

CAGE Code 81205

# 737-100 through 737-500 Airplane Characteristics for Airport Planning

DOCUMENT NUMBER: **D6-58325-6** 

REVISION: Rev E REVISION DATE: November 2023

CONTENT OWNER:

#### **Boeing Commercial Airplanes**

All revisions to this document must be approved by the content owner before release.

Not Subject to US Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or US International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).



Copyright © 2023 Boeing. All Rights Reserved.

| <b>Revision Letter</b>      | E                                                                                                                                                                                                                                                                               |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Revision Date</b>        | November 2023                                                                                                                                                                                                                                                                   |
| Changes in This<br>Revision | Section 7.11 Add ACR/PCR information.                                                                                                                                                                                                                                           |
| <b>Revision Letter</b>      | D                                                                                                                                                                                                                                                                               |
| <b>Revision Date</b>        | March 2023                                                                                                                                                                                                                                                                      |
| Changes in This<br>Revision | Separating the 737 Airplane Characteristics for Airport Planning Manual (D6-58325-6) for 737 Classic and Next Generation Airplanes. This document now gives Airplane Characteristics for Airport Planning information for 737-100/ -200/ -300/ -400/ -500 model airplanes only. |
| <b>Revision Letter</b>      | C                                                                                                                                                                                                                                                                               |
| <b>Revision Date</b>        | October 2021                                                                                                                                                                                                                                                                    |
| Changes in This<br>Revision | Section 2.0 Incorporation of 737-800BCF Airplane Description                                                                                                                                                                                                                    |
| Revision Letter             | В                                                                                                                                                                                                                                                                               |
| <b>Revision Date</b>        | September 2021                                                                                                                                                                                                                                                                  |
| Changes in This<br>Revision | Section 6.0 Jet Engine Exhaust Velocity Contours, Inlet Hazard Areas                                                                                                                                                                                                            |
| <b>Revision Letter</b>      | Α                                                                                                                                                                                                                                                                               |
| <b>Revision Date</b>        | September 2020                                                                                                                                                                                                                                                                  |
| Changes in This             | New document format                                                                                                                                                                                                                                                             |
| Revision                    | All Models: ICAO Aerodrome Reference Code                                                                                                                                                                                                                                       |
|                             | Section 3.0 Airplane Performance                                                                                                                                                                                                                                                |

D6-58325-6

# **Table of Contents**

| 1.0 SCOPE | AND INTRODUCTION                                               | 1-1  |
|-----------|----------------------------------------------------------------|------|
| 1.1 SCO   | OPE                                                            | 1-1  |
| 1.2 INT   | RODUCTION                                                      |      |
| 1.3 A B   | RIEF DESCRIPTION OF THE 737 FAMILY OF AIRPLANES                | 1-3  |
| 2.0 AIRPL | ANE DESCRIPTION                                                |      |
| 2.1 GEI   | NERAL CHARACTERISTICS                                          |      |
| 2.1.1     | General Characteristics: Model 737-100                         |      |
| 2.1.2     | General Characteristics: Model 737-200                         |      |
| 2.1.3     | General Characteristics: Model 737-200                         |      |
| 2.1.4     | General Characteristics: Model 737-200, Convertible and        |      |
|           | Executive Airplanes                                            |      |
| 2.1.5     | General Characteristics: Model Advanced 737-200C, -200QC       |      |
| 2.1.6     | General Characteristics: Model 737-300                         |      |
| 2.1.7     | General Characteristics: Model 737-400                         |      |
| 2.1.8     | General Characteristics: Model 737-500                         |      |
| 2.2 GE    | NERAL DIMENSIONS                                               | 2-10 |
| 2.2.1     | General Dimensions: Model 737-100                              | 2-10 |
| 2.2.2     | General Dimensions: Model 737-200                              | 2-11 |
| 2.2.3     | General Dimensions: Model 737-300                              | 2-12 |
| 2.2.4     | General Dimensions: Model 737-300W                             | 2-13 |
| 2.2.5     | General Dimensions: Model 737-400                              | 2-14 |
| 2.2.6     | General Dimensions: Model 737-500                              | 2-15 |
| 2.3 GR    | OUND CLEARANCES                                                | 2-16 |
| 2.3.1     | Ground Clearances: Model 737-100, -200, -200C                  | 2-16 |
| 2.3.2     | Ground Clearances: Model 737-300, -400, -500                   | 2-17 |
| 2.4 INT   | ERIOR ARRANGEMENTS                                             | 2-18 |
| 2.4.1     | Interior Arrangements: Model 737-100                           | 2-18 |
| 2.4.2     | Interior Arrangements: Model 737-200                           |      |
| 2.4.3     | Interior Arrangements: Model 737-200, Mixed Class              | 2-20 |
| 2.4.4     | Interior Arrangements: Model 737-200 Executive Interior Class. | 2-21 |
| 2.4.5     | Interior Arrangements: Model 737-200 Passenger/Cargo           |      |
|           | Configuration                                                  | 2-22 |
| 2.4.6     | Interior Arrangements: Model 737-200C, All Cargo               |      |
|           | Configuration                                                  |      |
| 2.4.7     | Interior Arrangements: Model 737-300                           |      |
| 2.4.8     | Interior Arrangements: Model 737-400                           |      |
| 2.4.9     | Interior Arrangements: Model 737-500                           |      |
| 2.5 CA    | BIN CROSS SECTIONS                                             |      |

| 2.5.1      | Cabin Cross-Sections: Model 737-100, Six-Abreast Seating With<br>Hatrack-Type Stowage System                                     | 2-27 |
|------------|----------------------------------------------------------------------------------------------------------------------------------|------|
| 2.5.2      | Cabin Cross-Sections: Model 737-200, Four-Abreast Seating<br>With "Wide-Body Look" Interior                                      | 2-28 |
| 2.5.3      | Cabin Cross-Sections: Model 737-200, Five-Abreast Seating With Carry All Compartments                                            |      |
| 2.5.4      | Cabin Cross-Sections: Model 737-200ADV, -300, -400, -500,<br>Four-Abreast Seating                                                | 2-30 |
| 2.5.5      | Cabin Cross-Sections: Model 737-200ADV, -300, -400, -500, Six-Abreast Seating                                                    | 2-31 |
| 2.6 LOW    | ER CARGO COMPARTMENTS                                                                                                            | 2-32 |
| 2.6.1      | Lower Cargo Compartments: Model 737-100, -200, -300, -400, -<br>500, Dimensions                                                  | 2-32 |
| 2.6.2      | Lower Cargo Compartments: Model 737-100, -200, Capacities                                                                        | 2-33 |
| 2.6.3      | Lower Cargo Compartments: Model 737-300, -400, -500, Capacities                                                                  | 2-34 |
| 2.7 DOO    | R CLEARANCES                                                                                                                     |      |
| 2.7.1      | Door Clearances: Model 737, All Models, Forward Main Entry<br>Door No. 1                                                         | 2-35 |
| 2.7.2      | Door Clearances: Model 737, All Models, Optional Forward<br>Airstairs, Main Entry Door No 1                                      | 2-36 |
| 2.7.3      | Door Clearances: Models 737-100, -200, -300, -400, -500,<br>Locations of Sensors and Probes – Forward of Main Entry Door<br>No 1 | 2-37 |
| 2.7.4      | Door Clearances: Model 737, All Models, Forward Service Door                                                                     |      |
| 2.7.5      | Door Clearances: Model 737, All Models, Aft Entry Door and Aft<br>Service Door                                                   |      |
| 2.7.6      | Door Clearances: Model 737-100, -200, Aft Entry Door With Optional Airstair                                                      |      |
| 2.7.7      | Door Clearances: Model 737, All Models, Lower Deck Cargo<br>Compartments                                                         | 2-41 |
| 2.7.8      | Door Clearances: Model 737-200C, Main Deck Cargo Door                                                                            | 2-42 |
| 3.0 AIRPLA | NE PERFORMANCE                                                                                                                   | 3-1  |
|            | ERAL INFORMATION                                                                                                                 |      |
|            | LOAD/RANGE FOR LONG RANGE CRUISE                                                                                                 |      |
| 3.2.1      | Payload/Range for Long Range Cruise: Model 737-100<br>(JT8D-7 Engines)                                                           |      |
| 3.2.2      | Payload/Range for Long Range Cruise: Model 737-200<br>(JT8D-9/9A Engines)                                                        |      |
| 3.2.3      | Payload/Range for Long Range Cruise: Model 737-200<br>(JT8D-15/15A Engines)                                                      |      |
| 3.2.4      | Payload/Range for Long Range Cruise: Model 737-200ADV<br>(JT8D-17/17A Engines)                                                   | 3-5  |

| 3.2.5  | Payload/Range for Long Range Cruise: Model 737-200ADV<br>(JT8D-17R/17AR Engines)                                                   | 3-6  |
|--------|------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.2.6  | Payload/Range for Long Range Cruise: Model 737-300                                                                                 | 3-7  |
| 3.2.7  | Payload/Range for Long Range Cruise: Model 737-400                                                                                 |      |
| 3.2.8  | Payload/Range for Long Range Cruise: Model 737-500                                                                                 |      |
|        | R. AND J.A.R. TAKEOFF RUNWAY LENGTH                                                                                                |      |
|        | UIREMENTS                                                                                                                          | 3-10 |
| 3.3.1  | F.A.R. Takeoff Runway Length Requirements - Standard Day:                                                                          |      |
|        | Model 737-100 (JT8D-7 Engines)                                                                                                     | 3-10 |
| 3.3.2  | F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-100 (JT8D-7 Engines)                       | 3-11 |
| 3.3.3  | F.A.R. Takeoff Runway Length Requirements – Standard Day:<br>Model 737-200 (JT8D-9/9A Engines)                                     | 3-12 |
| 3.3.4  | F.A.R. Takeoff Runway Length Requirements - Standard Day +                                                                         |      |
|        | 27°F (STD + 15°C): Model 737-200 (JT8D-9/9A Engines)                                                                               | 3-13 |
| 3.3.5  | F.A.R. Takeoff Runway Length Requirements - Standard Day:<br>Model 737-200ADV (JT8D-15/15A Engines)                                | 3-14 |
| 3.3.6  | F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-200ADV (JT8D-15/15A Engines)               | 3-15 |
| 3.3.7  | F.A.R. Takeoff Runway Length Requirements - Standard Day:                                                                          | 5 15 |
| 0.017  | Model 737-200ADV (JT8D-17/17A Engines)                                                                                             | 3-16 |
| 3.3.8  | F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-200ADV (JT8D-17/17A                        |      |
|        | Engines)                                                                                                                           | 3-17 |
| 3.3.9  | F.A.R. Takeoff Runway Length Requirements - Standard Day:<br>Model 737-200ADV (JT8D-17R/17AR Engines)                              |      |
| 3.3.10 | F.A.R. Takeoff Runway Length Requirements - Standard Day +                                                                         |      |
|        | 27°F (STD + 15°C): Model 737-200ADV (JT8D-17R/17AR                                                                                 |      |
|        | Engines)                                                                                                                           |      |
| 3.3.11 | F.A.R. Takeoff Runway Length Requirements - Standard Day:                                                                          |      |
|        | Model 737-300 (CFM56-3B1 Engines at 20,000 LB SLST)                                                                                | 3-20 |
| 3.3.12 | F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-300 (CFM56-3B1 Engines at 20,000 LB SLST)  | 3_21 |
| 3.3.13 | F.A.R. Takeoff Runway Length Requirements - Standard Day:                                                                          | 5-21 |
|        | Model 737-300 (CFM56-3B-2 Engines at 22,000 LB SLST)                                                                               | 3-22 |
| 3.3.14 | F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-300 (CFM56-3B-2 Engines at 22,000 LB SLST) | 3-23 |
| 3.3.15 | F.A.R. Takeoff Runway Length Requirements - Standard Day:<br>Model 737-400 (CFM56-3B-2 Engines at 22,000 LB SLST)                  |      |

| 3.3. | .16 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-400 (CFM56-3B-2 Engines at 22,000 LB SLST)      | 3-25 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.3. | .17 F.A.R. Takeoff Runway Length Requirements - Standard Day:<br>Model 737-400 (CFM56-3C1 Engines at 23,500 LB SLST)                        |      |
| 3.3. | .18 F.A.R. Takeoff Runway Length Requirements - Standard Day +<br>27°F (STD + 15°C): Model 737-400 (CFM56-3C1 Engines at<br>23,500 LB SLST) | 3-27 |
| 3.3  | .19 F.A.R. Takeoff Runway Length Requirements - Standard Day:<br>Model 737-500 (CFM56-3B-1 Engines at 20,000 LB SLST)                       | 3-28 |
| 3.3. | .20 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-500 (CFM56-3B-1 Engines at 20,000 LB SLST)      | 3-29 |
| 3.3. | .21 F.A.R. Takeoff Runway Length Requirements - Standard Day:<br>Model 737-500 (CFM56-3B-1 Engines at 18,500 LB SLST)                       | 3-30 |
| 3.3. | .22 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-500 (CFM56-3B-1 Engines at 18,500 LB SLST)      | 3-31 |
|      | .A.R. AND J.A.R. LANDING RUNWAY LENGTH                                                                                                      |      |
| R    | EQUIREMENTS                                                                                                                                 | 3-32 |
| 3.4  | .1 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-100                                                                      | 3-32 |
| 3.4  | .2 F.A.R. Landing Runway Length Requirements - Flaps 30:<br>Model 737-100                                                                   | 3-33 |
| 3.4  | .3 F.A.R. Landing Runway Length Requirements - Flaps 25:<br>Model 737-100                                                                   | 3-34 |
| 3.4  | .4 F.A.R. Landing Runway Length Requirements - Flaps 40:<br>Model 737-200, -200C                                                            | 3-35 |
| 3.4  | .5 F.A.R. Landing Runway Length Requirements - Flaps 30:<br>Model 737-200, -200C                                                            | 3-36 |
| 3.4  | .6 F.A.R. Landing Runway Length Requirements - Flaps 25:<br>Model 737-200, -200C                                                            | 3-37 |
| 3.4  | .7 F.A.R. Landing Runway Length Requirements - Flaps 40:<br>Model 737-200ADV, -200C                                                         | 3-38 |
| 3.4  |                                                                                                                                             |      |
| 3.4  |                                                                                                                                             |      |
| 3.4  |                                                                                                                                             |      |
| 3.4  |                                                                                                                                             |      |
| 2 4  |                                                                                                                                             | 5-42 |
| 3.4  | .12 F.A.R. Landing Runway Length Requirements - Flaps 15:<br>Model 737-300                                                                  | 3-43 |

| 3.4.13     | F.A.R. Landing Runway Length Requirements - Flaps 40:<br>Model 737-400      | 3-44 |
|------------|-----------------------------------------------------------------------------|------|
| 3.4.14     | F.A.R. Landing Runway Length Requirements - Flaps 30:<br>Model 737-400      | 3-45 |
| 3.4.15     | F.A.R. Landing Runway Length Requirements - Flaps 15:<br>Model 737-400      | 3-46 |
| 3.4.16     | F.A.R. Landing Runway Length Requirements - Flaps 40:<br>Model 737-500      | 3-47 |
| 3.4.17     | F.A.R. Landing Runway Length Requirements - Flaps 30:<br>Model 737-500      | 3-48 |
| 3.4.18     | F.A.R. Landing Runway Length Requirements - Flaps 15:<br>Model 737-500      | 3-49 |
| 4.0 AIRPLA | NE PERFORMANCE                                                              | 4-1  |
| 4.1 GEN    | ERAL INFORMATION                                                            | 4-1  |
| 4.2 TUR    | NING RADII                                                                  | 4-2  |
| 4.2.1      | Turning Radii – No Slip Angle: Model 737-100                                | 4-2  |
| 4.2.2      | Turning Radii – No Slip Angle: Model 737-200                                | 4-3  |
| 4.2.3      | Turning Radii – No Slip Angle: Model 737-300                                | 4-4  |
| 4.2.4      | Turning Radii – No Slip Angle: Model 737-300W                               | 4-5  |
| 4.2.5      | Turning Radii – No Slip Angle: Model 737-400                                | 4-6  |
| 4.2.6      | Turning Radii – No Slip Angle: Model 737-500                                | 4-7  |
| 4.3 CLEA   | ARANCE RADII                                                                | 4-8  |
| 4.3.1      | Minimum Turning Radii – 3" Slip Angle: Model 737-100, -200                  | 4-8  |
| 4.3.2      | Minimum Turning Radii – 3" Slip Angle: Model 737-300, -<br>300W, -400, -500 | 4-9  |
| 4.4 VISI   | BILITY FROM COCKPIT IN STATIC POSITION: MODEL 737,                          |      |
| ALL        | MODELS                                                                      | 4-10 |
| 4.5 RUN    | WAY AND TAXIWAY TURN PATHS                                                  | 4-11 |
| 4.5.1      | Runway and Taxiway Turn Paths - Runway-to-Taxiway, More                     |      |
|            | Than 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models         | 4-11 |
| 4.5.2      | Runway and Taxiway Turn Paths - Runway-to-Taxiway, 90                       |      |
| 1.3.2      | Degrees, Nose Gear Tracks Centerline: Model 737, All Models                 | 4-12 |
| 4.5.3      | Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90                      |      |
|            | Degrees, Nose Gear Tracks Centerline: Model 737, All Models                 | 4-13 |
| 4.5.4      | Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90                      |      |
|            | Degrees, Cockpit Tracks Centerline: Model 737, All Models                   |      |
|            | WAY HOLDING BAY: MODEL 737, ALL MODELS                                      |      |
|            | VAL SERVICING                                                               | 5-1  |
|            | PLANE SERVICING ARRANGEMENT - TYPICAL                                       |      |
| TUR        | NAROUND                                                                     | 5-2  |

| 5.1.1   | Airplane Servicing Arrangement - Typical Turnaround: Model 737-100                | 5-2  |
|---------|-----------------------------------------------------------------------------------|------|
| 5.1.2   | Airplane Servicing Arrangement - Typical Turnaround: Model 737-200                |      |
| 5.1.3   | Airplane Servicing Arrangement - Typical Turnaround: Model 737-300                |      |
| 5.1.4   | Airplane Servicing Arrangement - Typical Turnaround: Model 737-400                |      |
| 5.1.5   | Airplane Servicing Arrangement - Typical Turnaround: Model 737-500                |      |
| 5.2 TER | MINAL OPERATIONS - TURNAROUND STATION                                             | 5-7  |
| 5.2.1   | Terminal Operations - Turnaround Station: Model 737-100, -200                     | 5-7  |
| 5.2.2   | Terminal Operations - Turnaround Station – Passenger/Cargo:<br>Model 737-200C     |      |
| 5.2.3   | Terminal Operations - Turnaround Station – All Cargo: Model 737-200C              | 5-9  |
| 5.2.4   | Terminal Operations – Turnaround Station: Model 737-300,<br>-400, -500            |      |
| 5.3 TER | MINAL OPERATIONS - EN ROUTE STATION                                               |      |
| 5.3.1   | Terminal Operations - En Route Station: Model 737-100, -200, -<br>300, -400, -500 |      |
| 5.4 GRC | OUND SERVICING CONNECTIONS                                                        |      |
| 5.4.1   | Ground Service Connections: Model 737-100                                         |      |
| 5.4.2   | Ground Service Connections: Model 737-200                                         |      |
| 5.4.3   | Ground Service Connections: Model 737-300                                         | 5-14 |
| 5.4.4   | Ground Service Connections: Model 737-400                                         | 5-15 |
| 5.4.5   | Ground Service Connections: Model 737-500                                         | 5-16 |
| 5.4.6   | Ground Servicing Connections and Capacities: Model 737,                           |      |
|         | All Models                                                                        |      |
| 5.5 ENG | SINE STARTING PNEUMATIC REQUIREMENTS                                              | 5-19 |
| 5.5.1   | Engine Start Pneumatic Requirements - Sea Level: Model 737-100, -200              | 5-19 |
| 5.5.2   | Engine Start Pneumatic Requirements - Sea Level: Model 737-300, -400, -500        | 5-20 |
| 5.6 GRC | OUND PNEUMATIC POWER REQUIREMENTS                                                 | 5-21 |
| 5.6.1   | Ground Pneumatic Power Requirements - Heating/Cooling:<br>Model 737-100, -200     |      |
| 5.6.2   | Ground Pneumatic Power Requirements - Heating/Cooling:<br>Model 737-300, -500     |      |
| 5.6.3   | Ground Pneumatic Power Requirements - Heating/Cooling:<br>Model 737-400           |      |
| 5.7 CON | NDITIONED AIR REQUIREMENTS                                                        |      |

| 5.7.2       Conditioned Air Flow Requirements: Model 737-300, -500       5-25         5.7.3       Conditioned Air Flow Requirements: Model 737-400       5-26         5.8       GROUND TOWING REQUIREMENTS       5-27         5.8.1       Ground Towing Requirements - English Units: Model 737,<br>All Models       5-27         5.8.2       Ground Towing Requirements - Metric Units: Model 737, All<br>Models       5-28         6.0       JET ENGINE WAKE AND NOISE DATA       6-1         6.1       JET ENGINE EXHAUST VELOCITIES AND TEMPERATURES       6-1         6.1.1       Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>100, -200       6-2         6.1.2       Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>300, -400, -500       6-3         6.1.3       Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -200       6-4         6.1.4       Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -200       6-6         6.1.5       Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-100, -200       6-6         6.1.6       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-100, -200       6-8         6.1.6       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-100, -200       6-9         6.1.7       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-100, -200 <t< th=""></t<>                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.8       GROUND TOWING REQUIREMENTS       5-27         5.8.1       Ground Towing Requirements - English Units: Model 737,<br>All Models       5-27         5.8.2       Ground Towing Requirements - Metric Units: Model 737, All<br>Models       5-28         6.0       JET ENGINE WAKE AND NOISE DATA       6-1         6.1       JET ENGINE EXHAUST VELOCITIES AND TEMPERATURES       6-1         6.1.1       Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>100, -200       6-2         6.1.2       Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>300, -400, -500       6-3         6.1.3       Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -200       6-4         6.1.4       Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -200       6-5         6.1.5       Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-100, -200       6-6         6.1.6       Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-100, -200       6-7         6.1.7       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -500       6-7         6.1.8       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-100, -200       6-8         6.1.8       Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -200       6-9         6.1.9       Jet Engine Exhaust Temperature Co                               |
| 5.8.1       Ground Towing Requirements - English Units: Model 737,<br>All Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| All Models       5-27         5.8.2       Ground Towing Requirements - Metric Units: Model 737, All<br>Models       5-28         6.0       JET ENGINE WAKE AND NOISE DATA       6-1         6.1       JET ENGINE EXHAUST VELOCITIES AND TEMPERATURES       6-1         6.1.1       Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>100, -200       6-2         6.1.2       Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>300, -400, -500       6-3         6.1.3       Jet Engine Exhaust Velocity Contours – Breakaway Thrust: Model<br>737-100, -200       6-4         6.1.4       Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -200       6-5         6.1.5       Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -200       6-6         6.1.5       Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-100, -200       6-6         6.1.6       Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-300, -400, -500       6-7         6.1.7       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-100, -200       6-8         6.1.8       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -500       6-9         6.1.8       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -500       6-9         6.1.9       Jet Engine Exhaust Temperature Contours - Breakaway                      |
| 5.8.2       Ground Towing Requirements - Metric Units: Model 737, All<br>Models       5-28         6.0       JET ENGINE WAKE AND NOISE DATA       6-1         6.1       JET ENGINE EXHAUST VELOCITIES AND TEMPERATURES       6-1         6.1.1       Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>100, -200       6-2         6.1.2       Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>300, -400, -500       6-3         6.1.3       Jet Engine Exhaust Velocity Contours – Idle Thrust: Model<br>737-100, -200       6-4         6.1.4       Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -200       6-4         6.1.4       Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-300, -400, -500       6-5         6.1.5       Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-100, -200       6-6         6.1.6       Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-300, -400, -500       6-7         6.1.7       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-100, -200       6-8         6.1.8       Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -500       6-9         6.1.8       Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -200       6-10         6.1.9       Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -200       6-10         |
| Models5-286.0JET ENGINE WAKE AND NOISE DATA6-16.1JET ENGINE EXHAUST VELOCITIES AND TEMPERATURES6-16.1.1Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>100, -2006-26.1.2Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>300, -400, -5006-36.1.3Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -2006-46.1.4Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-300, -400, -5006-56.1.5Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-300, -400, -5006-66.1.6Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-100, -2006-66.1.6Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-300, -400, -5006-76.1.7Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -5006-86.1.8Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -5006-96.1.9Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -2006-106.1.9Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -2006-10                                                                                                                                                                                                                                                                                                                                                                                   |
| 6.0       JET ENGINE WAKE AND NOISE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.1 JET ENGINE EXHAUST VELOCITIES AND TEMPERATURES       6-1         6.1.1 Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-100, -200       6-2         6.1.2 Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-300, -400, -500       6-3         6.1.3 Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-100, -200       6-4         6.1.4 Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-300, -400, -500       6-5         6.1.5 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-100, -200       6-6         6.1.6 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-300, -400, -500       6-7         6.1.7 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-300, -400, -500       6-7         6.1.8 Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-100, -200       6-8         6.1.8 Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-300, -400, -500       6-9         6.1.9 Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-100, -200       6-9         6.1.9 Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-100, -200       6-9         6.1.9 Jet Engine Exhaust Temperature Contours - Breakaway Thrust: Model 737-100, -200       6-10         6.1.9 Jet Engine Exhaust Temperature Contours - Breakaway Thrust:       6-10         6.1.10 Jet Engine Exhaust Temperature Contours - Breakaway Thrust:       6-10 |
| 6.1.1Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>100, -2006-26.1.2Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>300, -400, -5006-36.1.3Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -2006-46.1.4Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-300, -400, -5006-56.1.5Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -2006-66.1.6Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-300, -400, -5006-76.1.7Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-300, -400, -5006-76.1.8Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -5006-86.1.8Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -5006-96.1.9Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -2006-106.1.9Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -2006-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100, -2006-26.1.2Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-<br>300, -400, -5006-36.1.3Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -2006-46.1.4Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-300, -400, -5006-56.1.5Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-100, -2006-66.1.6Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-300, -400, -5006-76.1.7Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-300, -400, -5006-86.1.8Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -5006-96.1.9Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -5006-96.1.9Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -2006-106.1.9Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -2006-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 300, -400, -5006-36.1.3Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-100, -2006-46.1.4Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model<br>737-300, -400, -5006-56.1.5Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-100, -2006-66.1.6Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-300, -400, -5006-66.1.7Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br>737-300, -400, -5006-76.1.7Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-100, -2006-86.1.8Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br>737-300, -400, -5006-96.1.9Jet Engine Exhaust Temperature Contours - Breakaway Thrust:<br>Model 737-100, -2006-106.1.10Jet Engine Exhaust Temperature Contours - Breakaway Thrust:6-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>737-100, -200</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>737-100, -200</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>737-300, -400, -500</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>737-100, -200</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>6.1.6 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model<br/>737-300, -400, -500</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>6.1.7 Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br/>737-100, -200</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>6.1.8 Jet Engine Exhaust Temperature Contours - Idle Thrust: Model<br/>737-300, -400, -500</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>6.1.9 Jet Engine Exhaust Temperature Contours – Breakaway Thrust:<br/>Model 737-100, -200</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.1.10 Jet Engine Exhaust Temperature Contours – Breakaway Thrust:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.1.11 Jet Engine Exhaust Temperature Contours – Takeoff Thrust:<br>Model 737-100, -200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6.1.12 Jet Engine Exhaust Temperature Contours – Takeoff Thrust:<br>Model 737-300, -400, -500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6.2 AIRPORT AND COMMUNITY NOISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.0 PAVEMENT DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7.1 GENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.2 LANDING GEAR FOOTPRINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7.2.1 Landing Gear Footprint: Model 737-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7.2.2 Landing Gear Footprint: Model 737-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7.2.3 Landing Gear Footprint: Model Advanced 737-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.2.4 Landing Gear Footprint: Model Advanced 737-300, -400, -500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 7.3 MAX  | XIMUM PAVEMENT LOADS                                                                                                                                                                                           | 7-7  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 7.3.1    | Maximum Pavement Loads: Model 737-100, -200                                                                                                                                                                    | 7-7  |
| 7.3.2    | Maximum Pavement Loads: Model 737-300, -400, -500                                                                                                                                                              | 7-8  |
| 7.4 LAN  | IDING GEAR LOADING ON PAVEMENT                                                                                                                                                                                 | 7-9  |
| 7.4.1    | Landing Gear Loading on Pavement: Model 737-100                                                                                                                                                                | 7-9  |
| 7.4.2    | Landing Gear Loading on Pavement: Model 737-200                                                                                                                                                                | 7-10 |
| 7.4.3    | Landing Gear Loading on Pavement: Model 737-200 Advanced                                                                                                                                                       | 7-11 |
| 7.4.4    | Landing Gear Loading on Pavement: Model 737-300                                                                                                                                                                | 7-12 |
| 7.4.5    | Landing Gear Loading on Pavement: Model 737-400                                                                                                                                                                | 7-13 |
| 7.4.6    | Landing Gear Loading on Pavement: 737-500                                                                                                                                                                      | 7-14 |
| 7.5 FLE2 | XIBLE PAVEMENT REQUIREMENTS - U.S. ARMY CORPS OF                                                                                                                                                               |      |
| ENG      | INEERS METHOD S-77-1 AND FAA DESIGN METHOD                                                                                                                                                                     | 7-15 |
| 7.5.1    | Flexible Pavement Requirements - U.S. Army Corps of Engineers<br>Design Method (S-77-1) and FAA Design Method: Model 737-<br>100, -200 to 104,000 LB (47,170 KG) MTW                                           | 7-16 |
| 7.5.2    | Flexible Pavement Requirements - U.S. Army Corps of Engineers<br>Design Method (S-77-1) and FAA Design Method: Model 737-<br>100, -200, -200 ADV at 110,000 to 117,500 LB (49,895 to<br>53,297 KG) MTW         | 7-17 |
| 7.5.3    | Flexible Pavement Requirements - U.S. Army Corps of Engineers<br>Design Method (S-77-1) and FAA Design Method: Model 737-<br>200 ADV at 116,000 to 117,500 LB (52,617 to 53,297 KG)<br>MTW, Low Pressure Tires |      |
| 7.5.4    | Flexible Pavement Requirements - U.S. Army Corps of Engineers<br>Design Method (S-77-1) and FAA Design Method: Model 737-<br>200 ADV at 120,000 to 128,600 LB (54,431 to 58,332 KG) MTW.                       | 7-19 |
| 7.5.5    | Flexible Pavement Requirements - U.S. Army Corps of Engineers<br>Design Method (S-77-1) and FAA Design Method: Model<br>737-300, -400, -500                                                                    |      |
| 7.6 FLE2 | XIBLE PAVEMENT REQUIREMENTS - LCN CONVERSION                                                                                                                                                                   |      |
| 7.6.1    | Flexible Pavement Requirements - LCN Method: Model 737-100,<br>-200 at 140,000 LB (47,174 KG) MTW                                                                                                              |      |
| 7.6.2    | Flexible Pavement Requirements - LCN Method: Model 737-100, -200, -200 ADV at 110,000 to 117,500 LB (49,895 to                                                                                                 |      |
|          | 53,297 KG) MTW                                                                                                                                                                                                 | 7-23 |
| 7.6.3    | Flexible Pavement Requirements - LCN Method: Model 737-200<br>ADV at 116,000 to 117,500 LB (52,617 to 53,297 KG) MTW,<br>Low Pressure Tires                                                                    | 7_24 |
| 7.6.4    | Flexible Pavement Requirements - LCN Method: Model 737-200<br>ADV at 120,000 to 128,600 LB (54,431 to 58,332 KG) MTW                                                                                           |      |
| 7.6.5    | Flexible Pavement Requirements - LCN Method: Model 737-300,<br>-400, -500                                                                                                                                      |      |

| 7.7  |       | D PAVEMENT REQUIREMENTS - PORTLAND CEMENT<br>DCIATION DESIGN METHOD                                                                                                     | . 7-27 |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|      | 7.7.1 | Rigid Pavement Requirements - Portland Cement Association<br>Design Method: Model 737-100, 200 to 104,000 LB (47,170KG)<br>MTW                                          | . 7-28 |
|      | 7.7.2 | Rigid Pavement Requirements - Portland Cement Association<br>Design Method: Model 737-100, -200, -200ADV at 110,000 to<br>117,500 LB (49,900 to 53,290 KG) MTW          | . 7-29 |
|      | 7.7.3 | Rigid Pavement Requirements - Portland Cement Association<br>Design Method: Model 737-200ADV at 116,000 to 117,500 LB<br>(52,610 to 53,290 KG) MTW (LOW PRESSURE TIRES) | . 7-30 |
|      | 7.7.4 | Rigid Pavement Requirements - Portland Cement Association<br>Design Method: Model 737-200ADV at 120,000 to 128,000 LB<br>(54,430 to 58,330 KG) MTW                      | . 7-31 |
|      | 7.7.5 | Rigid Pavement Requirements - Portland Cement Association<br>Design Method: Model 737-300, -400, -500                                                                   |        |
|      | 7.7.6 | Rigid Pavement Requirements - Portland Cement Association<br>Design Method: Model 737-300, -400, -500 (Low Pressure Tires)                                              | . 7-33 |
| 7.8  | RIGII | D PAVEMENT REQUIREMENTS - LCN CONVERSION                                                                                                                                |        |
|      | 7.8.1 | Radius of Relative Stiffness (Reference: Portland<br>Cement Association)                                                                                                |        |
|      | 7.8.2 | Rigid Pavement Requirements - LCN Conversion: Model 737-<br>100, -200 to 104,000 LB (47,170 KG) MTW                                                                     | . 7-36 |
|      | 7.8.3 | Rigid Pavement Requirements - LCN Conversion: Model 737-<br>100, -200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW                                                | . 7-37 |
|      | 7.8.4 | Rigid Pavement Requirements - LCN Conversion: Model<br>737-200ADV at 116,000 to 117,500 LB (52,610 to 53,290 KG)<br>MTW (Low Pressure Tires)                            | . 7-38 |
| -    | 7.8.5 | Rigid Pavement Requirements - LCN Conversion: Model<br>737-200ADV at 120,000 to 128,600 LB (54,430 to 58,330 KG)<br>MTW                                                 | . 7-39 |
|      | 7.8.6 | Rigid Pavement Requirements - LCN Conversion: Model 737-<br>300, -400, -500                                                                                             |        |
| 7.9  | RIGII | D PAVEMENT REQUIREMENTS - FAA DESIGN METHOD                                                                                                                             |        |
|      | 7.9.1 | Rigid Pavement Requirements – FAA Design Method: Model<br>737-100, -200                                                                                                 |        |
| -    | 7.9.2 | Rigid Pavement Requirements – FAA Design Method: Model<br>737-200ADV (Low Pressure Tires)                                                                               |        |
|      | 7.9.3 | Rigid Pavement Requirements – FAA Design Method: Model 737-300, -400, -500                                                                                              |        |
| •    | 7.9.4 | Rigid Pavement Requirements – FAA Design Method: Model<br>737-300, -400, -500 (Low Pressure Tires)                                                                      |        |
| 7.10 | ACN/  | PCN REPORTING SYSTEM - FLEXIBLE AND RIGID                                                                                                                               |        |
|      | PAVE  | EMENTS                                                                                                                                                                  | . 7-46 |

| 7.10.1  | Aircraft Classification Number - Flexible Pavement: Model 737-<br>100, -200 to 104,000 LB (47,170 KG) MTW                                                      | 7-47 |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 7.10.2  | Aircraft Classification Number - Flexible Pavement: Model 737-<br>100, -200, -200ADV at 110,000 to 117,500 LB (49,900 to<br>53,290 KG) MTW                     | 7-48 |
| 7.10.3  | Aircraft Classification Number - Flexible Pavement: Model<br>737-100, -200, -200ADV at 110,000 to 117,500 LB (49,900 to<br>53,290 KG) MTW (Low Pressure Tires) | 7-49 |
| 7.10.4  | Aircraft Classification Number - Flexible Pavement: Model<br>737-200ADV at 120,000 to 128,600 LB (54,300 to 58,330 KG)<br>MTW                                  | 7-50 |
| 7.10.5  | Aircraft Classification Number - Flexible Pavement: Model 737-<br>300                                                                                          |      |
| 7.10.6  | Aircraft Classification Number - Flexible Pavement: Model 737-<br>300 (Low Pressure Tires)                                                                     |      |
| 7.10.7  | Aircraft Classification Number - Flexible Pavement: Model 737-400                                                                                              |      |
| 7.10.8  | Aircraft Classification Number - Flexible Pavement: Model 737-<br>400 (Low Pressure Tires)                                                                     | 7-54 |
| 7.10.9  | Aircraft Classification Number - Flexible Pavement: Model 737-<br>500                                                                                          | 7-55 |
| 7.10.10 | Aircraft Classification Number - Flexible Pavement: Model 737-<br>500 (Low Pressure Tires)                                                                     | 7-56 |
| 7.10.11 | Aircraft Classification Number - Rigid Pavement: Model 737-<br>100, -200 To 104,000 LB (47,170 KG) MTW                                                         | 7-57 |
| 7.10.12 | Aircraft Classification Number - Rigid Pavement: Model 737-<br>100, -200, -200ADV at 110,000 to 117,500 LB (49,900 to<br>53,290 KG) MTW                        | 7 58 |
| 7.10.13 | Aircraft Classification Number - Rigid Pavement: Model 737-<br>100, -200, -200ADV at 110,000 to 117,500 LB (49,900 to 53,290                                   | 7-30 |
| 7.10.14 | KG) MTW (Low Pressure Tires)<br>Aircraft Classification Number - Rigid Pavement: Model 737-                                                                    |      |
| 7 10 15 | 200ADV at 120,000 to 128,600 LB (54,300 to 58,330 KG) MTW                                                                                                      |      |
|         | Aircraft Classification Number - Rigid Pavement: Model 737-300<br>Aircraft Classification Number - Rigid Pavement: Model 737-300<br>(Low Pressure Tires)       |      |
| 7.10.17 | Aircraft Classification Number - Rigid Pavement: Model 737-400                                                                                                 |      |
| 7.10.18 | Aircraft Classification Number - Rigid Pavement: Model 737-400<br>(Low Pressure Tires)                                                                         | 7-64 |
| 7.10.19 | Aircraft Classification Number - Rigid Pavement: Model 737-500                                                                                                 |      |
|         | Aircraft Classification Number - Rigid Pavement: Model 737-500<br>(Low Pressure Tires)                                                                         |      |

|            | /PCR REPORTING SYSTEM – FLEXIBLE AND RIGID               |      |
|------------|----------------------------------------------------------|------|
|            | EMENTS                                                   |      |
| 7.12 TIRE  | INFLATION CHART                                          |      |
| 7.12.1     | Tire Inflation Chart: Model 737-100                      |      |
| 7.12.2     | Tire Inflation Chart: Model 737-100, -200                |      |
| 7.12.3     | Tire Inflation Chart: Model ADV 737-200                  |      |
| 7.12.4     | Tire Inflation Chart: Model 737-200 (Low Pressure Tires) |      |
| 7.12.5     | Tire Inflation Chart: Model 737-300                      |      |
| 7.12.6     | Tire Inflation Chart: Model 737-400                      |      |
| 7.12.7     | Tire Inflation Chart: Model 737-500                      | 7-74 |
| 8.0 FUTURE | E 737 DERIVATIVE AIRPLANES                               | 8-1  |
| 9.0 SCALED | 0 737 DRAWINGS                                           |      |
| 9.1 MOD    | DEL 737-100                                              |      |
| 9.1.1      | Scaled Drawings – 1 IN. = 32 FT: Model 737-100           |      |
| 9.1.2      | Scaled Drawings – 1 IN. = 32 FT: Model 737-100           |      |
| 9.1.3      | Scaled Drawings – 1 IN. = 50 FT: Model 737-100           |      |
| 9.1.4      | Scaled Drawings – 1 IN. = 50 FT: Model 737-100           |      |
| 9.1.5      | Scaled Drawings – 1 IN. = 100 FT: Model 737-100          |      |
| 9.1.6      | Scaled Drawings – 1 IN. = 100 FT: Model 737-100          |      |
| 9.1.7      | Scaled Drawings – 1:500: Model 737-100                   |      |
| 9.1.8      | Scaled Drawings – 1:500: Model 737-100                   |      |
| 9.1.9      | Scaled Drawings – 1:1000: Model 737-100                  |      |
| 9.1.10     | Scaled Drawings – 1:1000: Model 737-100                  |      |
| 9.2 MOD    | DEL 737-200                                              |      |
| 9.2.1      | Scaled Drawings – 1 IN. = 32 FT: Model 737-200           |      |
| 9.2.2      | Scaled Drawings – 1 IN. = 32 FT: Model 737-200           |      |
| 9.2.3      | Scaled Drawings – 1 IN. = 50 FT: Model 737-200           |      |
| 9.2.4      | Scaled Drawings – 1 IN. = 50 FT: Model 737-200           |      |
| 9.2.5      | Scaled Drawings – 1 IN. = 100 FT: Model 737-200          |      |
| 9.2.6      | Scaled Drawings – 1 IN. = 100 FT: Model 737-200          |      |
| 9.2.7      | Scaled Drawings – 1:500: Model 737-200                   |      |
| 9.2.8      | Scaled Drawings – 1:500: Model 737-200                   |      |
| 9.2.9      | Scaled Drawings – 1:1000: Model 737-200                  |      |
| 9.2.10     | Scaled Drawings – 1:1000: Model 737-200                  |      |
| 9.3 MOD    | DEL 737-300                                              |      |
| 9.3.1      | Scaled Drawings – 1 IN. = 32 FT: Model 737-300           |      |
| 9.3.2      | Scaled Drawings – 1 IN. = 32 FT: Model 737-300           |      |
| 9.3.3      | Scaled Drawings – 1 IN. = 50 FT: Model 737-300           |      |
| 9.3.4      | Scaled Drawings – 1 IN. = 50 FT: Model 737-300           |      |
| 9.3.5      | Scaled Drawings – 1 IN. = 100 FT: Model 737-300          |      |

| 9.3.6            | Scaled Drawings – 1 IN. = 100 FT: Model 737-300   |
|------------------|---------------------------------------------------|
| 9.3.0<br>9.3.7   | Scaled Drawings – 1:500: Model 737-300            |
| 9.3.8            | Scaled Drawings – 1:500: Model 737-300            |
| 9.3.9            | Scaled Drawings – 1:1000: Model 737-300           |
| 9.3.9            | Scaled Drawings – 1:1000: Model 737-300           |
|                  | DEL 737-300W                                      |
| 9.4 MOL<br>9.4.1 | Scaled Drawings – 1 IN. = 32 FT: Model 737-300W   |
| 9.4.2            | Scaled Drawings – 1 IN. = $32$ FT: Model 737-300W |
| 9.4.2            | Scaled Drawings – 1 IN. = 52 FT: Model 737-300W   |
| 9.4.4            | Scaled Drawings – 1 IN. = 50 FT: Model 737-300W   |
| 9.4.4            | Scaled Drawings – 1 IN. = 100 FT: Model 737-300W  |
| 9.4.5<br>9.4.6   | Scaled Drawings – 1 IN. = 100 FT: Model 737-300W  |
| 9.4.7            | Scaled Drawings – 1:500: Model 737-300W           |
| 9.4.8            | Scaled Drawings – 1:500: Model 737-300W           |
| 9.4.9            | Scaled Drawings – 1:500: Model 737-500W           |
| 9.4.10           | Scaled Drawings – 1:1000: Model 737-300W          |
|                  | DEL 737-400                                       |
| 9.5.1            | Scaled Drawings – 1 IN. = 32 FT: Model 737-400    |
| 9.5.2            | Scaled Drawings – 1 IN. = 32 FT: Model 737-400    |
| 9.5.3            | Scaled Drawings – 1 IN. = 50 FT: Model 737-400    |
| 9.5.4            | Scaled Drawings – 1 IN. = 50 FT: Model 737-400    |
| 9.5.5            | Scaled Drawings – 1 IN. = 100 FT: Model 737-400   |
| 9.5.6            | Scaled Drawings – 1 IN. = 100 FT: Model 737-400   |
| 9.5.7            | Scaled Drawings – 1:500: Model 737-400            |
| 9.5.8            | Scaled Drawings – 1:500: Model 737-400            |
| 9.5.9            | Scaled Drawings – 1:1000: Model 737-400           |
| 9.5.10           | Scaled Drawings – 1:1000: Model 737-400           |
|                  | DEL 737-500                                       |
| 9.6.1            | Scaled Drawings – 1 IN. = 32 FT: Model 737-500    |
| 9.6.2            | Scaled Drawings – 1 IN. = 32 FT: Model 737-500    |
| 9.6.3            | Scaled Drawings – 1 IN. = 50 FT: Model 737-500    |
| 9.6.4            | Scaled Drawings – 1 IN. = 50 FT: Model 737-500    |
| 9.6.5            | Scaled Drawings – 1 IN. = 100 FT: Model 737-500   |
| 9.6.6            | Scaled Drawings – 1 IN. = 100 FT: Model 737-500   |
| 9.6.7            | Scaled Drawings – 1:500: Model 737-500            |
| 9.6.8            | Scaled Drawings – 1:500: Model 737-500            |
| 9.6.9            | Scaled Drawings – 1:1000: Model 737-500           |
| 9.6.10           | Scaled Drawings – 1:1000: Model 737-500           |
|                  |                                                   |

## 1.0 SCOPE AND INTRODUCTION

## 1.1 SCOPE

This document provides, in a standardized format, airplane characteristics data for general airport planning. Since operational practices vary among airlines, specific data should be coordinated with the using airlines prior to facility design. Boeing Commercial Airplanes should be contacted for any additional information required.

Content of the document reflects the results of a coordinated effort by representatives from the following organizations:

- Aerospace Industries Association
- Airports Council International North America
- Air Transport Association of America
- International Air Transport Association

The airport planner may also want to consider the information presented in the "Commercial Aircraft Design Characteristics - Trends and Growth Projections," for long range planning needs and can be accessed via the following website:

http://www.boeing.com/airports

The document is updated periodically and represents the coordinated efforts of the following organizations regarding future aircraft growth trends.

- International Coordinating Council of Aerospace Industries Associations
- Airports Council International North America
- Air Transport Association of America
- International Air Transport Association

## 1.2 INTRODUCTION

This document conforms to NAS 3601. It provides characteristics of the Boeing Model 737 Classic airplane for airport planners and operators, airlines, architectural and engineering consultant organizations, and other interested industry agencies. Airplane changes and available options may alter model characteristics. Data contained herein is generic in scope and not customer-specific.

For additional information contact:

Boeing Commercial Airplanes 2201 Seal Beach Blvd. M/C: 110-SB02 Seal Beach, CA 90740-1515 U.S.A.

Attention: Manager, Airport Operations Engineering

Email: <u>AirportCompatibility@boeing.com</u>

## 1.3 A BRIEF DESCRIPTION OF THE 737 FAMILY OF AIRPLANES

The 737 is a twin-engine airplane designed to operate over short to medium ranges from sea level runways of less than 6,000 ft (1,830 m) in length.

Significant features of interest to airport planners are described below:

- Underwing-mounted engines provide eye-level assessability. Nearly all system maintenance may be performed at eye level.
- Optional airstairs allow operation at airports where no passengers loading bridges or stairs are available.
- Auxiliary power unit can supply energy for engine starting, air conditioning, and electrical power while the airplane is on the ground or in flight.
- Servicing connections allow single-station pressure fueling and overwing gravity fueling.
- All servicing of the 737 is accomplished with standard ground equipment.

### 737-100

The 737-100 is the standard short body version of the 737 family. It is 94 ft (28.63 m) long from nose to the tip of the horizontal stabilizer.

### 737-200

The 737-200 is an extended body version of the 737 family and is 100 ft 2 in (30.53 m) long. Two sections were added to the 737-100 fuselage; a 36-in section forward of the wing and a 40-in section aft of the wing. All other dimensions are the same as the 737-100.

### Advanced 737-200

The advanced 737-200 is a high gross weight airplane that has significant improvements over the 737-200, which result in improved performance, e.g. longer range, greater payload, and shorter runway requirement. The advanced 737-200 has dimensions identical to the 737-200.

## 737-200C, Adv 737-200C

The convertible version differs from the passenger model in that it has an 86 by 134-in (2.18 by 3.40 m) main deck cargo door, increased floor strength, and additional seat tracks. Either of two cargo handling systems, the cargo (C) or quick change (QC) can be installed to allow conversion from a passenger configuration to a cargo or a mixed passenger/cargo configuration, and vice-versa.

## 737-200 Executive Airplane

The 737-200 and Adv 737-200 were also delivered with an executive interior. The interior comes in a variety of configurations depending on customer requirements. Some airplanes were delivered without any interior furnishings for customer installation of special interiors.

## 737-300

The 737-300 is a second-generation stretched version of the 737 family of airplanes and is 109 ft 7 in long. Two sections were added to the 737-200 fuselage; a 44-in section forward of the wing and a 60-in section aft of the wing. Wing and stabilizer spans are also increased. The 737-300 incorporates new aerodynamic and engine technologies in addition to the increased payload and range. The -300 can seat as many as 149 passengers in an all-economy configuration.

### 737-300 With Winglets

Winglets are installed on some 737-300 airplanes as an after-market airline option. Data for this airplane is included for dimensional information only.

### 737-400

The 737-400 is 120 inches longer that the -300. Two sections were added to the -300 fuselage; a 72-in section forward of the wing and a 48-in section aft of the wing. The -400 can seat as many as 168 passengers in all-economy configuration.

### 737-500

The 737-500 is the shortened version of the 737-300. The -500 is 101 ft 9 in long and can seat up to 132 passengers in an all-economy configuration.

## Engines

The 737-100 and -200 airplanes were equipped with JT8D-7 engines. The -9, -5, -17, and -17R engines reflect successive improvements in nose reduction, thrust, and maintenance costs. Other optional engines include the -9A, -15A, -17A, and -17AR.

The 737-300, -400, and -500 airplanes are equipped with new high bypass ratio engines (CFM56-3) that are economical to operate and maintain. These are quiet engines that meet FAR 36 Stage 3 and ICAO Annex 16 Chapter 3 noise standards. With these higher thrust engines and modified flight control surfaces, runway length requirement is reduced.

## 737 Gravel Runway Capability

The optional gravel runway capability allows the 737-200 to operate on remote unimproved runways. The gravel kit includes gravel deflectors for the nose and main

gears, vortex dissipators for each engine nacelle, and special protective finishes. Lowpressure tires are also required for operation on low strength runways.

The special environment of the gravel runway dictates changes in operating procedures and techniques for maximum safety and economy. Boeing Commercial Airplanes and the FAA have specified procedural changes for operating the 737-200 on gravel runways. Organizations interested in operational details are referred to the using airline or to Boeing.

### **Passenger Cabin Interiors**

Early 737s were equipped with hat-rack-type overhead stowage. Later models were equipped with a "wide-body look" interior that incorporates stowage bins in the sidewall and ceiling panels to simulate a superjet interior. More recent configurations include carryall compartments and the advanced technology interior. These interiors provide more stowage above the passenger seats.

#### **Integral Airstairs**

Optional airstairs allow passenger loading and unloading at airports where there are no loading bridges or stairs. The forward airstairs are mounted under the cabin floor just below the forward entry door. The aft airstairs are mounted on a special aft entry door and are deployed when the door is opened. The aft airstairs option is available only on the 737-100 and 737-200 airplanes.

### Auxiliary Fuel Tanks

Optional auxiliary fuel tanks installed in the lower cargo compartments, provide extra range capability. Although this option increases range, it decreases payload.

### **Document Page Applicability**

Several configurations have been developed for the 737 family of airplanes to meet varied airline requirements. Configurations shown in this document are typical and individual airlines may have different combinations of options. The airlines should be consulted for specific airplane configuration.

### **Document Applicability**

This document contains information on all 737CL models.

Information on the 737-100, -200, 200C, Adv 737-200, and Adv 737-200C formerly contained in Document D6-58325, Revision D, 737 Airplane Characteristics for Airport Planning is now included in this document. Document D6-58325 is superseded and should be discarded.

Information on the 737-300, -400, and -500 model airplanes formerly contained in Document D6-58325-2 Revision A, 737-300/400/500 Airplane Characteristics for

Airport Planning is now included in this document. Document D6-58325-2 is superseded and should be discarded.

D6-58325-6

## 2.0 AIRPLANE DESCRIPTION

## 2.1 GENERAL CHARACTERISTICS

<u>Maximum Design Taxi Weight (MTW)</u>. Maximum weight for ground maneuver as limited by aircraft strength and airworthiness requirements. (It includes weight of taxi and run-up fuel.)

<u>Maximum Design Takeoff Weight (MTOW)</u>. Maximum weight for takeoff as limited by aircraft strength and airworthiness requirements. (This is the maximum weight at start of the takeoff run.)

Maximum Design Landing Weight (MLW). Maximum weight for landing as limited by aircraft strength and airworthiness requirements.

<u>Maximum Design Zero Fuel Weight (MZFW)</u>. Maximum weight allowed before usable fuel and other specified usable agents must be loaded in defined sections of the aircraft as limited by strength and airworthiness requirements.

<u>Operating Empty Weight (OEW)</u>. Weight of structure, powerplant, furnishing systems, unusable fuel and other unusable propulsion agents, and other items of equipment that are considered an integral part of a particular airplane configuration. Also included are certain standard items, personnel, equipment, and supplies necessary for full operations, excluding usable fuel and payload.

Maximum Payload. Maximum design zero fuel weight minus operational empty weight.

<u>Maximum Seating Capacity</u>. The maximum number of passengers specifically certificated or anticipated for certification.

Maximum Cargo Volume. The maximum space available for cargo.

<u>Usable Fuel</u>. Fuel available for aircraft propulsion.

