                                                                                                                                            |              | Outfal                                           |         | or the s                                         |         | ent.                                             |              |   | <u> </u>                                             |
|                       | وتسر /           | ້                 | Jaic, II      | me: 10-6-             | 2011                                  |            | ,<br>, , , , , , , , , , , , , , , , , , , | . /            |                                                                         | /,       |                                                | 106                                                                                                                                                                                                       | . 11         |                                                  |         | ·                                                |         | 72 Hour:                                         |              |   | 10 Day:                                              |
| pip.                  |                  |                   |               | 12:                   | Ø .                                   | MU         | W                                          |                | ///                                                                     | W        |                                                | 12:                                                                                                                                                                                                       | OD           |                                                  |         | :                                                |         | 72 Hour:<br>5 Day:                               |              |   | 10 Day:<br>Normal:                                   |
| Relinquisted By       |                  |                   | Date/Ti       | me: // /              | /                                     | Received B | у                                          | _              | $\leftarrow$                                                            |          | te/Jime                                        |                                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
| 1/11/                 | 10               | hul n             |               | me: [0-6-1<br>16:5]   |                                       |            |                                            |                |                                                                         | - //     | /                                              |                                                                                                                                                                                                           |              |                                                  | Sample  | Integrity: (0                                    | Check)  |                                                  |              | u | 006                                                  |
| /// 104               | [[//             |                   |               | 16.53                 |                                       |            |                                            |                |                                                                         | u        |                                                |                                                                                                                                                                                                           |              |                                                  | Intact: | <u> </u>                                         | On Ice: | <u> </u>                                         |              | 4 | .8                                                   |
| Relinquished By       | C                |                   | Date/Ti       | me:                   |                                       | Received B | у                                          |                |                                                                         | Da       | ate/Time:                                      |                                                                                                                                                                                                           |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |
| 1                     |                  | (                 |               |                       | i                                     | Vι         | uB,                                        | (N)            | 1                                                                       | (        | 0/0                                            | 0/11/16                                                                                                                                                                                                   | 555          | •                                                |         | quirements                                       |         | All Level IV                                     | :            |   | NPDES Level IV:                                      |
| L                     |                  |                   |               |                       |                                       |            | 1/1                                        | , , , ,        | $\sim$                                                                  | <u>'</u> | ( - / K                                        | / 1                                                                                                                                                                                                       |              |                                                  |         |                                                  |         |                                                  |              |   |                                                      |



EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

October 27, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine IUJ0496

Eberline Analytical Report S110040-8691

**Sample Delivery Group 8691** 

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Job No. IUJ0496. The samples were received on October 8, 2011.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

Joseph Verville

Client Services Manager

NJV/mw

Enclosure: Level IV CLP-like Data Package CD

## Case Narrative, page 1

October 27, 2011

#### 1.0 General Comments

Sample delivery group 8691 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The samples were received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the samples as received i.e. the samples were not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

### 2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, and duplicate analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

#### 3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the  $2\sigma$  error (Total):

| Analysis      | Method Error |
|---------------|--------------|
| Gross alpha   | 20.6%        |
| Gross beta    | 11.0%        |
| Tritium       | 10.0%        |
| Sr-90         | 10.4%        |
| Ra-226        | 16.4%        |
| Ra-228        | 10.4%        |
| Uranium,Total |              |
| Gamma Spec.   | 7.0%         |
|               |              |

# Case Narrative, page 2

October 27, 2011

## 4.0 Analysis Notes

- **4.1 Gross Alpha/Gross Beta Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **Radium-226 Analysis** –No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. The MDA for the QC All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy No problems were encountered during the processing of the samples. All quality control sample results were within required control limits. The gamma spectroscopy planchets were counted for sufficient time to meet the required Cs-137 detection limit of 20 pCi/L. As a consequence of keying to the Cs-137 RDL, the detection limit for K-40 was not achieved for the QC blank or duplicate analysis.

# 5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

Joseph Verville
Client Services Manager

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

Client <u>Test America</u>, <u>Inc</u>. Contract <u>IUJ0496</u>

### SUMMARY DATA SECTION

| TABLE OF            | C O | n T | E N | T S |    |
|---------------------|-----|-----|-----|-----|----|
| About this section  | •   | •   | •   | •   | 1  |
| Sample Summaries    | •   | •   | •   | •   | 3  |
| Prep Batch Summary  | •   | •   | •   | •   | 5  |
| Work Summary        | •   | •   | •   | •   | 6  |
| Method Blanks       | •   | •   | •   | •   | 8  |
| Lab Control Samples | •   | •   | •   | •   | 9  |
| Duplicates          |     | •   | •   | •   | 10 |
| Data Sheets         | •   | •   | •   | •   | 11 |
| Method Summaries    | •   | •   | •   | •   | 13 |
| Report Guides       | •   | •   | •   | •   | 21 |
| End of Section      | •   | •   |     | •   | 35 |
|                     |     |     |     |     |    |

The Masses of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the

Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06
Report date 10/27/11

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

#### ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

#### SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

#### PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

#### WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

#### METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

#### LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 1

Lab id <u>EAS</u>

Protocol TA

Version <u>Ver 1.0</u>

Form DVD-RG

Version 3.06

Report date <u>10/27/11</u>

SDG 8691

SDG <u>8691</u>

Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUJ0496</u>

#### ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

#### MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

#### DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

#### METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

#### REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES

Page 2

SUMMARY DATA SECTION

Page 2

Lab id EAS
Protocol TA
Version Ver

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date <u>10/27/11</u>

SDG 8691

| SDG     | 8691            |
|---------|-----------------|
| Contact | Joseph Verville |

# LAB SAMPLE SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

| LAB<br>SAMPLE ID | CLIENT SAMPLE ID        | LOCATION    | MATRIX | LEVEL | SAS NO | CHAIN OF<br>CUSTODY | COLLECTED      |
|------------------|-------------------------|-------------|--------|-------|--------|---------------------|----------------|
| S110040-01       | IUJ0496-02              | Boeing SSFL | WATER  |       |        | IUJ0496             | 10/05/11 17:54 |
| S110040-02       | IUJ0496-03 (TRIP-BLANK) | Boeing SSFL | WATER  |       |        | IUJ0496             | 10/07/11 15:00 |
| S110040-03       | Lab Control Sample      |             | WATER  |       |        |                     |                |
| S110040-04       | Method Blank            |             | WATER  |       |        |                     |                |
| S110040-05       | Duplicate (S110040-01)  | Boeing SSFL | WATER  |       |        |                     | 10/05/11 17:54 |

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LS</u>

Version <u>3.06</u>

Report date <u>10/27/11</u>

SDG 8691

SDG 8691
Contact Joseph Verville

# QC SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

| QC BATCH | CHAIN OF | CLIENT SAMPLE ID                                       | MATRIX                  | %<br>MOIST | SAMPLE<br>AMOUNT | BASIS | DAYS S   |   | LAB<br>SAMPLE ID                       | DEPARTMENT                       |
|----------|----------|--------------------------------------------------------|-------------------------|------------|------------------|-------|----------|---|----------------------------------------|----------------------------------|
| 8691     | IUJ0496  | IUJ0496-02<br>IUJ0496-03 (TRIP-BLANK)                  | WATER<br>WATER          |            | 10 L<br>10 L     |       | 10/08/11 | 3 | S110040-01<br>S110040-02               | 8691-001<br>8691-002             |
|          |          | Method Blank Lab Control Sample Duplicate (S110040-01) | WATER<br>WATER<br>WATER |            | 10 L             |       | 10/08/11 | 3 | S110040-04<br>S110040-03<br>S110040-05 | 8691-004<br>8691-003<br>8691-005 |

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

SDG 8691

| SDG     | 8691            |
|---------|-----------------|
| Contact | Joseph_Verville |

## PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

|                   |            |                         | PREPARATION |      |        | - PLA | ED — | - QUALI- |     |                  |       |
|-------------------|------------|-------------------------|-------------|------|--------|-------|------|----------|-----|------------------|-------|
| TEST              | MATRIX     | METHOD                  | ватсн       | 2σ % | CLIENT | MORE  | RE   | BLANK    | LCS | DUP/ORIG MS/ORIG | FIERS |
| Beta <sup>,</sup> | Counting   |                         |             |      |        |       |      |          |     |                  |       |
| AC                | WATER      | Radium-228 in Water     | 7195-057    | 10.4 | 2      |       |      | 1        | 1   | 1/1              |       |
| SR                | WATER      | Strontium-90 in Water   | 7195-057    | 10.4 | 2      |       | ·    | 1        | 1   | 1/1              |       |
| Gas I             | Proportion | al Counting             |             |      |        |       |      |          |     |                  |       |
| 80A               | WATER      | Gross Alpha in Water    | 7195-057    | 20.6 | 2      | =     |      | 1        | 1   | 1/1              |       |
| 80B               | WATER      | Gross Beta in Water     | 7195-057    | 11.0 | 2      |       |      | 1        | 1   | 1/1              |       |
| Gamma             | Spectroso  | сору                    |             |      |        |       |      |          |     |                  |       |
| GAM               | WATER      | Gamma Emitters in Water | 7195-057    | 7.0  | 2      |       |      | 1        | 1   | 1/1              |       |
| Kinet             | ic Phospho | primetry, ug            |             | •    |        |       |      |          |     |                  |       |
| U_T               | WATER      | Uranium, Total          | 7195-057    |      | 2      |       |      | 1        | 1   | 1/1              |       |
| Liqui             | id Scintil | lation Counting         |             |      |        |       |      |          | •   |                  |       |
| Н                 | WATER      | Tritium in Water        | 7195-057    | 10.0 | 1      |       |      | 1        | 1   | 1/1              |       |
| Rado              | n Counting |                         |             |      |        |       |      |          |     |                  |       |
| RA                | WATER      | Radium-226 in Water     | 7195-057    | 16.4 | 2      |       |      | 1        | 1   | 1/1              |       |

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-PBS

 Version
 3.06

 Report date
 10/27/11

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

# LAB WORK SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

| LAB SAMPLE | CLIENT SAMPLE ID        |        |          |            |      |          |          |     |                         |
|------------|-------------------------|--------|----------|------------|------|----------|----------|-----|-------------------------|
| COLLECTED  | LOCATION                | MATRIX |          |            | SUF- |          |          |     |                         |
| RECEIVED   | CUSTODY SAS no          |        | PLANCHET | TEST       | FIX  | ANALYZED | REVIEWED | BY  | METHOD                  |
| S110040-01 | IUJ0496-02              |        | 8691-001 | 80A/80     |      | 10/14/11 | 10/17/11 | BW  | Gross Alpha in Water    |
| 10/05/11   | Boeing SSFL             | WATER  | 8691-001 | 80B/80     |      | 10/14/11 | 10/17/11 | BW  | Gross Beta in Water     |
| 10/08/11   | IUJ0496                 |        | 8691-001 | AC         |      | 10/25/11 | 10/26/11 | BW  | Radium-228 in Water     |
|            |                         |        | 8691-001 | GAM        |      | 10/14/11 | 10/17/11 | CSS | Gamma Emitters in Water |
|            |                         |        | 8691-001 | Н          |      | 10/13/11 | 10/26/11 | BW  | Tritium in Water        |
|            |                         |        | 8691-001 | RA         |      | 10/19/11 | 10/19/11 | BW  | Radium-226 in Water     |
|            |                         |        | 8691-001 | SR         |      | 10/14/11 | 10/19/11 | BW  | Strontium-90 in Water   |
|            |                         |        | 8691-001 | U_T        |      | 10/12/11 | 10/12/11 | MWT | Uranium, Total          |
| S110040-02 | IUJ0496-03 (TRIP-BLANK) |        | 8691-002 | 80A/80     |      | 10/14/11 | 10/17/11 | вw  | Gross Alpha in Water    |
| 10/07/11   | Boeing SSFL             | WATER  | 8691-002 | 80B/80     |      | 10/14/11 | 10/17/11 | BW  | Gross Beta in Water     |
| 10/08/11   | IUJ0496                 |        | 8691-002 | AC         |      | 10/25/11 | 10/26/11 | BW  | Radium-228 in Water     |
|            |                         |        | 8691-002 | GAM        |      | 10/14/11 | 10/17/11 | CSS | Gamma Emitters in Water |
|            |                         |        | 8691-002 | RA         |      | 10/19/11 | 10/19/11 | BW  | Radium-226 in Water     |
|            |                         |        | 8691-002 | SR         |      | 10/14/11 | 10/19/11 | BW  | Strontium-90 in Water   |
|            |                         |        | 8691-002 | <b>U_T</b> |      | 10/12/11 | 10/12/11 | MWT | Uranium, Total          |
| S110040-03 | Lab Control Sample      | -      | 8691-003 | 80A/80     |      | 10/14/11 | 10/17/11 | BW  | Gross Alpha in Water    |
|            |                         | WATER  | 8691-003 | 80B/80     |      | 10/14/11 | 10/17/11 | BW  | Gross Beta in Water     |
|            |                         |        | 8691-003 | AC         |      | 10/25/11 | 10/26/11 | BW  | Radium-228 in Water     |
|            |                         |        | 8691-003 | GAM        |      | 10/14/11 | 10/17/11 | CSS | Gamma Emitters in Water |
|            |                         |        | 8691-003 | Н          |      | 10/13/11 | 10/26/11 | BW  | Tritium in Water        |
|            |                         |        | 8691-003 | RA         |      | 10/19/11 | 10/19/11 | BW  | Radium-226 in Water     |
|            |                         |        | 8691-003 | SR         |      | 10/14/11 | 10/19/11 | BW  | Strontium-90 in Water   |
|            |                         |        | 8691-003 | U_T        |      | 10/12/11 | 10/12/11 | MWT | Uranium, Total          |
| S110040-04 | Method Blank            |        | 8691-004 | 80A/80     |      | 10/14/11 | 10/17/11 | вw  | Gross Alpha in Water    |
|            |                         | WATER  | 8691-004 | 80B/80     |      | 10/14/11 | 10/17/11 | BW  | Gross Beta in Water     |
|            |                         |        | 8691-004 | AC         |      | 10/25/11 | 10/26/11 | BW  | Radium-228 in Water     |
|            |                         |        | 8691-004 | GAM        |      | 10/14/11 | 10/17/11 | CSS | Gamma Emitters in Water |
|            |                         |        | 8691-004 | Н          |      | 10/13/11 | 10/26/11 | BW  | Tritium in Water        |
|            |                         |        | 8691-004 | RA         |      | 10/19/11 | 10/19/11 | BW  | Radium-226 in Water     |
|            |                         |        | 8691-004 | SR         |      | 10/14/11 | 10/19/11 | BW  | Strontium-90 in Water   |
|            |                         |        | 8691-004 | U_T        |      | 10/12/11 | 10/12/11 | MWT | Uranium, Total          |

WORK SUMMARY
Page 1

rage 1

SUMMARY DATA SECTION

Page 6

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-LWS
Version 3.06

Report date 10/27/11

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

# WORK SUMMARY, cont.

Client Test America, Inc.
Contract IUJ0496

| LAB SAMPLE | CLIENT SAMPLE ID  |        |        |          |        |      |          |          |     |                         |
|------------|-------------------|--------|--------|----------|--------|------|----------|----------|-----|-------------------------|
| COLLECTED  | LOCATION          |        | MATRIX |          |        | SUF- |          |          |     |                         |
| RECEIVED   | CUSTODY S         | SAS no |        | PLANCHET | TEST   | FIX  | ANALYZED | REVIEWED | BY  | METHOD                  |
| S110040-05 | Duplicate (S11004 | 10-01) |        | 8691-005 | 80A/80 |      | 10/14/11 | 10/17/11 | BW  | Gross Alpha in Water    |
| 10/05/11   | Boeing SSFL       | 10 017 | WATER  | 8691-005 | 80B/80 |      | 10/14/11 | 10/17/11 | BW  | Gross Beta in Water     |
| 10/08/11   |                   |        |        | 8691-005 | AC     |      | 10/25/11 | 10/26/11 | BW  | Radium-228 in Water     |
|            |                   |        |        | 8691-005 | GAM    |      | 10/15/11 | 10/17/11 | CSS | Gamma Emitters in Water |
|            |                   |        |        | 8691-005 | Н      |      | 10/13/11 | 10/26/11 | BW  | Tritium in Water        |
|            |                   |        |        | 8691-005 | RA     |      | 10/19/11 | 10/19/11 | BW  | Radium-226 in Water     |
|            |                   |        |        | 8691-005 | SR     |      | 10/14/11 | 10/19/11 | BW  | Strontium-90 in Water   |
|            |                   |        |        | 8691-005 | U_T    |      | 10/12/11 | 10/12/11 | MWT | Uranium, Total          |
|            | •                 |        |        |          |        |      |          |          |     |                         |

| TEST       | SAS no | COUNTS                  | OF TESTS B | Y SAMPLE TYPE  CLIENT MORE | RE BLANK | LCS | DUP SPIKE | TOTAL |
|------------|--------|-------------------------|------------|----------------------------|----------|-----|-----------|-------|
| 80A/80     |        | Gross Alpha in Water    | 900.0      | 2                          | 1        | 1   | 1         | 5     |
| 80B/80     |        | Gross Beta in Water     | 900.0      | 2                          | 1        | 1   | 1         | 5     |
| AC         |        | Radium-228 in Water     | 904.0      | 2                          | 1        | 1   | 1         | 5     |
| GAM        |        | Gamma Emitters in Water | 901.1      | 2                          | 1        | 1   | 1         | 5     |
| н          |        | Tritium in Water        | 906.0      | 1                          | 1        | 1   | 1         | 4     |
| R <b>A</b> |        | Radium-226 in Water     | 903.1      | 2                          | 1        | 1   | 1         | 5     |
| SR         |        | Strontium-90 in Water   | 905.0      | 2                          | 1        | 1   | 1         | 5     |
| U_T        |        | Uranium, Total          | D5174      | 2                          | 1        | 1   | 1         | 5     |
| TOTALS     |        |                         |            | 15                         | 8        | 8   | 8         | 39    |

WORK SUMMARY Page 2

SUMMARY DATA SECTION

Page 7

SDG 8691

8691-004

Method Blank

# METHOD BLANK

SDG 8691 Client Test America, Inc.
Contact Joseph Verville Contract IUJ0496

Lab sample id S110040-04 Client sample id Method Blank
Dept sample id 8691-004 Material/Matrix WATER

| ANALYTE        | CAS NO   | RESULT<br>pCi/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST |
|----------------|----------|-----------------|-------------------|--------------|--------------|-----------------|------|
| Gross Alpha    | 12587461 | 0.164           | 0.32              | 0.553        | 3.00         | U               | 80A  |
| Gross Beta     | 12587472 | -0.111          | 0.49              | 0.838        | 4.00         | U               | 80B  |
| Tritium        | 10028178 | -9.95           | 12                | 20.1         | 500          | U               | H    |
| Radium-226     | 13982633 | 0.032           | 0.33              | 0.592        | 1.00         | U               | RA   |
| Radium-228     | 15262201 | -0.120          | 0.13              | 0.373        | 1.00         | U               | AC   |
| Strontium-90   | 10098972 | -0.246          | 0.41              | 1.05         | 2.00         | U               | SR   |
| Uranium, Total |          | 0               | 0.009             | 0.022        | 1.00         | U               | U_T  |
| Potassium-40   | 13966002 | U               |                   | 25.5         | 25.0         | U -             | GAM  |
| Cesium-137     | 10045973 | U               |                   | 1.82         | 20.0         | U               | GAM  |

QC-BLANK #80241

METHOD BLANKS

Page 1

SUMMARY DATA SECTION

Page 8

SDG 8691

8691-003

# LAB CONTROL SAMPLE

Lab Control Sample

 SDG
 8691
 Client
 Test America, Inc.

 Contact
 Joseph Verville
 Contract
 IUJ0496

 Lab sample id
 S110040-03
 Client sample id
 Lab Control Sample

 Dept sample id
 8691-003
 Material/Matrix
 WATER

| ANALYTE        | RESULT<br>pCi/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST | ADDED<br>pCi/L | 2σ ERR<br>pCi/L | REC | 2σ LMTS<br>(TOTAL) | PROTOCOI<br>LIMITS |
|----------------|-----------------|-------------------|--------------|--------------|-----------------|------|----------------|-----------------|-----|--------------------|--------------------|
| Gross Alpha    | 38.9            | 2.2               | 0.579        | 3.00         |                 | A08  | 33.7           | 1.3             | 115 | 75-125             | 70-130             |
| Gross Beta     | 29.1            | 1.2               | 0.862        | 4.00         |                 | 80B  | 28.7           | 1.1             | 101 | 87-113             | 70-130             |
| Tritium        | 216             | 17                | 20.4         | 500          | J               | н    | 228            | 9.1             | 95  | 87-113             | 80-120             |
| Radium-226     | 45.8            | 1.8               | 0.531        | 1.00         |                 | RA   | 50.1           | 2.0             | 91  | 84-116             | 80-120             |
| Radium-228     | 4.07            | 0.28              | 0.398        | 1.00         |                 | AC   | 4.69           | 0.19            | 87  | 88-112             | 60-140             |
| Strontium-90   | 21.8            | 1.5               | 0.628        | 2.00         |                 | SR   | 18.9           | 0.76            | 115 | 85-115             | 80-120             |
| Uranium, Total | 60.8            | 7.5               | 0.217        | 1.00         |                 | U_T  | 62.0           | 2.5             | 98  | 87-113             | 80-120             |
| Cobalt-60      | 110             | 5.4               | 2.62         | 10.0         |                 | GAM  | 116            | 4.6             | 95  | 91-109             | 80-120             |
| Cesium-137     | 122             | 5.0               | 3.31         | 20.0         |                 | GAM  | 124            | 5.0             | 98  | 91-109             | 80-120             |

QC-LCS #80240

LAB CONTROL SAMPLES
Page 1
SUMMARY DATA SECTION
Page 9

SDG 8691

8691-005

DUPLICATE

IUJ0496-02

SDG 8691

Contact Joseph Verville

DUPLICATE

ORIGINAL

Client Test America, Inc.

Contract <u>IUJ0496</u>

Lab sample id <u>S110040-05</u>

Dept sample id 8691-005

Lab sample id <u>S110040-01</u>

Dept sample id <u>8691-001</u>

Received <u>10/08/11</u>

Client sample id <u>IUJ0496-02</u>

Location/Matrix Boeing SSFL

WATER

Collected/Volume 10/05/11 17:54 10 L

Chain of custody id IUJ0496

| ANALYTE        | DUPLICATE<br>pCi/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST | ORIGINAL<br>pCi/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | QUALI-<br>FIERS | RPD<br>% | 3σ<br>TOT | DER<br>σ |
|----------------|--------------------|-------------------|--------------|--------------|-----------------|------|-------------------|-------------------|--------------|-----------------|----------|-----------|----------|
| Gross Alpha    | 1.44               | 0.39              | 0.356        | 3.00         | J               | 80A  | 1.49              | 0.39              | 0.327        | J               | 3        | 71        | 0.1      |
| Gross Beta     | 3.65               | 0.61              | 0.827        | 4.00         | J               | 80B  | 2.95              | 0.58              | 0.798        | J               | 21       | 45        | 1.4      |
| Tritium        | -99.6              | 120               | 204          | 500          | U               | Н    | -66.2             | 120               | 206          | U               | -        |           | 0.4      |
| Radium-226     | 0.137              | 0.43              | 0.776        | 1.00         | U               | RA   | 0.219             | 0.41              | 0.703        | U               | -        |           | 0.3      |
| Radium-228     | 0.032              | 0.14              | 0.375        | 1.00         | υ               | AC   | 0.062             | 0.15              | 0.382        | U               | -        |           | 0.3      |
| Strontium-90   | -0.003             | 0.29              | 0.684        | 2.00         | ប               | SR   | -0.047            | 0.35              | 0.824        | U               | -        |           | 0.2      |
| Uranium, Total | 0.081              | 0.013             | 0.022        | 1.00         | J               | U_T  | 0.070             | 0.013             | 0.022        | J               | 15       | 37        | 1.2      |
| Potassium-40   | · υ                |                   | 85.2         | 25.0         | Ū.              | GAM  | Ū.                |                   | 13.0         | Ū               | -        |           | 1.7      |
| Cesium-137     | υ                  |                   | 5.66         | 20.0         | U               | GAM  | ប                 |                   | 1.06         | U               | ~        |           | 1.6      |

QC-DUP#1 80242

DUPLICATES Page 1 SUMMARY DATA SECTION Page 10

Lab id EAS Protocol TA Version <u>Ver 1.0</u> Form DVD-DUP Version 3.06 Report date <u>10/27/11</u>

SDG 8691

8691-001

DATA SHEET

IUJ0496-02

|                                             | 8691<br>Joseph Verville | _ Client<br>_ Contract                                                         | Test America, Inc.  1UJ0496        |       |
|---------------------------------------------|-------------------------|--------------------------------------------------------------------------------|------------------------------------|-------|
| Lab sample id<br>Dept sample id<br>Received | 8691-001<br>10/08/11    | Client sample id<br>Location/Matrix<br>Collected/Volume<br>Chain of custody id | Boeing SSFL<br>10/05/11 17:54 10 L | WATER |

| ANALYTE        | CAS NO   | RESULT<br>pCi/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST |
|----------------|----------|-----------------|-------------------|--------------|--------------|-----------------|------|
| Gross Alpha    | 12587461 | 1.49            | 0.39              | 0.327        | 3.00         | J               | 80A  |
| Gross Beta     | 12587472 | 2.95            | 0.58              | 0.798        | 4.00         | J               | 80B  |
| Tritium        | 10028178 | -66.2           | 120               | 206          | 500          | U               | H    |
| Radium-226     | 13982633 | 0.219           | 0.41              | 0.703        | 1.00         | U               | RA   |
| Radium-228     | 15262201 | 0.062           | 0.15              | 0.382        | 1.00         | U               | AC   |
| Strontium-90   | 10098972 | -0.047          | 0.35              | 0.824        | 2.00         | U               | SR   |
| Uranium, Total |          | 0.070           | 0.013             | 0.022        | 1.00         | J               | U_T  |
| Potassium-40   | 13966002 | ΰ               |                   | 13.0         | 25.0         | U               | GAM  |
| Cesium-137     | 10045973 | Ŭ               |                   | 1.06         | 20.0         | U               | GAM  |

DATA SHEETS

Page 1

SUMMARY DATA SECTION

Page 11

SDG 8691

8691-002

IUJ0496-03 (TRIP-BLANK)

# DATA SHEET

| SDG 8691 | Client Test America, Inc. |
| Contact Joseph Verville | Contract IUJ0496 |
| Lab sample id S110040-02 | Client sample id IUJ0496-03 (TRIP-BLANK) |
| Dept sample id 8691-002 | Location/Matrix Boeing SSFL | WATER |
| Received 10/08/11 | Collected/Volume 10/07/11 15:00 | 10 L |
| Chain of custody id IUJ0496 | Client Sample id IUJ0496 | Chain of custody id IUJ0496 | Chain of custody id IUJ0496 | Client Sample id IUJ0496 | Chain of custody id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample id IUJ0496 | Client Sample i

| ANALYTE        | CAS NO   | RESULT<br>pCi/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST |
|----------------|----------|-----------------|-------------------|--------------|--------------|-----------------|------|
| Gross Alpha    | 12587461 | 0.003           | 0.16              | 0.297        | 3.00         | υ               | 80A  |
| Gross Beta     | 12587472 | 0.008           | 0.47              | 0.794        | 4.00         | U               | 80B  |
| Radium-226     | 13982633 | -0.050          | 0.39              | 0.742        | 1.00         | U               | RA   |
| Radium-228     | 15262201 | -0.216          | 0.21              | 0.407        | 1.00         | U               | AC   |
| Strontium-90   | 10098972 | -0.015          | 0.51              | 1.14         | 2.00         | U               | SR   |
| Uranium, Total |          | 0               | 0.009             | 0.022        | 1.00         | U               | U_T  |
| Potassium-40   | 13966002 | U               |                   | 93.3         | 25.0         | U               | GAM  |
| Cesium-137     | 10045973 | U               |                   | 3.06         | 20.0         | Ū               | GAM  |

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-DS

Version 3.06

Report date 10/27/11

SDG 8691

# LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

#### RESULTS

| SAMPLE ID TEST    | SUF-<br>FIX PLANCHET | CLIENT SAMPLE ID        | Radium-228 |  |
|-------------------|----------------------|-------------------------|------------|--|
| Preparation batch | 7195-057             |                         |            |  |
| S110040-01        | 8691-001             | IUJ0496-02              | ט          |  |
| S110040-02        | 8691-002             | IUJ0496-03 (TRIP-BLANK) | υ          |  |
| S110040-03        | 8691-003             | Lab Control Sample      | ok         |  |
| S110040-04        | 8691-004             | Method Blank            | Ū.         |  |
| S110040-05        | 8691-005             | Duplicate (S110040-01)  | - U        |  |

# METHOD PERFORMANCE

| LAB         | RAW SUF-   |                         | MDA       | ALIQ   | PREP  | DILU-    | YIELD | EFF  | COUNT | FWHM | DRIFT | DAYS |          | ANAL- |          |
|-------------|------------|-------------------------|-----------|--------|-------|----------|-------|------|-------|------|-------|------|----------|-------|----------|
| SAMPLE ID   | TEST FIX   | CLIENT SAMPLE ID        | pCi/L     | L      | FAC   | TION     | と     | 왐    | min   | keV  | KeV   | HELD | PREPARED | YZED  | DETECTOR |
|             |            |                         |           |        |       | ···      |       |      | ·     |      |       |      |          |       |          |
| Preparation | batch 719  | 5-057 2σ prep error 1   | 0.4 % Ref | erence | Lab N | lotebool | No.   | 7195 | pg.32 |      |       |      |          |       |          |
| S110040-01  |            | IUJ0496-02              | 0.382     | 1.80   |       |          | 83    |      | 150   |      |       | 20   | 10/25/11 | 10/25 | GRB-217  |
| S110040-02  |            | IUJ0496-03 (TRIP-BLANK) | 0.407     | 1.80   |       |          | 76    |      | 150   |      | *     | 18   | 10/25/11 | 10/25 | GRB-220  |
| S110040-03  |            | Lab Control Sample      | 0.398     | 1.80   |       |          | 77    |      | 150   |      |       |      | 10/25/11 | 10/25 | GRB-221  |
| S110040-04  |            | Method Blank            | 0.373     | 1.80   |       |          | 78    |      | 150   |      |       |      | 10/25/11 | 10/25 | GRB-222  |
| S110040-05  |            | Duplicate (S110040-01)  | 0.375     | 1.80   |       |          | 82    |      | 150   |      |       | 20   | 10/25/11 | 10/25 | GRB-223  |
|             |            |                         |           |        |       |          |       |      |       |      |       |      |          |       |          |
| Nominal val | ues and li | mits from method        | 1.00      | 1.80   |       |          | 30-10 | 5    | 50    |      |       | 180  |          |       |          |

| PROCEDURES | REFERENCE | 904.0                                            |
|------------|-----------|--------------------------------------------------|
|            | DWP-894   | Sequential Separation of Actinium-228 and        |
|            |           | Radium-226 in Drinking Water (>1 Liter Aliquot), |
|            |           | rev 5                                            |
|            |           |                                                  |

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 13

SDG 8691

| Test    | SR    | Matrix  | WATER |   |
|---------|-------|---------|-------|---|
| SDG     | 8691  |         |       | _ |
| Contact | Joset | nh Verv | ille  |   |

# LAB METHOD SUMMARY

STRONTIUM-90 IN WATER
BETA COUNTING

Client Test America, Inc.
Contract IUJ0496

# RESULTS

|                  | SUF-<br>FIX PLANCHET | CLIENT SAMPLE ID        | Strontium-90 |  |
|------------------|----------------------|-------------------------|--------------|--|
| Preparation batc | h 7195-057           |                         |              |  |
| S110040-01       | 8691-001             | IUJ0496-02              | U .          |  |
| S110040-02       | 8691-002             | IUJ0496-03 (TRIP-BLANK) | Ū .          |  |
| S110040-03       | 8691-003             | Lab Control Sample      | ok           |  |
| S110040-04       | 8691-004             | Method Blank            | U            |  |
| S110040-05       | 8691-005             | Duplicate (S110040-01)  | - U          |  |

# METHOD PERFORMANCE

| LAB         | RAW SUF-   |                         | MDA       | ALIQ    | PREP     | DILU-   | <b>YIELD</b> | EFF   | COUNT | FWHM | DRIFT | DAYS  |          | ANAL- |          |
|-------------|------------|-------------------------|-----------|---------|----------|---------|--------------|-------|-------|------|-------|-------|----------|-------|----------|
| SAMPLE ID   | TEST FIX   | CLIENT SAMPLE ID        | pCi/L     | L       | FAC      | TION    | 8            | %     | min   | keV  | KeV   | HELLD | PREPARED | YZED  | DETECTOR |
|             |            |                         |           | F       | 7 - l- V | v 1 1   | - 37-        | 71.05 | 22    |      |       |       |          |       |          |
| Preparation | batch 719  | 95-057 2σ prep error 1  | .0.4 % Re | rerence | ьар м    | loceboo | K NO.        | /195  | pg.32 |      |       |       |          |       |          |
| S110040-01  |            | IUJ0496-02              | 0.824     | 0.500   |          |         | 83           |       | 50    |      |       | 9     | 10/14/11 | 10/14 | GRB-225  |
| S110040-02  |            | IUJ0496-03 (TRIP-BLANK) | 1.14      | 0.500   |          |         | 84           |       | 50    |      |       | 7     | 10/14/11 | 10/14 | GRB-207  |
| S110040-03  |            | Lab Control Sample      | 0.628     | 0.500   |          |         | 84           |       | 56    |      |       |       | 10/14/11 | 10/14 | GRB-217  |
| S110040-04  |            | Method Blank            | 1.05      | 0.500   |          |         | 81           |       | 50    |      |       |       | 10/14/11 | 10/14 | GRB-227  |
| S110040-05  |            | Duplicate (S110040-01)  | 0.684     | 0.500   |          |         | 88           |       | 50    |      |       | 9     | 10/14/11 | 10/14 | GRB-220  |
|             |            |                         |           |         |          |         |              |       |       |      |       |       |          |       |          |
| Nominal val | ues and li | imits from method       | 2.00      | 0.500   |          |         | 30-10        | 5     | 50    |      |       | 180   |          |       |          |

| PROCEDURES | REFERENCE | 905.0                             |
|------------|-----------|-----------------------------------|
|            | CP-380    | Strontium in Water Samples, rev 5 |

| AVERAGES ± 2 SD | MDA   | 0.865 | ± | 0.448 |
|-----------------|-------|-------|---|-------|
| FOR 5 SAMPLES   | YIELD |       |   |       |

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 14

SDG 8691

Test 80A Matrix WATER
SDG 8691
Contact Joseph Verville

# LAB METHOD SUMMARY

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

# RESULTS

| LAB<br>SAMPLE ID | RAW SUF-  |          | CLIENT SAMPLE ID        | Gross Alpha |
|------------------|-----------|----------|-------------------------|-------------|
| Preparation      | hatch 719 | 15_057   |                         |             |
| S110040-01       |           | 8691-001 | IUJ0496-02              | 1.49 J      |
| S110040-02       |           | 8691-002 | IUJ0496-03 (TRIP-BLANK) | U           |
| S110040-03       | 80        | 8691-003 | Lab Control Sample      | ok          |
| S110040-04       | 80        | 8691-004 | Method Blank            | υ           |
| S110040-05       | 80        | 8691-005 | Duplicate (S110040-01)  | ok J        |