## 2.1.1 General Characteristics: Model 737-100

| CHARACTERISTICS      | UNITS           | Γ            | MODEL 737-10                    | 0         |
|----------------------|-----------------|--------------|---------------------------------|-----------|
| MAX DESIGN           | POUNDS          | 97,800       | 104,000                         | 111,000   |
| - TAXI WEIGHT        | KILOGRAMS       | 44,361       | 47,174                          | 50,349    |
| MAX DESIGN           | POUNDS          | 97,000       | 103,000                         | 110,000   |
| - TAKEOFF WEIGHT     | KILOGRAMS       | 43,998       | 46,720                          | 49,895    |
| MAX DESIGN           | POUNDS          | 89,700       | 98,000                          | 99,000    |
| - LANDING WEIGHT     | KILOGRAMS       | 40,687       | 44,452                          | 44,906    |
| MAX DESIGN           | POUNDS          | 81,700       | 85,000                          | 90,000    |
| - ZERO FUEL WEIGHT   | KILOGRAMS       | 37,058       | 38,555                          | 40,823    |
| OPERATING            | POUNDS          | 58,600       | 59,000                          | 62,000    |
| - EMPTY WEIGHT (1)   | KILOGRAMS       | 26,581       | 26,762                          | 28,123    |
| MAX STRUCTURAL       | POUNDS          | 23,100       | 26,000                          | 28,000    |
| - PAYLOAD (1)        | KILOGRAMS       | 10,478       | 11,793                          | 12,701    |
| SEATING CAPACITY (1) | TWO-CLASS       | 85: 12 FIRST | CLASS AND 7                     | 3 ECONOMY |
|                      | ALL-<br>ECONOMY |              | AT SIX ABREA<br>A EXIT LIMIT: 1 | ,         |
| MAX CARGO VOLUME     | CUBIC FEET      | 650          | 650                             | 650       |
| - LOWER DECK         | CUBIC<br>METERS | 18.4         | 18.4                            | 18.4      |
| USABLE FUEL          | US GALLONS      | 3,540        | 3,540                           | 4,720     |
|                      | LITERS          | 13,399       | 13,399                          | 17,865    |
|                      | POUNDS          | 23,718       | 23,718                          | 31,624    |
|                      | KILOGRAMS       | 10,758       | 10,758                          | 14,345    |

#### NOTE:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

## 2.1.2 General Characteristics: Model 737-200

| CHARACTERISTICS      | UNITS        | MODEL 737-200 |            |                          |          |         |
|----------------------|--------------|---------------|------------|--------------------------|----------|---------|
| MAX DESIGN           | POUNDS       | 100,800       | 104,000    | 110,000                  | 111,000  | 116,000 |
| - TAXI WEIGHT        | KILOGRAMS    | 45,722        | 47,174     | 49,895                   | 50,349   | 52,617  |
| MAX DESIGN           | POUNDS       | 100,000       | 103,000    | 109,000                  | 110,000  | 115,500 |
| - TAKEOFF WEIGHT     | KILOGRAMS    | 45,359        | 46,720     | 49,442                   | 49,895   | 52,390  |
| MAX DESIGN           | POUNDS       | 95,000        | 95,000     | 98,000                   | 99,000   | 103,000 |
| - LANDING WEIGHT     | KILOGRAMS    | 43,091        | 43,091     | 44,452                   | 44,906   | 46,720  |
| MAX DESIGN           | POUNDS       | 85,000        | 85,000     | 88,000                   | 92,000   | 95,000  |
| - ZERO FUEL WEIGHT   | KILOGRAMS    | 38,555        | 38,555     | 39,916                   | 41,731   | 43,091  |
| OPERATING            | POUNDS       | 59,900        | 60,900     | 60,800                   | 61,800   | 59,800  |
| - EMPTY WEIGHT (1)   | KILOGRAMS    | 27,170        | 27,624     | 27,578                   | 28,032   | 27,125  |
| MAX STRUCTURAL       | POUNDS       | 25,100        | 24,100     | 27,200                   | 30,200   | 35,200  |
| - PAYLOAD (1)        | KILOGRAMS    | 11,385        | 10,932     | 12,338                   | 13,698   | 15,966  |
| SEATING CAPACITY (1) | TWO-CLASS    | 97:           | 24 FIRST C | CLASS AND                | 73 ECONO | MY      |
|                      | ALL-ECONOMY  | 90 AT F       |            | ST, OR 124<br>EXIT LIMIT |          | REAST;  |
| MAX CARGO VOLUME     | CUBIC FEET   | 875           | 875        | 875                      | 875      | 875     |
| - LOWER DECK         | CUBIC METERS | 24.8          | 24.8       | 24.8                     | 24.8     | 24.8    |
| USABLE FUEL          | U.S. GALLONS | 3,460         | 4,190      | 4,230                    | 4,780    | 4,780   |
|                      | LITERS       | 13,096        | 15,859     | 16,011                   | 18,092   | 18,092  |
|                      | POUNDS       | 23,182        | 28,073     | 28,341                   | 32,026   | 32,026  |
|                      | KILOGRAMS    | 10,515        | 12,734     | 12,855                   | 14,527   | 14,527  |

#### NOTE:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

D6-58325-6 November 2023

## 2.1.3 General Characteristics: Model 737-200

| CHARACTERISTICS      | UNITS        | MODEL 737-200 |            |                       |                          |            |  |
|----------------------|--------------|---------------|------------|-----------------------|--------------------------|------------|--|
| MAX DESIGN           | POUNDS       | 116,000       | 117,500    | 120,000               | 125,000                  | 128,600    |  |
| - TAXI WEIGHT        | KILOGRAMS    | 52,617        | 53,297     | 54,431                | 56,699                   | 58,332     |  |
| MAX DESIGN           | POUNDS       | 115,500       | 117,000    | 119,500               | 124,500                  | 128,100    |  |
| - TAKEOFF WEIGHT     | KILOGRAMS    | 52,390        | 53,070     | 54,204                | 56,472                   | 58,105     |  |
| MAX DESIGN           | POUNDS       | 103,000       | 105,000    | 105,000               | 107,000                  | 107,000    |  |
| - LANDING WEIGHT     | KILOGRAMS    | 46,720        | 47,627     | 47,627                | 48,534                   | 48,534     |  |
| MAX DESIGN           | POUNDS       | 95,000        | 95,000     | 95,000                | 95,000                   | 95,000     |  |
| - ZERO FUEL WEIGHT   | KILOGRAMS    | 43,091        | 43,091     | 43,091                | 43,091                   | 43,091     |  |
| OPERATING            | POUNDS       | 62,600        | 64,500     | 63,100                | 63,900                   | 65,300     |  |
| - EMPTY WEIGHT (1)   | KILOGRAMS    | 28,395        | 29,257     | 28,622                | 28,985                   | 29,620     |  |
| MAX STRUCTURAL       | POUNDS       | 32,400        | 30,500     | 31,900                | 31,100                   | 29,700     |  |
| - PAYLOAD            | KILOGRAMS    | 14,696        | 13,835     | 14,470                | 14,107                   | 13,472     |  |
| SEATING CAPACITY (1) | TWO-CLASS    | 102           | 2: 14 FIRS | T CLASS /             | AND 88 ECONOMY           |            |  |
|                      | ALL-ECONOMY  | 93 AT F       |            | EAST, OR<br>A EXIT LI | 130 AT SIX .<br>MIT: 136 | ABREAST;   |  |
| MAX CARGO VOLUME     | CUBIC FEET   | 875           | 875        | 875                   | 745 (2)                  | 640 (3)    |  |
| - LOWER DECK         | CUBIC METERS | 24.8          | 24.8       | 24.8                  | 21.1 (2)                 | 18.1 (3)   |  |
| USABLE FUEL          | U.S. GALLONS | 5,160         | 5,160      | 5,160                 | 5,550 (2)                | 5,970 (3)  |  |
|                      | LITERS       | 19,531        | 19,531     | 19,531                | 21,007 (2)               | 22,596 (3) |  |
|                      | POUNDS       | 34,572        | 34,572     | 34,572                | 37,185 (2)               | 39,999 (3) |  |
|                      | KILOGRAMS    | 15,682        | 15,682     | 15,682                | 16,867 (2)               | 18,143 (3) |  |

#### NOTES:

- 1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. AIRPLANE WITH 390 GAL (1,475 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 3. AIRPLANE WITH 810 GAL (3,065 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

| 2.1.4 | General Characteristics: Model 737-200, Convertible and Executive |
|-------|-------------------------------------------------------------------|
|       | Airplanes                                                         |

| CHARACTERISTICS      | UNITS        |           | MODEL 737-200                          |              |            |                    |  |  |
|----------------------|--------------|-----------|----------------------------------------|--------------|------------|--------------------|--|--|
|                      |              |           | CONVER                                 | RTIBLE       |            | EXECUTIVE          |  |  |
| MAX DESIGN           | POUNDS       | 110,000   | 111,000                                | 111,000      | 116,000    | 116,000            |  |  |
| - TAXI WEIGHT        | KILOGRAMS    | 49,895    | 50,349                                 | 50,349       | 52,617     | 52,617             |  |  |
| MAX DESIGN           | POUNDS       | 109,000   | 110,000                                | 110,000      | 115,500    | 115,500            |  |  |
| - TAKEOFF WEIGHT     | KILOGRAMS    | 49,442    | 49,895                                 | 49,895       | 52,390     | 52,390             |  |  |
| MAX DESIGN           | POUNDS       | 98,000    | 99,000                                 | 103,000      | 103,000    | 103,000            |  |  |
| - LANDING WEIGHT     | KILOGRAMS    | 44,452    | 44,906                                 | 46,720       | 46,720     | 46,720             |  |  |
| MAX DESIGN           | POUNDS       | 88,000    | 92,000                                 | 95,000       | 95,000     | 95,000             |  |  |
| - ZERO FUEL WEIGHT   | KILOGRAMS    | 39,916    | 41,731                                 | 43,091       | 43,091     | 43,091             |  |  |
| OPERATING            | POUNDS       | 61,100    | 64,900                                 | 69,700       | 66,800     | 54,900             |  |  |
| - EMPTY WEIGHT (1)   | KILOGRAMS    | 27,714    | 29,438                                 | 31,615       | 30,300     | 24,902             |  |  |
| MAX STRUCTURAL       | POUNDS       | 26,900    | 27,100                                 | 25,300       | 28,200     | 40,100             |  |  |
| - PAYLOAD            | KILOGRAMS    | 12,202    | 12,292                                 | 11,476       | 12,791     | 18,189             |  |  |
| SEATING CAPACITY (1) | TWO-CLASS    | 110: 8 FI | 110: 8 FIRST CLASS AND 102 ECONOMY (2) |              |            |                    |  |  |
|                      | ALL-ECONOMY  | 117 AT SI | X ABREAST (2)                          | ) ; FAA EXIT | LIMIT: 136 | INTERIOR<br>VARIES |  |  |
| MAX CARGO VOLUME     | CUBIC FEET   | 2,760 (3) | 2,760 (3)                              | 2,760 (3)    | 2,760 (3)  | WITH               |  |  |
| - MAIN DECK          | CUBIC METERS | 78.2 (3)  | 78.2 (3)                               | 78.2 (3)     | 78.2 (3)   | CUSTOMER<br>OPTION |  |  |
| MAX CARGO VOLUME     | CUBIC FEET   | 875       | 875                                    | 875          | 875        | 875                |  |  |
| - LOWER DECK         | CUBIC METERS | 24.8      | 24.8                                   | 24.8         | 24.8       | 24.8               |  |  |
| USABLE FUEL          | U.S. GALLONS | 4,200     | 4,750                                  | 3,500        | 4,780      | 4,720              |  |  |
|                      | LITERS       | 15,897    | 17,979                                 | 13,248       | 18,092     | 17,865             |  |  |
|                      | POUNDS       | 28,140    | 31,825                                 | 23,450       | 32,026     | 31,624             |  |  |
|                      | KILOGRAMS    | 12,764    | 14,436                                 | 10,637       | 14,527     | 14,345             |  |  |

NOTES:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

2. AIRPLANE IN ALL-PASSENGER CONFIGURATION

3. AIRPLANE IN ALL-CARGO CONFIGURATION WITH THE "QC" CARGO SYSTEM 88 x 125 IN (2.24 x 3.18 M) PALLETS

| CHARACTERISTICS      | UNITS        |         | MODE          | L 737-200C, -                | 200QC     |         |  |  |
|----------------------|--------------|---------|---------------|------------------------------|-----------|---------|--|--|
| MAX DESIGN           | POUNDS       | 116,000 | 117,500       | 120,000                      | 125,000   | 128,600 |  |  |
| - TAXI WEIGHT        | KILOGRAMS    | 52,617  | 53,297        | 54,431                       | 56,699    | 58,332  |  |  |
| MAX DESIGN           | POUNDS       | 115,500 | 117,000       | 119,500                      | 124,500   | 128,100 |  |  |
| - TAKEOFF WEIGHT     | KILOGRAMS    | 52,390  | 53,070        | 54,204                       | 56,472    | 58,105  |  |  |
| MAX DESIGN           | POUNDS       | 103,000 | 105,000       | 105,000                      | 107,000   | 107,000 |  |  |
| - LANDING WEIGHT     | KILOGRAMS    | 46,720  | 47,627        | 47,627                       | 48,534    | 48,534  |  |  |
| MAX DESIGN           | POUNDS       | 95,000  | 96,500        | 95,000                       | 99,000    | 99,000  |  |  |
| - ZERO FUEL WEIGHT   | KILOGRAMS    | 43,091  | 43,772        | 43,091                       | 44,906    | 44,906  |  |  |
| OPERATING            | POUNDS       | 65,700  | 69,800        | 66,500                       | 67,000    | 65,700  |  |  |
| - EMPTY WEIGHT (1)   | KILOGRAMS    | 29,801  | 31,661        | 30,164                       | 30,391    | 29,801  |  |  |
| MAX STRUCTURAL       | POUNDS       | 29,300  | 26,700        | 28,500                       | 32,000    | 33,300  |  |  |
| - PAYLOAD            | KILOGRAMS    | 13,290  | 12,111        | 12,927                       | 14,515    | 15,105  |  |  |
| SEATING CAPACITY (2) | TWO-CLASS    |         | 102: 14 FIRST | CLASS AND                    | 88 ECONOM | DNOMY   |  |  |
|                      | ALL-ECONOMY  | 93 A    |               | AST, OR 130<br>A EXIT LIMIT: |           | AST;    |  |  |
| MAX CARGO VOLUME     | CUBIC FEET   | 2,760   | 2,760         | 2,760                        | 2,760     | 2,760   |  |  |
| - MAIN DECK (3)      | CUBIC METERS | 78.2    | 78.2          | 78.2                         | 78.2      | 78.2    |  |  |
| MAX CARGO VOLUME     | CUBIC FEET   | 875     | 875           | 875                          | 875       | 875     |  |  |
| - LOWER DECK         | CUBIC METERS | 24.8    | 24.8          | 24.8                         | 24.8      | 24.8    |  |  |
| USABLE FUEL          | U.S. GALLONS | 5,160   | 5,160         | 5,160                        | 5,160     | 5,160   |  |  |
|                      | LITERS       | 19,531  | 19,531        | 19,531                       | 19,531    | 19,531  |  |  |
|                      | POUNDS       | 34,572  | 34,572        | 34,572                       | 34,572    | 34,572  |  |  |
|                      | KILOGRAMS    | 15,682  | 15,682        | 15,682                       | 15,682    | 15,682  |  |  |

## 2.1.5 General Characteristics: Model Advanced 737-200C, -200QC

#### NOTES:

- 1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. AIRPLANE IN ALL-PASSENGER CONFIGURATION
- 3. AIRPLANE IN ALL-CARGO CONFIGURATION, SEVEN PALLETS 88 x 125 IN (2.24 x 3.18 M) EACH

|                    |              |         |                            | MODE       | L 737-300   |                                    |            |  |  |
|--------------------|--------------|---------|----------------------------|------------|-------------|------------------------------------|------------|--|--|
| CHARACTERISTICS    | UNITS        |         | M56-3B1 EN<br>20,000 LB SI |            |             | CFM56-3B2 ENGIN<br>(22,000 LB SLST |            |  |  |
| MAX DESIGN         | POUNDS       | 125,000 | 130,500                    | 135,500    | 137,500     | 140,000                            | 140,000    |  |  |
| - TAXI WEIGHT      | KILOGRAMS    | 56,699  | 59,194                     | 61,462     | 62,369      | 63,503                             | 63,503     |  |  |
| MAX DESIGN         | POUNDS       | 124,500 | 130,000                    | 135,000    | 137,000     | 139,500                            | 139,500    |  |  |
| - TAKEOFF WEIGHT   | KILOGRAMS    | 56,472  | 58,967                     | 61,235     | 62,142      | 63,276                             | 63,276     |  |  |
| MAX DESIGN         | POUNDS       | 114,000 | 114,000                    | 114,000    | 114,000     | 116,600                            | 116,600    |  |  |
| - LANDING WEIGHT   | KILOGRAMS    | 51,710  | 51,710                     | 51,710     | 51,710      | 52,889                             | 52,889     |  |  |
| MAX DESIGN         | POUNDS       | 105,000 | 105,000                    | 106,500    | 106,500     | 109,600                            | 109,600    |  |  |
| - ZERO FUEL WEIGHT | KILOGRAMS    | 47,627  | 47,627                     | 48,308     | 48,308      | 49,714                             | 49,714     |  |  |
| OPERATING          | POUNDS       | 69,400  | 71,870                     | 72,540     | 72,540      | 72,540                             | 72,540     |  |  |
| - EMPTY WEIGHT (1) | KILOGRAMS    | 31,479  | 32,600                     | 32,904     | 32,904      | 32,904                             | 32,904     |  |  |
| MAX STRUCTURAL     | POUNDS       | 35,600  | 33,130                     | 33,960     | 33,960      | 33,960                             | 33,960     |  |  |
| - PAYLOAD          | KILOGRAMS    | 16,148  | 15,028                     | 15,404     | 15,404      | 15,404                             | 15,404     |  |  |
| SEATING CAPACITY   | TWO-CLASS    |         | 128: 8 F                   | FIRST CLAS | S AND 120 E | CONOMY                             |            |  |  |
|                    | ALL-ECONOMY  |         | 134 AT S                   | SIX ABREAS | T; FAA EXIT | LIMIT: 149                         |            |  |  |
| MAX CARGO VOLUME   | CUBIC FEET   | 1,068   | 929 (2)                    | 841 (3)    | 917 (4)     | 792 (5)                            | 792 (5)    |  |  |
| - LOWER DECK       | CUBIC METERS | 30.2    | 26.3 (2)                   | 23.8 (3)   | 26.0 (4)    | 22.4 (5)                           | 22.4 (5)   |  |  |
| USABLE FUEL        | U.S. GALLONS | 5,311   | 5,701 (2)                  | 6,121 (3)  | 5,803 (4)   | 6,295 (5)                          | 6,295 (5)  |  |  |
|                    | LITERS       | 20,102  | 21,578 (2)                 | 23,168 (3) | 21,964 (4)  | 23,827 (5)                         | 23,827 (5) |  |  |
|                    | POUNDS       | 35,584  | 38,197 (2)                 | 41,011 (3) | 38,880 (4)  | 42,177 (5)                         | 42,177 (5) |  |  |
|                    | KILOGRAMS    | 16,141  | 17,326 (2)                 | 18,602 (3) | 17,636 (4)  | 19,131 (5)                         | 19,131 (5) |  |  |

## 2.1.6 General Characteristics: Model 737-300

#### NOTES:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

2. AIRPLANE WITH 390 GAL (1,475 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

3. AIRPLANE WITH 810 GAL (3,065 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

4. AIRPLANE WITH 500 GAL (1,893 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

5. AIRPLANE WITH 1,000 GAL (3,785 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

|                    |              |                                                        |            | MODE       | L 737-400   |            |            |
|--------------------|--------------|--------------------------------------------------------|------------|------------|-------------|------------|------------|
| CHARACTERISTICS    | UNITS        | CFM56-3B2 ENGINES<br>(22,000 LB SLST) (23,500 LB SLST) |            |            |             |            |            |
| MAX DESIGN         | POUNDS       | 139,000                                                | 143,000    | 150,500    | 143,000     | 144,000    | 150,500    |
| - TAXI WEIGHT      | KILOGRAMS    | 63,049                                                 | 64,864     | 68,266     | 64,864      | 65,317     | 68,266     |
| MAX DESIGN         | POUNDS       | 138,500                                                | 142,500    | 150,000    | 142,500     | 143,500    | 150,000    |
| - TAKEOFF WEIGHT   | KILOGRAMS    | 62,823                                                 | 64,637     | 68,039     | 64,637      | 65,091     | 68,039     |
| MAX DESIGN         | POUNDS       | 121,000                                                | 121,000    | 124,000    | 124,000     | 124,000    | 124,000    |
| - LANDING WEIGHT   | KILOGRAMS    | 54,885                                                 | 54,885     | 56,245     | 56,245      | 56,245     | 56,245     |
| MAX DESIGN         | POUNDS       | 113,000                                                | 113,000    | 117,000    | 117,000     | 117,000    | 117,000    |
| - ZERO FUEL WEIGHT | KILOGRAMS    | 51,256                                                 | 51,256     | 53,070     | 53,070      | 53,070     | 53,070     |
| OPERATING          | POUNDS       | 73,170                                                 | 73,170     | 73,170     | 74,170      | 74,170     | 74,170     |
| - EMPTY WEIGHT (1) | KILOGRAMS    | 33,189                                                 | 33,189     | 33,189     | 33,643      | 33,643     | 33,643     |
| MAX STRUCTURAL     | POUNDS       | 39,830                                                 | 39,830     | 43,830     | 42,830      | 42,830     | 42,830     |
| - PAYLOAD          | KILOGRAMS    | 18,067                                                 | 18,067     | 19,881     | 19,427      | 19,427     | 19,427     |
| SEATING CAPACITY   | TWO-CLASS    |                                                        | 146: 8 F   | FIRST CLAS | S AND 138 E | CONOMY     |            |
|                    | ALL-ECONOMY  |                                                        | 159 AT S   | SIX ABREAS | T; FAA EXIT | LIMIT: 189 |            |
| MAX CARGO VOLUME   | CUBIC FEET   | 1,373                                                  | 1,234 (2)  | 1,146 (3)  | 1,222 (4)   | 1,097 (5)  | 1,097 (5)  |
| - LOWER DECK       | CUBIC METERS | 38.9                                                   | 34.9 (2)   | 32.5 (3)   | 34.6 (4)    | 31.1 (5)   | 31.1 (5)   |
| USABLE FUEL        | U.S. GALLONS | 5,311                                                  | 5,701 (2)  | 6,121 (3)  | 5,803 (4)   | 6,295 (5)  | 6,295 (5)  |
|                    | LITERS       | 20,102                                                 | 21,578 (2) | 23,168 (3) | 21,964 (4)  | 23,827 (5) | 23,827 (5) |
|                    | POUNDS       | 35,584                                                 | 38,197 (2) | 41,011 (3) | 38,880 (4)  | 42,177 (5) | 42,177 (5) |
|                    | KILOGRAMS    | 16,141                                                 | 17,326 (2) | 18,602 (3) | 17,636 (4)  | 19,131 (5) | 19,131 (5) |

## 2.1.7 General Characteristics: Model 737-400

#### NOTES:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

2. AIRPLANE WITH 390 GAL (1,475 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

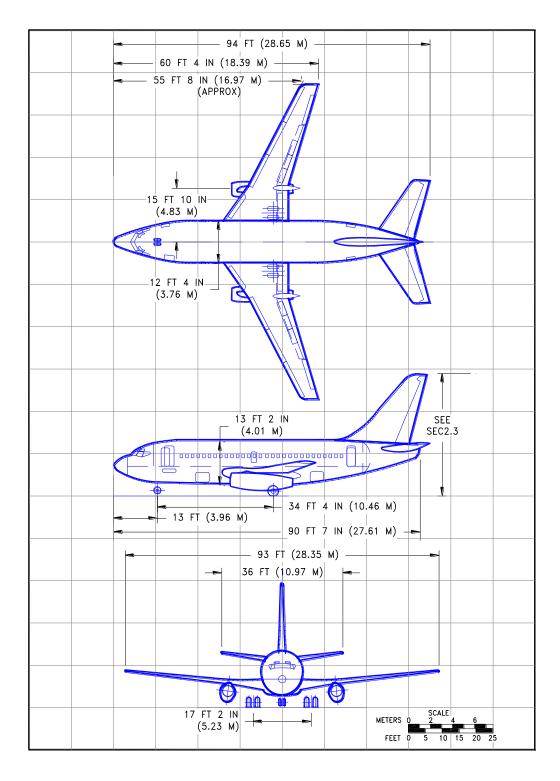
3. AIRPLANE WITH 810 GAL (3,065 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

4. AIRPLANE WITH 500 GAL (1,893 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

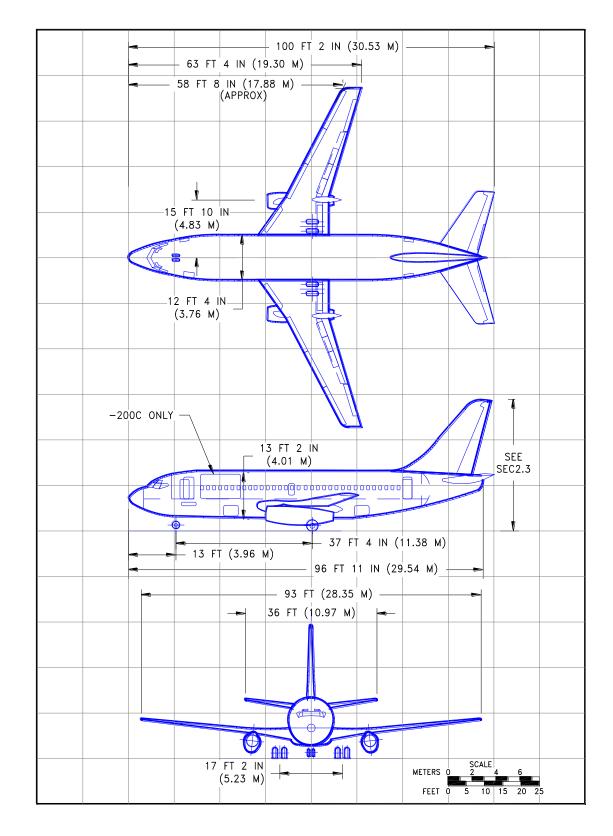
5. AIRPLANE WITH 1,000 GAL (3,785 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

| CHARACTERISTICS    | UNITS        |         | Ν                                                                       | ODEL 737-  | 500          |            |
|--------------------|--------------|---------|-------------------------------------------------------------------------|------------|--------------|------------|
|                    |              |         | CFM56-3B1 ENGINES<br>(18,500 LB SLST) CFM56-3B1 ENG<br>(20,000 LB SLST) |            |              |            |
| MAX DESIGN         | POUNDS       | 116,000 | 125,000                                                                 | 134,000    | 125,000      | 136,500    |
| - TAXI WEIGHT      | KILOGRAMS    | 52,617  | 56,699                                                                  | 60,781     | 56,699       | 61,915     |
| MAX DESIGN         | POUNDS       | 115,500 | 124,500                                                                 | 133,500    | 133,500      | 136,000    |
| - TAKEOFF WEIGHT   | KILOGRAMS    | 52,390  | 56,472                                                                  | 60,555     | 60,555       | 61,689     |
| MAX DESIGN         | POUNDS       | 110,000 | 110,000                                                                 | 110,000    | 110,000      | 110,000    |
| - LANDING WEIGHT   | KILOGRAMS    | 49,8965 | 49,895                                                                  | 49,895     | 49,895       | 49,895     |
| MAX DESIGN         | POUNDS       | 102,500 | 102,500                                                                 | 102,500    | 102,500      | 103,000    |
| - ZERO FUEL WEIGHT | KILOGRAMS    | 46,493  | 46,493                                                                  | 46,493     | 46,493       | 46,720     |
| OPERATING          | POUNDS       | 69,030  | 69,030                                                                  | 69,030     | 69,030       | 69,030     |
| - EMPTY WEIGHT (1) | KILOGRAMS    | 31,311  | 31,311                                                                  | 31,311     | 31,311       | 31,311     |
| MAX STRUCTURAL     | POUNDS       | 33,470  | 33,470                                                                  | 33,470     | 33,470       | 33,470     |
| - PAYLOAD          | KILOGRAMS    | 15,182  | 15,182                                                                  | 15,182     | 15,182       | 15,182     |
| SEATING CAPACITY   | TWO-CLASS    | 10      | )8: 8 FIRST                                                             | CLASS AND  | 100 ECONO    | OMY        |
|                    | ALL-ECONOMY  | 12      | 2 AT SIX AB                                                             | REAST; FA  | A EXIT LIMIT | : 149      |
| MAX CARGO VOLUME   | CUBIC FEET   | 822     | 683 (2)                                                                 | 595 (3)    | 671 (4)      | 546 (5)    |
| - LOWER DECK       | CUBIC METERS | 23.3    | 19.3 (2)                                                                | 16.8 (3)   | 19.0 (4)     | 15.5 (5)   |
| USABLE FUEL        | U.S. GALLONS | 5,311   | 5,701 (2)                                                               | 6,121 (3)  | 5,803 (4)    | 6,295 (5)  |
|                    | LITERS       | 20,102  | 21,578 (2)                                                              | 23,168 (3) | 21,964 (4)   | 23,827 (5) |
|                    | POUNDS       | 35,584  | 38,197 (2)                                                              | 41,011 (3) | 38,880 (4)   | 42,177 (5) |
|                    | KILOGRAMS    | 16,141  | 17,326 (2)                                                              | 18,602 (3) | 17,636 (4)   | 19,131 (5) |

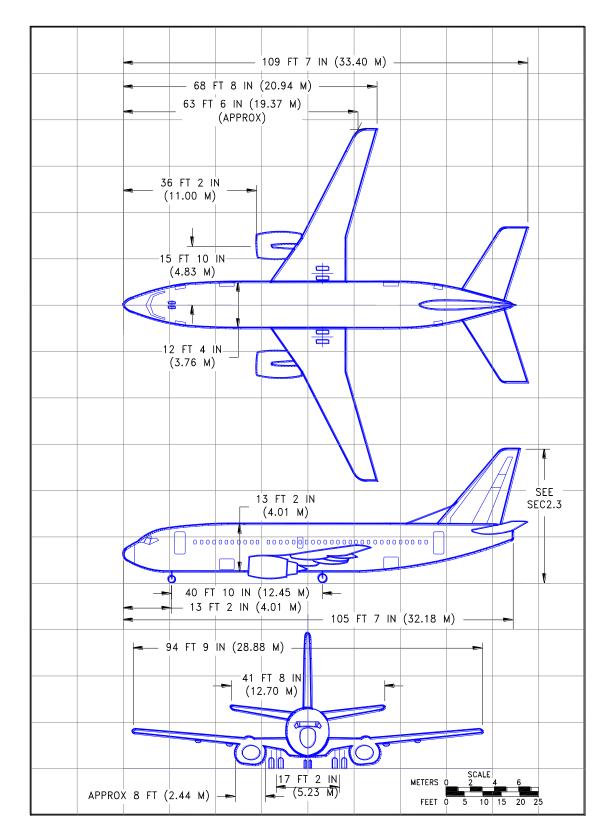
## 2.1.8 General Characteristics: Model 737-500


#### NOTES:

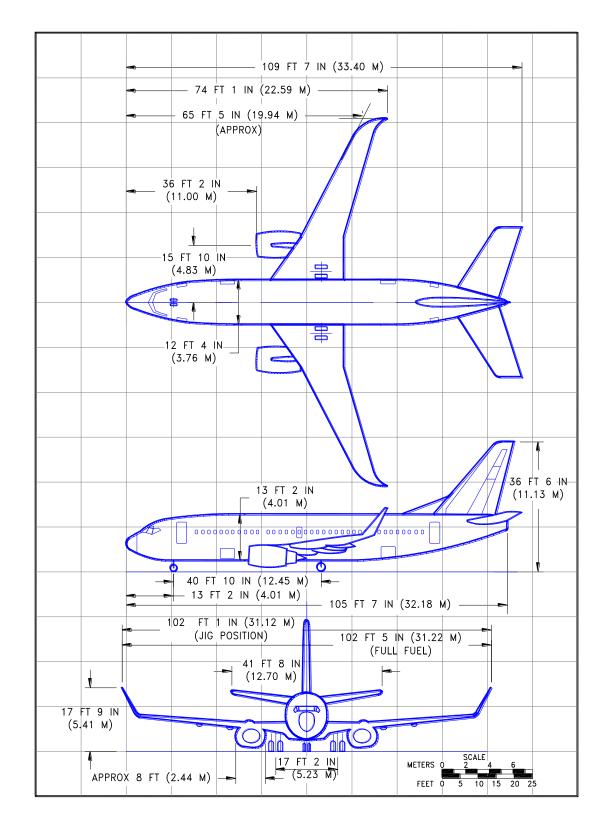
1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.


- 2. AIRPLANE WITH 390 GAL (1,475 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 3. AIRPLANE WITH 810 GAL (3,065 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 4. AIRPLANE WITH 500 GAL (1,893 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 5. AIRPLANE WITH 1,000 GAL (3,785 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

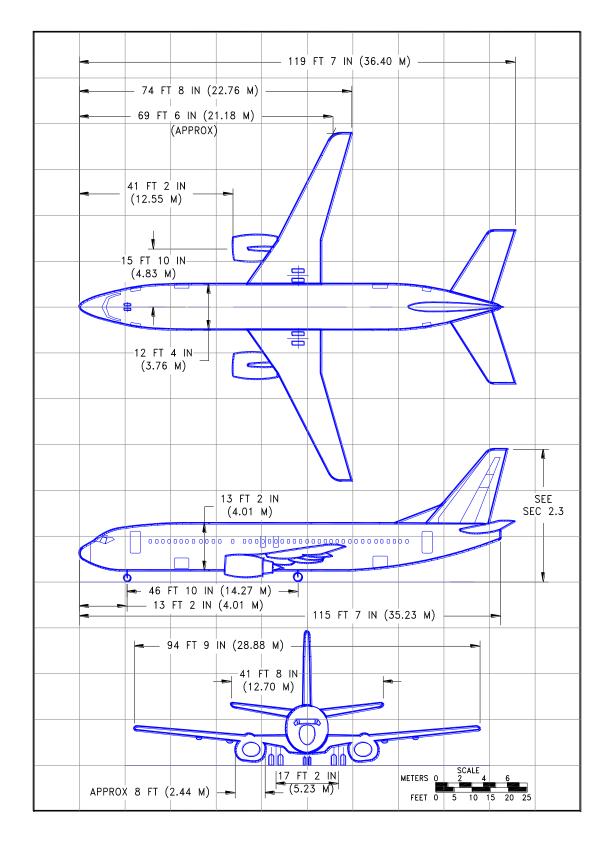
## 2.2 GENERAL DIMENSIONS


## 2.2.1 General Dimensions: Model 737-100

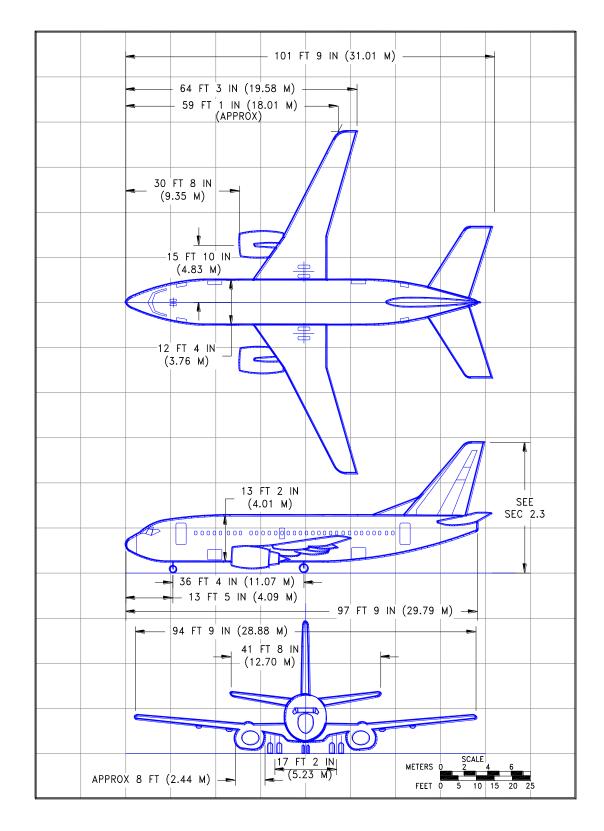



D6-58325-6




## 2.2.2 General Dimensions: Model 737-200

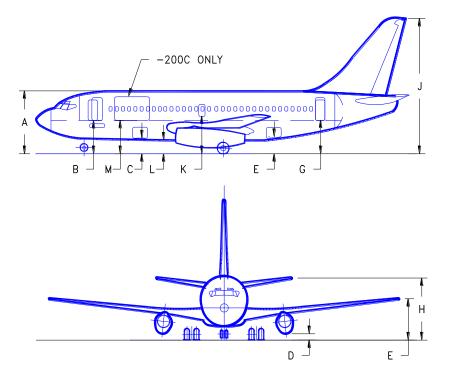



2.2.3 General Dimensions: Model 737-300



### 2.2.4 General Dimensions: Model 737-300W




### 2.2.5 General Dimensions: Model 737-400

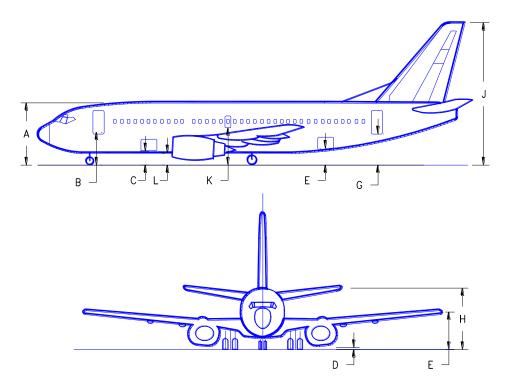


## 2.2.6 General Dimensions: Model 737-500

## 2.3 GROUND CLEARANCES

## 2.3.1 Ground Clearances: Model 737-100, -200, -200C




|   |                         | 737-100 |       |         |        |         | 737-200, -200C |         |        |  |  |
|---|-------------------------|---------|-------|---------|--------|---------|----------------|---------|--------|--|--|
|   | DESCRIPTION             | MAX (AT | OEW)  | MIN (AT | · MTW) | MAX (AT | OEW)           | MIN (A  | Г MTW) |  |  |
|   |                         | FT - IN | М     | FT - IN | М      | FT - IN | М              | FT - IN | М      |  |  |
| А | TOP OF FUSELAGE         | 16 – 9  | 5.11  | 16 – 5  | 5.00   | 16 – 9  | 5.11           | 16 – 4  | 4.98   |  |  |
| В | ENTRY DOOR NO 1         | 8 – 8   | 2.64  | 8 – 1   | 2.46   | 8 – 7   | 2.62           | 8 – 1   | 2.46   |  |  |
| С | FWD CARGO DOOR          | 4 – 3   | 1.30  | 3 – 10  | 1.17   | 4 – 3   | 1.30           | 3 – 10  | 1.17   |  |  |
| D | ENGINE                  | 1 – 11  | 0.58  | 1 – 8   | 0.51   | 1 -11   | 0.58           | 1 – 8   | 0.51   |  |  |
| Е | WINGTIP                 | 10 – 2  | 3.09  | 10 – 0  | 3.05   | 10 – 2  | 3.09           | 10 – 0  | 3.05   |  |  |
| F | AFT CARGO DOOR          | 5 – 1   | 1.55  | 5 – 0   | 1.52   | 4 – 9   | 1.45           | 4 – 9   | 1.45   |  |  |
| G | ENTRY DOOR NO 2         | 9 – 0   | 2.74  | 9 – 1   | 2.77   | 9 – 0   | 2.74           | 9 – 2   | 2.79   |  |  |
| Н | STABILIZER              | 16 – 8  | 5.08  | 17 – 0  | 5.18   | 16 – 8  | 5.08           | 17 – 1  | 5.21   |  |  |
| J | VERTICAL TAIL           | 36 – 10 | 11.23 | 37 – 2  | 11.33  | 36 – 10 | 11.23          | 37 – 3  | 11.35  |  |  |
| Κ | OVERWING EXIT DOOR      | 10 – 5  | 3.18  | 10 – 3  | 3.12   | 10 – 5  | 3.18           | 10 – 3  | 3.12   |  |  |
| L | BOTTOM OF FUSELAGE      | 3 – 7   | 1.09  | 3 – 1   | 0.94   | 3 – 6   | 1.07           | 3 – 0   | 0.91   |  |  |
| Μ | MAIN DECK CARGO<br>DOOR | -       | -     | -       | -      | 8 – 7   | 2.62           | 8 – 1   | 2.46   |  |  |

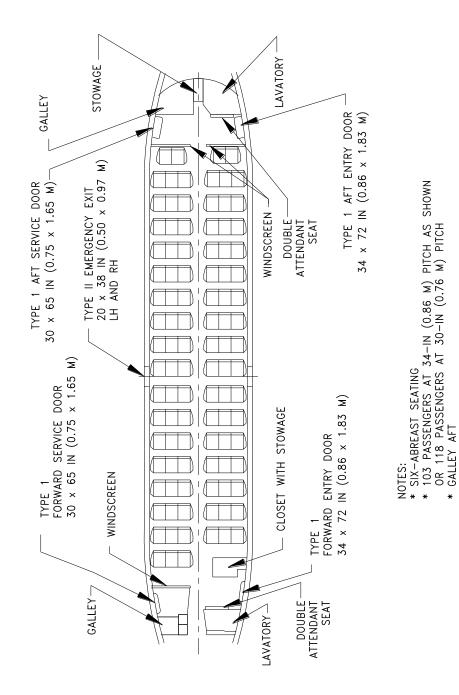
**NOTES:** CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.

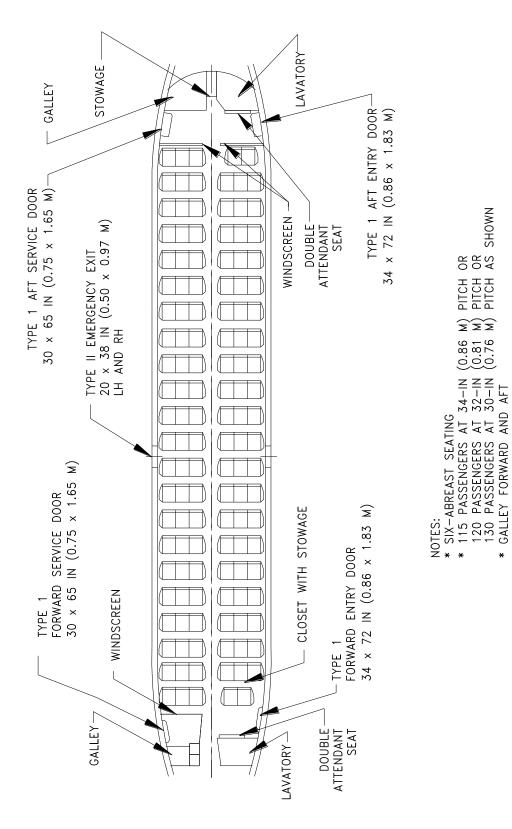
DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

Not Subject to EAR or ITAR. Copyright © 2023 Boeing. All Rights Reserved.

2.3.2 Ground Clearances: Model 737-300, -400, -500



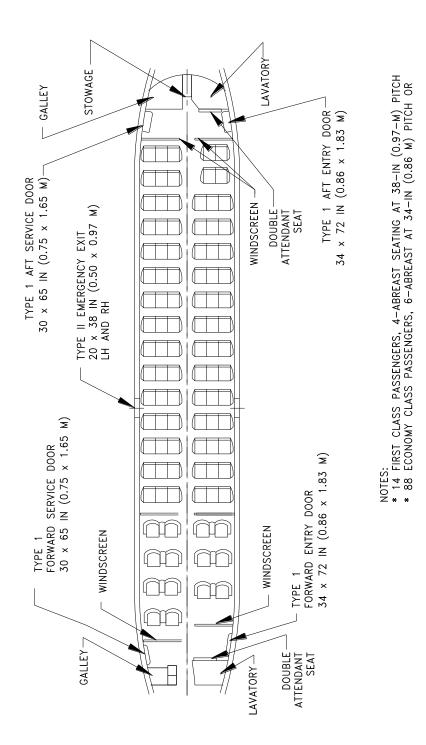

|   |                    | 737-300, -400, -500 |         |              |       |  |
|---|--------------------|---------------------|---------|--------------|-------|--|
|   | DESCRIPTION        | MAX (               | AT OEW) | MIN (AT MTW) |       |  |
|   |                    | FT - IN             | М       | FT - IN      | М     |  |
| А | TOP OF FUSELAGE    | 17 – 3              | 5.26    | 16 – 10      | 5.13  |  |
| В | ENTRY DOOR NO 1    | 9 – 1               | 2.77    | 8 – 7        | 2.62  |  |
| С | FWD CARGO DOOR     | 4 – 7               | 1.40    | 4 – 2        | 1.27  |  |
| D | ENGINE             | 1 – 9               | 0.53    | 1 – 6        | 0.46  |  |
| Е | WINGTIP            | 10 - 2              | 3.09    | 10 – 0       | 3.05  |  |
| F | AFT CARGO DOOR     | 4 – 6               | 1.37    | 4 – 6        | 1.37  |  |
| G | ENTRY DOOR NO 2    | 8 – 7               | 2.62    | 8 – 9        | 2.67  |  |
| Н | STABILIZER         | 16 – 3              | 4.95    | 16 – 8       | 5.08  |  |
| J | VERTICAL TAIL      | 36 – 4              | 11.07   | 36 – 7       | 11.15 |  |
| К | OVERWING EXIT DOOR | 10 – 6              | 3.20    | 10 – 4       | 3.15  |  |
| L | BOTTOM OF FUSELAGE | 3 – 10              | 1.17    | 3 – 4        | 1.02  |  |


# **NOTES:** CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.

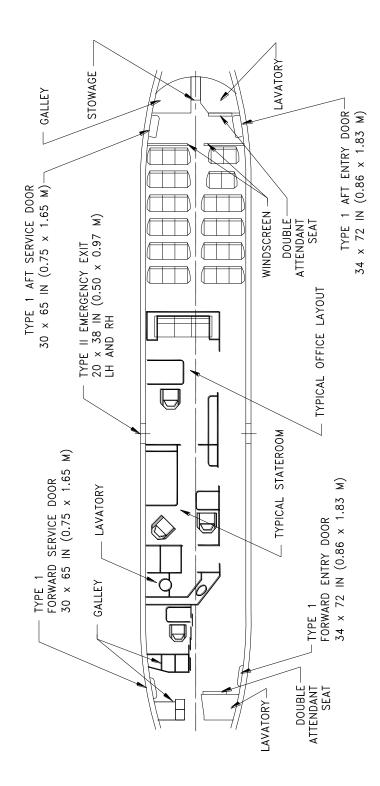
DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

### 2.4 INTERIOR ARRANGEMENTS

# 2.4.1 Interior Arrangements: Model 737-100



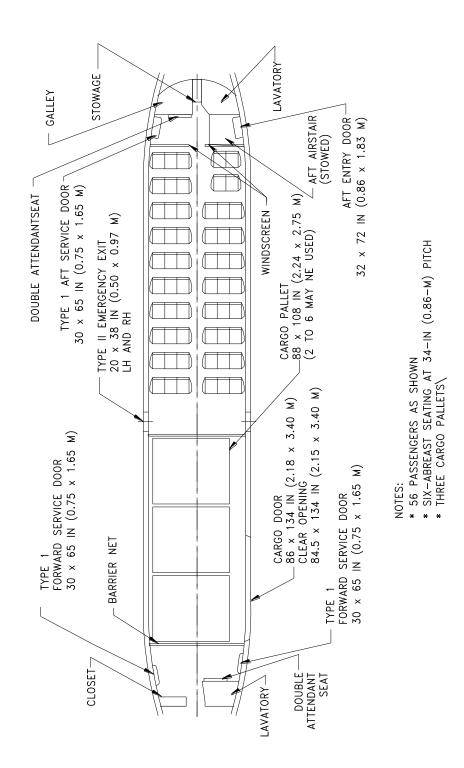




# 2.4.2 Interior Arrangements: Model 737-200

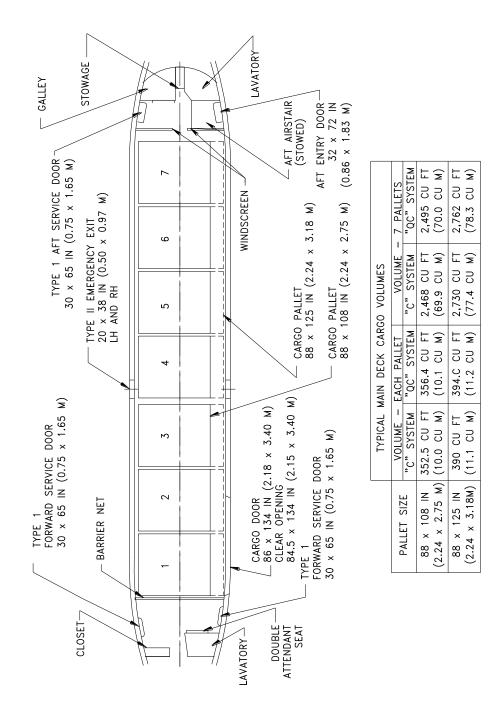
### D6-58325-6

SHOWN



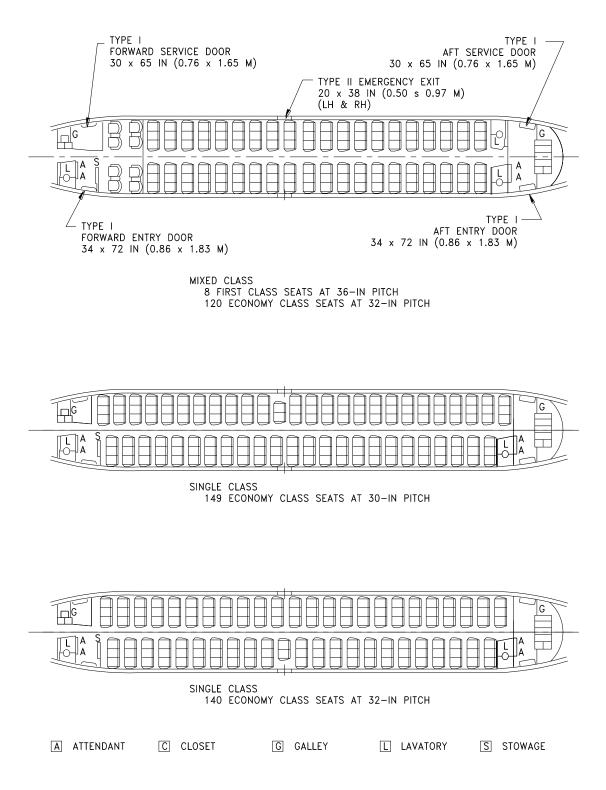

# 2.4.3 Interior Arrangements: Model 737-200, Mixed Class



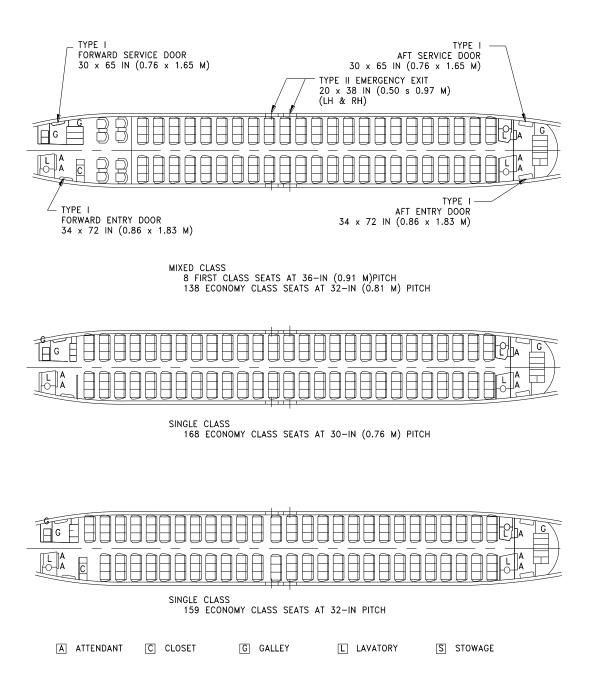

# 2.4.4 Interior Arrangements: Model 737-200 Executive Interior Class

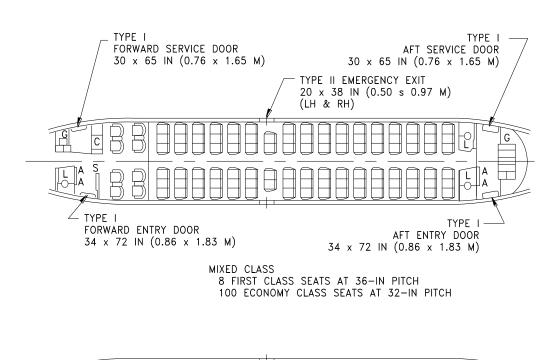
#### D6-58325-6

#### Not Subject to EAR or ITAR. Copyright © 2023 Boeing. All Rights Reserved.

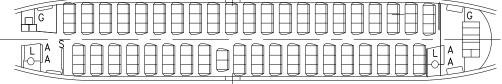



# 2.4.5 Interior Arrangements: Model 737-200 Passenger/Cargo Configuration

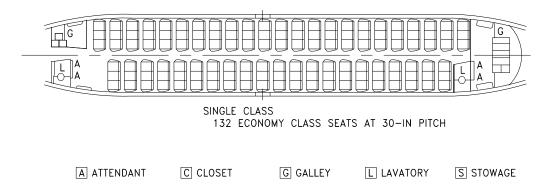




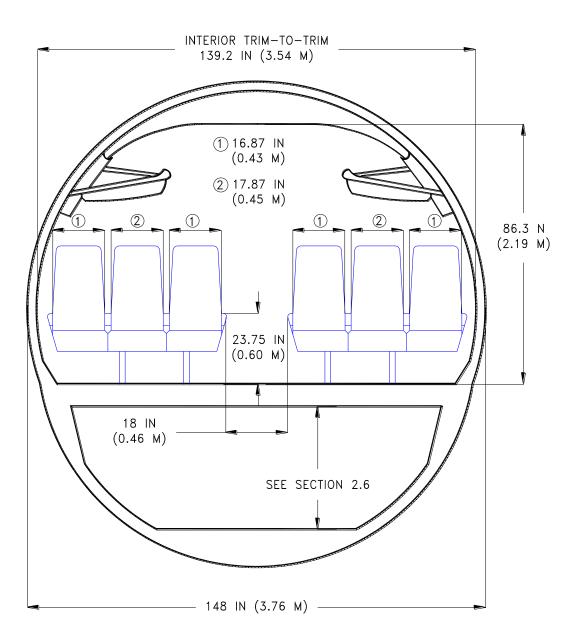


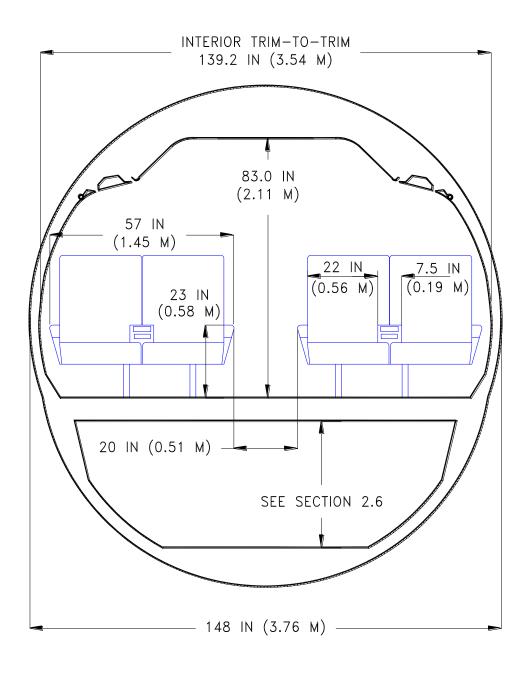




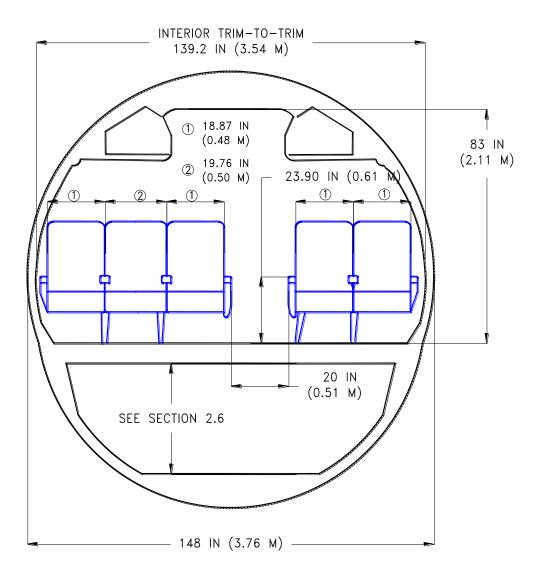




SINGLE CLASS 122 ECONOMY CLASS SEATS AT 32-IN PITCH

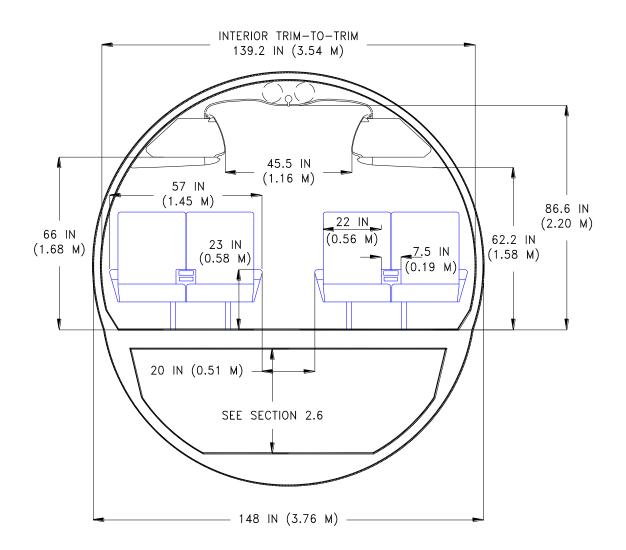



November 2023

# 2.5 CABIN CROSS SECTIONS

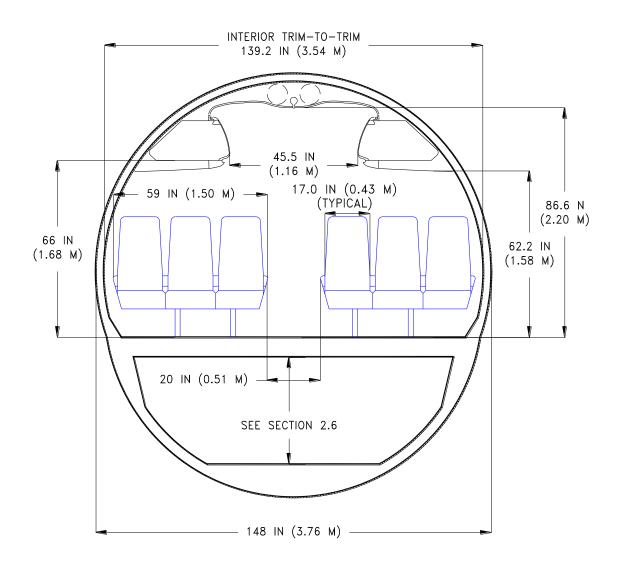

2.5.1 Cabin Cross-Sections: Model 737-100, Six-Abreast Seating With Hatrack-Type Stowage System




# 2.5.2 Cabin Cross-Sections: Model 737-200, Four-Abreast Seating With "Wide-Body Look" Interior

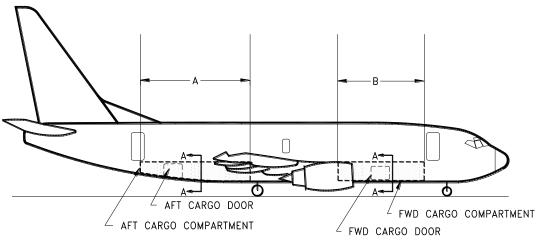


2.5.3 Cabin Cross-Sections: Model 737-200, Five-Abreast Seating With Carry All Compartments



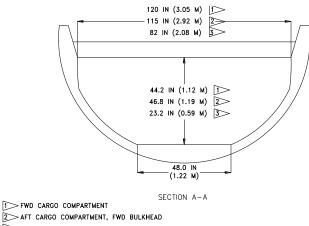

# 2.5.4 Cabin Cross-Sections: Model 737-200ADV, -300, -400, -500, Four-**Abreast Seating**




#### NOTE: CABIN INTERIOR FOR BBJ1 AND BBJ2 AIRPLANES ARE DEPENDENT ON CUSTOMER OPTION.

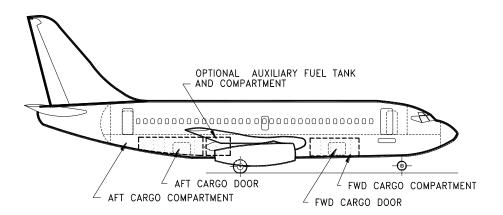
# 2.5.5 Cabin Cross-Sections: Model 737-200ADV, -300, -400, -500, Six-Abreast Seating




### 2.6 LOWER CARGO COMPARTMENTS

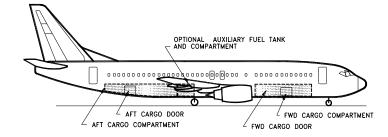
2.6.1 Lower Cargo Compartments: Model 737-100, -200, -300, -400, -500, Dimensions




RIGHT SIDE VIEW

| AIRPLANE MODEL | DIMENSION A         | DIMENSION B         |
|----------------|---------------------|---------------------|
| 737-100        | 18 FT 3 IN (5.56 M) | 11 FT 7 IN (3.53 M) |
| 737-200        | 21 FT 5 IN (6.53 M) | 14 FT 7 IN (4.45 M) |
| 737-300        | 26 FT 5 IN (8.05 M) | 16 FT 8 IN (5.08 M) |
| 737-400        | 30 FT 5 IN (9.27 M) | 22 FT 8 IN (6.91 M) |
| 737-500        | 23 FT 1 IN (7.04 M) | 12 FT 2 IN (3.71 M) |




3>AFT CARGO COMPARTMENT, AFT BULKHEAD

2.6.2 Lower Cargo Compartments: Model 737-100, -200, Capacities



|                     | AFT CARGO COMPARTMENT        |                                    |                                       | FORWARD                   |                           |  |
|---------------------|------------------------------|------------------------------------|---------------------------------------|---------------------------|---------------------------|--|
| AIRPLANE<br>MODEL   | BULK<br>CARGO                | AUXILIARY<br>FUEL TANK<br>CAPACITY | AUXILIARY<br>FUEL TANK<br>COMPARTMENT | COMPARTMENT<br>BULK CARGO | TOTAL BULK<br>CARGO       |  |
| 737-100             | 370 CU FT<br>(10.48 CU<br>M) | 0                                  | 0                                     | 280 CU FT<br>(7.93 CU M)  | 650 CU FT<br>(18.41 CU M) |  |
| 737-200<br>AND      | 505 CU FT<br>(14.31 CU M)    | 0                                  | 0                                     |                           | 875 CU FT<br>(24.79 CU M) |  |
| ADVANCED<br>737-200 | 370 CU FT<br>(10.48 CU M)    | 390 GAL<br>(1,475 L)               | 135 CU FT<br>(3.83 CU M)              | 370 CU FT                 | 740 CU FT<br>(20.96 CU M) |  |
|                     | 270 CU FT<br>(7.65 CU M)     | 810 GAL<br>(3,065 L)               | 235 CU FT<br>(6.66 CU M)              | (10.48 CU M)              | 640 CU FT<br>(18.13 CU M) |  |

# 2.6.3 Lower Cargo Compartments: Model 737-300, -400, -500, Capacities

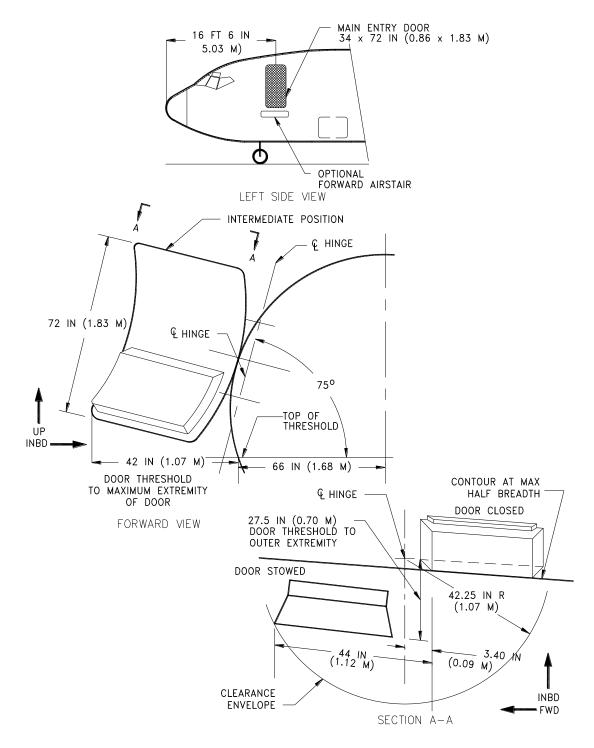


|                   | AFT CARGO COMPARTMENT    |                                    |                                                   |                                      |                            |       |
|-------------------|--------------------------|------------------------------------|---------------------------------------------------|--------------------------------------|----------------------------|-------|
| AIRPLANE<br>MODEL | BULK<br>CARGO            | AUXILIARY<br>FUEL TANK<br>CAPACITY | AUXILIARY<br>FUEL TANK<br>COMPARTMENT<br>CAPACITY | FORWARD<br>COMPARTMENT<br>BULK CARGO | TOTAL BULK<br>CARGO        | NOTES |
| 737-300           | 643 CU FT<br>(18.2 CU M) | 0                                  | 0                                                 |                                      | 1,068 CU FT<br>(30.2 CU M) | (1)   |
|                   | 504 CU FT<br>(14.3 CU M) | 390 GAL<br>(1,475 L)               | 139 CU FT<br>(3.9 CU M)                           | 425 CU FT<br>(12.0 CU M)             | 929 CU FT<br>(26.3 CU M)   | (2)   |
|                   | 416 CU FT<br>(11.8 CU M) | 810 GAL<br>(3,065 L)               | 227 CU FT<br>(6.4 CU M)                           |                                      | 841 CU FT<br>(23.8 CU M)   | (2)   |
|                   | 492 CU FT<br>(13.9 CU M) | 500 GAL<br>(1,893 L)               | 151 CU FT<br>(5.3 CU M)                           |                                      | 917 CU FT<br>(26.0 CU M)   | (3)   |
|                   | 367 CU FT<br>(10.4 CU M) | 1,000 GAL<br>(3,785 L)             | 276 CU FT<br>(7.8 CU M)                           |                                      | 792 CU FT<br>(22.4 CU M)   | (3)   |
| 737-400           | 766 CU FT<br>(21.7 CU M) | 0                                  | 0                                                 | 607 CU FT<br>(17.2 CU M)             | 1,373 CU FT<br>(38.9 CU M) | (1)   |
|                   | 627 CU FT<br>(17.7 CU M) | 390 GAL<br>(1,475 L)               | 139 CU FT<br>(3.9 CU M)                           |                                      | 1,234 CU FT<br>(34.9 CU M) | (2)   |
|                   | 539 CU FT<br>(15.3 CU M) | 810 GAL<br>(3,065 L)               | 227 CU FT<br>(6.4 CU M)                           |                                      | 1,146 CU FT<br>(32.4 CU M) | (2)   |
|                   | 615 CU FT<br>(17.4 CU M) | 500 GAL<br>(1,893 L)               | 151 CU FT<br>(5.3 CU M)                           |                                      | 1,222 CU FT<br>(34.6 CU M) | (3)   |
|                   | 490 CU FT<br>(13.9 CU M) | 1,000 GAL<br>(3,785 L)             | 276 CU FT<br>(7.8 CU M)                           |                                      | 1,097 CU FT<br>(31.0 CU M) | (3)   |
| 737-500           | 535 CU FT<br>(15.1 CU M) | 0                                  | 0                                                 |                                      | 822 CU FT<br>(233.3 CU M)  | (1)   |
|                   | 396 CU FT<br>(11.2 CU M) | 390 GAL<br>(1,475 L)               | 139 CU FT<br>(3.9 CU M)                           |                                      | 683 CU FT<br>(19.3 CU M)   | (2)   |
|                   | 308 CU FT<br>(8.7 CU M)  | 810 GAL<br>(3,065 L)               | 227 CU FT<br>(6.4 CU M)                           | 287 CU FT<br>(8.1 CU M)              | 595 CU FT<br>(16.8 CU M)   | (2)   |
|                   | 384 CU FT<br>(10.9 CU M) |                                    | 151 CU FT<br>(5.3 CU M)                           |                                      | 671 CU FT<br>(19.0 CU M)   | (3)   |
|                   | 259 CU FT<br>(7.3 CU M)  | 1,000 GAL<br>(3,785 L)             | 276 CU FT<br>(7.8 CU M)                           |                                      | 546 CU FT<br>(15.5 CU M)   | (3)   |

### NOTES

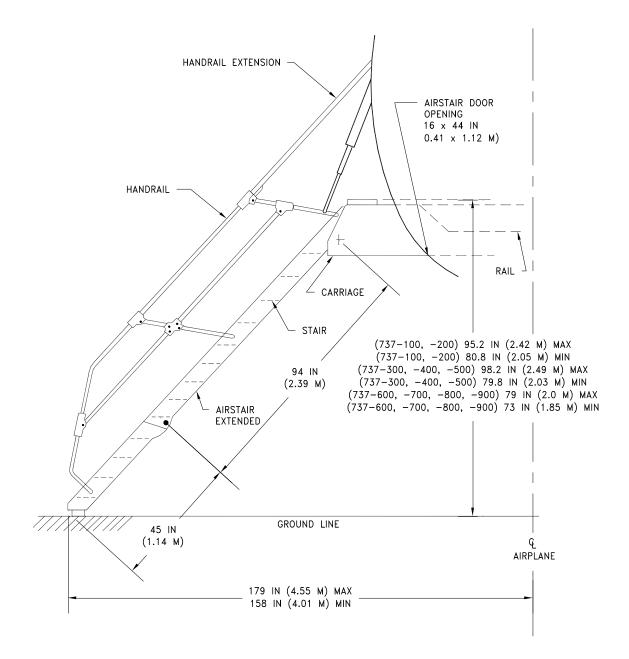
1. WITHOUT AUXILIARY FUEL TANK

2. WITH BOEING-INSTALLED AUXILIARY FUEL TANK


3. WITH ROGERSON-INSTALLED AUXILIARY FUEL TANK

### D6-58325-6

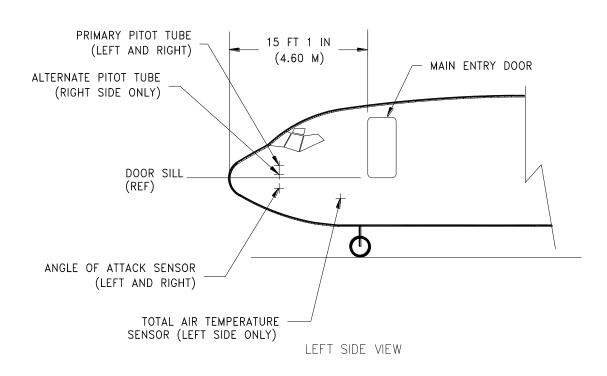
#### November 2023


### 2.7 DOOR CLEARANCES

# 2.7.1 Door Clearances: Model 737, All Models, Forward Main Entry Door No. 1

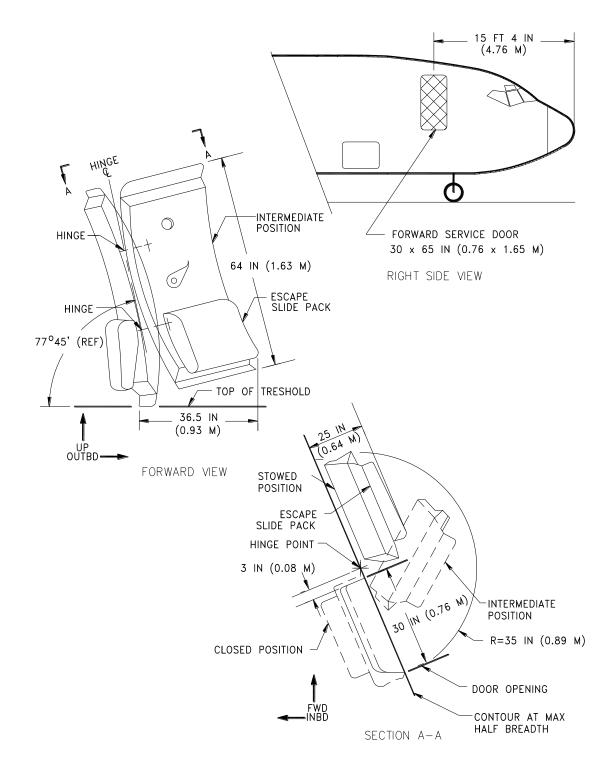


NOTES: 737-800BCF does not have Optional Forward Airstairs.

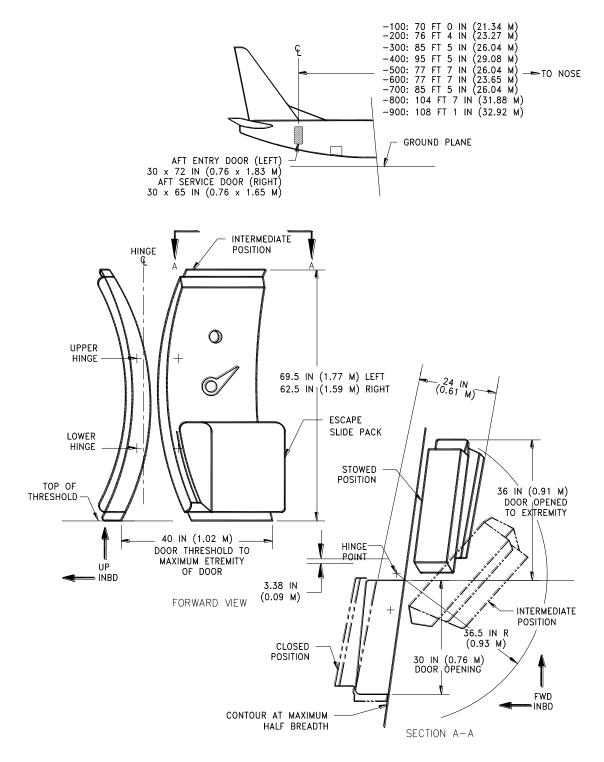

### 2.7.2 Door Clearances: Model 737, All Models, Optional Forward Airstairs, Main Entry Door No 1



NOTES: 737-800BCF does not have Optional Forward Airstairs.


November 2023

# 2.7.3 Door Clearances: Models 737-100, -200, -300, -400, -500, Locations of Sensors and Probes – Forward of Main Entry Door No 1

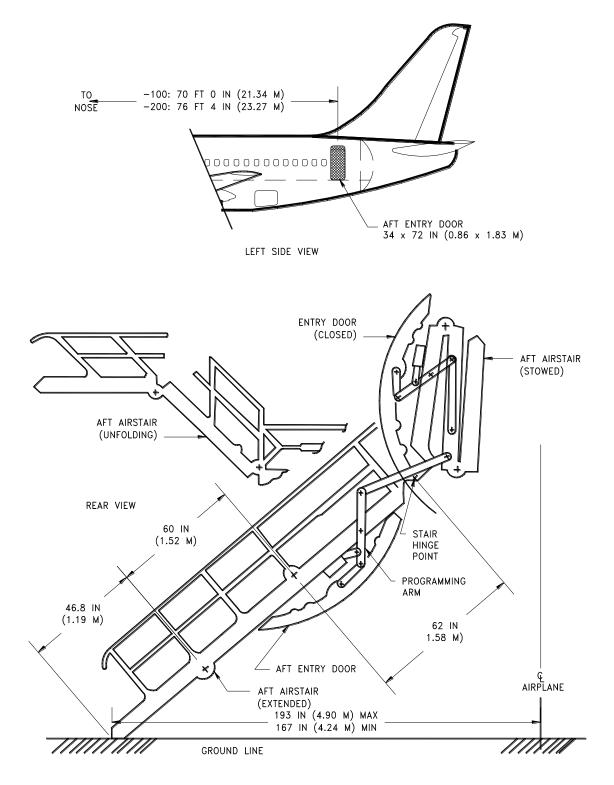



### Correction to existing erroneous data; jpc 11 December 2012

| NAME OF SENSOR             | DISTANCE AFT OF<br>NOSE | DISTANCE ABOVE<br>(+) OR BELOW (-)<br>DOOR SILL<br>REFERENCE LINE | PROTRUSION FROM<br>AIRPLANE SKIN |
|----------------------------|-------------------------|-------------------------------------------------------------------|----------------------------------|
| PRIMARY PITOT-STATIC (L/R) | 9 FT 10 IN (3.0 M)      | +10 IN (0.25 M)                                                   | 6 IN (0.15 M)                    |
| ALTERNATE PITOT-STATIC (R) | 9 FT 10 IN (3.0 M)      | -9 IN (-0.23 M)                                                   | 6 IN (0.15 M)                    |
| ANGLE OF ATTACK (L/R)      | 9 FT 10 IN (3.0 M)      | -1 IN (-0.03 M)                                                   | 4 IN (0.10 M)                    |
| TOTAL AIR TEMPERATURE (L)  | 11 FT 6 IN (3.51 M)     | + 1 FT 6 IN (0.46 M)                                              | 4 IN (0.10 M)                    |

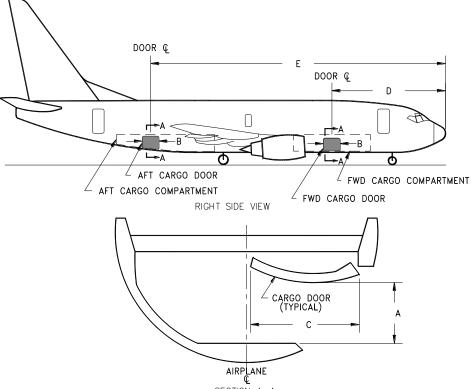


2.7.4 Door Clearances: Model 737, All Models, Forward Service Door




2.7.5 Door Clearances: Model 737, All Models, Aft Entry Door and Aft Service Door

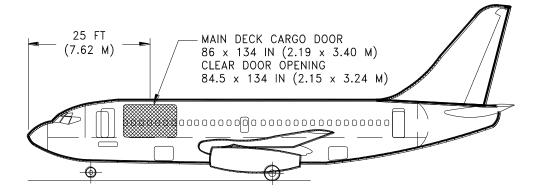
NOTES: 737-800BCF deactivates all Overwing and Aft Entry and Service Doors.


Not Subject to EAR or ITAR. Copyright © 2023 Boeing. All Rights Reserved.

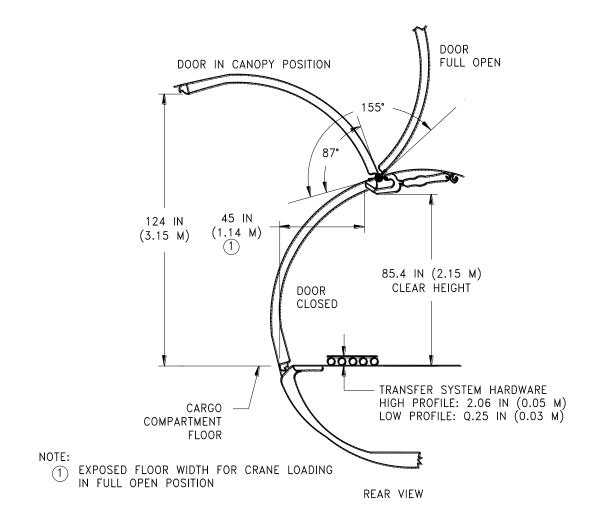
2.7.6 Door Clearances: Model 737-100, -200, Aft Entry Door With Optional Airstair



Not Subject to EAR or ITAR. Copyright © 2023 Boeing. All Rights Reserved.


# 2.7.7 Door Clearances: Model 737, All Models, Lower Deck Cargo Compartments




| SECTION | A - A |
|---------|-------|
|         |       |

|                   | FORWARD CARGO DOOR   |                             |                                         | AFT CARGO DOOR       |                             |                                            |
|-------------------|----------------------|-----------------------------|-----------------------------------------|----------------------|-----------------------------|--------------------------------------------|
| AIRPLANE<br>MODEL | DOOR SIZE<br>(C x B) | CLEAR<br>OPENING<br>(A x B) | DISTANCE<br>FROM NOSE TO<br>DOOR CL (D) | DOOR SIZE<br>(C x B) | CLEAR<br>OPENING<br>(A x B) | DISTANCE<br>FROM NOSE<br>TO DOOR<br>CL (E) |
| 737-100           | 51 x 48 IN           | 35 x 48 IN                  | 26 FT 4.5 IN                            | 48 x 48 IN           | 33 x 48 IN                  | 60 FT 3.5 IN                               |
|                   | (1.30 x 1.22 M)      | (0.89 x 1.22 M)             | (8.03 M)                                | (1.22 x 1.22 M)      | (0.84 x 1.22 M)             | (18.37 M)                                  |
| 737-200           | 51 x 48 IN           | 35 x 48 IN                  | 28 FT 0.25 IN                           | 48 x 48 IN           | 33 x 48 IN                  | 63 FT 10.5 IN                              |
|                   | (1.30 x 1.22 M)      | (0.89 x 1.22 M)             | (8.54 M)                                | (1.22 x 1.22 M)      | (0.84 x 1.22 M)             | (19.47 M)                                  |
| 737-300           | 51 x 48 IN           | 35 x 48 IN                  | 28 FT 0.25 IN                           | 48 x 48 IN           | 33 x 48 IN                  | 72 FT 6.5 IN                               |
|                   | (1.30 x 1.22 M)      | (0.89 x 1.22 M)             | (8.54 M)                                | (1.22 x 1.22 M)      | (0.84 x 1.22 M)             | (22.11 M)                                  |
| 737-400           | 51 x 48 IN           | 35 x 48 IN                  | 28 FT 0.25 IN                           | 48 x 48 IN           | 33 x 48 IN                  | 82 FT 6.5 IN                               |
|                   | (1.30 x 1.22 M)      | (0.89 x 1.22 M)             | (8.54 M)                                | (1.22 x 1.22 M)      | (0.84 x 1.22 M)             | (25.16 M)                                  |
| 737-500           | 51 x 48 IN           | 35 x 48 IN                  | 24 FT 8.25 IN                           | 48 x 48 IN           | 33 x 48 IN                  | 64 FT 8.5 IN                               |
|                   | (1.30 x 1.22 M)      | (0.89 x 1.22 M)             | (7.52 M)                                | (1.22 x 1.22 M)      | (0.84 x 1.22 M)             | (19.72 M)                                  |

### 2.7.8 Door Clearances: Model 737-200C, Main Deck Cargo Door



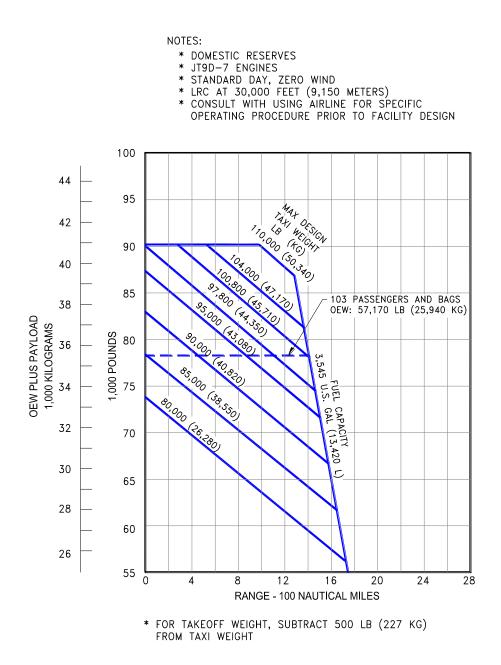
LEFT SIDE VIEW



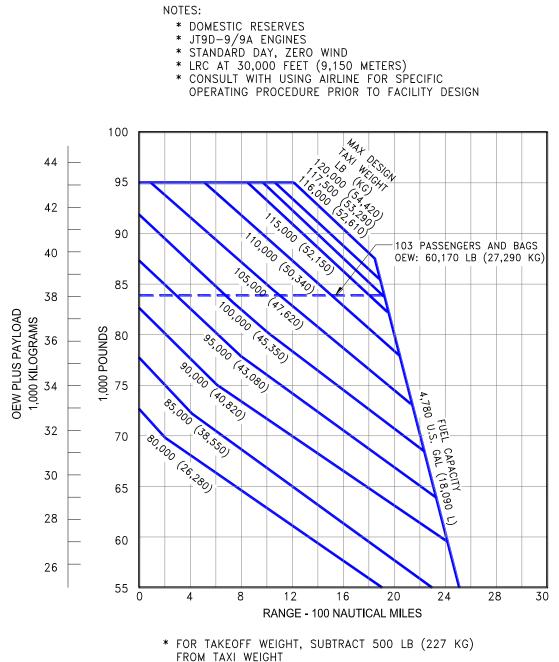
# 3.0 AIRPLANE PERFORMANCE

# 3.1 GENERAL INFORMATION

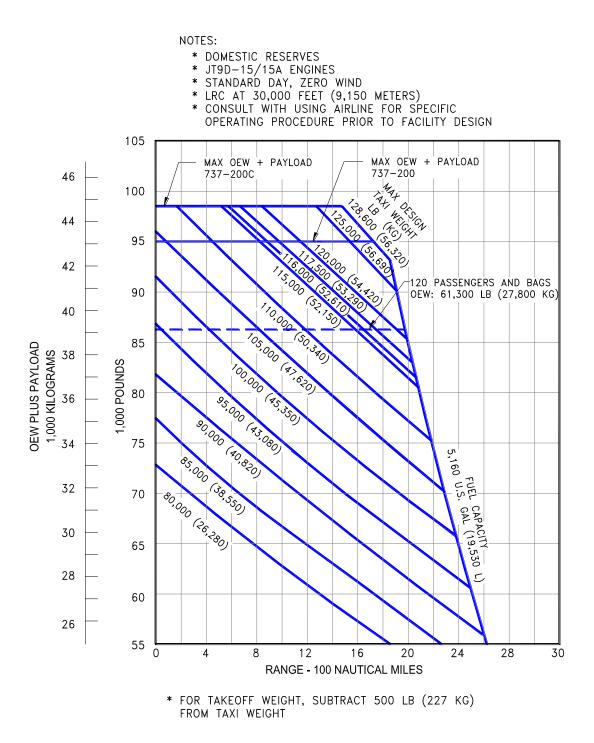
The graphs in Section 3.2 provide information on payload-range capability of the 737 NG airplane. To use these graphs, if the trip range and zero fuel weight (OEW + payload) are known, the approximate takeoff weight can be found, limited by maximum zero fuel weight, maximum design takeoff weight, or fuel capacity.


The graphs in Section 3.3 provide information on FAA/EASA takeoff runway length requirements with typical engines at different pressure altitudes. Maximum takeoff weights shown on the graphs are the heaviest for the particular airplane models with the corresponding engines. Standard day temperatures for pressure altitudes shown on the FAA/EASA takeoff graphs are given below:

| PRESSURE ALTITUD | E      | STANDARD DAY TEMP |       |  |
|------------------|--------|-------------------|-------|--|
| FEET             | METERS | °F                | ٦°    |  |
| 0                | 0      | 59.0              | 15.0  |  |
| 2,000            | 610    | 51.9              | 11.0  |  |
| 4,000            | 1,219  | 44.7              | 7.1   |  |
| 6,000            | 1,829  | 37.6              | 3.1   |  |
| 8,000            | 2,438  | 30.5              | -0.8  |  |
| 10,000           | 3,048  | 23.3              | -4.8  |  |
| 12,000           | 3,658  | 16.2              | -8.8  |  |
| 14,000           | 4,267  | 9.1               | -12.7 |  |
| 15,500           | 4,724  | 3.7               | -15.7 |  |


The graphs in Section 3.4 provide information on landing runway length requirements for different airplane weights and airport altitudes. The maximum landing weights shown are the heaviest for the particular airplane model.

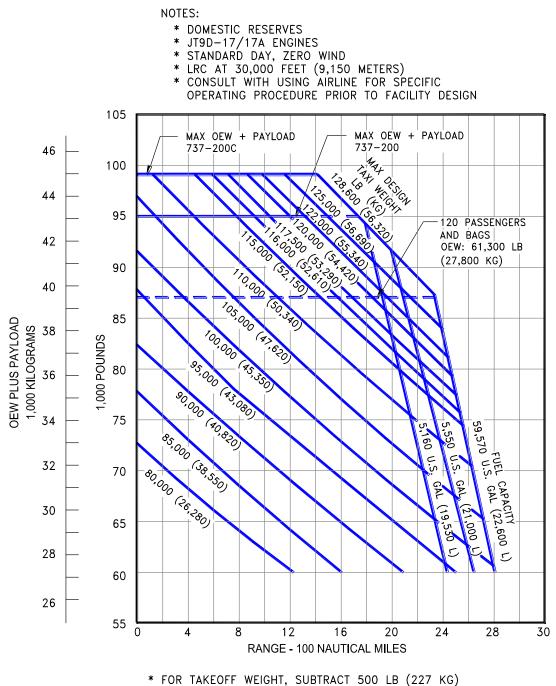
# 3.2 PAYLOAD/RANGE FOR LONG RANGE CRUISE


# 3.2.1 Payload/Range for Long Range Cruise: Model 737-100 (JT8D-7 Engines)



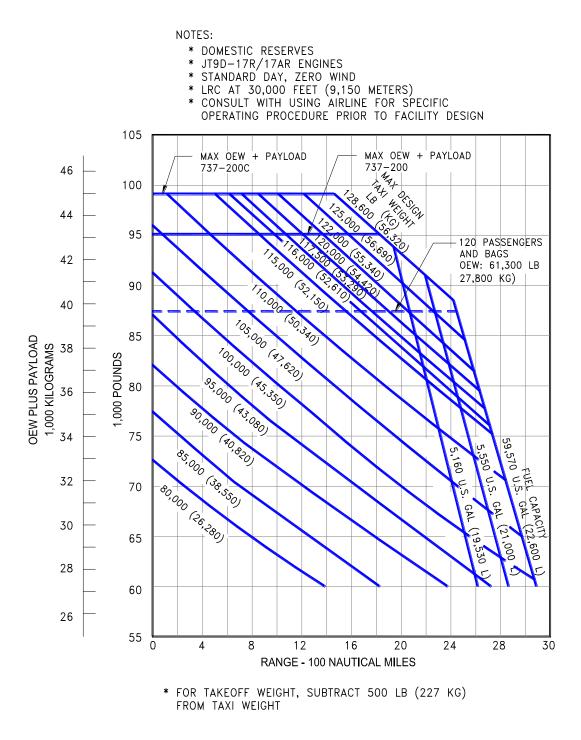
# 3.2.2 Payload/Range for Long Range Cruise: Model 737-200 (JT8D-9/9A Engines)



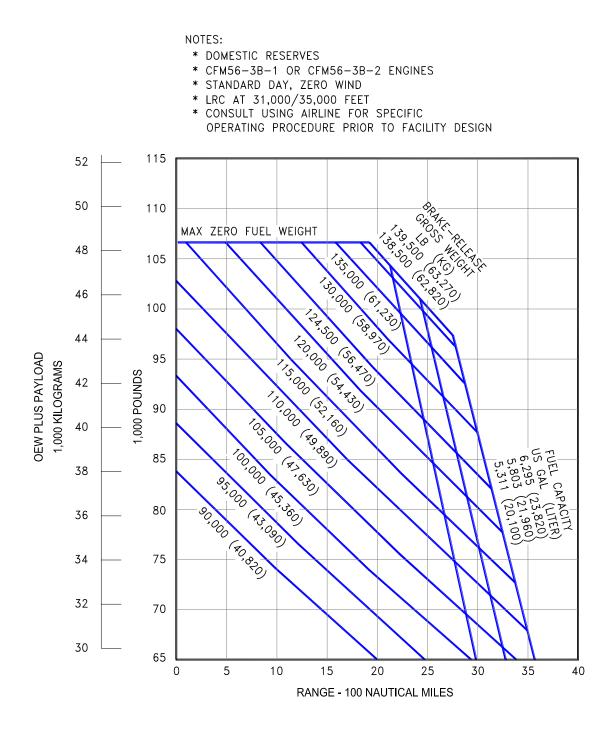

# 3.2.3 Payload/Range for Long Range Cruise: Model 737-200 (JT8D-15/15A Engines)



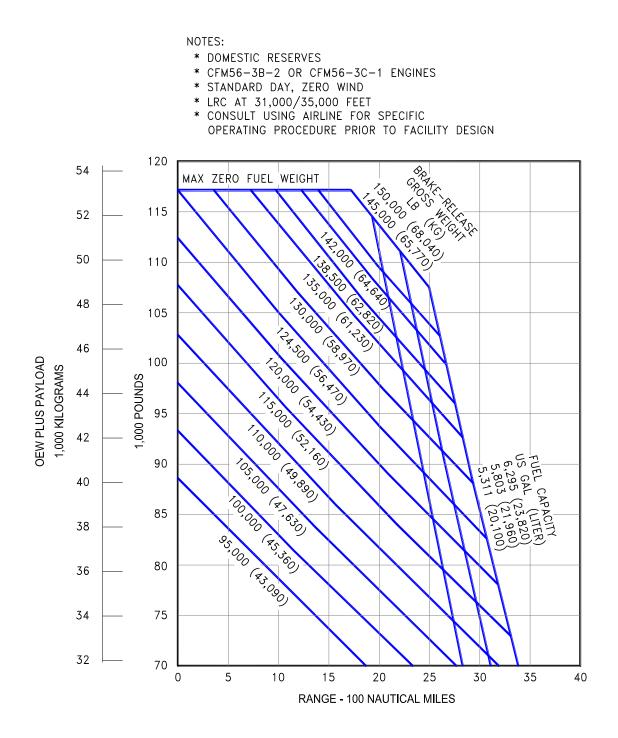
D6-58325-6


Not Subject to EAR or ITAR. Copyright © 2023 Boeing. All Rights Reserved.

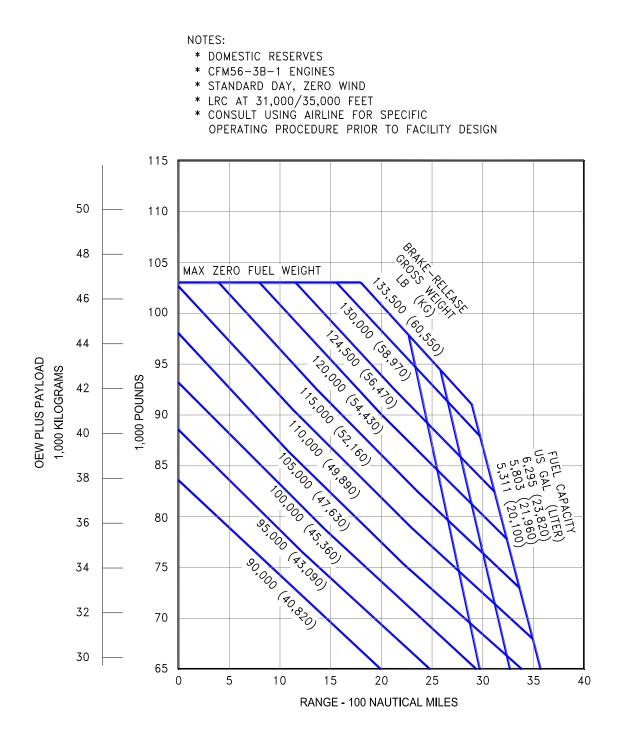
### 3.2.4 Payload/Range for Long Range Cruise: Model 737-200ADV (JT8D-17/17A Engines)




FROM TAXI WEIGHT

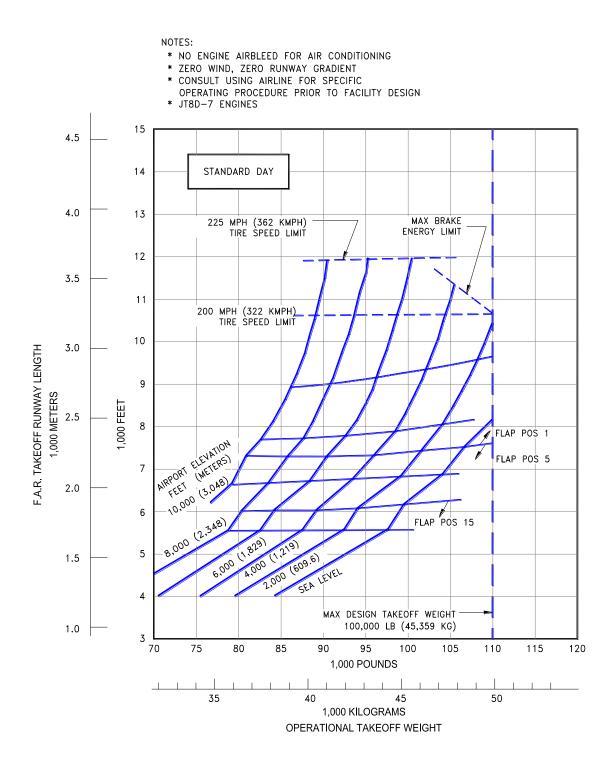

### 3.2.5 Payload/Range for Long Range Cruise: Model 737-200ADV (JT8D-17R/17AR Engines)




# 3.2.6 Payload/Range for Long Range Cruise: Model 737-300



# 3.2.7 Payload/Range for Long Range Cruise: Model 737-400

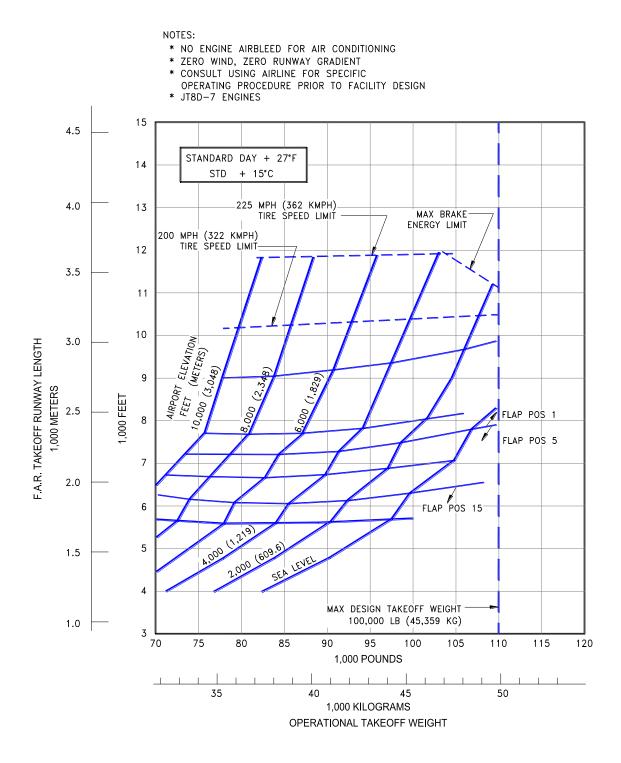



# 3.2.8 Payload/Range for Long Range Cruise: Model 737-500

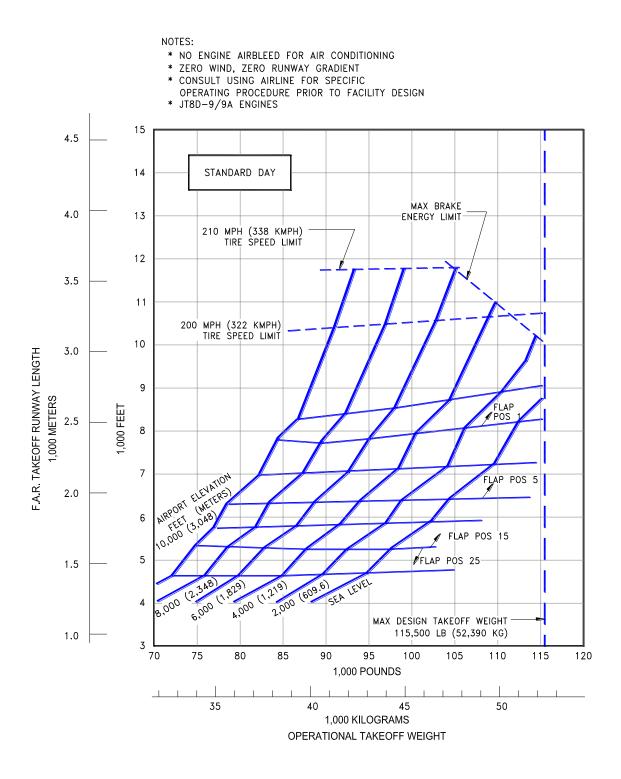


### 3.3 F.A.R. AND J.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS

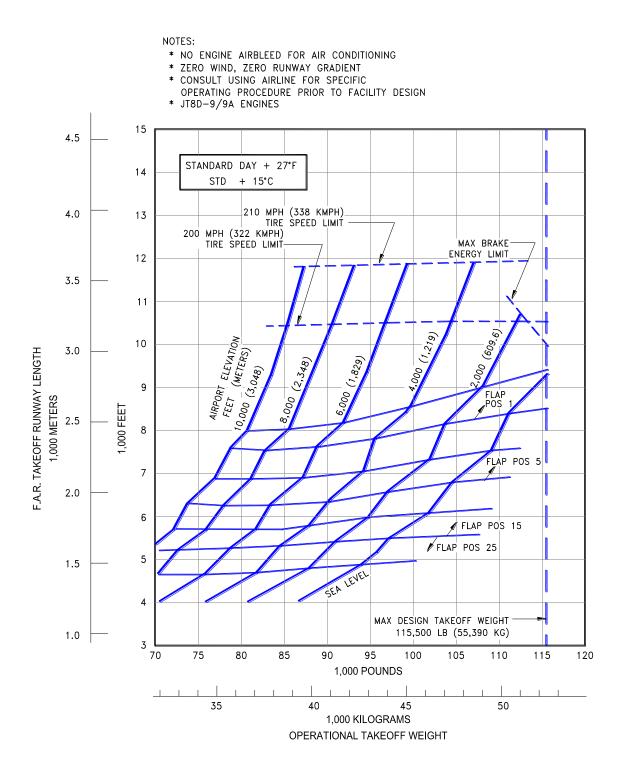
# 3.3.1 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-100 (JT8D-7 Engines)



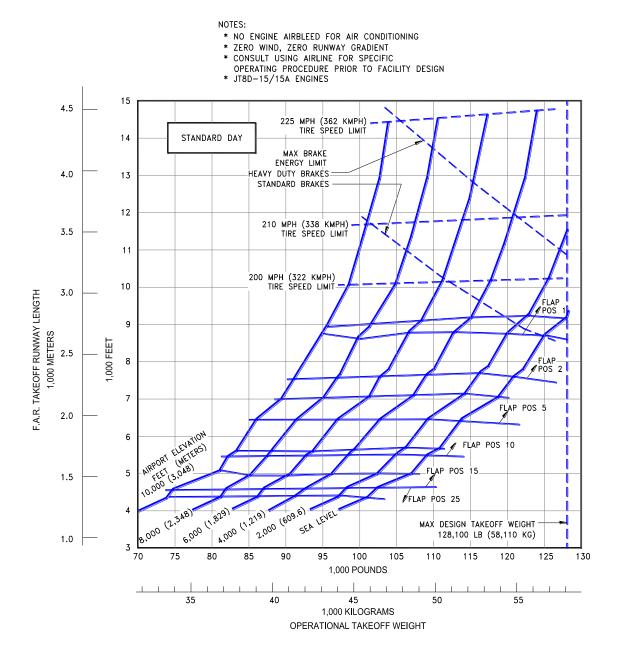

### D6-58325-6


November 2023

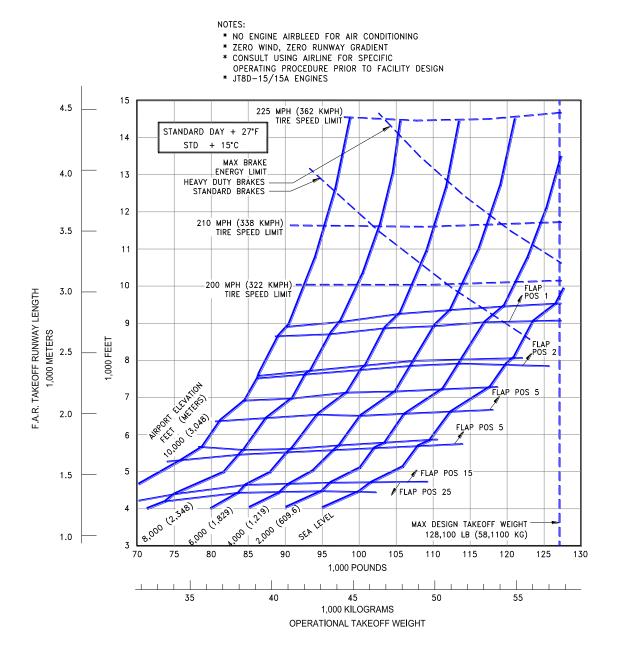
Not Subject to EAR or ITAR. Copyright © 2023 Boeing. All Rights Reserved.


# 3.3.2 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-100 (JT8D-7 Engines)

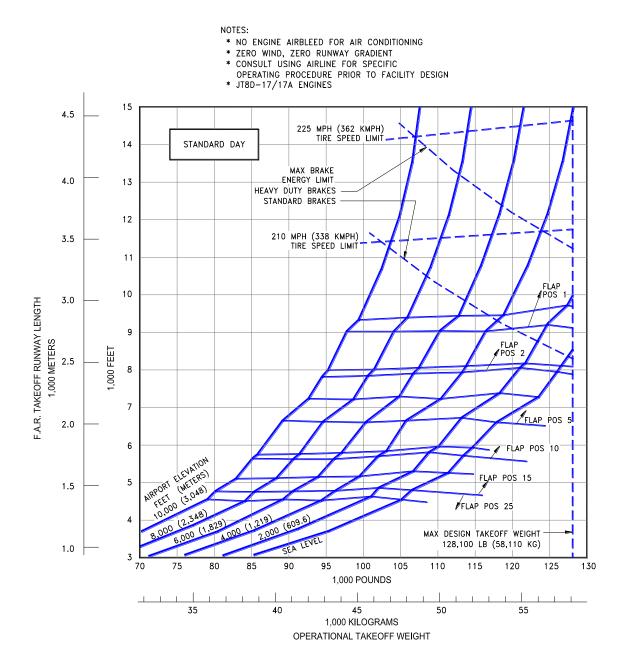



# 3.3.3 F.A.R. Takeoff Runway Length Requirements – Standard Day: Model 737-200 (JT8D-9/9A Engines)

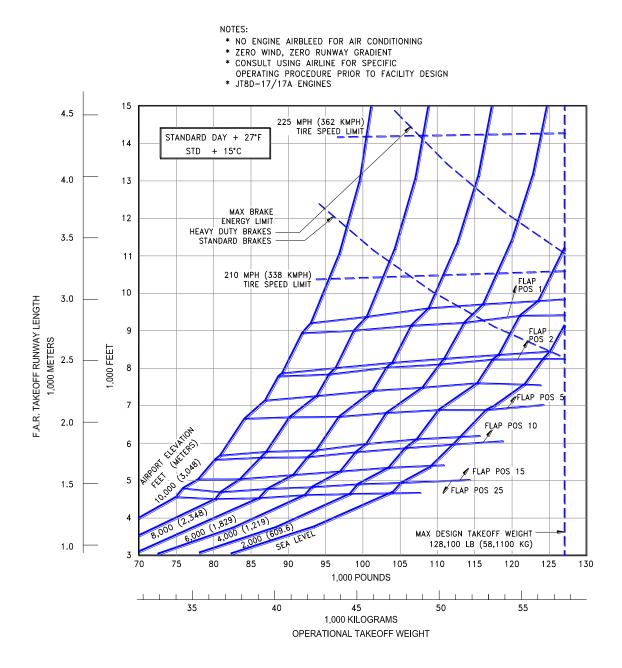



# 3.3.4 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-200 (JT8D-9/9A Engines)

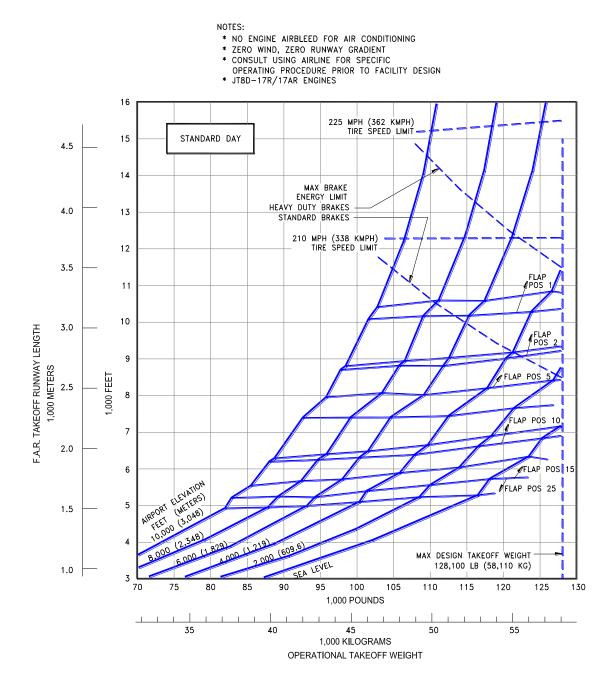



# 3.3.5 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-200ADV (JT8D-15/15A Engines)

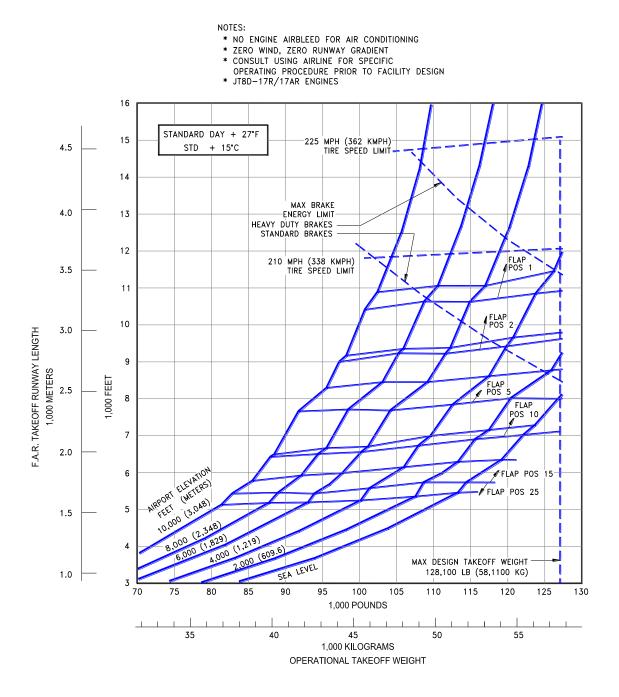



# 3.3.6 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-200ADV (JT8D-15/15A Engines)

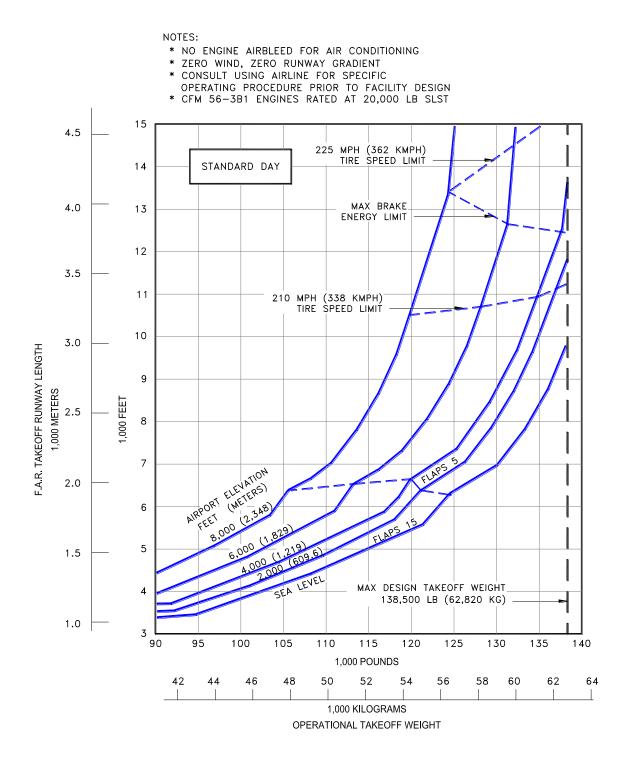



# 3.3.7 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-200ADV (JT8D-17/17A Engines)

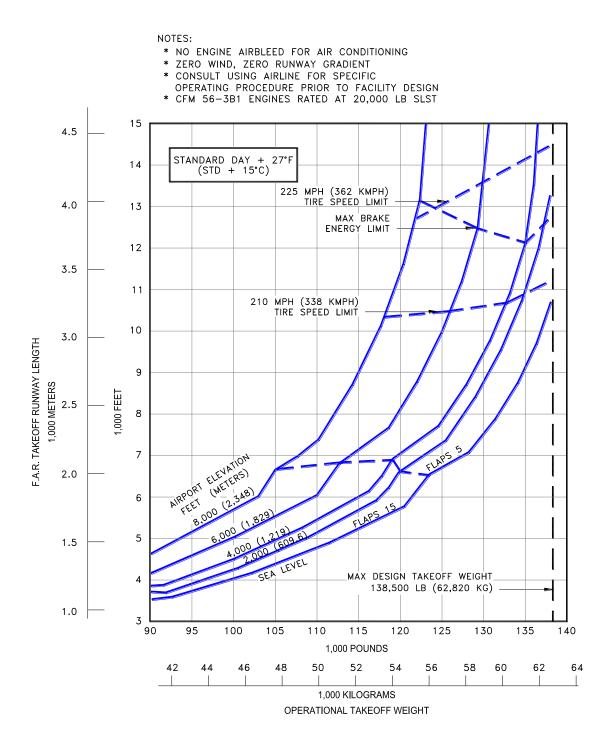



# 3.3.8 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-200ADV (JT8D-17/17A Engines)

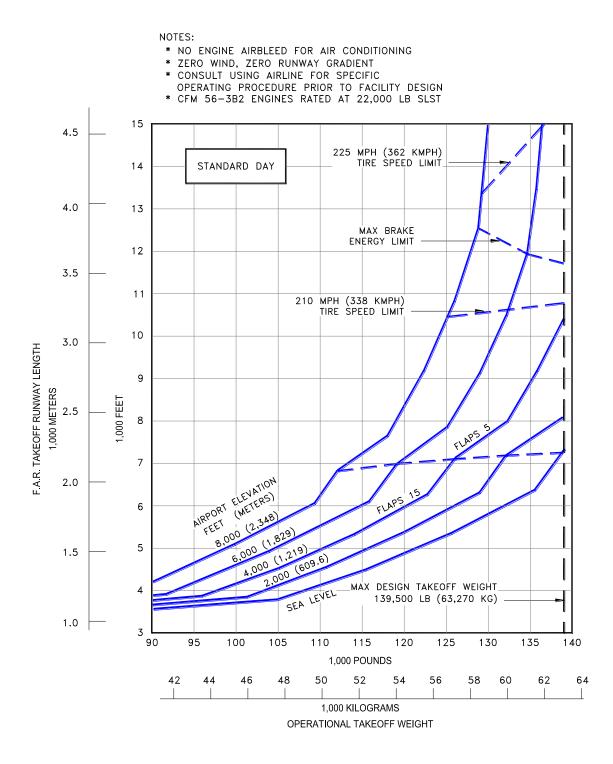



# 3.3.9 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-200ADV (JT8D-17R/17AR Engines)

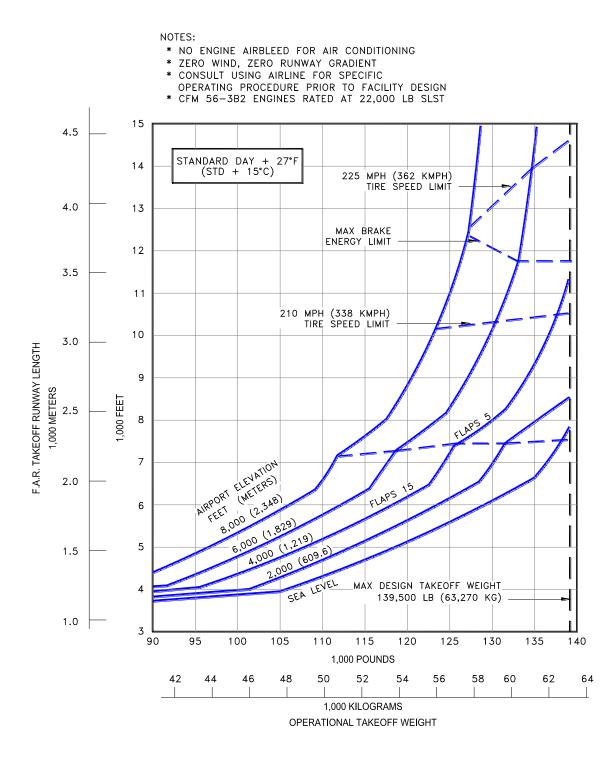



# 3.3.10 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-200ADV (JT8D-17R/17AR Engines)




## 3.3.11 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-300 (CFM56-3B1 Engines at 20,000 LB SLST)




# 3.3.12 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-300 (CFM56-3B1 Engines at 20,000 LB SLST)



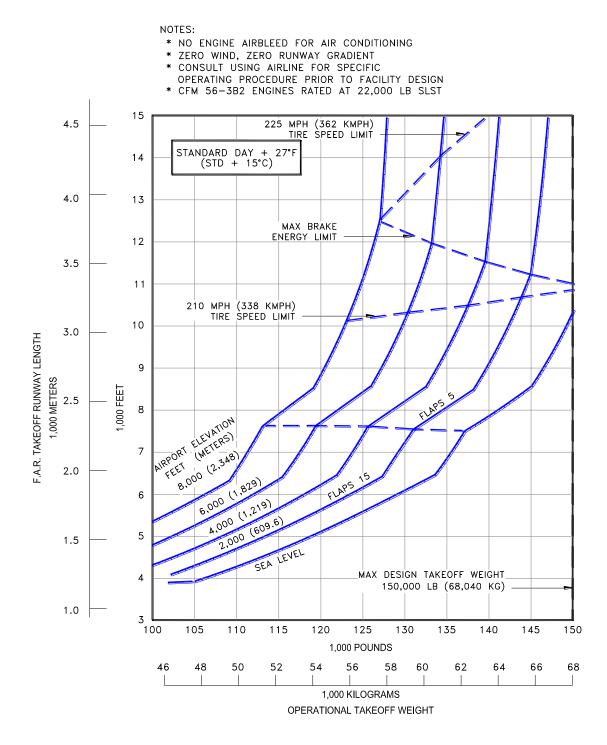
## 3.3.13 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-300 (CFM56-3B-2 Engines at 22,000 LB SLST)



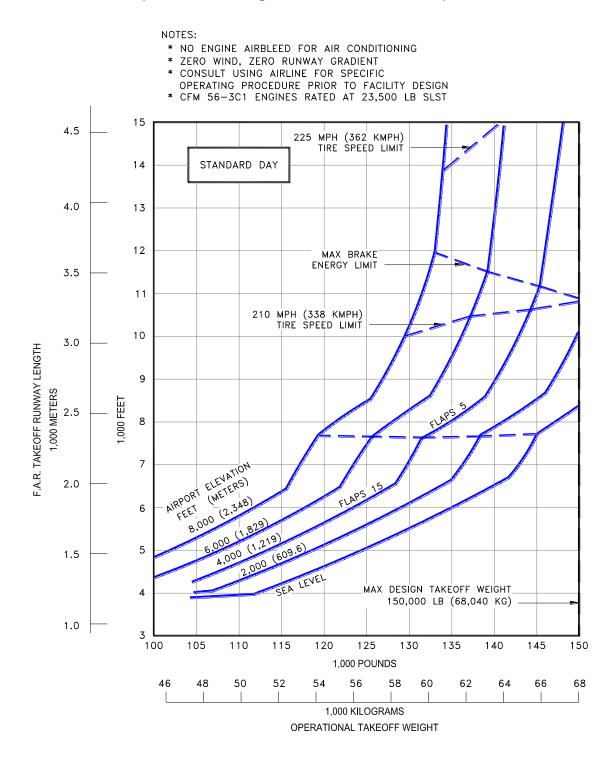
### 3.3.14 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-300 (CFM56-3B-2 Engines at 22,000 LB SLST)



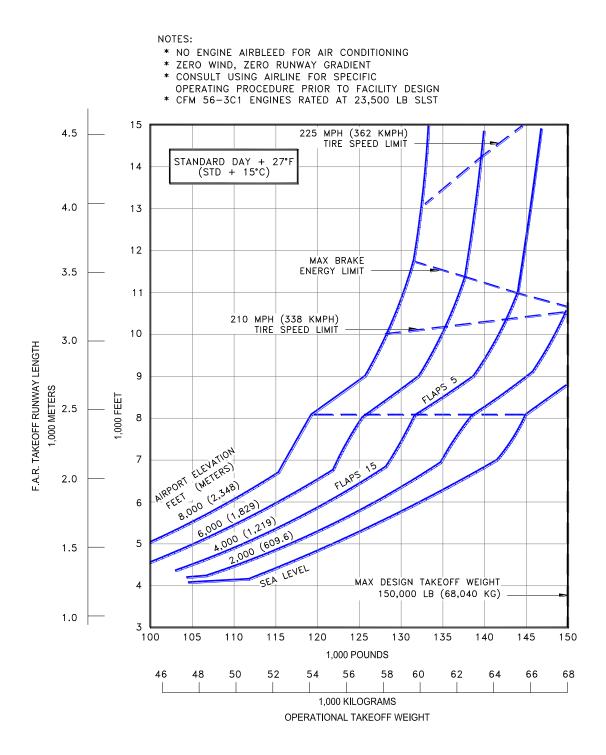
D6-58325-6


November 2023

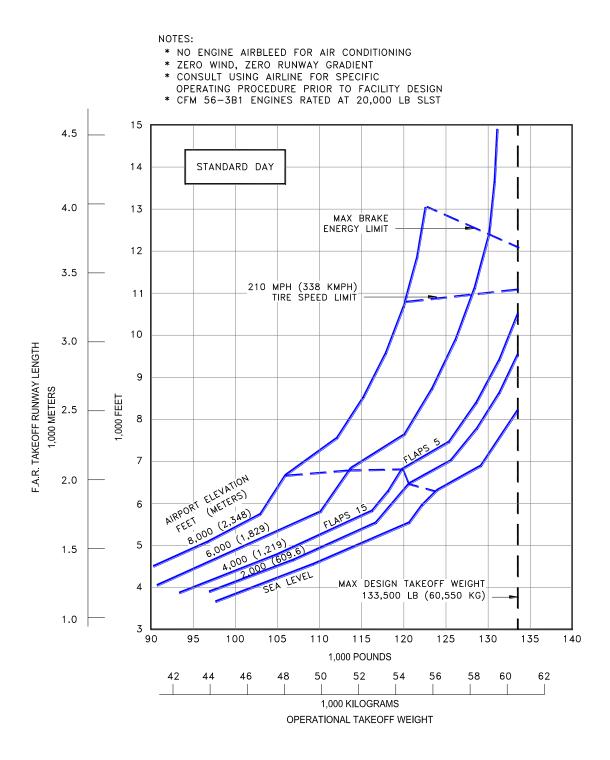
## 3.3.15 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-400 (CFM56-3B-2 Engines at 22,000 LB SLST)




D6-58325-6

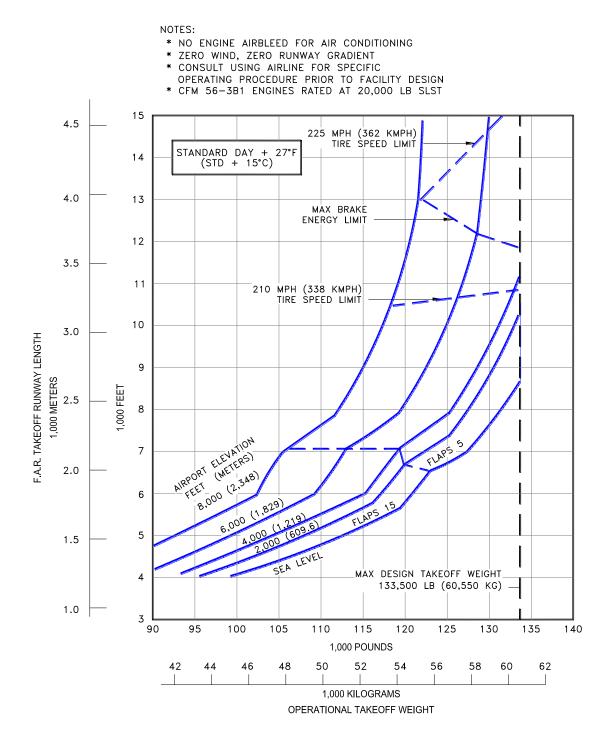

### 3.3.16 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-400 (CFM56-3B-2 Engines at 22,000 LB SLST)



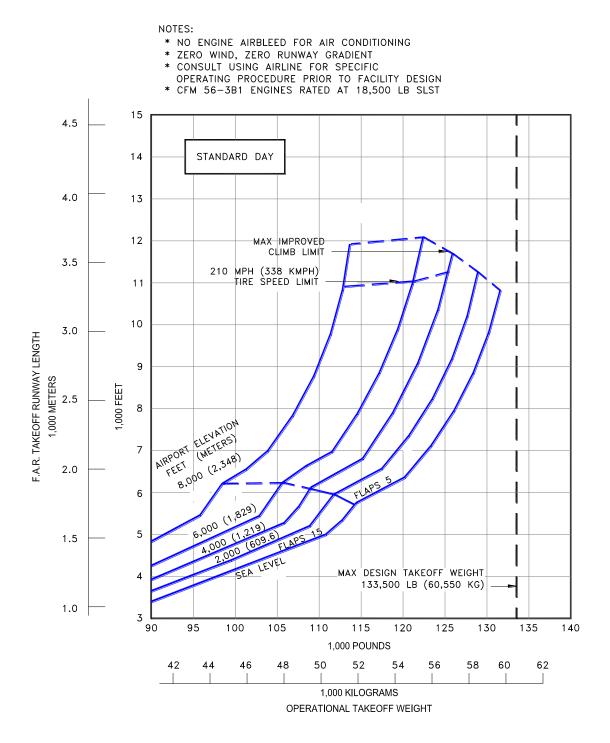

## 3.3.17 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-400 (CFM56-3C1 Engines at 23,500 LB SLST)



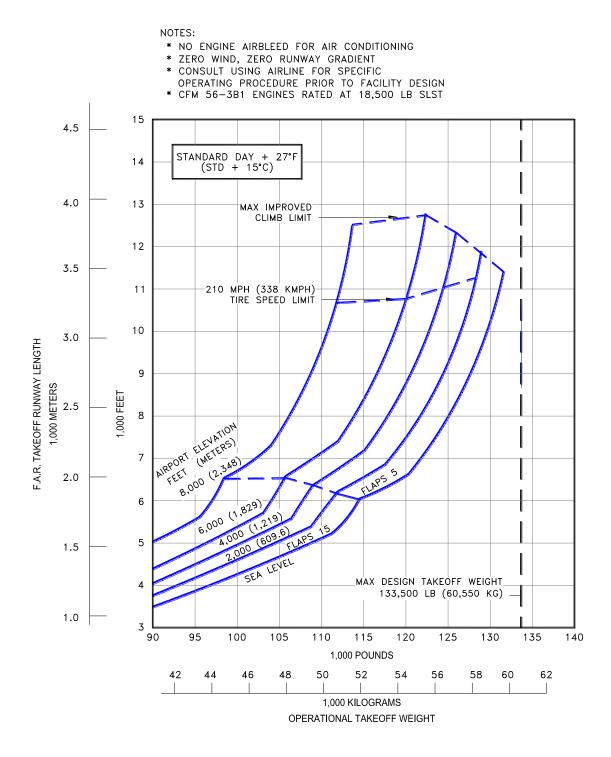
### 3.3.18 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-400 (CFM56-3C1 Engines at 23,500 LB SLST)