# METHOD PERFORMANCE

| LAB         | RAW SUF   |                          | MDA<br>pCi/L | ALIQ<br>L | PREP<br>FAC |          | RESID<br>mq | EFF  | COUNT<br>min |          |     | PREPARED | ANAL-<br>YZED | DETECTOR |
|-------------|-----------|--------------------------|--------------|-----------|-------------|----------|-------------|------|--------------|----------|-----|----------|---------------|----------|
| SAMPLE ID   | TEST FIX  | CLIENT SAMPLE ID         |              |           |             | 1101     | 9           |      |              | <br>AC V |     | TREFFICE |               |          |
| Preparation | batch 71  | .95-057 2σ prep error 20 | 0.6 % Re     | ference   | Lab 1       | Noteboo! | No.         | 7195 | pg.32        |          |     |          |               |          |
| S110040-01  | 80        | IUJ0496-02               | 0.327        | 0.300     |             |          | 12          |      | 400          |          | 9   | 10/14/11 | 10/14         | GRB-109  |
| S110040-02  | 80        | IUJ0496-03 (TRIP-BLANK)  | 0.297        | 0.300     |             |          | 0           |      | 400          |          | 7   | 10/14/11 | 10/14         | GRB-111  |
| S110040-03  | 80        | Lab Control Sample       | 0.579        | 0.300     |             |          | 62          |      | 400          |          |     | 10/14/11 | 10/14         | GRB-112  |
| S110040-04  | 80        | Method Blank             | 0.553        | 0.300     |             |          | 65          |      | 400          |          |     | 10/14/11 | 10/14         | GRB-111  |
| S110040-05  | 80        | Duplicate (S110040-01)   | 0.356        | 0.300     |             |          | 12          |      | 400          |          | 9   | 10/14/11 | 10/14         | GRB-112  |
| Nominal val | ues and 1 | imits from method        | 3.00         | 0.300     |             |          | 0-25        | 0    | 100          |          | 180 |          |               |          |

| PROCEDURES | REFERENCE | 900.0                                         |
|------------|-----------|-----------------------------------------------|
|            | DWP-121   | Gross Alpha and Gross Beta in Drinking Water, |
|            |           | rev 10                                        |

| AVERAGES ± 2 SD | . MDA _   | 0.422 | ± | 0.266 |
|-----------------|-----------|-------|---|-------|
| FOR 5 SAMPLES   | RESIDUE _ | 30    | ± | 62    |

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 15

SDG 8691

Test <u>80B</u> Matrix <u>WATER</u> SDG <u>8691</u>

Contact Joseph Verville

# LAB METHOD SUMMARY

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America</u>, <u>Inc</u>.
Contract <u>IUJ0496</u>

# RESULTS

| LAB<br>SAMPLE ID | RAW SUF  |          | CLIENT SAMPLE ID        | Gross Beta |  |
|------------------|----------|----------|-------------------------|------------|--|
| Preparation      | batch 71 | 95-057   |                         |            |  |
| S110040-01       | 80       | 8691-001 | IUJ0496-02              | 2.95 J     |  |
| S110040-02       | 80       | 8691-002 | IUJ0496-03 (TRIP-BLANK) | ū          |  |
| S110040-03       | 80       | 8691-003 | Lab Control Sample      | ok         |  |
| S110040-04       | 80       | 8691-004 | Method Blank            | σ          |  |
| S110040-05       | 80       | 8691-005 | Duplicate (S110040-01)  | ok J       |  |

# METHOD PERFORMANCE

| LAB         | RAW SUF-   |                         | MDA      | ALIQ     | PREP  | DILU-   | RESID | EFF  | COUNT | FWHM | DRIFT | DAYS |          | ANAL- |          |
|-------------|------------|-------------------------|----------|----------|-------|---------|-------|------|-------|------|-------|------|----------|-------|----------|
| SAMPLE ID   | TEST FIX   | CLIENT SAMPLE ID        | pCi/L    | L        | FAC   | TION    | mg    | 왕    | min   | keV  | KeV   | HELD | PREPARED | YZED  | DETECTOR |
| Preparation | batch 719  | 5-057 2σ prep error 1   | 1.0 % Re | eference | Lab 1 | Noteboo | k No. | 7195 | pg.32 |      |       |      |          |       |          |
| S110040-01  | 80         | IUJ0496-02              | 0.798    | 0.300    |       |         | 12    |      | 400   |      |       | 9    | 10/14/11 | 10/14 | GRB-109  |
| S110040-02  | 80         | IUJ0496-03 (TRIP-BLANK) | 0.794    | 0.300    |       |         | 0     |      | 400   |      |       | 7    | 10/14/11 | 10/14 | GRB-111  |
| S110040-03  | 80         | Lab Control Sample      | 0.862    | 0.300    |       |         | 62    |      | 400   |      |       |      | 10/14/11 | 10/14 | GRB-112  |
| S110040-04  | 80         | Method Blank            | 0.838    | 0.300    |       |         | 65    |      | 400   |      |       |      | 10/14/11 | 10/14 | GRB-111  |
| S110040-05  | 80         | Duplicate (S110040-01)  | 0.827    | 0.300    |       |         | 12    |      | 400   |      |       | 9    | 10/14/11 | 10/14 | GRB-112  |
| Nominal val | ues and li | mits from method        | 4.00     | 0.300    |       |         | 0-25  | 0    | 100   |      |       | 180  |          |       |          |

| PROCEDURES | REFERENCE | 900.0                                         |
|------------|-----------|-----------------------------------------------|
|            | DWP-121   | Gross Alpha and Gross Beta in Drinking Water, |
|            |           | rev 10                                        |

| AVERAGES ± 2 SD | MDA _     | 0.824 | ± | 0.057 |
|-----------------|-----------|-------|---|-------|
| FOR 5 SAMPLES   | RESIDUE _ | 30    | ± | 62    |

METHOD SUMMARIES

Page 4

SUMMARY DATA SECTION

Page 16

SDG 8691

Test <u>GAM</u> Matrix <u>WATER</u> SDG <u>8691</u>

Contact Joseph Verville

# LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

# RESULTS

| LAB RA         | W SUF-          |                         |           |            |  |
|----------------|-----------------|-------------------------|-----------|------------|--|
| SAMPLE ID TES  | ST FIX PLANCHET | CLIENT SAMPLE ID        | Cobalt-60 | Cesium-137 |  |
| Preparation ba | tch 7195-057    |                         |           |            |  |
| S110040-01     | 8691-001        | IUJ0496-02              |           | U          |  |
| S110040-02     | 8691-002        | IUJ0496-03 (TRIP-BLANK) |           | U .        |  |
| S110040-03     | 8691-003        | Lab Control Sample      | ok        | ok         |  |
| S110040-04     | 8691-004        | Method Blank            |           | Ū          |  |
| S110040-05     | 8691-005        | Duplicate (S110040-01)  |           | - U        |  |

# METHOD PERFORMANCE

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX CLIENT SAMPLE ID | MDA<br>pCi/L | ALIQ<br>L | PREP<br>FAC | DILU-<br>TION | %<br>YIELD | EFF<br>% | COUNT<br>min |      |     | PREPARED | ANAL-<br>YZED | DETECTOR |
|------------------|---------------------------------------|--------------|-----------|-------------|---------------|------------|----------|--------------|------|-----|----------|---------------|----------|
| Preparation      | 1 batch 7195-057 2σ prep error 7      | .0% Ref      | erence    | Lab 1       | Notebool      | No.        | 7195     | pg.32        |      |     |          |               |          |
| S110040-01       | IUJ0496-02                            |              | 2.00      |             |               |            |          | 881          |      | 9   | 10/11/11 | 10/14         | MB,08,00 |
| S110040-02       | IUJ0496-03 (TRIP-BLANK)               |              | 2.00      |             |               |            |          | 404          |      | 7   | 10/11/11 | 10/14         | MB,06,00 |
| S110040-03       | Lab Control Sample                    |              | 2.00      |             |               |            |          | 404          |      |     | 10/11/11 | 10/14         | 01,03,00 |
| S110040-04       | Method Blank                          |              | 2.00      |             |               |            |          | 404          |      |     | 10/11/11 | 10/14         | 01,04,00 |
| S110040-05       | Duplicate (S110040-01)                |              | 2.00      |             |               |            |          | 418          |      | 10  | 10/11/11 | 10/15         | MB,06,00 |
|                  |                                       |              |           |             | <del></del>   |            |          |              | <br> |     |          |               |          |
| Nominal val      | lues and limits from method           | 6.00         | 2.00      |             |               |            |          | 400          |      | 180 |          |               |          |

| PROCEDURES | REFERENCE | 901.1                                           |
|------------|-----------|-------------------------------------------------|
|            | DWP-100   | Preparation of Drinking Water Samples for Gamma |
|            |           | Spectroscopy, rev 5                             |

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 17

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 10/27/11

SDG 8691

| Test    | U T   | Matrix  | WATER |  |
|---------|-------|---------|-------|--|
| SDG     | 8691  |         |       |  |
| Contact | Josep | h Vervi | lle   |  |

# LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

URANIUM, TOTAL KINETIC PHOSPHORIMETRY, UG

# RESULTS

| LAB           | RAW SUF-          |                         | Uranium, |
|---------------|-------------------|-------------------------|----------|
| SAMPLE ID     | TEST FIX PLANCHET | CLIENT SAMPLE ID        | Total    |
| Preparation 1 | batch 7195-057    |                         |          |
| S110040-01    | 8691-001          | IUJ0496-02              | 0.070 J  |
| S110040-02    | 8691-002          | IUJ0496-03 (TRIP-BLANK) | υ        |
| S110040-03    | 8691-003          | Lab Control Sample      | ok       |
| S110040-04    | 8691-004          | Method Blank            | υ        |
| S110040-05    | 8691-005          | Duplicate (S110040-01)  | ok J     |

# METHOD PERFORMANCE

| LAB         | RAW SUF-   |                         | MDA   | ALIQ     | PREP  | DILU-   | AIETD | EFF  | COUNT | FWHM | DRIFT | DAYS |          | ANAL- |          |
|-------------|------------|-------------------------|-------|----------|-------|---------|-------|------|-------|------|-------|------|----------|-------|----------|
| SAMPLE ID   | TEST FIX   | CLIENT SAMPLE ID        | pCi/L | L        | FAC   | TION    | ક     | 용    | min   | keV  | KeV   | HELD | PREPARED | YZED  | DETECTOR |
| Preparation | batch 719  | 5-057 2σ prep error     | Re    | eference | Lab ! | Noteboo | k No. | 7195 | pg.32 |      |       |      |          |       |          |
| S110040-01  |            | IUJ0496-02              | 0.022 | 0.0200   |       |         |       |      |       |      |       | 7    | 10/12/11 | 10/12 | KPA-001  |
| S110040-02  |            | IUJ0496-03 (TRIP-BLANK) | 0.022 | 0.0200   |       |         |       |      |       |      |       | 5    | 10/12/11 | 10/12 | KPA-001  |
| S110040-03  |            | Lab Control Sample      | 0.217 | 0.0200   |       |         |       |      |       |      |       |      | 10/12/11 | 10/12 | KPA-001  |
| S110040-04  |            | Method Blank            | 0.022 | 0.0200   |       |         |       |      |       |      |       |      | 10/12/11 | 10/12 | KPA-001  |
| S110040-05  |            | Duplicate (S110040-01)  | 0.022 | 0.0200   |       |         |       |      |       |      |       | 7    | 10/12/11 | 10/12 | KPA-001  |
| Nominal val | ues and li | mits from method        | 1.00  | 0.0200   |       |         |       |      |       |      |       | 180  |          | -     |          |

PROCEDURES REFERENCE D5174

AVERAGES ± 2 SD MDA 0.061 ± 0.174

FOR 5 SAMPLES YIELD \_\_\_\_ ± \_\_\_\_\_

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 18

SDG 8691

| Test    | <u>H</u> | Matrix  | WATER |
|---------|----------|---------|-------|
| SDG     | 8691     |         |       |
| Contact | Josej    | oh Verv | ille  |

# LAB METHOD SUMMARY

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

# RESULTS

| LAB RAW SAMPLE ID TEST |          | CLIENT SAMPLE ID       | Trit | ium |  |
|------------------------|----------|------------------------|------|-----|--|
| reparation batch       | 7195-057 |                        |      |     |  |
| S110040-01             | 8691-001 | IUJ0496-02             | U    |     |  |
| S110040-03             | 8691-003 | Lab Control Sample     | ok   | J   |  |
| S110040-04             | 8691-004 | Method Blank           | U    |     |  |
| S110040-05             | 8691-005 | Duplicate (S110040-01) | -    | υ   |  |

# METHOD PERFORMANCE

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX CLIENT SAMPLE ID | MDA<br>pCi/L | ALIQ<br>L | PREP<br>FAC | DILU-<br>TION | %<br>AIETD | EFF<br>% |       | FWHM<br>keV |     | PREPARED | ANAL-<br>YZED | DETECTOR |
|------------------|---------------------------------------|--------------|-----------|-------------|---------------|------------|----------|-------|-------------|-----|----------|---------------|----------|
| Preparation      | batch 7195-057 2σ prep error 3        | LO.0 % F     | Reference | Lab i       | Notebool      | No.        | 7195     | pg.32 |             |     |          |               |          |
| S110040-01       | IUJ0496-02                            | 206          | 0.0100    |             |               | 100        |          | 150   |             | 8   | 10/13/11 | 10/13         | LSC-005  |
| S110040-03       | Lab Control Sample                    | 20.4         | 1.00      |             |               | 10         |          | 150   |             |     | 10/13/11 | 10/13         | LSC-005  |
| S110040-04       | Method Blank                          | 20.1         | 1.00      |             |               | 10         |          | 150   |             |     | 10/13/11 | 10/13         | LSC-005  |
| S110040-05       | Duplicate (S110040-01)                | 204          | 0.0100    |             |               | 100        |          | 150   |             | 8   | 10/13/11 | 10/13         | LSC-005  |
| Nominal val      | ues and limits from method            | 500          | 0.0100    |             |               |            |          | 100   |             | 180 |          |               |          |

| PROCEDURES | REFERENCE | 906.0                                            |
|------------|-----------|--------------------------------------------------|
|            | DWP-212   | Tritium in Drinking Water by Distillation, rev 8 |

| AVERAGES ± 2 SD | MDA <u>113</u> ± <u>213</u>  |
|-----------------|------------------------------|
| FOR 4 SAMPLES   | YIELD <u>55</u> ± <u>104</u> |

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 19

SDG 8691

Test RA Matrix WATER
SDG 8691
Contact Joseph Verville

# LAB METHOD SUMMARY

RADIUM-226 IN WATER
RADON COUNTING

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

# RESULTS

| Preparation batch | 7195-057 |                         |     |
|-------------------|----------|-------------------------|-----|
| S110040-01        | 8691-001 | IUJ0496-02              | υ   |
| S110040-02        | 8691-002 | IUJ0496-03 (TRIP-BLANK) | U   |
| S110040-03        | 8691-003 | Lab Control Sample      | ok  |
| S110040-04        | 8691-004 | Method Blank            | U   |
| S110040-05        | 8691-005 | Duplicate (S110040-01)  | - U |

# METHOD PERFORMANCE

| LAB         | RAW SUF-                          | MDA      | ALIQ    | PREP  | DILU-       | AIEPD | EFF   | COUNT | FWHM | DRIFT | DAYS |          | ANAL- |          |
|-------------|-----------------------------------|----------|---------|-------|-------------|-------|-------|-------|------|-------|------|----------|-------|----------|
| SAMPLE ID   | TEST FIX CLIENT SAMPLE ID         | pCi/L    | L       | FAC   | TION        | 8     | 8     | min   | keV  | KeV   | HELD | PREPARED | YZED  | DETECTOR |
|             |                                   |          |         |       |             |       |       |       |      |       |      |          |       |          |
| Preparation | n batch 7195-057 2σ prep error 16 | 5.4 % Re | ference | Lab 1 | Noteboo!    | k No. | 7195. | pg.32 |      |       |      |          |       |          |
| S110040-01  | IUJ0496-02                        | 0.703    | 0.100   |       |             | 100   |       | 90    |      |       | 14   | 10/19/11 | 10/19 | RN-010   |
| S110040-02  | IUJ0496-03 (TRIP-BLANK)           | 0.742    | 0.100   |       |             | 100   |       | 90    |      |       | 12   | 10/19/11 | 10/19 | RN-012   |
| S110040-03  | Lab Control Sample                | 0.531    | 0.100   |       |             | 100   |       | 160   |      |       |      | 10/19/11 | 10/19 | RN-016   |
| S110040-04  | Method Blank                      | 0.592    | 0.100   |       |             | 100   |       | 137   |      |       |      | 10/19/11 | 10/19 | RN-014   |
| S110040-05  | Duplicate (S110040-01)            | 0.776    | 0.100   |       |             | 100   |       | 90    |      |       | 14   | 10/19/11 | 10/19 | RN-014   |
|             |                                   |          |         |       | <del></del> |       |       |       |      |       |      |          |       |          |
| Nominal val | ues and limits from method        | 1.00     | 0.100   |       |             |       |       | 100   |      |       | 180  |          |       |          |

| PROCEDURES | REFERENCE | 903.1                                     |
|------------|-----------|-------------------------------------------|
|            | DWP-881A  | Ra-226 Screening in Drinking Water, rev 6 |

| AVERAGES ± 2 SD | MDA   | 0.669 | ±. | 0.207 |
|-----------------|-------|-------|----|-------|
| FOR 5 SAMPLES   | YIELD | 100   | ±  |       |

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 20

SDG 8691

SDG 8691
Contact Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

#### SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- \* LAB SAMPLE ID is the lab's primary identification for a sample.
- \* DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- \* CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- \* QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
  - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- \* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES

Page 1
SUMMARY DATA SECTION

Page 21

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUJ0496</u>

#### PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- \* The preparation batches are shown in the same order as the Method Summary Reports are printed.
- \* Only analyses of planchets relevant to the SDG are included.
- \* Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- \* The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION

Page 22

SDG 8691

SDG 8691 Contact Joseph Verville

#### REPORT GUIDE

Client Test America, Inc. Contract IUJ0496

#### WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES Page 3 SUMMARY DATA SECTION Page 23

Lab id EAS

Protocol TA

Version Ver 1.0 Form DVD-RG

Version 3.06

Report date 10/27/11

SDG 8691

SDG 8691
Contact Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUJ0496</u>

#### DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- \* TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- \* The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- \* ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- \* A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- \* When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES
Page 4
SUMMARY DATA SECTION

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-RG

 Version
 3.06

Lab id EAS

Page 24 Report date 10/27/11

SDG 8691

| SDG     | 8691   |                 |
|---------|--------|-----------------|
| Contact | Joseph | <u>Verville</u> |

GUIDE, cont.

Client Test America, Inc. Contract <u>IUJ0496</u>

#### DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- \* An MDA is underlined if it is bigger than its RDL.
- \* An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES Page 5 SUMMARY DATA SECTION

Page 25

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-RG Version 3.06 Report date 10/27/11

SDG 8691

SDG <u>8691</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUJ0496</u>

# DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- \* A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- \* When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES

Page 6

SUMMARY DATA SECTION

Page 26

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date 10/27/11

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

#### LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- \* All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- \* An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- \* REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- \* The first, computed limits for the recovery reflect:
  - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- \* The second limits are protocol defined upper and lower QC limits for the recovery.
- \* The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7

SUMMARY DATA SECTION

Page 27

SDG 8691

| SDG     | 8691   |          |
|---------|--------|----------|
| Contact | Joseph | Verville |

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUJ0496</u>

#### DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

\* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

\* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

\* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- \* The second limit for the RPD is the larger of:
  - 1. A fixed percentage specified in the protocol.

REPORT GUIDES

Page 8

SUMMARY DATA SECTION

Page 28

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

#### DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- \* The RPD is underlined if it is greater than either limit.
- \* If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

\* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 29

SDG 8691

SDG 8691 Contact Joseph Verville

#### REPORT GUIDE

Client Test America, Inc. Contract <u>IUJ0496</u>

#### MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

\* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- The first, computed limits for the recovery reflect:
  - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES Page 10 SUMMARY DATA SECTION

Page 30

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-RG Version 3.06 Report date <u>10/27/11</u>

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client Test America, Inc.
Contract IUJ0496

#### MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

\* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION

Page 31

SDG 8691

SDG <u>8691</u> Contact Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

#### METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

\* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

\* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

\* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- \* Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- \* Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 32

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUJ0496</u>

#### METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- \* Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- \* If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- \* Aliquots are underlined if less than the nominal value specified for the method.
- \* Prepareation factors are underlined if greater than the nominal value specified for the method.
- \* Dilution factors are underlined if greater than the nominal value specified for the method.
- \* Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- \* Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- \* Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- \* Count times are underlined if less than the nominal value

REPORT GUIDES

Page 13

SUMMARY DATA SECTION

Page 33

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-RG

 Version
 3.06

 Report date
 10/27/11

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUJ0496</u>

#### METHOD SUMMARY

specified for the method.

- \* Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- \* Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- \* Days Held are underlined if greater than the holding time specified in the protocol.
- \* Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like ' $1\div3$ ' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES

Page 14

SUMMARY DATA SECTION

Page 34

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Lab id EAS\_

Version <u>3.06</u>
Report date <u>10/27/11</u>

ς...

SDG 8691

SDG <u>8691</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUJ0496</u>

#### METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 35

| Lab id | EAS | Protocol | TA | Version | Ver | 1.0 | Porm | DVD-RG | Version | 3.06 | Report date | 10/27/11 |

# SUBCONTRACT ORDER

# TestAmerica Irvine IUJ0496

# SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager:

Debby Wilson

# RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633

Fax: (510) 235-0438

| Analysis                   | Due                 | Expires                 | Laboratory ID | Comments                                          |
|----------------------------|---------------------|-------------------------|---------------|---------------------------------------------------|
|                            |                     |                         |               |                                                   |
| Sample ID: IUJ0496-02      | Water               | Sampled: 10/05/11 17:54 |               |                                                   |
| Uranium, Combined-O        | 10/19/11 12:00      | 10/04/12 17:54          |               | Out Eberline, Boeing permit, DO NOT FILTER!       |
| Tritium-O                  | 10/19/11 12:00      | 10/04/12 17:54          |               | Out Eberline, Boeing permit, DO NOT FILTER!       |
| Strontium 90-O             | 10/19/11 12:00      | 10/04/12 17:54          |               | Out Eberline, Boeing permit, DO NOT FILTER!       |
| Radium 226/228 Combined (A | AZ-M.10/19/11 12:00 | 10/04/12 17:54          |               | Out Eberline, Boeing permit, DO NOT FILTER!       |
| Gross Beta-O               | 10/19/11 12:00      | 04/02/12 17:54          |               | Out Eberline, Boeing permit, DO NOT FILTER!       |
| Gross Alpha-O              | 10/19/11 12:00      | 04/02/12 17:54          | -             | Out Eberline, Bocing permit, DO NOT FILTER!       |
| Gamma Spec-O               | 10/19/11 12:00      | 10/04/12 17:54          |               | Out Eberline, K-40 and CS-137 only, DO NOT FILTER |
| Containers Supplied:       |                     |                         |               |                                                   |
| 2.5 gal Poly (J)           | 500 mL Amber        | (K)                     |               |                                                   |
|                            |                     |                         |               |                                                   |
| Sample ID: IUJ0496-03      | Water               | Sampled: 10/07/11 15:00 |               |                                                   |
| Uranium, Combined-O        | 10/19/11 12:00      | 10/06/12 15:00          |               | Out Eberline, Boeing permit, DO NOT FILTER!       |
| Strontium 90-O             | 10/19/11 12:00      | 10/06/12 15:00          |               | Out Eberline, Bocing permit, DO NOT FILTER!       |
| Radium 226/228 Combined (A | AZ-M.10/19/11 12:00 | 10/06/12 15:00          |               | Out Eberline, Boeing permit, DO NOT FILTER!       |
| Gross Beta-O               | 10/19/11 12:00      | 04/04/12 15:00          |               | Out Eberline, Boeing permit, DO NOT FILTER!       |
| Gross Alpha-O              | 10/19/11 12:00      | 04/04/12 15:00          |               | Out Eberline, Boeing permit, DO NOT FILTER!       |
| Gamma Spec-O               | 10/19/11 12:00      | 10/06/12 15:00          |               | Out Eberline, K-40 and CS-137 only, DO NOT FILTER |
| Containers Supplied:       |                     |                         |               |                                                   |
| 2.5 gal Poly (A)           |                     |                         |               |                                                   |

| Released By | Date | Received By | Date |  |
|-------------|------|-------------|------|--|
| Released By | Date | Received By | Date |  |

# Subcontract Order - TestAmerica Irvine (IUJ0496)

8691 **RECEIVING LABORATORY: SENDING LABORATORY:** TestAmerica Irvine **Eberline Services** 17461 Derian Avenue. Suite 100 2030 Wright Avenue Irvine, CA 92614 Richmond, CA 94804 Phone: (949) 261-1022 Phone :(510) 235-2633 Fax: (949) 260-3297 Fax: (510) 235-0438 Project Manager: Debby Wilson Project Location: California Receipt Temperature:\_\_

| Standard TAT is requested            | unless specific d | ue date is requested. => Due Date: _ | Initials:                                            |
|--------------------------------------|-------------------|--------------------------------------|------------------------------------------------------|
| Analysis Units                       |                   | Expires                              | Comments                                             |
|                                      |                   |                                      |                                                      |
| Sample ID: IUJ0496-02 (Out           | fall 009 (Compos  | ite) - Water) Sampled: 10/05/11 17:  | :54                                                  |
| Gamma Spec-O                         | mg/kg             | 10/04/12 17:54                       | Out Eberline, K-40 and CS-137 only, DO NOT FILTER    |
| Gross Alpha-O                        | pCi/L             | 04/02/12 17:54                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Gross Beta-O                         | pCi/L             | 04/02/12 17:54                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Radium 226/228 Combined (AZ-MAP)-OUT | pCi/L             | 10/04/12 17:54                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Strontium 90-O                       | pCi/L             | 10/04/12 17:54                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Tritium-O                            | pCi/L             | 10/04/12 17:54                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Uranium, Combined-O                  | pCi/L             | 10/04/12 17:54                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Containers Supplied:                 |                   |                                      |                                                      |
| · •                                  | 00 mL Amber (k    | ()                                   |                                                      |
|                                      |                   |                                      |                                                      |
| Sample ID: IUJ0496-03 (Trip          | Blank - Water)    | Sampled: 10/07/11 15:                | 00                                                   |
| Gamma Spec-O                         | mg/kg             | 10/06/12 15:00                       | Out Eberline, K-40 and CS-137 only,<br>DO NOT FILTER |
| Gross Alpha-O                        | pCi/L             | 04/04/12 15:00                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Gross Beta-O                         | pCi/L             | 04/04/12 15:00                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Radium 226/228 Combined (AZ-MAP)-OUT | pCi/L             | 10/06/12 15:00                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Strontium 90-O                       | pCi/L             | 10/06/12 15:00                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Tritium-O                            | pCi/L             | 10/06/12 15:00                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Uranium, Combined-O                  | pCi/L             | 10/06/12 15:00                       | Out Eberline, Boeing permit, DO NOT FILTER!          |
| Containers Supplied:                 |                   |                                      |                                                      |
| 2.5 gal Poly (A)                     | t                 |                                      |                                                      |

Released By

ed By

Date/Time

Date/Time

e/Time Recei

Received By

7-10-11 17:00

0 0 8 11 000

Page 1 of 1

# D EBERLINE

# RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

| Client:                                                                            | TEST                                             | then                      | 4CA                  | City         | IRVINE                 | State          | CA                   |              |
|------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|----------------------|--------------|------------------------|----------------|----------------------|--------------|
| Date/Tir                                                                           | e/Time received  0  08  1  000 COC NO.  UJ 0 496 |                           |                      |              |                        |                |                      |              |
| Container L.D. No. [65 CHES] Requested TAT (Days) STD P.D. Received Yes [ ] No [ ] |                                                  |                           |                      |              |                        |                |                      |              |
| INSPECTION                                                                         |                                                  |                           |                      |              |                        |                |                      |              |
| 1.                                                                                 | Custody                                          | seals on shipp            | oing container inf   | tacl?        |                        | Yes (1)        | No[] N/A             | ( )          |
| 2.                                                                                 |                                                  |                           | ing container da     |              | <b>ď</b> ?             | Yes ( )        | No[] N/A             | ( )          |
| 3.                                                                                 |                                                  |                           | ole containers int   |              |                        | Yes ( )        | No[] N/A             | (x)          |
| 4.                                                                                 |                                                  |                           | ole containers da    |              | d?                     | Yes[]          | No[] N/A             | ( <u>x)</u>  |
| · 5.                                                                               | Packing                                          | material is:              |                      |              |                        | Wet[]          | Dry[]                | 1            |
| 6.                                                                                 |                                                  |                           |                      |              | Sample Matri           |                |                      |              |
| 7.                                                                                 | Number                                           | of containers p           | oer sample:          |              | (Or see CoC _          | <u>/</u> )     |                      |              |
| В.                                                                                 | Samples                                          | are in correct            | container            |              | Yes [ * ]              | No ( )         |                      | ·            |
| 9.                                                                                 |                                                  |                           | samples?             |              | Yes ( 🗡 )              | • •            |                      |              |
| 1۵.                                                                                |                                                  |                           |                      |              | Rad labels ( ) A       |                |                      |              |
| 11.                                                                                | Samples                                          | s are: In go              | nadition on the      | ) Leakin     | g[] Broken             | Container [ ]  | Missing ( )          |              |
| 12.                                                                                | Samples                                          | s are: Presen             | red (K.) Not pr      | eserved (X   | ) pH <2/N/Pre          | servative      | 103                  |              |
| 13.                                                                                | Describe                                         | e any anomalis            | <u> </u>             |              | /                      | •              |                      | _            |
|                                                                                    |                                                  |                           |                      |              |                        |                |                      |              |
|                                                                                    |                                                  |                           | <del></del>          | <del> </del> |                        |                |                      | <del> </del> |
| l .                                                                                |                                                  |                           |                      |              |                        |                |                      |              |
|                                                                                    |                                                  |                           |                      |              | f 3 N-1                | ) D===         |                      |              |
| 14.                                                                                |                                                  | M.                        | any anomalies?       |              | 5 [ ) No.[             | 10877          | )                    |              |
| 14.<br>15.                                                                         | Was P.                                           | M.                        | any anomalies?       |              | 5 [ ] No.[             | 10877          | )                    |              |
| 15.                                                                                | Inspect                                          | ed by                     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | (9                   |              | O O II Time            | 0800           |                      | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by                     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15.<br>Cust<br>Santo                                                               | Inspect                                          | ed by TV  Beta/Gamina     | Ion Chamber          | Date:        | Customer               | Beta/Gamma     | Ion Chamber          | wipe         |
| 15. Cust Samo                                                                      | Inspect                                          | Beta/Gamina               | Ibin Chamber   mR/hr | Wine         | Customer<br>Sample No. | Beta/Gamma     | lon Chamber<br>mR/hr | wipe         |
| 15. CUET SAMD Fu SA                                                                | Inspect                                          | Beta/Gamhia<br>com<br>&8D | Ibn Chamber   mR/hr  | Wine         | Customer Sample No.    | Beta/Gamma LDM | lon Chamber<br>mR/hr | wipe         |
| Ion Char                                                                           | Inspect                                          | Beta/Gamhia               | Ibn Chamber   mR/hr  | Wine         | Customer Sample No.    | Beta/Gamma  Dm | lon Champer<br>mR/hr | wipe         |
| Ion Char                                                                           | Inspect                                          | Beta/Gamhia<br>com<br>&8D | Ibn Chamber   mR/hr  | Wine         | Customer Sample No.    | Beta/Gamma  Dm | lon Champer<br>mR/hr | wipe         |

# LABORATORY REPORT

Date:

October 13, 2011

**Client:** 

TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson Aquatic
Testing
Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-11100610-001

Sample I.D.:

IUJ0496-02 (Outfall 009)

**Sample Control:** 

The sample was received by ATL chilled, within the recommended hold time and with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled:

10/05/11

Date Received:

10/06/11 5.6°C

Temp. Received: Chlorine (TRC):

0.0 mg/l

Date Tested:

10/06/11 to 10/12/11

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample. All testing was conducted under the direct supervision of Joseph A. LeMay. Daily test readings were taken by Joseph LeMay (initials: JAL) and Jacob LeMay (initials: J).

# **Result Summary:**

Chronic:

NOEC TUC 100% 1.0

Ceriodaphnia Survival: Ceriodaphnia Reproduction:

100% 100%

1.0

**Quality Control:** 

Reviewed and approved by:

Joseph A. LeMay
Laboratory Director

# CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0



Lab No.: A-11100610-001 Date Tested: 10/06/11 to 10/12/11

Client/ID: Test America - IUJ0496-02 (Outfall 009)

# **TEST SUMMARY**

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Source: In-laboratory culture.

Food: .1 ml YTC, algae per day.

Test vessel size: 30 ml.

Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 6 days.

QA/QC Batch No.: RT-111006. Statistics: ToxCalc computer program.