## 3.3.19 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-500 (CFM56-3B-1 Engines at 20,000 LB SLST)

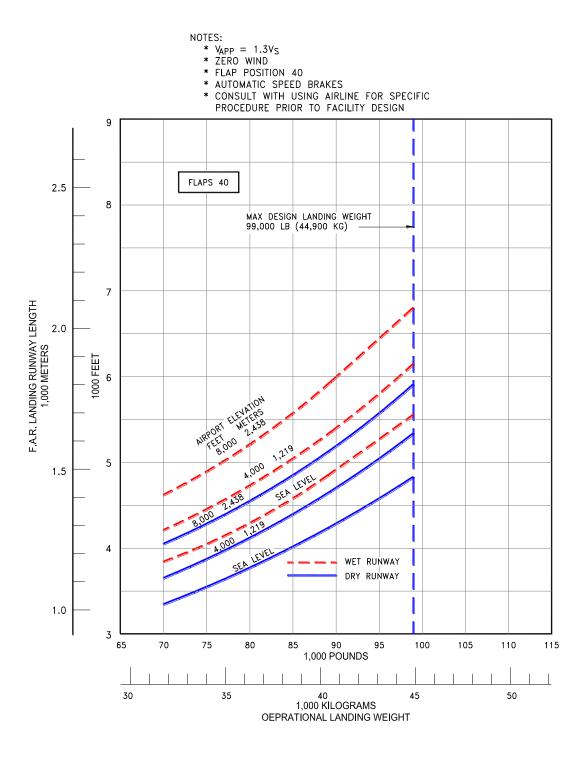



D6-58325-6


### 3.3.20 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-500 (CFM56-3B-1 Engines at 20,000 LB SLST)

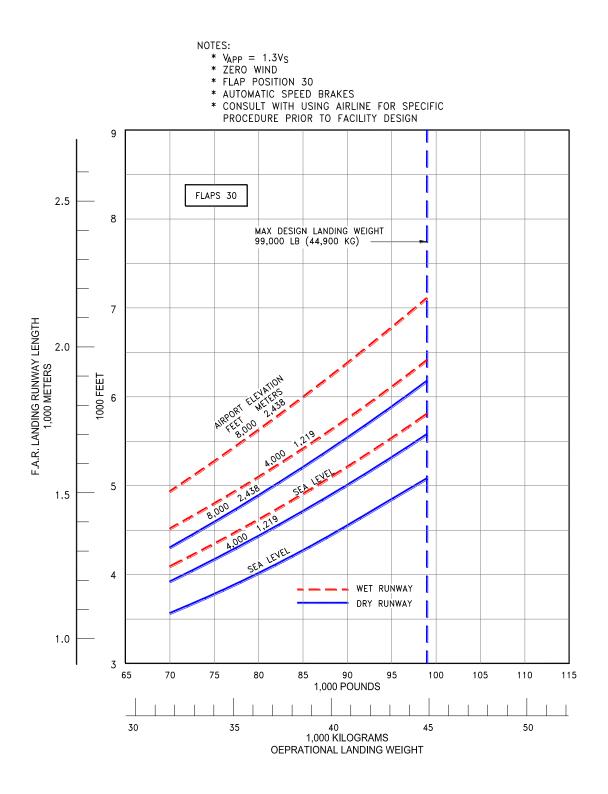


## 3.3.21 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-500 (CFM56-3B-1 Engines at 18,500 LB SLST)

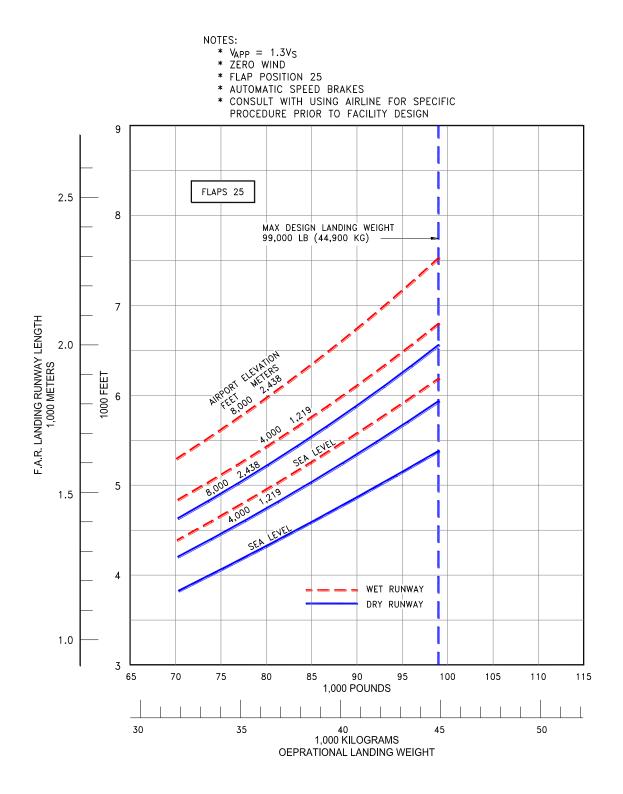



### 3.3.22 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-500 (CFM56-3B-1 Engines at 18,500 LB SLST)

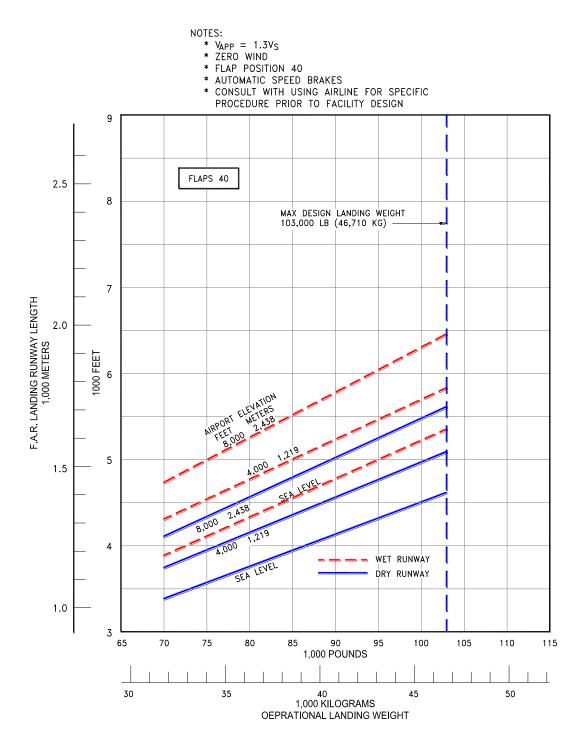



#### 3.4 F.A.R. AND J.A.R. LANDING RUNWAY LENGTH REQUIREMENTS

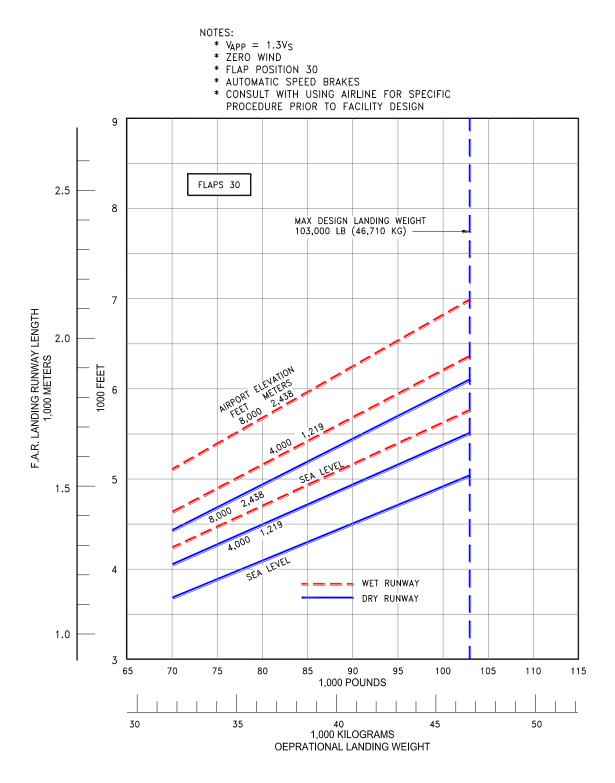
#### 3.4.1 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-100



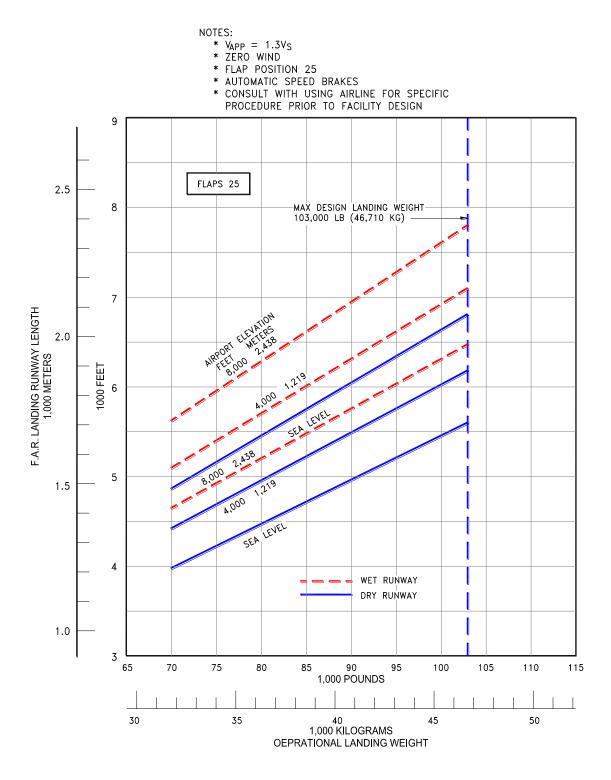

D6-58325-6


3.4.2 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-100

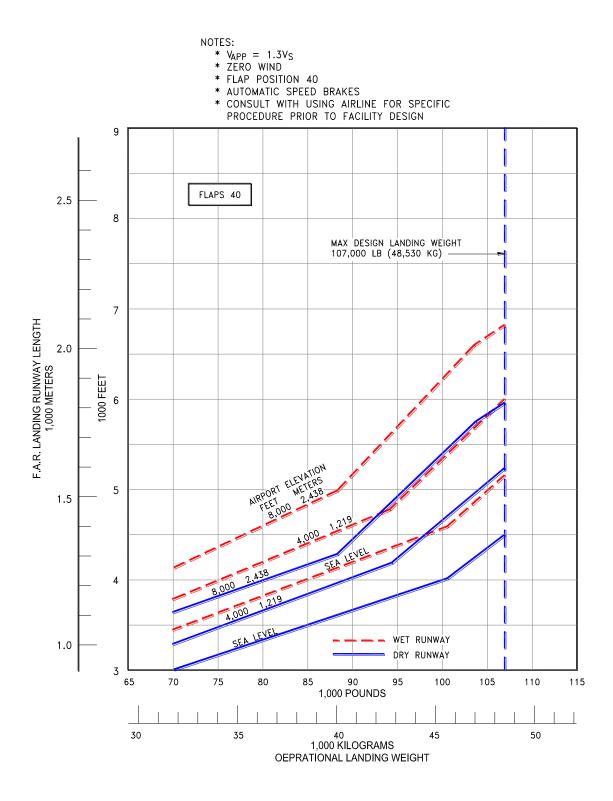



3.4.3 F.A.R. Landing Runway Length Requirements - Flaps 25: Model 737-100

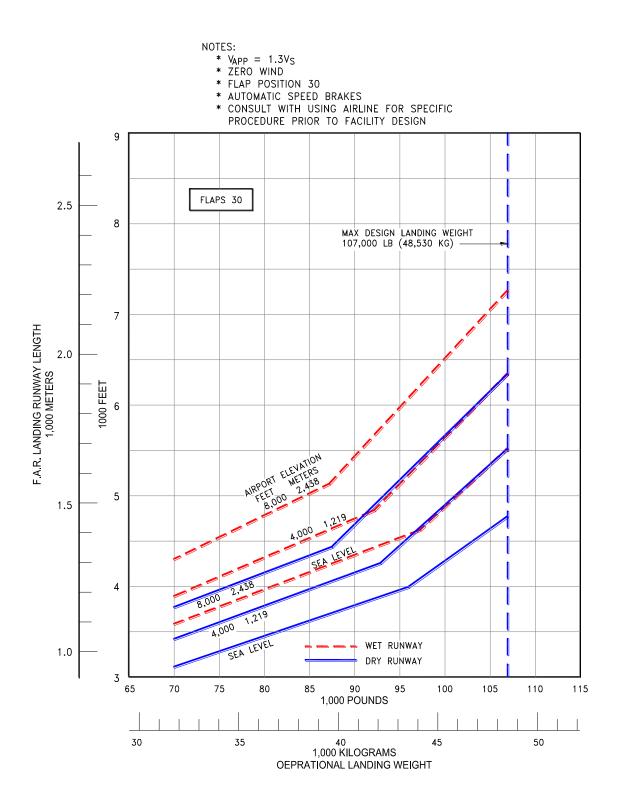



### 3.4.4 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-200, -200C

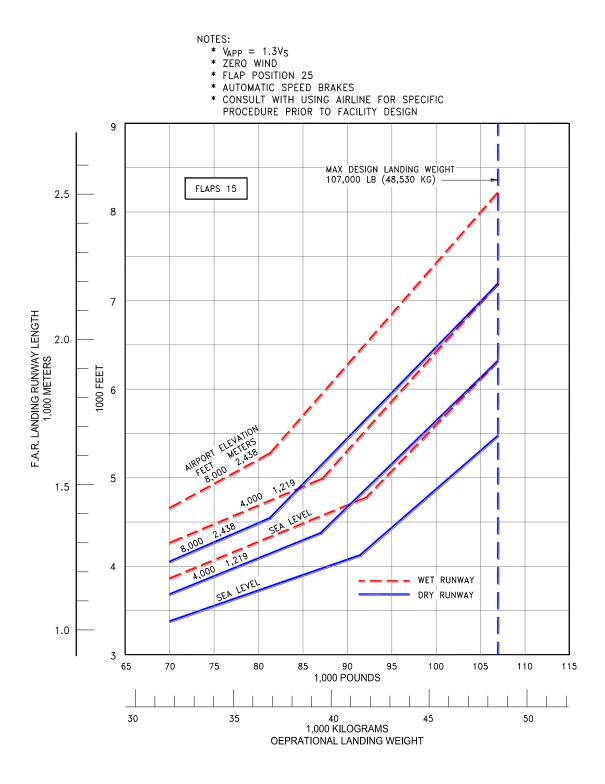



### 3.4.5 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-200, -200C

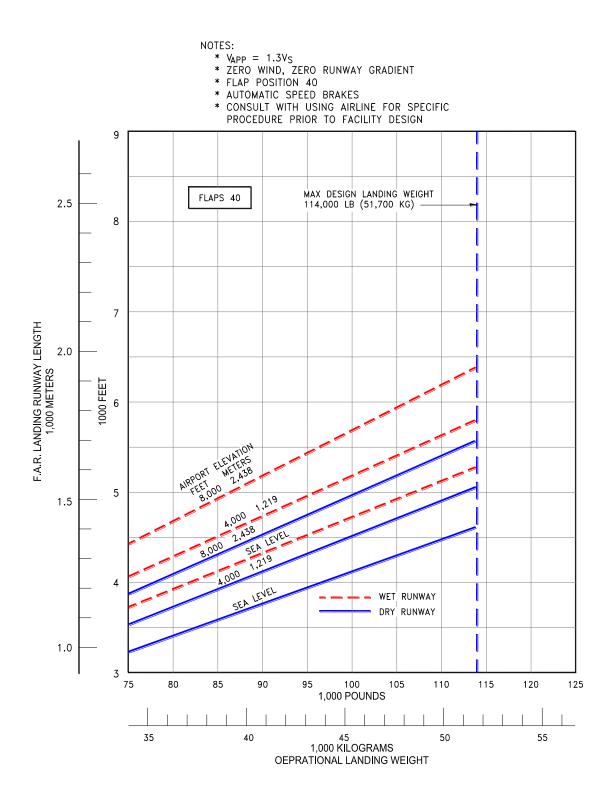



### 3.4.6 F.A.R. Landing Runway Length Requirements - Flaps 25: Model 737-200, -200C



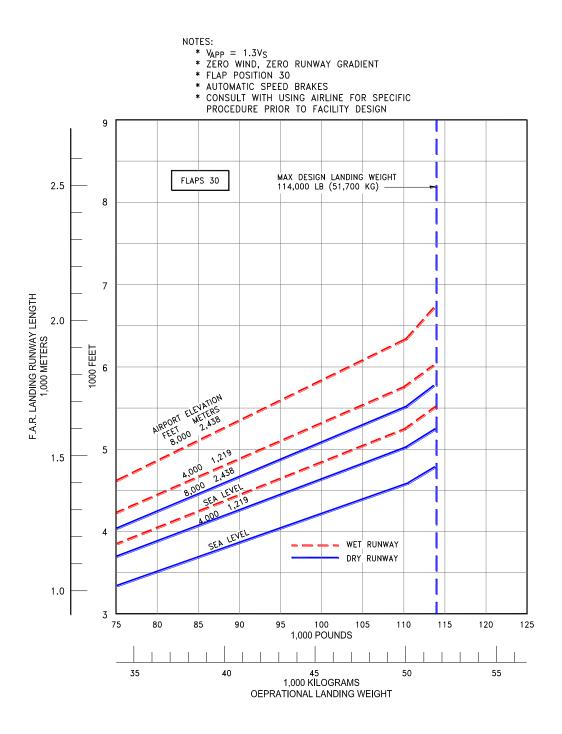

### 3.4.7 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-200ADV, -200C



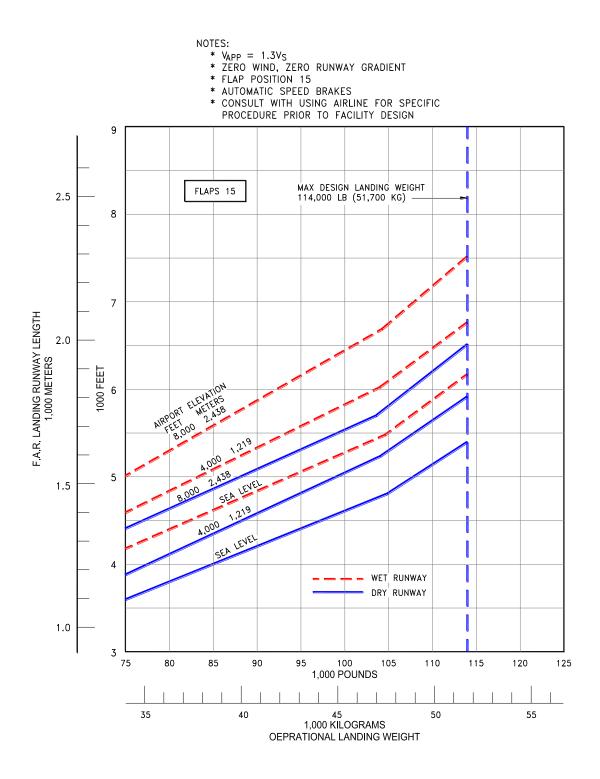

### 3.4.8 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-200ADV, -200C



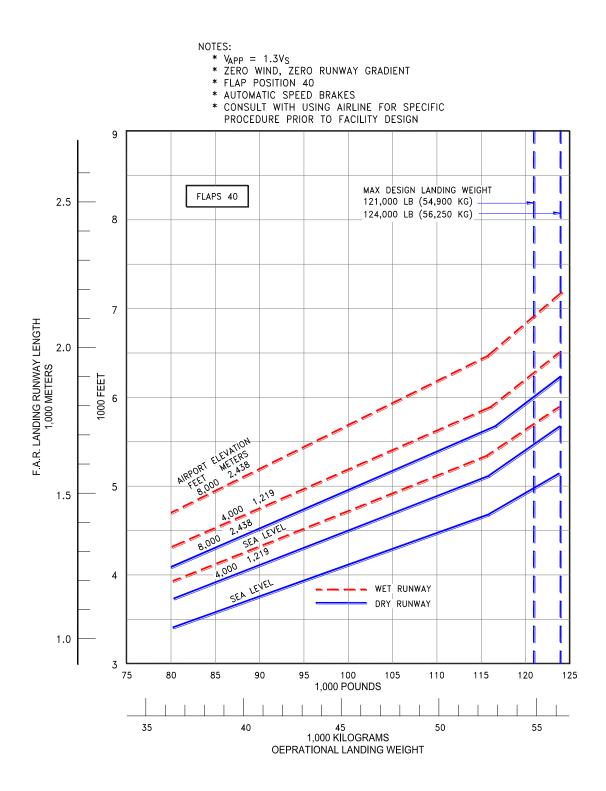
### 3.4.9 F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-200ADV, -200C



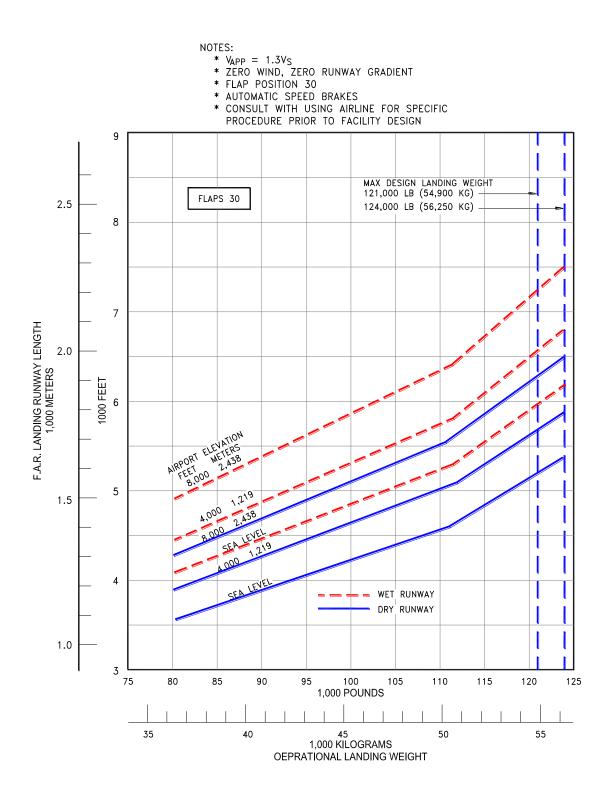

3.4.10 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-300



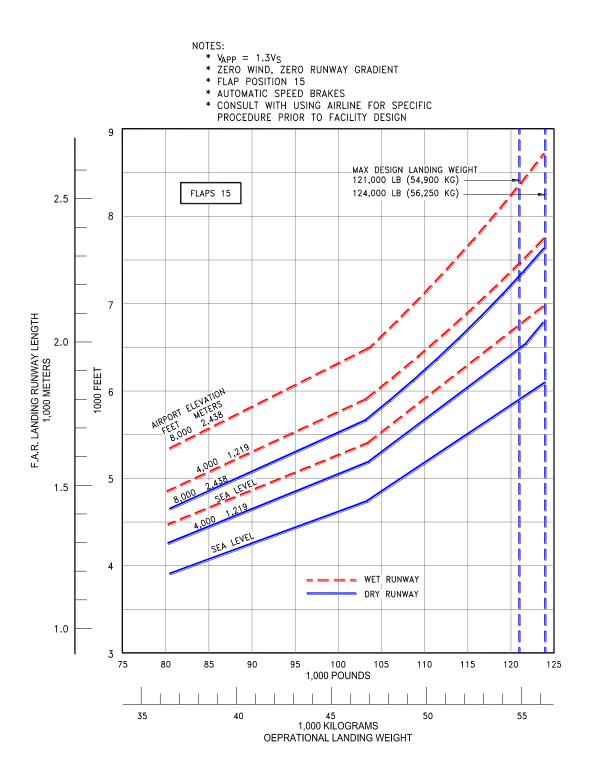

November 2023


3.4.11 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-300

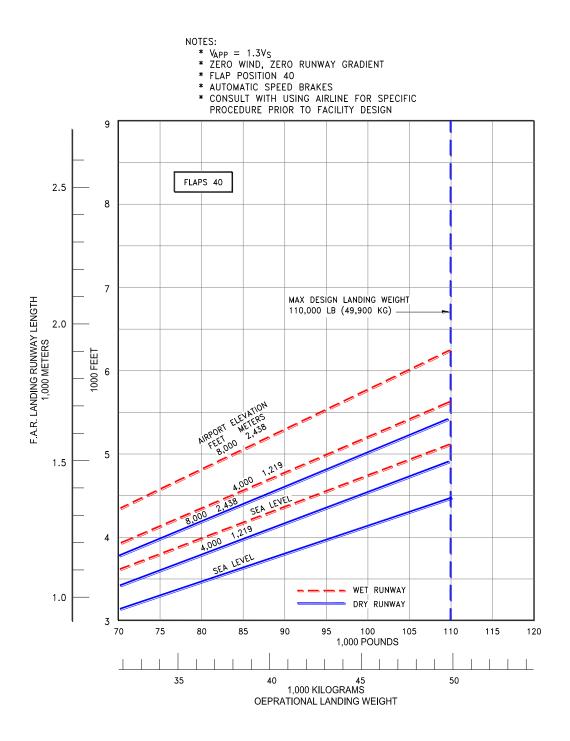



3.4.12 F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-300

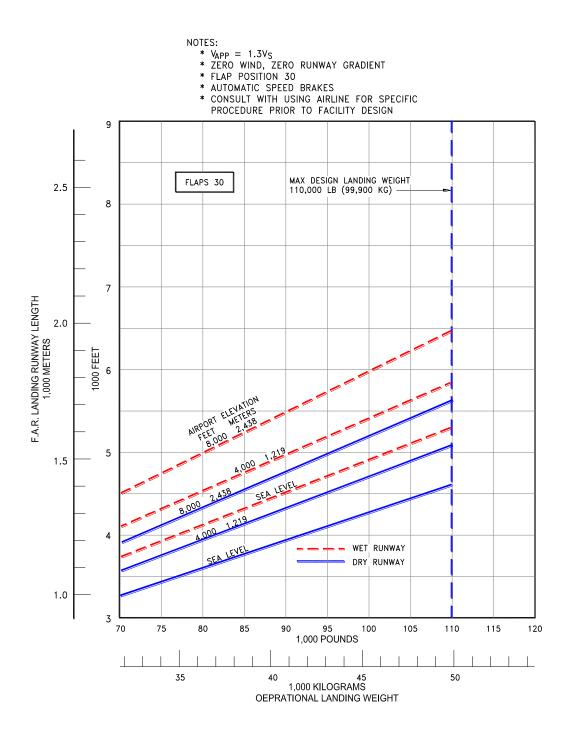



3.4.13 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-400



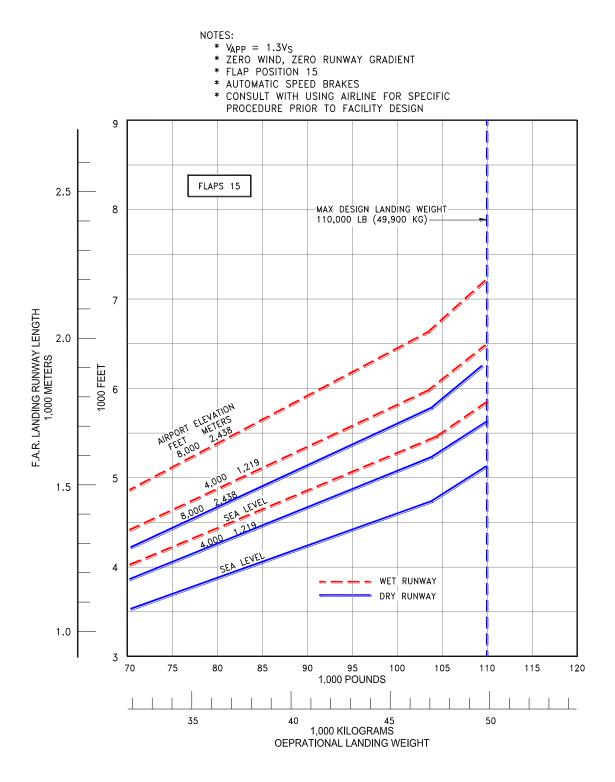

3.4.14 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-400




3.4.15 F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-400



3.4.16 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-500




3.4.17 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-500



Not Subject to EAR or ITAR. Copyright © 2023 Boeing. All Rights Reserved.

3.4.18 F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-500



D6-58325-6

Not Subject to EAR or ITAR. Copyright © 2023 Boeing. All Rights Reserved.

# 4.0 AIRPLANE PERFORMANCE

# 4.1 GENERAL INFORMATION

This section provides airplane turning capability and maneuvering characteristics.

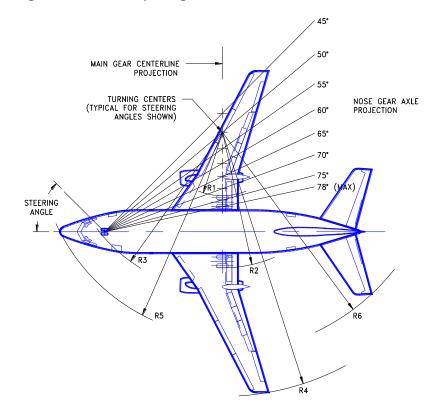
For ease of presentation, these data have been determined from the theoretical limits imposed by the geometry of the aircraft, and where noted, provide for a normal allowance for tire slippage. As such, they reflect the turning capability of the aircraft in favorable operating circumstances. These data should be used only as guidelines for the method of determination of such parameters and for the maneuvering characteristics of this aircraft.

In the ground operating mode, varying airline practices may demand that more conservative turning procedures be adopted to avoid excessive tire wear and reduce possible maintenance problems. Airline operating procedures will vary in the level of performance over a wide range of operating circumstances throughout the world. Variations from standard aircraft operating patterns may be necessary to satisfy physical constraints within the maneuvering area, such as adverse grades, limited area, or high risk of jet blast damage. For these reasons, ground maneuvering requirements should be coordinated with the using airlines prior to layout planning.

Section 4.2 presents turning radii for various nose gear steering angles. Radii for the main and nose gears are measured from the turn center to the outside of the tire.

Section 4.3 shows data on minimum width of pavement required for 180° turn.

Section 4.4 provides pilot visibility data from the cockpit and the limits of ambinocular vision through the windows. Ambinocular vision is defined as the total field of vision seen simultaneously by both eyes.

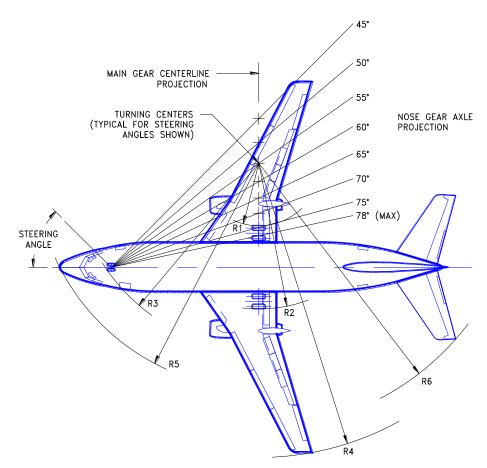

Section 4.5 shows approximate wheel paths for various runway and taxiway turn scenarios on a 100 ft (30 m) runway and 50 ft (15 m) taxiway system. Boeing 737 Series aircraft are capable of operating on 100 ft wide runways. However, for design purposes, the FAA and ICAO recommend that the minimum runway width for the 737 Series aircraft is 150 ft (45 m).

The pavement fillet geometries are based on the FAA's Advisory Circular (AC) 150/5300-13 (thru change 16). They represent typical fillet geometries built at many airports worldwide. ICAO and other civil aviation authorities publish many different fillet design methods. Prior to determining the size of fillets, airports are advised to check with the airlines regarding the operating procedures and aircraft types they expect to use at the airport. Further, given the cost of modifying fillets and the operational impact to ground movement and air traffic during construction, airports may want to design critical fillets for larger aircraft types to minimize future operational impacts.

Section 4.6 illustrates a typical runway holding bay configuration.

November 2023

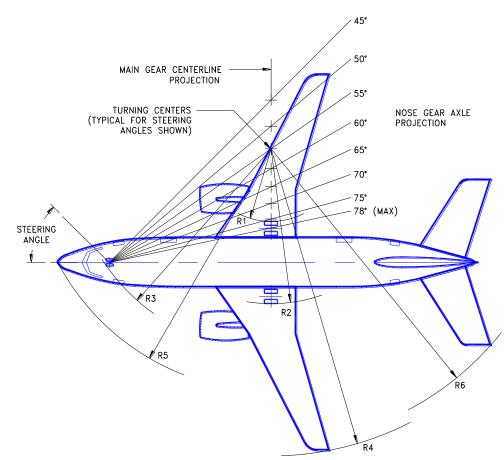
#### 4.2 TURNING RADII




# 4.2.1 Turning Radii - No Slip Angle: Model 737-100

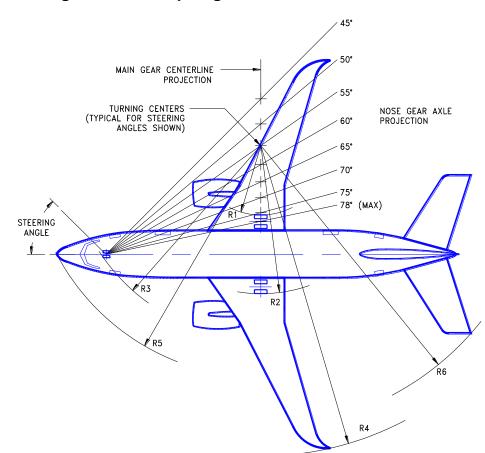
**NOTES:** \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

| STEERING<br>ANGLE |      | INER<br>AR |      | R2 OUTER<br>GEAR |      | IOSE<br>AR | R<br>WIN |      | R5<br>NOSE |      | R6<br>TAIL |      |
|-------------------|------|------------|------|------------------|------|------------|----------|------|------------|------|------------|------|
| (DEG)             | FT   | М          | FT   | Μ                | FT   | М          | FT       | М    | FT         | М    | FT         | М    |
| 30                | 49.0 | 14.9       | 69.9 | 21.3             | 69.5 | 21.2       | 106.7    | 32.5 | 75.9       | 23.1 | 90.4       | 27.6 |
| 35                | 38.5 | 11.7       | 59.4 | 18.1             | 60.8 | 18.5       | 96.4     | 29.4 | 68.1       | 20.8 | 81.7       | 24.9 |
| 40                | 30.4 | 9.3        | 51.3 | 15.6             | 54.3 | 16.6       | 88.3     | 26.9 | 62.5       | 19.1 | 75.1       | 22.9 |
| 45                | 23.8 | 7.3        | 44.7 | 13.6             | 49.5 | 15.1       | 81.8     | 24.9 | 58.4       | 17.8 | 70.1       | 21.4 |
| 50                | 18.3 | 5.6        | 39.2 | 12.0             | 45.7 | 13.9       | 76.4     | 23.3 | 55.4       | 16.9 | 66.1       | 20.1 |
| 55                | 13.6 | 4.1        | 34.5 | 10.5             | 42.8 | 13.1       | 71.7     | 21.9 | 53.0       | 16.2 | 62.8       | 19.1 |
| 60                | 9.4  | 2.9        | 30.3 | 9.2              | 40.6 | 12.4       | 67.6     | 20.6 | 51.3       | 15.6 | 60.1       | 18.3 |
| 65                | 5.5  | 1.7        | 26.4 | 8.1              | 38.8 | 11.8       | 63.8     | 19.5 | 49.9       | 15.2 | 57.8       | 17.6 |
| 70                | 2.0  | .6         | 22.9 | 7.0              | 37.5 | 11.4       | 60.4     | 18.4 | 48.9       | 14.9 | 55.8       | 17.0 |
| 75                | 1.3  | .4         | 19.6 | 6.0              | 36.5 | 11.1       | 57.2     | 17.4 | 48.2       | 14.7 | 54.0       | 16.5 |
| 78 (MAX)          | 3.2  | 1.0        | 17.7 | 5.4              | 36.0 | 11.0       | 55.3     | 16.9 | 47.9       | 14.6 | 53.1       | 16.2 |





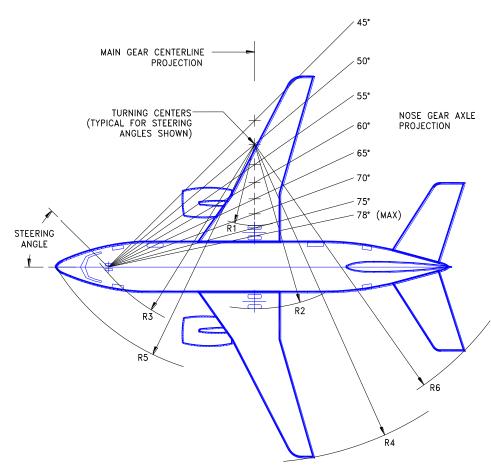

**NOTES:** \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE


| STEERING<br>ANGLE |      | INER<br>AR | R2 OUTER<br>GEAR |      | R3 NOSE<br>GEAR |      | R<br>WIN | 4<br>GTIP | R5<br>NOSE |      | R6<br>TAIL |      |
|-------------------|------|------------|------------------|------|-----------------|------|----------|-----------|------------|------|------------|------|
| (DEG)             | FT   | М          | FT               | Μ    | FT              | М    | FT       | М         | FT         | М    | FT         | М    |
| 30                | 54.2 | 16.5       | 75.1             | 22.9 | 75.5            | 23.0 | 111.9    | 34.1      | 81.9       | 25.0 | 96.4       | 29.4 |
| 35                | 42.8 | 13.1       | 63.7             | 19.4 | 66.0            | 20.1 | 100.6    | 30.7      | 73.3       | 22.3 | 86.9       | 26.5 |
| 40                | 34.0 | 10.4       | 54.9             | 16.7 | 59.0            | 18.0 | 91.9     | 28.0      | 67.1       | 20.5 | 79.8       | 24.3 |
| 45                | 26.8 | 8.2        | 47.7             | 14.6 | 53.7            | 16.4 | 84.8     | 25.8      | 62.6       | 19.1 | 74.4       | 22.7 |
| 50                | 20.8 | 6.4        | 41.7             | 12.7 | 49.6            | 15.1 | 78.9     | 24.0      | 59.2       | 18.1 | 70.0       | 21.3 |
| 55                | 15.7 | 4.8        | 36.6             | 11.1 | 46.5            | 14.2 | 73.8     | 22.5      | 56.7       | 17.3 | 66.5       | 20.3 |
| 60                | 11.1 | 3.4        | 32.0             | 9.7  | 44.0            | 13.4 | 69.3     | 21.1      | 54.7       | 16.7 | 63.5       | 19.4 |
| 65                | 6.9  | 2.1        | 27.8             | 8.5  | 42.1            | 12.8 | 65.2     | 19.9      | 53.2       | 16.2 | 61.0       | 18.6 |
| 70                | 3.1  | 1.0        | 24.0             | 7.3  | 40.6            | 12.4 | 61.5     | 18.7      | 52.1       | 15.9 | 58.9       | 17.9 |
| 75                | 0.5  | .1         | 20.4             | 6.2  | 39.6            | 12.1 | 58.0     | 17.7      | 51.3       | 15.6 | 57.0       | 17.4 |
| 78 (MAX)          | 2.5  | .8         | 18.4             | 5.6  | 39.1            | 11.9 | 56.0     | 17.1      | 50.9       | 15.5 | 56.1       | 17.1 |





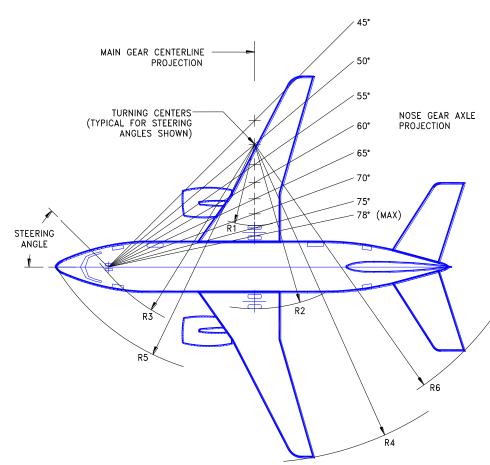
**NOTES:** \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE


| STEERING<br>ANGLE |      | NER<br>AR |      | R2 OUTER<br>GEAR |      | R3 NOSE<br>GEAR |       | 4<br>G TIP | R5<br>NOSE |      | R6<br>TAIL |      |
|-------------------|------|-----------|------|------------------|------|-----------------|-------|------------|------------|------|------------|------|
| (DEG)             | FT   | М         | FT   | Μ                | FT   | М               | FT    | Μ          | FT         | М    | FT         | М    |
| 30                | 60.2 | 18.4      | 81.1 | 24.7             | 82.5 | 25.2            | 119.0 | 36.3       | 88.9       | 27.1 | 107.1      | 32.6 |
| 35                | 47.8 | 14.6      | 68.7 | 20.9             | 72.1 | 22.0            | 106.7 | 32.5       | 79.4       | 24.2 | 96.7       | 29.5 |
| 40                | 38.2 | 11.6      | 59.1 | 18.0             | 64.4 | 19.6            | 97.2  | 29.6       | 72.7       | 22.1 | 89.0       | 27.1 |
| 45                | 30.3 | 9.3       | 51.2 | 15.6             | 58.6 | 17.9            | 89.5  | 27.3       | 67.7       | 20.6 | 83.0       | 25.3 |
| 50                | 23.8 | 7.2       | 44.7 | 13.6             | 54.2 | 16.5            | 83.0  | 25.3       | 63.9       | 19.5 | 78.3       | 23.9 |
| 55                | 18.1 | 5.5       | 39.0 | 11.9             | 50.8 | 15.5            | 77.4  | 23.6       | 61.1       | 18.6 | 74.4       | 22.7 |
| 60                | 13.1 | 4.0       | 34.0 | 10.4             | 48.1 | 14.6            | 72.5  | 22.1       | 58.9       | 18.0 | 71.2       | 21.7 |
| 65                | 8.6  | 2.6       | 29.5 | 9.0              | 46.0 | 14.0            | 68.1  | 20.8       | 57.3       | 17.5 | 68.4       | 20.9 |
| 70                | 4.4  | 1.3       | 25.3 | 7.7              | 44.4 | 13.5            | 64.0  | 19.5       | 56.0       | 17.1 | 66.1       | 20.1 |
| 75                | 0.5  | .1        | 21.4 | 6.5              | 43.2 | 13.2            | 60.2  | 18.4       | 55.1       | 16.8 | 64.0       | 19.5 |
| 78 (MAX)          | 1.8  | .5        | 19.1 | 5.8              | 42.7 | 13.0            | 58.0  | 17.7       | 54.7       | 16.7 | 63.0       | 19.2 |



# 4.2.4 Turning Radii - No Slip Angle: Model 737-300W

**NOTES:** \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE


| STEERING<br>ANGLE |      | INER<br>AR |      |      | -    | R3 NOSE<br>GEAR |       | 4<br>G TIP | R5<br>NOSE |      | R6<br>TAIL |      |
|-------------------|------|------------|------|------|------|-----------------|-------|------------|------------|------|------------|------|
| (DEG)             | FT   | М          | FT   | М    | FT   | М               | FT    | М          | FT         | М    | FT         | М    |
| 30                | 60.2 | 18.4       | 81.1 | 24.7 | 82.5 | 25.2            | 123.6 | 37.3       | 88.9       | 27.1 | 107.1      | 32.6 |
| 35                | 47.8 | 14.6       | 68.7 | 20.9 | 72.1 | 22.0            | 111.3 | 33.9       | 79.4       | 24.2 | 96.7       | 29.5 |
| 40                | 38.2 | 11.6       | 59.1 | 18.0 | 64.4 | 19.6            | 101.9 | 31.1       | 72.7       | 22.1 | 89.0       | 27.1 |
| 45                | 30.3 | 9.3        | 51.2 | 15.6 | 58.6 | 17.9            | 94.2  | 28.7       | 67.7       | 20.6 | 83.0       | 25.3 |
| 50                | 23.8 | 7.2        | 44.7 | 13.6 | 54.2 | 16.5            | 87.8  | 26.8       | 63.9       | 19.5 | 78.3       | 23.9 |
| 55                | 18.1 | 5.5        | 39.0 | 11.9 | 50.8 | 15.5            | 82.3  | 25.1       | 61.1       | 18.6 | 74.4       | 22.7 |
| 60                | 13.1 | 4.0        | 34.0 | 10.4 | 48.1 | 14.6            | 77.5  | 23.6       | 58.9       | 18.0 | 71.2       | 21.7 |
| 65                | 8.6  | 2.6        | 29.5 | 9.0  | 46.0 | 14.0            | 73.1  | 22.3       | 57.3       | 17.5 | 68.4       | 20.9 |
| 70                | 4.4  | 1.3        | 25.3 | 7.7  | 44.4 | 13.5            | 69.1  | 21.1       | 56.0       | 17.1 | 66.1       | 20.1 |
| 75                | 0.5  | .1         | 21.4 | 6.5  | 43.2 | 13.2            | 65.4  | 19.9       | 55.1       | 16.8 | 64.0       | 19.5 |
| 78 (MAX)          | 1.8  | .5         | 19.1 | 5.8  | 42.7 | 13.0            | 63.2  | 19.3       | 54.7       | 16.7 | 63.0       | 19.2 |

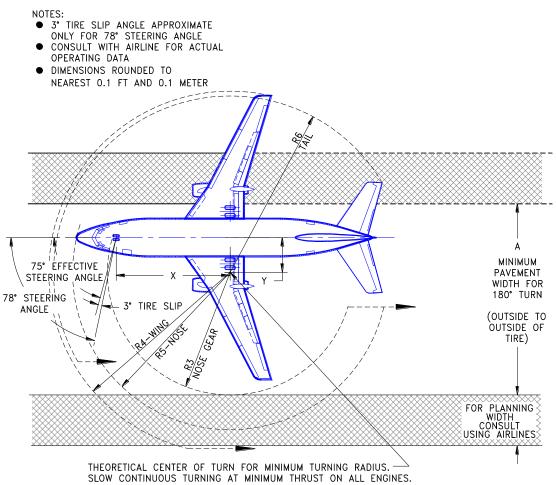


# 4.2.5 Turning Radii - No Slip Angle: Model 737-400

**NOTES:** \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

| STEERING<br>ANGLE | R1 IN<br>GE | INER<br>AR | -    | R2 OUTER<br>GEAR |      | R3 NOSE<br>GEAR |       | 4<br>G TIP | R5<br>NOSE |      | R6<br>TAIL |      |
|-------------------|-------------|------------|------|------------------|------|-----------------|-------|------------|------------|------|------------|------|
| (DEG)             | FT          | М          | FT   | М                | FT   | М               | FT    | М          | FT         | М    | FT         | М    |
| 30                | 70.7        | 21.5       | 91.6 | 27.9             | 94.7 | 28.8            | 129.3 | 39.4       | 100.9      | 30.8 | 118.1      | 36.0 |
| 35                | 56.4        | 17.2       | 77.3 | 23.6             | 82.6 | 25.2            | 115.2 | 35.1       | 89.8       | 27.4 | 106.0      | 32.3 |
| 40                | 45.3        | 13.8       | 66.3 | 20.2             | 73.8 | 22.5            | 104.2 | 31.8       | 81.9       | 25.0 | 97.1       | 29.6 |
| 45                | 36.4        | 11.1       | 57.3 | 17.5             | 67.2 | 20.5            | 95.3  | 29.1       | 76.1       | 23.2 | 90.2       | 27.5 |
| 50                | 28.8        | 8.8        | 49.8 | 15.2             | 62.1 | 18.9            | 87.9  | 26.8       | 71.7       | 21.9 | 84.6       | 25.8 |
| 55                | 22.3        | 6.8        | 43.3 | 13.2             | 58.2 | 17.7            | 81.5  | 24.8       | 68.4       | 20.8 | 80.2       | 24.4 |
| 60                | 16.6        | 5.1        | 37.5 | 11.4             | 55.1 | 16.8            | 75.8  | 23.1       | 65.8       | 20.1 | 76.4       | 23.3 |
| 65                | 11.4        | 3.5        | 32.3 | 9.8              | 52.7 | 16.1            | 70.8  | 21.6       | 63.9       | 19.5 | 73.3       | 22.3 |
| 70                | 6.6         | 2.0        | 27.5 | 8.4              | 50.8 | 15.5            | 66.1  | 20.1       | 62.4       | 19.0 | 70.6       | 21.5 |
| 75                | 2.1         | 0.6        | 23.0 | 7.0              | 49.5 | 15.1            | 61.7  | 18.8       | 61.3       | 18.7 | 68.3       | 20.8 |
| 78 (MAX)          | -0.5        | -0.2       | 20.4 | 6.2              | 48.9 | 14.9            | 59.2  | 18.0       | 60.8       | 18.5 | 67.1       | 20.4 |

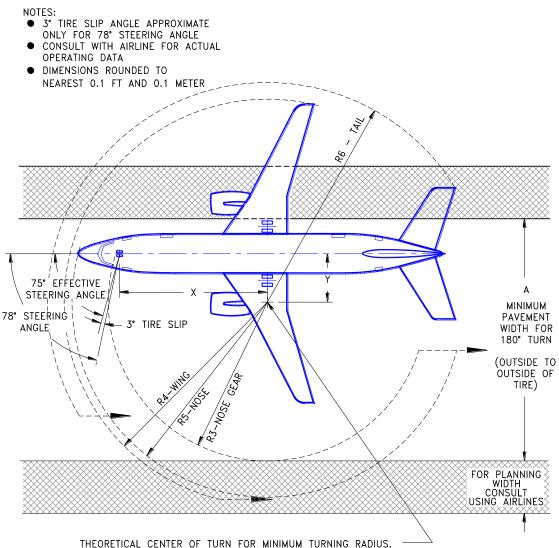



# 4.2.6 Turning Radii - No Slip Angle: Model 737-500

**NOTES:** \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

| STEERING<br>ANGLE | R1 IN<br>GE | INER<br>AR | -    | UTER<br>AR |      |      | R4<br>WING TIP |      | R5<br>NOSE |      | R6<br>TAIL |      |
|-------------------|-------------|------------|------|------------|------|------|----------------|------|------------|------|------------|------|
| (DEG)             | FT          | М          | FT   | М          | FT   | М    | FT             | М    | FT         | М    | FT         | М    |
| 30                | 52.4        | 16.0       | 73.3 | 22.3       | 73.5 | 22.4 | 111.3          | 33.9 | 80.0       | 24.4 | 98.7       | 30.1 |
| 35                | 41.4        | 12.6       | 62.3 | 19.0       | 64.2 | 19.6 | 100.4          | 30.6 | 71.7       | 21.8 | 89.6       | 27.3 |
| 40                | 32.8        | 10.0       | 53.7 | 16.4       | 57.4 | 17.5 | 91.9           | 28.0 | 65.7       | 20.0 | 82.7       | 25.2 |
| 45                | 25.8        | 7.9        | 46.7 | 14.2       | 52.3 | 15.9 | 85.0           | 25.9 | 61.4       | 18.7 | 77.5       | 23.6 |
| 50                | 20.0        | 6.1        | 40.9 | 12.5       | 48.3 | 14.7 | 79.3           | 24.2 | 58.1       | 17.7 | 73.3       | 22.3 |
| 55                | 15.0        | 4.6        | 35.9 | 10.9       | 45.3 | 13.8 | 74.3           | 22.7 | 55.6       | 17.0 | 69.8       | 21.3 |
| 60                | 10.5        | 3.2        | 31.4 | 9.6        | 42.9 | 13.1 | 70.0           | 21.3 | 53.8       | 16.4 | 67.0       | 20.4 |
| 65                | 6.5         | 2.0        | 27.4 | 8.3        | 41.0 | 12.5 | 66.1           | 20.1 | 52.3       | 15.9 | 64.5       | 19.7 |
| 70                | 2.8         | .8         | 23.7 | 7.2        | 39.6 | 12.1 | 62.4           | 19.0 | 51.2       | 15.6 | 62.4       | 19.0 |
| 75                | 0.7         | .2         | 20.2 | 6.1        | 38.5 | 11.7 | 59.1           | 18.0 | 50.4       | 15.4 | 60.6       | 18.5 |
| 78 (MAX)          | 2.7         | .8         | 18.2 | 5.5        | 38.1 | 11.6 | 57.1           | 17.4 | 50.1       | 15.3 | 59.6       | 18.2 |

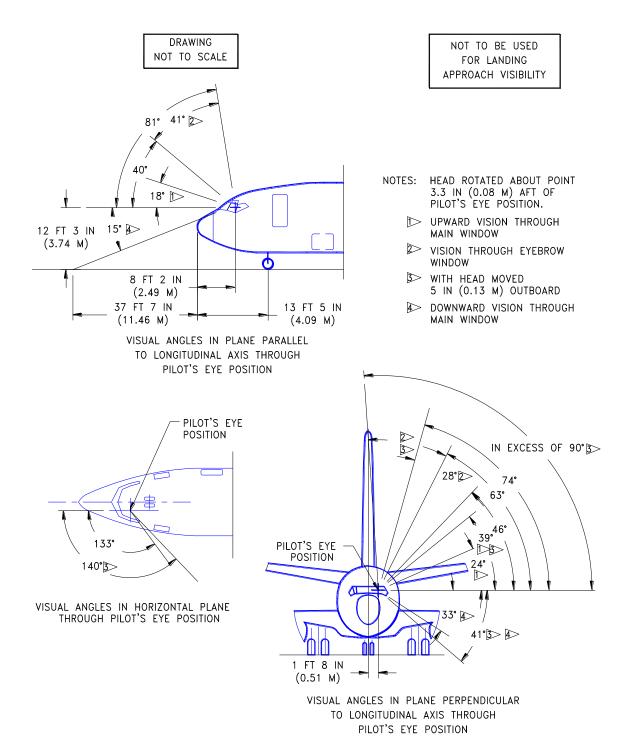
## 4.3 CLEARANCE RADII


## 4.3.1 Minimum Turning Radii – 3" Slip Angle: Model 737-100, -200



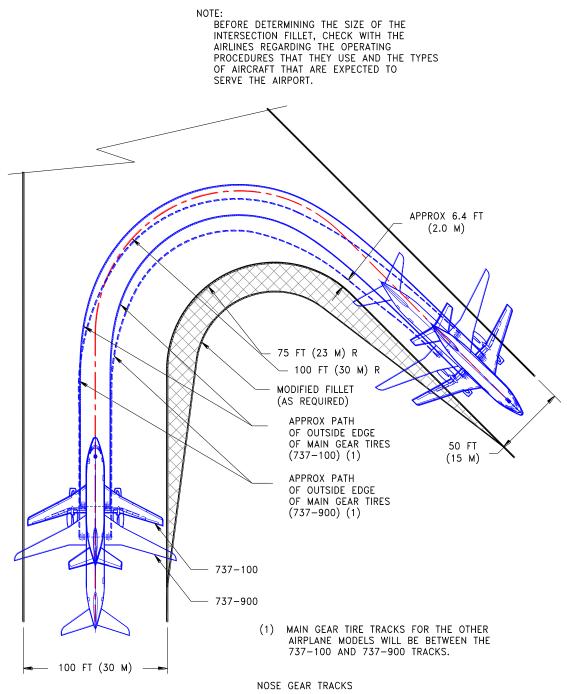
Theoretical center of turn for minimum turning radius.  $\_$  slow continuous turning at minimum thrust on all engines. No differential braking.

| AIRPLANE | EFFECTIVE              | >    | Х    |      | Y   |      | Α    |      | R3   |      | 4    | R5   |      | R6   |      |
|----------|------------------------|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|
| MODEL    | TURNING<br>ANGLE (DEG) | FT   | м    | FT   | М   | FT   | м    | FT   | м    | FT   | м    | FT   | М    | FT   | м    |
| 737-100  | 75                     | 34.3 | 10.5 | 9.2  | 2.8 | 56.1 | 17.1 | 36.5 | 11.1 | 57.2 | 17.4 | 48.2 | 14.7 | 54.0 | 16.5 |
| 737-200  | 75                     | 41.3 | 11.4 | 10.0 | 3.0 | 60.0 | 18.3 | 39.6 | 12.1 | 58.0 | 17.7 | 51.3 | 15.6 | 57.0 | 18.3 |


4.3.2 Minimum Turning Radii – 3" Slip Angle: Model 737-300, -300W, -400, -500



THEORETICAL CENTER OF TURN FOR MINIMUM TURNING RADIUS. — SLOW CONTINUOUS TURNING AT MINIMUM THRUST ON ALL ENGINES. NO DIFFERENTIAL BRAKING.

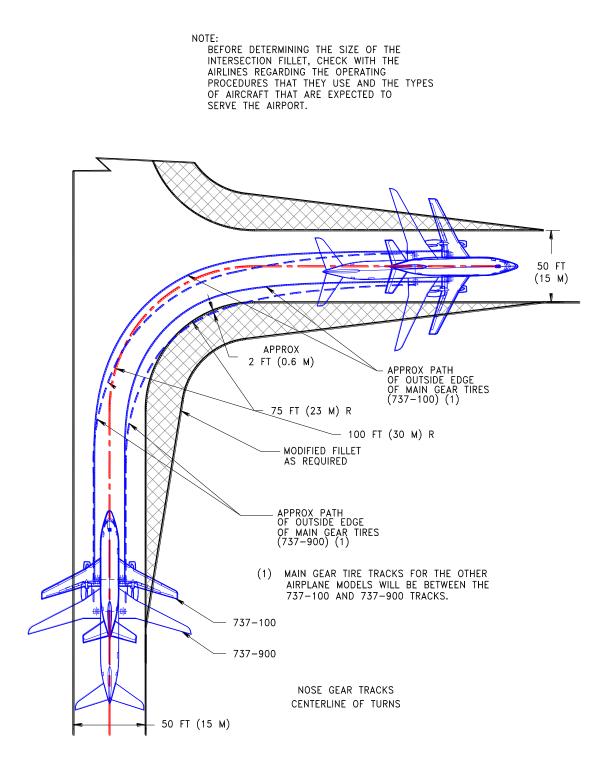

| AIRPLANE                    | EFFECTIVE              | )    | X    |      | Y   |      | Α    |      | R3   |      | 4    | R5   |      | R6   |      |
|-----------------------------|------------------------|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|
| MODEL                       | TURNING<br>ANGLE (DEG) | FT   | М    | FT   | М   | FT   | м    | FT   | м    | FT   | М    | FT   | м    | FT   | М    |
| 737-300                     | 75                     | 40.8 | 12.4 | 10.9 | 3.3 | 64.6 | 19.7 | 43.2 | 13.2 | 60.2 | 18.4 | 55.1 | 16.8 | 64.0 | 19.5 |
| 737-300<br>WITH<br>WINGLETS | 75                     | 40.8 | 12.4 | 10.9 | 3.3 | 64.6 | 19.7 | 43.2 | 13.2 | 65.4 | 19.9 | 55.1 | 16.8 | 64.0 | 19.5 |
| 737-400                     | 75                     | 46.8 | 14.3 | 12.5 | 3.8 | 72.4 | 22.1 | 49.4 | 15.1 | 61.8 | 18.8 | 61.3 | 18.7 | 68.3 | 20.8 |
| 737-500                     | 75                     | 36.3 | 11.1 | 9.7  | 3.0 | 58.7 | 17.9 | 38.5 | 11.7 | 59.1 | 18.0 | 50.4 | 15.4 | 60.6 | 18.5 |

# 4.4 VISIBILITY FROM COCKPIT IN STATIC POSITION: MODEL 737, ALL MODELS

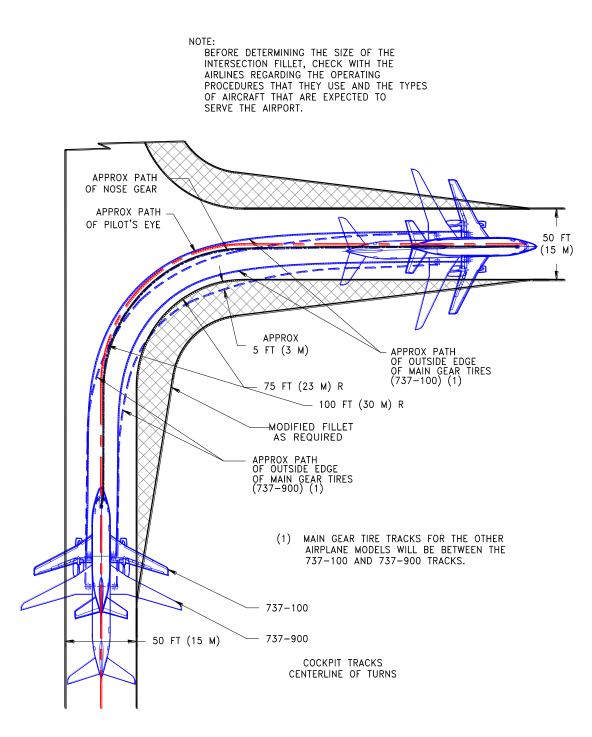



#### 4.5 RUNWAY AND TAXIWAY TURN PATHS

# 4.5.1 Runway and Taxiway Turn Paths - Runway-to-Taxiway, More Than 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models




Not Subject to EAR or ITAR. Copyright © 2023 Boeing. All Rights Reserved.


### 4.5.2 Runway and Taxiway Turn Paths - Runway-to-Taxiway, 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models



#### 4.5.3 Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models



### 4.5.4 Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90 Degrees, Cockpit Tracks Centerline: Model 737, All Models



D6-58325-6

#### 4.6 RUNWAY HOLDING BAY: MODEL 737, ALL MODELS

NOTE: BEFORE DETERMINING THE SIZE OF THE PAVEMENT AND SHOULDER, CHECK WITH THE AIRLINES REGARDING THE OPERATING PROCEDURES THAT THEY USE AND THE AIRCRAFT TYPES THAT ARE EXPECTED TO SERVE THE AIRPORT. SHOULDER -EDGE OF PAVEMENT (1) (2)(3) (4) (5) 20 FT (6.1 M) TO RUNWAY ----40 FT (12.2 M) CLEARANCE BETWEEN AIRPLANES 20 FT (6.1 M) GEAR POST TO EDGE OF PAVEMENT (1) -100,-200: 190 FT (57.9 M) (2) -300, -400, -500: 192 FT (58.5 M) (3) -300 (WITH WINGLETS): 200 FT (61.0 M) (4) -600 THRU -900: 211 FT (64.3 M) (5) -600 THRU -900 (WITH WINGLETS): 216 FT (65.9 M) CENTERLINE OF TAXIWAY 50 FT (15 M)

D6-58325-6

## 5.0 TERMINAL SERVICING

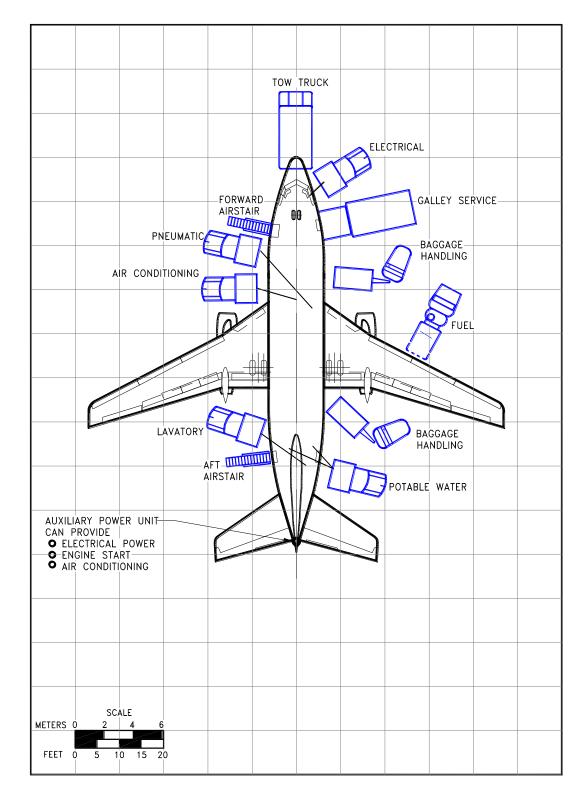
During turnaround at the terminal, certain services must be performed on the aircraft, usually within a given time, to meet flight schedules. This section shows service vehicle arrangements, schedules, locations of service points, and typical service requirements. The data presented in this section reflect ideal conditions for a single airplane. Service requirements may vary according to airplane condition and airline procedure.

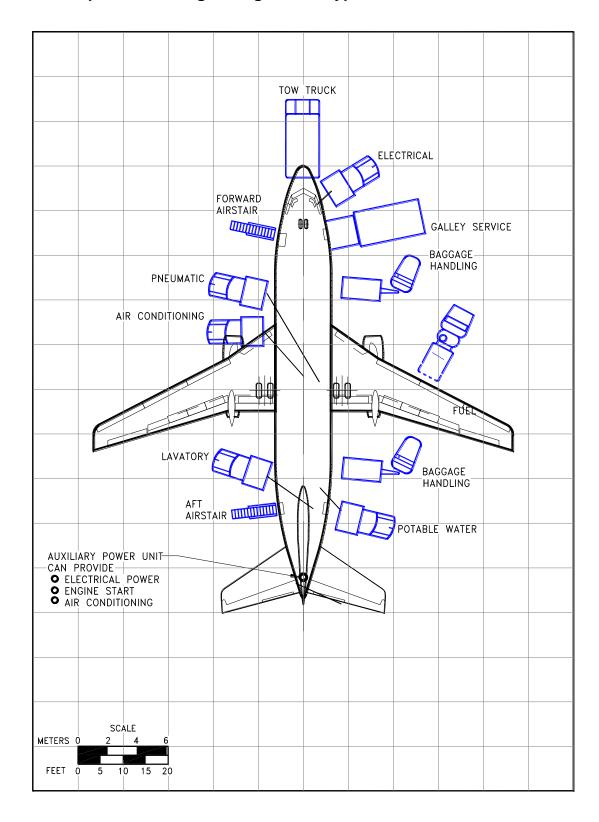
Section 5.1 shows typical arrangements of ground support equipment during turnaround. As noted, if the auxiliary power unit (APU) is used, the electrical, air start, and air-conditioning service vehicles would not be required. Passenger loading bridges or portable passenger stairs could be used to load or unload passengers.

Sections 5.2 and 5.3 show typical service times at the terminal. These charts give typical schedules for performing service on the airplane within a given time. Service times could be rearranged to suit availability of personnel, airplane configuration, and degree of service required.

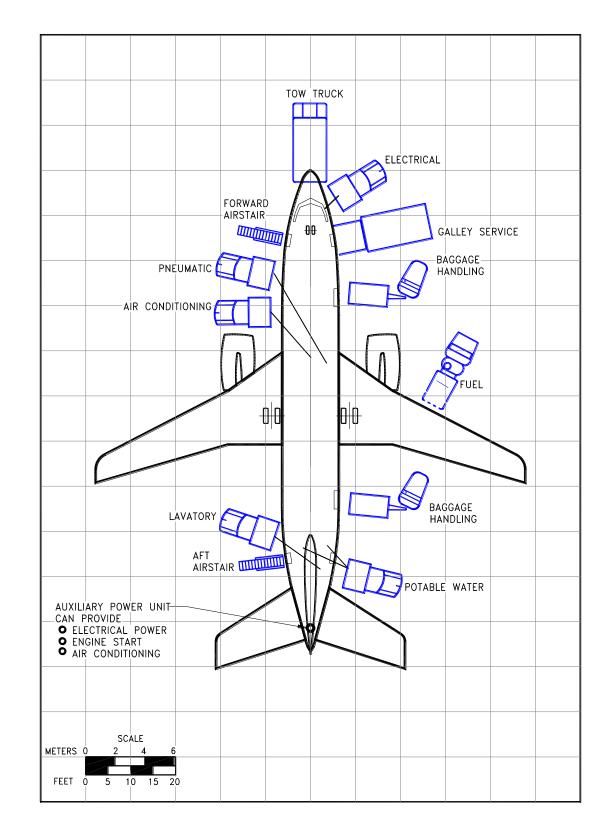
Section 5.4 shows the locations of ground service connections in graphic and in tabular forms. Typical capacities and service requirements are shown in the tables. Services with requirements that vary with conditions are described in subsequent sections.

Section 5.5 shows typical sea level air pressure and flow requirements for starting different engines. The curves are based on an engine start time of 90 seconds.

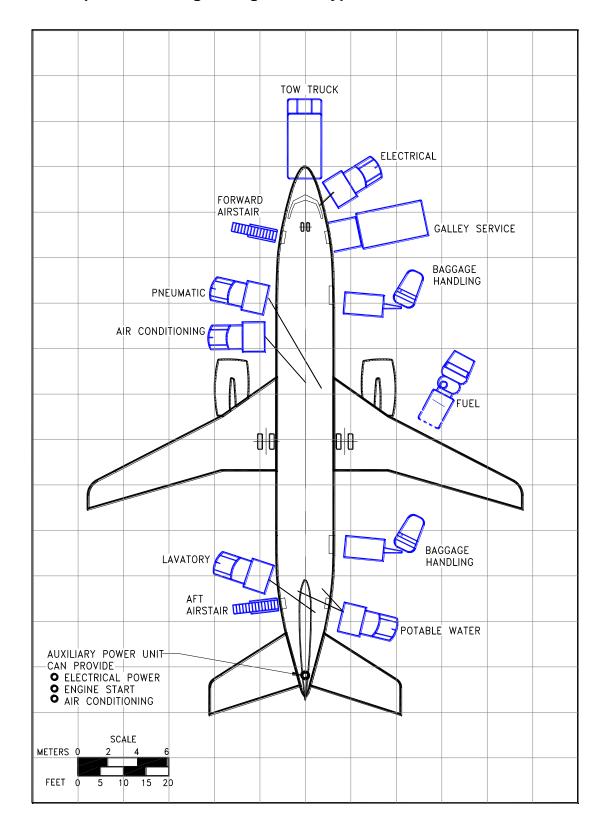

Section 5.6 shows pneumatic requirements for heating and cooling (air conditioning) using high pressure air to run the air cycle machine. The curves show airflow requirements to heat or cool the airplane within a given time and ambient conditions. Maximum allowable pressure and temperature for air cycle machine operation are 60 psia and 450°F, respectively.


Section 5.7 shows pneumatic requirements for heating and cooling the airplane, using low pressure conditioned air. This conditioned air is supplied through an 8-in ground air connection (GAC) directly to the passenger cabin, bypassing the air cycle machines.

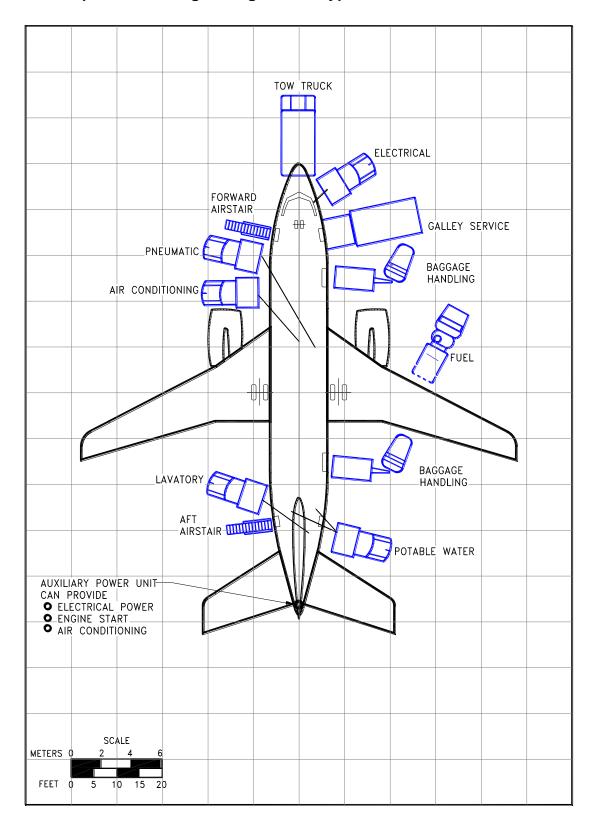
Section 5.8 shows ground towing requirements for various ground surface conditions.


# 5.1 AIRPLANE SERVICING ARRANGEMENT - TYPICAL TURNAROUND

# 5.1.1 Airplane Servicing Arrangement - Typical Turnaround: Model 737-100



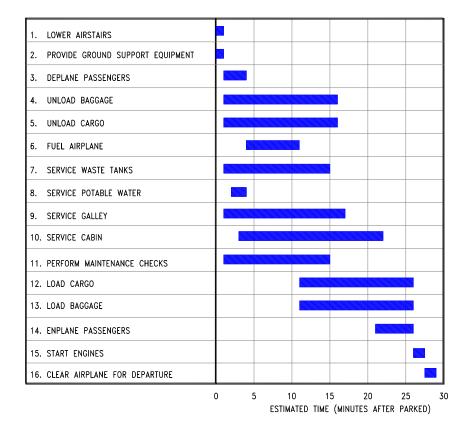




5.1.2 Airplane Servicing Arrangement - Typical Turnaround: Model 737-200



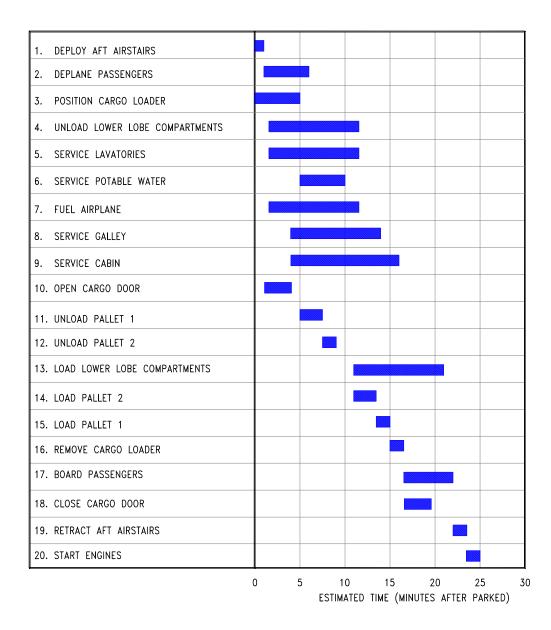
5.1.3 Airplane Servicing Arrangement - Typical Turnaround: Model 737-300




# 5.1.4 Airplane Servicing Arrangement - Typical Turnaround: Model 737-400

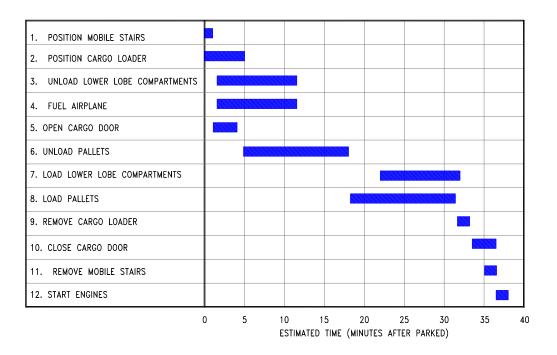


5.1.5 Airplane Servicing Arrangement - Typical Turnaround: Model 737-500


### 5.2 TERMINAL OPERATIONS - TURNAROUND STATION

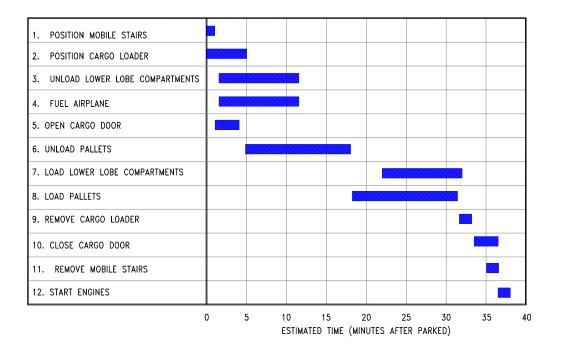
#### 5.2.1 Terminal Operations - Turnaround Station: Model 737-100, -200




- 1. ESTIMATES BASED ON MIXED-CLASS CONFIGURATION, 65% LOAD FACTOR
- 2. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 3. TOTAL TIME ON THE RAMP IS 30 MINUTES
- 4. BOTH FORWARD AND AFT DOORS ARE USED
- 5. 100% PASSENGER EXCHANGE
- 6. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 7. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING

# 5.2.2 Terminal Operations - Turnaround Station – Passenger/Cargo: Model 737-200C




- 1. ESTIMATES BASED ON 76-PASSENGER/TWO MAIN DECK PALLET CONFIGURATION 100% LOAD FACTOR AND FULL PASSENGER/BAGGAGE EXCHANGE
- 2. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 3. TOTAL TIME ON THE RAMP IS 25 MINUTES
- 4. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL DEFENDED SEQUENCES AND THE INTERVALS TO ACCOMPLISE THE TASKS SHOWN
- RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 5. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING

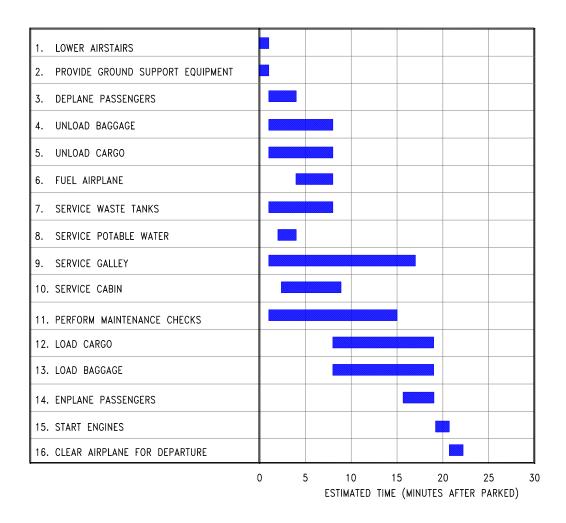
### 5.2.3 Terminal Operations - Turnaround Station – All Cargo: Model 737-200C



- 1. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 2. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL
- RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 3. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING

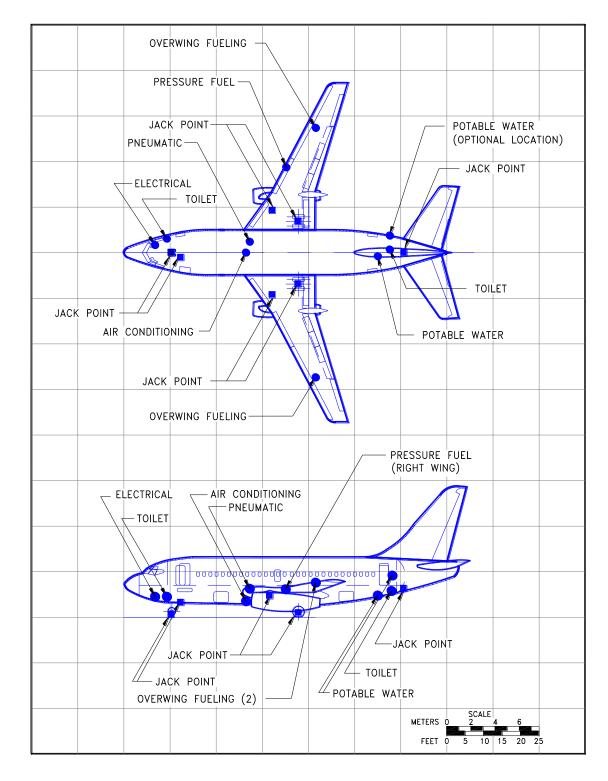
## 5.2.4 Terminal Operations – Turnaround Station: Model 737-300, -400, -500



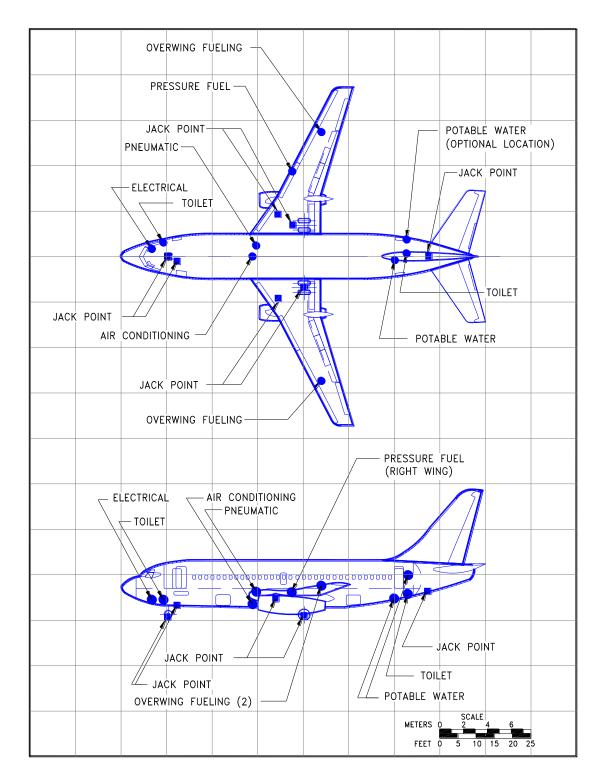

#### NOTES:

- 1. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 2. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 3. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING

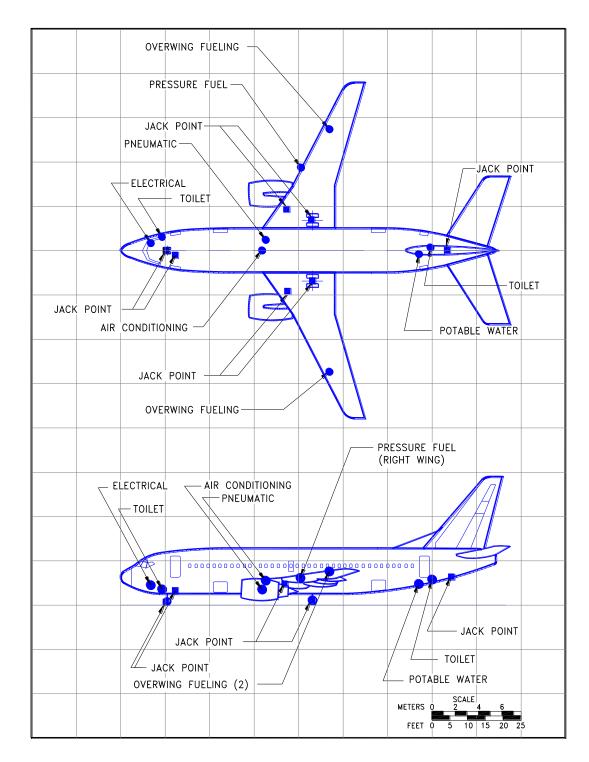
D6-58325-6


### 5.3 TERMINAL OPERATIONS - EN ROUTE STATION

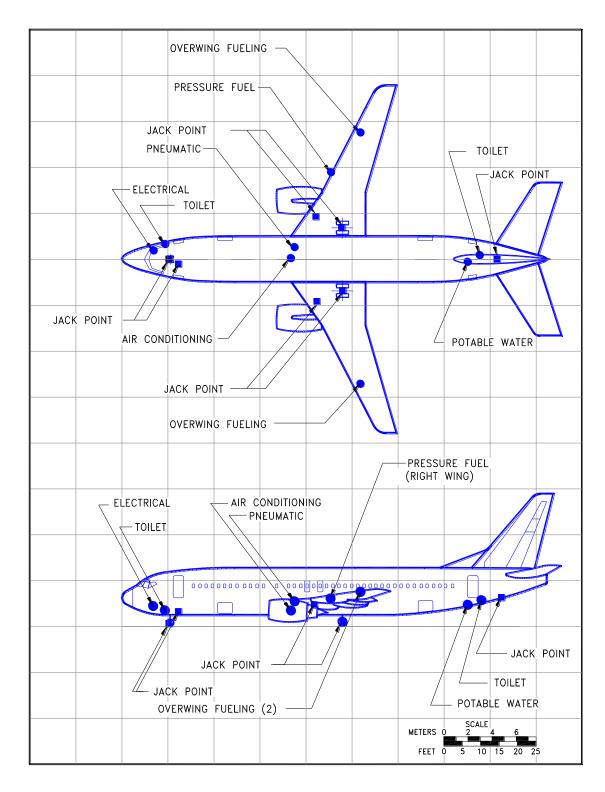
# 5.3.1 Terminal Operations - En Route Station: Model 737-100, -200, -300, -400, -500



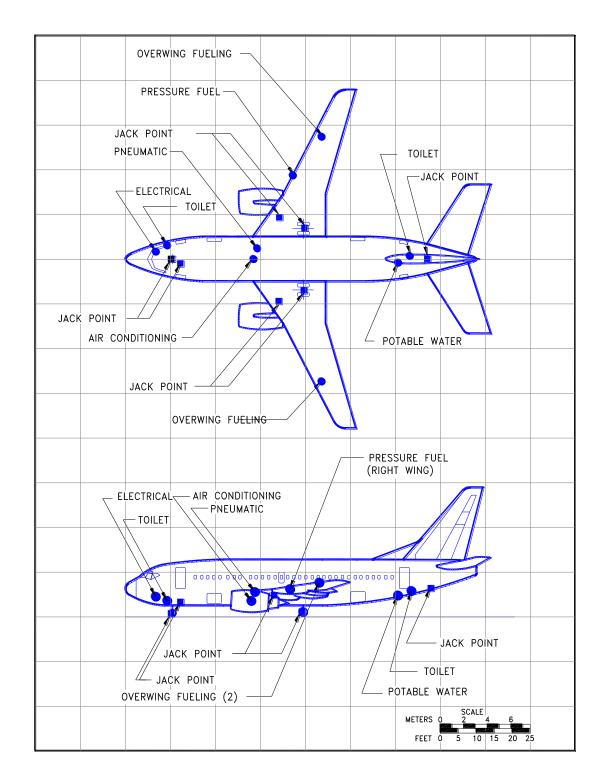

- 1. ESTIMATES BASED ON MIXED-CLASS CONFIGURATION, 65% LOAD FACTOR
- 2. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 3. TOTAL TIME ON THE RAMP IS 25 MINUTES
- 4. BOTH FORWARD AND AFT DOORS ARE USED
- 5. 75% PASSENGER EXCHANGE
- 6. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 7. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING


# 5.4 GROUND SERVICING CONNECTIONS




# 5.4.1 Ground Service Connections: Model 737-100




#### 5.4.2 Ground Service Connections: Model 737-200



#### 5.4.3 Ground Service Connections: Model 737-300



## 5.4.4 Ground Service Connections: Model 737-400

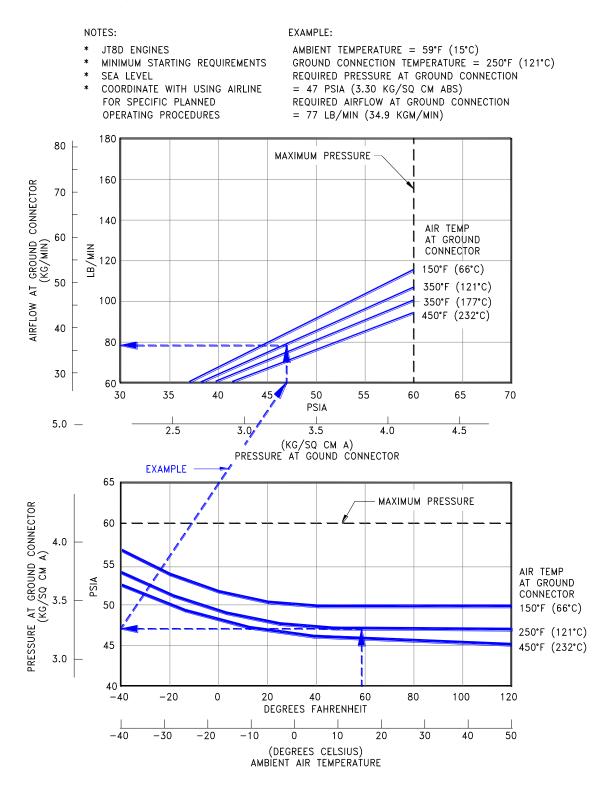


## 5.4.5 Ground Service Connections: Model 737-500

# 5.4.6 Ground Servicing Connections and Capacities: Model 737, All Models

|                                                                                                                                                                    |                            | DISTAN  | -    | DISTA  |      | OM AIRPI<br>ERLINE | ANE  | MAX HE<br>ABO |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|------|--------|------|--------------------|------|---------------|------|
| SYSTEM                                                                                                                                                             | MODEL                      | NO      | SE   | LHS    | SIDE | RH S               | IDE  | GROL          | JND  |
|                                                                                                                                                                    |                            | FT-IN   | М    | FT-IN  | М    | FT-IN              | М    | FT-IN         | м    |
| CONDITIONED AIR                                                                                                                                                    | 737-100                    | 33 - 2  | 10.1 | 0      | 0    | 0                  | 0    | 3-3           | 1.0  |
| ONE 8-IN (20.3 CM) PORT                                                                                                                                            | 737-200                    | 36 – 2  | 11.0 | 0      | 0    | 0                  | 0    | 3-3           | 1.0  |
|                                                                                                                                                                    | 737-300                    | 39 - 10 | 12.1 | 0      | 0    | 0                  | 0    | 3-3           | 1.0  |
|                                                                                                                                                                    | 737-400                    | 45 - 10 | 14.0 | 0      | 0    | 0                  | 0    | 3-3           | 1.0  |
|                                                                                                                                                                    | 737-500                    | 36 - 2  | 11.0 | 0      | 0    | 0                  | 0    | 3-3           | 1.0  |
| ELECTRICAL<br>ONE CONNECTION - 60 KVA,<br>200/115 V AC 400 HZ, 3-<br>PHASE EACH                                                                                    | 737-100<br>THRU<br>737-500 | 8 - 6   | 2.6  | -      | -    | 2 - 11             | 0.9  | 5 - 4         | 1.6  |
| FUEL                                                                                                                                                               | 737-100                    | 44 – 1  | 13.4 | -      | -    | 23 - 6             | 7.2  | 8 - 0         | 2.4  |
| ONE UNDERWING-                                                                                                                                                     | 737-200                    | 47 – 1  | 14.4 | -      | -    | 23 - 6             | 7.2  | 8 - 0         | 2.4  |
| PRESSURE CONNECTOR<br>ON RIGHT WING (SEE SEC                                                                                                                       | 737-300                    | 50 – 9  | 15.5 | -      | -    | 23 - 6             | 7.2  | 8 - 0         | 2.4  |
| 2.1 FOR CAPACITY)                                                                                                                                                  | 737-400                    | 56 – 9  | 17.3 | -      | -    | 23 - 6             | 7.2  | 8 - 0         | 2.4  |
|                                                                                                                                                                    | 737-500                    | 47 – 1  | 14.4 | -      | -    | 23 - 6             | 7.2  | 8 - 0         | 2.4  |
| FUEL                                                                                                                                                               | 737-100                    | 52 - 1  | 15.8 | 34 – 3 | 10.4 | 34 – 3             | 10.4 | 9-4           | 2.8  |
| TWO OVERWING FUEL                                                                                                                                                  | 737-200                    | 55 – 1  | 16.8 | 34 – 3 | 10.4 | 34 – 3             | 10.4 | 9-4           | 2.8  |
| PORTS                                                                                                                                                              | 737-300                    | 58 – 9  | 17 9 | 34 – 3 | 10.4 | 34 – 3             | 10.4 | 9 – 4         | 2.8  |
|                                                                                                                                                                    | 737-400                    | 64 – 9  | 19.7 | 34 – 3 | 10.4 | 34 – 3             | 10.4 | 9 – 4         | 2.8  |
|                                                                                                                                                                    | 737-500                    | 55 - 1  | 16.8 | 34 – 3 | 10.4 | 34 – 3             | 10.4 | 9 – 4         | 2.8  |
| LAVATORY                                                                                                                                                           | 737-100                    | 11 – 8  | 3.6  | -      | -    | 3 - 10             | 1.2  | 5 – 10        | 1.8  |
| ONE PRESSURE<br>CONNECTION FOR                                                                                                                                     |                            | 72 - 2  | 22.0 | -      | -    | 0 - 10             | 0.3  | 7 – 10        | 2.4  |
| DRAINING, FLUSHING, AND                                                                                                                                            | 737-200                    | 11 – 8  | 3.6  | -      | -    | 3 - 10             | 1.2  | 5 – 10        | 1.8  |
| CHEMICAL FILLING – 17<br>GAL (64.3 L) CAPACITY                                                                                                                     |                            | 78 - 6  | 23.9 | -      | -    | 0 - 10             | 0.3  | 7 – 10        | 2.4  |
| 10-GPM (37.9 LPM) 20-PSIG                                                                                                                                          | 737-300                    | 11 – 8  | 3.6  | -      | -    | 3 - 10             | 1.2  | 5 – 10        | 1.8  |
| (1.4 KG/SQ CM) SERVICE                                                                                                                                             |                            | 88 - 0  | 26.8 | -      | -    | 0 - 10             | 0.3  | 7 – 10        | 2.4  |
| REQUIRED                                                                                                                                                           | 737-400                    | 11 – 8  | 3.6  | -      | -    | 3 - 10             | 1.2  | 5 – 10        | 1.8  |
|                                                                                                                                                                    |                            | 98 - 0  | 29.9 | -      | -    | 0 - 10             | 0.3  | 7 – 10        | 2.4  |
|                                                                                                                                                                    | 737-500                    | 11 - 8  | 3.6  | -      | -    | 3 - 10             | 1.2  | 5 – 10        | 1.8  |
|                                                                                                                                                                    |                            | 78 - 6  | 23.9 | -      | -    | 0 - 10             | 0.3  | 7 – 10        | 2.4  |
| OXYGEN                                                                                                                                                             | 737-100                    | 21 – 8  | 6.6  | -      | -    | 5 – 0              | 1.5  | 6 – 3         | 1.9  |
| ONE SERVICE<br>CONNECTION FOR<br>OXYGEN FILL – 153 CU FT<br>(4.3 CU M) AT 3,000 PSIG<br>(211 KG/SQ CM) OR 190 CU<br>FT (5.4 CU M) WITH<br>SECOND OBSERVER<br>SEAT. | 737-200                    | 21 – 8  | 6.6  | -      | -    | 5 – 0              | 1.5  | 6 – 3         | 1.9  |
| OXYGEN<br>INDIVIDUAL CANISTERS IN<br>EACH PASSENGER<br>SERVICE UNIT                                                                                                | 737-300<br>THRU<br>737-500 | 21 – 8  | 6.6  | -      | -    | 3 – 0              | 0.91 | 6 – 5         | 1.96 |

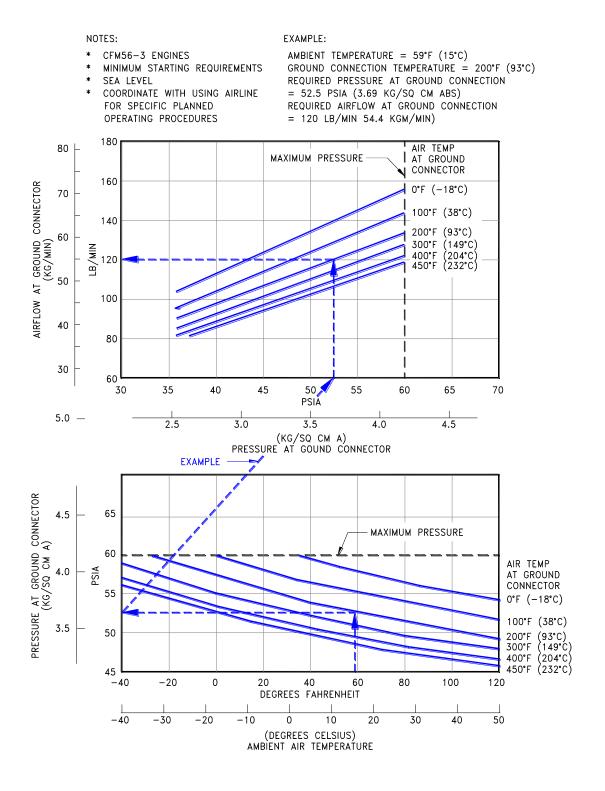
|                                                |         |         | ICE AFT | DISTA |      | OM AIRPL<br>ERLINE | ANE | MAX HE<br>ABO |     |
|------------------------------------------------|---------|---------|---------|-------|------|--------------------|-----|---------------|-----|
| SYSTEM                                         | MODEL   | NO      | SE      | LH S  | SIDE | RH S               | IDE | GROL          | IND |
|                                                |         | FT-IN   | М       | FT-IN | М    | FT-IN              | М   | FT-IN         | М   |
| PNEUMATIC                                      | 737-100 | 34 – 2  | 10.4    | -     | -    | 3 – 0              | 0.9 | 3 – 8         | 1.2 |
| ONE 3-IN (7.6-CM) PORT<br>FOR ENGINE START AND | 737-200 | 37–3    | 11.3    | -     | -    | 3 – 0              | 0.9 | 3 – 8         | 1.2 |
| AIRCONDITIONING PACKS                          | 737-300 | 40 - 10 | 12.5    | -     | -    | 3 – 0              | 0.9 | 3 – 8         | 1.2 |
|                                                | 737-400 | 46 - 10 | 14.3    | -     | -    | 3 – 0              | 0.9 | 3 – 8         | 1.2 |
|                                                | 737-500 | 37 - 2  | 11.3    | -     | -    | 3 - 0              | 0.9 | 3 - 8         | 1.2 |
| POTABLE WATER                                  | 737-100 | 68 -11  | 21.0    | 1 – 0 | 0.3  | -                  | -   | 6 – 4         | 1.9 |
| TWO SERVICE<br>CONNECTIONS                     |         | 72 – 1  | 22.0    | -     | -    | 4 –8               | 1.4 | 10 – 4        | 3.2 |
| 0.75-IN (1.9 CM)                               | 737-200 | 75 – 3  | 22.9    | 1 – 0 | 0.3  | -                  | -   | 6 – 4         | 1.9 |
| AFT LOCATION OPTIONAL                          |         | 78 – 6  | 23.9    | -     | -    | 4 – 8              | 1.4 | 10 – 4        | 3.2 |
| POTABLE WATER                                  | 737-300 | 84 – 9  | 25.8    | 1 – 0 | 0.3  | 4 - 8              | 1.4 | 10 – 4        | 3.2 |
| ONE SERVICE<br>CONNECTION                      | 737-400 | 94 – 9  | 28.9    | 1 – 0 | 0.3  | 4 – 8              | 1.4 | 10 – 4        | 3.2 |
| 0.75-IN (1.9 CM)                               | 737-500 | 75 - 3  | 22.9    | 1 - 0 | 0.3  | 4 - 8              | 1.4 | 10 – 6        | 3.2 |


#### NOTES:

• AIRPLANE MODEL DESIGNATIONS ALSO INCLUDE ALL DERIVATIVES.

<sup>•</sup> DISTANCES ROUNDED TO THE NEAREST INCH AND 0.1 METER.

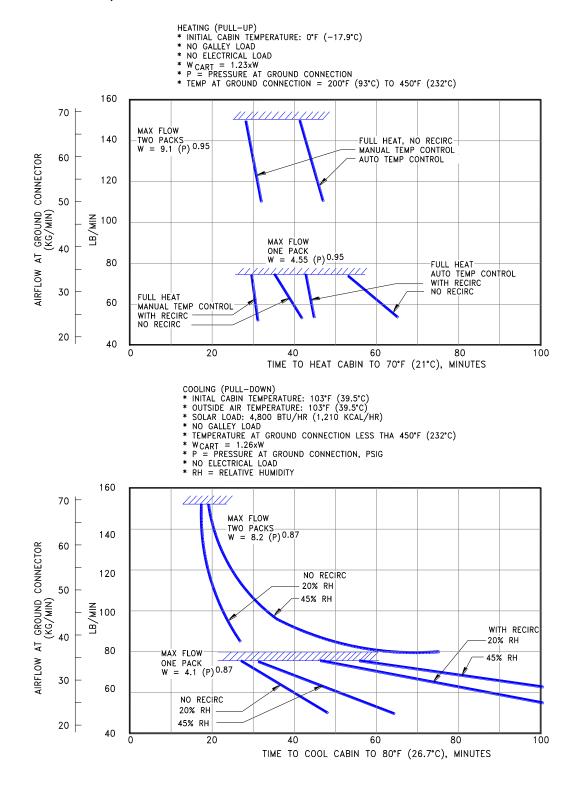
#### 5.5 ENGINE STARTING PNEUMATIC REQUIREMENTS


## 5.5.1 Engine Start Pneumatic Requirements - Sea Level: Model 737-100, -200

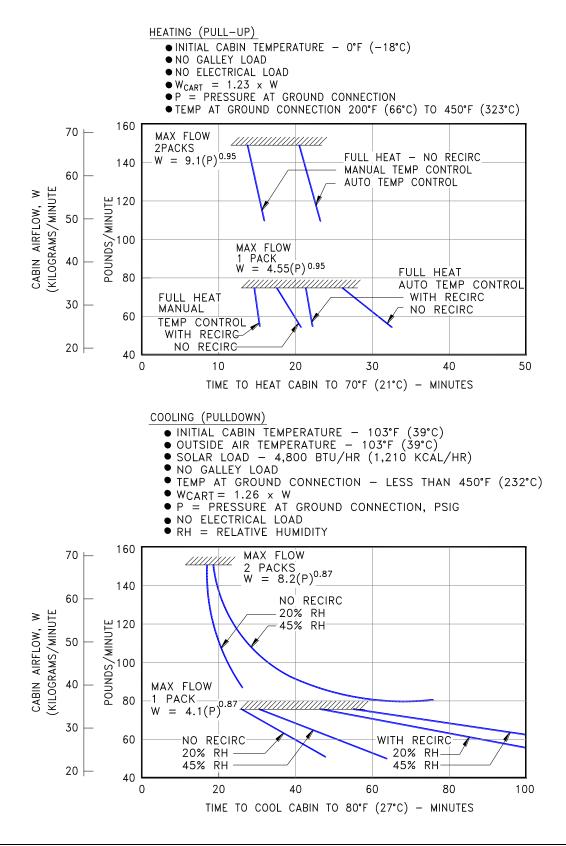


#### D6-58325-6

November 2023


## 5.5.2 Engine Start Pneumatic Requirements - Sea Level: Model 737-300, -400, -500

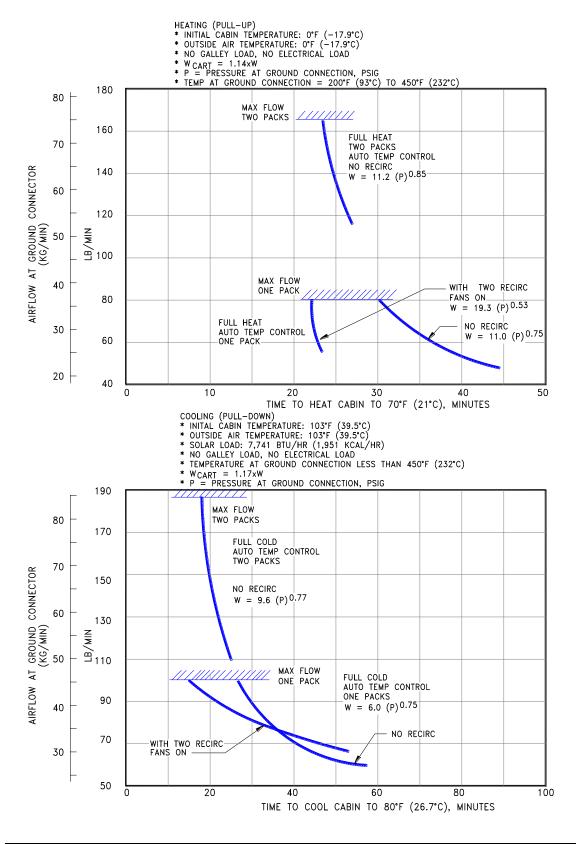



D6-58325-6

#### 5.6 GROUND PNEUMATIC POWER REQUIREMENTS

## 5.6.1 Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-100, -200




## 5.6.2 Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-300, -500



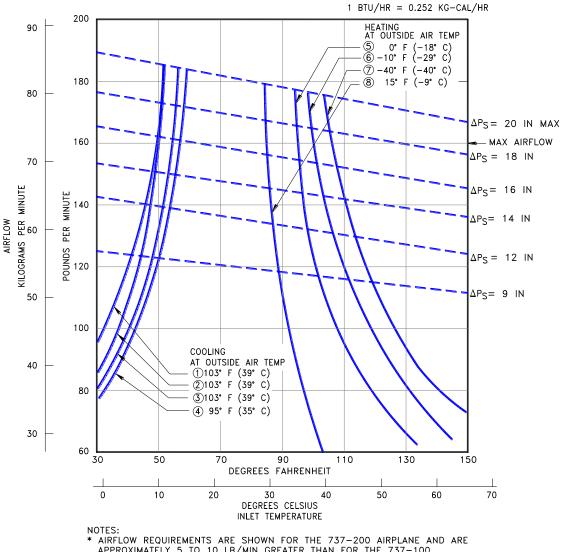
#### D6-58325-6

November 2023

#### 5.6.3 Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-400

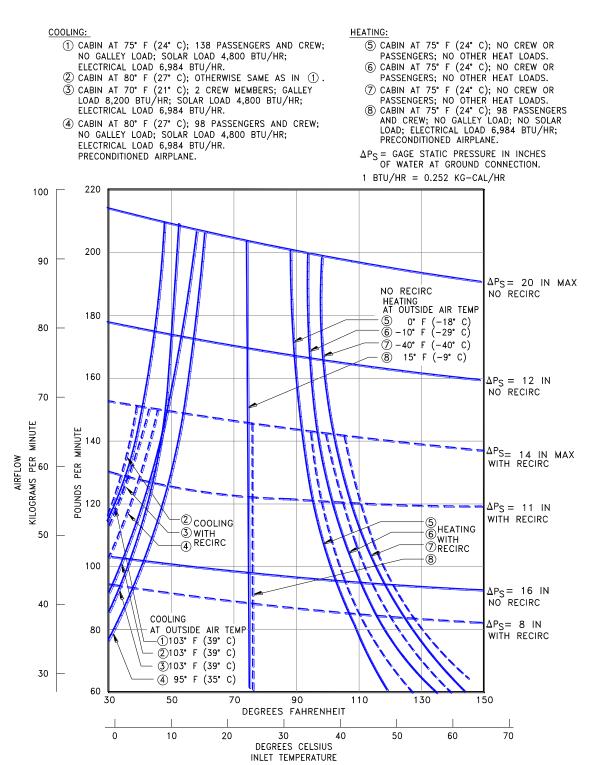


#### 5.7 CONDITIONED AIR REQUIREMENTS


#### 5.7.1 Conditioned Air Flow Requirements: Model 737-100, -200

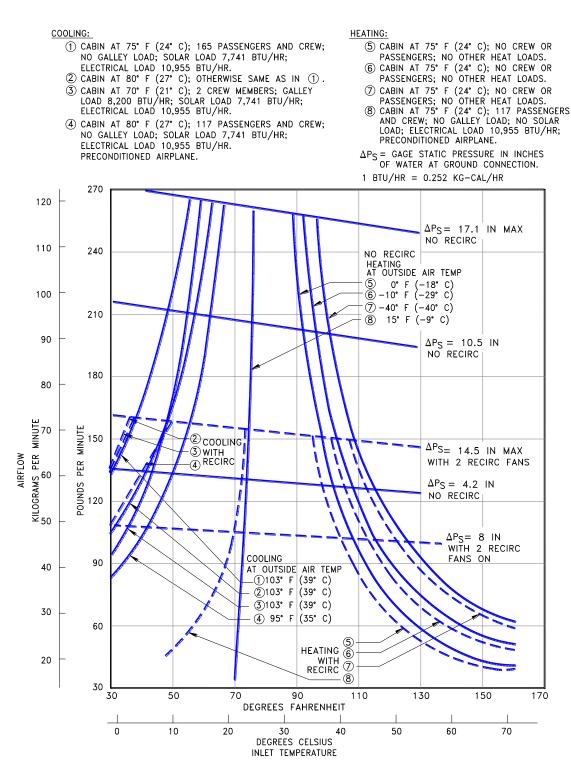
- COOLING:
  - CABIN AT 75" F (24" C); 90 PASSENGERS AND CREW; NO GALLEY LOAD; SOLAR LOAD 5,570 BTU/HR; ELECTRICAL LOAD 6,340 BTU/HR.
     CABIN AT 80" F (27" C); OTHERWISE SAME AS IN (1).

  - ③ CABIN AT 70° F (21° C); 3 CREW MEMBERS; GALLEY LOAD 8,200 BTU/HR; SOLAR LOAD 5,570 BTU/HR; ELECTRICAL LOAD 6,340 BTU/HR.
  - ④ CABIN AT 80° F (27° C); 65 PASSENGERS AND CREW; NO GALLEY LOAD; SOLAR LOAD 5,570 BTU/HR; ELECTRICAL LOAD 6,340 BTU/HR. PRECONDITIONED AIRPLANE.




- (5) CABIN AT 75" F (24" C); NO CREW OR PASSENGERS; NO OTHER HEAT LOADS.
   (6) CABIN AT 75" F (24" C); NO CREW OR
- PASSENGERS; NO OTHER HEAT LOADS.
- CABIN AT 75° F (24° C); NO CREW OR PASSENGERS; NO OTHER HEAT LOADS.
   CABIN AT 75° F (24° C); 65 PASSENGERS AND CREW; NO GALLEY LOAD; NO SOLAR LOAD; ELECTRICAL LOAD 6,430 BTU/HR; PRECONDITIONED AIRPLANE.

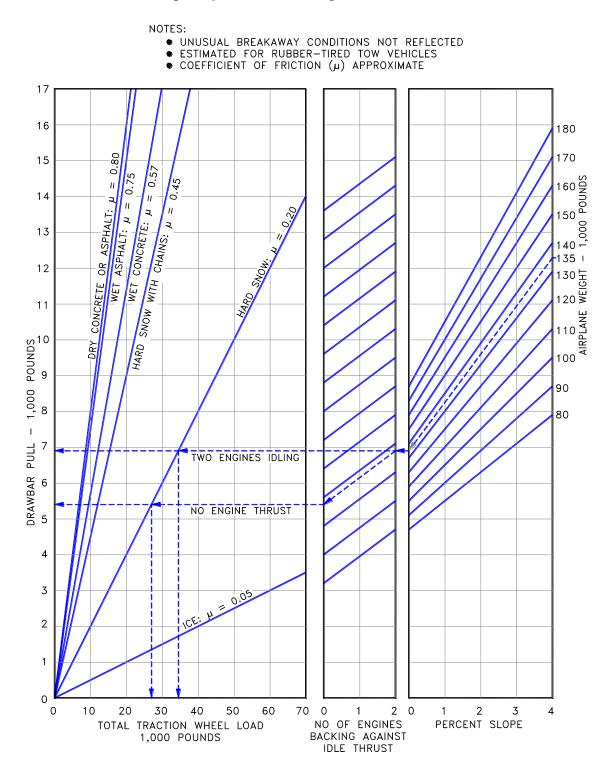


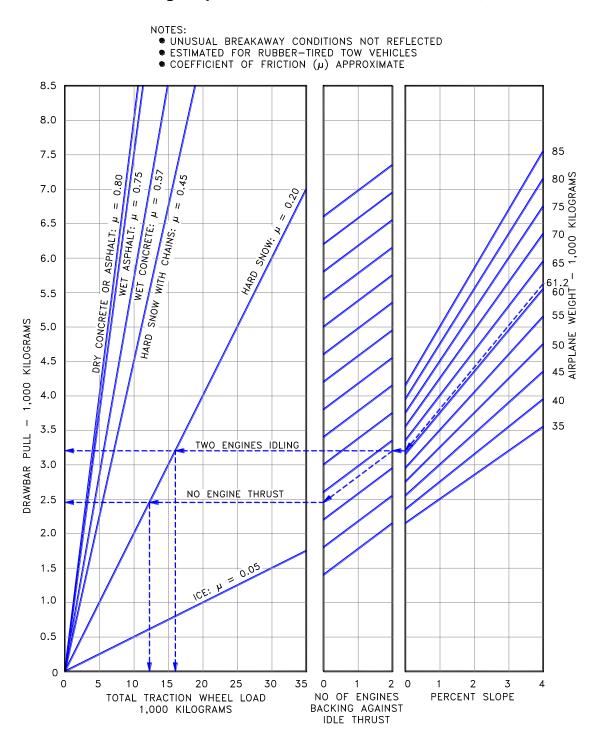

- AIRFLOW REQUIREMENTS ARE SHOWN FOR THE 737-200 AIRPLANE AND ARE APPROXIMATELY 5 TO 10 LB/MIN GREATER THAN FOR THE 737-100, DEPENDING ON CONDITIONS AND LOADING MAXIMUM RECOMMENDED AIRFLOW = 160 LB/MIN (72 KG/MIN TO AVOID OPENING OF THE DISTRIBUTION RELIEF VALVE

#### 5.7.2 Conditioned Air Flow Requirements: Model 737-300, -500



D6-58325-6


#### 5.7.3 Conditioned Air Flow Requirements: Model 737-400





D6-58325-6

### 5.8 GROUND TOWING REQUIREMENTS

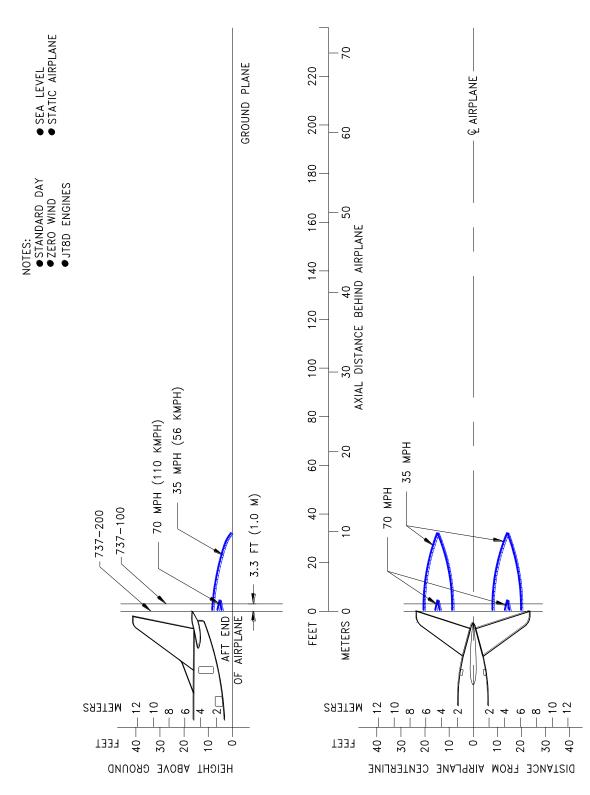
#### 5.8.1 Ground Towing Requirements - English Units: Model 737, All Models



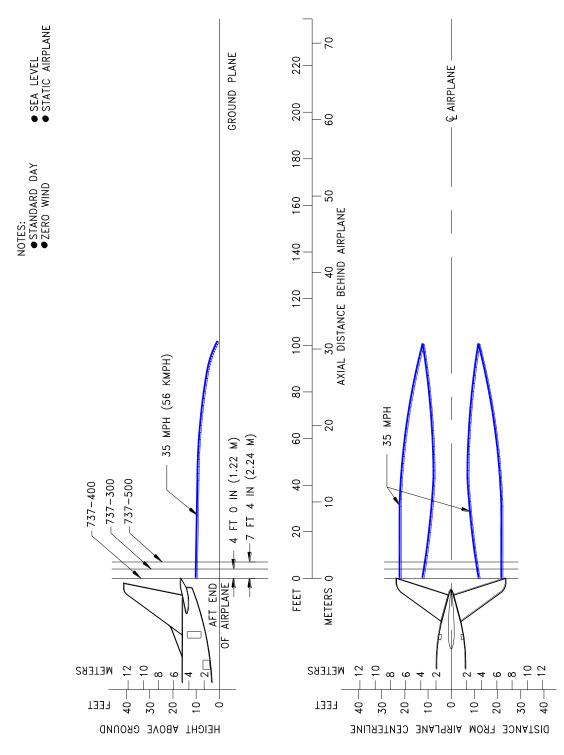




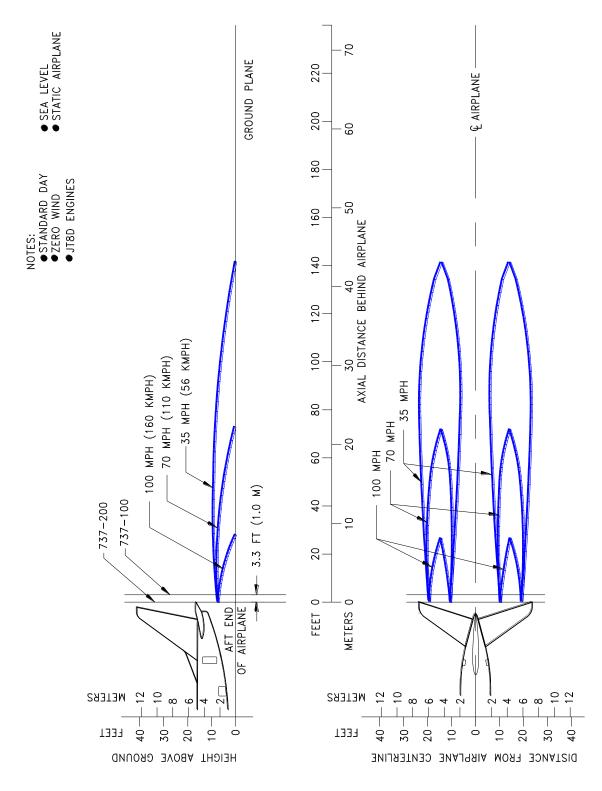
D6-58325-6


## 6.0 JET ENGINE WAKE AND NOISE DATA

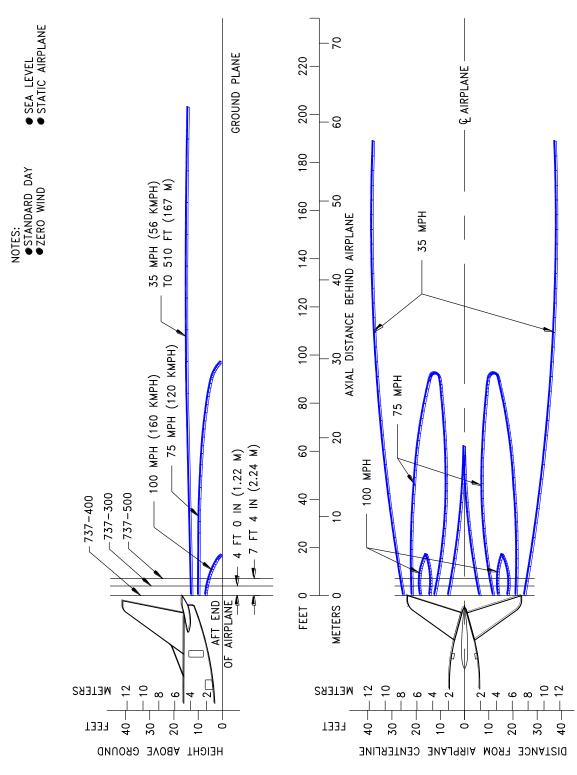
## 6.1 JET ENGINE EXHAUST VELOCITIES AND TEMPERATURES


This section shows jet engine exhaust velocity and temperature contours aft of the 737 Series of airplanes. The contours were calculated from a standard computer analysis using three-dimensional viscous flow equations with mixing of primary, fan, and freestream flow. The presence of the ground plane is included in the calculations as well as engine tilt and toe-in. Mixing of flows from the engines is also calculated. The analysis does not include thermal buoyancy effects which tend to elevate the jet wake above the ground plane. The buoyancy effects are considered to be small relative to the exhaust velocity and therefore are not included.

The graphs show jet wake velocity and temperature contours for representative engines. The results are valid for sea level, static, standard day conditions. The effect of wind on jet wakes is not included. There is evidence to show that a downwind or an upwind component does not simply add or subtract from the jet wake velocity, but rather carries the whole envelope in the direction of the wind. Crosswinds may carry the jet wake contour far to the side at large distances behind the airplane.