# **RESULTS SUMMARY**

| Sample Concentration                                      | Percent Survival | Mean Number of Young<br>Per Female |  |  |  |  |
|-----------------------------------------------------------|------------------|------------------------------------|--|--|--|--|
| Control                                                   | 100%             | 23.3                               |  |  |  |  |
| 100% Sample                                               | 100%             | 25.6                               |  |  |  |  |
| Sample not statistically significantly less than Control. |                  |                                    |  |  |  |  |

# **CHRONIC TOXICITY**

| Survival NOEC     | 100% |
|-------------------|------|
| Survival TUc      | 1.0  |
| Reproduction NOEC | 100% |
| Reproduction TUc  | 1.0  |

# **QA/QC TEST ACCEPTABILITY**

| Parameter                                                                             | Result                                                 |
|---------------------------------------------------------------------------------------|--------------------------------------------------------|
| Control survival ≥80%                                                                 | Pass (100% survival)                                   |
| ≥15 young per surviving control female                                                | Pass (23.3 young)                                      |
| ≥60% surviving controls had 3 broods                                                  | Pass (90% with 3 broods)                               |
| PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated | Pass (PMSD = 17.2%)                                    |
| Statistically significantly different concentrations relative difference > 13%        | Pass (no concentration significantly different)        |
| Concentration response relationship acceptable                                        | Pass (no significant response at concentration tested) |

| Ceriodaphnia Survival and Reproduction Test-Survival Day 6 |           |         |           |           |            |            |            |        |             |                     |  |
|------------------------------------------------------------|-----------|---------|-----------|-----------|------------|------------|------------|--------|-------------|---------------------|--|
| Start Date:                                                | 10/6/2011 | 13:00   | Test ID:  | 11100610c |            | Sample ID: |            |        | Outfall 009 |                     |  |
| End Date:                                                  | 10/12/201 | 1 13:00 | Lab ID:   | CAATL-Aq  | uatic Test | ting Labs  | Sample Ty  | rpe:   | SRW2-Ind    | lustrial stormwater |  |
| Sample Date:                                               | 10/5/2011 | 17:54   | Protocol: | FWCH EP   | Α          |            | Test Speci | ies:   | CD-Cerioo   | laphnia dubia       |  |
| Comments:                                                  |           |         |           |           |            |            |            |        |             |                     |  |
| Conc-%                                                     | 1         | 2       | 3         | 4         | 5          | 6          | 7          | 8      | 9           | 10                  |  |
| D-Control                                                  | 1.0000    | 1.0000  | 1.0000    | 1.0000    | 1.0000     | 1.0000     | 1.0000     | 1.0000 | 1.0000      | 1.0000              |  |
| 100                                                        | 1.0000    | 1.0000  | 1.0000    | 1.0000    | 1.0000     | 1.0000     | 1.0000     | 1.0000 | 1.0000      | 1.0000              |  |

|           |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Isof   | tonic  |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-%    | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Mean   | N-Mean |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 1.0000 | 1.0000 |
| 100       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 1.0000 | 1.0000 |

| <b>Hypothesis</b> | Test (1-tail, 0 | 0.05) | NOEC | LOEC | ChV        | TU         |                     |             |               |             |
|-------------------|-----------------|-------|------|------|------------|------------|---------------------|-------------|---------------|-------------|
| Fisher's Exa      | ct Test         |       | 100  | >100 |            | 1          |                     |             |               |             |
| Treatments :      | vs D-Control    |       |      |      |            |            |                     |             |               |             |
|                   |                 |       |      |      | ar Interpo | lation (20 | 0 Resamples)        |             |               |             |
| Point             | %               | SD    | 95%  | 6 CL | Skew       |            |                     |             |               |             |
| IC05              | >100            |       |      |      |            |            |                     |             |               |             |
| IC10              | >100            |       |      |      |            |            |                     |             |               |             |
| IC15              | >100            |       |      |      |            |            | 1.0                 |             |               |             |
| IC20              | >100            |       |      |      |            |            | 0.9                 |             |               |             |
| IC25              | >100            |       |      |      |            |            | 4                   |             |               |             |
| IC40              | >100            |       |      |      |            |            | 0.8 -               |             |               |             |
| IC50              | >100            |       |      |      |            |            | 0.7 -               |             |               |             |
|                   |                 |       |      |      |            |            |                     |             |               |             |
|                   |                 |       |      |      |            |            | නී <sub>0.6</sub> 1 |             |               |             |
|                   |                 |       |      |      |            |            | 80.6                |             |               |             |
|                   |                 |       |      |      |            |            | Si d                |             |               |             |
|                   |                 |       |      |      |            |            | æ <sup>v.4</sup> ]  |             |               |             |
|                   |                 |       |      |      |            |            | 0.3                 |             |               |             |
|                   |                 |       |      |      |            |            | 0.2                 |             |               |             |
|                   |                 |       |      |      |            |            | 4                   |             |               |             |
|                   |                 |       |      |      |            |            | 0.1 -               |             |               |             |
|                   |                 |       |      |      |            |            | 0.0 😽 🔒 .           | <del></del> | <del> •</del> | <del></del> |
|                   |                 |       |      |      |            |            | 0                   | 50          | 100           | 150         |
|                   |                 |       |      |      |            |            |                     | Dos         | e %           |             |

Reviewed by:

Page 1

| Ceriodaphnia Survival and Reproduction Test-Reproduction |           |         |           |          |            |                                         |           |        |                                           |               |  |  |
|----------------------------------------------------------|-----------|---------|-----------|----------|------------|-----------------------------------------|-----------|--------|-------------------------------------------|---------------|--|--|
| Start Date:                                              | 10/6/2011 | 13:00   | Test ID:  | 11100610 |            | Sample ID:<br>Testing Labs Sample Type: |           |        | Outfall 009<br>SRW2-Industrial stormwater |               |  |  |
| End Date:                                                | 10/12/201 | 1 13:00 | Lab ID:   | CAATL-Ac | uatic Test |                                         |           |        |                                           |               |  |  |
| Sample Date:                                             | 10/5/2011 |         | Protocol: |          |            | _                                       | Test Spec | •      |                                           | laphnia dubia |  |  |
| Comments:                                                |           |         |           |          |            |                                         |           |        |                                           |               |  |  |
| Conc-%                                                   | 1         | 2       | 3         | 4        | 5          | 6                                       | 7         | 8      | 9                                         | 10            |  |  |
|                                                          |           | 40 000  | 00.000    | 04.000   | 00.000     | 04.000                                  | 00.000    | 0= 000 | 04000                                     | 0.1.000       |  |  |
| D-Control                                                | 29.000    | 10.000  | 23.000    | 21.000   | 25.000     | 24.000                                  | 26.000    | 27.000 | 24.000                                    | 24.000        |  |  |

|           |        | _      | •      | Transform | n: Untran | sformed |    | Rank   | 1-Tailed | Isot   | onic   |
|-----------|--------|--------|--------|-----------|-----------|---------|----|--------|----------|--------|--------|
| Conc-%    | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | N  | Sum    | Critical | Mean   | N-Mean |
| D-Control | 23.300 | 1.0000 | 23.300 | 10.000    | 29.000    | 22.168  | 10 |        |          | 24,450 | 1.0000 |
| 100       | 25.600 | 1.0987 | 25.600 | 13.000    | 31.000    | 20.272  | 10 | 127.00 | 82.00    | 24.450 | 1.0000 |

| Auxiliary Tests                                                   | Statistic | Critical | Skew    | Kurt    |
|-------------------------------------------------------------------|-----------|----------|---------|---------|
| Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05) | 0.78252   | 0.905    | -1.7976 | 3.13139 |
| F-Test indicates equal variances (p = 0.99)                       | 1.00958   | 6.54109  |         |         |
| Hypothesis Test (1-tail 0.05)                                     | 1.00000   | 0.54103  |         |         |

Hypothesis Test (1-tail, 0.05)
Wilcoxon Two-Sample Test indicates no significant differences

|       |      |    | Lir    | near Interpolatio | n (200 Resamples)     |  |
|-------|------|----|--------|-------------------|-----------------------|--|
| Point | %    | SD | 95% CL | Skew              | • •                   |  |
| IC05  | >100 |    |        |                   |                       |  |
| IC10  | >100 |    |        |                   |                       |  |
| IC15  | >100 |    |        |                   | 1.0                   |  |
| IC20  | >100 |    |        |                   | 0.9                   |  |
| IC25  | >100 |    |        |                   | 4                     |  |
| IC40  | >100 |    |        |                   | 0.8 -                 |  |
| IC50  | >100 |    |        |                   | 0.7 -                 |  |
|       |      |    |        |                   | 0.6 -                 |  |
|       |      |    |        |                   | <b>%</b> 0.5 -        |  |
|       |      |    |        |                   | ỗ 0.4 -]              |  |
|       |      |    |        |                   | 8 0.5 0.4 0.4 0.3 0.3 |  |
|       |      |    |        |                   | <sup>02</sup> 0.2 -   |  |
|       |      |    |        |                   | 0.1 -                 |  |
|       |      |    |        |                   | 0.0                   |  |
|       |      |    |        |                   | -0.1                  |  |
|       |      |    |        |                   | -0.2 1                |  |

150

100

Dose %

### CERIODAPHNIA DUBIA CHRONIC BIOASSAY **EPA METHOD 1002.0 Raw Data Sheet**



Lab No.: A-11100610-001

Client ID: TestAmerica - Outfall 009 Start Date: 10/06/2011 DAY 1

|            |          | DA                                            | ΥI                                   | D/                                      | AY 2                    | I                                         | DAY 3                                                         | D/                                                                                          | Y 4                                       |                                    | DAY 5 | 1                           | DAY 6     | DAY 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|----------|-----------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|-------|-----------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |          | 0 hr                                          | 24hr                                 | 0 hr                                    | 24hr                    | 0 hr                                      | 24hr                                                          | 0 hr                                                                                        | 24hr                                      | 0 þr                               | 2     | 4hr 0 hr                    | 24hr      | 0 hr 24hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyst I  | nitials: | 2                                             | 2                                    | 2                                       | 1                       | 2                                         | 2                                                             | 7                                                                                           | P                                         | 1                                  | 12    | 1                           | In        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time of Re | eadings: | (330                                          | 6>30                                 | (239                                    | 1370                    | (37,                                      | ט נדו                                                         | 1730                                                                                        | 1315                                      | 131                                | 5 13  | 30 1330                     | 130       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | DO       | 8.7                                           | 7.6                                  | 8.0                                     | 6.7                     | 812                                       | 7.2                                                           | 8.1                                                                                         | 74                                        | 7-8                                | 7.    | 4 8.2                       | 29        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control    | рН       | <b>3.</b> ≥                                   | 7.2                                  | 8.1                                     | 7.7                     | 8.2                                       | 7. 4                                                          | 8.1                                                                                         | 26                                        | 8.2                                | 7.    |                             | 2.6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Тетр     | 75.1                                          | 25,1                                 | 24.7                                    | 25.1                    | 24.7                                      | 246                                                           | 24.6                                                                                        | 242                                       | 24.6                               | 25    | io 24.7                     | 24.8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | DO       | 8.1                                           | 7.1                                  | 7.6                                     | 20                      | 7.8                                       | 7-4                                                           | 8.1                                                                                         | 7.4                                       | 8.3                                | 7.    | 6 8.6                       | 127       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100%       | рН       | 7.7                                           | 7.1                                  | 7.4                                     | 8,1                     | 7.5                                       | 7.5                                                           | 7.5                                                                                         | 7-5                                       | 7.6                                |       |                             | 8,1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Temp     | 24.5                                          | 24.7                                 | 1,25                                    | 25.1                    | 24.7                                      | 246                                                           | 24.5                                                                                        | 24.4                                      | 24.                                | 8 24  | 9 24.5                      |           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Ad       | lditional F                                   | 'aramete                             | 's                                      |                         |                                           |                                                               | Cor                                                                                         | itrol                                     |                                    |       |                             | 100% Samp | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Cor      | nductivity                                    | (umohms                              | )                                       |                         |                                           | 3                                                             | 29                                                                                          |                                           |                                    |       |                             | 67        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | All      | kalinity (m                                   | g/l CaCO                             | 3)                                      |                         |                                           |                                                               | , 8                                                                                         |                                           |                                    |       |                             | 15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Ha       | ardness (m                                    | g/l CaCO                             | )                                       |                         |                                           | 9                                                             | 1/                                                                                          |                                           |                                    |       |                             | 22        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | An       | nmonia (m                                     | g/l NH <sub>3</sub> -N               | 1)                                      |                         |                                           |                                                               | 0.1                                                                                         |                                           |                                    |       |                             | 0.4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |                                               |                                      | _                                       |                         | S                                         | ource of Ne                                                   | onates                                                                                      |                                           |                                    |       |                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rep        | licate:  |                                               | A                                    | В                                       | С                       |                                           | D                                                             | E                                                                                           | F                                         |                                    | G     | н                           | -1        | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Broo       | od ID:   | 3                                             | А                                    | 2 B                                     | 3/                      | 3                                         | 3 C                                                           | 30                                                                                          | IE                                        |                                    | ? E   | )E                          | 36        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 -        |          |                                               |                                      |                                         |                         | Number                                    | r of Young I                                                  | Produced                                                                                    |                                           |                                    |       | Total Live                  | No. Live  | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample     |          | Day                                           | A                                    | В                                       | С                       | D                                         | E F                                                           | G                                                                                           | н                                         | ı                                  | J     | Young                       | Adults    | Initials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |          | 1                                             |                                      | 10                                      | 10                      | 0                                         | 00                                                            | 10                                                                                          | 0                                         | 0                                  | 0     | 0                           | 10        | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |          | 2                                             | _ [ ]                                | 10                                      | 0                       | $ \mathcal{O} $                           | 00                                                            | 0                                                                                           | 0                                         | 0                                  | 0     | 0                           | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          | 3                                             |                                      | 10                                      | 0                       | 03                                        | 3 4                                                           | 10                                                                                          | 0                                         | 0                                  | 5     | 12                          | 117       | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Control    |          | 4                                             | H                                    |                                         | 1. 1                    |                                           |                                                               |                                                                                             |                                           |                                    |       |                             | <u> </u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | II       |                                               | <u> </u>                             | 43                                      | 1-11                    | 4                                         | 00                                                            | ۷ کے                                                                                        | 4                                         | 3                                  |       | 27                          | 10        | In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |          | 5                                             | 10                                   | 12                                      | 9                       | 7                                         | 8 2                                                           | 9                                                                                           | 9                                         | 3                                  |       | 27                          | 10        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |          | 5                                             | 10                                   | 77                                      | 9                       | 7 10 1                                    | 8 7                                                           | 9 12                                                                                        | U<br>9<br>14                              | 3 11                               | 7     | 27<br>84<br>110             | 10        | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |          | 5<br>6<br>7                                   | 10                                   | 7 7                                     | 9 10 -                  | 7   01                                    | 8 7                                                           | 1-                                                                                          | ム<br>9<br>1<br>1<br>-                     | 3 11 10 -                          | 072   |                             | 10        | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|            |          | 5<br>6<br>7<br>Total                          | V   / (                              | 7 7                                     | 9 10 - 33               | 7<br>10 1<br>                             | 8 7 14 13                                                     | 1=                                                                                          | 4<br>9<br>14<br>-<br>27                   | 3 11 10 -1                         | 24    | 27<br>84<br>110<br>—<br>233 | 10        | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|            |          | 5<br>6<br>7<br>Total                          | C                                    | 7 7                                     | 9 10 - 3                | 7<br>10 1<br>                             | 8 7                                                           | 26                                                                                          | リリー<br>27<br>27                           | 3<br>11<br>10<br>-                 | 0     | 233                         | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          | 5<br>6<br>7<br>Total<br>1<br>2                |                                      | 7 7                                     | 0                       | 7 10 1                                    | 8 7 14 13                                                     | 26                                                                                          | リ<br>9<br>1<br>1<br>2<br>2<br>2<br>0<br>0 | 3<br>11<br>10<br>-                 | 0     | 233<br>C                    | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          | 5<br>6<br>7<br>Total<br>1<br>2<br>3           |                                      | 7 7                                     | 0                       | 7<br>10]<br><br>21 =<br>0 0<br>0 0        | 8 7 14 13                                                     | 26                                                                                          | リリー<br>27<br>00<br>00<br>01               | 3<br>11<br>10<br>一<br>24<br>0<br>5 | 0     | 233<br>C<br>O<br>20         | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100%       |          | 5<br>6<br>7<br>Total<br>1<br>2<br>3<br>4      |                                      | 7 7 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0                       | 7<br>10]<br><br>21 2<br>0 0<br>0 0<br>0 0 | 8 7<br>14 13<br><br>25 24<br>0 0<br>0 0<br>0 3<br>4 0         | 26                                                                                          | 19<br>19<br>27<br>00<br>4                 | 0050                               | 0     | 233<br>0<br>20<br>39        | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          | 5<br>6<br>7<br>Total<br>1<br>2<br>3           | C<br>  C<br>  C<br>  C<br>  S<br>  7 | 7 7 0 10 0 0 0 0 0 0 0                  | 000                     | 7<br>10]<br><br>21 2<br>0 0<br>0 0<br>0 0 | 8 7<br>14 13<br><br>25 24<br>0 0<br>0 0<br>1 0<br>9 10        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 27<br>27<br>27<br>00<br>4<br>90           | 3 11 10 -                          | 00000 | 233<br>0<br>20<br>39<br>88  | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          | 5<br>6<br>7<br>Total<br>1<br>2<br>3<br>4<br>5 |                                      | 7 7 0 10 0 0 0 0 0 0 0                  | 0                       | 7<br>10]<br><br>21 2<br>0 0<br>0 0<br>0 0 | 8 7<br>14 13<br><br>25 24<br>0 0<br>0 0<br>1 3<br>1 0<br>9 10 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 19<br>19<br>27<br>00<br>14<br>90          | 0050                               | 0     | 233<br>0<br>20<br>39        | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          | 5<br>6<br>7<br>Total<br>1<br>2<br>3<br>4<br>5 | C<br>  C<br>  C<br>  C<br>  S<br>  7 | 7 7 0 10 0 0 0 0 0 0 0                  | 0<br>0<br>5<br>10<br>15 | 7<br>10]<br><br>21 2<br>0 0<br>0 0<br>0 0 | 8 7<br>14 13<br><br>25 24<br>0 0<br>0 0<br>1 0<br>9 10        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 19<br>19<br>27<br>00<br>14<br>90<br>13    | 0050                               | 00000 | 233<br>0<br>20<br>39<br>88  | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>7</sup>th day only used if <60% of the surviving control females have produced their third brood.



## CHAIN OF CUSTODY

## Subcontract Order - TestAmerica Irvine (IUJ0496)

#### SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Debby Wilson

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone: (805) 650-0546 Fax: (805) 650-0756

Project Location: California

Receipt Temperature: 5-6 °C

|                                            |                     |                                   | Initials:                                         |
|--------------------------------------------|---------------------|-----------------------------------|---------------------------------------------------|
| Analysis                                   | Units               | Expires                           | Comments                                          |
|                                            |                     | 70 ) 1860400)                     |                                                   |
| ampie ID: IUJ0496-02 (6                    | Jutfall 009 (Compos | ste) - Water) Sampled: 10/05/11 1 | 17·64                                             |
|                                            |                     | Sampleu. Tulugi I                 |                                                   |
| Bioassay-7 dy Chmic                        | N/A                 | 10/07/11 05:54                    | Cerio, EPA/821-R02-013, Sub to<br>Aquatic testing |
| Bioassay-7 dy Chrnic  Containers Supplied: |                     | Campica, 14199/17                 | Cerio, EPA/821-R02-013, Sub to                    |

Released By

Date/Time

Released By

Date/Time Received By

Page 1 of 1

| Client Name/A   | ddress:                                          |                |                                                  | Project                                          | <del>,</del>    |                  | <del></del> |                                                  |                          |                                                                        |                                                  |                                       |                                                                                                                                                                                                          |                                                  | Α                                                | NALY         | SIS REC      | UIRED            |             |              |              |                                       |
|-----------------|--------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|-----------------|------------------|-------------|--------------------------------------------------|--------------------------|------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------|------------------|-------------|--------------|--------------|---------------------------------------|
| MWH-Arcac       |                                                  |                |                                                  |                                                  | SSFL N          | IPDES            |             |                                                  |                          |                                                                        |                                                  |                                       | - 05 1                                                                                                                                                                                                   |                                                  |                                                  |              |              |                  |             |              |              |                                       |
| 618 Michillinda |                                                  | uite 200       |                                                  | Semi-A                                           | innual (        | Outfall 009      |             | d.                                               |                          |                                                                        |                                                  | ď                                     | 0.00 (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)                                                                                                                                                             |                                                  |                                                  |              | 1            |                  | Ì           |              | 1            |                                       |
| Arcadia, CA 9   |                                                  |                |                                                  |                                                  |                 | -400             | ب           | Cn'                                              |                          |                                                                        |                                                  | <u>-</u>                              | 90.0<br>903.                                                                                                                                                                                             |                                                  |                                                  |              | j            |                  | ļ           |              |              |                                       |
|                 |                                                  |                |                                                  | Stormw                                           | ater at         | SW-13            |             | S,                                               |                          | ate                                                                    |                                                  | , Cu,                                 | 5.0<br>05.0<br>0 \$                                                                                                                                                                                      |                                                  |                                                  |              |              |                  |             |              | 1            |                                       |
| Test America    | Contact:                                         | Debby Wils     | ion                                              |                                                  |                 |                  |             | Sb.                                              |                          | 뎙                                                                      |                                                  | S                                     | 3.0 (9.0 (1.0 m)                                                                                                                                                                                         |                                                  |                                                  |              |              |                  |             |              |              |                                       |
|                 |                                                  |                |                                                  |                                                  |                 |                  |             |                                                  | (3)                      | eg<br>G                                                                |                                                  | Sp                                    | oss<br>r-90<br>(90<br>(90<br>ran                                                                                                                                                                         |                                                  |                                                  | }            | 1            |                  |             | İ            |              | 0                                     |
| [               |                                                  |                |                                                  |                                                  |                 |                  |             | Recoverable Metals:                              | ene                      | S.                                                                     |                                                  | als:                                  | 226 (c)                                                                                                                                                                                                  |                                                  |                                                  |              |              |                  |             |              |              | Comments                              |
| Project Manag   | ger: Bro                                         | nwyn Kelly     |                                                  | Phone                                            | Number          | r:               |             | e e                                              | guo                      | 0                                                                      |                                                  | Met                                   | 0.0)<br>0.00<br>0.00<br>0.4.0                                                                                                                                                                            |                                                  |                                                  | ļ            |              |                  |             |              | 1            |                                       |
|                 |                                                  |                | ZI.                                              | (626) 5                                          | 68-6691         | 1                |             | arak<br>A                                        | =                        | ¥                                                                      |                                                  | ) Gd                                  | (90)<br>(90)<br>(90)                                                                                                                                                                                     | ļ                                                | icity                                            |              |              |                  |             |              |              |                                       |
| Sampler: R      | CER                                              | M M M C        | . 4                                              | Fax Nu                                           | ımber:          |                  |             | ğ                                                | ğ                        | 2                                                                      | S                                                | So                                    | 228<br>228<br>37                                                                                                                                                                                         |                                                  | ě                                                | Į            |              |                  |             |              |              |                                       |
|                 |                                                  |                |                                                  | (626) 5                                          | 68-651          | 5                |             | å _                                              | (a)                      | Q                                                                      | 13                                               | a _                                   | S AI<br>m (m<br>S) T-S:                                                                                                                                                                                  | ge                                               | i                                                |              |              |                  |             |              | }            | •                                     |
| Sample          | Sample                                           | Container      | # of<br>Cont                                     |                                                  | npling<br>/Time | Preservative     | Bottle #    | Total F<br>Hg, Ti                                | TCDD (and all congeners) | CI, SO <sub>4</sub> , NO <sub>3</sub> +NO <sub>2</sub> -N, Perchlorate | TDS, TSS                                         | Total Dissolved Metals: Sb,<br>Hg, Tl | Gross Alpha(900.0), Gross Beta(900.0),<br>Tritum (H-2) (906.0), Sr-90 (905.0), Total<br>Combined Radium 226 (903.0 or 903.1) &<br>Radium 228 (904.0), Uranium (908.0), K-<br>40, CS-137 (901.0 or 901.1) | Cyanide                                          | Chronic Toxicity                                 |              |              |                  | ļ           |              |              |                                       |
| Description     | Matrix                                           | Type           |                                                  | 1                                                | 1 - July        | HNO <sub>3</sub> | 2A          | X                                                | <del></del> -            | ٠,                                                                     | <del></del> -                                    | <del></del>                           | OFOR 4                                                                                                                                                                                                   | -                                                | -                                                |              |              |                  |             |              |              |                                       |
| Outfall 009     | W                                                | 1L Poly        | 1                                                | <del></del>                                      | <u>&gt;4 "</u>  | HNO <sub>3</sub> | 2B          | ×                                                |                          | <del> </del>                                                           | <del>                                     </del> |                                       | <del> </del>                                                                                                                                                                                             | <del>                                     </del> | <del>                                     </del> | -            |              |                  |             |              |              |                                       |
| Outfall 009 Dup | W                                                | 1L Poly        | 1                                                |                                                  | ļ               | <u> </u>         |             | <del>  ^-</del>                                  | X                        |                                                                        |                                                  |                                       | <del></del>                                                                                                                                                                                              |                                                  | <del> </del>                                     |              |              |                  |             |              |              | 1                                     |
| Outfall 009     | W                                                | 1L Amber       | 2                                                |                                                  |                 | None             | 3A, 3B      |                                                  | - <u>^</u> -             | ×                                                                      | <del> </del> -                                   |                                       |                                                                                                                                                                                                          | <del> </del>                                     | <del> </del>                                     |              |              |                  |             |              |              |                                       |
| Outfall 009     | W                                                | 500 mL Poly    | 2                                                |                                                  | <b> </b>        | None             | 4A, 4B      |                                                  |                          | <del>  ^</del>                                                         | <del> </del>                                     |                                       |                                                                                                                                                                                                          |                                                  |                                                  |              |              |                  |             |              |              |                                       |
| Outfall 009     | W                                                | 500 mL Poly    | 1                                                |                                                  | <b> </b>        | None             | 5           | ļ                                                | ļ                        |                                                                        | Х                                                |                                       | <del></del>                                                                                                                                                                                              | ļ                                                | ļ                                                | ļ            |              |                  |             | <del> </del> |              | C''                                   |
| Outfall 009     | w                                                | 1L Poly        | 1                                                |                                                  | }               | None             | 6           |                                                  |                          |                                                                        | <u> </u>                                         | X                                     |                                                                                                                                                                                                          | <u> </u>                                         |                                                  |              |              |                  |             | ļ            |              | Filter w/in 24hrs of receipt at lab   |
|                 |                                                  | 2.5 Gal Cube   | 1                                                |                                                  |                 | None             | 7A          |                                                  |                          | Ţ                                                                      |                                                  |                                       |                                                                                                                                                                                                          | 1                                                |                                                  |              | Ì            |                  |             |              |              | Unfiltered and unpreserved            |
| Outfall 009     | w                                                | 500 mt, Amber  | 1                                                | 1 /                                              |                 | None             | 78          |                                                  | İ                        |                                                                        |                                                  |                                       | - X                                                                                                                                                                                                      |                                                  |                                                  |              |              |                  |             | 1            | 1            | analysis                              |
|                 |                                                  |                |                                                  | <del>                                     </del> |                 | NaOH             | 8           | <del> </del>                                     | <del> </del>             |                                                                        | <del>                                     </del> |                                       |                                                                                                                                                                                                          | ×                                                | 1                                                | <del> </del> |              |                  |             |              |              |                                       |
| Outfall 009     | W                                                | 500 mL Poly    | 1                                                | V                                                | -<br>5-20 11    |                  | <u> </u>    | ļ                                                | _                        | -                                                                      | ļ                                                |                                       |                                                                                                                                                                                                          | <del>  ~</del>                                   |                                                  | <del> </del> |              |                  |             |              | <del> </del> | Only test if first or second rain     |
| Outfall 009     | w                                                | 1 Gal Poly     | 1                                                | 177                                              | 54              | None             | 9           |                                                  |                          |                                                                        |                                                  | ļ                                     |                                                                                                                                                                                                          | <u> </u>                                         | X                                                |              |              |                  | ļ           |              |              | events of the year                    |
|                 |                                                  |                |                                                  |                                                  |                 |                  |             |                                                  |                          | <u> </u>                                                               | <u> </u>                                         | ļ                                     |                                                                                                                                                                                                          | ļ                                                | 1                                                | ļ            |              |                  | <b> </b>    | ļ            |              |                                       |
|                 |                                                  |                | 1                                                |                                                  |                 |                  |             |                                                  |                          |                                                                        |                                                  |                                       | }                                                                                                                                                                                                        | }                                                |                                                  | 1            |              |                  | <u> </u>    |              |              |                                       |
|                 | <del>                                     </del> |                | <del>                                     </del> |                                                  |                 |                  |             | <del> </del>                                     |                          |                                                                        |                                                  |                                       |                                                                                                                                                                                                          |                                                  |                                                  |              |              |                  |             |              |              |                                       |
|                 | ╁                                                | <u> </u>       | <del> </del>                                     | ┼                                                |                 |                  |             |                                                  | †                        | 1                                                                      | 1                                                |                                       |                                                                                                                                                                                                          | 1                                                | 1                                                |              |              |                  |             |              |              |                                       |
|                 | -                                                |                | -                                                | ┼──                                              |                 |                  | -           | <del>                                     </del> | <del> </del>             | -                                                                      | 1                                                |                                       |                                                                                                                                                                                                          | 1                                                | 1                                                |              |              |                  |             |              |              |                                       |
|                 | - <del></del>                                    | <del> </del> - | -                                                |                                                  |                 |                  | 1           | -                                                | <del> </del>             | +                                                                      |                                                  |                                       | ·                                                                                                                                                                                                        | 1                                                |                                                  |              |              |                  |             |              |              |                                       |
|                 |                                                  | L              | L                                                |                                                  |                 | CO               | C Page 2    | of 2 lis                                         | t the                    | Com                                                                    | posite                                           | Sam                                   | ples for Outfall                                                                                                                                                                                         | 009                                              | for th                                           | is sto       | m even       | it.              | <u> </u>    |              |              |                                       |
|                 |                                                  |                |                                                  |                                                  | The             | ese must h       | e added     | to the s                                         | ame                      | work                                                                   | orde                                             | r for C                               | QC Page 1 of 2                                                                                                                                                                                           | 2 for (                                          | Outfa                                            | 11 009       | for the      | same ev          | ent.        |              |              |                                       |
| Relinguished By |                                                  |                | Date/T                                           | ime: 🔏                                           | 0-6             |                  | Received    |                                                  |                          | 7                                                                      | 7 D                                              | ate/Tim                               |                                                                                                                                                                                                          | . 1/                                             |                                                  | Tum-ar       | ound time:   | (Check)          | ,           |              |              |                                       |
|                 | d                                                | PL.            |                                                  | ٠,                                               | 7               | ,                |             | 1116                                             | - /                      |                                                                        | /11                                              | //                                    | n "                                                                                                                                                                                                      | •                                                |                                                  | 24 Hou       |              |                  | 72 Hour     |              |              | 10 Day:                               |
| 1/mg            | 13 - 12                                          |                | _                                                | - 1                                              | 1.6             | <i>(</i> U       | 1/40        | M                                                |                          | 1/4                                                                    | M                                                |                                       | 12:                                                                                                                                                                                                      | 00                                               |                                                  | 48 Hou       | r            |                  | 5 Day       |              |              | Normal:                               |
| Relinguithed By |                                                  | - /            | Date/T                                           | ime: /                                           | P() - 1         | <u>~</u>         | Received    | 8/1                                              | 7                        | *                                                                      | 9                                                | aye/y/m                               | ə:                                                                                                                                                                                                       | . ,                                              | ,                                                | 7            | ,            |                  | ,           |              |              |                                       |
| ///             | 41                                               | 2. 11.         |                                                  | l                                                | · ~ · 0         | 7 H              |             | V]]                                              |                          | NA                                                                     | A                                                | وسيلا                                 | - 10-6                                                                                                                                                                                                   | ,-!                                              | / 、                                              | Sample       | Integrity: ( | Check)<br>On Ice |             |              |              |                                       |
| 1/1/000         | V//                                              | WY             |                                                  |                                                  | 2:10-6          | ļU               | 1/1         | 4                                                | ///                      | 1                                                                      | 17                                               | $\mathcal{M}$                         | 10-6                                                                                                                                                                                                     | 2//                                              |                                                  | intact:      | <del>~</del> | On Ice.          | <u>v</u> _  |              |              |                                       |
| Relinquished By | W.                                               |                | Date/T                                           |                                                  |                 |                  | Received    | E <sub>V</sub>                                   | <u> </u>                 |                                                                        | 0                                                | ate/Tim                               | 9:                                                                                                                                                                                                       |                                                  |                                                  |              |              |                  |             |              |              |                                       |
| +C              |                                                  |                |                                                  |                                                  |                 |                  |             |                                                  |                          |                                                                        |                                                  |                                       |                                                                                                                                                                                                          |                                                  |                                                  | Data R       | equirement   | s: (Check)       |             |              |              | · · · · · · · · · · · · · · · · · · · |
|                 |                                                  | /              |                                                  |                                                  |                 |                  |             |                                                  |                          |                                                                        |                                                  |                                       |                                                                                                                                                                                                          |                                                  |                                                  | No Lev       | el IV:       |                  | All Level I | <u> </u>     |              | NPDES Level IV:                       |



# REFERENCE TOXICANT DATA

## CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

### REFERENCE TOXICANT - NaCl



QA/QC Batch No.: RT-111006

Date Tested: 10/06/11 to 10/12/11

#### TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

#### **RESULTS SUMMARY**

| Sample Concentration | Percent Survi | ival | Mean Numb<br>Young Per F |    |
|----------------------|---------------|------|--------------------------|----|
| Control              | 100%          |      | 22.7                     |    |
| 0.25 g/l             | 100%          |      | 22.9                     |    |
| 0.5 g/l              | 100%          |      | 21.6                     |    |
| 1.0 g/l              | 100%          |      | 13.7                     | *  |
| 2.0 g/l              | 70%           |      | 1.7                      | *  |
| 4.0 g/l              | 0%            | *    | 0                        | ** |

<sup>\*</sup> Statistically significantly less than control at P=0.05 level \*\* Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

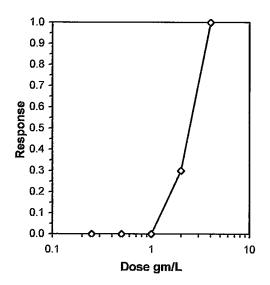
#### **CHRONIC TOXICITY**

| Survival LC50     | 2.3 g/l   |
|-------------------|-----------|
| Reproduction IC25 | 0.78 mg/l |

#### **QA/QC TEST ACCEPTABILITY**

| Parameter                                        | Result                                                   |
|--------------------------------------------------|----------------------------------------------------------|
| Control survival ≥80%                            | Pass (100% Survival)                                     |
| ≥15 young per surviving control female           | Pass (22.7 young)                                        |
| ≥60% surviving controls had 3 broods             | Pass (90% with 3 broods)                                 |
| PMSD <47% for reproduction                       | Pass (PMSD = 16.2%)                                      |
| Stat. sig. diff. conc. relative difference > 13% | Pass (Stat. sig. diff. conc. Relative difference= 39.6%) |
| Concentration response relationship acceptable   | Pass (Response curve normal)                             |

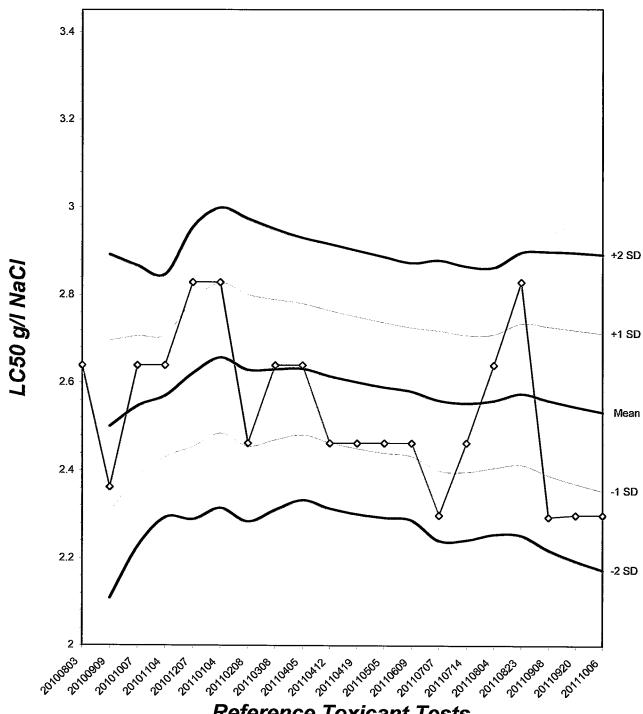
|              |           |         | Cerioda   | aphnia Su      | rvival and | Reprodu   | ction Tes | t-Surviv | al Day 6  |               |
|--------------|-----------|---------|-----------|----------------|------------|-----------|-----------|----------|-----------|---------------|
| Start Date:  | 10/6/2011 | 13:00   | Test ID:  | RT111006       | ic         |           | Sample ID | );       | REF-Ref   | Toxicant      |
| End Date:    | 10/12/201 | 1 13:00 | Lab ID:   | CAATL-Ac       | uatic Tes  | ting Labs | Sample Ty | /pe:     | NACL-Soc  | dium chloride |
| Sample Date: | 10/6/2011 |         | Protocol: | <b>FWCH EP</b> | 'A         |           | Test Spec | ies:     | CD-Cerioo | laphnia dubia |
| Comments:    |           |         |           |                |            |           |           |          |           |               |
| Conc-gm/L    | 1         | 2       | 3         | 4              | 5          | 6         | 7         | 8        | 9         | 10            |
| D-Control    | 1.0000    | 1.0000  | 1.0000    | 1.0000         | 1.0000     | 1.0000    | 1.0000    | 1.0000   | 1.0000    | 1.0000        |
| 0.25         | 1.0000    | 1.0000  | 1.0000    | 1.0000         | 1.0000     | 1.0000    | 1.0000    | 1.0000   | 1.0000    | 1.0000        |
| 0.5          | 1.0000    | 1.0000  | 1.0000    | 1.0000         | 1.0000     | 1.0000    | 1.0000    | 1.0000   | 1.0000    | 1.0000        |
| 1            | 1.0000    | 1.0000  | 1.0000    | 1.0000         | 1.0000     | 1.0000    | 1.0000    | 1.0000   | 1.0000    | 1.0000        |
| 2            | 1.0000    | 0.0000  | 1.0000    | 1.0000         | 1.0000     | 1.0000    | 1.0000    | 0.0000   | 1.0000    | 0.0000        |
| 4            | 0.0000    | 0.0000  | 0.0000    | 0.0000         | 0.0000     | 0.0000    | 0.0000    | 0.0000   | 0.0000    | 0.0000        |


|           |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Number | Total  |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-gm/L | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Resp   | Number |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 0      | 10     |
| 0.25      | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 0.5       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 1         | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 2         | 0.7000 | 0.7000 | 3    | 7    | 10    | 10 | 0.1053   | 0.0500   | 3      | 10     |
| 4         | 0.0000 | 0.0000 | 10   | 0    | 10    | 10 |          |          | 10     | 10     |

| Fisher's Exact Test 2 4 2.82843 | Hypothesis Test (1-tail, 0.05) | NOEC | LOEC | ChV     | TU |    | <br> |
|---------------------------------|--------------------------------|------|------|---------|----|----|------|
|                                 | Fisher's Exact Test            | 2    | 4    | 2.82843 |    | 4, | <br> |