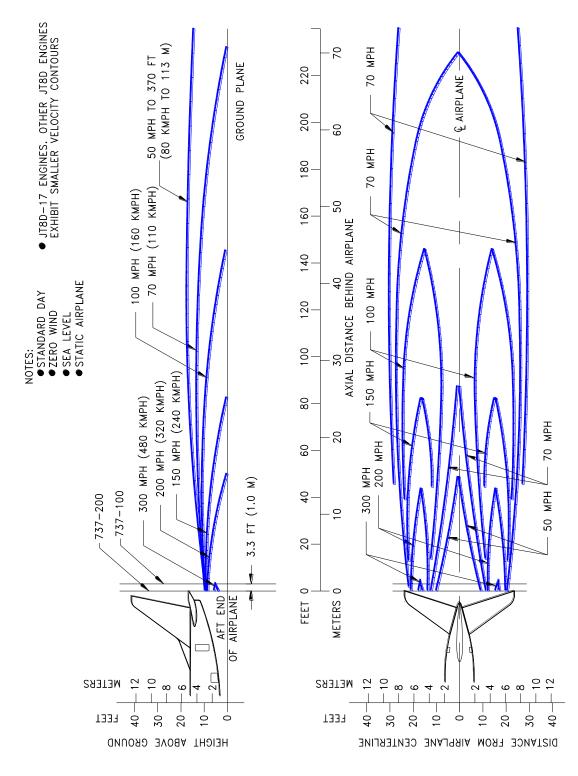

It should be understood, these exhaust velocity contours reflect steady-state, at maximum taxi weight, and not transient-state exhaust velocities. A steady-state is achieved with the aircraft in a fixed location, engine running at a given thrust level and measured when the contours stop expanding and stabilize in size, which could take several seconds. The steady-state condition, therefore, is conservative. Contours shown also do not account for performance variables such as ambient temperature or field elevation. For the terminal area environment, the transient-state is a more accurate representation of the actual exhaust contours when the aircraft is in motion and encountering static air with forward or turning movement, but it is very difficult to model on a consistent basis due to aircraft weight, weather conditions, the high degree of variability in terminal and apron configurations, and intensive numerical calculations. If the contours presented here are overly restrictive for terminal operations, The Boeing Company recommends conducting an analysis of the actual exhaust contours experienced by the using aircraft at the airport.



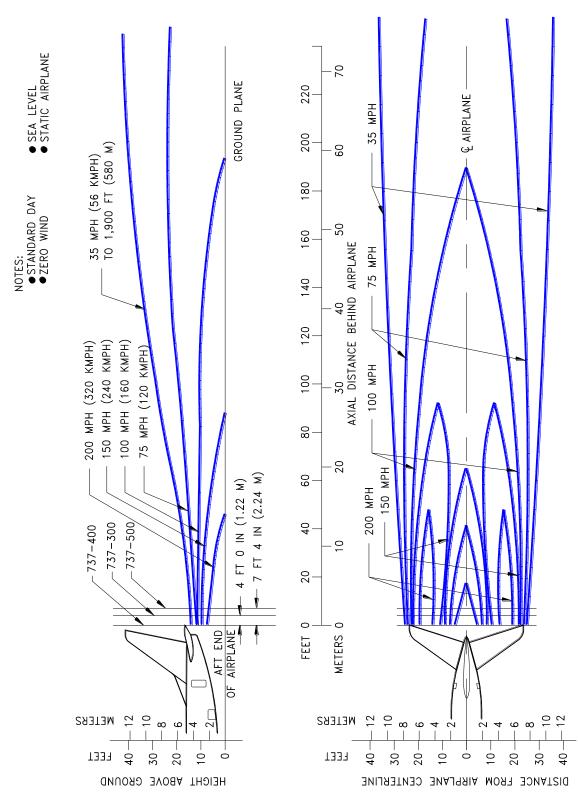

# 6.1.1 Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-100, - 200



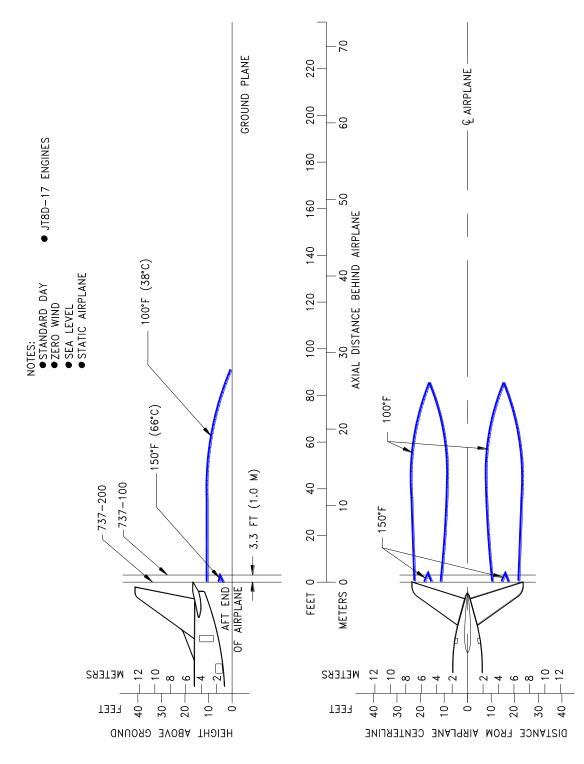
### 6.1.2 Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-300, -400, -500




# 6.1.3 Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-100, -200



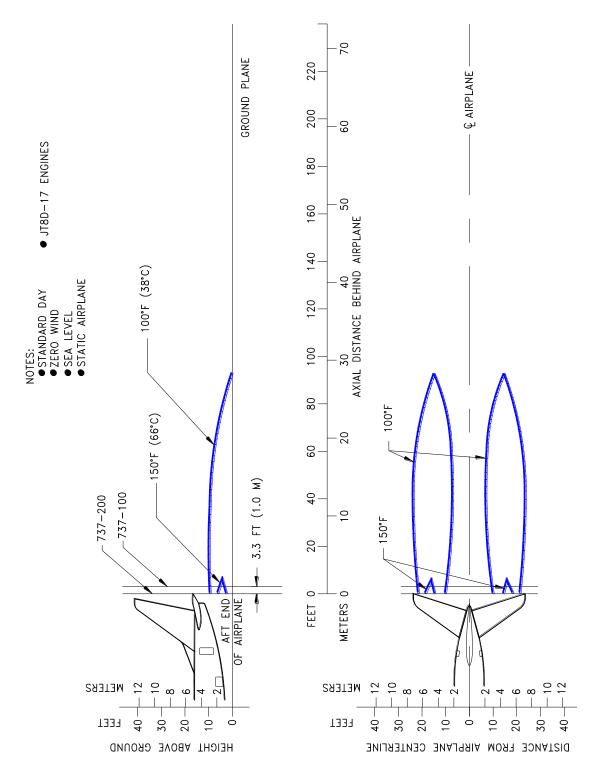

# 6.1.4 Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-300, -400, -500


6-5



6.1.5 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-100, -200



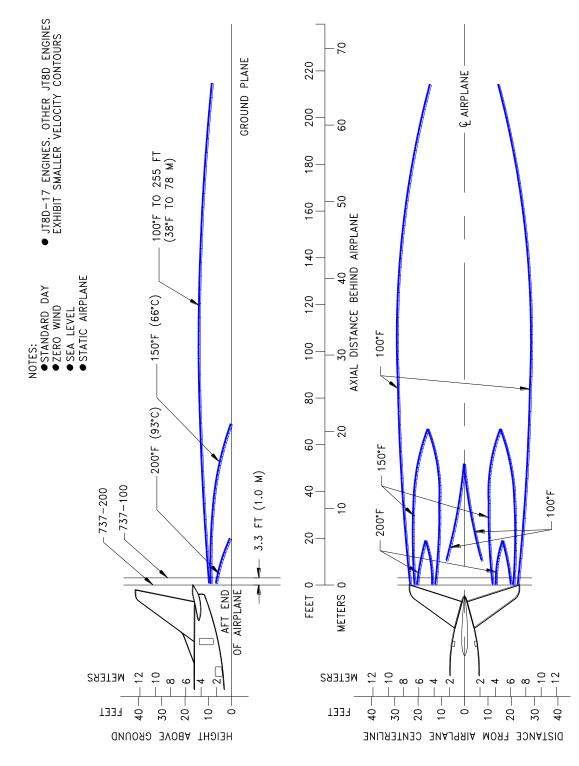

6.1.6 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-300, -400, -500



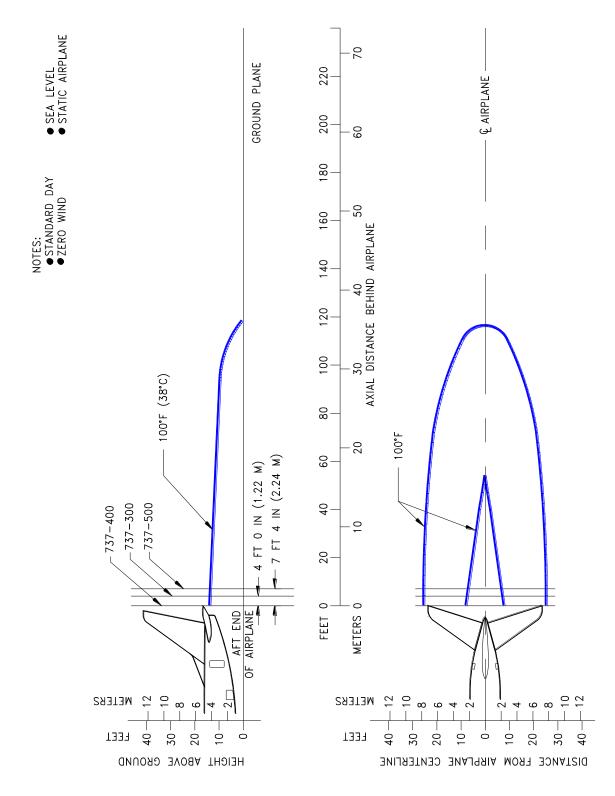
## 6.1.7 Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-100, -200

#### 6.1.8 Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-300, -400, -500

Temperature contours for idle power conditions are not shown as the maximum temperature aft of the 737-300, -400, -500 is predicated to be less than  $100^{\circ}$  F (38° C) for standard day conditions of 59° F (15° C).




## 6.1.9 Jet Engine Exhaust Temperature Contours – Breakaway Thrust: Model 737-100, -200


D6-58325-6

#### 6.1.10 Jet Engine Exhaust Temperature Contours – Breakaway Thrust: Model 737-300, -400, -500

Temperature contours for breakaway power conditions are not shown as the maximum temperature aft of the 737-300, -400, -500 is predicated to be less than  $100^{\circ}$  F (38° C) for standard day conditions of 59° F (15° C).



# 6.1.11 Jet Engine Exhaust Temperature Contours – Takeoff Thrust: Model 737-100, -200

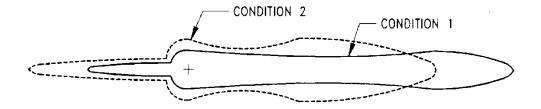


# 6.1.12 Jet Engine Exhaust Temperature Contours – Takeoff Thrust: Model 737-300, -400, -500

### 6.2 AIRPORT AND COMMUNITY NOISE

Airport noise is of major concern to the airport and community planner. The airport is a major element in the community's transportation system and, as such, is vital to its growth. However, the airport must also be a good neighbor, and this can be accomplished only with proper planning. Since aircraft noise extends beyond the boundaries of the airport, it is vital to consider the impact on surrounding communities. Many means have been devised to provide the planner with a tool to estimate the impact of airport operations. Too often they oversimplify noise to the point where the results become erroneous. Noise is not a simple subject; therefore, there are no simple answers.

The cumulative noise contour is an effective tool. However, care must be exercised to ensure that the contours, used correctly, estimate the noise resulting from aircraft operations conducted at an airport.


The size and shape of the single-event contours, which are inputs into the cumulative noise contours, are dependent upon numerous factors. They include the following:

- 1. Operational Factors
  - a. <u>Aircraft Weight</u>-Aircraft weight is dependent on distance to be traveled, enroute winds, payload, and anticipated aircraft delay upon reaching the destination.
  - b. <u>Engine Power Settings</u>-The rates of ascent and descent and the noise levels emitted at the source are influenced by the power setting used.
  - c. <u>Airport Altitude</u>-Higher airport altitude will affect engine performance and thus can influence noise.
- 2. Atmospheric Conditions-Sound Propagation
  - a. <u>Wind</u>-With stronger headwinds, the aircraft can take off and climb more rapidly relative to the ground. Also, winds can influence the distribution of noise in surrounding communities.
  - b. <u>Temperature and Relative Humidity</u>-The absorption of noise in the atmosphere along the transmission path between the aircraft and the ground observer varies with both temperature and relative humidity.
- 3. Surface Condition-Shielding, Extra Ground Attenuation (EGA)
  - a. <u>Terrain</u>-If the ground slopes down after takeoff or before landing, noise will be reduced since the aircraft will be at a higher altitude above ground. Additionally, hills, shrubs, trees, and large buildings can act as sound buffers.

All these factors can alter the shape and size of the contours appreciably. To demonstrate the effect of some of these factors, estimated noise level contours for two different operating conditions are shown below. These contours reflect a given noise level upon a ground level plane at runway elevation.

#### Condition 1

| Landing                      | Ta      | Takeoff           |       |         |  |  |
|------------------------------|---------|-------------------|-------|---------|--|--|
| Maximum Structural<br>Weight | Landing | Maximum<br>Weight | Gross | Takeoff |  |  |
| 10-knot Headwind             |         | Zero Wind         |       |         |  |  |
| 3° Approach                  |         | 84 °F             |       |         |  |  |
| 84 °F                        |         | Humidity 15       | %     |         |  |  |
| Humidity 15%                 |         |                   |       |         |  |  |



#### Condition 2

| Landing                          | Τa               | akeoff                              |        |    |       |
|----------------------------------|------------------|-------------------------------------|--------|----|-------|
| 85% of Maximum<br>Landing Weight | Structural       | al 80% of Maximum<br>Takeoff Weight |        |    | Gross |
| 10-knot Headwind                 | 10-knot Headwind |                                     |        |    |       |
| 3° Approach                      |                  |                                     |        |    |       |
| 59 °F (15 °C)                    |                  | Humic                               | lity 7 | 0% |       |
| Humidity 70%                     |                  |                                     |        |    |       |

As indicated from the data, the contour size varies substantially with operating and atmospheric conditions. Most aircraft operations are, of course, conducted at less than maximum gross weights because average flight distances are much shorter than maximum aircraft range capability and average load factors are less than 100%. Therefore, in developing cumulative contours for planning purposes, it is recommended that the airlines serving a particular city be contacted to provide operational information.

In addition, there are no universally accepted methods for developing aircraft noise contours or for relating the acceptability of specific zones to specific land uses. It is therefore expected that noise contour data for particular aircraft and the impact assessment methodology will be changing. To ensure that the best currently available information of this type is used in any planning study, it is recommended that it be obtained directly from the Office of Environmental Quality in the Federal Aviation Administration in Washington, D.C.

It should be noted that the contours shown herein are only for illustrating the impact of operating and atmospheric conditions and do not represent the single-event contour of the family of aircraft described in this document. It is expected that the cumulative contours will be developed as required by planners using the data and methodology applicable to their specific study.

### 7.0 PAVEMENT DATA

#### 7.1 GENERAL INFORMATION

A brief description of the pavement charts that follow will help in their use for airport planning. Each airplane configuration is depicted with a minimum range of five loads imposed on the main landing gear to aid in interpolation between the discrete values shown. All curves for any single chart represent data based on rated loads and tire pressures considered normal and acceptable by current aircraft tire manufacturer's standards. Tire pressures, where specifically designated on tables and charts, are at values obtained under loaded conditions as certificated for commercial use.

Section 7.2 presents basic data on the landing gear footprint configuration, maximum design taxi loads, and tire sizes and pressures.

Maximum pavement loads for certain critical conditions at the tire-to-ground interface are shown in Section 7.3, with the tires having equal loads on the struts.

Pavement requirements for commercial airplanes are customarily derived from the static analysis of loads imposed on the main landing gear struts. The charts in Section 7.4 are provided in order to determine these loads throughout the stability limits of the airplane at rest on the pavement. These main landing gear loads are used as the point of entry to the pavement design charts, interpolating load values where necessary.

The flexible pavement design curves based on the US Army Corp of Engineers Method and the rigid pavement curves based on the Portland Cement Association Design Method are no longer provided in Sections 7.5 and 7.7. Refer to the State's design standards for pavement design requirements. For US airports, refer to FAA Advisory Circular (AC) 150/5320-6, "Pavement Design" and pavement design program FAARFIELD for flexible and rigid pavement design requirements.

The Load Classification Number (LCN) curves are no longer provided in section 7.6 and 7.8 since the LCN system for reporting pavement strength is obsolete, being replaced by the ICAO recommended ACN/PCN system in 1983. For questions regarding the LCN system contact Boeing Airport Operations Engineering:

AirportCompatibility@boeing.com

The ACN/PCN system (Section 7.10) as referenced in ICAO Annex 14, "Aerodromes," 8th Edition, July 2018, provides a standardized international airplane/pavement rating system replacing the various S, T, TT, LCN, AUW, ISWL, etc., rating systems used throughout the world. ACN is the Aircraft Classification Number and PCN is the Pavement Classification Number. An aircraft having an ACN equal to or less than the PCN can operate on the pavement subject to any limitation on the tire pressure. Numerically, the ACN is two times the derived single-wheel load expressed in thousands of kilograms, where the derived single wheel load is defined as the load on a single tire inflated to 181 psi (1.25 MPa) that would have the same pavement requirements as the

aircraft. Computationally, the ACN/PCN system uses the PCA program PDILB for rigid pavements and S-77-1 for flexible pavements to calculate ACN values.

The method of pavement evaluation is left up to the airport with the results of their evaluation presented as follows:

| PCN | PAVEMENT<br>TYPE | SUBGRADE<br>CATEGORY | TIRE PRESSURE<br>CATGORY  | EVALUATION<br>METHOD |
|-----|------------------|----------------------|---------------------------|----------------------|
|     | R = Rigid        | A = High             | W = No Limit              | T = Technical        |
|     | F = Flexible     | B = Medium           | X = To 254 psi (1.75 MPa) | U = Using Aircraft   |
|     |                  | C = Low              | Y = To 181 psi (1.25 MPa) |                      |
|     |                  | D = Ultra Low        | Z = To 73 psi (0.5 MPa)   |                      |

ACN values for flexible pavements are calculated for the following four subgrade categories:

Code A - High Strength - CBR 15

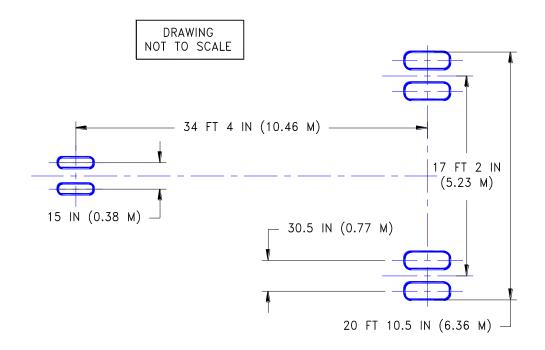
Code B - Medium Strength - CBR 10

Code C - Low Strength - CBR 6

Code D - Ultra Low Strength - CBR 3

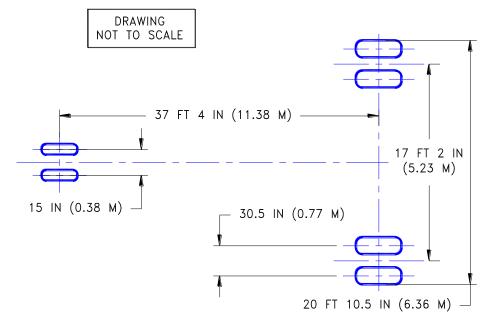
ACN values for rigid pavements are calculated for the following four subgrade categories:

Code A - High Strength,  $k = 552.6 \text{ pci} (150 \text{ MN/m}^3)$ 


Code B - Medium Strength,  $k = 294.7 \text{ pci} (80 \text{ MN/m}^3)$ 

Code C - Low Strength,  $k = 147.4 \text{ pci} (40 \text{ MN/m}^3)$ 

Code D - Ultra Low Strength,  $k = 73.7 \text{ pci} (20 \text{ MN/m}^3)$ 


## 7.2 LANDING GEAR FOOTPRINT

## 7.2.1 Landing Gear Footprint: Model 737-100



|                                   | UNITS | MODEL 737-100         |                       |      |                       |  |  |
|-----------------------------------|-------|-----------------------|-----------------------|------|-----------------------|--|--|
| MAXIMUM DESIGN                    | LB    | 97,800 104,0          |                       | ,000 | 111,000               |  |  |
| TAXI WEIGHT                       | KG    | 44,361                | 47,                   | 174  | 50,349                |  |  |
| PERCENT OF WEIGHT<br>ON MAIN GEAR |       | SEE SECTION 7.4       |                       |      |                       |  |  |
| NOSE GEAR TIRE SIZE               | IN    | 24 x 7.7 – 1<br>14 PR | 10                    | 24   | 4 x 7.7 – 10<br>16 PR |  |  |
| NOSE GEAR TIRE                    | PSI   | 135                   | 135                   |      | 145                   |  |  |
| PRESSURE                          | MPa   | 0.93                  | 0.93                  |      | 1.00                  |  |  |
| MAIN GEAR TIRE SIZE               | IN    | 40 x 14 – 16<br>22 PR | 40 x 14 – 16<br>22 PR |      | 40 x 14 – 16<br>24 PR |  |  |
| MAIN GEAR TIRE                    | PSI   | 138                   | 14                    | 16   | 157                   |  |  |
| PRESSURE                          | MPa   | 0.95                  | 1.                    | 01   | 1.08                  |  |  |

## 7.2.2 Landing Gear Footprint: Model 737-200



|                                      | UNITS           | MODEL 737-200                                    |                    |      |     |                       |         |  |
|--------------------------------------|-----------------|--------------------------------------------------|--------------------|------|-----|-----------------------|---------|--|
| MAXIMUM                              | LB              | 100,800                                          | 104,000            | 110, | 000 | 111,000               | 116,000 |  |
| DESIGN TAXI<br>WEIGHT                | KG              | 45,722                                           | 47,174             | 49,8 | 895 | 50,349                | 52,617  |  |
| PERCENT OF<br>WEIGHT ON<br>MAIN GEAR | SEE SECTION 7.4 |                                                  |                    |      |     |                       |         |  |
| STANDARD TIRES AND BRAKES            |                 |                                                  |                    |      |     |                       |         |  |
| NOSE GEAR<br>TIRE SIZE               | IN              | 24 x 7.7 – 10<br>14 PR<br>24 x 7.7 – 10<br>16 PR |                    |      |     |                       |         |  |
| NOSE GEAR                            | PSI             | 135                                              | 135                | 145  |     | 145                   | 145     |  |
| TIRE PRESSURE                        | MPa             | 0.93                                             | 0.93               | 1.00 |     | 1.00                  | 1.00    |  |
| MAIN GEAR TIRE<br>SIZE               | IN              | 10                                               | x 14 – 16<br>22 PR |      |     | 40 x 14 – 16<br>24 PR |         |  |
| MAIN GEAR TIRE                       | PSI             | 141                                              | 146                | 156  |     | 157                   | 158     |  |
| PRESSURE                             | MPa             | 0.97                                             | 1.01               | 1.(  | 08  | 1.08                  | 1.09    |  |
| HEAVY-DUTY TIRE                      | S AND BR        | AKES                                             |                    |      |     |                       | ·       |  |
| NOSE GEAR<br>TIRE SIZE               | IN              | 24 x 7.7 – 10<br>16 PR                           |                    |      |     |                       |         |  |
| NOSE GEAR                            | PSI             | 145                                              | 145                | 14   | 15  | 145                   | 145     |  |
| TIRE PRESSURE                        | MPa             | 1.00                                             | 1.00               | 1.(  | 00  | 1.00                  | 1.00    |  |
| MAIN GEAR TIRE<br>SIZE               | IN              | C40 X 14 – 21<br>22 PR                           |                    |      |     | C40 X 14<br>24 PR     |         |  |

141

0.97

MAIN GEAR TIRE

PRESSURE

PSI

MPa

146

1.01

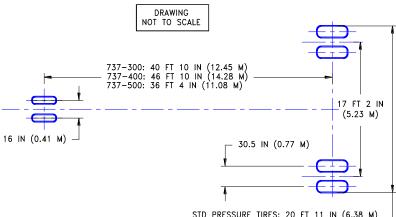
156

1.08

157

1.08

164


1.13

## 7.2.3 Landing Gear Footprint: Model Advanced 737-200

#### NOTE: SEE PREVIOUS PAGE FOR TIRE LAYOUT

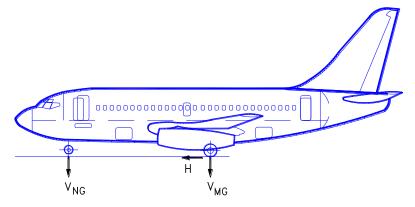
|                                      | UNITS    | MODEL 737-200              |                            |                     |                                                 |         |  |  |
|--------------------------------------|----------|----------------------------|----------------------------|---------------------|-------------------------------------------------|---------|--|--|
| MAXIMUM DESIGN                       | LB       | 116,000                    | 117,500                    | 120,000             | 125,000                                         | 128,600 |  |  |
| TAXI WEIGHT                          | KG       | 52,617                     | 53,297                     | 54,431              | 56,699                                          | 58,332  |  |  |
| PERCENT OF<br>WEIGHT ON MAIN<br>GEAR |          | SEE SECTION 7.4            |                            |                     |                                                 |         |  |  |
| STANDARD TIRES AN                    | ND BRAKE | S                          |                            |                     |                                                 |         |  |  |
| NOSE GEAR TIRE<br>SIZE               | IN       | N 24 x 7.7 – 10<br>16 PR   |                            |                     |                                                 |         |  |  |
| NOSE GEAR TIRE                       | PSI      |                            | 140                        |                     |                                                 |         |  |  |
| PRESSURE                             | MPa      |                            | 0.97                       |                     |                                                 |         |  |  |
| MAIN GEAR TIRE<br>SIZE               | IN       |                            | 40 x 14 – 16<br>24 PR      | (NOT AVAILABLE)     |                                                 |         |  |  |
| MAIN GEAR TIRE                       | PSI      | 166                        | 168                        | 172                 |                                                 |         |  |  |
| PRESSURE                             | MPa      | 1.14                       | 1.16                       | 1.19                |                                                 |         |  |  |
| HEAVY-DUTY TIRES                     | AND BRAK | ES                         |                            |                     |                                                 |         |  |  |
| NOSE GEAR TIRE<br>SIZE               | IN       |                            |                            | : 7.7 – 10<br>I6 PR |                                                 |         |  |  |
| NOSE GEAR TIRE                       | PSI      | 140                        |                            |                     |                                                 |         |  |  |
| PRESSURE                             | MPa      |                            |                            | 0.97                |                                                 |         |  |  |
| MAIN GEAR TIRE<br>SIZE               | IN       | С                          | 40 X 14 – 21<br>24 PR      |                     | C40 X 14 – 21 26 PR OR<br>H40 x 14.5 – 19 24 PR |         |  |  |
| MAIN GEAR TIRE                       | PSI      | 164                        | 166                        | 170                 | 178                                             | 182     |  |  |
| PRESSURE                             | MPa      | 1.13                       | 1.14                       | 1.17                | 1.23                                            | 1.25    |  |  |
| LOW PRESSURE TIR                     | ES       |                            |                            |                     |                                                 |         |  |  |
| NOSE GEAR TIRE<br>SIZE               | IN       | C24.5 x 18.5 –<br>12 12 PR | C24.5 x 18.5 –<br>12 12 PR |                     |                                                 |         |  |  |
| NOSE GEAR TIRE                       | PSI      | 104                        | 104                        | - (NOT AVAILABLE)   |                                                 |         |  |  |
| PRESSURE                             | MPa      | 0.72                       | 0.72                       |                     |                                                 |         |  |  |
| MAIN GEAR TIRE<br>SIZE               | IN       | C40 X 18 - 17<br>20 PR     | C40 X 18 - 17<br>20 PR     |                     |                                                 |         |  |  |
| MAIN GEAR TIRE                       | PSI      | 95                         | 96                         |                     |                                                 |         |  |  |
| PRESSURE                             | MPa      | 0.66                       | 0.66                       |                     |                                                 |         |  |  |

## 7.2.4 Landing Gear Footprint: Model Advanced 737-300, -400, -500



STD PRESSURE TIRES: 20 FT 11 IN (6.38 M) LOW PRESSURE TIRES: 21 FT 0.5 IN (6.41 M)

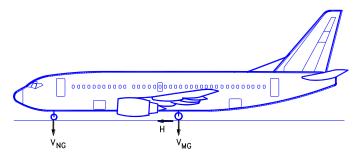
|                                      | UNITS    | 737-300                 |         | 737                          | -400          |                        | 737-500                  |  |  |
|--------------------------------------|----------|-------------------------|---------|------------------------------|---------------|------------------------|--------------------------|--|--|
| MAXIMUM<br>DESIGN TAXI               | LB       | 125,000 TO<br>140,000   | 139,000 | 143,000                      | 144,000       | 150,500                | 116,000 TO<br>134,000    |  |  |
| WEIGHT                               | KG       | 56,699 TO<br>63,503     | 63,049  | 64,864                       | 65,317        | 68,266                 | 52,617 TO<br>60,781      |  |  |
| PERCENT OF<br>WEIGHT ON<br>MAIN GEAR |          | SEE SECTION 7.4         |         |                              |               |                        |                          |  |  |
| STANDARD TIRI                        | ES AND B | RAKES                   |         |                              |               |                        |                          |  |  |
| NOSE GEAR<br>TIRE SIZE               | IN       | 27 x 7.75 – 15<br>10 PR |         |                              |               |                        | 27 x 7.75 – 15<br>12 PR  |  |  |
| NOSE GEAR                            | PSI      | 166                     | 171     | 172                          | 173           | 177                    | 186                      |  |  |
| TIRE<br>PRESSURE                     | MPa      | 1.14                    | 1.18    | 1.19                         | 1.19          | 1.22                   | 1.28                     |  |  |
| MAIN GEAR<br>TIRE SIZE               | IN       | H40 x 14.<br>24 P       |         | H40 x 14.5 – 19 H42<br>26 PR |               | H42 x 16 – 19<br>26 PR | H40 x 14.5 – 19<br>24 PR |  |  |
| MAIN GEAR                            | PSI      | 180 TO 201              | 203     | 209                          | 211           | 185                    | 170 TO 194               |  |  |
| TIRE<br>PRESSURE (1)                 | MPa      | 1.24 TO 1.39            | 1.40    | 1.44                         | 1.45          | 1.28                   | 1.17 TO 1.34             |  |  |
| LOW PRESSURE                         | E TIRES  |                         |         |                              |               |                        |                          |  |  |
| NOSE GEAR<br>TIRE SIZE               | IN       | 24 x 7.75 – 15<br>10 PR |         |                              | 75 – 15<br>PR |                        | 24 x 7.75 – 15<br>12 PR  |  |  |
| NOSE GEAR                            | PSI      | 166                     | 171     | 172                          | 173           | (NA)                   | 186                      |  |  |
| TIRE<br>PRESSURE                     | MPa      | 1.14                    | 1.18    | 1.19                         | 1.19          | (NA)                   | 1.28                     |  |  |
| MAIN GEAR<br>TIRE SIZE               | IN       | H42 X 16 – 19<br>24 PR  |         |                              | (NA)          | H42 X 16 – 19<br>24 PR |                          |  |  |
| MAIN GEAR                            | PSI      | 152 TO 170              | 171     | 176                          | 177           | (NA)                   | 144 TO 164               |  |  |
| TIRE<br>PRESSURE (1)                 | MPa      | 1.05 TO 1.17            | 1.18    | 1.21                         | 1.22          | (NA)                   | 0.99 TO 1.13             |  |  |


**NOTE:** 1. SEE SEC 7.12 - TIRE INFLATION CHART, FOR TIRE PRESSURES AT INTERMEDIATE WEIGHTS.

November 2023

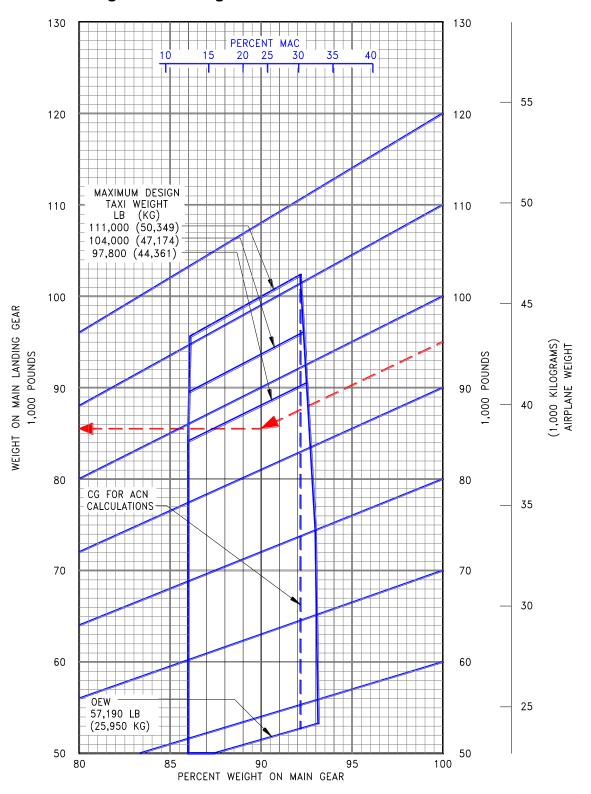
### 7.3 MAXIMUM PAVEMENT LOADS

#### 7.3.1 Maximum Pavement Loads: Model 737-100, -200

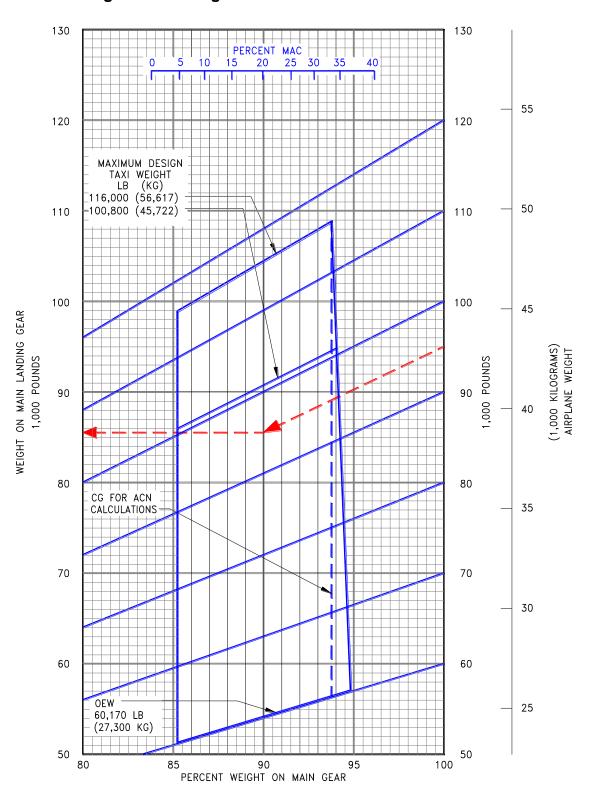

- $V_{NG}$  = MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER OF GRAVITY
- $V_{MG}$  = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY
- H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING
- NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM DESIGN TAXI WEIGHT



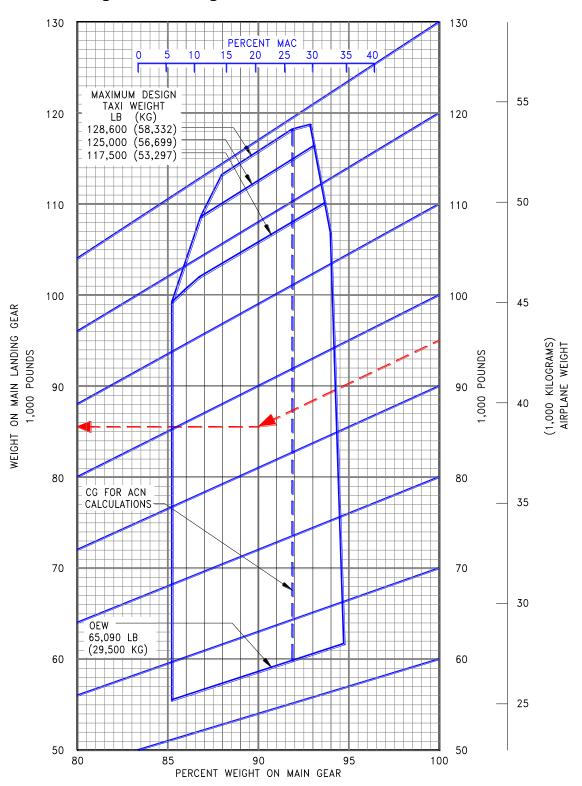
|                   |       |                                 |                               | V <sub>NG</sub>                                     | V <sub>MG</sub> PER                           | H PE                                                 | ER STRUT                                     |
|-------------------|-------|---------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------|
| AIRPLANE<br>MODEL | UNITS | MAX<br>DESIGN<br>TAXI<br>WEIGHT | STATIC AT<br>MOST FWD<br>C.G. | STATIC +<br>BRAKING 10<br>FT/SEC <sup>2</sup> DECEL | STRUT AT<br>MAX LOAD<br>AT STATIC<br>AFT C.G. | STEADY<br>BRAKING<br>10 FT/SEC <sup>2</sup><br>DECEL | AT<br>INSTANTANEO<br>US BRAKING<br>(μ = 0.8) |
| 737-100           | LB    | 97,800                          | 14,000                        | 21,500                                              | 45,200                                        | 15,100                                               | 36,200                                       |
|                   | KG    | 44,362                          | 6,350                         | 9,752                                               | 20,503                                        | 6,849                                                | 16,420                                       |
| 737-100,-200      | LB    | 104,000                         | 18,200                        | 24,000                                              | 48,000                                        | 16,100                                               | 38,400                                       |
|                   | KG    | 47,174                          | 8,255                         | 10,886                                              | 21,773                                        | 7,303                                                | 17,418                                       |
| 737-200,200       | LB    | 111,000                         | 17,700                        | 25,600                                              | 51,000                                        | 17,300                                               | 40,800                                       |
|                   | KG    | 50,349                          | 8,029                         | 11,612                                              | 23,133                                        | 7,847                                                | 18,507                                       |
| 737-200, 200C     | LB    | 116,000                         | 16,500                        | 25,200                                              | 52,800                                        | 18,000                                               | 42,200                                       |
|                   | KG    | 52,617                          | 7,484                         | 11,431                                              | 23,950                                        | 8,165                                                | 19,142                                       |
| 737-200, 200C     | LB    | 117,500                         | 15,800                        | 23,500                                              | 54,500                                        | 18,200                                               | 43,600                                       |
|                   | KG    | 53,298                          | 7,167                         | 10,660                                              | 24,721                                        | 8,255                                                | 19,777                                       |
| 737-200           | LB    | 100,800                         | 14,700                        | 21,400                                              | 46,800                                        | 13,800                                               | 37,500                                       |
|                   | KG    | 45,723                          | 6,668                         | 9,707                                               | 21,228                                        | 6,260                                                | 17,010                                       |
| 737-200           | LB    | 110,000                         | 16,100                        | 24,000                                              | 51,000                                        | 17,000                                               | 40,800                                       |
|                   | KG    | 49,896                          | 7,303                         | 10,886                                              | 23,133                                        | 7,711                                                | 18,507                                       |
| 737-200, 200C     | LB    | 120,000                         | 16,500                        | 24,500                                              | 55,600                                        | 16,800                                               | 44,500                                       |
|                   | KG    | 54,432                          | 7,484                         | 11,113                                              | 25,220                                        | 7,620                                                | 20,185                                       |
| 737-200, 200C     | LB    | 125,000                         | 16,400                        | 24,700                                              | 57,900                                        | 19,400                                               | 46,300                                       |
|                   | KG    | 56,700                          | 7,439                         | 11,204                                              | 26,263                                        | 8,800                                                | 21,002                                       |
| 737-200, 200C     | LB    | 128,600                         | 14,200                        | 22,800                                              | 59,100                                        | 20,000                                               | 47,300                                       |
|                   | KG    | 58,333                          | 6,441                         | 10,342                                              | 26,808                                        | 9,072                                                | 21,455                                       |


#### 7.3.2 Maximum Pavement Loads: Model 737-300, -400, -500

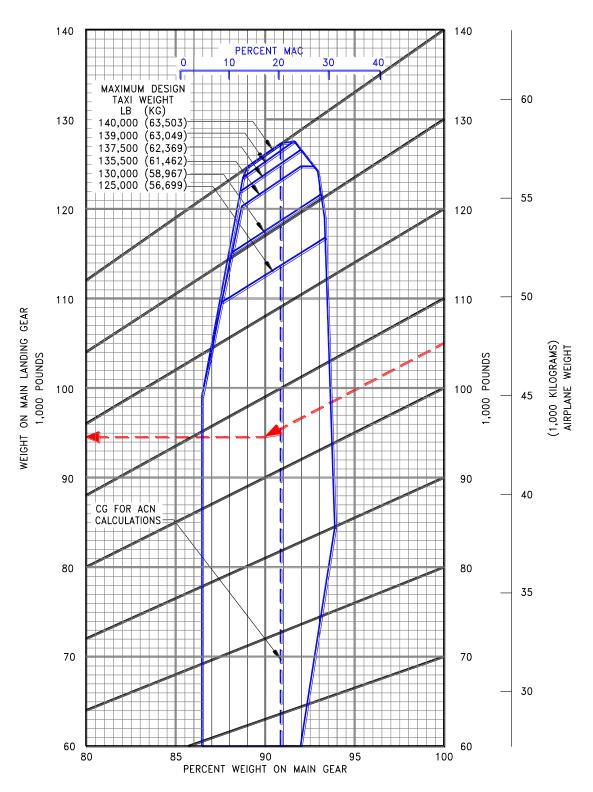
- $V_{\text{NG}} = \underset{OF \ GRAVITY}{\text{MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER}$
- $V_{MG}$  = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY
- H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING
- NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM DESIGN TAXI WEIGHT



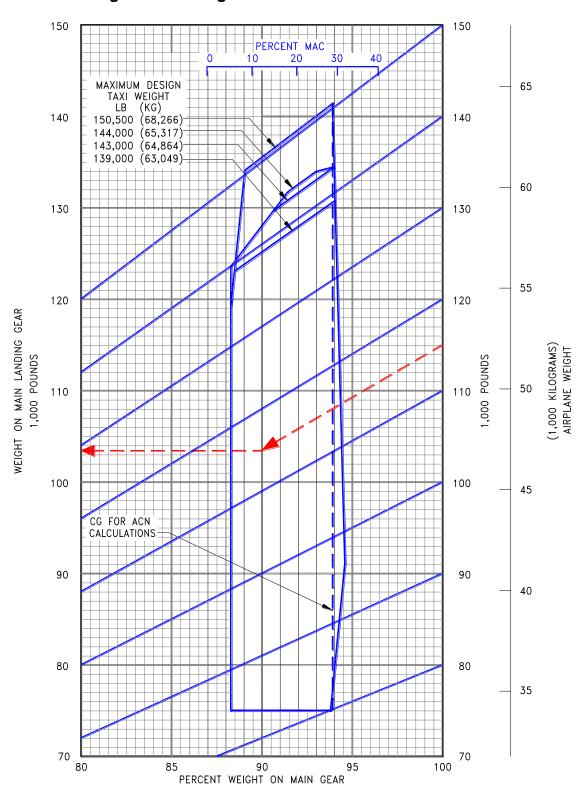

|                   |       |                                 |                               | V <sub>NG</sub>                                     | V <sub>MG</sub> PER                           | H PER STRUT                                          |                                             |  |
|-------------------|-------|---------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------------------------|--|
| AIRPLANE<br>MODEL | UNITS | MAX<br>DESIGN<br>TAXI<br>WEIGHT | STATIC AT<br>MOST FWD<br>C.G. | STATIC +<br>BRAKING 10<br>FT/SEC <sup>2</sup> DECEL | STRUT AT<br>MAX LOAD<br>AT STATIC<br>AFT C.G. | STEADY<br>BRAKING<br>10 FT/SEC <sup>2</sup><br>DECEL | AT<br>INSTANTANEOUS<br>BRAKING<br>(μ = 0.8) |  |
| 737-300           | LB    | 125,000                         | 154,000                       | 22,700                                              | 58,300                                        | 19,400                                               | 46,600                                      |  |
|                   | KG    | 56,700                          | 69,854                        | 10,297                                              | 26,445                                        | 8,800                                                | 21,138                                      |  |
| 737-300           | LB    | 130,500                         | 15,300                        | 23,100                                              | 60,600                                        | 20,300                                               | 48,500                                      |  |
|                   | KG    | 59,194                          | 6,940                         | 10,478                                              | 27,488                                        | 9,208                                                | 21,999                                      |  |
| 737-300           | LB    | 135,500                         | 15,200                        | 23,400                                              | 62,200                                        | 21,000                                               | 49,800                                      |  |
|                   | KG    | 61,462                          | 6,895                         | 10,614                                              | 28,214                                        | 9,526                                                | 22,589                                      |  |
| 737-300           | LB    | 137,500                         | 15,600                        | 24,300                                              | 63,200                                        | 21,400                                               | 50,500                                      |  |
|                   | KG    | 62,370                          | 7,076                         | 11,022                                              | 28,667                                        | 9,707                                                | 22,907                                      |  |
| 737-300           | LB    | 139,000                         | 15,600                        | 24,400                                              | 63,600                                        | 21,600                                               | 50,900                                      |  |
|                   | KG    | 63,050                          | 7,076                         | 11,068                                              | 28,849                                        | 9,798                                                | 23,088                                      |  |
| 737-300           | LB    | 140,000                         | 14,500                        | 23,400                                              | 63,600                                        | 21,700                                               | 50,900                                      |  |
|                   | KG    | 63,504                          | 6,577                         | 10,614                                              | 28,849                                        | 9,843                                                | 23,088                                      |  |
| 737-400           | LB    | 139,000                         | 15,900                        | 23,000                                              | 64,900                                        | 21,600                                               | 51,900                                      |  |
|                   | KG    | 63,050                          | 7,212                         | 10,433                                              | 29,438                                        | 9,798                                                | 23,542                                      |  |
| 737-400           | LB    | 143,000                         | 16,000                        | 20,800                                              | 67,100                                        | 22,200                                               | 53,700                                      |  |
|                   | KG    | 64,864                          | 7,258                         | 9,435                                               | 30,436                                        | 10,070                                               | 24,358                                      |  |
| 737-400           | LB    | 144,000                         | 12,200                        | 19,700                                              | 66,900                                        | 22,400                                               | 56,500                                      |  |
|                   | KG    | 65,318                          | 5,534                         | 8,936                                               | 30,346                                        | 10,161                                               | 25,628                                      |  |
| 737-400           | LB    | 150,500                         | 16,500                        | 24,400                                              | 70,600                                        | 23,400                                               | 56,500                                      |  |
|                   | KG    | 68,266                          | 7,484                         | 11,068                                              | 32,024                                        | 10,614                                               | 25,628                                      |  |
| 737-500           | LB    | 116,000                         | 17,100                        | 25,000                                              | 53,700                                        | 18,000                                               | 42,900                                      |  |
|                   | KG    | 52,617                          | 7,757                         | 11,340                                              | 24,358                                        | 8,165                                                | 19,459                                      |  |
| 737-500           | LB    | 125,000                         | 17,300                        | 25,800                                              | 57,700                                        | 19,400                                               | 46,200                                      |  |
|                   | KG    | 56,700                          | 7,847                         | 11,703                                              | 26,173                                        | 8,800                                                | 20,956                                      |  |
| 737-500           | LB    | 134,000                         | 17,300                        | 26,400                                              | 61,800                                        | 20,800                                               | 49,400                                      |  |
|                   | KG    | 60,781                          | 7,847                         | 11,975                                              | 28,032                                        | 9,435                                                | 22,407                                      |  |


#### 7.4 LANDING GEAR LOADING ON PAVEMENT

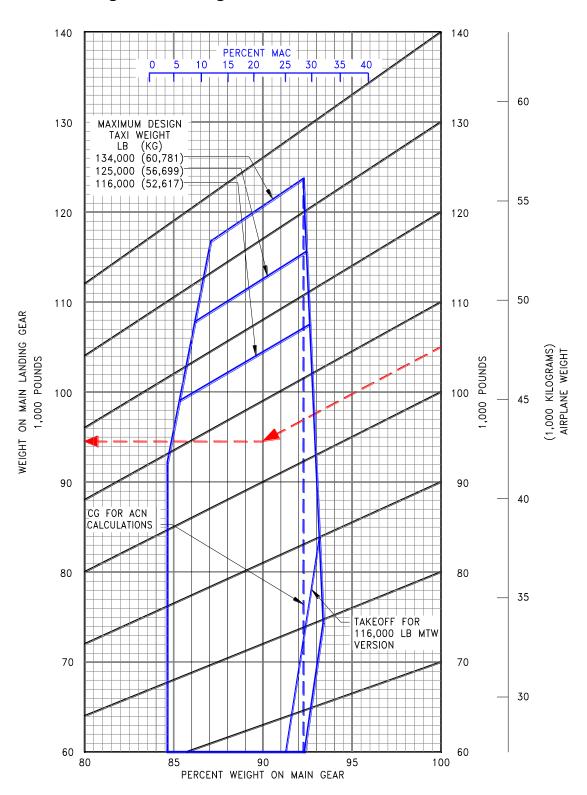



### 7.4.1 Landing Gear Loading on Pavement: Model 737-100




7.4.2 Landing Gear Loading on Pavement: Model 737-200




7.4.3 Landing Gear Loading on Pavement: Model 737-200 Advanced



7.4.4 Landing Gear Loading on Pavement: Model 737-300



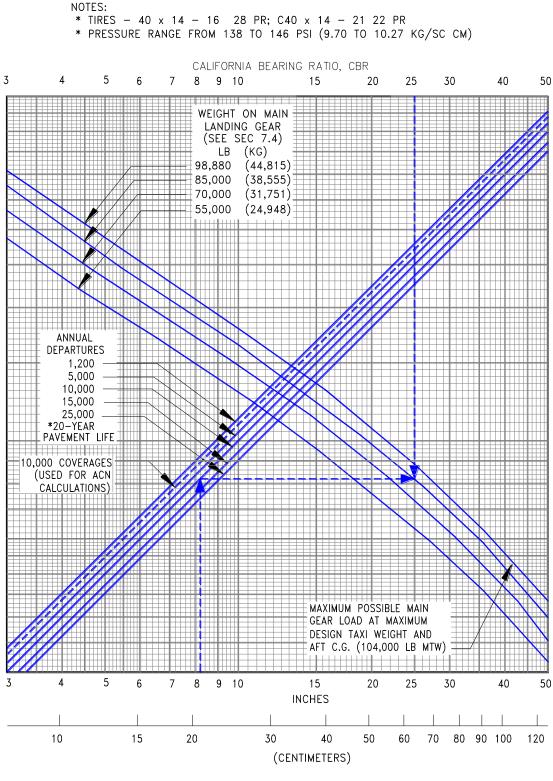
7.4.5 Landing Gear Loading on Pavement: Model 737-400



7.4.6 Landing Gear Loading on Pavement: 737-500

### 7.5 FLEXIBLE PAVEMENT REQUIREMENTS - U.S. ARMY CORPS OF ENGINEERS METHOD S-77-1 AND FAA DESIGN METHOD

The following flexible-pavement design chart presents the data of five incremental maingear loads at the minimum tire pressure required at the maximum design taxi weight.

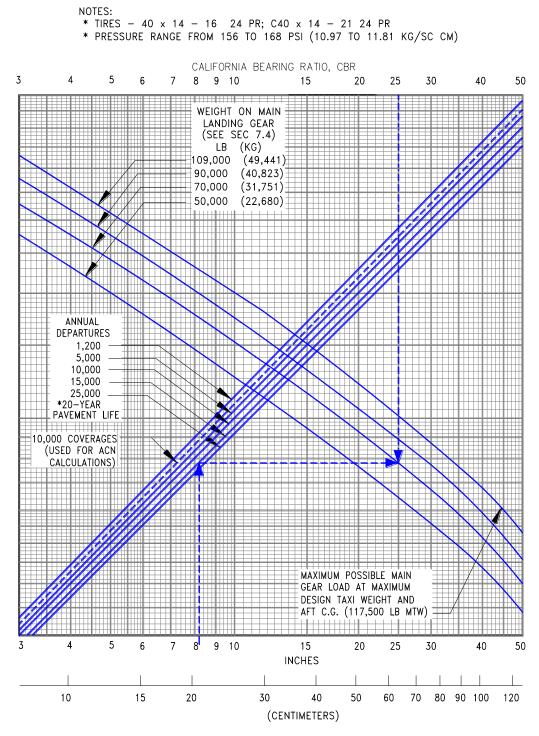

In the example shown in the next page, for a CBR of 25 and an annual departure level of 10,000, the required flexible pavement thickness for an airplane with a main gear loading of 85,000 pounds is 8.2 inches. Similar examples are shown in succeeding charts.

The line showing 10,000 coverages is used for ACN calculations (see Section 7.10).

The FAA design method uses a similar procedure using total airplane weight instead of weight on the main landing gears. The equivalent main gear loads for a given airplane weight could be calculated from Section 7.4. For the flexible pavement design refer to the FAA AC 150/5320-6 "Airport Pavement Design and Evaluation" and pavement design program FAARFIELD. Both are available on the FAA website:

FAA AC 150/5320-6F: https://www.faa.gov/airports/resources/advisory\_circulars/ FAARFIELD: https://www.faa.gov/airports/engineering/design\_software/

#### 7.5.1 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-100, -200 to 104,000 LB (47,170 KG) MTW

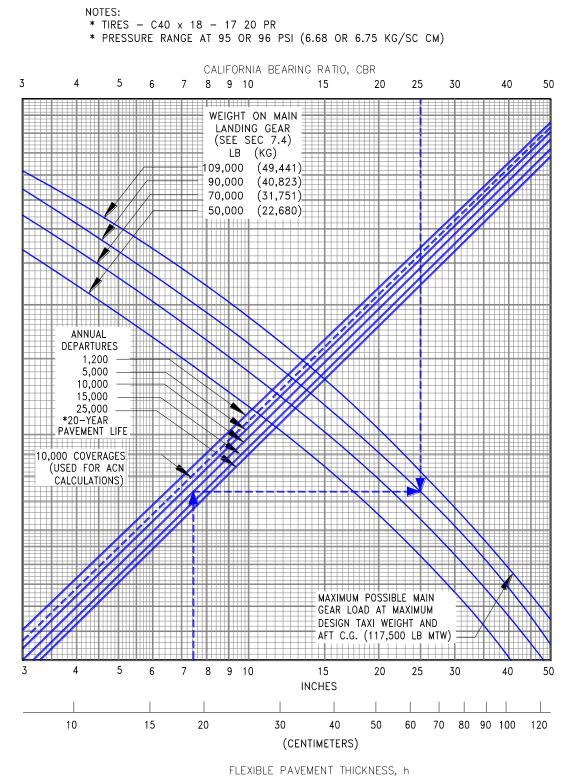



FLEXIBLE PAVEMENT THICKNESS, h

#### D6-58325-6

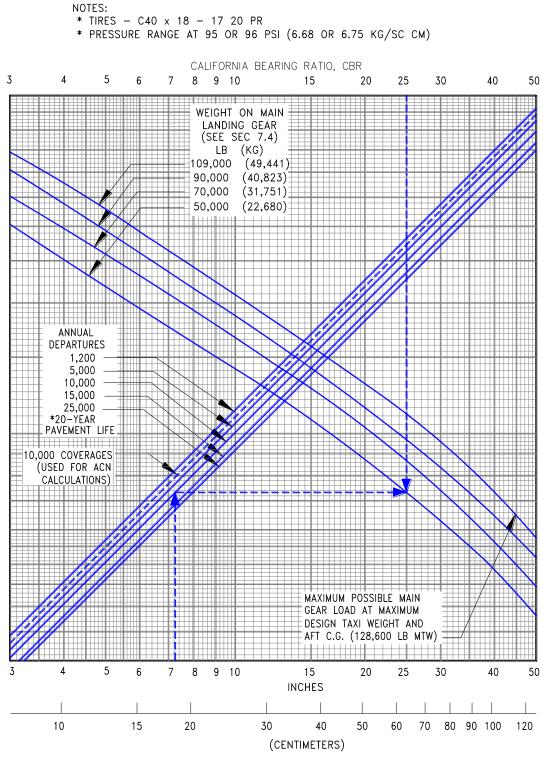
November 2023

#### 7.5.2 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-100, -200, -200 ADV at 110,000 to 117,500 LB (49,895 to 53,297 KG) MTW




FLEXIBLE PAVEMENT THICKNESS, h

D6-58325-6


November 2023

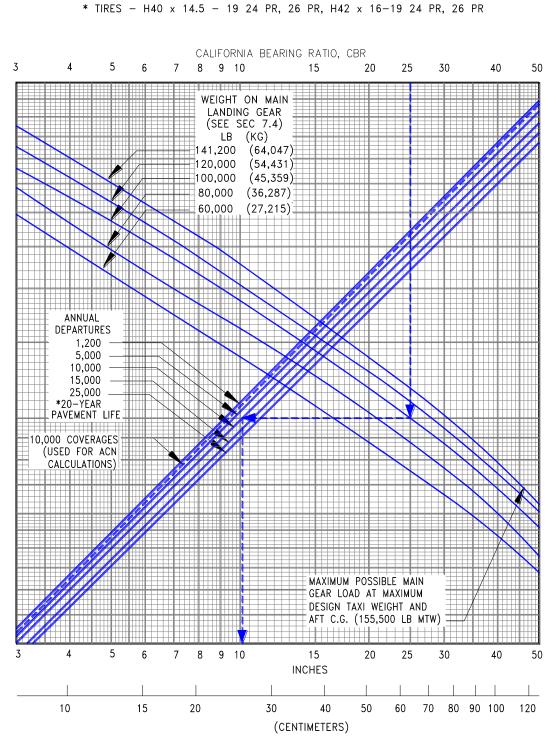
7.5.3 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-200 ADV at 116,000 to 117,500 LB (52,617 to 53,297 KG) MTW, Low Pressure Tires



November 2023

#### 7.5.4 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-200 ADV at 120,000 to 128,600 LB (54,431 to 58,332 KG) MTW




FLEXIBLE PAVEMENT THICKNESS, h

#### D6-58325-6

November 2023

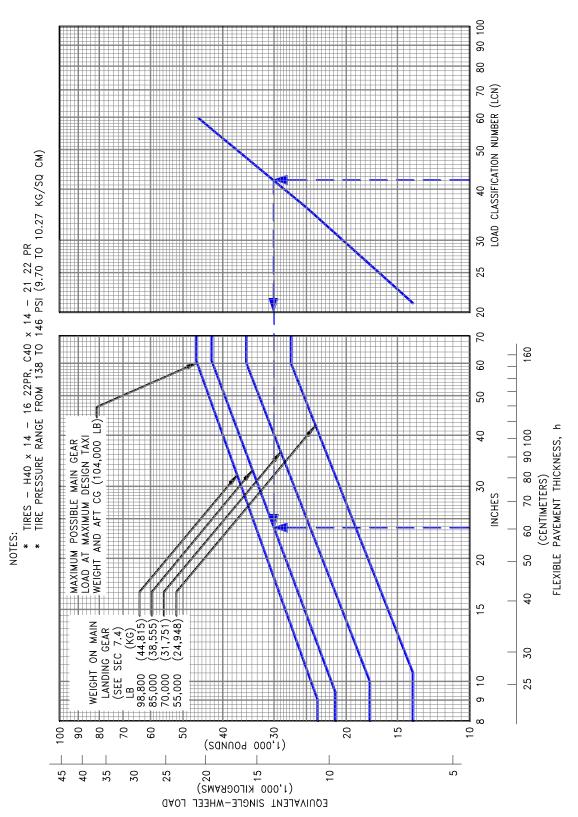
#### 7.5.5 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-300, -400, -500

NOTE:

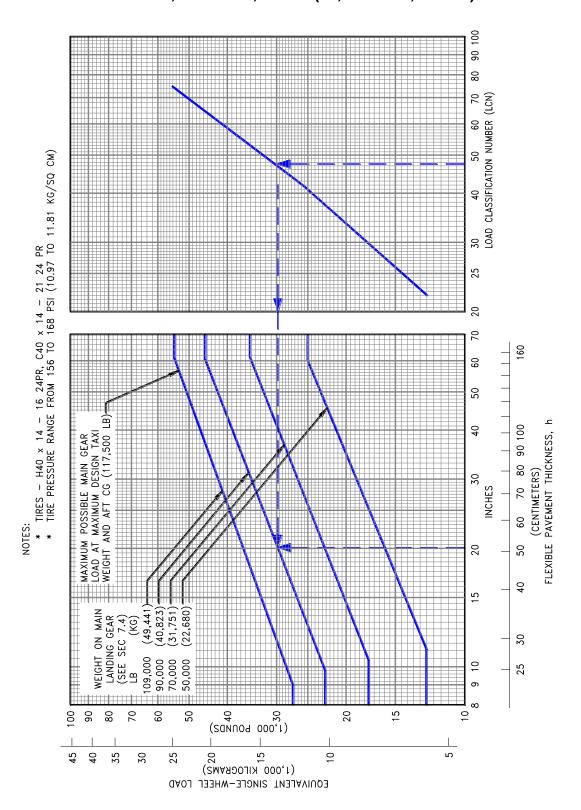


FLEXIBLE PAVEMENT THICKNESS, h

#### D6-58325-6


November 2023

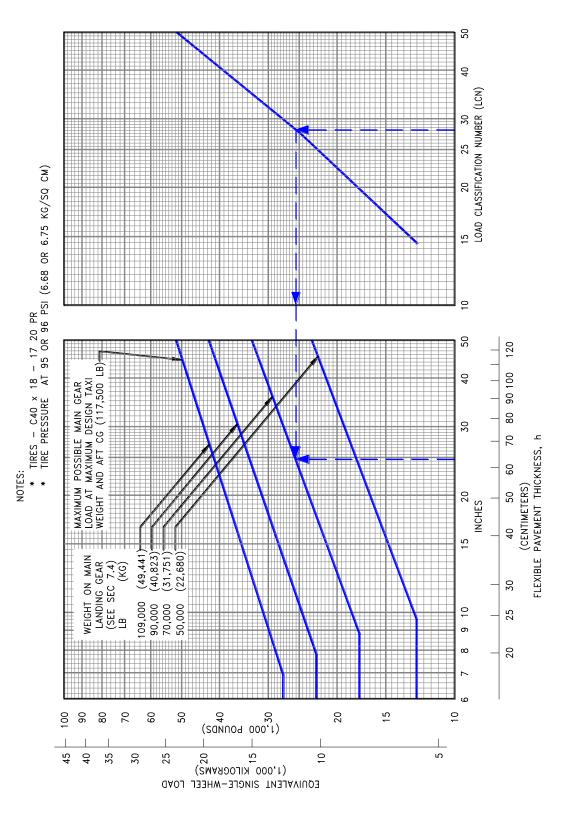
## 7.6 FLEXIBLE PAVEMENT REQUIREMENTS - LCN CONVERSION


To determine the airplane weight that can be accommodated on a particular flexible pavement, both the Load Classification Number (LCN) of the pavement and the thickness must be known.