Treatments vs D-Control

| Trimmed | Spearman-Karber |
|---------|-----------------|
|         |                 |


|   | Trim Level | EC50   | 95%    | CL     |               |
|---|------------|--------|--------|--------|---------------|
|   | 0.0%       | 2.2974 | 1.8793 | 2.8086 |               |
|   | 5.0%       | 2.3288 | 1.8582 | 2.9186 |               |
|   | 10.0%      | 2.3589 | 1.8143 | 3.0670 |               |
|   | 20.0%      | 2.4114 | 1.6236 | 3.5814 |               |
| _ | Auto-0.0%  | 2.2974 | 1.8793 | 2.8086 |               |
|   |            |        |        |        | $\overline{}$ |



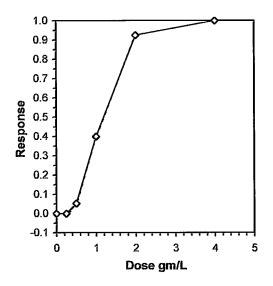
Reviewed by:

## Ceriodaphnia Chronic Survival **Laboratory Control Chart**

CV% = 7.09



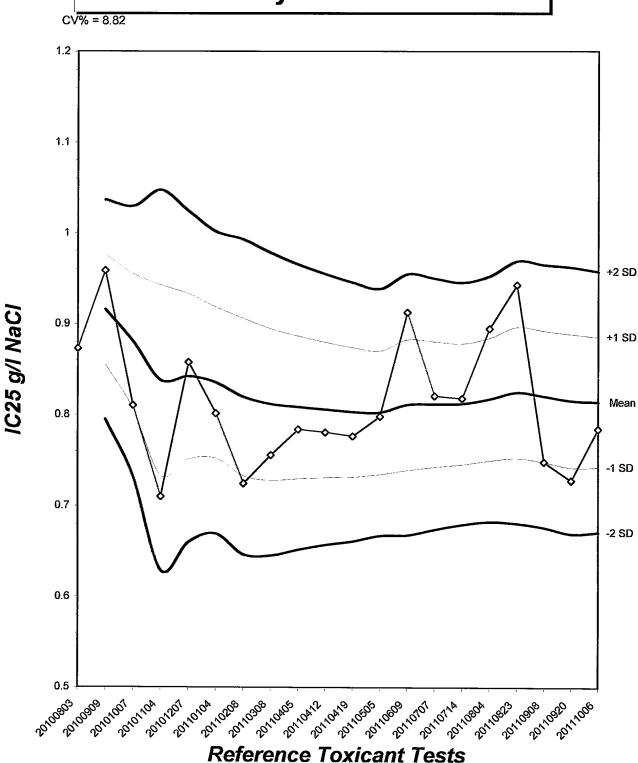
Reference Toxicant Tests


|              |            |         | Ceriod    | aphnia Su      | rvival and | l Reprodu | iction Tes | st-Repro | duction   |               |
|--------------|------------|---------|-----------|----------------|------------|-----------|------------|----------|-----------|---------------|
| Start Date:  | 10/6/2011  | 13:00   | Test ID:  | RT111006       | SC .       |           | Sample ID  | ):       | REF-Ref T | oxicant       |
| End Date:    | 10/12/2011 | 1 13:00 | Lab ID:   | CAATL-Ac       | quatic Tes | ting Labs | Sample Ty  | /pe:     | NACL-Soc  | lium chloride |
| Sample Date: | 10/6/2011  |         | Protocol: | <b>FWCH EP</b> | A          | •         | Test Spec  | ies:     | CD-Cerioo | laphnia dubia |
| Comments:    |            |         |           |                |            |           |            |          |           |               |
| Conc-am/L    | 1          | 2       | 3         | 4              | 5          | 6         | 7          | 8        | 9         |               |
| D-Control    | 22.000     | 24.000  | 24.000    | 26.000         | 25.000     | 11.000    | 23.000     | 25.000   | 26.000    | 21.000        |
| 0.25         | 24.000     | 23.000  | 23.000    | 23.000         | 24.000     | 25.000    | 16.000     | 25.000   | 24.000    | 22.000        |
| 0.5          | 21.000     | 20.000  | 25.000    | 27.000         | 12.000     | 22.000    | 23.000     | 22.000   | 23.000    | 21.000        |
| 1            | 9.000      | 17.000  | 8.000     | 17.000         | 17.000     | 21.000    | 10.000     | 11.000   | 8.000     | 19.000        |
| 2            | 3.000      | 2.000   | 4.000     | 2.000          | 0.000      | 2.000     | 2.000      | 0.000    | 2.000     | 0.000         |
| 4            | 0.000      | 0.000   | 0.000     | 0.000          | 0.000      | 0.000     | 0.000      | 0.000    | 0.000     | 0.000         |

|           |        |        |        | Transform | n: Untran | sformed |    | Rank  | 1-Tailed | Isote  | onic   |
|-----------|--------|--------|--------|-----------|-----------|---------|----|-------|----------|--------|--------|
| Conc-gm/L | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | N  | Sum   | Critical | Mean   | N-Mean |
| D-Control | 22.700 | 1.0000 | 22.700 | 11.000    | 26.000    | 19.486  | 10 |       |          | 22.800 | 1.0000 |
| 0.25      | 22.900 | 1.0088 | 22.900 | 16.000    | 25.000    | 11.359  | 10 | 98.00 | 76.00    | 22.800 | 1.0000 |
| 0.5       | 21.600 | 0.9515 | 21.600 | 12.000    | 27.000    | 18.286  | 10 | 89.00 | 76.00    | 21.600 | 0.9474 |
| *1        | 13,700 | 0.6035 | 13,700 | 8.000     | 21.000    | 36.260  | 10 | 61.00 | 76.00    | 13.700 | 0.6009 |
| *2        | 1.700  | 0.0749 | 1.700  | 0.000     | 4.000     | 78.676  | 10 | 55.00 | 76.00    | 1.700  | 0.0746 |
| 4         | 0.000  | 0.0000 | 0.000  | 0.000     | 0.000     | 0.000   | 10 |       |          | 0.000  | 0.0000 |

| Auxiliary Tests                   |                                                            |            |         |         | Statistic | Critical | Skew    | Kurt |
|-----------------------------------|------------------------------------------------------------|------------|---------|---------|-----------|----------|---------|------|
| Shapiro-Wilk's Test indicates nor | -normal dis                                                | stribution |         | 0.91768 | 0.947     | -1.1452  | 2.32133 |      |
|                                   | Bartlett's Test indicates unequal variances (p = 6.41E-03) |            |         |         |           |          |         |      |
| Hypothesis Test (1-tail, 0.05)    | NOEC                                                       | LOEC       | ChV     | TU      |           |          |         |      |
| Steel's Many-One Rank Test        | 0.5                                                        | 1          | 0.70711 |         |           |          |         |      |
| Tarataranta un D. Cambral         |                                                            |            |         |         |           |          |         |      |

| Treatments      | VS | D-Control  |
|-----------------|----|------------|
| I I Call II CHE | VΘ | D-00111101 |


|       |        |        |        | Linea  | ar Interpolatio | n (200 Resamples) |
|-------|--------|--------|--------|--------|-----------------|-------------------|
| Point | gm/L   | SD     | 95%    | CL     | Skew            |                   |
| IC05  | 0.4875 | 0.1363 | 0.1296 | 0.5739 | -0.7566         |                   |
| IC10  | 0.5684 | 0.0960 | 0.2937 | 0.6478 | -1.3466         |                   |
| IC15  | 0.6405 | 0.0768 | 0.4185 | 0.7308 | -0.9308         | 1.0               |
| IC20  | 0.7127 | 0.0741 | 0.5080 | 0.8209 | -0.7115         | 0.9               |
| IC25  | 0.7848 | 0.0746 | 0.6090 | 0.9095 | -0.2122         | 4                 |
| IC40  | 1.0017 | 0.0885 | 0.8396 | 1.1776 | 0.3021          | 0.8               |
| IC50  | 1.1917 | 0.0981 | 0.9554 | 1.3396 | -0.3414         | 0.7 -             |



Reviewed by:

Page 1

# Ceriodaphnia Chronic Reproduction Laboratory Control Chart



## CERIODAPHNIA DUBIA CHRONIC BIOASSAY

## Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-111006

Start Date: 10/06/2011

|          |       |     |    | Nu | mbei | r of Y | anno | Prod | nced       | , " |           | Total         | No.            |                     |
|----------|-------|-----|----|----|------|--------|------|------|------------|-----|-----------|---------------|----------------|---------------------|
| Sample   | Day   | A   | В  | С  | D    | E      | F    | G    | Н          | I   | J         | Live<br>Young | Live<br>Adults | Analyst<br>Initials |
|          | 1     | 0   | 0  | 0  | 0    | 0      | 0    | 0    | 0          | 0   | 0         | 0             | 10             | n                   |
|          | 2     | 0   | 10 | 0  | 0    | 0      | 0    | 0    | 0          | 0   | 0         | U             | 10             | In                  |
|          | 3     | 2   | M  | 0  | C    | 0      | 4    | 0    | 6          | 23  | 0         | 12            | 10             | In                  |
| 0 . 1    | 4     | 0   | 0  | دا | 3    | 4      | U    | 5    | 5          | 0   | 4         | 25            | 10             | M                   |
| Control  | 5     | 8   | 8  | 7  | 9    | 10     | 7    | 8    | 8          | 9   | 7         | 81            | 10             | 1/                  |
|          | 6     | 12  | 13 | 13 | 14   | -      | 0    | 10   | 12         | 14  | 10        | 109           | 10             |                     |
|          | *7    | ~   | 1  | _  | _    |        | _    | )    | _          |     | _         |               | _              |                     |
|          | Total | 22  | 24 | 24 | 26   | 25     | 11   | 23   | <i>S</i> E | 26  | 21        | アマン           | IV             | 1                   |
|          | 1     | 0   | 0  | 0  | 0    | 0      | 0    | 0    | 0          | 0   | 0         | 0             | 10             | 0                   |
|          | 2     | 0   | 0  | 0  | 0    | 0      | 0    | 0    | 0          | Ü   | 0         | U             | 10             |                     |
|          | 3     | 0   | 0  | 0  | 0    | 0      | 4    | 0    | 0          | 0   | 4         | 8             | 10             | 1                   |
| 0.05 //  | 4     | -1  | 3  | 9  | 4.   | 5      | 0    | 4    | 5          | 4   | 0         | 33            | 10             | be                  |
| 0.25 g/l | 5     | >   | 8  | 9  | 8    | フ      | 8    | 12   |            | 10  |           | 83            | 10             | h                   |
|          | 6     | 13  | 12 | 10 | 11   | 12     | 13   | 0    | 13         | 10  | 11        | 105           | 10             |                     |
|          | 7     | ſ   | ~  | -  | -    | -,     | -    |      |            | _   | `         |               | -              |                     |
|          | Total | 24  | 23 | 23 | 23   | 24     | 25   | 16   | 25         | 24  | 22        | 229           | 10             | 1/-                 |
|          | 1     | 0   | 0  | 0  | 0    | 0      | 0    | 0    | 0          | 0   | 0         | 0             | 10             |                     |
|          | 2     | 0   | 0  | 0  | 0    | 0      | 0    | 0    | 0          | 0   | 0         | 0             | 10             | 6                   |
|          | 3     | 0   | 0  | 0  | 4    | C      | /3   | 0    | 0          | 3   | 3         | 13            | 10             | 2                   |
| 0.5 ~/1  | 4     | 3   | 3  | 4  | 0    | 2      | 0    | 4    | 4          | 0   | 0         | 23            | 10             | K                   |
| 0.5 g/l  | 5     | 7   | 7  | 8  | 10   | フ      | 7    | 8    | 8          | 7   | $\supset$ | 76            | 10             | 1/1                 |
|          | 6     |     | 10 | 13 | 13   | 0      | 12   | 11   | 10         | 13  | 11        | 104           | 10             | 1                   |
|          | 7     |     |    |    | -    |        | _    |      |            |     | _         |               |                | 1-7                 |
|          | Total | 211 | 20 | 25 | رر   | 12     | 24   | 23   | 22         | 23  | 21        | 216           | 10             |                     |

Circled fourth brood not used in statistical analysis.

<sup>7</sup>th day only used if <60% of the surviving control females have produced their third brood.

### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

### Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-111006

Start Date: 10/06/2011

| ~ .      |       |   |          | Nu | ımbe                                         | r of Y | oung l        | Produ | ced |        |            | Total<br>Live | No.<br>Live   | Analyst  |
|----------|-------|---|----------|----|----------------------------------------------|--------|---------------|-------|-----|--------|------------|---------------|---------------|----------|
| Sample   | Day   | A | В        | С  | D                                            | E      | F             | G     | H   | I      | J          | Young         | Adults        | Initials |
|          | 1     | 0 | 0        | 0  | 0                                            | 0      | 0             | 0     | 0   | 0      | 0          | 0             | 10            | M        |
|          | 2     | 0 | 0        | 0  | 0                                            | 0      | 0             | 0     | 0   | 0      | 0          | 0             | 10            | In       |
|          | 3     |   | 0        | 0  | 3                                            | 3      | 4             | 0     | 0   | 0      | 4          | 14            | 10            | 1        |
| 1.0 - /1 | 4     | 3 | L١       | کی | C                                            | 0      | 0             | 4     | 7   | 2      | 0          | 20            | 10            | m        |
| 1.0 g/l  | 5     | 0 | 7        | 0  | 8                                            | フ      | 2             | 0     | 0   | 0      | 6          | Ц(            | 10            | M        |
|          | 6     | 6 | 6        | 5  | 6                                            | 7      | 10            | 6     | フ   | 0      | 9          | 62            | 10            | 1/       |
|          | 7     | _ | _        | _  | -                                            | ر      | _             | 1     |     | _      | _          |               |               | 1        |
|          | Total | 9 | 17       | 8  | 17                                           | 17     | 21            | 10    | 11  | 8      | 19         | (37           | 10            |          |
|          | 1     | 0 | 0        | 0  | 0                                            | 0      | $\mathcal{O}$ | 0     | 0   | 0      | 0          | $\mathcal{C}$ | 10            | In       |
|          | 2     | 0 | 0        | 0  | 0                                            | 0      | 0             | 0     | 0   | 0      |            | C             | 10            |          |
|          | 3     | 0 | 0        | 0  | 0                                            | 0      | 0             | 0     | C   | 0      | $\bigcirc$ | $\mathcal{C}$ | 10            |          |
| 2.0 ~/1  | 4     | 0 | 0        | Z  | C                                            | 0      | 2             | C     | 0   | 0      | X          | 4             | 9             | 1        |
| 2.0 g/l  | 5     | 3 | 2        | 0  | 2                                            | 0      | 0             | 2     | 0   | 0      |            | 9             | 9             |          |
|          | 6     | C | X        | 2  | 0                                            | 0      | 0             | 0     | X   | Z      | _          | 4             | 7             |          |
|          | 7     |   | <u> </u> |    | <u>                                     </u> | _      |               |       | _   |        | _          |               | _             |          |
|          | Total | > | 12       | 4  | 2                                            | 0      | 2             | 2     | 0   | 2      | 0          | 17            | 7             | 11       |
|          | 1     | 人 | X        | X  | ×                                            | ン      | 入             | X     | 火   | $\geq$ | X          | 0             | 0             | M        |
|          | 2     |   | _        | _  | _                                            | _      | _             | _     | _   |        |            | -             |               | /_       |
|          | 3     | _ | _        | _  |                                              |        |               | _     | _   | _      | _          |               | _             | _        |
| 40 - 5   | 4     | _ | _        | _  | _                                            | _      |               | _     | _   |        |            |               | _             |          |
| 4.0 g/l  | 5     | _ | _        | _  |                                              | _      |               | _     | _   | _      | _          | ~             | _             |          |
|          | 6     |   |          | _  | _                                            | -      | _             |       | _   |        | _          |               |               |          |
|          | 7     | _ | _        | _  |                                              |        | _             | _     |     | _      |            | _             |               |          |
|          | Total | 0 | 0        | 0  | 0                                            | 0      | 0             | 0     | 0   | 0      | 0          | $\mathcal{O}$ | $\mathcal{O}$ | In       |

Circled fourth brood not used in statistical analysis.

<sup>7</sup>th day only used if <60% of the surviving control females have produced their third brood.

## CERIODAPHNIA DUBIA CHRONIC BIOASSAY

### Reference Toxicant - NaCl Water Chemistries Raw Data Sheet



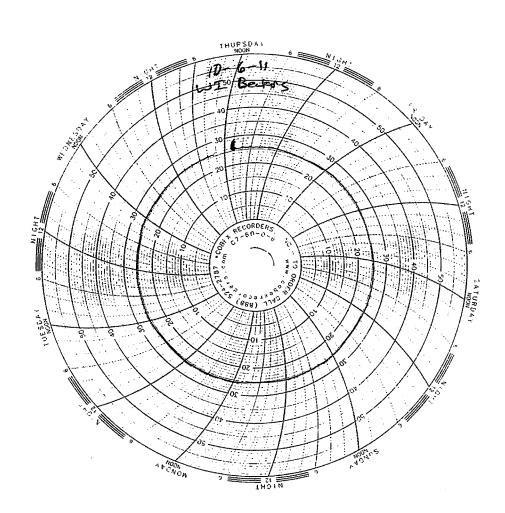
QA/QC No.: RT-111006

Start Date: 10/06/2011

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DA      | Y 1   | DA      | Y 2   | DA      | Y 3   | DA             | Y 4      | DA      | Y 5   | DA      | Y 6   | DA      | Y 7   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------|-------|---------|-------|----------------|----------|---------|-------|---------|-------|---------|-------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial | Final | Initial | Final | Initial | Final | Initial        | Final    | Initial | Final | Initial | Final | Initial | Final |
| Analyst I  | nitials:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1       | 2     | 2       | 2     | 1       | 2     | 2              |          |         | 2     | 2       | 1     |         |       |
| Time of Re | eadings:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1300    | 1300  | 1300    | 1700  | 1700    | 6300  | 1700           | 1315     | 1315    | 1330  | 1730    | 1300  |         |       |
|            | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.0     | 7.6   | 7.7     | 7.3   | 8,0     | 7.1   | 7.8            | 7-7      | 7.8     | 70    | 7.7     | 7.4   |         |       |
| Control    | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4     | 8.2   | 8,4     | 8.1   | 8.5     | 8.2   | 8.5            | 8.2      | 87      | 8.1   | 8.4     | 8-1   |         |       |
|            | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | २५, (   | ટપ. 7 | 24.9    | 24.7  | 25.1    | 2500  | र.उ. ७         | 24.4     | 24.8    | 2510  | 25,0    | 24.8  |         |       |
|            | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.9     | 7.9   | 77      | 7.3   | 7.9     | 6.9   | 7.9            | 7.8      | 7-8     | 7.1   | 7.9     | 27    |         | )     |
| 0.25 g/l   | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4     | 8.3   | 8,4     | 8.1   | 8.5     | 8.1   | 8.4            | 8,2      | 8,2     | 8.1   | 8.4     | 5-/   |         | _     |
|            | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25. 4   | 24.8  | 25:1    | 24.8  | 25.2    | 2520  | 18.1           | 24.3     | 246     | 24.6  | 2514    | 249   | _       | _     |
|            | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7. 9    | 7.9   | 8,0     | 7.3   | 8.0     | 7.1   | 8.0            | 75       | 7.9     | 7.1   | 820     | 78    | )       |       |
| 0.5 g/l    | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4     | 8.3   | 8,4     | 8.1   | 8.5     | 8.)   | 8.4            | 8.2      | 8.2     | 8-0   | 8.4     | 8-1   | _       |       |
|            | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55.1    | 24.7  | 24.8    | 24.7  | 24.9    | 25,0  | 25,1           | 24.6     | 25.6    | 24.7  | ४५.र    | 248   |         |       |
|            | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9     | 8.1   | 7.9     | 26    | 7.8     | 7.4   | 7.8            | 7.4      | 7.5     | 68    | 7.9     | 7.7   | _       |       |
| 1.0 g/l    | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4     | 8,3   | 8.4     | 8/2   | \$.4    | 8.3   | 8.4            | 83       | 8.2     | 8.0   | 8.3     | 8-1   | _       | _     |
|            | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ₹5,0    | 24.6  | 25.0    | 247   | 25.1    | 25.0  | 25.7           | 246      | 24.5    | 24.7  | 25,7    | 249   |         |       |
|            | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.0     | 8,1   | 7.9     | ?7    | 7.9     | 7.6   | 7.7            | 7.6      | 7.8     | 6.5   | 8.0     | 76    | _       | _     |
| 2.0 g/l    | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.3     | 8,4   | 8.4     | 8.)   | 8.4     | 8.3   | 8.4            | 8.2      | 83      | 8.7   | 8.3     | 80    | _       | _     |
|            | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.9    | 24.7  | 25,2    | 24,7  | 35.0    | 5 2.0 | ک <u>ټ</u> ، ن | 24.4     | 244     | ટપ 6  | 24.8    | 24.5  |         |       |
|            | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1     | 7.9   | _       | `     | ^       | )     | 1              | 1        | ( )     | _     |         | _     |         |       |
| 4.0 g/l    | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,7     | 8/3   |         | _     |         |       | _              | <u> </u> |         |       | _       | -     | _       |       |
|            | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25:1    | 24.7  |         | ~     |         |       |                | _        | _       |       | _       | _     | ^       |       |
|            | Dissolved Oxygen (DO) readings are in mg/l O2; Temperature (Temp) readings are in °C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |       |         |       |         |       |                |          |         |       |         |       |         |       |
|            | 2 1000 1 to the first the many of the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many that the many t |         |       |         |       |         |       |                |          |         |       |         |       |         |       |

|                                      |       | Control |       | High Concentration |       |       |  |
|--------------------------------------|-------|---------|-------|--------------------|-------|-------|--|
| Additional Parameters                | Day 1 | Day 3   | Day 5 | Day 1              | Day 3 | Day 5 |  |
| Conductivity (µS)                    | 324   | 3071    | 333   | 7531               | 3180  | 4260  |  |
| Alkalinity (mg/l CaCO <sub>3</sub> ) | 68    | 69      | 68    | 67                 | 69    | 74    |  |
| Hardness (mg/l CaCO <sub>3</sub> )   | 11    | 90      | 91    | 88                 | 88    | 80    |  |

| Source of Neonates |    |    |    |    |    |    |    |    |    |     |
|--------------------|----|----|----|----|----|----|----|----|----|-----|
| Replicate:         | A  | В  | С  | D  | E  | F  | G  | Н  | I  | J   |
| Brood ID:          | (A | 23 | 33 | 10 | ID | 2F | 24 | 36 | Иf | 3 H |




## Test Temperature Chart

Test No: RT-111006

Date Tested: 10/06/11 to 10/12/11

Acceptable Range: 25+/- 1°C



## **APPENDIX G**

## **Section 3**

Outfall 009 – November 6, 2011

MECX Data Validation Report



## DATA VALIDATION REPORT

## Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IUK0771

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IUK0771
Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

| Client ID                  | Laboratory ID | Sub-Laboratory<br>ID      | Matrix | Collected                | Method                                                                          |
|----------------------------|---------------|---------------------------|--------|--------------------------|---------------------------------------------------------------------------------|
| Outfall 009<br>(Composite) | IUK0771-02    | G1K080519-001<br>8963-001 | Water  | 11/6/2011<br>11:00:00 AM | 900. 901.1, 903.1, 904, 905, 906, 245.1, 245.1 Diss, 1613B, SM 2540D, ASTM 5174 |

#### II. Sample Management

No anomalies were observed regarding sample management. The samples were received within the temperature limit at TestAmerica-Irvine. The sub-contracted sample for Method 1613B in this SDG was received at TestAmerica-West Sacramento below the temperature limits of 4°C ±2°C, at 1°C; however the sample was not noted to be frozen or damaged. Eberline did not note the temperature upon receipt; however, due to the nonvolatile nature of the analytes, no qualifications were required. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon receipt at TestAmerica-West Sacramento and Eberline. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IUK0771

#### **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

Project: SSFL NPDES SDG: IUK0771

#### **Qualification Code Reference Table**

| Qualifier | Organics                                                                             | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                         | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                            | The sequence or number of<br>standards used for the calibration<br>was incorrect              |
| С         | Calibration %RSD or %D was noncompliant.                                             | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                           | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results.       | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike<br>Duplicate %R was not within control<br>limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                                | MS recovery was poor.                                                                         |
| Е         | Not applicable.                                                                      | Duplicates showed poor agreement.                                                             |
| I         | Internal standard performance was unsatisfactory.                                    | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                      | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                              | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                       | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                                  | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                              | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                         | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                                  | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                            | Not applicable.                                                                               |

#### **Qualification Code Reference Table Cont.**

| D      | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р      | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ    | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *  , * | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

#### III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: December 8, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects above the EDL for several target compounds, including all HpCDD and HxCDF isomers and their totals,1,2,3,4,7,8,9-HpCDF, total HpCDF, total TCDD, and OCDD. Some method blank results were reported as EMPCs; however, due to the extent of the method blank contamination, the reviewer deemed it appropriate to use all method blank results to qualify sample results. The method blank

DATA VALIDATION REPORT Project: SSFL NPDES
SDG: IUK0771

concentration of OCDD was insufficient to qualify the sample result. Sample results for the remaining individual isomer method blank contaminants were qualified as nondetected, "U," at the level of contamination. The result for total HxCDF was also qualified as nondetected, "U," as the peaks comprising the total in the sample were present at comparable concentrations in the method blank. Total results for HpCDD and HpCDF were qualified as estimated, "J," as only a portion of the total was considered method blank contamination.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613, and RPDs were within the laboratory control limit of ≤50%.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled internal standard recoveries for the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Individual isomer EMPCs qualified as nondetected for method blank contamination were not further qualified as EMPCs. Remaining individual isomer EMPCs were qualified as estimated nondetects, "UJ," at the level of the EMPC. The totals for HpCDF and HxCDD were qualified as estimated, "J," as the totals included individual isomers originally reported as EMPCs. Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

#### B. EPA METHODS 245.1—Mercury

Reviewed By: P. Meeks

Date Reviewed: December 10, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. Initial calibration r<sup>2</sup> values were ≥0.995. Initial and continuing calibration recoveries were within 85-115%. CRA recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.

Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

#### C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: December 10, 2011

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were preserved within five days of collection and analyzed within 180 days of collection.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The detector efficiencies were greater than 20%. The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG. All RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
  data package. The sample results and MDAs reported on the sample result form were
  verified against the raw data and no calculation or transcription errors were noted. Any

detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: December 10, 2011

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method SM2540D, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time was met.
- Calibration: The balance calibration check log was acceptable.
- Blanks: TSS was not detected in the method blank.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analysis was performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with

DATA VALIDATION REPORT Project: SSFL NPDES
SDG: IUK0771

"DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.

## Validated Sample Result Forms IUK0771

| Analysis Metho   |                | <u> </u>        | \ <b>.</b> | • 75     | WATER           |                  | 7 10 1 40 -             | 1 177               |
|------------------|----------------|-----------------|------------|----------|-----------------|------------------|-------------------------|---------------------|
| Sample Name      | Outfall 009 (0 | -               |            | ix Type: |                 |                  | /alidation Le           | vel: 1V             |
| Lab Sample Name: | IUK0771-02     | Sam             | ple Date:  | 11/6/201 | 1 11:00:00 A    | M                |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL         | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Gross Alpha      | 12587461       | 0.563           | 3          | 0.366    | pCi/L           | Jb               | J                       | DNQ                 |
| Gross Beta       | 12587472       | 1.7             | 4          | 0.824    | pCi/L           | Jb               | J                       | DNQ                 |
| Analysis Metho   | od 901.1       |                 |            |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | ) Matri    | ix Type: | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUK0771-02     | Sam             | ple Date:  | 11/6/201 | 1 11:00:00 A    | M                |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL         | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Cesium-137       | 10045973       | ND              | 20         | 0.966    | pCi/L           | U                | U                       |                     |
| Potassium-40     | 13966002       | ND              | 25         | 26.2     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od 903.1       |                 |            |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | ) Matri    | ix Type: | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUK0771-02     | Sam             | ple Date:  | 11/6/201 | 1 11:00:00 A    | M                |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL         | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium-226       | 13982633       | 0.166           | 1          | 0.68     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od 904         |                 |            |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | ) Matr     | ix Type: | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUK0771-02     | Sam             | ple Date:  | 11/6/201 | 1 11:00:00 A    | M                |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL         | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium-228       | 15262201       | 0.166           | 1          | 0.291    | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od 905         |                 |            |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | ) Matri    | ix Type: | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUK0771-02     | Sam             | ple Date:  | 11/6/201 | 1 11:00:00 A    | M                |                         |                     |
| Analyte          | CAS No         | Result          | RL         | MDL      | Result          | Lab              | Validation              | Validation          |
|                  |                | Value           |            |          | Units           | Qualifier        | Qualifier               | Notes               |

## Analysis Method 906

| Sample Name      | Outfall 009 (0 | Composite       | e) Matr   | ix Type: | WATER           |                  | Validation Le           | evel: IV            |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | IUK0771-02     | Sam             | ple Date: | 11/6/201 | 1 11:00:00 A    | M                |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Tritium          | 10028178       | -3.07           | 500       | 156      | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od ASTN        | 15174-          | .91       |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | ) Matr    | ix Type: | WATER           | 1                | Validation Le           | evel: IV            |
| Lab Sample Name: | IUK0771-02     | Sam             | ple Date: | 11/6/201 | 1 11:00:00 A    | M                |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Uranium, Total   | NA             | 0.107           | 1         | 0.017    | pCi/L           | Jb               | J                       | DNQ                 |
| Analysis Metho   | od EPA .       | 245.1           |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | ) Matr    | ix Type: | Water           | 1                | Validation Le           | evel: IV            |
| Lab Sample Name: | IUK0771-02     | Sam             | ple Date: | 11/6/201 | 1 11:00:00 A    | M                |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20      | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | od EPA .       | 245.1-L         | Diss -    |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (0 | Composite       | e) Matr   | ix Type: | Water           | 1                | Validation Le           | evel: IV            |
| Lab Sample Name: | IUK0771-02     | Sam             | ple Date: | 11/6/201 | 1 11:00:00 A    | M                |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20      | 0.10     | ug/l            |                  | U                       |                     |

## Analysis Method EPA-5 1613B

| Sample Name            | Outfall 009 (C | omposite        | ) Matri   | x Type: \ | WATER           | Validation Level: IV |                         |                     |  |
|------------------------|----------------|-----------------|-----------|-----------|-----------------|----------------------|-------------------------|---------------------|--|
| Lab Sample Name:       | IUK0771-02     | Sam             | ple Date: | 11/6/2011 | 11:00:00 A      | M                    |                         |                     |  |
| Analyte                | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| 1,2,3,4,6,7,8-HpCDD    | 35822-46-9     | ND              | 0.00005   | 0.0000006 | ug/L            | J, B                 | U                       | В                   |  |
| 1,2,3,4,6,7,8-HpCDF    | 67562-39-4     | 0.000006        | 0.00005   | 0.0000003 | ug/L            | J                    | J                       | DNQ                 |  |
| ,2,3,4,7,8,9-HpCDF     | 55673-89-7     | ND              | 0.00005   | 0.0000004 | ug/L            | J, Q, B              | U                       | В                   |  |
| 1,2,3,4,7,8-HxCDD      | 39227-28-6     | ND              | 0.00005   | 0.0000005 | ug/L            | J, Q                 | UJ                      | *III                |  |
| 1,2,3,4,7,8-HxCDF      | 70648-26-9     | ND              | 0.00005   | 0.0000003 | ug/L            | J, B                 | U                       | В                   |  |
| 1,2,3,6,7,8-HxCDD      | 57653-85-7     | ND              | 0.00005   | 0.0000004 | ug/L            | J, Q                 | UJ                      | *III                |  |
| 1,2,3,6,7,8-HxCDF      | 57117-44-9     | ND              | 0.00005   | 0.0000003 | ug/L            | J, Q, B              | U                       | В                   |  |
| 1,2,3,7,8,9-HxCDD      | 19408-74-3     | ND              | 0.00005   | 0.0000004 | ug/L            | J, Q                 | UJ                      | *III                |  |
| 1,2,3,7,8,9-HxCDF      | 72918-21-9     | ND              | 0.00005   | 0.0000003 | ug/L            | J, B                 | U                       | В                   |  |
| 1,2,3,7,8-PeCDD        | 40321-76-4     | ND              | 0.00005   | 0.000001  | ug/L            |                      | U                       |                     |  |
| 1,2,3,7,8-PeCDF        | 57117-41-6     | 0.000001        | 0.00005   | 0.0000009 | ug/L            | J                    | J                       | DNQ                 |  |
| 2,3,4,6,7,8-HxCDF      | 60851-34-5     | ND              | 0.00005   | 0.0000003 | ug/L            | J, Q, B              | U                       | В                   |  |
| 2,3,4,7,8-PeCDF        | 57117-31-4     | ND              | 0.00005   | 0.000001  | ug/L            |                      | U                       |                     |  |
| 2,3,7,8-TCDD           | 1746-01-6      | ND              | 0.00001   | 0.0000005 | ug/L            |                      | U                       |                     |  |
| 2,3,7,8-TCDF           | 51207-31-9     | ND              | 0.00001   | 0.0000007 | ug/L            |                      | U                       |                     |  |
| OCDD                   | 3268-87-9      | 0.00032         | 0.0001    | 0.0000015 | ug/L            | В                    |                         |                     |  |
| OCDF                   | 39001-02-0     | ND              | 0.0001    | 0.0000008 | ug/L            | J, B                 | U                       | В                   |  |
| Total HpCDD            | 37871-00-4     | 0.00005         | 0.00005   | 0.0000006 | ug/L            | J, B                 | J                       | B, DNQ              |  |
| Гotal HpCDF            | 38998-75-3     | 0.000016        | 0.00005   | 0.0000004 | ug/L            | J, Q, B              | J                       | B, DNQ, *III        |  |
| Гotal HxCDD            | 34465-46-8     | 0.000006        | 0.00005   | 0.0000004 | ug/L            | J, Q                 | J                       | DNQ, *III           |  |
| Гotal HxCDF            | 55684-94-1     | ND              | 0.00005   | 0.0000003 | ug/L            | J, Q, B              | U                       | В                   |  |
| Γotal PeCDD            | 36088-22-9     | ND              | 0.00005   | 0.000001  | ug/L            |                      | U                       |                     |  |
| Гotal PeCDF            | 30402-15-4     | 0.000001        | 0.00005   | 0.0000009 | ug/L            | J                    | J                       | DNQ                 |  |
| Total TCDD             | 41903-57-5     | ND              | 0.00001   | 0.0000005 | ug/L            |                      | U                       |                     |  |
| Γotal TCDF             | 55722-27-5     | ND              | 0.00001   | 0.0000007 | ug/L            |                      | U                       |                     |  |
| Analysis Metho         | od SM 25       | 540D            |           |           |                 |                      |                         |                     |  |
| Sample Name            | Outfall 009 (C | omposite        | ) Matri   | x Type:   | Water           | 7                    | alidation Le            | vel: IV             |  |
| Lab Sample Name:       | IUK0771-02     | Sam             | ple Date: | 11/6/2011 | 11:00:00 A      | M                    |                         |                     |  |
| Analyte                | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Total Suspended Solids | TSS            | 6.0             | 10        | 1.0       | mg/l            | J                    | J                       | DNQ                 |  |

## **APPENDIX G**

## Section 4

Outfall 009 – November 4, 5, & 6, 2011
Test America Analytical Laboratory Report



#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Routine Outfall 009

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 11/04/11-11/06/11

Received: 11/06/11 Issued: 11/30/11 11:06

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### **CASE NARRATIVE**

SAMPLE RECEIPT: Samples were received intact, at 3°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag.

| LABORATORY ID | CLIENT ID               | MATRIX |
|---------------|-------------------------|--------|
| IUK0771-01    | Outfall 009 (Grab)      | Water  |
| IUK0771-02    | Outfall 009 (Composite) | Water  |
| IUK0771-03    | Trin Blank              | Water  |

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

#### **TestAmerica Irvine**

Debby Wilson Project Manager



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 11/04/11-11/06/11

Report Number: IUK0771 Received: 11/06/11

Debby Wilson

**TestAmerica Irvine** 

Debby Wilson Project Manager



THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 11/04/11-11/06/11

Report Number: IUK0771 Received: 11/06/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                              | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUK0771-01 (Outfall 009 ( |           |         | Sample       | ed: 11/06/11       | l                |                    |         |                  |                    |
| Reporting Units: mg/l                |           |         |              |                    |                  |                    |         |                  |                    |
| Hexane Extractable Material (Oil &   | EPA 1664A | 11K2199 | 1.3          | 4.7                | ND               | 1                  | DA      | 11/16/11         |                    |
| Grease)                              |           |         |              |                    |                  |                    |         |                  |                    |



THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 11/04/11-11/06/11

Report Number: IUK0771 Received: 11/06/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

#### **METALS**

| Analyte                                | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUK0771-02 (Outfall 009 (Co |           |         | Sample       | ed: 11/06/11       | l                |                    |         |                  |                    |
| Reporting Units: ug/l                  |           |         |              |                    | -                |                    |         |                  |                    |
| Mercury                                | EPA 245.1 | 11K1548 | 0.10         | 0.20               | ND               | 1                  | DB      | 11/14/11         |                    |
| Antimony                               | EPA 200.8 | 11K1379 | 0.30         | 2.0                | 0.54             | 1                  | NH      | 11/12/11         | J                  |
| Cadmium                                | EPA 200.8 | 11K1379 | 0.10         | 1.0                | ND               | 1                  | NH      | 11/12/11         |                    |
| Copper                                 | EPA 200.8 | 11K1379 | 0.50         | 2.0                | 3.5              | 1                  | NH      | 11/12/11         |                    |
| Lead                                   | EPA 200.8 | 11K1379 | 0.20         | 1.0                | 1.5              | 1                  | NH      | 11/12/11         |                    |
| Thallium                               | EPA 200.8 | 11K1379 | 0.20         | 1.0                | 0.23             | 1                  | NH      | 11/12/11         | J                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 11/04/11-11/06/11

Report Number: IUK0771 Received: 11/06/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

### **DISSOLVED METALS**

| Analyte                              | Method         | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|----------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUK0771-02 (Outfall 009 ( | - cont.        |         |              | Sample             | ed: 11/06/11     | l                  |         |                  |                    |
| Reporting Units: ug/l                |                |         |              |                    |                  |                    |         |                  |                    |
| Mercury                              | EPA 245.1-Diss | 11K1549 | 0.10         | 0.20               | ND               | 1                  | db      | 11/14/11         |                    |
| Antimony                             | EPA 200.8-Diss | 11K1997 | 0.30         | 2.0                | 0.35             | 1                  | KB1     | 11/15/11         | J                  |
| Cadmium                              | EPA 200.8-Diss | 11K1997 | 0.10         | 1.0                | ND               | 1                  | KB1     | 11/15/11         |                    |
| Copper                               | EPA 200.8-Diss | 11K1997 | 0.50         | 2.0                | 4.3              | 1                  | KB1     | 11/15/11         |                    |
| Lead                                 | EPA 200.8-Diss | 11K1997 | 0.20         | 1.0                | 0.40             | 1                  | KB1     | 11/15/11         | J                  |
| Thallium                             | EPA 200.8-Diss | 11K1997 | 0.20         | 1.0                | ND               | 1                  | KB1     | 11/15/11         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 11/04/11-11/06/11

Report Number: IUK0771 Received: 11/06/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

### **INORGANICS**

| Analyte                                                         | Method     | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result  | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |  |  |
|-----------------------------------------------------------------|------------|---------|--------------|--------------------|-------------------|--------------------|---------|------------------|--------------------|--|--|--|
| Sample ID: IUK0771-02 (Outfall 009 (Composite) - Water) - cont. |            |         |              |                    | Sampled: 11/06/11 |                    |         |                  |                    |  |  |  |
| Reporting Units: mg/l                                           |            |         |              |                    |                   |                    |         |                  |                    |  |  |  |
| Chloride                                                        | EPA 300.0  | 11K0943 | 0.30         | 0.50               | 2.0               | 1                  | NN      | 11/07/11         |                    |  |  |  |
| Nitrate/Nitrite-N                                               | EPA 300.0  | 11K0943 | 0.15         | 0.26               | 0.65              | 1                  | NN      | 11/07/11         |                    |  |  |  |
| Sulfate                                                         | EPA 300.0  | 11K0943 | 0.30         | 0.50               | 4.2               | 1                  | NN      | 11/07/11         |                    |  |  |  |
| <b>Total Dissolved Solids</b>                                   | SM2540C    | 11K1039 | 1.0          | 10                 | 50                | 1                  | MC      | 11/08/11         |                    |  |  |  |
| <b>Total Suspended Solids</b>                                   | SM 2540D   | 11K1382 | 1.0          | 10                 | 6.0               | 1                  | DK1     | 11/09/11         | J                  |  |  |  |
| Sample ID: IUK0771-02 (Outfall 009 (Composite) - Water)         |            |         |              |                    | Sample            | ed: 11/06/11       | l       |                  |                    |  |  |  |
| Reporting Units: ug/l                                           |            |         |              |                    |                   |                    |         |                  |                    |  |  |  |
| Total Cyanide                                                   | SM4500CN-E | 11K2192 | 2.2          | 5.0                | ND                | 1                  | SLA     | 11/15/11         |                    |  |  |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

| Analyte                                                        | Method             | Batch      | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------------------|--------------------|------------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUK0771-02 (Outfall 009 (<br>Reporting Units: pCi/L | Composite) - Water | r) - cont. |              |                    | Sample           | ed: 11/06/11       | I       |                  |                    |
| Uranium, Total                                                 | 8693               | 8693       |              | 1                  | 0.107            | 1                  | NS      | 11/15/11         | Jb                 |
| Sample ID: IUK0771-03 (Trip Blank - Reporting Units: pCi/L     | Water)             |            |              |                    | Sample           | ed: 11/04/11       | I       |                  |                    |
| Uranium, Total                                                 | 8693               | 8693       |              | 1                  | ND               | 1                  | NS      | 11/15/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Routine Outfall 009 Sampled: 11/04/11-11/06/11

Arcadia, CA 91007 Report Number: IUK0771 Received: 11/06/11

Attention: Bronwyn Kelly

|                                                             |                    |       | 900          |                    |                  |                    |         |                  |                    |
|-------------------------------------------------------------|--------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                                                     | Method             | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUK0771-02 (Outfall 009 (                        | Composite) - Water | •)    |              |                    | Sample           | ed: 11/06/11       | l       |                  |                    |
| Reporting Units: pCi/L                                      |                    |       |              |                    |                  |                    |         |                  |                    |
| Gross Alpha                                                 | 900                | 8693  |              | 3                  | 0.563            | 1                  | DVP     | 11/16/11         | Jb                 |
| Gross Beta                                                  | 900                | 8693  |              | 4                  | 1.7              | 1                  | DVP     | 11/16/11         | Jb                 |
| Sample ID: IUK0771-03 (Trip Blank - 'Reporting Units: pCi/L | Water)             |       |              |                    | Sample           | ed: 11/04/11       | [       |                  |                    |
| Gross Alpha                                                 | 900                | 8693  |              | 3                  | 0.019            | 1                  | DVP     | 11/17/11         | U                  |
| Gross Beta                                                  | 900                | 8693  |              | 4                  | -0.377           | 1                  | DVP     | 11/17/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

### 901.1

| Analyte                                | Method             | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|--------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUK0771-02 (Outfall 009 (Co | omposite) - Water) | )     |              |                    | Sample           | ed: 11/06/1        | 1       |                  |                    |
| Reporting Units: pCi/L                 |                    |       |              |                    | _                |                    |         |                  |                    |
| Cesium-137                             | 901.1              | 8693  |              | 20                 | ND               | 1                  | RFM     | 11/11/11         | U                  |
| Potassium-40                           | 901.1              | 8693  |              | 25                 | ND               | 1                  | RFM     | 11/11/11         | U                  |
| Sample ID: IUK0771-03 (Trip Blank - W  | ater)              |       |              | Sampled: 11/04/11  |                  |                    |         |                  |                    |
| Reporting Units: pCi/L                 |                    |       |              |                    |                  |                    |         |                  |                    |
| Cesium-137                             | 901.1              | 8693  |              | 20                 | ND               | 1                  | RFM     | 11/11/11         | U                  |
| Potassium-40                           | 901.1              | 8693  |              | 25                 | ND               | 1                  | RFM     | 11/11/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

### 903.1

| Analyte                                                    | Method             | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------------------------------|--------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUK0771-02 (Outfall 009 (O                      | Composite) - Water | ·)    |              |                    | Sample           | ed: 11/06/11       | l       |                  |                    |
| Reporting Units: pCi/L                                     |                    |       |              |                    |                  |                    |         |                  |                    |
| Radium-226                                                 | 903.1              | 8693  |              | 1                  | 0.166            | 1                  | TM      | 11/16/11         | U                  |
| Sample ID: IUK0771-03 (Trip Blank - Reporting Units: pCi/L | Water)             |       |              |                    | Sample           | ed: 11/04/11       | l       |                  |                    |
| Radium-226                                                 | 903.1              | 8693  |              | 1                  | -0.226           | 1                  | TM      | 11/16/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

|                                     |                     |       | 904          |                    |                  |                    |         |                  |                    |
|-------------------------------------|---------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                             | Method              | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUK0771-02 (Outfall 009) | (Composite) - Water | )     |              |                    | Sample           | d: 11/06/1         | 1       |                  |                    |
| Reporting Units: pCi/L              |                     |       |              |                    |                  |                    |         |                  |                    |
| Radium-228                          | 904                 | 8693  |              | 1                  | 0.166            | 1                  | PAS     | 11/14/11         | U                  |
| Sample ID: IUK0771-03 (Trip Blank - | · Water)            |       |              |                    | Sample           | d: 11/04/1         | 1       |                  |                    |
| Reporting Units: pCi/L              |                     |       |              |                    |                  |                    |         |                  |                    |
| Radium-228                          | 904                 | 8693  |              | 1                  | 0.003            | 1                  | PAS     | 11/14/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

|                                      |                                                                         |       | 905          |                    |                  |                    |         |                  |                    |
|--------------------------------------|-------------------------------------------------------------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                              | Method                                                                  | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUK0771-02 (Outfall 009 ( | nple ID: IUK0771-02 (Outfall 009 (Composite) - Water) Sampled: 11/06/11 |       |              |                    |                  |                    |         |                  |                    |
| Reporting Units: pCi/L               |                                                                         |       |              |                    |                  |                    |         |                  |                    |
| Strontium-90                         | 905                                                                     | 8693  |              | 2                  | 0.03             | 1                  | NB      | 11/11/11         | U                  |
| Sample ID: IUK0771-03 (Trip Blank -  | Water)                                                                  |       |              |                    | Sample           | ed: 11/04/1        | 1       |                  |                    |
| Reporting Units: pCi/L               |                                                                         |       |              |                    |                  |                    |         |                  |                    |
| Strontium-90                         | 905                                                                     | 8693  |              | 2                  | -0.034           | 1                  | NB      | 11/11/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Analyte

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

500

Report Number: IUK0771

Batch

8693

Sampled: 11/04/11-11/06/11

11/11/11

U

Received: 11/06/11

WK

| 906          |                    |  |         |                  |                    |
|--------------|--------------------|--|---------|------------------|--------------------|
| MDL<br>Limit | Reporting<br>Limit |  | Analyst | Date<br>Analyzed | Data<br>Qualifiers |

1

Sampled: 11/06/11

-3.07

Sample ID: IUK0771-02 (Outfall 009 (Composite) - Water)

Method

906

Reporting Units: pCi/L

Tritium

TestAmerica Irvine



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

### EPA-5 1613Bx

| Analyte                                | Method             | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|--------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUK0771-02 (Outfall 009 (C  | omnosite) - Water) | - cont  |              |                    | Cample           | d. 11/06/11        |         |                  |                    |
| Reporting Units: ug/L                  | omposite) water)   | cont.   |              |                    | Sample           | d: 11/06/11        | L       |                  |                    |
| 1,2,3,4,6,7,8-HpCDD                    | EPA-5 1613B        | 1314130 | 0.0000006    | 1 0.00005          | 0.00002          | 1                  | SO      | 11/11/11         | J, B               |
| 1,2,3,4,6,7,8-HpCDF                    | EPA-5 1613B        |         |              | 5 0.00005          | 0.0000067        |                    | SO      | 11/11/11         | J                  |
| 1,2,3,4,7,8,9-HpCDF                    | EPA-5 1613B        |         |              | 7 0.00005          | 0.0000021        |                    | SO      | 11/11/11         | J, Q, B            |
| 1,2,3,4,7,8-HxCDD                      | EPA-5 1613B        |         |              | 2 0.00005          | 0.00000096       |                    | SO      | 11/11/11         | J, Q               |
| 1,2,3,4,7,8-HxCDF                      | EPA-5 1613B        |         |              | 5 0.00005          | 0.0000028        |                    | SO      | 11/11/11         | J, B               |
| 1,2,3,6,7,8-HxCDD                      | EPA-5 1613B        |         |              | 6 0.00005          | 0.0000014        |                    | SO      | 11/11/11         | J, Q               |
| 1,2,3,6,7,8-HxCDF                      | EPA-5 1613B        |         |              | 2 0.00005          | 0.000001         | 1                  | SO      | 11/11/11         | J, Q, B            |
| 1,2,3,7,8,9-HxCDD                      | EPA-5 1613B        |         |              | 5 0.00005          | 0.0000015        | 1                  | SO      | 11/11/11         | J, Q               |
| 1,2,3,7,8,9-HxCDF                      | EPA-5 1613B        | 1314130 | 0.0000003    | 6 0.00005          | 0.0000014        | 1                  | SO      | 11/11/11         | J, B               |
| 1,2,3,7,8-PeCDD                        | EPA-5 1613B        | 1314130 | 0.000001     | 0.00005            | ND               | 1                  | SO      | 11/11/11         |                    |
| 1,2,3,7,8-PeCDF                        | EPA-5 1613B        | 1314130 | 0.0000009    | 4 0.00005          | 0.0000016        | 1                  | SO      | 11/11/11         | J                  |
| 2,3,4,6,7,8-HxCDF                      | EPA-5 1613B        | 1314130 | 0.0000003    | 1 0.00005          | 0.0000011        | 1                  | SO      | 11/11/11         | J, Q, B            |
| 2,3,4,7,8-PeCDF                        | EPA-5 1613B        | 1314130 | 0.000001     | 0.00005            | ND               | 1                  | SO      | 11/11/11         |                    |
| 2,3,7,8-TCDD                           | EPA-5 1613B        | 1314130 | 0.0000005    | 8 0.00001          | ND               | 1                  | SO      | 11/11/11         |                    |
| 2,3,7,8-TCDF                           | EPA-5 1613B        | 1314130 | 0.0000007    | 5 0.00001          | ND               | 1                  | SO      | 11/11/11         |                    |
| OCDD                                   | EPA-5 1613B        | 1314130 | 0.0000013    | 5 0.0001           | 0.00032          | 1                  | SO      | 11/11/11         | В                  |
| OCDF                                   | EPA-5 1613B        | 1314130 | 0.0000008    | 5 0.0001           | 0.000019         | 1                  | SO      | 11/11/11         | J, B               |
| Total HpCDD                            | EPA-5 1613B        | 1314130 | 0.0000006    | 1 0.00005          | 0.00005          | 1                  | SO      | 11/11/11         | J, B               |
| Total HpCDF                            | EPA-5 1613B        | 1314130 | 0.0000004    | 0.00005            | 0.000016         | 1                  | SO      | 11/11/11         | J, Q, B            |
| Total HxCDD                            | EPA-5 1613B        | 1314130 | 0.0000004    | 8 0.00005          | 0.0000069        | 1                  | SO      | 11/11/11         | J, Q               |
| Total HxCDF                            | EPA-5 1613B        | 1314130 | 0.0000003    | 4 0.00005          | 0.000011         | 1                  | SO      | 11/11/11         | J, Q, B            |
| Total PeCDD                            | EPA-5 1613B        | 1314130 | 0.000001     | 0.00005            | ND               | 1                  | SO      | 11/11/11         |                    |
| Total PeCDF                            | EPA-5 1613B        | 1314130 | 0.0000009    | 9 0.00005          | 0.0000016        | 1                  | SO      | 11/11/11         | J                  |
| Total TCDD                             | EPA-5 1613B        | 1314130 | 0.0000005    | 8 0.00001          | ND               | 1                  | SO      | 11/11/11         |                    |
| Total TCDF                             | EPA-5 1613B        | 1314130 | 0.0000007    | 5 0.00001          | ND               | 1                  | SO      | 11/11/11         |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (23 | <i>B-140%)</i>     |         |              |                    | 61 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28 | ?-143%)            |         |              |                    | 65 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (26 | (-138%)            |         |              |                    | 62 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-1 | (41%)              |         |              |                    | 69 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-1 |                    |         |              |                    | 68 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-1 |                    |         |              |                    | 69 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-1 | *                  |         |              |                    | 71 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-1 |                    |         |              |                    | 72 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDD (25-18) |                    |         |              |                    | 69 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDF (24-18) |                    |         |              |                    | 69 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-1 |                    |         |              |                    | 72 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF (21-178 |                    |         |              |                    | 73 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDD (25-164%)  |                    |         |              |                    | 68 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDF (24-169%)  | )                  |         |              |                    | 70 %             |                    |         |                  |                    |
| Surrogate: 13C-OCDD (17-157%)          | 0.4)               |         |              |                    | 59 %             |                    |         |                  |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-197  | %)                 |         |              |                    | 86 %             |                    |         |                  |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Routine Outfall 009 Sampled: 11/04/11-11/06/11

Arcadia, CA 91007 Report Number: IUK0771 Received: 11/06/11

Attention: Bronwyn Kelly

### SHORT HOLD TIME DETAIL REPORT

| Sample ID: Outfall 009 (Composite) (IUK077 | Hold Time<br>(in days)<br>71-02) - Water | Date/Time<br>Sampled | Date/Time<br>Received | Date/Time<br>Extracted | Date/Time<br>Analyzed |
|--------------------------------------------|------------------------------------------|----------------------|-----------------------|------------------------|-----------------------|
| EPA 300.0                                  | 2                                        | 11/06/2011 11:00     | 11/06/2011 15:18      | 11/07/2011 16:30       | 11/07/2011 17:01      |
| Filtration                                 | 1                                        | 11/06/2011 11:00     | 11/06/2011 15:18      | 11/07/2011 14:16       | 11/07/2011 14:17      |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

### HEXANE EXTRACTABLE MATERIAL

|                                            |          | Reporting |     |       |         | Spike | Source |      | %REC   |     | RPD   | Data       |
|--------------------------------------------|----------|-----------|-----|-------|---------|-------|--------|------|--------|-----|-------|------------|
| Analyte                                    | Result   | Limit     | MDL | Units | Analyst | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11K2199 Extracted: 11/16/1          | <u>1</u> |           |     |       |         |       |        |      |        |     |       |            |
| Blank Analyzed: 11/16/2011 (11K2199-E      | BLK1)    |           |     |       |         |       |        |      |        |     |       |            |
| Hexane Extractable Material (Oil & Grease) | ND       | 5.0       | 1.4 | mg/l  | DA      |       |        |      |        |     |       |            |
| LCS Analyzed: 11/16/2011 (11K2199-BS       | 51)      |           |     |       |         |       |        |      |        |     |       | MNR1       |
| Hexane Extractable Material (Oil & Grease) | 18.1     | 5.0       | 1.4 | mg/l  | DA      | 20.0  |        | 90   | 78-114 |     |       |            |
| LCS Dup Analyzed: 11/16/2011 (11K219       | 99-BSD1) |           |     |       |         |       |        |      |        |     |       |            |
| Hexane Extractable Material (Oil & Grease) | 18.4     | 5.0       | 1.4 | mg/l  | DA      | 20.0  |        | 92   | 78-114 | 2   | 11    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 11/04/11-11/06/11

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771 Received: 11/06/11

## METHOD BLANK/QC DATA

### **METALS**

|                                        |             | Reporting |      |       |         | Spike   | Source  |      | %REC   |     | RPD   | Data       |
|----------------------------------------|-------------|-----------|------|-------|---------|---------|---------|------|--------|-----|-------|------------|
| Analyte                                | Result      | Limit     | MDL  | Units | Analyst | Level   | Result  | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11K1379 Extracted: 11/09/1      | 1           |           |      |       |         |         |         |      |        |     |       |            |
|                                        | <del></del> |           |      |       |         |         |         |      |        |     |       |            |
| Blank Analyzed: 11/12/2011 (11K1379-1  | BLK1)       |           |      |       |         |         |         |      |        |     |       |            |
| Antimony                               | ND          | 2.0       | 0.30 | ug/l  | NH      |         |         |      |        |     |       |            |
| Cadmium                                | ND          | 1.0       | 0.10 | ug/l  | NH      |         |         |      |        |     |       |            |
| Copper                                 | ND          | 2.0       | 0.50 | ug/l  | NH      |         |         |      |        |     |       |            |
| Lead                                   | ND          | 1.0       | 0.20 | ug/l  | NH      |         |         |      |        |     |       |            |
| Thallium                               | ND          | 1.0       | 0.20 | ug/l  | NH      |         |         |      |        |     |       |            |
| LCS Analyzed: 11/12/2011 (11K1379-B    | S1)         |           |      |       |         |         |         |      |        |     |       |            |
| Antimony                               | 79.9        | 2.0       | 0.30 | ug/l  | NH      | 80.0    |         | 100  | 85-115 |     |       |            |
| Cadmium                                | 79.6        | 1.0       | 0.10 | ug/l  | NH      | 80.0    |         | 100  | 85-115 |     |       |            |
| Copper                                 | 77.3        | 2.0       | 0.50 | ug/l  | NH      | 80.0    |         | 97   | 85-115 |     |       |            |
| Lead                                   | 75.9        | 1.0       | 0.20 | ug/l  | NH      | 80.0    |         | 95   | 85-115 |     |       |            |
| Thallium                               | 76.2        | 1.0       | 0.20 | ug/l  | NH      | 80.0    |         | 95   | 85-115 |     |       |            |
| Matrix Spike Analyzed: 11/12/2011 (111 | K1379-MS1   | )         |      |       |         | Source: | IUK0771 | -02  |        |     |       |            |
| Antimony                               | 72.9        | 2.0       | 0.30 | ug/l  | NH      | 80.0    | 0.544   | 90   | 70-130 |     |       |            |
| Cadmium                                | 72.4        | 1.0       | 0.10 | ug/l  | NH      | 80.0    | ND      | 91   | 70-130 |     |       |            |
| Copper                                 | 73.8        | 2.0       | 0.50 | ug/l  | NH      | 80.0    | 3.49    | 88   | 70-130 |     |       |            |
| Lead                                   | 71.2        | 1.0       | 0.20 | ug/l  | NH      | 80.0    | 1.54    | 87   | 70-130 |     |       |            |
| Thallium                               | 69.8        | 1.0       | 0.20 | ug/l  | NH      | 80.0    | 0.225   | 87   | 70-130 |     |       |            |
| Matrix Spike Analyzed: 11/14/2011 (111 | K1379-MS2   | )         |      |       |         | Source: | IUK1142 | -01  |        |     |       |            |
| Antimony                               | 56.1        | 2.0       | 0.30 | ug/l  | NH      | 80.0    | 1.21    | 69   | 70-130 |     |       | <i>M</i> 2 |
| Cadmium                                | 79.1        | 1.0       | 0.10 | ug/l  | NH      | 80.0    | 4.31    | 94   | 70-130 |     |       |            |
| Copper                                 | 433         | 2.0       | 0.50 | ug/l  | NH      | 80.0    | 338     | 119  | 70-130 |     |       |            |
| Lead                                   | 104         | 1.0       | 0.20 | ug/l  | NH      | 80.0    | 27.8    | 96   | 70-130 |     |       |            |
| Thallium                               | 75.9        | 1.0       | 0.20 | ug/l  | NH      | 80.0    | 0.218   | 95   | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 11/12/2011  | (11K1379-   | MSD1)     |      |       |         | Source: | IUK0771 | -02  |        |     |       |            |
| Antimony                               | 81.1        | 2.0       | 0.30 | ug/l  | NH      | 80.0    | 0.544   | 101  | 70-130 | 11  | 20    |            |
| Cadmium                                | 81.6        | 1.0       | 0.10 | ug/l  | NH      | 80.0    | ND      | 102  | 70-130 | 12  | 20    |            |
| Copper                                 | 83.1        | 2.0       | 0.50 | ug/l  | NH      | 80.0    | 3.49    | 99   | 70-130 | 12  | 20    |            |
| Lead                                   | 80.5        | 1.0       | 0.20 | ug/l  | NH      | 80.0    | 1.54    | 99   | 70-130 | 12  | 20    |            |
| Thallium                               | 79.3        | 1.0       | 0.20 | ug/l  | NH      | 80.0    | 0.225   | 99   | 70-130 | 13  | 20    |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

#### **METALS**

|                                        |            | Reporting |      |       |         | Spike   | Source  |      | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|------|-------|---------|---------|---------|------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL  | Units | Analyst | Level   | Result  | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11K1548 Extracted: 11/14/1      | <u>1</u>   |           |      |       |         |         |         |      |        |     |       |            |
| Blank Analyzed: 11/14/2011 (11K1548-E  | BLK1)      |           |      |       |         |         |         |      |        |     |       |            |
| Mercury                                | ND         | 0.20      | 0.10 | ug/l  | DB      |         |         |      |        |     |       |            |
| LCS Analyzed: 11/14/2011 (11K1548-BS   | 81)        |           |      |       |         |         |         |      |        |     |       |            |
| Mercury                                | 8.24       | 0.20      | 0.10 | ug/l  | DB      | 8.00    |         | 103  | 85-115 |     |       |            |
| Matrix Spike Analyzed: 11/14/2011 (111 | K1548-MS1) |           |      |       |         | Source: | IUK0678 | -01  |        |     |       |            |
| Mercury                                | 8.04       | 0.20      | 0.10 | ug/l  | DB      | 8.00    | ND      | 101  | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 11/14/2011  | (11K1548-N | ASD1)     |      |       |         | Source: | IUK0678 | -01  |        |     |       |            |
| Mercury                                | 7.97       | 0.20      | 0.10 | ug/l  | DB      | 8.00    | ND      | 100  | 70-130 | 0.8 | 20    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

| Analyte                                | Result     | Reporting<br>Limit | MDL  | Units | Analyst | Spike<br>Level | Source<br>Result |     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|------|-------|---------|----------------|------------------|-----|----------------|-----|--------------|--------------------|
| Batch: 11K1549 Extracted: 11/14/1      | <u>1</u>   |                    |      |       |         |                |                  |     |                |     |              |                    |
| Blank Analyzed: 11/14/2011 (11K1549-E  | DI 1/21)   |                    |      |       |         |                |                  |     |                |     |              |                    |
| Mercury                                | ND         | 0.20               | 0.10 | ug/l  | db      |                |                  |     |                |     |              |                    |
| ·                                      |            |                    |      | g, -  |         |                |                  |     |                |     |              |                    |
| LCS Analyzed: 11/14/2011 (11K1549-BS   | 8.37       | 0.20               | 0.10 | a/1   | db      | 8.00           |                  | 105 | 85-115         |     |              |                    |
| Mercury                                | 6.37       | 0.20               | 0.10 | ug/l  | uв      | 8.00           |                  | 103 | 83-113         |     |              |                    |
| Matrix Spike Analyzed: 11/14/2011 (111 | K1549-MS1) |                    |      |       |         | Source:        | IUK0706          | -02 |                |     |              |                    |
| Mercury                                | 8.43       | 0.20               | 0.10 | ug/l  | db      | 8.00           | ND               | 105 | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 11/14/2011  | (11K1549-N | MSD1)              |      |       |         | Source:        | IUK0706          | -02 |                |     |              |                    |
| Mercury                                | 8.53       | 0.20               | 0.10 | ug/l  | db      | 8.00           | ND               | 107 | 70-130         | 1   | 20           |                    |
| Batch: 11K1997 Extracted: 11/14/13     | <u>1_</u>  |                    |      |       |         |                |                  |     |                |     |              |                    |
|                                        | <u> </u>   |                    |      |       |         |                |                  |     |                |     |              |                    |
| Blank Analyzed: 11/15/2011 (11K1997-F  | BLK1)      |                    |      |       |         |                |                  |     |                |     |              |                    |
| Antimony                               | ND         | 2.0                | 0.30 | ug/l  | KB1     |                |                  |     |                |     |              |                    |
| Cadmium                                | ND         | 1.0                | 0.10 | ug/l  | KB1     |                |                  |     |                |     |              |                    |
| Copper                                 | ND         | 2.0                | 0.50 | ug/l  | KB1     |                |                  |     |                |     |              |                    |
| Lead                                   | ND         | 1.0                | 0.20 | ug/l  | KB1     |                |                  |     |                |     |              |                    |
| Thallium                               | ND         | 1.0                | 0.20 | ug/l  | KB1     |                |                  |     |                |     |              |                    |
| LCS Analyzed: 11/15/2011 (11K1997-BS   | 51)        |                    |      |       |         |                |                  |     |                |     |              |                    |
| Antimony                               | 77.7       | 2.0                | 0.30 | ug/l  | KB1     | 80.0           |                  | 97  | 85-115         |     |              |                    |
| Cadmium                                | 77.0       | 1.0                | 0.10 | ug/l  | KB1     | 80.0           |                  | 96  | 85-115         |     |              |                    |
| Copper                                 | 77.5       | 2.0                | 0.50 | ug/l  | KB1     | 80.0           |                  | 97  | 85-115         |     |              |                    |
| Lead                                   | 78.0       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           |                  | 97  | 85-115         |     |              |                    |
| Thallium                               | 77.9       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           |                  | 97  | 85-115         |     |              |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

| Analyte                                | Result     | Reporting<br>Limit | MDL  | Units | Analyst | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|------|-------|---------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11K1997 Extracted: 11/14/11     | · <u> </u> |                    |      |       |         |                |                  |      |                |     |              |                    |
| Matrix Spike Analyzed: 11/15/2011 (11K | (1997-MS1) |                    |      |       |         | Source:        | IUK1712          | -01  |                |     |              |                    |
| Antimony                               | 80.9       | 2.0                | 0.30 | ug/l  | KB1     | 80.0           | 2.33             | 98   | 70-130         |     |              |                    |
| Cadmium                                | 76.8       | 1.0                | 0.10 | ug/l  | KB1     | 80.0           | 0.346            | 96   | 70-130         |     |              |                    |
| Copper                                 | 122        | 2.0                | 0.50 | ug/l  | KB1     | 80.0           | 46.3             | 95   | 70-130         |     |              |                    |
| Lead                                   | 77.2       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           | 1.42             | 95   | 70-130         |     |              |                    |
| Thallium                               | 75.4       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           | ND               | 94   | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 11/15/2011  | (11K1997-M | ISD1)              |      |       |         | Source:        | IUK1712          | -01  |                |     |              |                    |
| Antimony                               | 79.9       | 2.0                | 0.30 | ug/l  | KB1     | 80.0           | 2.33             | 97   | 70-130         | 1   | 20           |                    |
| Cadmium                                | 75.8       | 1.0                | 0.10 | ug/l  | KB1     | 80.0           | 0.346            | 94   | 70-130         | 1   | 20           |                    |
| Copper                                 | 121        | 2.0                | 0.50 | ug/l  | KB1     | 80.0           | 46.3             | 94   | 70-130         | 0.9 | 20           |                    |
| Lead                                   | 75.6       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           | 1.42             | 93   | 70-130         | 2   | 20           |                    |
| Thallium                               | 74.2       | 1.0                | 0.20 | ug/l  | KB1     | 80.0           | ND               | 93   | 70-130         | 2   | 20           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