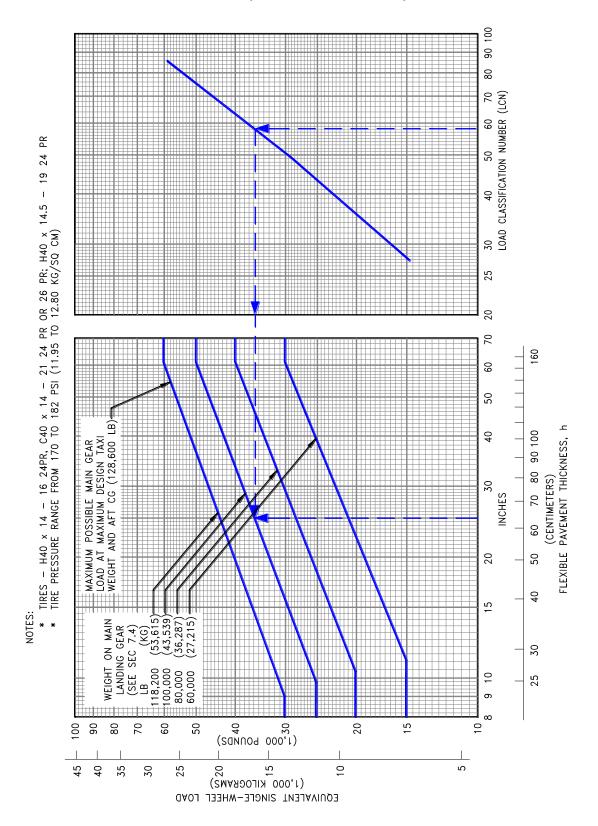
In the example shown on the next page, flexible pavement thickness is shown at 23.75 in. with an LCN of 42. For these conditions, the apparent maximum allowable weight permissible on the main landing gear is 85,000 lb for an airplane with 138 to 146-psi main gear tires. Similar examples are shown in succeeding charts.

**Note:** If the resultant aircraft LCN is not more that 10% above the published pavement LCN, the bearing strength of the pavement can be considered sufficient for unlimited use by the airplane. The figure 10% has been chosen as representing the lowest degree of variation in LCN that is significant (reference: <u>ICAO</u> <u>Aerodrome Manual</u>, Part 2, "Aerodrome Physical Characteristics," Chapter 4, Paragraph 4.1.5.7v, 2nd Edition dated 1965).

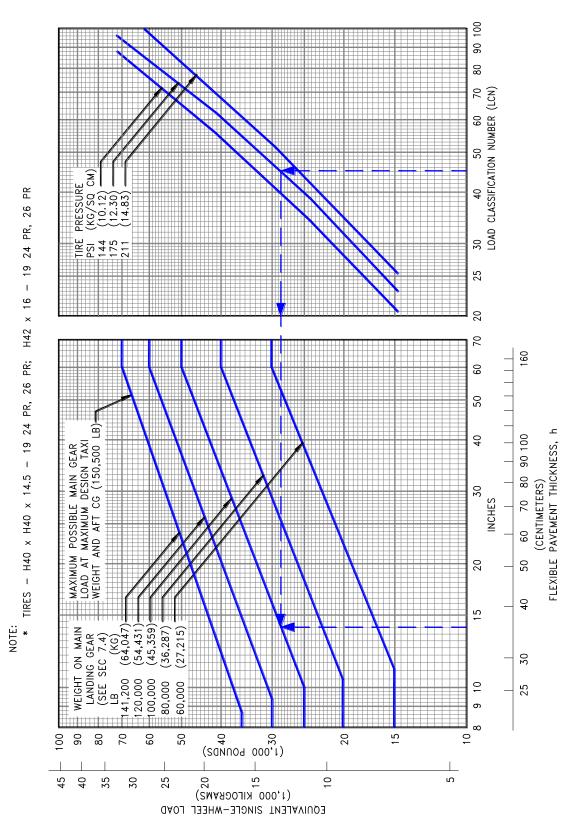



7.6.1 Flexible Pavement Requirements - LCN Method: Model 737-100, -200 at 140,000 LB (47,174 KG) MTW




7.6.2 Flexible Pavement Requirements - LCN Method: Model 737-100, -200, -200 ADV at 110,000 to 117,500 LB (49,895 to 53,297 KG) MTW

D6-58325-6


7.6.3 Flexible Pavement Requirements - LCN Method: Model 737-200 ADV at 116,000 to 117,500 LB (52,617 to 53,297 KG) MTW, Low Pressure Tires



November 2023

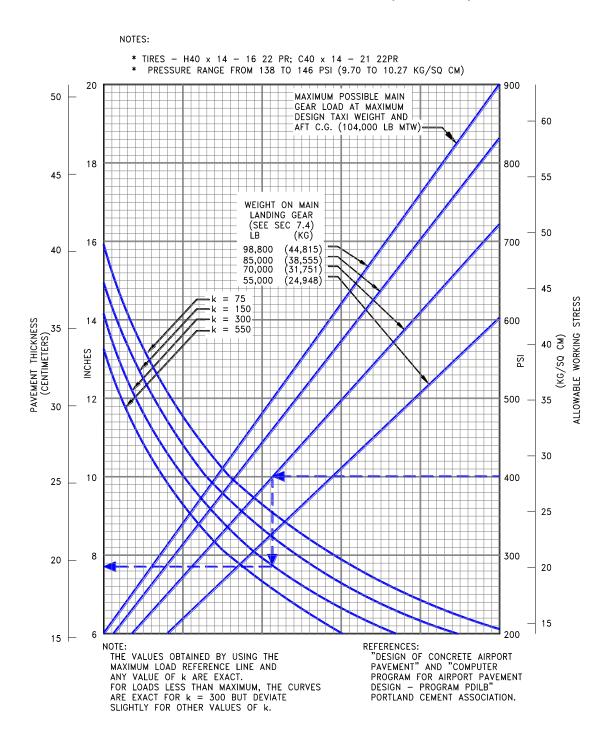


7.6.4 Flexible Pavement Requirements - LCN Method: Model 737-200 ADV at 120,000 to 128,600 LB (54,431 to 58,332 KG) MTW



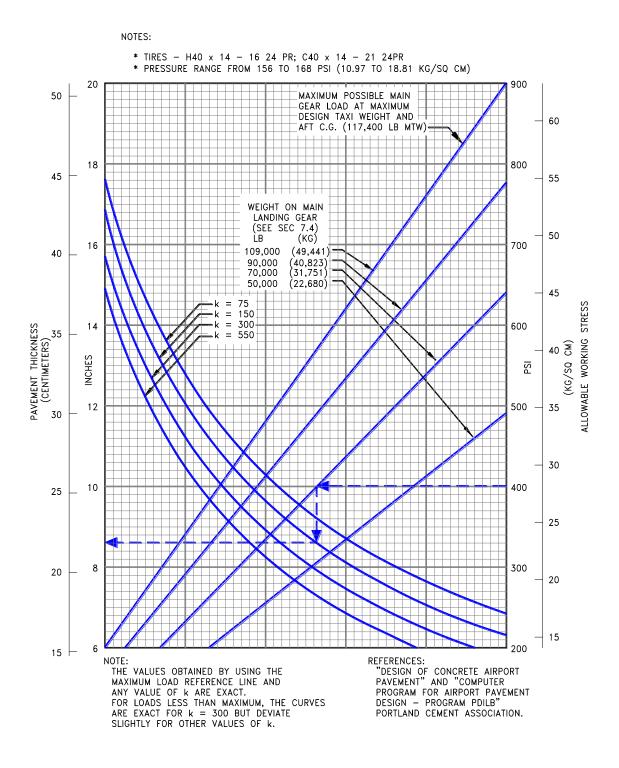
7.6.5 Flexible Pavement Requirements - LCN Method: Model 737-300, -400, -500

### 7.7 RIGID PAVEMENT REQUIREMENTS - PORTLAND CEMENT ASSOCIATION DESIGN METHOD

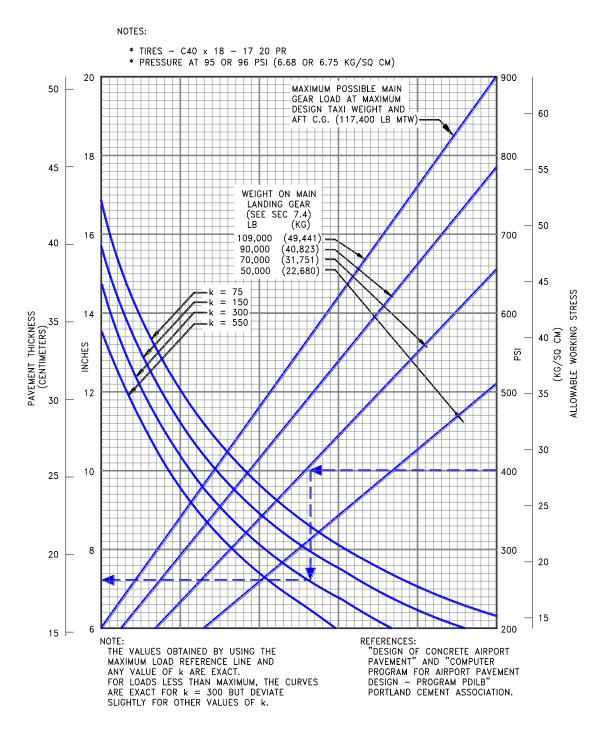

The Portland Cement Association method of calculating rigid pavement requirements is based on the computerized version of "Design of Concrete Airport Pavement" (Portland Cement Association, 1965) as described in XP6705-2, "Computer Program for Airport Pavement Design" by Robert G. Packard, Portland Cement Association, 1968.

The following rigid pavement design chart presents the data for five incremental main gear loads at the minimum tire pressure required at the maximum design taxi weight.

In the example shown on the next page, for an allowable working stress of 400 psi, a main gear load of 70,000 lb, and a subgrade strength (k) of 300, the required rigid pavement thickness is 7.7 in. Similar examples are shown in succeeding charts.

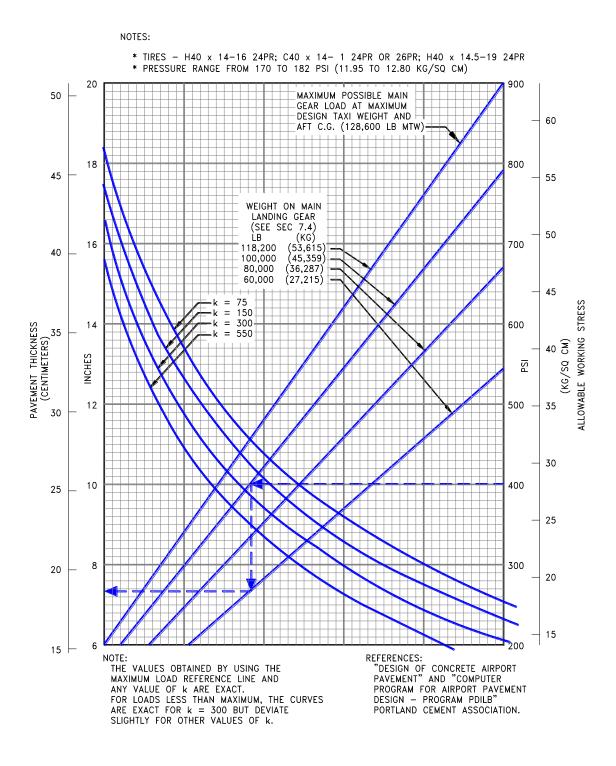

D6-58325-6

#### 7.7.1 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-100, 200 to 104,000 LB (47,170KG) MTW



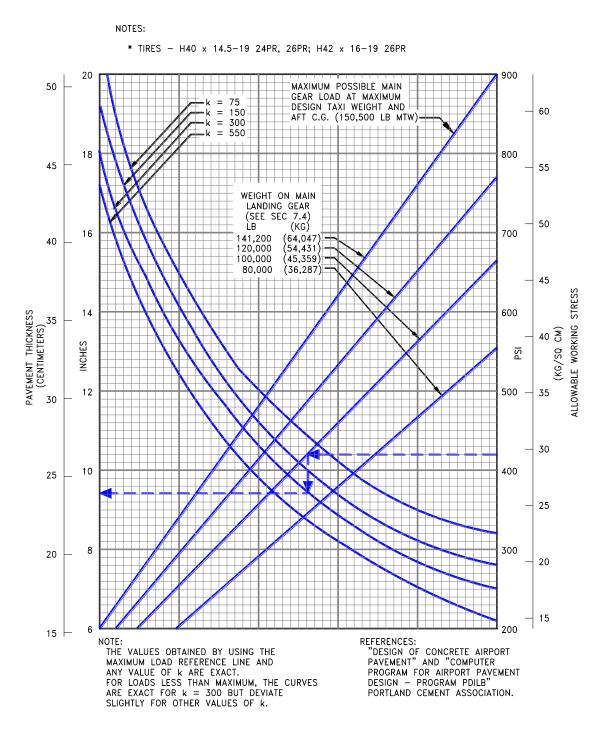

D6-58325-6

#### 7.7.2 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-100, -200, -200ADV at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW



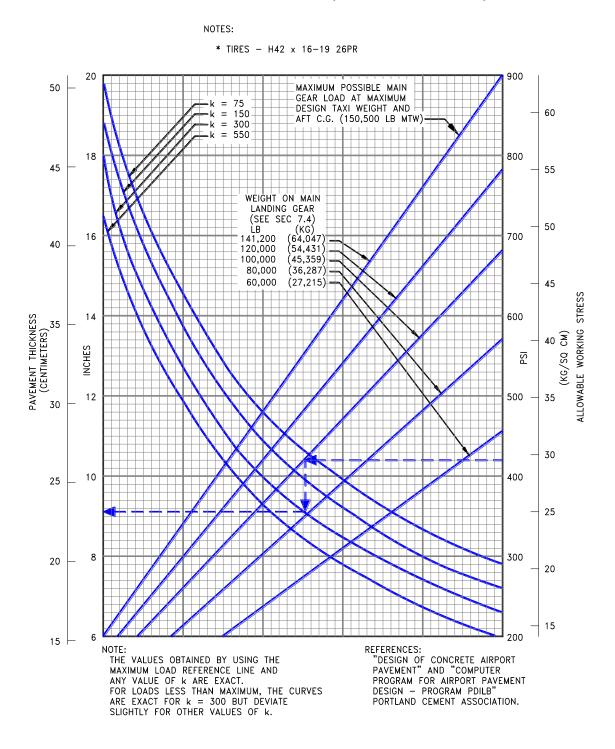

#### 7.7.3 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-200ADV at 116,000 to 117,500 LB (52,610 to 53,290 KG) MTW (LOW PRESSURE TIRES)




D6-58325-6

#### 7.7.4 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-200ADV at 120,000 to 128,000 LB (54,430 to 58,330 KG) MTW




D6-58325-6

## 7.7.5 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-300, -400, -500



D6-58325-6

#### 7.7.6 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-300, -400, -500 (Low Pressure Tires)



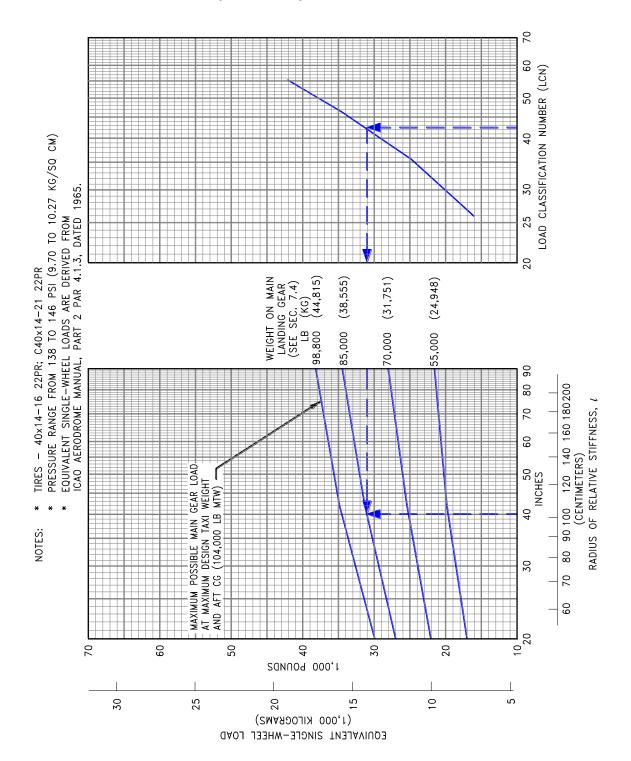
#### D6-58325-6

### 7.8 RIGID PAVEMENT REQUIREMENTS - LCN CONVERSION

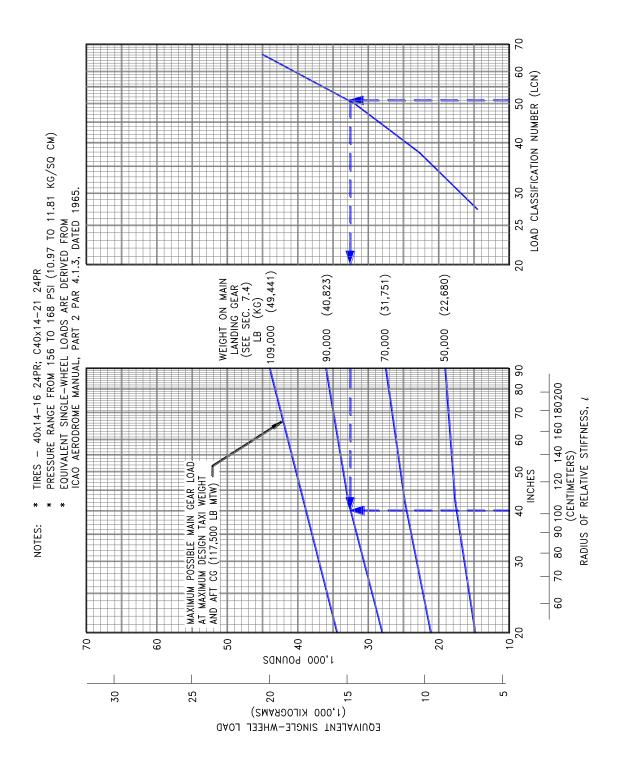
To determine the airplane weight that can be accommodated on a particular rigid pavement, both the LCN of the pavement and the radius of relative stiffness (i) of the pavement must be known.

In the examples shown in Section 7.8.2 for a rigid pavement with a radius of relative stiffness of 47 with an LCN of 91, and 7.8.3 for a rigid pavement with a radius of relative stiffness of 47 with an LCN of 87, the apparent maximum allowable weight permissible on the main landing gear is 600,000 lb (272,155 kg) for an airplane with 221-psi (15.54 kg/cm<sup>2</sup>) main tires.

**Note:** If the resultant aircraft LCN is not more that 10% above the published pavement LCN, the bearing strength of the pavement can be considered sufficient for unlimited use by the airplane. The figure 10% has been chosen as representing the lowest degree of variation in LCN that is significant (reference: <u>ICAO</u> <u>Aerodrome Design Manual</u>, Part 2, "Aerodrome Physical Characteristics," Chapter 4, Paragraph 4.1.5.7v, 2nd Edition dated 1965).


# 7.8.1 Radius of Relative Stiffness (Reference: Portland Cement Association)

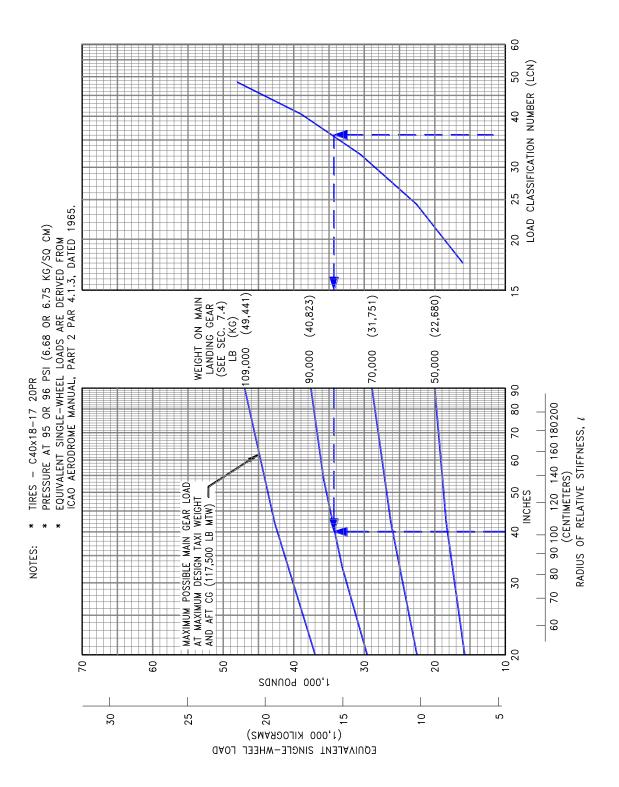
RADIUS OF RELATIVE STIFFNESS (*i*) VALUES IN INCHES


$$\mathbf{\ell} = \sqrt[4]{\frac{\text{Ed}^3}{12(1-\mu^2)k}} = 24.1652 \sqrt[4]{\frac{\text{d}^3}{k}}$$

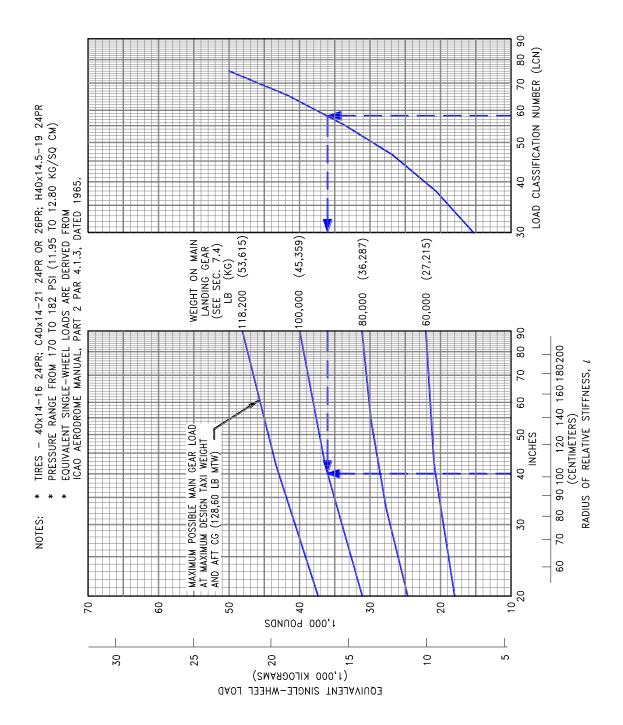
WHERE: E = YOUNG'S MODULUS OF ELASTICITY = 4 x 10<sup>6</sup> psi k = SUBGRADE MODULUS, LB PER CU IN d = RIGID PAVEMENT THICKNESS, IN  $\mu$  = POISSON'S RATIO = 0.15

| d    | k =<br>75 | k =<br>100 | k =<br>150 | k =<br>200 | k =<br>250 | k =<br>300 | k =<br>350 | k =<br>400 | k =<br>500 | k =<br>550 |
|------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 6.0  | 31.48     | 29.29      | 26.47      | 24.63      | 23.30      | 22.26      | 21.42      | 20.71      | 19.59      | 19.13      |
| 6.5  | 33.42     | 31.10      | 28.11      | 26.16      | 24.74      | 23.63      | 22.74      | 21.99      | 20.80      | 20.31      |
| 7.0  | 35.33     | 32.88      | 29.71      | 27.65      | 26.15      | 24.99      | 24.04      | 23.25      | 21.99      | 21.47      |
| 7.5  | 37.21     | 34.63      | 31.29      | 29.12      | 27.54      | 26.31      | 25.32      | 24.49      | 23.16      | 22.61      |
| 8.0  | 39.06     | 36.35      | 32.84      | 30.56      | 28.91      | 27.62      | 26.57      | 25.70      | 24.31      | 23.73      |
| 8.5  | 40.87     | 38.04      | 34.37      | 31.99      | 30.25      | 28.90      | 27.81      | 26.90      | 25.44      | 24.84      |
| 9.0  | 42.66     | 39.70      | 35.88      | 33.39      | 31.57      | 30.17      | 29.03      | 28.07      | 26.55      | 25.93      |
| 9.5  | 44.43     | 41.35      | 37.36      | 34.77      | 32.88      | 31.42      | 30.23      | 29.24      | 27.65      | 27.00      |
| 10.0 | 46.17     | 42.97      | 38.83      | 36.13      | 34.17      | 32.65      | 31.41      | 30.38      | 28.73      | 28.06      |
| 10.5 | 47.89     | 44.57      | 40.27      | 37.48      | 35.44      | 33.87      | 32.58      | 31.52      | 29.81      | 29.10      |
| 11.0 | 49.59     | 46.15      | 41.70      | 38.81      | 36.70      | 35.07      | 33.74      | 32.63      | 30.86      | 30.14      |
| 11.5 | 51.27     | 47.72      | 43.12      | 40.12      | 37.95      | 36.26      | 34.89      | 33.74      | 31.91      | 31.16      |
| 12.0 | 52.94     | 49.26      | 44.51      | 41.43      | 39.18      | 37.43      | 36.02      | 34.83      | 32.94      | 32.17      |
| 12.5 | 54.58     | 50.80      | 45.90      | 42.71      | 40.40      | 38.60      | 37.14      | 35.92      | 33.97      | 33.17      |
| 13.0 | 56.21     | 52.31      | 47.27      | 43.99      | 41.60      | 39.75      | 38.25      | 36.99      | 34.98      | 34.16      |
| 13.5 | 57.83     | 53.81      | 48.63      | 45.25      | 42.80      | 40.89      | 39.34      | 38.05      | 35.99      | 35.14      |
| 14.0 | 59.43     | 55.30      | 49.97      | 46.50      | 43.98      | 42.02      | 40.43      | 39.10      | 36.98      | 36.11      |
| 14.5 | 61.01     | 56.78      | 51.30      | 47.74      | 45.15      | 43.14      | 41.51      | 40.15      | 37.97      | 37.07      |
| 15.0 | 62.58     | 58.24      | 52.62      | 48.97      | 46.32      | 44.25      | 42.58      | 41.18      | 38.95      | 38.03      |
| 15.5 | 64.14     | 59.69      | 53.93      | 50.19      | 47.47      | 45.35      | 43.64      | 42.21      | 39.92      | 38.98      |
| 16.0 | 65.69     | 61.13      | 55.23      | 51.40      | 48.61      | 46.45      | 44.69      | 43.22      | 40.88      | 39.92      |
| 16.5 | 67.22     | 62.55      | 56.52      | 52.60      | 49.75      | 47.53      | 45.73      | 44.23      | 41.83      | 40.85      |
| 17.0 | 68.74     | 63.97      | 57.80      | 53.79      | 50.87      | 48.61      | 46.77      | 45.23      | 42.78      | 41.77      |
| 17.5 | 70.25     | 65.38      | 59.07      | 54.97      | 51.99      | 49.68      | 47.80      | 46.23      | 43.72      | 42.69      |
| 18.0 | 71.75     | 66.77      | 60.34      | 56.15      | 53.10      | 50.74      | 48.82      | 47.22      | 44.65      | 43.60      |
| 19.0 | 74.72     | 69.54      | 62.83      | 58.47      | 55.30      | 52.84      | 50.84      | 49.17      | 46.50      | 45.41      |
| 20.0 | 77.65     | 72.26      | 65.30      | 60.77      | 57.47      | 54.91      | 52.83      | 51.10      | 48.33      | 47.19      |
| 21.0 | 80.55     | 74.96      | 67.73      | 63.03      | 59.61      | 56.95      | 54.80      | 53.00      | 50.13      | 48.95      |
| 22.0 | 83.41     | 77.62      | 70.14      | 65.27      | 61.73      | 58.98      | 56.75      | 54.88      | 51.91      | 50.68      |
| 23.0 | 86.23     | 80.25      | 72.51      | 67.48      | 63.82      | 60.98      | 58.67      | 56.74      | 53.67      | 52.40      |
| 24.0 | 89.03     | 82.85      | 74.86      | 69.67      | 65.89      | 62.95      | 60.57      | 58.58      | 55.41      | 54.10      |
| 25.0 | 91.80     | 85.43      | 77.19      | 71.84      | 67.94      | 64.91      | 62.46      | 60.41      | 57.13      | 55.78      |




7.8.2 Rigid Pavement Requirements - LCN Conversion: Model 737-100, -200 to 104,000 LB (47,170 KG) MTW




7.8.3 Rigid Pavement Requirements - LCN Conversion: Model 737-100, - 200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW

D6-58325-6

7.8.4 Rigid Pavement Requirements - LCN Conversion: Model 737-200ADV at 116,000 to 117,500 LB (52,610 to 53,290 KG) MTW (Low Pressure Tires)



November 2023



## 7.8.5 Rigid Pavement Requirements - LCN Conversion: Model 737-200ADV at 120,000 to 128,600 LB (54,430 to 58,330 KG) MTW

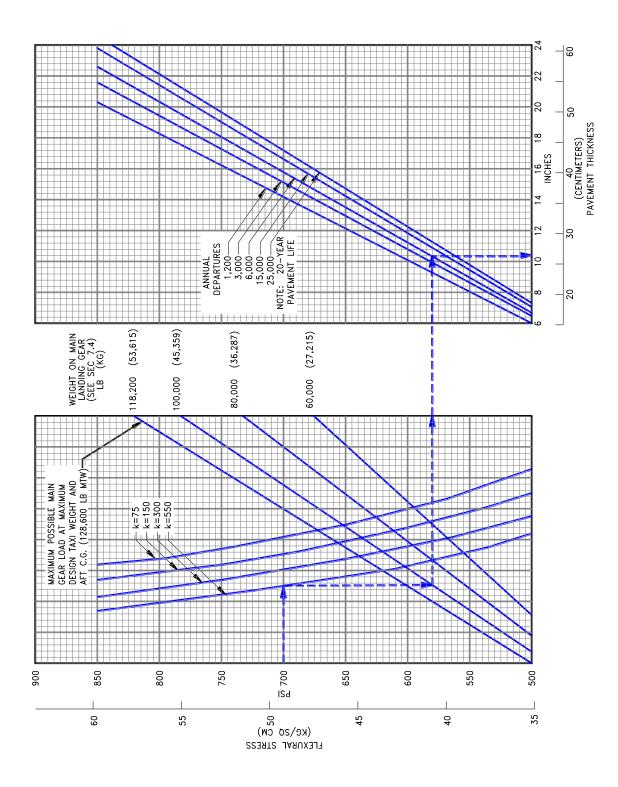
D6-58325-6



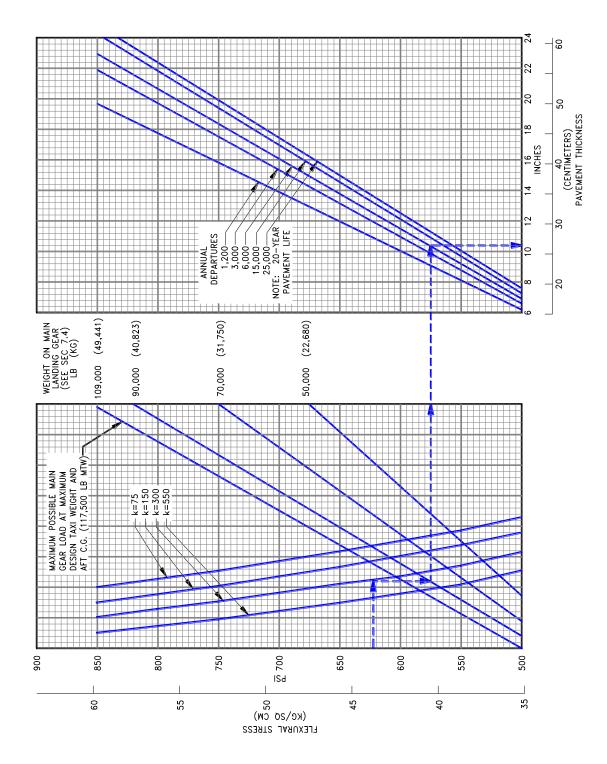
7.8.6 Rigid Pavement Requirements - LCN Conversion: Model 737-300, -400, -500

## 7.9 RIGID PAVEMENT REQUIREMENTS - FAA DESIGN METHOD

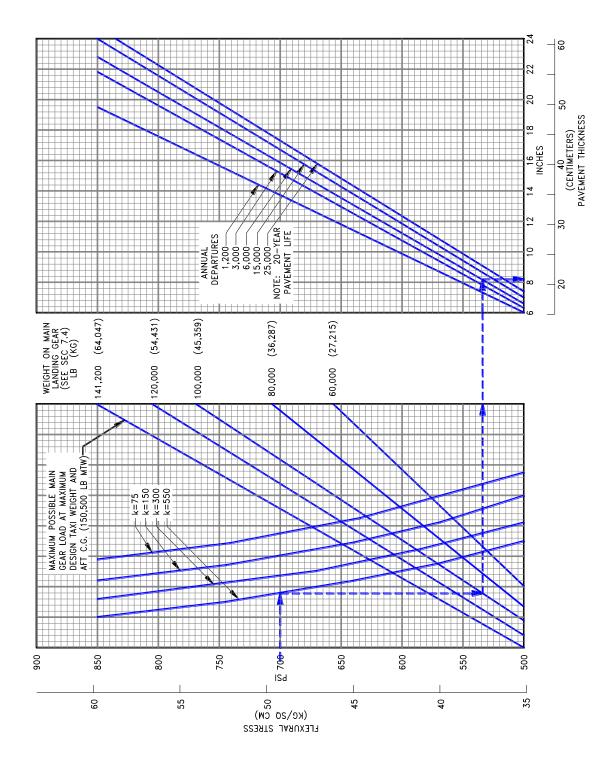
The following rigid pavement design charts present data on five incremental main gear loads at the minimum tire pressure required at the maximum design taxi weight.


In the example shown in the next page, the pavement flexural stress is shown at 700 psi, the subgrade strength is shown at k = 550, and the annual departure level is 6,000. For these conditions, the required rigid pavement thickness for an airplane with main gear load of 100,000 pounds is 10.4 inches. Similar examples are shown in succeeding charts.

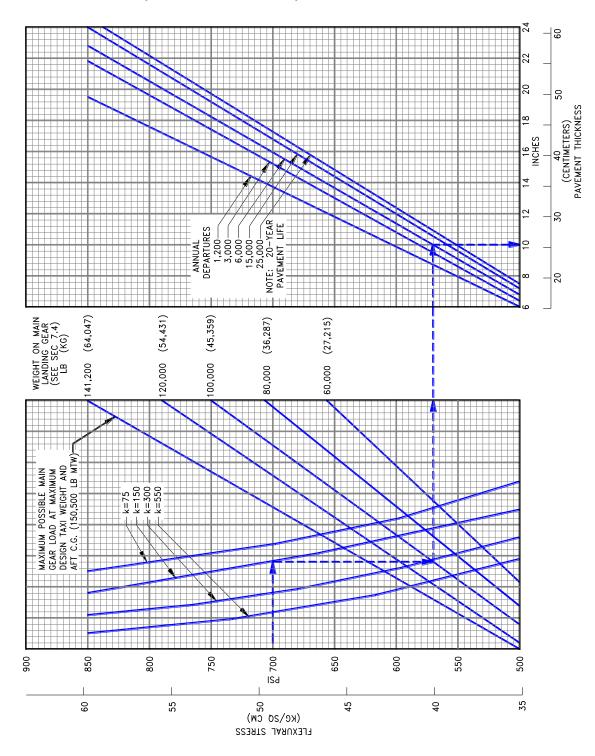
For the rigid pavement design refer to the FAA AC 150/5320-6F "Airport Pavement Design and Evaluation" and pavement design program FAARFIELD. Both are available on the FAA website:


FAA AC 150/5320-6F: https://www.faa.gov/airports/resources/advisory\_circulars/ FAARFIELD: https://www.faa.gov/airports/engineering/design\_software/

D6-58325-6


7.9.1 Rigid Pavement Requirements – FAA Design Method: Model 737-100, -200




D6-58325-6



7.9.2 Rigid Pavement Requirements – FAA Design Method: Model 737-200ADV (Low Pressure Tires)



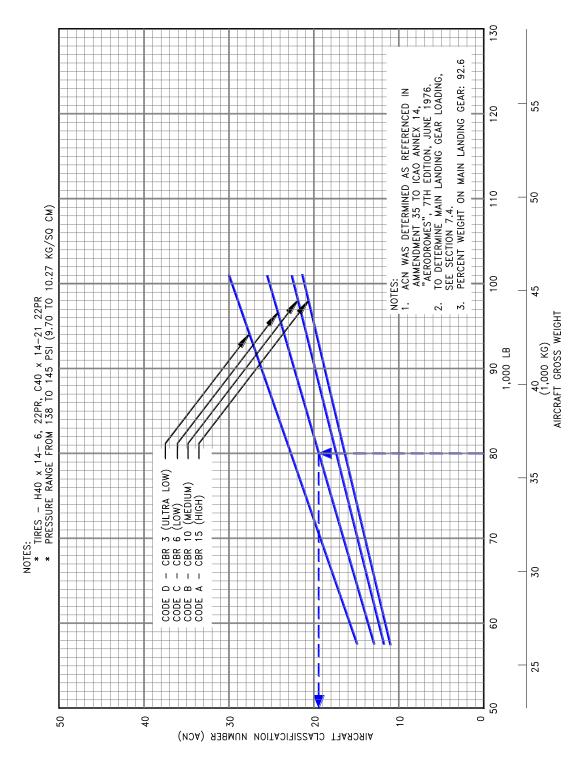
7.9.3 Rigid Pavement Requirements – FAA Design Method: Model 737-300, -400, -500



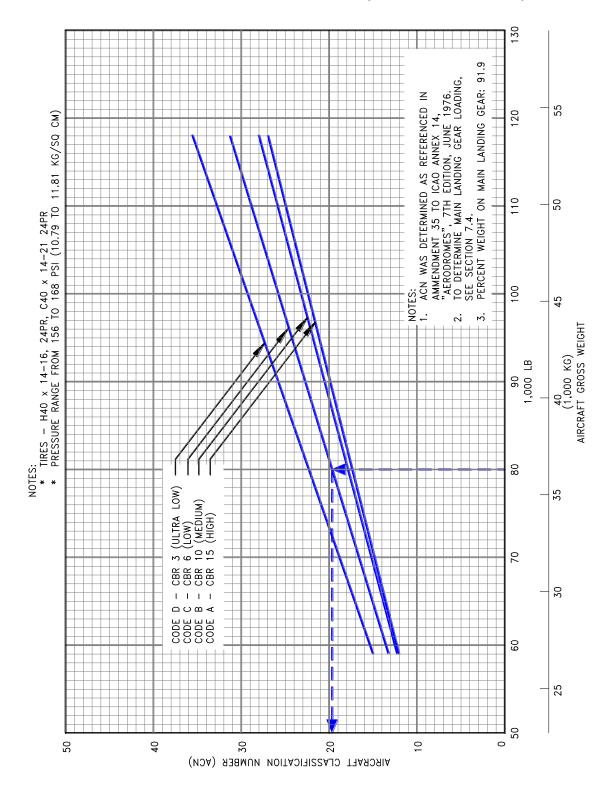
7.9.4 Rigid Pavement Requirements – FAA Design Method: Model 737-300, -400, -500 (Low Pressure Tires)

D6-58325-6

#### 7.10 ACN/PCN REPORTING SYSTEM - FLEXIBLE AND RIGID PAVEMENTS

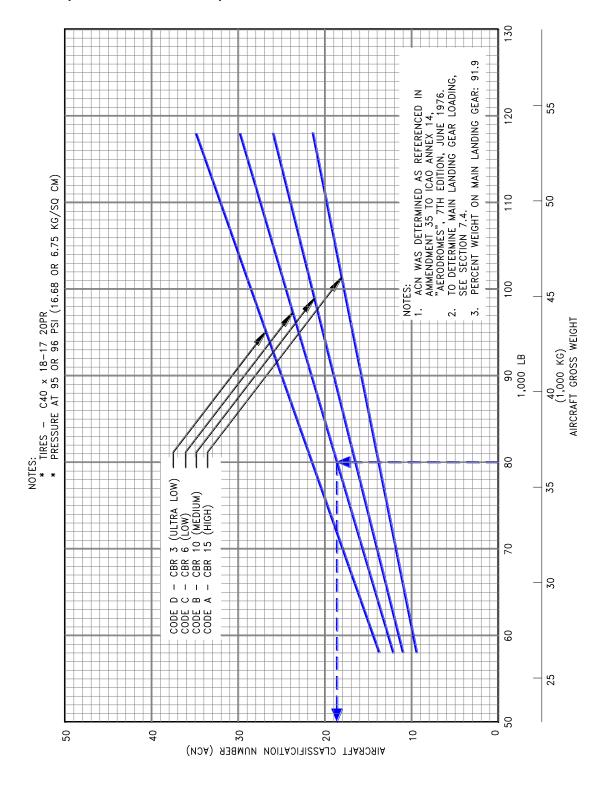

To determine the ACN of an aircraft on flexible or rigid pavement, both the aircraft gross weight and the subgrade strength category must be known. In the chart in Section 7.10.1, for a 737-100 aircraft with gross weight of 80,000 lb and low subgrade strength, the flexible pavement ACN is 19.2. In Section 7.10.11, for the same gross weight and subgrade strength, the rigid pavement ACN is 20.6.

**Note:** An aircraft with an ACN equal to or less that the reported PCN can operate on that pavement subject to any limitations on the tire pressure.

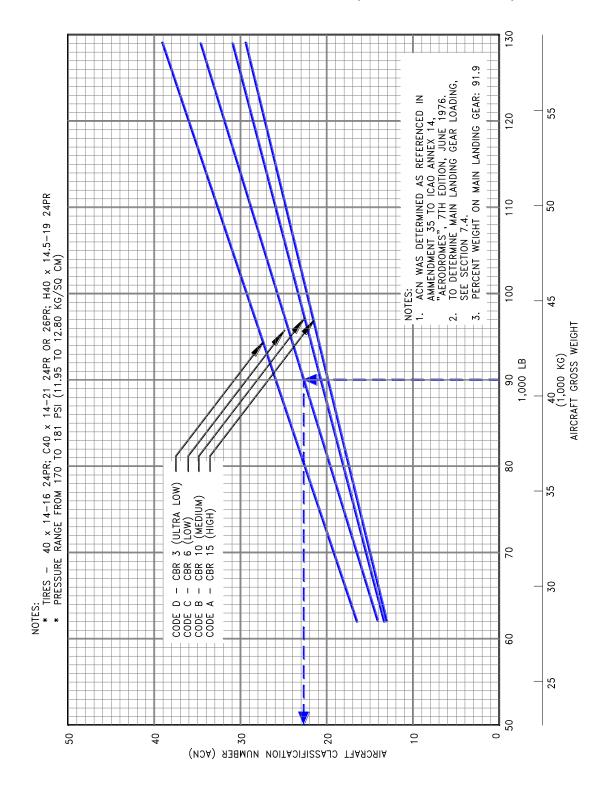

The following table provides ACN data in tabular format similar to the one used by ICAO in the "Aerodrome Design Manual Part 3, Pavements". If the ACN for an intermediate weight between maximum taxi weight and the empty weight of the aircraft is required, Sections 7.10.1 through 7.10.20 should be consulted.

|                  |                                                            |                                                 |                               | ACN FOR RIGID PAVEMENT<br>SUBGRADES – MN/m <sup>3</sup> |              |           |                    | ACN FOR FLEXIBLE PAVEMENT<br>SUBGRADES – CBR |              |          |                   |
|------------------|------------------------------------------------------------|-------------------------------------------------|-------------------------------|---------------------------------------------------------|--------------|-----------|--------------------|----------------------------------------------|--------------|----------|-------------------|
| AIRCRAFT<br>TYPE | MAXIMUM TAXI<br>WEIGHT<br>MINIMUM<br>WEIGHT (1)<br>LB (KG) | LOAD<br>ON<br>ONE<br>MAIN<br>GEAR<br>LEG<br>(%) | TIRE<br>PRESSURE<br>PSI (MPa) | HIGH<br>150                                             | MEDIUM<br>80 | LOW<br>40 | ULTRA<br>LOW<br>20 | HIGH<br>15                                   | MEDIUM<br>10 | LOW<br>6 | ULTRA<br>LOW<br>3 |
| 737-100          | 111,000 (50,349)<br>62,000 (28,123)                        | 45.95                                           | 157 (1.08)                    | 27<br>14                                                | 29<br>15     | 31<br>16  | 32<br>17           | 25<br>13                                     | 26<br>13     | 29<br>14 | 33<br>16          |
| 737-200          | 128,600 (58,332)<br>65,300 (29,620)                        | 45.96                                           | 182 (1.25)                    | 34<br>15                                                | 36<br>16     | 38<br>17  | 39<br>18           | 30<br>14                                     | 31<br>14     | 35<br>15 | 39<br>17          |
| 737-300          | 140,000 (63,503)<br>72,540 (32,904)                        | 45.43                                           | 201 (1.38)                    | 38<br>17                                                | 40<br>18     | 42<br>19  | 43<br>20           | 33<br>15                                     | 35<br>16     | 39<br>17 | 43<br>20          |
| 737-400          | 150,500 (68,266)<br>74,170 (33,643)                        | 46.91                                           | 185 (1.27)                    | 42<br>18                                                | 44<br>19     | 47<br>20  | 48<br>21           | 37<br>16                                     | 39<br>17     | 44<br>18 | 48<br>21          |
| 737-500          | 134,000 (60,781)<br>69,030 (31,311)                        | 46.12                                           | 194 (1.33)                    | 37<br>17                                                | 38<br>18     | 40<br>19  | 42<br>20           | 32<br>15                                     | 33<br>15     | 37<br>16 | 41<br>19          |
| 737-600          | 145,000 (65,771)<br>80,200 (36,378)                        | 45.83                                           | 182 (1.25)                    | 37<br>19                                                | 39<br>19     | 41<br>21  | 43<br>22           | 33<br>17                                     | 34<br>17     | 38<br>19 | 44<br>21          |
| 737-600          | 144,000 (65,317)<br>80,200 (36,378)                        | 45.83                                           | 168 (1.15)                    | 36<br>18                                                | 38<br>19     | 40<br>20  | 42<br>22           | 33<br>17                                     | 34<br>17     | 38<br>18 | 43<br>21          |
| 737-700          | 155,000 (70,307)<br>83,000 (37,648)                        | 45.85                                           | 197 (1.36)                    | 41<br>19                                                | 43<br>20     | 46<br>22  | 47<br>23           | 36<br>18                                     | 38<br>18     | 42<br>19 | 47<br>22          |
| 737-700          | 155,000 (70,307)<br>83,000 (37,648)                        | 45.85                                           | 179 (1.23)                    | 40<br>20                                                | 42<br>21     | 45<br>22  | 47<br>23           | 36<br>18                                     | 37<br>18     | 42<br>19 | 47<br>22          |
| 737 BBJ          | 171,500 (77,790)<br>100,000 (45,360)                       | 45.86                                           | 204 (1.41)                    | 47<br>25                                                | 49<br>26     | 52<br>28  | 54<br>29           | 41<br>22                                     | 43<br>23     | 48<br>24 | 53<br>28          |
| 737-800          | 174,700 (79,242)<br>91,300 (41,413)                        | 46.79                                           | 204 (1.41)                    | 49<br>23                                                | 52<br>24     | 54<br>25  | 56<br>27           | 43<br>20                                     | 45<br>21     | 50<br>22 | 55<br>26          |
| 737 BBJ2         | 174,700(79,260)<br>100,000(45,360)                         | 46.79                                           | 204 (1.41)                    | 49<br>24                                                | 52<br>26     | 54<br>28  | 56<br>30           | 42<br>22                                     | 45<br>23     | 50<br>25 | 55<br>29          |
| 737-900          | 174,700 (79,242)<br>94,580 (42,901)                        | 46.79                                           | 204 (1.41)                    | 49<br>24                                                | 52<br>25     | 54<br>27  | 56<br>28           | 43<br>21                                     | 45<br>22     | 50<br>23 | 55<br>27          |
| 737-900ER        | 188,200(85,366)<br>98,495(44,676)                          | 47.29                                           | 220 (1.52)                    | 56<br>26                                                | 58<br>27     | 61<br>29  | 63<br>30           | 48<br>22                                     | 51<br>23     | 56<br>25 | 61<br>29          |

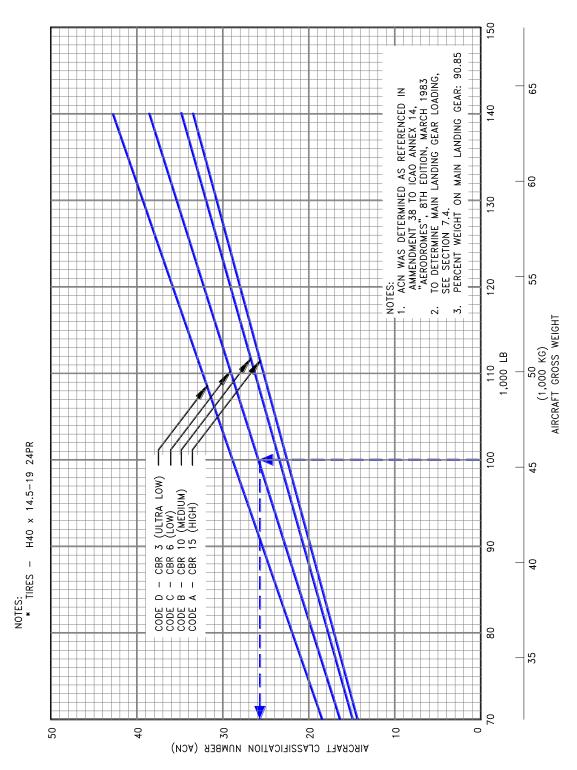
NOTE: VALUES FOR 737-700, -800, -900, -900ER ARE VALID FOR MODELS WITH AND WITHOUT WINGLETS.