### **INORGANICS**

|                                        | ]          | Reporting |      |       |         | Spike   | Source  |      | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|------|-------|---------|---------|---------|------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL  | Units | Analyst | Level   | Result  | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11K0943 Extracted: 11/07/11     |            |           |      |       |         |         |         |      |        |     |       |            |
|                                        |            |           |      |       |         |         |         |      |        |     |       |            |
| Blank Analyzed: 11/07/2011 (11K0943-B  | LK1)       |           |      |       |         |         |         |      |        |     |       |            |
| Chloride                               | ND         | 0.50      | 0.30 | mg/l  | NN      |         |         |      |        |     |       |            |
| Nitrate/Nitrite-N                      | ND         | 0.26      | 0.15 | mg/l  | NN      |         |         |      |        |     |       |            |
| Sulfate                                | ND         | 0.50      | 0.30 | mg/l  | NN      |         |         |      |        |     |       |            |
| LCS Analyzed: 11/07/2011 (11K0943-BS   | 1)         |           |      |       |         |         |         |      |        |     |       |            |
| Chloride                               | 4.68       | 0.50      | 0.30 | mg/l  | NN      | 5.00    |         | 94   | 90-110 |     |       |            |
| Sulfate                                | 9.68       | 0.50      | 0.30 | mg/l  | NN      | 10.0    |         | 97   | 90-110 |     |       |            |
| Matrix Spike Analyzed: 11/07/2011 (11K | (0943-MS1) |           |      |       |         | Source: | IUK0774 | -23  |        |     |       |            |
| Chloride                               | 223        | 10        | 6.0  | mg/l  | NN      | 50.0    | 179     | 87   | 80-120 |     |       |            |
| Sulfate                                | 122        | 10        | 6.0  | mg/l  | NN      | 100     | 24.5    | 98   | 80-120 |     |       |            |
| Matrix Spike Analyzed: 11/07/2011 (11K | (0943-MS2) |           |      |       |         | Source: | IUK0876 | -02  |        |     |       |            |
| Chloride                               | 118        | 10        | 6.0  | mg/l  | NN      | 50.0    | 71.0    | 93   | 80-120 |     |       |            |
| Sulfate                                | 221        | 10        | 6.0  | mg/l  | NN      | 100     | 112     | 109  | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 11/07/2011  | (11K0943-M | ISD1)     |      |       |         | Source: | IUK0774 | -23  |        |     |       |            |
| Chloride                               | 222        | 10        | 6.0  | mg/l  | NN      | 50.0    | 179     | 86   | 80-120 | 0.2 | 20    |            |
| Sulfate                                | 129        | 10        | 6.0  | mg/l  | NN      | 100     | 24.5    | 104  | 80-120 | 5   | 20    |            |
| Batch: 11K1039 Extracted: 11/08/11     | <u>L</u>   |           |      |       |         |         |         |      |        |     |       |            |
| Blank Analyzed: 11/08/2011 (11K1039-B  | LK1)       |           |      |       |         |         |         |      |        |     |       |            |
| Total Dissolved Solids                 | ND         | 10        | 1.0  | mg/l  | MC      |         |         |      |        |     |       |            |
| LCS Analyzed: 11/08/2011 (11K1039-BS   | 1)         |           |      |       |         |         |         |      |        |     |       |            |
| Total Dissolved Solids                 | 996        | 10        | 1.0  | mg/l  | MC      | 1000    |         | 100  | 90-110 |     |       |            |

## TestAmerica Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

### **INORGANICS**

|                                               |                 | Reporting |     |       |         | Spike   | Source   |      | %REC   |     | RPD   | Data       |
|-----------------------------------------------|-----------------|-----------|-----|-------|---------|---------|----------|------|--------|-----|-------|------------|
| Analyte                                       | Result          | Limit     | MDL | Units | Analyst | Level   | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11K1039 Extracted: 11/08/11            | <u>_</u>        |           |     |       |         |         |          |      |        |     |       |            |
|                                               |                 |           |     |       |         |         |          |      |        |     |       |            |
| <b>Duplicate Analyzed: 11/08/2011 (11K103</b> | 9-DUP1)         |           |     |       |         | Source: | IUK0820- | -02  |        |     |       |            |
| Total Dissolved Solids                        | 487             | 10        | 1.0 | mg/l  | MC      |         | 479      |      |        | 2   | 10    |            |
| Batch: 11K1382 Extracted: 11/09/11            | <u>L</u>        |           |     |       |         |         |          |      |        |     |       |            |
| Blank Analyzed: 11/09/2011 (11K1382-B         | LK1)            |           |     |       |         |         |          |      |        |     |       |            |
| Total Suspended Solids                        | ND              | 10        | 1.0 | mg/l  | DK1     |         |          |      |        |     |       |            |
| LCS Analyzed: 11/09/2011 (11K1382-BS          | 1)              |           |     |       |         |         |          |      |        |     |       |            |
| Total Suspended Solids                        | 1000            | 10        | 1.0 | mg/l  | DK1     | 1000    |          | 100  | 85-115 |     |       |            |
| Duplicate Analyzed: 11/09/2011 (11K138        | <b>2-DUP1</b> ) |           |     |       |         | Source: | IUK0896  | -01  |        |     |       |            |
| Total Suspended Solids                        | 30.0            | 10        | 1.0 | mg/l  | DK1     |         | 30.0     |      |        | 0   | 10    |            |
| Batch: 11K2192 Extracted: 11/15/11            | <u>_</u>        |           |     |       |         |         |          |      |        |     |       |            |
| Blank Analyzed: 11/15/2011 (11K2192-B         | LK1)            |           |     |       |         |         |          |      |        |     |       |            |
| Total Cyanide                                 | ND              | 5.0       | 2.2 | ug/l  | SLA     |         |          |      |        |     |       |            |
| LCS Analyzed: 11/15/2011 (11K2192-BS          | 1)              |           |     |       |         |         |          |      |        |     |       |            |
| Total Cyanide                                 | 104             | 5.0       | 2.2 | ug/l  | SLA     | 100     |          | 104  | 90-110 |     |       |            |
| Matrix Spike Analyzed: 11/15/2011 (11K        | (2192-MS1)      | )         |     |       |         | Source: | IUK0878  | -03  |        |     |       |            |
| Total Cyanide                                 | 107             | 5.0       | 2.2 | ug/l  | SLA     | 100     | ND       | 107  | 70-115 |     |       |            |
| Matrix Spike Dup Analyzed: 11/15/2011         | (11K2192-       | MSD1)     |     |       |         | Source: | IUK0878  | -03  |        |     |       |            |
| Total Cyanide                                 | 102             | 5.0       | 2.2 | ug/l  | SLA     | 100     | ND       | 102  | 70-115 | 5   | 15    |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

|                                        |        | Reporting |     |       |         | Spike   | Source  |      | %REC   |     | RPD   | Data       |
|----------------------------------------|--------|-----------|-----|-------|---------|---------|---------|------|--------|-----|-------|------------|
| Analyte                                | Result | Limit     | MDL | Units | Analyst | Level   | Result  | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 8693 Extracted: 11/15/11</b> |        |           |     |       |         |         |         |      |        |     |       |            |
| LCS Analyzed: 11/15/2011 (S111021-03)  | )      |           |     |       |         | Source: |         |      |        |     |       |            |
| Uranium, Total                         | 60.1   | 1         | N/A | pCi/L | NS      | 56.5    |         | 106  | 80-120 |     |       |            |
| Blank Analyzed: 11/15/2011 (S111021-0- | 4)     |           |     |       |         | Source: |         |      |        |     |       |            |
| Uranium, Total                         | ND     | 1         | N/A | pCi/L | NS      |         |         |      | -      |     |       | U          |
| Duplicate Analyzed: 11/15/2011 (S11102 | 21-05) |           |     |       |         | Source: | IUK0771 | -02  |        |     |       |            |
| Uranium, Total                         | 0.098  | 1         | N/A | pCi/L | NS      |         | 0.107   |      | -      | 9   |       | Jb         |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

| Analyte                                         | Result   | Reporting<br>Limit | MDL | Units | Analyst | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------------|----------|--------------------|-----|-------|---------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 8693 Extracted: 11/15/11                 |          |                    |     |       |         |                |                  |      |                |     |              |                    |
| LCS Analyzed: 11/28/2011 (S111021-03)           |          |                    |     |       |         | Source:        |                  |      |                |     |              |                    |
| Gross Alpha                                     | 39.6     | 3                  | N/A | pCi/L | DVP     | 33.7           |                  | 118  | 70-130         |     |              |                    |
| Gross Beta                                      | 26.8     | 4                  | N/A | pCi/L | DVP     | 28.6           |                  | 94   | 70-130         |     |              |                    |
| Blank Analyzed: 11/22/2011 (S111021-04          | <b>)</b> |                    |     |       |         | Source:        |                  |      |                |     |              |                    |
| Gross Alpha                                     | -0.078   | 3                  | N/A | pCi/L | DVP     |                |                  |      | -              |     |              | U                  |
| Gross Beta                                      | -0.352   | 4                  | N/A | pCi/L | DVP     |                |                  |      | -              |     |              | U                  |
| <b>Duplicate Analyzed: 11/22/2011 (S11102</b> ) | 1-05)    |                    |     |       |         | Source:        | IUK0771          | -02  |                |     |              |                    |
| Gross Alpha                                     | 0.273    | 3                  | N/A | pCi/L | DVP     |                | 0.563            |      | -              | 69  |              | U                  |
| Gross Beta                                      | 2.38     | 4                  | N/A | pCi/L | DVP     |                | 1.7              |      | -              | 33  |              | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

### 901.1

| Analyte                                | Result | Reporting<br>Limit | MDL | Units | Analyst | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|--------|--------------------|-----|-------|---------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| <b>Batch: 8693 Extracted: 11/10/11</b> |        |                    |     |       |         |                |                  |      |                |     |              |                    |
| LCS Analyzed: 11/14/2011 (S111021-03)  |        |                    |     |       |         | Source:        |                  |      |                |     |              |                    |
| Cobalt-60                              | 130    | 10                 | N/A | pCi/L | RFM     | 138            |                  | 94   | 80-120         |     |              |                    |
| Cesium-137                             | 145    | 20                 | N/A | pCi/L | RFM     | 148            |                  | 98   | 80-120         |     |              |                    |
| Blank Analyzed: 11/14/2011 (S111021-04 | 1)     |                    |     |       |         | Source:        |                  |      |                |     |              |                    |
| Cesium-137                             | ND     | 20                 | N/A | pCi/L | RFM     |                |                  |      | -              |     |              | U                  |
| Potassium-40                           | ND     | 25                 | N/A | pCi/L | RFM     |                |                  |      | -              |     |              | U                  |
| Duplicate Analyzed: 11/14/2011 (S11102 | 1-05)  |                    |     |       |         | Source:        | IUK0771          | -02  |                |     |              |                    |
| Cesium-137                             | ND     | 20                 | N/A | pCi/L | RFM     |                | 0                |      | -              | 0   |              | U                  |
| Potassium-40                           | ND     | 25                 | N/A | pCi/L | RFM     |                | 0                |      | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

### 903.1

|                                               |        | Reporting |     |       |         | Spike     | Source  |      | %REC   |     | RPD   | Data       |
|-----------------------------------------------|--------|-----------|-----|-------|---------|-----------|---------|------|--------|-----|-------|------------|
| Analyte                                       | Result | Limit     | MDL | Units | Analyst | Level     | Result  | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 8693 Extracted: 11/16/11</b>        |        |           |     |       |         |           |         |      |        |     |       |            |
| LCS Analyzed: 11/16/2011 (S111021-03)         | )      |           |     |       |         | Source:   |         |      |        |     |       |            |
| Radium-226                                    | 49.4   | 1         | N/A | pCi/L | TM      | 50.1      |         | 99   | 80-120 |     |       |            |
| Blank Analyzed: 11/16/2011 (S111021-0         | 4)     |           |     |       |         | Source:   |         |      |        |     |       |            |
| Radium-226                                    | 0.11   | 1         | N/A | pCi/L | TM      |           |         |      | -      |     |       | U          |
| <b>Duplicate Analyzed: 11/16/2011 (S11102</b> | 21-05) |           |     |       |         | Source: 1 | IUK0771 | -02  |        |     |       |            |
| Radium-226                                    | -0.037 | 1         | N/A | pCi/L | TM      |           | 0.166   |      | -      | 0   |       | U          |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

|                                               |            | Reporting |     |       |         | Spike     | Source |      | %REC   |     | RPD   | Data       |
|-----------------------------------------------|------------|-----------|-----|-------|---------|-----------|--------|------|--------|-----|-------|------------|
| Analyte                                       | Result     | Limit     | MDL | Units | Analyst | Level     | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 8693 Extracted: 11/14/11               |            |           |     |       |         |           |        |      |        |     |       |            |
| LCS Analyzed: 11/14/2011 (S111021-03)         |            |           |     |       |         | Source:   |        |      |        |     |       |            |
| Radium-228                                    | 4.8        | 1         | N/A | pCi/L | PAS     | 4.66      |        | 103  | 60-140 |     |       |            |
| Blank Analyzed: 11/14/2011 (S111021-04        | <b>I</b> ) |           |     |       |         | Source:   |        |      |        |     |       |            |
| Radium-228                                    | -0.04      | 1         | N/A | pCi/L | PAS     |           |        |      | -      |     |       | U          |
| <b>Duplicate Analyzed: 11/14/2011 (S11102</b> | 1-05)      |           |     |       |         | Source: 1 | UK0771 | -02  |        |     |       |            |
| Radium-228                                    | 0.268      | 1         | N/A | pCi/L | PAS     |           | 0.166  |      | -      | 0   |       | U          |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

|                                               |        | Reporting |     |       |         | Spike   | Source  |      | %REC   |     | RPD   | Data       |
|-----------------------------------------------|--------|-----------|-----|-------|---------|---------|---------|------|--------|-----|-------|------------|
| Analyte                                       | Result | Limit     | MDL | Units | Analyst | Level   | Result  | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 8693 Extracted: 11/11/11</b>        |        |           |     |       |         |         |         |      |        |     |       |            |
| LCS Analyzed: 11/11/2011 (S111021-03)         |        |           |     |       |         | Source: |         |      |        |     |       |            |
| Strontium-90                                  | 20.7   | 2         | N/A | pCi/L | NB      | 18.9    |         | 110  | 80-120 |     |       |            |
| Blank Analyzed: 11/11/2011 (S111021-04        | 4)     |           |     |       |         | Source: |         |      |        |     |       |            |
| Strontium-90                                  | 0.171  | 2         | N/A | pCi/L | NB      |         |         |      | -      |     |       | U          |
| <b>Duplicate Analyzed: 11/11/2011 (S11102</b> | 1-05)  |           |     |       |         | Source: | IUK0771 | -02  |        |     |       |            |
| Strontium-90                                  | 0.212  | 2         | N/A | pCi/L | NB      |         | 0.03    |      | -      | 0   |       | U          |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Sampled: 11/04/11-11/06/11

Received: 11/06/11

## METHOD BLANK/QC DATA

|                                        |        | Reporting |     |       |         | Spike     | Source |      | %REC   |     | RPD   | Data       |
|----------------------------------------|--------|-----------|-----|-------|---------|-----------|--------|------|--------|-----|-------|------------|
| Analyte                                | Result | Limit     | MDL | Units | Analyst | Level     | Result | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 8693 Extracted: 11/11/11</b> |        |           |     |       |         |           |        |      |        |     |       |            |
| LCS Analyzed: 11/11/2011 (S111021-03)  |        |           |     |       |         | Source:   |        |      |        |     |       |            |
| Tritium                                | 203    | 500       | N/A | pCi/L | WK      | 227       |        | 89   | 80-120 |     |       | Jb         |
| Blank Analyzed: 11/11/2011 (S111021-04 | )      |           |     |       |         | Source:   |        |      |        |     |       |            |
| Tritium                                | -5.89  | 500       | N/A | pCi/L | WK      |           |        |      | -      |     |       | U          |
| Duplicate Analyzed: 11/11/2011 (S11102 | 1-05)  |           |     |       |         | Source: 1 | UK0771 | -02  |        |     |       |            |
| Tritium                                | -130   | 500       | N/A | pCi/L | WK      |           | -3.07  |      | -      | 0   |       | U          |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Reporting

Sampled: 11/04/11-11/06/11

RPD

Data

Received: 11/06/11

%REC

Spike Source

## METHOD BLANK/QC DATA

#### EPA-5 1613Bx

|                                       |            | reporting |         |       |         | Spike   | Soul CC |      | OILEC  |     | KI D  | Data       |
|---------------------------------------|------------|-----------|---------|-------|---------|---------|---------|------|--------|-----|-------|------------|
| Analyte                               | Result     | Limit     | MDL     | Units | Analyst | Level   | Result  | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 1314130 Extracted: 11/1</b> | 0/11       |           |         |       |         |         |         |      |        |     |       |            |
| Blank Analyzed: 11/11/2011 (G1K1      | 00000130B) |           |         |       |         | Source: |         |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                   | 1.5e-006   | 0.00005   | 0000005 | ug/L  | SO      |         |         |      | -      |     |       | J, Q       |
| 1,2,3,4,6,7,8-HpCDF                   | ND         | 0.00005   | .000001 | ug/L  | SO      |         |         |      | -      |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                   | 2.8e-006   | 0.00005   | 0000007 | ug/L  | SO      |         |         |      | -      |     |       | J          |
| 1,2,3,4,7,8-HxCDD                     | ND         | 0.00005   | 0000007 | ug/L  | SO      |         |         |      | -      |     |       |            |
| 1,2,3,4,7,8-HxCDF                     | 3.1e-006   | 0.00005   | 0000003 | ug/L  | SO      |         |         |      | -      |     |       | J          |
| 1,2,3,6,7,8-HxCDD                     | ND         | 0.00005   | 0000008 | ug/L  | SO      |         |         |      | -      |     |       |            |
| 1,2,3,6,7,8-HxCDF                     | 9.1e-007   | 0.00005   | 0000003 | ug/L  | SO      |         |         |      | -      |     |       | J, Q       |
| 1,2,3,7,8,9-HxCDD                     | ND         | 0.00005   | 0000009 | ug/L  | SO      |         |         |      | -      |     |       |            |
| 1,2,3,7,8,9-HxCDF                     | 2e-006     | 0.00005   | 0000004 | ug/L  | SO      |         |         |      | -      |     |       | J          |
| 1,2,3,7,8-PeCDD                       | ND         | 0.00005   | 0000009 | ug/L  | SO      |         |         |      | -      |     |       |            |
| 1,2,3,7,8-PeCDF                       | ND         | 0.00005   | .000001 | ug/L  | SO      |         |         |      | -      |     |       |            |
| 2,3,4,6,7,8-HxCDF                     | 1e-006     | 0.00005   | 0000003 | ug/L  | SO      |         |         |      | -      |     |       | J          |
| 2,3,4,7,8-PeCDF                       | ND         | 0.00005   | .000001 | ug/L  | SO      |         |         |      | -      |     |       |            |
| 2,3,7,8-TCDD                          | ND         | 0.00001   | 0000006 | ug/L  | SO      |         |         |      | -      |     |       |            |
| 2,3,7,8-TCDF                          | ND         | 0.00001   | 0000009 | ug/L  | SO      |         |         |      | -      |     |       |            |
| OCDD                                  | 9e-006     | 0.0001    | 0000006 | ug/L  | SO      |         |         |      | -      |     |       | J          |
| OCDF                                  | 4.3e-006   | 0.0001    | .000001 | ug/L  | SO      |         |         |      | -      |     |       | J          |
| Total HpCDD                           | 2.3e-006   | 0.00005   | 0000005 | ug/L  | SO      |         |         |      | -      |     |       | J, Q       |
| Total HpCDF                           | 3.9e-006   | 0.00005   | 0000006 | ug/L  | SO      |         |         |      | -      |     |       | J, Q       |
| Total HxCDD                           | ND         | 0.00005   | 0000007 | ug/L  | SO      |         |         |      | -      |     |       |            |
| Total HxCDF                           | 8.5e-006   | 0.00005   | 0000003 | ug/L  | SO      |         |         |      | -      |     |       | J, Q       |
| Total PeCDD                           | ND         | 0.00005   | 0000009 | ug/L  | SO      |         |         |      | -      |     |       |            |
| Total PeCDF                           | ND         | 0.00005   | .000001 | ug/L  | SO      |         |         |      | -      |     |       |            |
| Total TCDD                            | 1e-006     | 0.00001   | 0000006 | ug/L  | SO      |         |         |      | -      |     |       | J, Q       |
| Total TCDF                            | ND         | 0.00001   | 0000009 | ug/L  | SO      |         |         |      | -      |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD    | 0.0012     |           |         | ug/L  | SO      | 0.002   |         | 59   | 23-140 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF    | 0.0012     |           |         | ug/L  | SO      | 0.002   |         | 62   | 28-143 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF    | 0.0012     |           |         | ug/L  | SO      | 0.002   |         | 59   | 26-138 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD      | 0.0014     |           |         | ug/L  | SO      | 0.002   |         | 68   | 32-141 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF      | 0.0012     |           |         | ug/L  | SO      | 0.002   |         | 60   | 26-152 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD      | 0.0013     |           |         | ug/L  | SO      | 0.002   |         | 64   | 28-130 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF      | 0.0013     |           |         | ug/L  | SO      | 0.002   |         | 67   | 26-123 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF      | 0.0013     |           |         | ug/L  | SO      | 0.002   |         | 66   | 29-147 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD        | 0.0012     |           |         | ug/L  | SO      | 0.002   |         | 62   | 25-181 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF        | 0.0011     |           |         | ug/L  | SO      | 0.002   |         | 57   | 24-185 |     |       |            |
| S Oguic. 13 C 1,2,3,7,0 1 CCD1        | 0.0011     |           |         | 11G/L | 50      | 0.002   |         | 31   | 2, 103 |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Reporting

Sampled: 11/04/11-11/06/11

RPD

Data

Received: 11/06/11

%REC

Spike Source

## METHOD BLANK/QC DATA

#### EPA-5 1613Bx

| Analyte                            | Result     | Limit   | MDL     | Units | Analyst | Level   | Result | %REC | Limits | RPD | Limit | Qualifiers |
|------------------------------------|------------|---------|---------|-------|---------|---------|--------|------|--------|-----|-------|------------|
| Batch: 1314130 Extracted: 11/10    | 0/11_      |         |         |       |         |         |        |      |        |     |       |            |
| Blank Analyzed: 11/11/2011 (G1K10  | 00000130B) |         |         |       |         | Source: |        |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.0014     |         |         | ug/L  | SO      | 0.002   |        | 68   | 28-136 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.0013     |         |         | ug/L  | SO      | 0.002   |        | 64   | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.0012     |         |         | ug/L  | SO      | 0.002   |        | 59   | 25-164 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.0012     |         |         | ug/L  | SO      | 0.002   |        | 59   | 24-169 |     |       |            |
| Surrogate: 13C-OCDD                | 0.0022     |         |         | ug/L  | SO      | 0.004   |        | 56   | 17-157 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.00068    |         |         | ug/L  | SO      | 0.0008  |        | 85   | 35-197 |     |       |            |
| LCS Analyzed: 11/11/2011 (G1K100   | 0000130C)  |         |         |       |         | Source: |        |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.000977   | 0.00005 | .000002 | ug/L  | SO      | 0.001   |        | 98   | 70-140 |     |       | B          |
| 1,2,3,4,6,7,8-HpCDF                | 0.00108    | 0.00005 | .000003 | ug/L  | SO      | 0.001   |        | 108  | 82-122 |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | 0.00109    | 0.00005 | .000004 | ug/L  | SO      | 0.001   |        | 109  | 78-138 |     |       | В          |
| 1,2,3,4,7,8-HxCDD                  | 0.00107    | 0.00005 | 0000005 | ug/L  | SO      | 0.001   |        | 107  | 70-164 |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | 0.0011     | 0.00005 | 0000004 | ug/L  | SO      | 0.001   |        | 110  | 72-134 |     |       | B          |
| 1,2,3,6,7,8-HxCDD                  | 0.000921   | 0.00005 | 0000004 | ug/L  | SO      | 0.001   |        | 92   | 76-134 |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | 0.00113    | 0.00005 | 0000004 | ug/L  | SO      | 0.001   |        | 113  | 84-130 |     |       | B          |
| 1,2,3,7,8,9-HxCDD                  | 0.00101    | 0.00005 | 0000004 | ug/L  | SO      | 0.001   |        | 101  | 64-162 |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | 0.00112    | 0.00005 | .000000 | ug/L  | SO      | 0.001   |        | 112  | 78-130 |     |       | B          |
| 1,2,3,7,8-PeCDD                    | 0.000978   | 0.00005 | .000001 | ug/L  | SO      | 0.001   |        | 98   | 70-142 |     |       |            |
| 1,2,3,7,8-PeCDF                    | 0.00103    | 0.00005 | .000001 | ug/L  | SO      | 0.001   |        | 103  | 80-134 |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | 0.00109    | 0.00005 | 0000004 | -     | SO      | 0.001   |        | 109  | 70-156 |     |       | B          |
| 2,3,4,7,8-PeCDF                    | 0.00104    | 0.00005 | .000001 | ug/L  | SO      | 0.001   |        | 104  | 68-160 |     |       |            |
| 2,3,7,8-TCDD                       | 0.000202   | 0.00001 | 0000007 | ug/L  | SO      | 0.0002  |        | 101  | 67-158 |     |       |            |
| 2,3,7,8-TCDF                       | 0.000226   | 0.00001 | 0000008 | ug/L  | SO      | 0.0002  |        | 113  | 75-158 |     |       |            |
| OCDD                               | 0.00207    | 0.0001  | .000002 | ug/L  | SO      | 0.002   |        | 103  | 78-144 |     |       | B          |
| OCDF                               | 0.00238    | 0.0001  | .000002 | ug/L  | SO      | 0.002   |        | 119  | 63-170 |     |       | В          |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.0013     |         |         | ug/L  | SO      | 0.002   |        | 65   | 26-166 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00141    |         |         | ug/L  | SO      | 0.002   |        | 71   | 21-158 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.00132    |         |         | ug/L  | SO      | 0.002   |        | 66   | 20-186 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00137    |         |         | ug/L  | SO      | 0.002   |        | 68   | 21-193 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00141    |         |         | ug/L  | SO      | 0.002   |        | 71   | 19-202 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00156    |         |         | ug/L  | SO      | 0.002   |        | 78   | 25-163 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00152    |         |         | ug/L  | SO      | 0.002   |        | 76   | 21-159 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.0015     |         |         | ug/L  | SO      | 0.002   |        | 75   | 17-205 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.00139    |         |         | ug/L  | SO      | 0.002   |        | 69   | 21-227 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00135    |         |         | ug/L  | so      | 0.002   |        | 68   | 21-192 |     |       |            |
|                                    |            |         |         |       |         |         |        |      |        |     |       |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Reporting

Sampled: 11/04/11-11/06/11

RPD

Data

Received: 11/06/11

%REC

Spike Source

## METHOD BLANK/QC DATA

#### EPA-5 1613Bx

| Analyte                            | Result       | Limit   | MDL      | L Units | Analyst | Level   | Result | %REC | Limits | RPD  | Limit | Qualifiers |  |
|------------------------------------|--------------|---------|----------|---------|---------|---------|--------|------|--------|------|-------|------------|--|
| Batch: 1314130 Extracted: 11/10    | 0/11         |         |          |         |         |         |        |      |        |      |       |            |  |
| LCS Analyzed: 11/11/2011 (G1K100   | 0000130C)    |         |          |         |         | Source: |        |      |        |      |       |            |  |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00152      |         |          | ug/L    | SO      | 0.002   |        | 76   | 22-176 |      |       |            |  |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.00143      |         |          | ug/L    | SO      | 0.002   |        | 71   | 13-328 |      |       |            |  |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.00126      |         |          | ug/L    | SO      | 0.002   |        | 63   | 20-175 |      |       |            |  |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.00127      |         |          | ug/L    | SO      | 0.002   |        | 64   | 22-152 |      |       |            |  |
| Surrogate: 13C-OCDD                | 0.00248      |         |          | ug/L    | SO      | 0.004   |        | 62   | 13-199 |      |       |            |  |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.000607     |         |          | ug/L    | SO      | 0.0008  |        | 76   | 31-191 |      |       |            |  |
| LCS Dup Analyzed: 11/11/2011 (G1   | K100000130L) |         |          |         |         | Source: |        |      |        |      |       |            |  |
| 1,2,3,4,6,7,8-HpCDD                | 0.000968     | 0.00005 | .000002  | ug/L    | SO      | 0.001   |        | 97   | 70-140 | 0.93 | 50    | В          |  |
| 1,2,3,4,6,7,8-HpCDF                | 0.00107      | 0.00005 | .000003  | ug/L    | SO      | 0.001   |        | 107  | 82-122 | 0.85 | 50    |            |  |
| 1,2,3,4,7,8,9-HpCDF                | 0.00107      | 0.00005 | .000004  | ug/L    | SO      | 0.001   |        | 107  | 78-138 | 1.6  | 50    | B          |  |
| 1,2,3,4,7,8-HxCDD                  | 0.00104      | 0.00005 | 0000004  | ug/L    | SO      | 0.001   |        | 104  | 70-164 | 2    | 50    |            |  |
| 1,2,3,4,7,8-HxCDF                  | 0.00112      | 0.00005 | .000002  | ug/L    | SO      | 0.001   |        | 112  | 72-134 | 1.5  | 50    | B          |  |
| 1,2,3,6,7,8-HxCDD                  | 0.000902     | 0.00005 | 0000004  | ug/L    | SO      | 0.001   |        | 90   | 76-134 | 2    | 50    |            |  |
| 1,2,3,6,7,8-HxCDF                  | 0.00106      | 0.00005 | .000002  | ug/L    | SO      | 0.001   |        | 106  | 84-130 | 6.6  | 50    | B          |  |
| 1,2,3,7,8,9-HxCDD                  | 0.000999     | 0.00005 | .000000  | ug/L    | SO      | 0.001   |        | 100  | 64-162 | 0.9  | 50    |            |  |
| 1,2,3,7,8,9-HxCDF                  | 0.00107      | 0.00005 | .000002  | ug/L    | SO      | 0.001   |        | 107  | 78-130 | 4.4  | 50    | В          |  |
| 1,2,3,7,8-PeCDD                    | 0.000952     | 0.00005 | .000001  | ug/L    | SO      | 0.001   |        | 95   | 70-142 | 2.8  | 50    |            |  |
| 1,2,3,7,8-PeCDF                    | 0.00102      | 0.00005 | .000001  | ug/L    | SO      | 0.001   |        | 102  | 80-134 | 1.3  | 50    |            |  |
| 2,3,4,6,7,8-HxCDF                  | 0.00105      | 0.00005 | .000002  | _       | SO      | 0.001   |        | 105  | 70-156 | 3.8  | 50    | В          |  |
| 2,3,4,7,8-PeCDF                    | 0.00102      | 0.00005 | 0.000002 | ug/L    | SO      | 0.001   |        | 102  | 68-160 | 2    | 50    |            |  |
| 2,3,7,8-TCDD                       | 0.00019      | 0.00001 | 0000007  | ug/L    | SO      | 0.0002  |        | 95   | 67-158 | 5.9  | 50    |            |  |
| 2,3,7,8-TCDF                       | 0.000217     | 0.00001 | 0000008  | _       | SO      | 0.0002  |        | 108  | 75-158 | 4.3  | 50    |            |  |
| OCDD                               | 0.00204      | 0.0001  | .000001  | ug/L    | SO      | 0.002   |        | 102  | 78-144 | 1.3  | 50    | B          |  |
| OCDF                               | 0.00232      | 0.0001  | .000002  | ug/L    | SO      | 0.002   |        | 116  | 63-170 | 2.4  | 50    | B          |  |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00132      |         |          | ug/L    | SO      | 0.002   |        | 66   | 26-166 |      |       |            |  |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00142      |         |          | ug/L    | SO      | 0.002   |        | 71   | 21-158 |      |       |            |  |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.00134      |         |          | ug/L    | SO      | 0.002   |        | 67   | 20-186 |      |       |            |  |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00134      |         |          | ug/L    | SO      | 0.002   |        | 67   | 21-193 |      |       |            |  |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00141      |         |          | ug/L    | SO      | 0.002   |        | 71   | 19-202 |      |       |            |  |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00163      |         |          | ug/L    | SO      | 0.002   |        | 82   | 25-163 |      |       |            |  |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00155      |         |          | ug/L    | SO      | 0.002   |        | 78   | 21-159 |      |       |            |  |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.00153      |         |          | ug/L    | SO      | 0.002   |        | 76   | 17-205 |      |       |            |  |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.0014       |         |          | ug/L    | SO      | 0.002   |        | 70   | 21-227 |      |       |            |  |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00129      |         |          | ug/L    | SO      | 0.002   |        | 65   | 21-192 |      |       |            |  |
|                                    |              |         |          |         |         |         |        |      |        |      |       |            |  |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUK0771

Reporting

Sampled: 11/04/11-11/06/11

RPD

Data

Received: 11/06/11

%REC

## METHOD BLANK/QC DATA

### EPA-5 1613Bx

Spike

Source

| Analyte                           | Result       | Limit | MDL | Units | Analyst | Level   | Result | %REC | Limits | RPD | Limit | Qualifiers |
|-----------------------------------|--------------|-------|-----|-------|---------|---------|--------|------|--------|-----|-------|------------|
| Batch: 1314130 Extracted: 11/10   | 0/11_        |       |     |       |         |         |        |      |        |     |       |            |
| LCS Dup Analyzed: 11/11/2011 (G11 | K100000130L) |       |     |       |         | Source: |        |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF  | 0.00155      |       |     | ug/L  | SO      | 0.002   |        | 77   | 22-176 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF    | 0.00144      |       |     | ug/L  | SO      | 0.002   |        | 72   | 13-328 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD       | 0.0012       |       |     | ug/L  | SO      | 0.002   |        | 60   | 20-175 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF       | 0.0012       |       |     | ug/L  | SO      | 0.002   |        | 60   | 22-152 |     |       |            |
| Surrogate: 13C-OCDD               | 0.00258      |       |     | ug/L  | SO      | 0.004   |        | 64   | 13-199 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD     | 0.000631     |       |     | ug/L  | SO      | 0.0008  |        | 79   | 31-191 |     |       |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 11/04/11-11/06/11

Report Number: IUK0771 Received: 11/06/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

### DATA QUALIFIERS AND DEFINITIONS

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
 J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
 MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

**Q** Estimated maximum possible concentration (EMPC).

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the

limit.

**ND** Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Routine Outfall 009 Sampled: 11/04/11-11/06/11

Arcadia, CA 91007 Report Number: IUK0771 Received: 11/06/11

Attention: Bronwyn Kelly

### **Certification Summary**

#### **TestAmerica Irvine**

MWH-Pasadena/Boeing

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EDD + Level 4  | Water  | N/A   | N/A        |
| EPA 1664A      | Water  | X     | X          |
| EPA 200.8-Diss | Water  | X     | N/A        |
| EPA 200.8      | Water  | X     | N/A        |
| EPA 245.1-Diss | Water  | X     | N/A        |
| EPA 245.1      | Water  | X     | N/A        |
| EPA 300.0      | Water  | X     | N/A        |
| Filtration     | Water  | N/A   | N/A        |
| SM 2540D       | Water  | X     | X          |
| SM2540C        | Water  | X     | N/A        |
| SM4500CN-E     | Water  | X     | N/A        |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IUK0771-02

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Routine Outfall 009 Sampled: 11/04/11-11/06/11

Arcadia, CA 91007 Report Number: IUK0771 Received: 11/06/11 Attention: Bronwyn Kelly

#### **Eberline Services - SUB**

2030 Wright Avenue - Richmond, CA 94804 Analysis Performed: EDD + Level 4

Samples: IUK0771-02

Analysis Performed: Gamma Spec Samples: IUK0771-02, IUK0771-03

Analysis Performed: Gross Alpha Samples: IUK0771-02, IUK0771-03

Analysis Performed: Gross Beta Samples: IUK0771-02, IUK0771-03

Analysis Performed: Radium, Combined Samples: IUK0771-02, IUK0771-03

Analysis Performed: Strontium 90 Samples: IUK0771-02, IUK0771-03

Analysis Performed: Tritium Samples: IUK0771-02

Analysis Performed: Uranium, Combined Samples: IUK0771-02, IUK0771-03

Method Performed: 8693

Samples: IUK0771-02, IUK0771-03

Method Performed: 900

Samples: IUK0771-02, IUK0771-03

Method Performed: 901.1

Samples: IUK0771-02, IUK0771-03

Method Performed: 903.1

Samples: IUK0771-02, IUK0771-03

Method Performed: 904

Samples: IUK0771-02, IUK0771-03

Method Performed: 905

Samples: IUK0771-02, IUK0771-03

Method Performed: 906 Samples: IUK0771-02

## TestAmerica Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 11/04/11-11/06/11

Report Number: IUK0771 Received: 11/06/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: IUK0771-02

# **CHAIN OF CUSTODY FORM**

Page 1 of 2

|                                            |                  |                   |               |                                                                  |                        |                                       |                   |        |          |     |        |          |            |          |         |                       |          | <del></del> -V |         | _ ( (   | (                                                                |
|--------------------------------------------|------------------|-------------------|---------------|------------------------------------------------------------------|------------------------|---------------------------------------|-------------------|--------|----------|-----|--------|----------|------------|----------|---------|-----------------------|----------|----------------|---------|---------|------------------------------------------------------------------|
| Client Name/A                              |                  | -                 |               | Project:                                                         | oct: ANALYSIS REQUIRED |                                       |                   |        |          |     |        |          |            |          |         |                       |          |                |         |         |                                                                  |
| MWH-Arcae<br>618 Michillind<br>Arcadia, CA | a Ave, S         | uite 200          |               | Boeing-SSFL N<br>Routine Outfa<br>GRAB<br>Stormwater at          | II 009                 |                                       |                   |        |          |     |        | •        |            |          |         |                       |          |                |         |         | Field readings:<br>(Log in and include in<br>report Temp and pH) |
| Test America                               | Contact:         | Debby Wil         | son           | 1:                                                               |                        |                                       | нЕМ)              |        |          |     |        |          |            |          |         |                       |          |                |         |         | Temp °F = 7. 58°<br>pH = 58° 7.9                                 |
| Project Manag<br>Sampler: Par              | ct B<br>oren     |                   |               | Phone Number:<br>(626) 568-6691<br>Fax Number:<br>(626) 568-6515 |                        |                                       | Grease (1664-HEM) |        |          |     |        |          |            |          |         |                       |          |                |         |         | Time of readings =                                               |
| Sample<br>Description                      | Sample<br>Matrix | Container<br>Type | # of<br>Cont. | Sampling<br>Date/Time                                            | Preservative           | Bottle #                              | Oil &             |        |          |     |        |          |            |          |         |                       |          |                |         |         | Comments                                                         |
| Outfall 009                                | w                | 1L Amber          | 2             | 11:06                                                            | HCI                    | 1A, 1B                                | Х                 |        |          |     |        |          |            |          |         |                       |          |                |         |         |                                                                  |
|                                            |                  |                   |               |                                                                  |                        |                                       |                   |        | ļ        |     |        |          |            |          |         |                       |          |                |         |         |                                                                  |
|                                            |                  |                   |               |                                                                  |                        | · · · · · · · · · · · · · · · · · · · |                   |        |          |     |        |          |            |          |         |                       |          |                |         |         | -8                                                               |
|                                            |                  |                   |               |                                                                  |                        |                                       |                   |        |          |     |        |          |            |          |         |                       |          |                |         | in      | 6                                                                |
| -                                          |                  |                   |               |                                                                  |                        |                                       |                   |        |          |     |        |          |            |          |         |                       |          |                |         |         |                                                                  |
|                                            |                  |                   |               |                                                                  |                        |                                       |                   |        | -        |     |        |          |            |          |         |                       |          |                |         |         |                                                                  |
|                                            |                  |                   |               |                                                                  |                        |                                       |                   |        |          |     |        |          |            |          |         |                       |          |                |         |         |                                                                  |
|                                            |                  |                   |               |                                                                  |                        |                                       |                   |        | ļ        |     |        |          |            |          | ļ       |                       |          |                |         |         |                                                                  |
|                                            |                  |                   |               |                                                                  |                        |                                       |                   |        |          |     |        |          |            |          |         |                       |          |                |         |         |                                                                  |
|                                            |                  |                   |               |                                                                  |                        |                                       |                   |        | ļ        |     |        |          |            |          |         |                       |          |                |         |         |                                                                  |
|                                            | <u> </u>         | boos Came         |               | re the Crob Be                                                   | mtion of O             | itfall 000 fo                         | r thic            |        | Im 61/6  |     |        | ooito    |            |          | .:!! 60 | llow one              | l ara ta | bo addor       | to this | work or | dos                                                              |
| Relinquished By                            |                  |                   | ores a        | ire the Grab Pointe: //- 6                                       | -2011<br>12 11         | Received By                           | Lo                | )<br>h |          | Dat | e/Time | III<br>T | 131<br>237 | 0        | Turn-ar | ound time: (          |          | 72 Hour:       |         |         | 10 Day:                                                          |
| Relinquished By Relinquished By            | na               | - Par             | Date/Ti       | me:<br>/ /////<br>/<br>me:                                       | 1918                   | Received By Received By               |                   | -      |          |     | e/Time |          |            |          | · ·     | Integrity: (C         | heck)    | On Ice:        |         | 3       | .4                                                               |
|                                            |                  |                   |               |                                                                  |                        | 2                                     |                   | )      | <u> </u> |     |        |          | ર્ડા(૪     | <u>.</u> | l .     | equirements<br>el IV: |          | All Level IV   | ·       |         | NPDES Level IV: _X                                               |

IUK0771

| Client Name/A                                                                                                                                   | ddroos                                                                 |                                                                                |               | Proje                                                            | oct:              |                  |                                  |                          |                     |                  |                        |                                                                            |                             |              | ^                                                 | NIAI V                                                                                                                                                                                                    | SIS REC      | ILIDED |                    |  |  |                                                      |  |  |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|------------------------------------------------------------------|-------------------|------------------|----------------------------------|--------------------------|---------------------|------------------|------------------------|----------------------------------------------------------------------------|-----------------------------|--------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|--------------------|--|--|------------------------------------------------------|--|--|----------|
| MWH-Arcad                                                                                                                                       |                                                                        |                                                                                |               | ,                                                                | ict.<br>ng-SSFL N | IPDES            |                                  |                          |                     |                  | -                      |                                                                            |                             |              | $-\hat{}$                                         | INALI                                                                                                                                                                                                     | 313 KEC      | OINED  |                    |  |  |                                                      |  |  |          |
| 618 Michillinda<br>Arcadia, CA 9<br>Test America                                                                                                | a Ave, S<br>11007                                                      |                                                                                | son           | Routine Outfall 009 COMPOSITE Stormwater at SW-13  Phone Number: |                   |                  | COMPOSITE<br>Stormwater at SW-13 |                          |                     |                  | etals: Sb, Cd, Cu, Pb, | ners)                                                                      |                             |              | Total Dissolved Metals: Sb, Cd, Cu, Pb,<br>Hg, Tl | Gross Alpha(900.0), Gross Beta(900.0),<br>Tritium (H-3) (906.0), Sr-90 (905.0), Total<br>Combined Radium 226 (903.0 or 903.1) &<br>Radium 228 (904.0), Uranium (908.0), K-<br>40, CS-137 (901.0 or 901.1) |              |        |                    |  |  |                                                      |  |  | Comments |
| Project Manag                                                                                                                                   | er: Bro                                                                | nwyn Kelly                                                                     |               | Phon                                                             | ne Numbei         | <del></del>      |                                  | <u>e</u> ∑               | nge                 | η-2 <sub>C</sub> |                        | Veta                                                                       | 6.0),<br>m 2<br>4.0)        |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
|                                                                                                                                                 |                                                                        | (626) 568-6691 Fax Number: (626) 568-6515 Sample   Container   # of   Sampling |               |                                                                  |                   | ·-·              | il Recoverable Metals:<br>Ti     | TCDD (and all congeners) | CI', SO₄, NO₃+NO₂-N | TDS, TSS         | al Dissolved I         | ss Alpha(900<br>um (H-3) (90<br>ubined Radiu<br>ium 228 (90<br>CS-137 (901 | Chronic Toxicity            | Cyanide      |                                                   |                                                                                                                                                                                                           |              |        | :                  |  |  |                                                      |  |  |          |
| Sample<br>Description                                                                                                                           | Sample<br>Matrix                                                       | Type                                                                           | # of<br>Cont. | Da                                                               | ate/Time          | Preservative     | Bottle #                         | Total<br>Hg, Tl          | 물                   | CI,              | TDS                    | Tota<br>Fg.                                                                | Gros<br>Con<br>Rad<br>40, 0 | 2<br>F       | Cya                                               |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
| Outfall 009                                                                                                                                     | w                                                                      | 1L Poly                                                                        | 1             | 11-6                                                             | 1:00              | HNO <sub>3</sub> | 2A ,                             | х                        |                     |                  |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
| Outfall 009 Dup                                                                                                                                 | W                                                                      | 1L Poly                                                                        | 1             |                                                                  |                   | HNO <sub>3</sub> | 2B                               | Х                        |                     |                  |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
| Outfall 009                                                                                                                                     | W                                                                      | 1L Amber                                                                       | 2             |                                                                  |                   | None             | 3A, 3B                           |                          | х                   |                  |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              | _      |                    |  |  |                                                      |  |  |          |
| Outfall 009                                                                                                                                     | w                                                                      | 500 mL Poly                                                                    | 2             |                                                                  |                   | None             | 4A, 4B                           |                          |                     | х                |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
| Outfall 009                                                                                                                                     | W                                                                      | 500 mL Poly                                                                    | 1             |                                                                  |                   | None             | 5                                |                          |                     |                  | Х                      |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
| Outfall 009                                                                                                                                     | w                                                                      | 1L Poly                                                                        | 1             |                                                                  |                   | None             | 6                                |                          |                     |                  |                        | x                                                                          |                             |              |                                                   |                                                                                                                                                                                                           | -            |        |                    |  |  | Filter w/in 24hrs of receipt at lab                  |  |  |          |
| Outfall 009                                                                                                                                     | w                                                                      | 2.5 Gal Cube                                                                   | 1             | <b>↓  </b>                                                       |                   | None             | 7A                               | ļ                        |                     |                  | <u> </u>               |                                                                            | ×                           |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  | Unfiltered and unpreserved analysis                  |  |  |          |
| Outfall 009                                                                                                                                     | w                                                                      | 500 mL Amber                                                                   | 1             | 1                                                                |                   | None<br>None     | 7B<br>8                          |                          |                     |                  |                        |                                                                            |                             | X            |                                                   |                                                                                                                                                                                                           |              | ***    |                    |  |  | Only test if first or second rain events of the year |  |  |          |
| Outfall 009                                                                                                                                     | w                                                                      | 500 mL Polv                                                                    | 1             | 11-6                                                             | 6-20 //<br>: 00   | NaOH             | 9                                | <u> </u>                 | -                   | <u> </u>         |                        |                                                                            |                             | ├            | x                                                 |                                                                                                                                                                                                           |              |        |                    |  |  | events of the year                                   |  |  |          |
| Outian 009                                                                                                                                      | - "                                                                    | 300 IIIL FOIY                                                                  | <del></del> - | "                                                                | :00               | Naon             |                                  | <u> </u>                 | 1                   |                  |                        |                                                                            |                             | <del> </del> | <del>  ^</del>                                    |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
| -                                                                                                                                               |                                                                        |                                                                                |               |                                                                  |                   |                  |                                  |                          |                     |                  |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
|                                                                                                                                                 |                                                                        |                                                                                |               |                                                                  |                   |                  |                                  |                          |                     |                  |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
|                                                                                                                                                 |                                                                        |                                                                                |               |                                                                  |                   |                  |                                  |                          |                     |                  |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
|                                                                                                                                                 |                                                                        |                                                                                |               | 1                                                                | •                 |                  |                                  |                          |                     |                  |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
|                                                                                                                                                 |                                                                        |                                                                                |               |                                                                  |                   |                  |                                  |                          |                     |                  |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
|                                                                                                                                                 |                                                                        |                                                                                |               |                                                                  |                   | COC              | Page 2                           | of 2 lis                 | t the               | Comp             | osite                  | Samp                                                                       | les for Outfall             | 009 1        | or thi                                            |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
|                                                                                                                                                 |                                                                        |                                                                                |               |                                                                  | The               | se must be       | e added t                        | o the s                  | ame v               | work             | orde                   | for C                                                                      | OC Page 1 of 2              | for C        | Outfal                                            |                                                                                                                                                                                                           |              |        | ent.               |  |  |                                                      |  |  |          |
| Relinquished By                                                                                                                                 | 7                                                                      |                                                                                |               |                                                                  | 1/-6-             | 1237 VI<br>1310  | Received E                       | in.                      | Ta                  | , sli            | Ü                      | ate/Time                                                                   | OC Page 1 of 2              | 131<br>127   | o<br>Fg U                                         | l                                                                                                                                                                                                         | ound time: ( |        | 72 Hour:<br>5 Day: |  |  | 10 Day: Normal:                                      |  |  |          |
| Relinquished By Date/Time: Received By Date/Time:  Sample Integrity: (Check) Intact: On Ice:  Relinquished By Date/Time: Received By Date/Time: |                                                                        |                                                                                |               |                                                                  |                   |                  |                                  |                          |                     |                  |                        |                                                                            |                             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |
| Reinquished By                                                                                                                                  | Data Requirements: (Check)  No Level IV: All Level IV: NPDES Level IV: |                                                                                |               |                                                                  |                   |                  |                                  |                          |                     |                  |                        |                                                                            | NPDES Level IV:             |              |                                                   |                                                                                                                                                                                                           |              |        |                    |  |  |                                                      |  |  |          |

## LABORATORY REPORT

Date:

November 14, 2011

Client: TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

**Laboratory No.:** A-11110701-001

**Sample I.D.:** IUK0771-02 (Outfall 009)

Sample Control: The sample was received by ATL chilled, within the recommended hold time and

with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled: 11/06/11
Date Received: 11/07/11
Temp. Received: 0.8°C
Chlorine (TRC): 0.0 mg/l

Date Tested: 11/07/11 to 11/14/11

**Sample Analysis:** The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample. All testing was conducted under the direct supervision of Joseph A. LeMay. Daily test readings were taken

by Joseph LeMay (initials: JAL) and Jacob LeMay (initials: J).

**Result Summary:** 

Chronic: NOEC TUc
Ceriodaphnia Survival: 100% 1.0

Ceriodaphnia Reproduction: 100% 1.0

**Quality Control:** Reviewed and approved by:

Laboratory Director

## CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0



Lab No.: A-11110701-001 Date Tested: 11/07/11 to 11/14/11

Client/ID: Test America – IUK0771-02 (Outfall 009)

#### **TEST SUMMARY**

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: *Ceriodaphnia dubia*. Source: In-laboratory culture. Age: < 24 hrs; all released within 8 hrs. Food: .1 ml YTC, algae per day.

Test vessel size: 30 ml.

Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 7 days.

QA/QC Batch No.: RT-111107. Statistics: ToxCalc computer program.

## **RESULTS SUMMARY**

| Sample Concentration | Percent Survival              | Mean Number of Young<br>Per Female |
|----------------------|-------------------------------|------------------------------------|
| Control              | 100%                          | 24.3                               |
| 100% Sample          | 100%                          | 26.0                               |
| Sample not sta       | atistically significantly les | s than Control.                    |

## **CHRONIC TOXICITY**

| Survival NOEC     | 100% |
|-------------------|------|
| Survival TUc      | 1.0  |
| Reproduction NOEC | 100% |
| Reproduction TUc  | 1.0  |

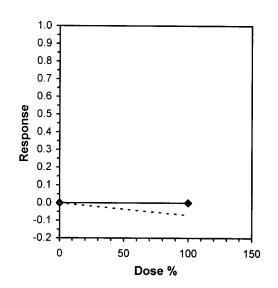
## QA/QC TEST ACCEPTABILITY

| Parameter                                                                               | Result                                                 |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------|
| Control survival ≥80%                                                                   | Pass (100% survival)                                   |
| ≥15 young per surviving control female                                                  | Pass (24.3 young)                                      |
| ≥60% surviving controls had 3 broods                                                    | Pass (100% with 3 broods)                              |
| PMSD < 47% for reproduction; if > 47% and no toxicity at IWC, the test must be repeated | Pass (PMSD = 12.3%)                                    |
| Statistically significantly different concentrations relative difference > 13%          | Pass (no concentration significantly different)        |
| Concentration response relationship acceptable                                          | Pass (no significant response at concentration tested) |

|              |           |         | Cerioda   | aphnia Sur     | vival and   | Reprodu   | iction Tes | t-7 Day S | Survival    |                     |
|--------------|-----------|---------|-----------|----------------|-------------|-----------|------------|-----------|-------------|---------------------|
| Start Date:  | 11/7/2011 | 14:00   | Test ID:  | 11110701       | С           |           | Sample ID  | :         | Outfall 009 | 9                   |
| End Date:    | 11/14/201 | 1 13:30 | Lab ID:   | CAATL-Ac       | juatic Test | ting Labs | Sample Ty  | /pe:      | SRW2-Ind    | lustrial stormwater |
| Sample Date: | 11/6/2011 | 11:00   | Protocol: | <b>FWCH EP</b> | Α           |           | Test Spec  | ies:      | CD-Cerioc   | laphnia dubia       |
| Comments:    |           |         |           |                | .=.         |           |            |           |             |                     |
| Conc-%       | 1         | 2       | 3         | 4              | 5           | 6         | 7          | 8         | 9           | 10                  |
| D-Control    | 1.0000    | 1.0000  | 1.0000    | 1.0000         | 1.0000      | 1.0000    | 1.0000     | 1.0000    | 1.0000      | 1.0000              |
| 100          | 1.0000    | 1.0000  | 1.0000    | 1.0000         | 1.0000      | 1.0000    | 1.0000     | 1.0000    | 1.0000      | 1.0000              |

|           |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Isot   | onic   |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-%    | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Mean   | N-Mean |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 1.0000 | 1.0000 |
| 100       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 1.0000 | 1.0000 |

| Hypothesis   | Test (1-tail, | 0.05) | NOEC | LOEC | ChV        | TU         |                                |    |               |     |
|--------------|---------------|-------|------|------|------------|------------|--------------------------------|----|---------------|-----|
| Fisher's Exa |               |       | 100  | >100 |            | 1          |                                |    |               |     |
| Treatments   | vs D-Control  |       |      |      |            |            |                                |    |               |     |
|              |               |       |      | Line | ar Interpo | lation (20 | 0 Resamples)                   |    |               |     |
| Point        | %             | SD    | 95%  | 6 CL | Skew       |            |                                |    |               |     |
| IC05         | >100          |       |      |      |            |            |                                |    |               |     |
| IC10         | >100          |       |      |      |            |            |                                |    |               |     |
| IC15         | >100          |       |      |      |            |            | 1.0                            |    |               |     |
| IC20         | >100          |       |      |      |            |            | ۱ م                            |    |               | 1   |
| IC25         | >100          |       |      |      |            |            | 0.9                            |    |               | l   |
| IC40         | >100          |       |      |      |            |            | 0.8 -                          |    |               | İ   |
| IC50         | >100          |       |      |      |            |            | 0.7                            |    |               |     |
|              |               |       |      |      |            |            | J                              |    |               |     |
|              |               |       |      |      |            |            | <b>8</b> 0.6                   |    |               |     |
|              |               |       |      |      |            |            | Response 0.6 - 0.5 - 0.4 - 0.4 |    |               | ļ   |
|              |               |       |      |      |            |            | <b>8</b> 4                     |    |               |     |
|              |               |       |      |      |            |            | æ 0.4 ]                        |    |               |     |
|              |               |       |      |      |            |            | 0.3 -                          |    |               |     |
|              |               |       |      |      |            |            | 0.2                            |    |               |     |
|              |               |       |      |      |            |            | 4                              |    |               |     |
|              |               |       |      |      |            |            | 0.1                            |    |               |     |
|              |               |       |      |      |            |            | 0.0                            |    | <del> •</del> |     |
|              |               |       |      |      |            |            | 0                              | 50 | 100           | 150 |


Dose %

|              |           |         | Cerioda   | aphnia Su | rvival and | Reprod    | uction Tes | st-Repro | duction     |                     |
|--------------|-----------|---------|-----------|-----------|------------|-----------|------------|----------|-------------|---------------------|
| Start Date:  | 11/7/2011 | 14:00   | Test ID:  | 11110701  | С          |           | Sample ID  | ):       | Outfall 009 | 9                   |
| End Date:    | 11/14/201 | 1 13:30 | Lab ID:   | CAATL-Ac  | uatic Tes  | ting Labs | Sample Ty  | /pe:     |             | lustrial stormwater |
| Sample Date: | 11/6/2011 | 11:00   | Protocol: |           |            | -         | Test Spec  | •        |             | laphnia dubia       |
| Comments:    |           |         |           |           |            |           | . 22. Ороо |          | 05 001100   | apinia aubia        |
| Conc-%       | 1         | 2       | 3         | 4         | 5          | 6         | 7          | 8        | 9           | 10                  |
| D-Control    | 20.000    | 24.000  | 22.000    | 24.000    | 31.000     | 27.000    | 22.000     | 28.000   | 26.000      | 19.000              |
| 100          | 28.000    | 26.000  | 24.000    | 21.000    | 27.000     | 29.000    | 20.000     | 23.000   | 30.000      | 32.000              |

|           |        | _      |        | Transforn | n: Untran | sformed |    |        | 1-Tailed |       | Isot   | onic   |
|-----------|--------|--------|--------|-----------|-----------|---------|----|--------|----------|-------|--------|--------|
| Conc-%    | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | N  | t-Stat | Critical | MSD   | Mean   | N-Mean |
| D-Control | 24.300 | 1.0000 | 24.300 | 19.000    | 31.000    | 15.404  | 10 |        |          |       | 25.150 | 1.0000 |
| 100       | 26.000 | 1.0700 | 26.000 | 20.000    | 32.000    | 15.169  | 10 | -0.989 | 1.734    | 2.982 | 25.150 | 1.0000 |

| Auxiliary Tests                                              | Statistic |        | Critical |         | Skew    | Kurt    |
|--------------------------------------------------------------|-----------|--------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates normal distribution (p > 0.05) | 0.96848   |        | 0.905    |         | 0.07056 | -0.9174 |
| F-Test indicates equal variances (p = 0.88)                  | 1.11023   |        | 6.54109  |         |         |         |
| Hypothesis Test (1-tail, 0.05)                               | MSDu      | MSDp   | MSB      | MSE     | F-Prob  | df      |
| Homoscedastic t Test indicates no significant differences    | 2.98171   | 0.1227 | 14.45    | 14.7833 | 0.33593 | 1, 18   |
| Treatments vs D-Control                                      |           |        |          |         |         | .,      |

Linear Interpolation (200 Resamples) Skew **Point** % SD 95% CL IC05 >100 IC10 >100 IC15 >100 IC20 >100 IC25 >100 IC40 >100 IC50 >100



## CERIODAPHNIA DUBIA CHRONIC BIOASSAY **EPA METHOD 1002.0 Raw Data Sheet**



Lab No.: A-11110701-001

Client ID: TestAmerica - Outfall 009 Start Date: 11/07/2011

|            |          | DA                                                                                                                                                                                                                                                                    | Y 1                                   | D,                                                                                  | AY 2                                                             |                                                     | DAY 3                                                                                          | D/                                                                                               | AY 4                                    | DA                                       | Y 5                                  | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AY 6                   | D    | AY 7               |
|------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|--------------------|
|            |          | 0 hr                                                                                                                                                                                                                                                                  | 24hr                                  | 0 hr                                                                                | 24hr                                                             | 0 hr                                                |                                                                                                | 0 hr                                                                                             | 24hr                                    | 0 hr                                     | 24hr                                 | 0 hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24hr                   | 0 hr | 24hr               |
| Analyst I  | nitials: | M                                                                                                                                                                                                                                                                     | 1                                     | 1                                                                                   | 1                                                                | 1                                                   | 2                                                                                              | 2                                                                                                | 1                                       | 2                                        | 2                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                      | 1    | n                  |
| Time of Re | eadings: | 1400                                                                                                                                                                                                                                                                  | 1400                                  | 1400                                                                                | 1400                                                             | 1400                                                | 1400                                                                                           | 1400                                                                                             | Hov                                     | 1400                                     | 1400                                 | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1400                   | 1400 | 1330               |
|            | DO       | 8.1                                                                                                                                                                                                                                                                   | <b>%</b> . )                          | 9.0                                                                                 | 6.7                                                              | 8.6                                                 | 7.8                                                                                            | 8.0                                                                                              | 66                                      | 9.0                                      | 7.3                                  | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.6                    | 8.6  | 8.1                |
| Control    | рН       | 8.2                                                                                                                                                                                                                                                                   | 7.8                                   | 8.0                                                                                 | 7.8                                                              | 7. 9                                                | 7.9                                                                                            | 8.3                                                                                              | 7.5                                     | 8.0                                      | 7.7                                  | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.8                    | 7,9  | 8.1                |
|            | Temp     | 24,6                                                                                                                                                                                                                                                                  | 24.4                                  | 24.2                                                                                | 247                                                              | 247                                                 | 7 24.6                                                                                         | 24.6                                                                                             | 24.7                                    | 24.7                                     | 24.4                                 | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.7                   | 24.7 | 24.7               |
|            | DO       | 8.9                                                                                                                                                                                                                                                                   | 8-4                                   | 91                                                                                  | 6.7                                                              | 8.9                                                 | 7.7                                                                                            | 8.6                                                                                              | 6.9                                     | 7. 3                                     | 7.0                                  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                     | 8:1  | 7.2                |
| 100%       | рН       | 7-5                                                                                                                                                                                                                                                                   | 7.1                                   | 2.5                                                                                 | 7.9                                                              | 7.2                                                 |                                                                                                | 7.6                                                                                              | 7.8                                     | 76                                       | 8 1                                  | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8./                    | 75   | 80                 |
|            | Temp     | 24.2                                                                                                                                                                                                                                                                  | 24.3                                  | 24.3                                                                                | 24.5                                                             | 24;                                                 |                                                                                                | 24.4                                                                                             | 243                                     | 24.7                                     | 24,2                                 | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.7                   | 24.3 | 24.4               |
|            | Ac       | lditional P                                                                                                                                                                                                                                                           | aramete                               | rs                                                                                  |                                                                  |                                                     |                                                                                                | Cor                                                                                              | ntrol                                   |                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100% San               | ıple |                    |
|            | Со       | nductivity                                                                                                                                                                                                                                                            | (umohm:                               | s)                                                                                  |                                                                  |                                                     |                                                                                                | 33°,                                                                                             | )                                       |                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70                     |      |                    |
|            | Al       | kalinity (m                                                                                                                                                                                                                                                           | ıg/I CaCC                             | ) <sub>3</sub> )                                                                    |                                                                  |                                                     |                                                                                                | 70                                                                                               |                                         |                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                     |      |                    |
|            | На       | ardness (m                                                                                                                                                                                                                                                            | g/l CaCC                              | ) <sub>3</sub> )                                                                    |                                                                  |                                                     |                                                                                                | 9-                                                                                               | 7                                       |                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                     |      |                    |
|            | An       | nmonia (m                                                                                                                                                                                                                                                             | g/l NH <sub>3</sub> -l                | N)                                                                                  |                                                                  |                                                     |                                                                                                | <0                                                                                               | 1                                       |                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4                    |      |                    |
|            |          |                                                                                                                                                                                                                                                                       |                                       |                                                                                     |                                                                  |                                                     | Source of Ne                                                                                   | onates                                                                                           |                                         |                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |      |                    |
| Rep        | licate:  |                                                                                                                                                                                                                                                                       | Α                                     | В                                                                                   | С                                                                |                                                     | D                                                                                              | E                                                                                                | F                                       |                                          | G                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                      |      | J                  |
| Broo       | od ID:   | 3                                                                                                                                                                                                                                                                     | B                                     | 10                                                                                  | j E                                                              |                                                     | 20                                                                                             | 2F                                                                                               | 2:                                      | 工 1/                                     | 7-                                   | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66                     | 3 4  | 15                 |
| 1          | N N      |                                                                                                                                                                                                                                                                       | - 1                                   |                                                                                     |                                                                  |                                                     |                                                                                                |                                                                                                  |                                         |                                          |                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |      |                    |
| Sample     | ·        | Dav                                                                                                                                                                                                                                                                   |                                       |                                                                                     | · · · · · ·                                                      | Numbe                                               | er of Young                                                                                    | Produced                                                                                         |                                         |                                          |                                      | tal Live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. Live               |      | nalyst             |
| Sample     |          | Day                                                                                                                                                                                                                                                                   | A                                     |                                                                                     | С                                                                | D                                                   | er of Young  E F                                                                               | Produced<br>G                                                                                    | Н                                       | ı .                                      |                                      | tal Live<br>oung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No. Live<br>Adults     |      | analyst<br>nitials |
| Sample     |          | 1                                                                                                                                                                                                                                                                     | - 0                                   | 2 0                                                                                 | 0                                                                |                                                     | E F                                                                                            | G , O                                                                                            | 1 1                                     | 00                                       | ) <b>'</b>                           | Coung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |      |                    |
| Sample     |          | 1 2                                                                                                                                                                                                                                                                   | (                                     | 2 0                                                                                 | 0                                                                | D 0                                                 | E F C C                                                                                        | G O O                                                                                            | Н                                       | 00                                       | <b>」 `</b><br>つ _<br>つ _             | Coung  C  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Adults                 |      |                    |
| Sample     |          | 2 3                                                                                                                                                                                                                                                                   | (                                     | 0 0                                                                                 | 0                                                                | D 0 0                                               | E F  O C  O C  O C                                                                             | G O O                                                                                            | H 0                                     | 00                                       | , 、<br>)<br>)<br>)                   | Coung  C  C  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adults<br>10           |      |                    |
| Sample     |          | 1<br>2<br>3<br>4                                                                                                                                                                                                                                                      | 2<br>2<br>2<br>3                      | 0 0 0                                                                               | 0                                                                | D 0 0 0 0 5 5                                       | E F O C O C O C 3 4                                                                            | G O O O O O O O O O O O O O O O O O O O                                                          | H 0 0                                   | 00                                       | <b>」 `</b><br>つ _<br>つ _             | Coung  C  C  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adults  10  10  10  10 |      |                    |
|            |          | 2 3                                                                                                                                                                                                                                                                   | (                                     | 2 0<br>0 0<br>0 0<br>3 9                                                            | 0                                                                | D 0 0 0 0 5 5                                       | E F  O C  O C  O C  O O  3 4  12 9                                                             | G O O O O O O O O O O O O O O O O O O O                                                          | H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00                                       | )<br>)<br>)<br>)<br>)<br>)<br>)<br>( | Coung  C  C  C  C  C  C  C  C  C  C  C  C  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adults<br>10           |      |                    |
|            |          | 1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                 | 3                                     | 9 0<br>0 0<br>2 0<br>3 9<br>7 0                                                     | 0 0 0                                                            | D 0 0 0 0 5 5                                       | E F O C O O O O O O O O O O O O O O O O O                                                      | G<br>O<br>O<br>3<br>O<br>(9                                                                      | H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00                                       |                                      | Coung  C  C  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adults  10  10  10  10 |      |                    |
|            |          | 1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                 | 3                                     | 9 0<br>0 0<br>3 9<br>7 0<br>0 12                                                    | 0<br>C<br>4<br>6<br>0                                            | D 0 0 0 0 5 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9   | E F  O C  O C  O C  O O  3 4  12 9                                                             | G<br>O<br>O<br>3<br>O<br>( 9<br>0) 10                                                            | H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | C C C C C C C C C C C C C C C C C C C    |                                      | Coung CO CO CO CO CO CO CO CO CO CO CO CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adults  10  10  10  10 |      |                    |
|            |          | 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                            | 3 0 0                                 | 9 0<br>0 0<br>3 9<br>7 0<br>0 12<br>0 24                                            | 0<br>C<br>4<br>6<br>0<br>12<br>22                                | D 0 0 0 0 5 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9   | E F  O C  O O  3 4  12 9  O [0]                                                                | G<br>O<br>O<br>3<br>O<br>( 9<br>0) 10                                                            | H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | C C C C C C C C C C C C C C C C C C C    |                                      | Coung CO CO CO CO CO CO CO CO CO CO CO CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |      |                    |
|            |          | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>Total                                                                                                                                                                                                                              | 33 00 -                               | 9 0<br>9 0<br>3 9<br>9 0<br>12<br>0 12                                              | 0<br>C<br>4<br>6<br>0<br>12<br>22                                | D 0 0 0 5 4 15 0 24 .                               | E F  O C  O C  O O  3 44  12 9  O [0]  [b]  [31 27                                             | G O O O O O O O O O O O O O O O O O O O                                                          | H O O O O O O O O O O O O O O O O O O O | C C C C C C C C C C C C C C C C C C C    |                                      | Coung CO CO CO CO CO CO CO CO CO CO CO CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |      |                    |
|            |          | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>Total                                                                                                                                                                                                                              | 33 00 -                               | 9 0<br>0 0<br>3 9<br>7 0<br>12<br>0 12<br>0 24<br>0 0                               | 0<br>C<br>4<br>6<br>0<br>12<br>22                                | D 0 0 0 5 4 15 0 24 .                               | E F 0 C 0 C 0 C 3 4 12 9 0 [0] 31 27 0 0                                                       | G O O O O O O O O O O O O O O O O O O O                                                          | H O O O O O O O O O O O O O O O O O O O | C C C C C C C C C C C C C C C C C C C    |                                      | Coung CO CO CO CO CO CO CO CO CO CO CO CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |      |                    |
| Control    |          | 1 2 3 4 5 6 7 Total 1 2                                                                                                                                                                                                                                               | C   C   C   C   C   C   C   C   C   C | 9 0<br>0 0<br>3 9<br>0 12<br>0 12<br>0 0<br>0 0<br>0 0                              | 0<br>C<br>4<br>6<br>0<br>12<br>22<br>0                           | D O O O O O O O O O O O O O O O O O O O             | E F 0 C 0 C 0 C 3 4 12 9 0 [4 15] 15 15 0 C 0 C                                                | G<br>O<br>O<br>3<br>O<br>( 9<br>0 10<br>0 22<br>O                                                | H O O O O O O O O O O O O O O O O O O O | C C C C C C C C C C C C C C C C C C C    |                                      | Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung |                        |      |                    |
|            |          | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>Total<br>1<br>2                                                                                                                                                                                                                    | C   C   C   C   C   C   C   C   C   C | 9 0<br>0 0<br>3 9<br>0 12<br>0 12<br>0 0<br>0 0<br>0 0                              | 0<br>C<br>4<br>6<br>0<br>12<br>22<br>0<br>0<br>0                 | 0<br>0<br>5<br>4<br>5<br>2<br>2<br>2<br>2<br>2<br>3 | E F  O C  O C  O C  O C  3 4  12 9  O [0]  31 27  O C  3 C  O C  3 C  O 10                     | G<br>O<br>O<br>3<br>O<br>10<br>10<br>22<br>O<br>O<br>0<br>0                                      | H O O O O O O O O O O O O O O O O O O O | 0 0<br>0 7<br>7 7<br>0 0<br>14 1<br>26 1 |                                      | Coung CO CO CO CO CO CO CO CO CO CO CO CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |      |                    |
| Control    |          | 1 2 3 4 5 6 7 Total 1 2 3 4                                                                                                                                                                                                                                           |                                       | 2 0<br>2 0<br>3 9<br>2 0<br>12<br>0 12<br>0 0<br>2 7<br>1 0                         | 0<br>C<br>4<br>6<br>0<br>12<br>22<br>0<br>0<br>0<br>3<br>0       | DOCO 5 4 50 0 20 0 20 0 9 10                        | E F 0 C 0 C 0 C 3 4 12 9 0 [0 15 31 27 0 C 3 C 0 C                                             | G O O O O O O O O O O O                                                                          | H O C O O O O O O O O O O O O O O O O O | C C C C C C C C C C C C C C C C C C C    |                                      | Coung CO CO CO CO CO CO CO CO CO CO CO CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |      |                    |
| Control    |          | 1 2 3 4 5 Total 1 2 3 4 5 5                                                                                                                                                                                                                                           |                                       | 2 0<br>2 0<br>3 9<br>2 0<br>12<br>0 12<br>0 0<br>2 7<br>1 0                         | 0<br>C<br>4<br>6<br>0<br>12<br>22<br>0<br>0<br>0<br>3<br>0       | DO CO S 4 15 0 0 2 0 9 10 0                         | E F 0 C 0 C 3 4 12 9 0 10 31 27 0 C 3 C 0 C 3 C 0 C 3 C 10 10 10 10 10 10 10 10 10 10 10 10 10 | G<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | H O C O O O O O O O O O O O O O O O O O | C C C C C C C C C C C C C C C C C C C    |                                      | Coung CO CO CO CO CO CO CO CO CO CO CO CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |      |                    |
| Control    |          | 1 2 3 4 5 6 7 Total 5 6 7 Total 5 7 Total 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 Total 7 7 7 Total 7 7 7 Total 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |                                       | 2 0<br>2 0<br>3 9<br>7 0<br>12<br>0 12<br>0 24<br>0 0<br>2 7<br>1 0<br>2 17<br>8 26 | 0<br>4<br>6<br>0<br>12<br>22<br>0<br>0<br>0<br>3<br>0<br>7<br>14 | 0000<br>5450<br>24<br>2002<br>100<br>21             | E F 0 C 0 C 0 C 3 4 12 9 10 (13 31 27 0 C 3 C 0 C 3 C 10 8 C                                   | G<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | H O O O O O O O O O O O O O O O O O O O | C C C C C C C C C C C C C C C C C C C    |                                      | Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung Coung |                        |      |                    |

<sup>7&</sup>lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.



## CHAIN OF CUSTODY

## **Subcontract Order - TestAmerica Irvine (IUK0771)**

| SENDING LABORATORY:            | RECEIVING LABORATORY:                    |  |
|--------------------------------|------------------------------------------|--|
| TestAmerica Irvine             | Aquatic Testing Laboratories-SUB         |  |
| 17461 Derian Avenue. Suite 100 | 4350 Transport Street, Unit 107          |  |
| Irvine, CA 92614               | Ventura, CA 93003                        |  |
| Phone: (949) 261-1022          | Phone :(805) 650-0546                    |  |
| Fax: (949) 260-3297            | Fax: (805) 650-0756                      |  |
| Project Manager: Debby Wilson  | Project Location: California             |  |
|                                | Receipt Temperature: ひっと °C Ice: (Y // N |  |

| Analysis                              | Units               | Expires             | Comments                                          |
|---------------------------------------|---------------------|---------------------|---------------------------------------------------|
| Sample ID: IUK0771-02 (               | Outfall 009 (Compos | site) - Water)      |                                                   |
|                                       |                     | Sampled: 11/06/11 1 | <u>1:00</u>                                       |
| Bioassay-7 dy Chrnic                  | N/A                 | 11/07/11 23:00      | Cerio, EPA/821-R02-013, Sub to<br>Aquatic testing |
| · · · · · · · · · · · · · · · · · · · | N/A                 | Sampled: 11/06/11 1 | Cerio, EPA/821-R02-013, Sub to                    |

Released By Date/Time Received By Date/Time Page 1 of 1



# REFERENCE TOXICANT DATA

## CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

## **REFERENCE TOXICANT - NaCl**



QA/QC Batch No.: RT-111107

Date Tested: 11/07/11 to 11/14/11

#### **TEST SUMMARY**

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

#### **RESULTS SUMMARY**

| Sample Concentration | Percent Surv | ival | Mean Number of<br>Young Per Female |    |  |
|----------------------|--------------|------|------------------------------------|----|--|
| Control              | 100%         |      | 23.3                               |    |  |
| 0.25 g/l             | 100%         |      | 23.1                               |    |  |
| 0.5 g/l              | 100%         |      | 23.0                               |    |  |
| 1.0 g/l              | 100%         |      | 13.3                               | *  |  |
| 2.0 g/l              | 60%          | *    | 1.1                                | ** |  |
| 4.0 g/l              | 0%           | *    | 0                                  | ** |  |

<sup>\*</sup> Statistically significantly less than control at P = 0.05 level

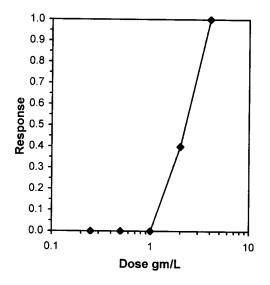
\*\* Reproduction data from concentrations greater than survival NOEC are

excluded from statistical analysis.

#### **CHRONIC TOXICITY**

| Survival LC50     | 2.1 g/l   |
|-------------------|-----------|
| Reproduction IC25 | 0.78 mg/l |

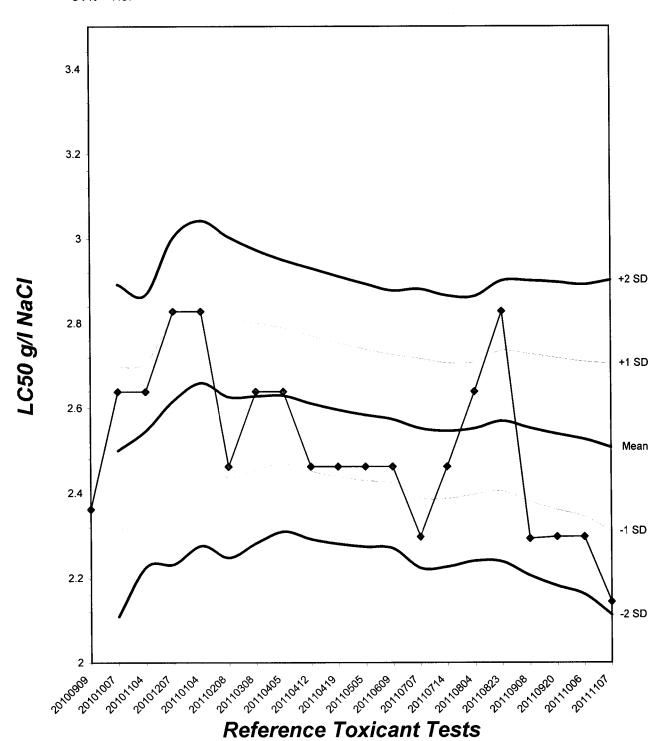
## QA/QC TEST ACCEPTABILITY


| Parameter                                        | Result                                                    |
|--------------------------------------------------|-----------------------------------------------------------|
| Control survival ≥80%                            | Pass (100% Survival)                                      |
| ≥15 young per surviving control female           | Pass (23.3 young)                                         |
| ≥60% surviving controls had 3 broods             | Pass (100% with 3 broods)                                 |
| PMSD <47% for reproduction                       | Pass (PMSD = 12.5%)                                       |
| Stat. sig. diff. conc. relative difference > 13% | Pass (Stat. sig. diff. conc. Relative difference = 42.9%) |
| Concentration response relationship acceptable   | Pass (Response curve normal)                              |

|                        |           |         | Cerioda | aphnia Su | rvival and | Reprod    | uction Tes | st-7 Day | Survival |               |
|------------------------|-----------|---------|---------|-----------|------------|-----------|------------|----------|----------|---------------|
| Start Date:            | 11/7/2011 | 14:00   |         | RT111107  |            |           | Sample ID  |          | REF-Ref  | Toxicant      |
| End Date:              | 11/14/201 | 1 13:30 | Lab ID: | CAATL-Ad  | quatic Tes | ting Labs |            |          |          | dium chloride |
| Sample Date: Comments: | 11/7/2011 |         |         | FWCH EF   |            | Ü         | Test Spec  | • •      |          | laphnia dubia |
| Conc-gm/L              | 1         | 2       | 3       | 4         | 5          | 6         | 7          | 8        | 9        | 10            |
| D-Control              | 1.0000    | 1.0000  | 1.0000  | 1.0000    | 1.0000     | 1.0000    | 1.0000     | 1.0000   | 1.0000   | 1.0000        |
| 0.25                   | 1.0000    | 1.0000  | 1.0000  | 1.0000    | 1.0000     | 1.0000    | 1.0000     | 1.0000   | 1.0000   | 1.0000        |
| 0.5                    | 1.0000    | 1.0000  | 1.0000  | 1.0000    | 1.0000     | 1.0000    | 1.0000     | 1.0000   | 1.0000   | 1.0000        |
| 1                      | 1.0000    | 1.0000  | 1.0000  | 1.0000    | 1.0000     | 1.0000    | 1.0000     | 1.0000   |          | 1.0000        |
| 2                      | 0.0000    | 1.0000  | 0.0000  | 0.0000    | 1.0000     | 1.0000    | 1.0000     | 0.0000   | 1.0000   | 1.0000        |
| 4                      | 0.0000    | 0.0000  | 0.0000  | 0.0000    | 0.0000     | 0.0000    | 0.0000     | 0.0000   | 0.0000   | 0.0000        |

|           |        |        |      | Not  | -     |    | Fisher's | 1-Tailed | Number | Total  |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-gm/L | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Resp   | Number |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 1,005  | 10     |
| 0.25      | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | Ö      | 10     |
| 0.5       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 1         | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| *2        | 0.6000 | 0.6000 | 4    | 6    | 10    | 10 | 0.0433   | 0.0500   | 4      | 10     |
| 4         | 0.0000 | 0.0000 | 10   | 0    | 10    | 10 | 0.0100   | 0.0000   | 10     | 10     |

| Hypothesis Test (1-tail, 0.05) | NOEC | LOEC | ChV     | TU |  |
|--------------------------------|------|------|---------|----|--|
| Fisher's Exact Test            | 1    | 2    | 1.41421 |    |  |
| Treatments vs D-Control        |      |      |         |    |  |


|            |        |        |        | Trimmed Spearman-Karber |
|------------|--------|--------|--------|-------------------------|
| Trim Level | EC50   | 95%    | CL     | Talbol                  |
| 0.0%       | 2.1435 | 1.7293 | 2.6571 |                         |
| 5.0%       | 2.1584 | 1.6984 | 2.7429 |                         |
| 10.0%      | 2.1732 | 1.6538 | 2.8556 | 1.0                     |
| 20.0%      | 2.2021 | 1.5017 | 3.2291 | 1.0 T                   |
| Auto-0.0%  | 2 1435 | 1 7203 | 2 6571 | 0.9 -                   |

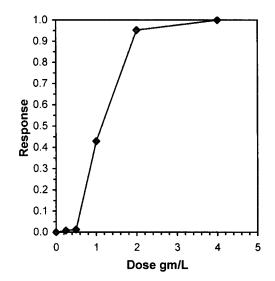


Reviewed by:

# Ceriodaphnia Chronic Survival Laboratory Control Chart

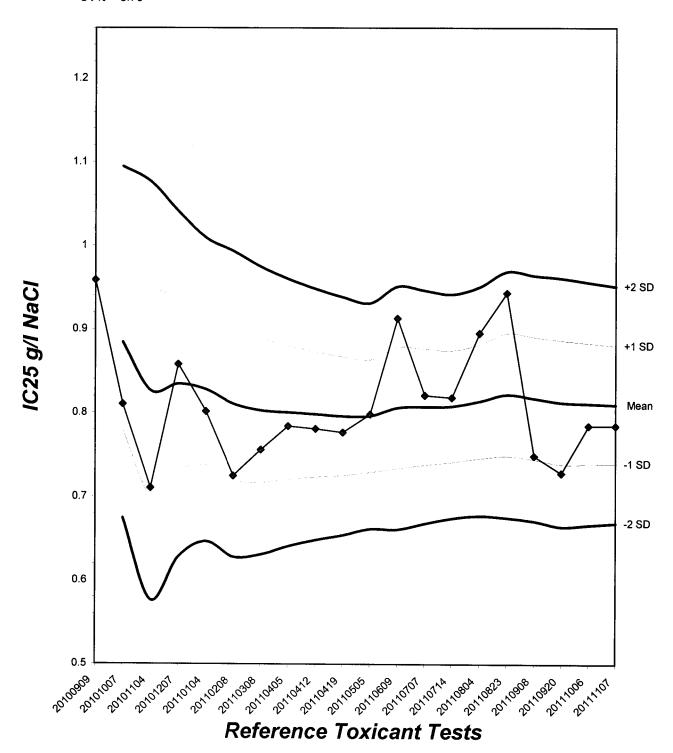
CV% = 7.87




|              |           |         | Ceriod    | aphnia Su                                    | rvival and | Reprodu   | ction Tes | st-Repro | duction   |               |  |  |
|--------------|-----------|---------|-----------|----------------------------------------------|------------|-----------|-----------|----------|-----------|---------------|--|--|
| Start Date:  | 11/7/2011 | 14:00   | Test ID:  | est ID: RT111107 Sample ID: REF-Ref Toxicant |            |           |           |          |           |               |  |  |
| End Date:    | 11/14/201 | 1 13:30 | Lab ID:   | CAATL-Ac                                     | quatic Tes | ting Labs | Sample Ty | /pe:     | NACL-Soc  | dium chloride |  |  |
| Sample Date: | 11/7/2011 |         | Protocol: | FWCH EP                                      | 'A         | •         | Test Spec | ies:     | CD-Cerioo | laphnia dubia |  |  |
| Comments:    |           |         |           |                                              |            |           |           |          |           |               |  |  |
| Conc-gm/L    | 1         | 2       | 3         | 4                                            | 5          | 6         | 7         | 8        | 9         | 10            |  |  |
| D-Control    | 17.000    | 21.000  | 18.000    | 23.000                                       | 29.000     | 26.000    | 22.000    | 26.000   | 26.000    | 25.000        |  |  |
| 0.25         | 20.000    | 20.000  | 21.000    | 22.000                                       | 26.000     | 27.000    | 27.000    | 27.000   | 19.000    | 22.000        |  |  |
| 0.5          | 21.000    | 25.000  | 20.000    | 24.000                                       | 22.000     | 25.000    | 26.000    | 23.000   | 23.000    | 21.000        |  |  |
| 1            | 18.000    | 13.000  | 11.000    | 14.000                                       | 14.000     | 18.000    | 11.000    | 12.000   | 11.000    | 11.000        |  |  |
| 2            | 0.000     | 2.000   | 0.000     | 0.000                                        | 3.000      | 2.000     | 2.000     | 0.000    | 2.000     | 0.000         |  |  |
| 4            | 0.000     | 0.000   | 0.000     | 0.000                                        | 0.000      | 0.000     | 0.000     | 0.000    | 0.000     | 0.000         |  |  |

|           |        | _      | Transform: Untransformed |        |        |         |    |        | 1-Tailed | Isotonic |        |        |
|-----------|--------|--------|--------------------------|--------|--------|---------|----|--------|----------|----------|--------|--------|
| Conc-gm/L | Mean   | N-Mean | Mean                     | Min    | Max    | CV%     | N  | t-Stat | Critical | MSD      | Mean   | N-Mean |
| D-Control | 23.300 | 1.0000 | 23.300                   | 17.000 | 29.000 | 16.443  | 10 |        |          |          | 23.300 | 1.0000 |
| 0.25      | 23.100 | 0.9914 | 23.100                   | 19.000 | 27.000 | 14.205  | 10 | 0.147  | 2.137    | 2.907    | 23.100 | 0.9914 |
| 0.5       | 23.000 | 0.9871 | 23.000                   | 20.000 | 26.000 | 8.696   | 10 | 0.221  | 2.137    | 2.907    | 23.000 | 0.9871 |
| *1        | 13.300 | 0.5708 | 13.300                   | 11.000 | 18.000 | 20.682  | 10 | 7.351  | 2.137    | 2.907    | 13.300 | 0.5708 |
| 2         | 1.100  | 0.0472 | 1.100                    | 0.000  | 3.000  | 108.838 | 10 |        |          |          | 1.100  | 0.0472 |
| 4         | 0.000  | 0.0000 | 0.000                    | 0.000  | 0.000  | 0.000   | 10 |        |          |          | 0.000  | 0.0000 |

| Auxiliary Tests                     |             |         | Statistic |      | Critical |         | Skew    | Kurt    |         |       |
|-------------------------------------|-------------|---------|-----------|------|----------|---------|---------|---------|---------|-------|
| Shapiro-Wilk's Test indicates nor   |             | 0.96579 |           | 0.94 |          | 0.05969 | -0.7066 |         |         |       |
| Bartlett's Test indicates equal var | iances (p = | 0.30)   |           |      | 3.67174  |         | 11.3449 |         |         |       |
| Hypothesis Test (1-tail, 0.05)      | NOEC        | LOEC    | ChV       | TU   | MSDu     | MSDp    | MSB     | MSE     | F-Prob  | df    |
| Dunnett's Test                      | 0.5         | 1       | 0.70711   |      | 2.90662  | 0.12475 | 241.892 | 9.25278 | 3.7E-09 | 3, 36 |
| Treatments vs D-Control             |             |         |           |      |          |         |         |         |         |       |


Linear Interpolation (200 Resamples)

| Point | gm/L   | SD     | 95%    | CL     | Skew    |
|-------|--------|--------|--------|--------|---------|
| IC05  | 0.5446 | 0.1401 | 0.1355 | 0.5674 | -1.4215 |
| IC10  | 0.6046 | 0.0502 | 0.4649 | 0.6349 | -2.6554 |
| IC15  | 0.6647 | 0.0393 | 0.5603 | 0.7036 | -0.5268 |
| IC20  | 0.7247 | 0.0399 | 0.6198 | 0.7733 | -0.2981 |
| IC25  | 0.7848 | 0.0417 | 0.6836 | 0.8513 | -0.0663 |
| IC40  | 0.9649 | 0.0549 | 0.8651 | 1.0849 | 0.4812  |
| IC50  | 1.1352 | 0.0713 | 0.9835 | 1.2504 | -0.1627 |



# Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 8.73



## CERIODAPHNIA DUBIA CHRONIC BIOASSAY

## Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-111107

Start Date: 11/07/2011

|           |       |    |    | Nu | mbei | r of Y        | oung       | Prod | uced |    |    | Total         | No.            | Analyst  |
|-----------|-------|----|----|----|------|---------------|------------|------|------|----|----|---------------|----------------|----------|
| Sample    | Day   | A  | В  | С  | D    | E             | F          | G    | Н    | I  | J  | Live<br>Young | Live<br>Adults | Initials |
|           | 1     | 0  | 0  | 0  | 0    | 0             | 0          | 0    | 0    | 0  | 0  | 0             | 10             |          |
|           | 2     | 0  | 0  | 0  | 0    | 0             | 0          | 0    | 0    | 0  | 0  | 0             | 10             |          |
|           | 3     | 0  | 3  | 4  | 0    | Ú             | 0          | 0    | 0    | 0  | 3  | 10            | 10             | m        |
| C =41     | 4     | 7  | 0  | 6  | 4    | 5             | 4          | 3    | 4    | 6  | 0  | 3 \$5         | 10             |          |
| Control   | 5     | 4  | U  | 0  | 0    | 10            | 8          | 0    | 10   | 7  | 0  | 39            | 10             |          |
|           | 6     | 10 | 6  | 8  | 7    | 14            | 0          | 7    | 0    | 0  | 9  | 61            | 10             |          |
|           | 7     | 0  | 12 | 0  | 12   | 0             | 14         | 12   | 12   | 13 | 13 | 88            | 10             |          |
|           | Total | 17 | 21 | 18 | 23   | 29            | <b>2</b> b | 22   | 26   | 26 | 25 | 23/63         | 10             | m-       |
|           | 1     | 0  | 0  | 0  | 0    | 0             | 0          | 0    | 0    | O  | 0  | 0             | 10             | 1        |
|           | 2     | C  | 0  | 0  | 0    | 0             | 0          | 0    | 0    | 0  | 0  | 0             | 10             | 2        |
|           | 3     | 0  | 0  | 0  | 0    | 0             | U          | 2    | 0    | 0  | 0  | 2             | 10             | 2        |
| 0.25 - // | 4     | O  | ン  | 7  | 7    | 4             | رم         | 0    | 7    | Z  | 4  | 29            | 112            | 1        |
| 0.25 g/l  | 5     | 3  | 3  | 2  | 0    | 6             | ں ا        | 7    | 12   | 6  | 0  | 54            | 10             | 12       |
|           | 6     | 7  | C  | 0  | 7    | 16            | 0          | 0    | 0    | 0  | 7  | 3)            | 10             | n        |
|           | 7     | 10 | 14 | 16 | ル    | $\mathcal{O}$ | 12         | 13   | 11   | 10 | -  | 109           | 10             | 1        |
|           | Total | 20 | 20 | 21 | 22   | علا           | 27         | 27   | ン)   | 19 | 22 | . 231         | 11)            | J.       |
|           | 1     | 0  | 0  | 0  | 0    | 0             | 0          | 0    | 0    | 0  | 0  | 0             | 10             | 1        |
|           | 2     | 0  | 0  | 0  | 0    | 0             | 0          | 0    | Ò    | 0  | 0  | 0             | 10             | 10       |
|           | 3     | 0  | 0  | 0  | 0    | 0             | 0          | 0    | 0    | 0  | 2  | 7             | 10             | M        |
| 0.5 -/1   | 4     | 3  | 3  | Ч  | 4    | 3             | 7          | 4    | 0    | 4  | 0  | 28            | 10             | 2        |
| 0.5 g/l   | 5     | O  | 7  | 4  | 0    | 0             | 0          | 6    | 3    | 5  | 0  | 25            | 10             | 9        |
|           | 6     | 7  | 0  | 0  | 9    | 7             | 8          | 0    | 7    | 0  | 6  | 44            | 10)            | h        |
|           | 7     | 11 | 15 | 12 | 11   | 12            | 14         | 16   | 13   | 14 | 13 | 131           | 10             |          |
|           | Total | 21 | 25 | 20 | 24   | 22            | 25         | 26   | 23   | 23 | 21 | 230           | 10             |          |

Circled fourth brood not used in statistical analysis.

<sup>7&</sup>lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

## CERIODAPHNIA DUBIA CHRONIC BIOASSAY

## Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-111107

Start Date:11/07/2011

| G       |       |              | Number of Young Produced |    |    |        |    |    |               |    |    | Total         | No.            | Analyst  |
|---------|-------|--------------|--------------------------|----|----|--------|----|----|---------------|----|----|---------------|----------------|----------|
| Sample  | Day   | A            | В                        | C  | D  | E      | F  | G  | Н             | I  | J  | Live<br>Young | Live<br>Adults | Initials |
|         | 1     | 0            | 0                        | 0  | 0  | 0      | 0  | 0  | 0             | 0  | 0  | 0             | 10             |          |
|         | 2     | 0            | 0                        | 0  | 0  | 0      | 0  | 0  | 0             | 0  | 0  | 0             | 10             | 1        |
|         | 3     | 2            | 0                        | 0  | 0  | 0      | 0  | 0  | 0             | 0  | 0  | 28            | 10             | 10/      |
| 1.0 g/l | 4     | 0            | 3                        | 0  | 0  | 3      | 3  | 0  | 2             | 0  | 0  | 12            | 10             |          |
| 1.0 g 1 | 5     | 6            | 3                        | 0  | ပ  | O      | 0  | 0  | 0             | 0  | 0  | 9             | 10             | 1/       |
|         | 6     | 0            | 0                        | 4  | 6  | 4      | 5  | 3  | Z             | 3  | کا | 30            | 10             | /r       |
|         | 7     | 10           | 7                        | 2  | 8  | $\cap$ | 10 | 8  | 7             | 8  | 8  | 80            | 10             | 1        |
|         | Total | 18           | 13                       | 11 | 14 | 14     | 18 | 11 | 12            | 1( |    | 133           | 10             |          |
|         | 1     | 0            | 0                        | 0  | 0  | 0      | 0  | 0  | 0             | 0  | 0  | (2            | 10             | 1        |
|         | 2     | 0            | 0                        | 0  | 0  | 0      | 0  | 0  | 0             | 0  | 0  | 0             | 10             | 11       |
|         | 3     | 0            | 0                        | 0  | 0  | Q      | 0  | 0  | 0             | 0  | 0  | 0             | 10             | 1        |
| 2.0 ~/1 | 4     | 0            | 0                        | 0  | 0  | 0      | G  | 0  | 0             | 0  | 0  | 0             | 10             | ///      |
| 2.0 g/l | 5     | 0            | 0                        | 0  | 0  | 0      | 0  | 0  | 0             | 0  | 0  | 0             | IV             |          |
|         | 6     | 0            | 7                        | 0  | 0  | 3      | 0  | Z  | 0             | 0  | 0  | 7             | 10             | gn       |
|         | 7     | X            | 0                        | X  | X  | 0      | 2  | 0  | X             | Z  | 0  | 4             | 6              | 1/       |
|         | Total | ري           | 2                        | 0  | 0  | 3      | 7  | 2  | $\mathcal{O}$ | 2  | () | 1 (           | 6              |          |
|         | 1     | Х            | <b>×</b>                 | X  | X  | X      | X  | X  | X             | X  | X  | 0             | 0              | 0        |
|         | 2     | <del>/</del> | 1                        | 1  |    | 1      | 1  | _  | 1             | 1  | _  |               |                |          |
|         | 3     | _            | 1                        | 1  | _  | -      | _  | _  | _             | -  | _  |               | 1              |          |
| 10 ~/1  | 4     | _            | _                        |    |    | _      | _  | ~  | _             | -  |    |               |                |          |
| 4.0 g/l | 5     | _            | _                        | _  |    | _      | _  | _  |               | ~  |    |               | _              |          |
|         | 6     | _            | _                        | _  |    | _      | _  | _  | _             |    | _  |               |                |          |
|         | 7     | (            | ^                        | _  | _  |        | _  |    | _             |    | _  |               |                |          |
|         | Total | X            | X                        | X  | ×  | X      | X  | X  | X             | X  | ×  | $\cup$        | 0              |          |

Circled fourth brood not used in statistical analysis.

<sup>7&</sup>lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

## CERIODAPHNIA DUBIA CHRONIC BIOASSAY

## Reference Toxicant - NaCl Water Chemistries Raw Data Sheet



QA/QC No.: RT-111107

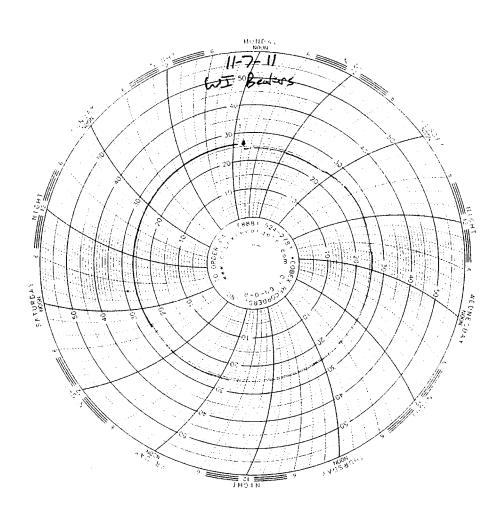
Start Date: 11/07/2011

|            |          | DAY 1   |       | DAY 2    |         | DAY 3    |        | DAY 4    |         | DAY 5   |         | DAY 6   |       | D/           | AY 7   |
|------------|----------|---------|-------|----------|---------|----------|--------|----------|---------|---------|---------|---------|-------|--------------|--------|
|            |          | Initial | Final | Initial  | Final   | Initial  | Final  | Initial  | Final   | Initial | Final   | Initial | Final | Initial      | 1      |
| A malwat I | mitiala. | M       |       | 11111111 | I'iliai | IIIIIIai | rillai | IIIIIIII | rinai   |         | rinai 7 | Initiai | Final | ][<br>][     | Final  |
| Analyst I  |          | 1       |       |          |         | 2        |        |          |         | 2       |         | 2       |       | 2            | (37.6) |
| Time of R  |          | yav.    | 1400  |          | 1400    | 1400     | 1400   | 1400     | 1400    | (400)   | 1400    | 140     | 1400  | Ricu         | 1330   |
|            | DO       | 8,1     | 8.3   | 8.2      | 8.0     | 7.9      | 8.0    | 7.7      | 7/2     | 7.1     | 7.8     | 8.0     | 21    | 8.7          | 76     |
| Control    | pН       | 8.2     | 9.3   | 8,2      | 8.1     | 8.)      | 8.2    | 8.3      | 8.7     | 8.3     | 8.)     | 8.2     | 8.1   | 8.3          | 8-1    |
|            | Temp     | 24.5    | 246   | 24.3     | 24.7    | 24.7     | 24.4   | 24.5     | ८५.5    | ટપ ક    | 25.1    | 25.0    | 247   | 24. 9        | 28.3   |
|            | DO       | 8,4     | 8.6   | 4.9      | 8.7     | 8.7      | 79     | 8.8      | 7.)     | 7.5     | 27      | 8.1     | 28    | 8.5          | 22     |
| 0.25 g/l   | pН       | 8.2     | 8.2   | g. J     | 8.1     | 8.3      | 6.3    | 8.3      | 8.1     | 8,2     | 8.1     | 8.7     | 8.1   | 8,5          | 8-1    |
|            | Temp     | 24.8    | 24.3  | 24.5     | 247     | 24.6     | 24.7   | 24.7     | 245     | 24.8    | 2511    | 24.8    | 24.4  | 24.7         | 24.5   |
|            | DO       | 7.2     | 8.3   | 8.4      | 8. U    | 8.5      | 78     | 8.3      | 7.7     | 7.3     | 76      | 8.2     | ?7    | 8.1          | 7-4    |
| 0.5 g/l    | pН       | 8,2     | 8.1   | 8.2      | 8.3     | 8.2      | 8.2    | 8.3      | 8.2     | 8,2     | 8.1     | 8.2     | 8.1   | 8.7          | 8.1    |
|            | Temp     | 24.9    | 24.5  | 24.5     | 24.6    | 24.6     | 24.7   | 24.5     | 24.6    | 25.0    | 25.0    | 25.1    | 24.8  | 24.9         | 24.5   |
|            | DO       | 8.3     | 8,4   | 8.8      | 8.5     | 8.7      | 7.7    | 8.6      | 7.0     | 8.1     | 76      | 7.8     | 7.5   | 8./          | 23     |
| 1.0 g/l    | рН       | 8.2     | 8.2   | 8.7      | 8.3     | 812      | 8.1    | g. 3     | 8,1     | 4.)     | 8.1     | 8,2     | 8.0   | 8.3          | 8.1    |
|            | Temp     | 25.1    | 24. [ | 24.8     | 24.6    | 24.7     | 24.5   | 24.5     | 24.4    | 25.1    | ٤4.1    | 25,3    | 247   | <b>3</b> 4.7 | 24.)   |
|            | DO       | 8.2     | 8,5   | 8.0      | 7.1     | 8,0      | 7.7    | 7.3      | 7.0     | 7.5     | 7.5     | 7.1     | 7.6   | 78           | 7-2    |
| 2.0 g/l    | pН       | 8.2     | 8.2   | 8.1      | 8.2     | 8.1      | 8.1    | 8.2      | 8.1     | 8.1     | 8.1     | 8.)     | 8.0   | 8,2          | 8-1    |
|            | Temp     | 25-3    | 24.5  | 24.8     | 24.7    | 24.8     | 24.5   | 24.8     | 247     | 26.1    | 248     | 25.4    | 24.7  | 147          | 245    |
|            | DO       | 8.0     | 8.3   |          |         | _        | _      | _        | _       |         |         | _       | _     |              | _      |
| 4.0 g/l    | pН       | 81      | 8.1   | 1        |         | _        |        |          | _       | _       | _       | _       | _     | _            | _      |
|            | Temp     | 25.6    | 24.3  | J        | _       | ~        | -      |          |         | _       | _       | /       | -     | _            | ~      |
|            | Die      | ssolved | Ovvge | n (DO)   | roadina | c ore in | ma/1 ( | ) . Tomm | orotuno | (Tamm)  |         |         | .00   |              |        |

Dissolved Oxygen (DO) readings are in mg/l O2; Temperature (Temp) readings are in °C.

| Additional Parameters                |       | Control |       | High Concentration |       |       |  |  |
|--------------------------------------|-------|---------|-------|--------------------|-------|-------|--|--|
| Additional Parameters                | Day 1 | Day 3   | Day 5 | Day 1              | Day 3 | Day 5 |  |  |
| Conductivity (μS)                    | 339   | 341     | 3 27  | 7290               | 3/30  | 3162  |  |  |
| Alkalinity (mg/l CaCO <sub>3</sub> ) | 74    | 71      | 70    | 71                 | 7,2   | 71    |  |  |
| Hardness (mg/l CaCO <sub>3</sub> )   | 97    | 94      | 93    | 97                 | 98    | 93    |  |  |

|            |    |    |    | Source of l | Neonates |    |    |    |      |    |
|------------|----|----|----|-------------|----------|----|----|----|------|----|
| Replicate: | Α  | В  | С  | D           | Е        | F  | G  | Н  | I    | J  |
| Brood ID:  | 3B | 10 | 18 | 20          | 25       | 21 | 10 | UA | 1, B | 45 |




## Test Temperature Chart

Test No: RT-111107

Date Tested: 11/07/11 to 11/14/11

Acceptable Range: 25+/- 1°C





EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

November 29, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

**Test America-Irvine IUK0771** 

Eberline Analytical Report S111021-8693

Sample Delivery Group 8693

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Job No. IUK0771. The samples were received on November 8, 2011.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

Joseph Verville

Client Services Manager

NJV/mw

Enclosure: Level IV CLP-like Data Package CD

## Case Narrative, page 1

November 29, 2011

#### 1.0 General Comments

Sample delivery group 8693 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The samples were received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the samples as received i.e. the samples were not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

## 2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, and duplicate analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

## 3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the  $2\sigma$  error (Total):

| Analysis      | Method Error |
|---------------|--------------|
| Gross alpha   | 20.6%        |
| Gross beta    | 11.0%        |
| Tritium       | 10.0%        |
| Sr-90         | 10.4%        |
| Ra-226        | 16.4%        |
| Ra-228        | 10.4%        |
| Uranium,Total |              |
| Gamma Spec.   | 7.0%         |

Case Narrative, page 2

November 29, 2011

## 4.0 Analysis Notes

- 4.1 Gross Alpha/Gross Beta Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.3 Strontium-90 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4** Radium-226 Analysis –No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy No problems were encountered during the processing of the samples. All quality control sample results were within required control limits. The gamma spectroscopy planchets were counted for sufficient time to meet the required Cs-137 detection limit of 20 pCi/L. As a consequence of keying to the Cs-137 RDL, the detection limit for K-40 was not achieved for the duplicate analysis.

#### 5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

| nghill                  | 11/29/11 |
|-------------------------|----------|
| Joseph Verville         | Date     |
| Client Services Manager |          |

## EBERLINE ANALYTICAL SDG 8693

SDG <u>8693</u> Contact <u>Joseph Verville</u> Client <u>Test America, Inc.</u> Contract <u>IUK0771</u>

## SUMMARY DATA SECTION

| TABLE OF            | C O | и т | E N | T S |    |
|---------------------|-----|-----|-----|-----|----|
| About this section  | •   | •   | •   | • . | 1  |
| Sample Summaries    | •   | •   | •   | •   | 3  |
| Prep Batch Summary  | •   | •   | •   | •   | 5  |
| Work Summary        | •   | • . | •   | •   | 6  |
| Method Blanks       | •   | •   |     | ٠.  | 8  |
| Lab Control Samples | •   | -   |     | •   | 9  |
| Duplicates          | •   |     |     | •   | 10 |
| Data Sheets         | •   |     | •   |     | 11 |
| Method Summaries    | •   |     | •   | •   | 13 |
| Report Guides       | •   | •   | •   | •   | 21 |
| End of Section      | •   |     |     | •   | 35 |
|                     |     |     |     |     |    |

Prepared by

Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06
Report date 11/29/11