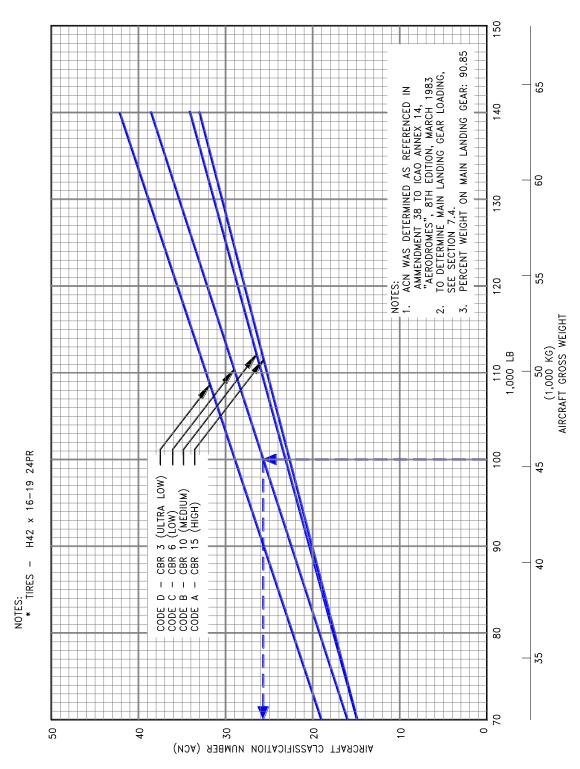

7.10.1 Aircraft Classification Number - Flexible Pavement: Model 737-100, -200 to 104,000 LB (47,170 KG) MTW




7.10.2 Aircraft Classification Number - Flexible Pavement: Model 737-100, -200, -200ADV at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW

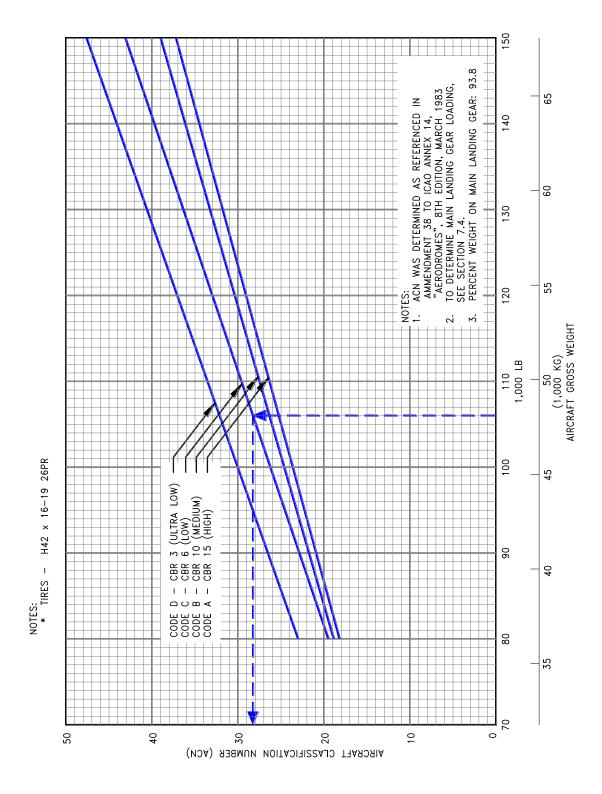

#### 7.10.3 Aircraft Classification Number - Flexible Pavement: Model 737-100, -200, -200ADV at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW (Low Pressure Tires)

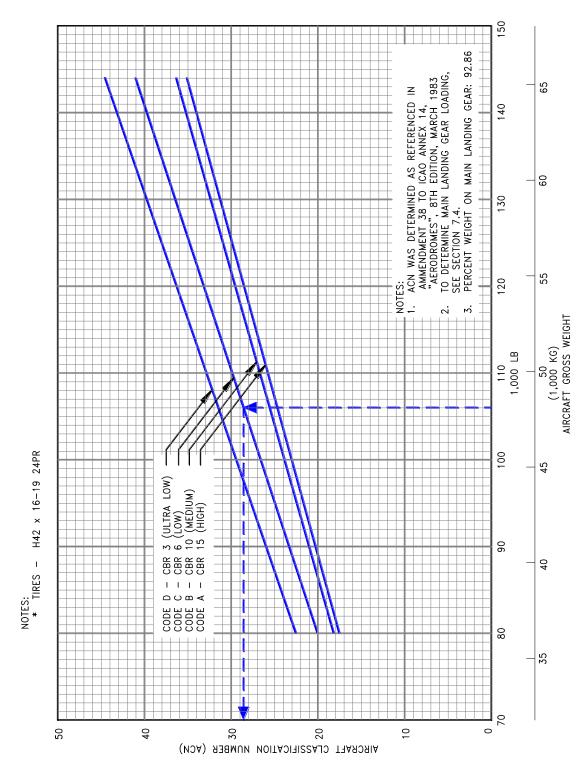



November 2023

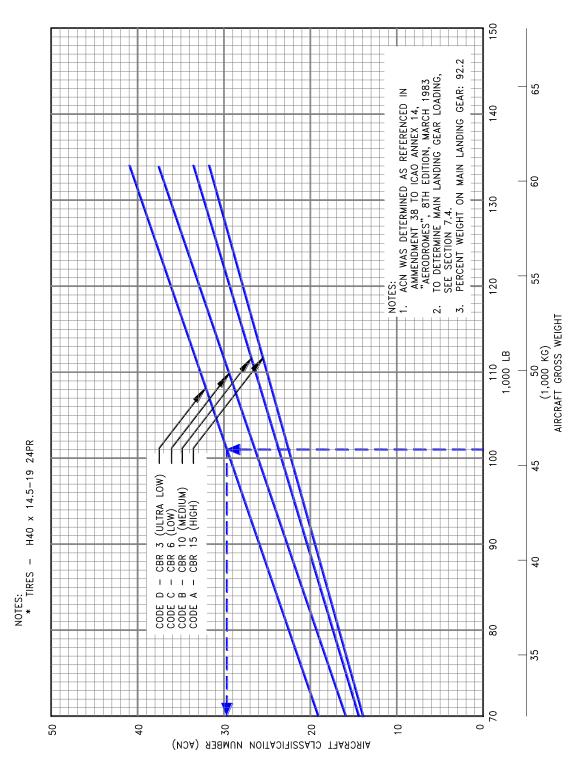


#### 7.10.4 Aircraft Classification Number - Flexible Pavement: Model 737-200ADV at 120,000 to 128,600 LB (54,300 to 58,330 KG) MTW

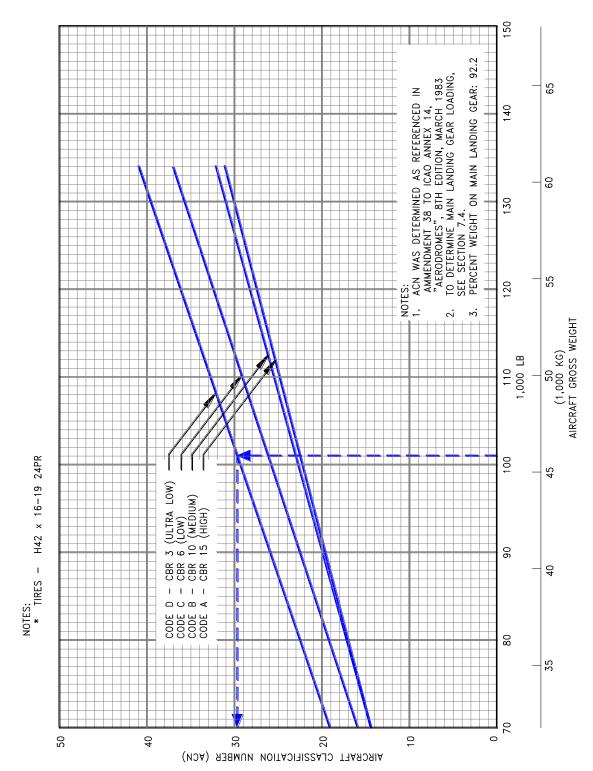




7.10.5 Aircraft Classification Number - Flexible Pavement: Model 737-300




### 7.10.6 Aircraft Classification Number - Flexible Pavement: Model 737-300 (Low Pressure Tires)

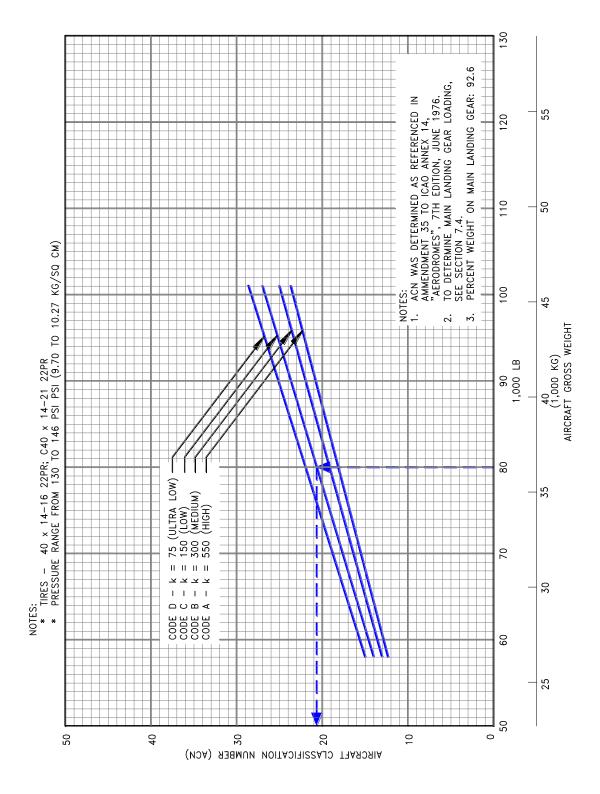


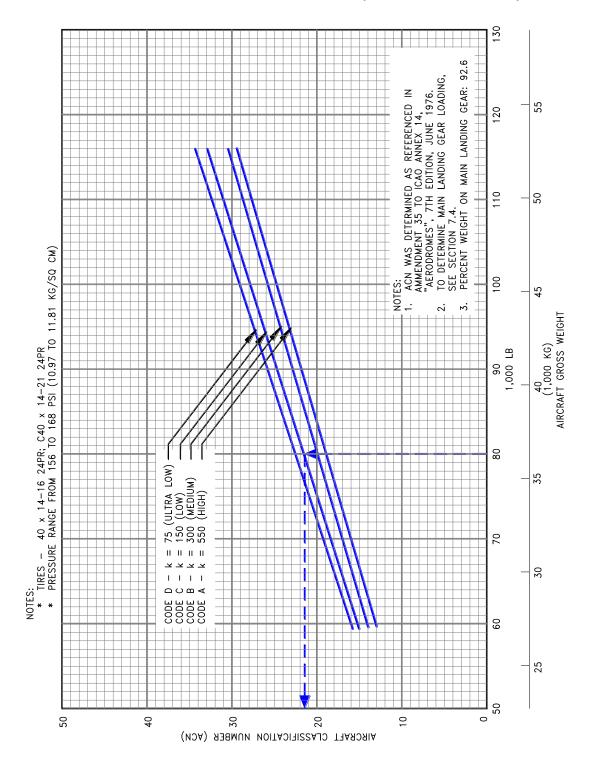





# 7.10.8 Aircraft Classification Number - Flexible Pavement: Model 737-400 (Low Pressure Tires)

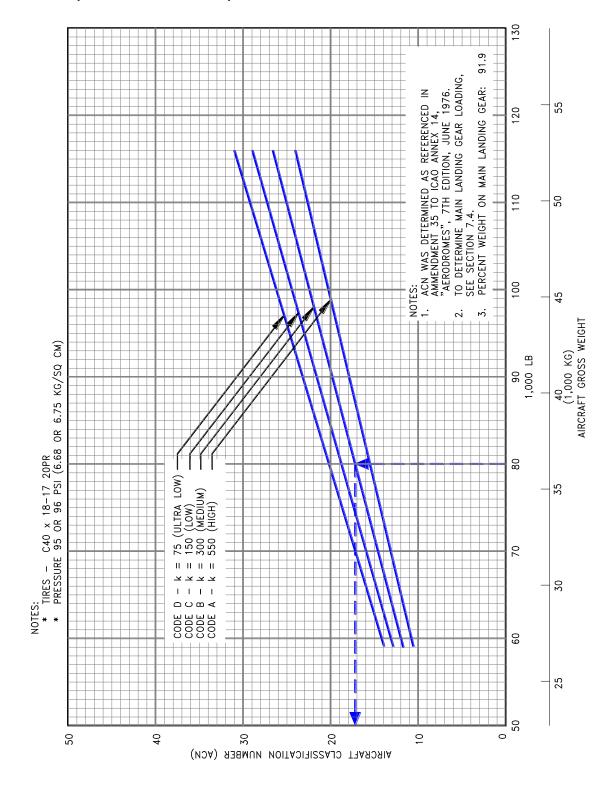



#### 7.10.9 Aircraft Classification Number - Flexible Pavement: Model 737-500



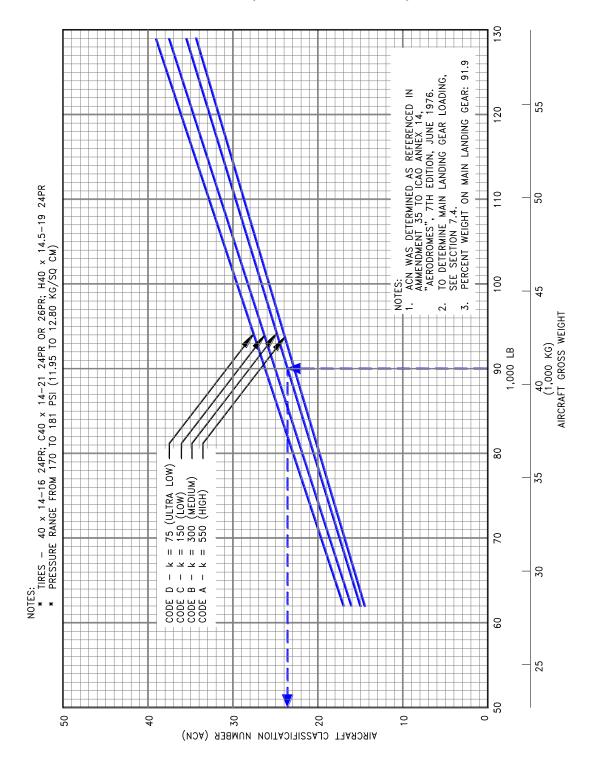

# 7.10.10 Aircraft Classification Number - Flexible Pavement: Model 737-500 (Low Pressure Tires)

D6-58325-6

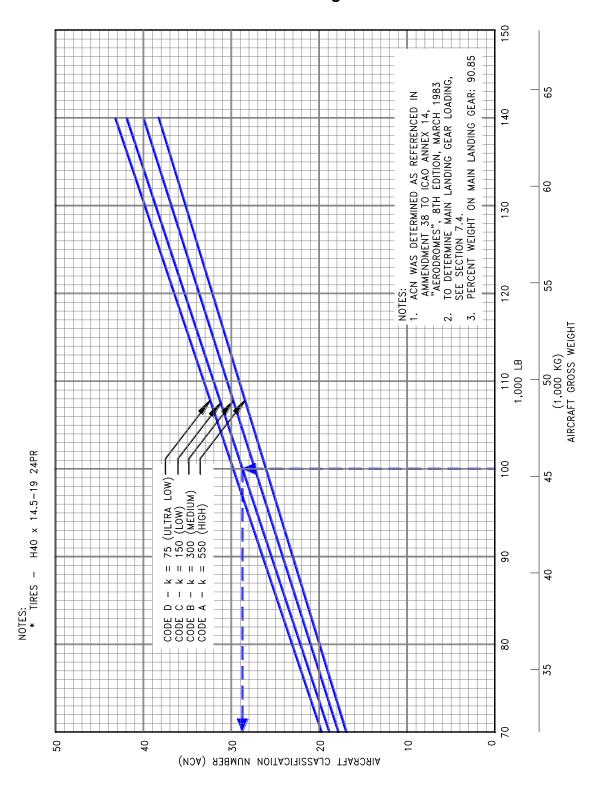

## 7.10.11 Aircraft Classification Number - Rigid Pavement: Model 737-100, -200 To 104,000 LB (47,170 KG) MTW





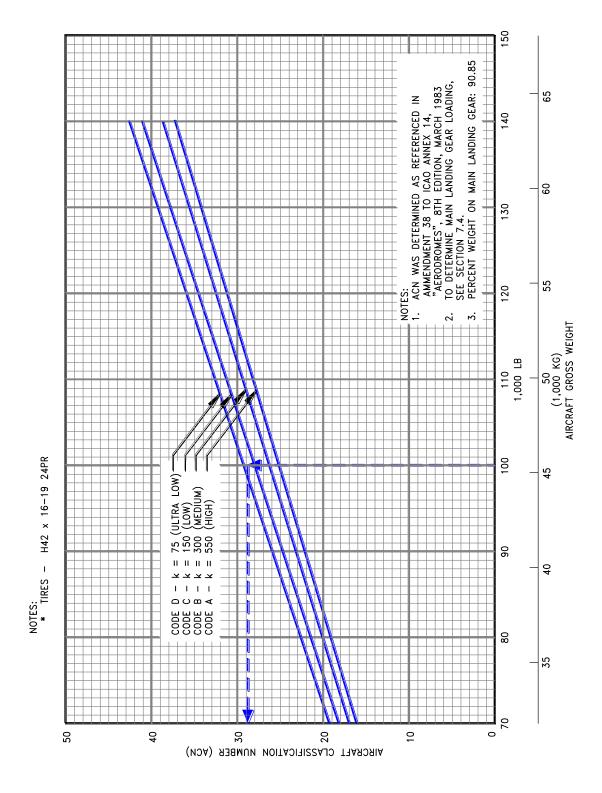

7.10.12 Aircraft Classification Number - Rigid Pavement: Model 737-100, -200, -200ADV at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW

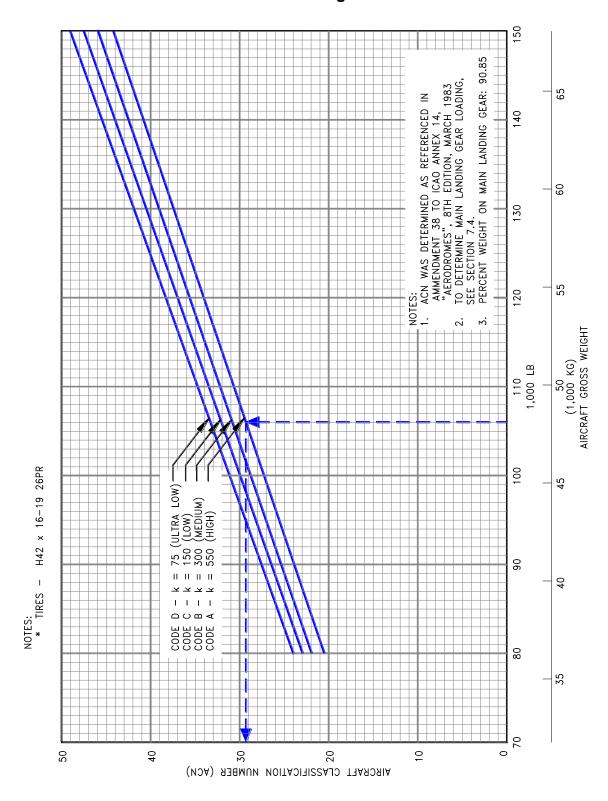
#### 7.10.13 Aircraft Classification Number - Rigid Pavement: Model 737-100, -200, -200ADV at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW (Low Pressure Tires)



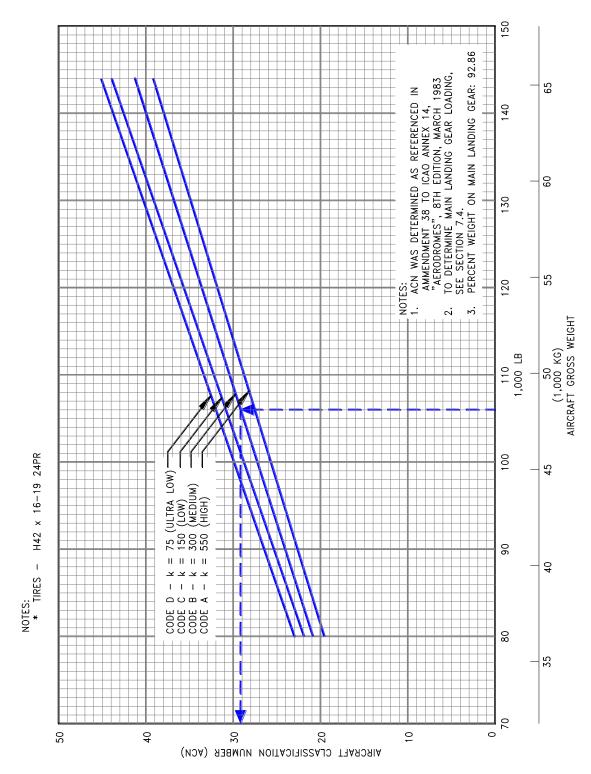

D6-58325-6

November 2023

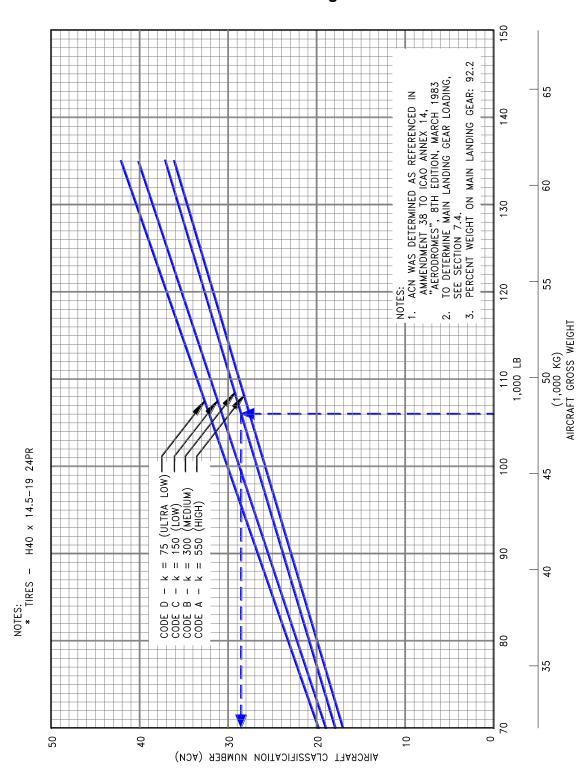




#### 7.10.14 Aircraft Classification Number - Rigid Pavement: Model 737-200ADV at 120,000 to 128,600 LB (54,300 to 58,330 KG) MTW



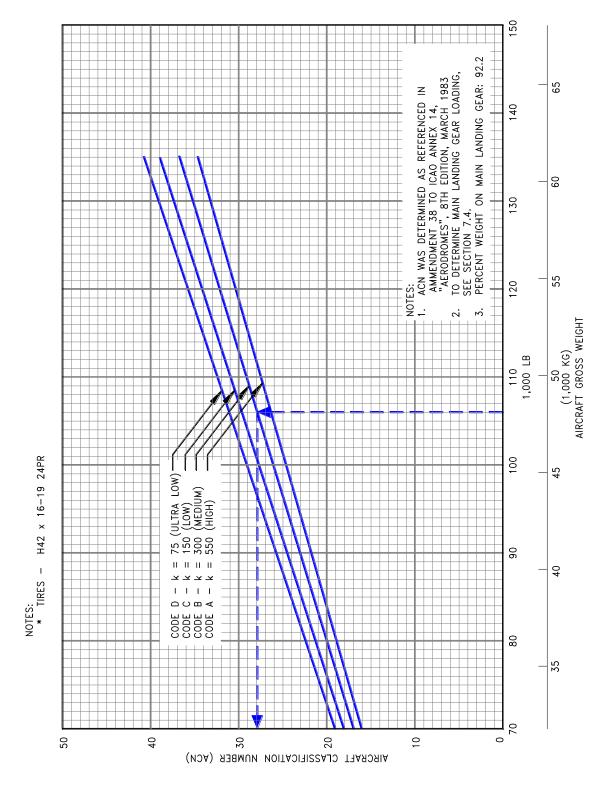

7.10.15 Aircraft Classification Number - Rigid Pavement: Model 737-300

### 7.10.16 Aircraft Classification Number - Rigid Pavement: Model 737-300 (Low Pressure Tires)






## 7.10.17 Aircraft Classification Number - Rigid Pavement: Model 737-400




#### 7.10.18 Aircraft Classification Number - Rigid Pavement: Model 737-400 (Low Pressure Tires)

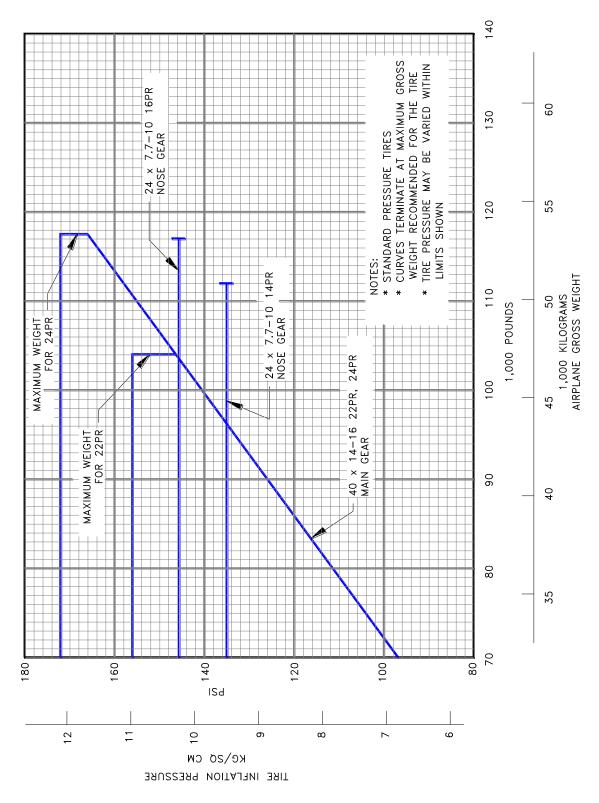


7.10.19 Aircraft Classification Number - Rigid Pavement: Model 737-500

## 7.10.20 Aircraft Classification Number - Rigid Pavement: Model 737-500 (Low Pressure Tires)

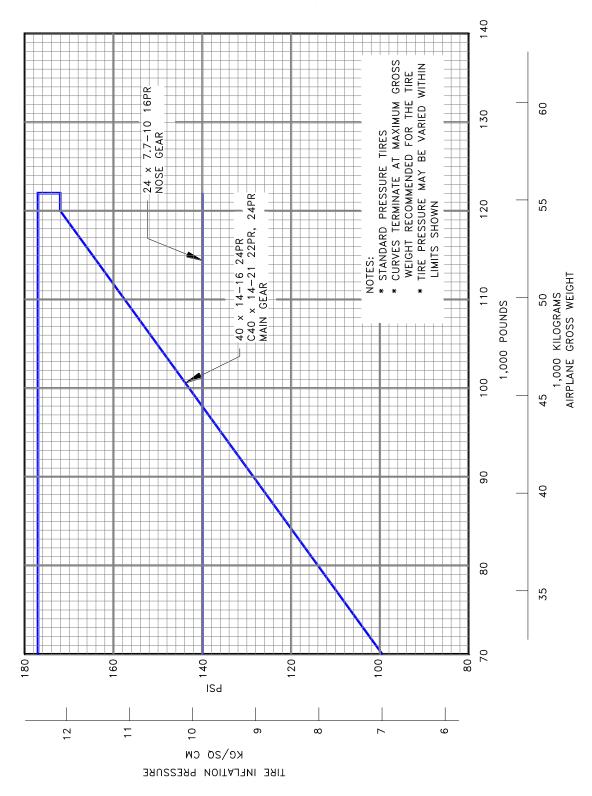


D6-58325-6


### 7.11 ACR/PCR REPORTING SYSTEM – FLEXIBLE AND RIGID PAVEMENTS

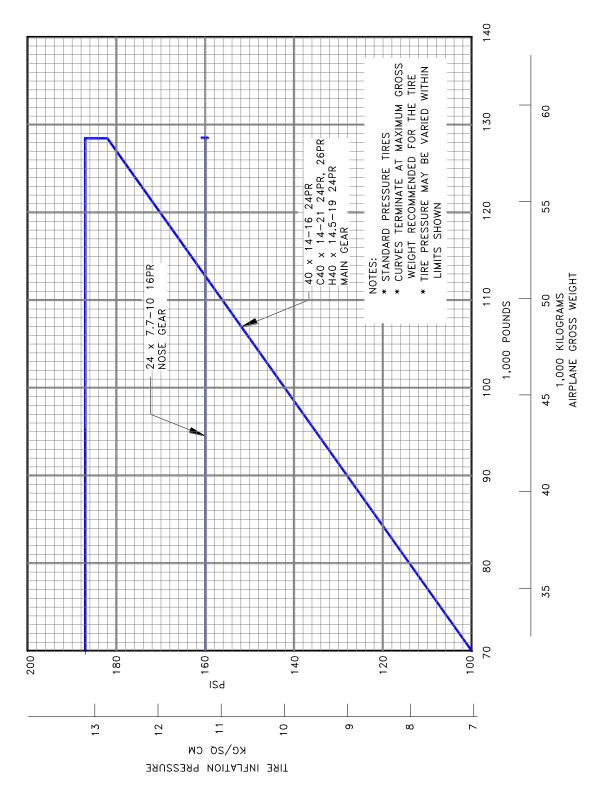
For ICAO–Aircraft Classification Rating (ACR) data for 737-100 through 737-500 and other Boeing Legacy Models, please see here:

https://www.boeing.com/content/dam/boeing/boeingdotcom/commercial/airports/faqs/ica o-acr-pavement-rating-system-legacy-boeing-aircraft.pdf


#### 7.12 TIRE INFLATION CHART

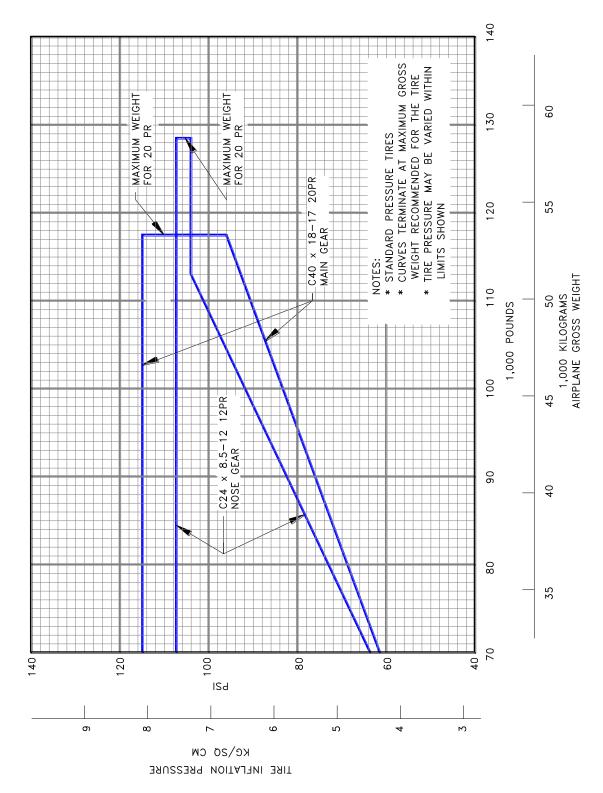
### 7.12.1 Tire Inflation Chart: Model 737-100



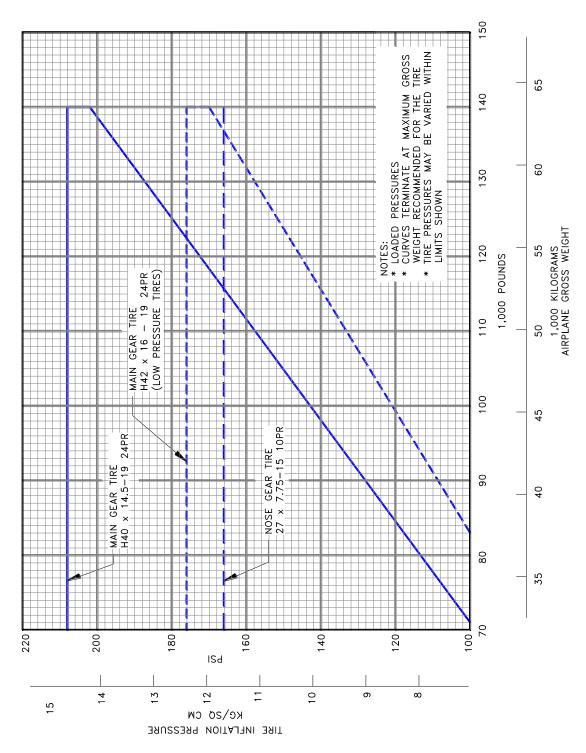

D6-58325-6

November 2023

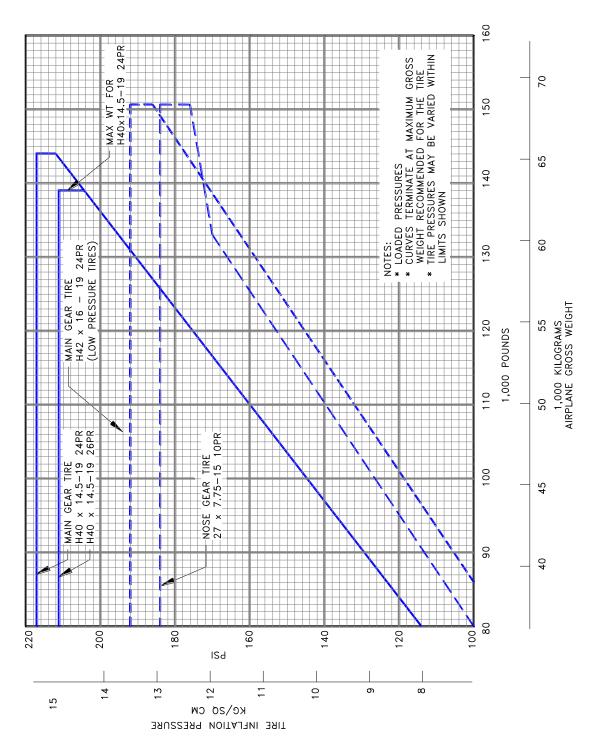



#### 7.12.2 Tire Inflation Chart: Model 737-100, -200

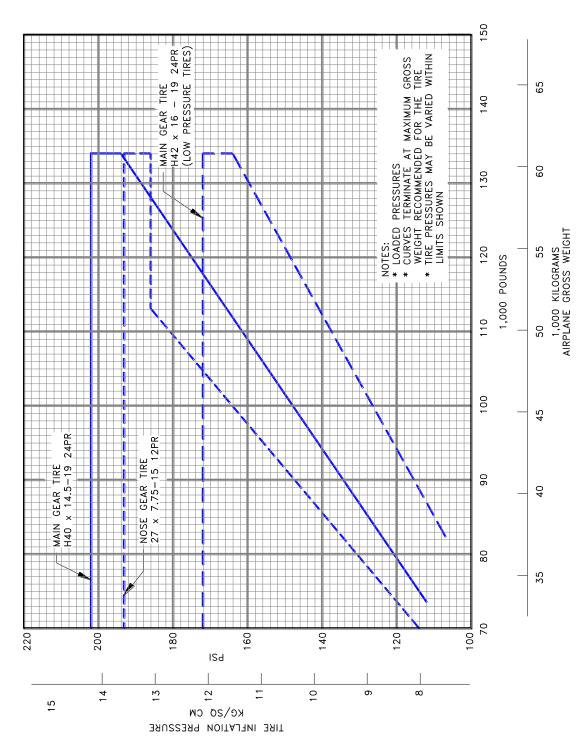
D6-58325-6




#### 7.12.3 Tire Inflation Chart: Model ADV 737-200


D6-58325-6




7.12.4 Tire Inflation Chart: Model 737-200 (Low Pressure Tires)



7.12.5 Tire Inflation Chart: Model 737-300



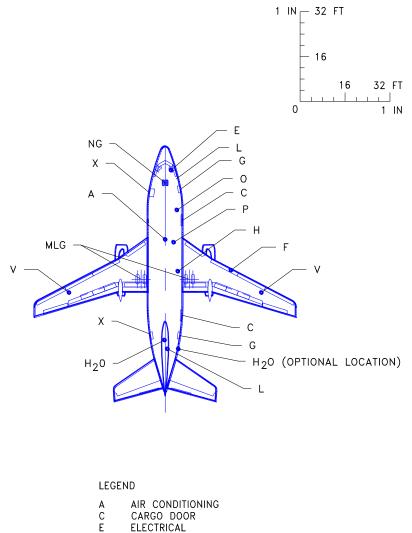
#### 7.12.6 Tire Inflation Chart: Model 737-400



#### 7.12.7 Tire Inflation Chart: Model 737-500

#### 8.0 FUTURE 737 DERIVATIVE AIRPLANES

Development of these derivatives will depend on airline requirements. The impact of airline requirements on airport facilities will be a consideration in the configuration and design of these derivatives.


#### 9.0 SCALED 737 DRAWINGS

The drawings in the following pages show airplane plan view drawings, drawn to approximate scale as noted. The drawings may not come out to exact scale when printed or copied from this document. Printing scale should be adjusted when attempting to reproduce these drawings. Three-view drawing files of the 737 airplane models, along with other Boeing airplane models, can be downloaded from the following website:

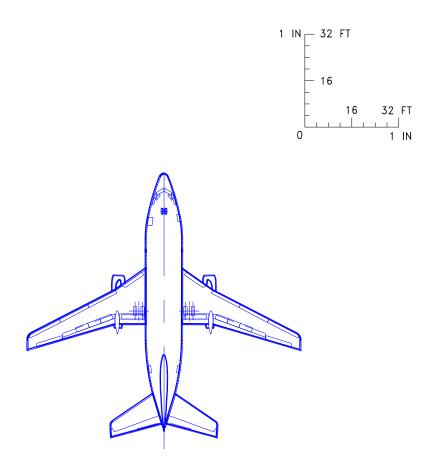
http://www.boeing.com/airports

#### 9.1 MODEL 737-100

#### 9.1.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-100



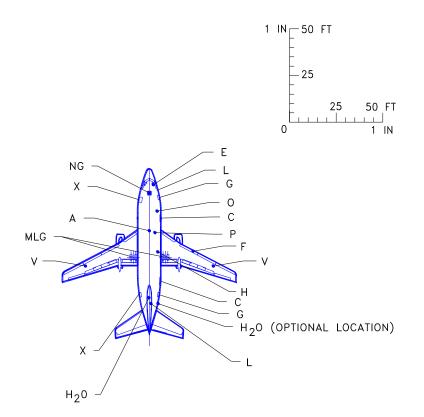
- Ē F FUEL
- G
- SERVICE DOOR POTABLE WATER H<sub>2</sub>0
- LAVATORY SERVICE L
- MLG MAIN LANDING GEAR
- NOSE LANDING GEAR NG
- 0 OXYGEN
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- PASSENGER DOOR Х


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6

November 2023


9.1.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-100



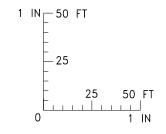
NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023



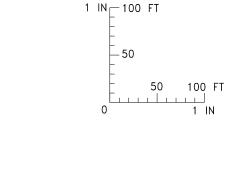
#### 9.1.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-100


LEGEND

- AIR CONDITIONING А
- C E CARGO DOOR
- ELECTRICAL
- F FUEL
- G
- SERVICE DOOR POTABLE WATER LAVATORY SERVICE H20 T
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- OXYGEN 0
- Ρ PNEUMATIC (AIR START) ۷
- FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

November 2023


## 9.1.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-100



NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

November 2023

#### 9.1.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-100

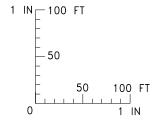




NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND


- A AIR CONDITIONING
- C CARGO DOOR
- E ELECTRICAL
- F FUEL G SERVI
- G SERVICE DOOR
- H<sub>2</sub>O POTABLE WATER LAVATORY SERVICE
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- O OXYGEN
- P PNEUMATIC (AIR START)
- V FUEL VENT
- X PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

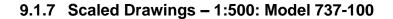
#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

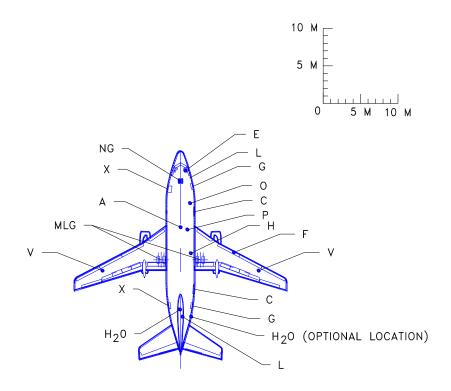
D6-58325-6

November 2023

## 9.1.6 Scaled Drawings - 1 IN. = 100 FT: Model 737-100




NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING


D6-58325-6

REV E

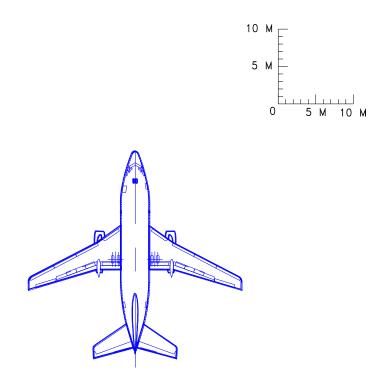
. . . . .

November 2023





LEGEND

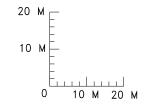

- AIR CONDITIONING CARGO DOOR
- ELECTRICAL
- A C F FUEL
- G
- H20
- SERVICE DOOR POTABLE WATER LAVATORY SERVICE L
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- 0 OXYGEN
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6

November 2023

# 9.1.8 Scaled Drawings - 1:500: Model 737-100




NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

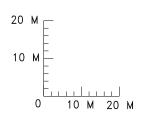
# 9.1.9 Scaled Drawings - 1:1000: Model 737-100





NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


LEGEND

- AIR CONDITIONING
- A C E F CARGO DOOR
- ELECTRICAL
- FUEL
- G SERVICE DOOR POTABLE WATER H20
- L LAVATORY SERVICE
- MLG MAIN LANDING GEAR
- NOSE LANDING GEAR NG
- 0 OXYGEN
- Ρ PNEUMATIC (AIR START)
- ٧ FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

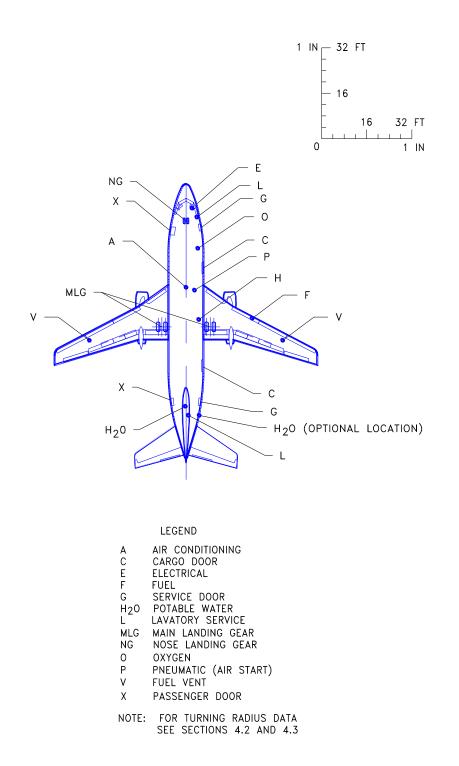
#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6

# 9.1.10 Scaled Drawings - 1:1000: Model 737-100



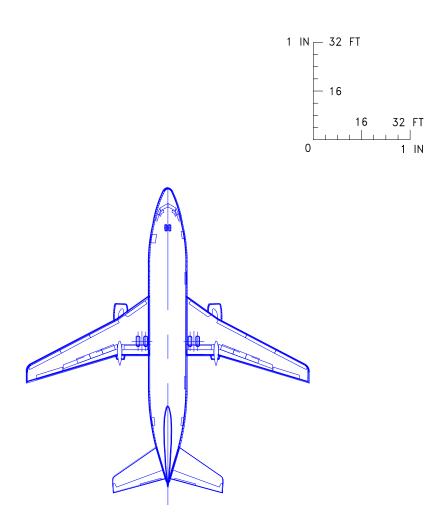



NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

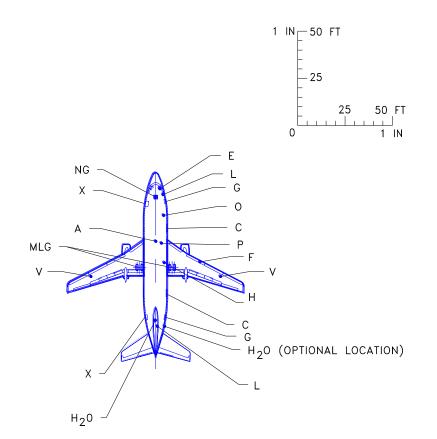
### 9.2 MODEL 737-200


## 9.2.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-200



#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6


# 9.2.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-200



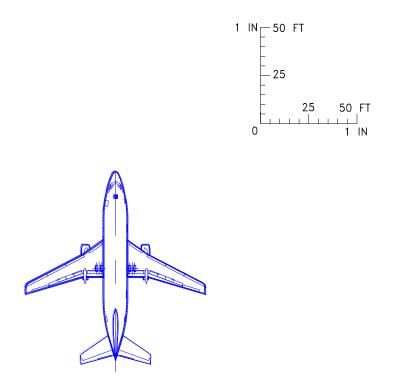
#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023





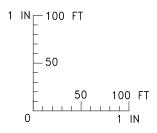

LEGEND

- AIR CONDITIONING CARGO DOOR А
- C E F ELECTRICAL
- FUEL
- G
- SERVICE DOOR POTABLE WATER LAVATORY SERVICE Þ 0
- L
- MLG MAIN LANDING GEAR NG NOSE LANDING GEAR
- 0 OXYGEN
- PNEUMATIC (AIR START) Ρ
- ۷ FUEL VENT
- χ PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

# 9.2.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-200




NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

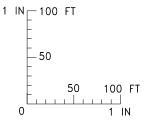
### 9.2.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-200





NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


LEGEND

- AIR CONDITIONING
- A C CARGO DOOR
- Ē ELECTRICAL
- FUEL
- SERVICE DOOR G
- bi o L POTABLE WATER
- LAVATORY SERVICE MLG
- MAIN LANDING GEAR NOSE LANDING GEAR NG
- 0 OXYGEN
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

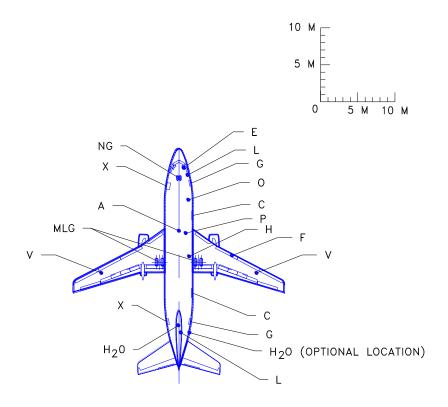
#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

# 9.2.6 Scaled Drawings - 1 IN. = 100 FT: Model 737-200



NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING


D6-58325-6

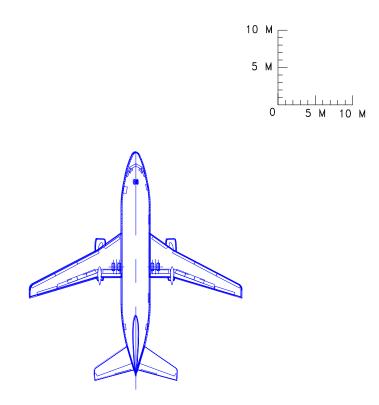
REV E

. . . .

November 2023

# 9.2.7 Scaled Drawings - 1:500: Model 737-200

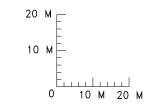



LEGEND

- AIR CONDITIONING А
- CARGO DOOR
- C E F ELECTRICAL
- FUEL
- G SERVICE DOOR 0
- Þ POTABLE WATER LAVATORY SERVICE
- MLG
- MAIN LANDING GEAR NOSE LANDING GEAR NG
- 0 OXYGEN
- Ρ
- PNEUMATIC (AIR START) ۷
- FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6


# 9.2.8 Scaled Drawings - 1:500: Model 737-200



#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

# 9.2.9 Scaled Drawings - 1:1000: Model 737-200





NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

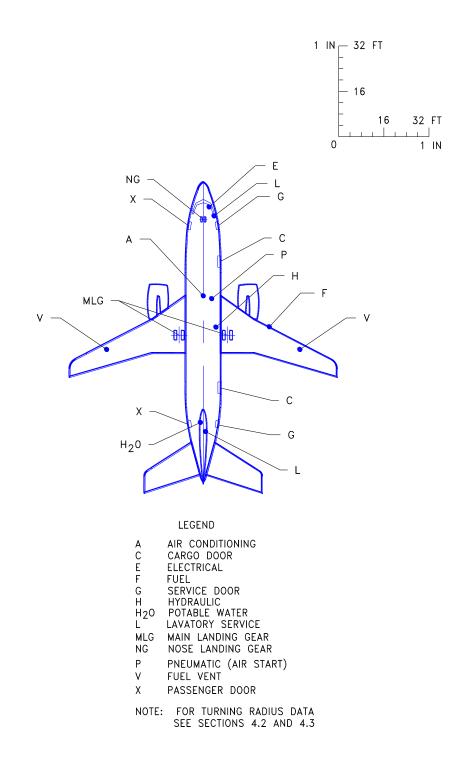
LEGEND

- AIR CONDITIONING А
- С CARGO DOOR
- E F ELECTRICAL
- FUEL G SERVICE DOOR
- POTABLE WATER
- Ы́О L LAVATORY SERVICE
- MLG
- MAIN LANDING GEAR NOSE LANDING GEAR NG
- 0 OXYGEN
- Ρ PNEUMATIC (AIR START)
- ٧ FUEL VENT
- PASSENGER DOOR Х
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

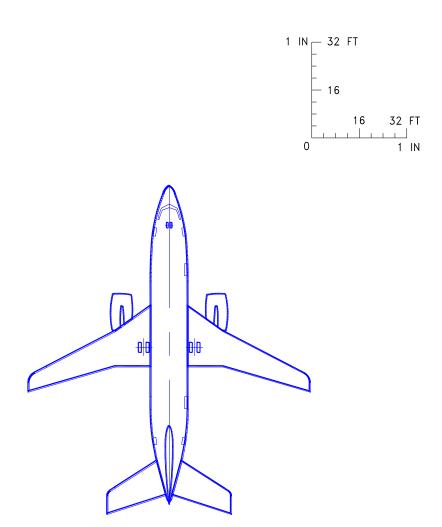
# 9.2.10 Scaled Drawings - 1:1000: Model 737-200


20 M \_ 10 M | 0 10 M 20 M



NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

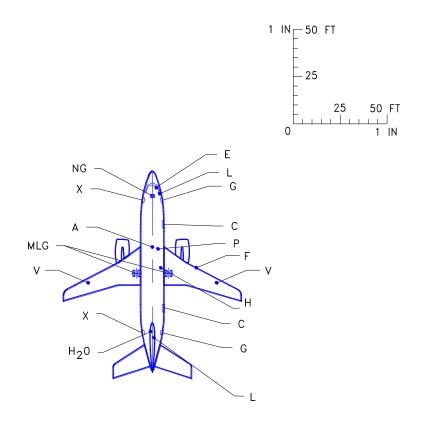
### 9.3 MODEL 737-300


## 9.3.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-300



#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6





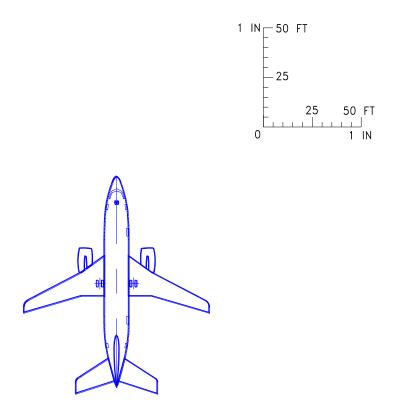

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023



### 9.3.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-300


LEGEND

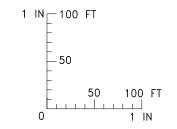
- AIR CONDITIONING А
- CARGO DOOR
- C E ELECTRICAL
- F FUEL
- G SERVICE DOOR
- Н HYDRAULIC
- POTABLE WATER LAVATORY SERVICE H<sub>2</sub>O L
- MAIN LANDING GEAR MLG
- NG NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- χ PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6

# 9.3.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-300




NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

. ....

November 2023

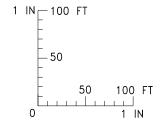
### 9.3.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-300





NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


LEGEND

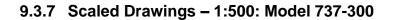
- AIR CONDITIONING А
- C E CARGO DOOR
- ELECTRICAL
- F FUEL G
- SERVICE DOOR Н HYDRAULIC
- POTABLE WATER H20
- LAVATORY SERVICE L
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- PNEUMATIC (AIR START) Ρ
- ۷ FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

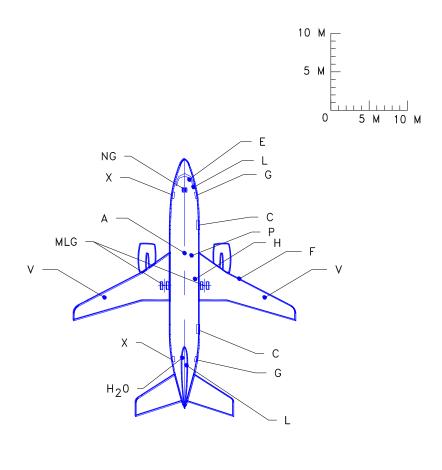
#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

# 9.3.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-300




NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING


D6-58325-6

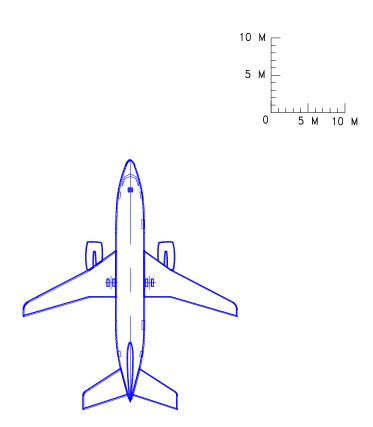
REV E

. . ...

November 2023





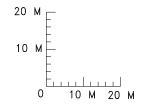

LEGEND

- AIR CONDITIONING A
- CARGO DOOR
- C E F ELECTRICAL
- FUEL
- G SERVICE DOOR
- Ĥ
- HYDRAULIC POTABLE WATER LAVATORY SERVICE H20 L
- MLG MAIN LANDING GEAR
- NOSE LANDING GEAR NG
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- PASSENGER DOOR Х
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

# 9.3.8 Scaled Drawings - 1:500: Model 737-300




NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

### 9.3.9 Scaled Drawings - 1:1000: Model 737-300





NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

- AIR CONDITIONING А
- CARGO DOOR
- ELECTRICAL
- C E F FUEL
- Ġ
- SERVICE DOOR POTABLE WATER LAVATORY SERVICE H20 L
- MLG MAIN LANDING GEAR NG
- NOSE LANDING GEAR
- 0 OXYGEN Ρ
- PNEUMATIC (AIR START)
- ۷ FUEL VENT
- PASSENGER DOOR Х
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

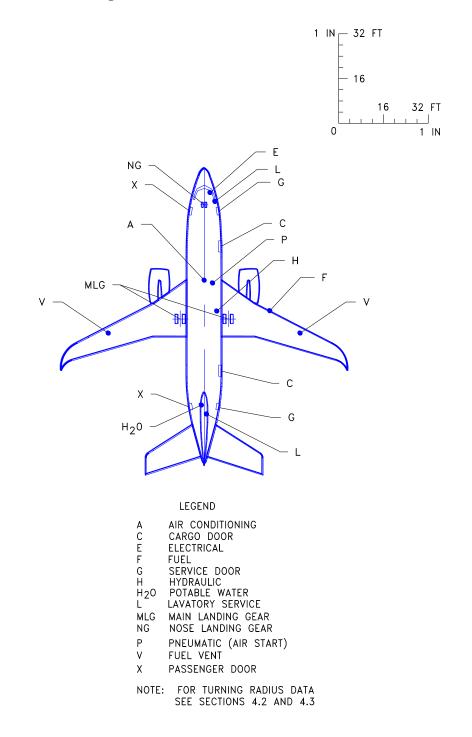
#### D6-58325-6

# 9.3.10 Scaled Drawings - 1:1000: Model 737-300

20 M 10 M 0 10 M 20 M

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

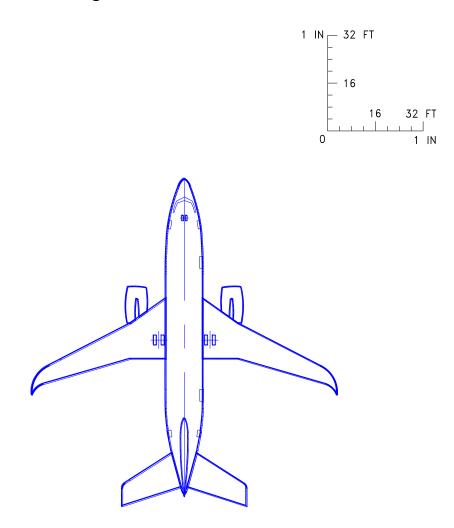
D6-58325-6


REV E

\_ \_ \_ \_ \_ \_ \_ \_

November 2023

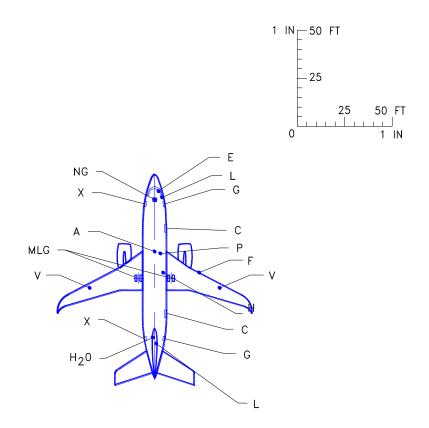
#### 9.4 MODEL 737-300W


### 9.4.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-300W



#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6


9.4.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-300W



#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

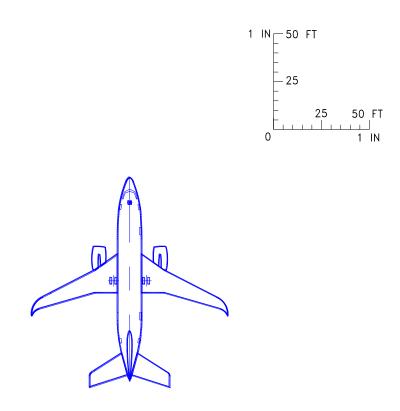
D6-58325-6

November 2023



9.4.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-300W

LEGEND

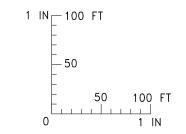

- AIR CONDITIONING
- CARGO DOOR
- A C E ELECTRICAL F FUEL
- G H SERVICE DOOR HYDRAULIC
- H<sub>2</sub>0
- POTABLE WATER LAVATORY SERVICE L
- MAIN LANDING GEAR MLG
- NG NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- FUEL VENT ٧
- PASSENGER DOOR Х
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

9.4.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-300W




NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

### 9.4.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-300W



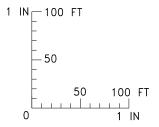


NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

- AIR CONDITIONING А
- С CARGO DOOR
- Е ELECTRICAL
- F FUEL
- SERVICE DOOR G
- HYDRAULIC Н
- POTABLE WATER LAVATORY SERVICE H20
- L
- MAIN LANDING GEAR MLG NG NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- ٧ FUEL VENT
- PASSENGER DOOR Х
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

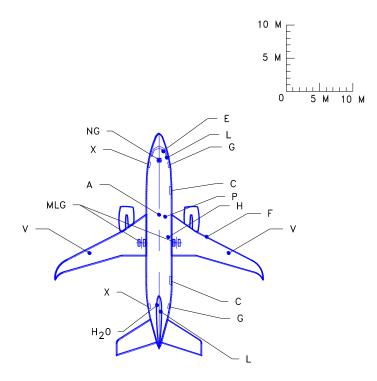

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6

November 2023

9-36

# 9.4.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-300W



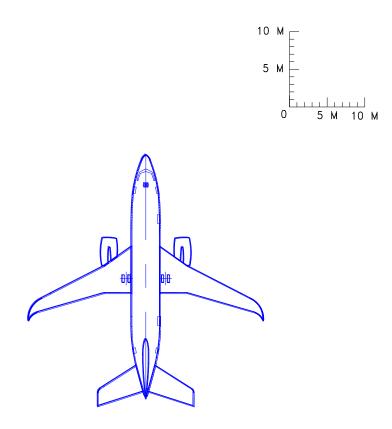

### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

### 9.4.7 Scaled Drawings - 1:500: Model 737-300W



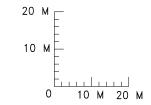

LEGEND

| A | AIR CONDITIONING |  |
|---|------------------|--|
| С | CARGO DOOR       |  |
| Е | ELECTRICAL       |  |
| - |                  |  |

- FUEL F
- G H
- H<sub>2</sub>0
- SERVICE DOOR HYDRAULIC POTABLE WATER LAVATORY SERVICE L
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- PASSENGER DOOR Х
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

# 9.4.8 Scaled Drawings - 1:500: Model 737-300W




NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

### 9.4.9 Scaled Drawings - 1:1000: Model 737-300W





NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

- AIR CONDITIONING А
- С CARGO DOOR
- Е ELECTRICAL
- F FUEL
- G SERVICE DOOR H20
- POTABLE WATER LAVATORY SERVICE L
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- 0 OXYGEN
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

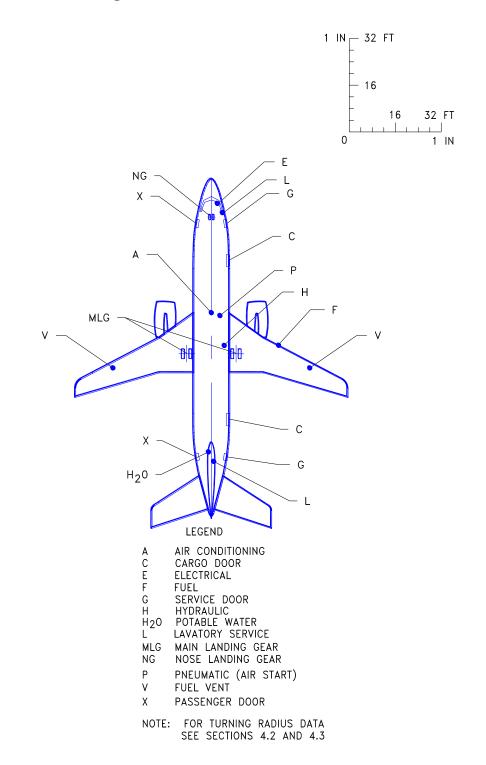
#### D6-58325-6

# 9.4.10 Scaled Drawings – 1:1000: Model 737-300W

20 M 10 M 0 10 M 20 M

### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

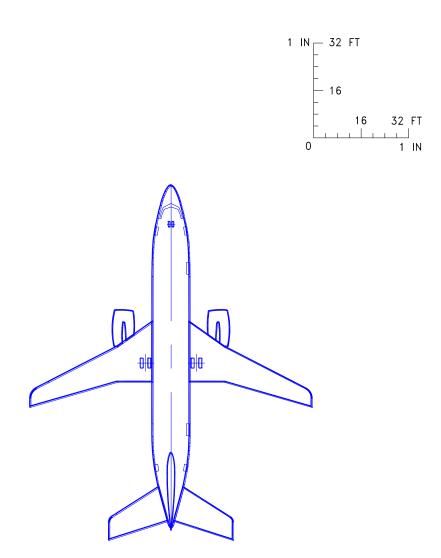
D6-58325-6


REV E

\_ \_ \_ \_ \_ \_ \_ \_ \_

November 2023

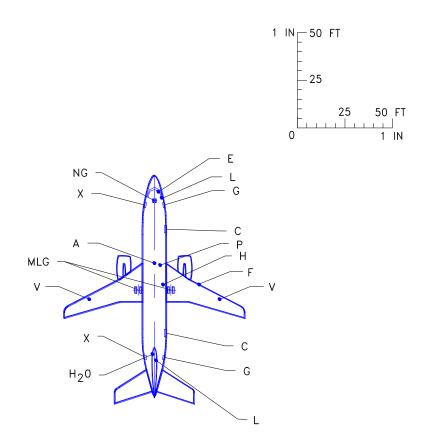
### 9.5 MODEL 737-400


### 9.5.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-400



#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6





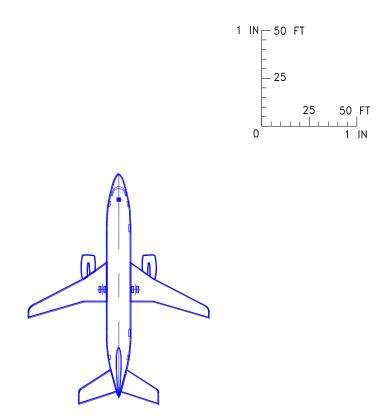

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023



## 9.5.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-400

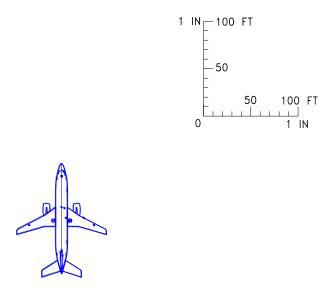

LEGEND

- AIR CONDITIONING А
- CARGO DOOR
- ELECTRICAL
- C E F FUEL
- G SERVICE DOOR
- Н HYDRAULIC
- POTABLE WATER LAVATORY SERVICE H20 L
- MAIN LANDING GEAR MLG
- NG NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- ٧ FUEL VENT
- PASSENGER DOOR Х
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6

# 9.5.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-400




#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

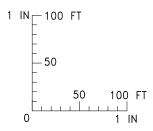
## 9.5.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-400



NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

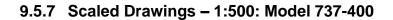

- AIR CONDITIONING А
- CARGO DOOR
- C E F ELECTRICAL
- FUEL
- G SERVICE DOOR
- Ĥ HYDRAULIC H20
- POTABLE WATER LAVATORY SERVICE L
- MLG MAIN LANDING GEAR
- NOSE LANDING GEAR NG
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- PASSENGER DOOR Х
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

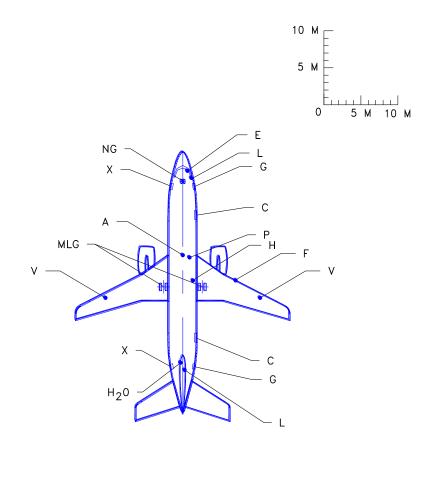
#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

## 9.5.6 Scaled Drawings - 1 IN. = 100 FT: Model 737-400



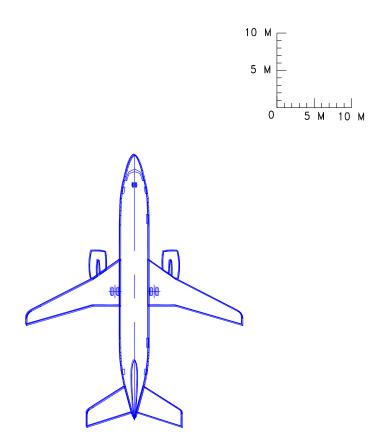




#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023



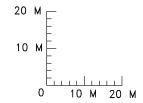



LEGEND

- AIR CONDITIONING А
- CARGO DOOR ELECTRICAL
- C E F FUEL
- G
- SERVICE DOOR Н HYDRAULIC
- POTABLE WATER LAVATORY SERVICE H<sub>2</sub>0
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT Х
- PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

# 9.5.8 Scaled Drawings - 1:500: Model 737-400




#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

## 9.5.9 Scaled Drawings - 1:1000: Model 737-400





NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

- AIR CONDITIONING А
- C E CARGO DOOR
- ELECTRICAL
- F FUEL
- SERVICE DOOR G
- POTABLE WATER LAVATORY SERVICE H20
- L MLG
- MAIN LANDING GEAR NG NOSE LANDING GEAR
- 0 OXYGEN Ρ
- PNEUMATIC (AIR START) ۷ FUEL VENT
- Х PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

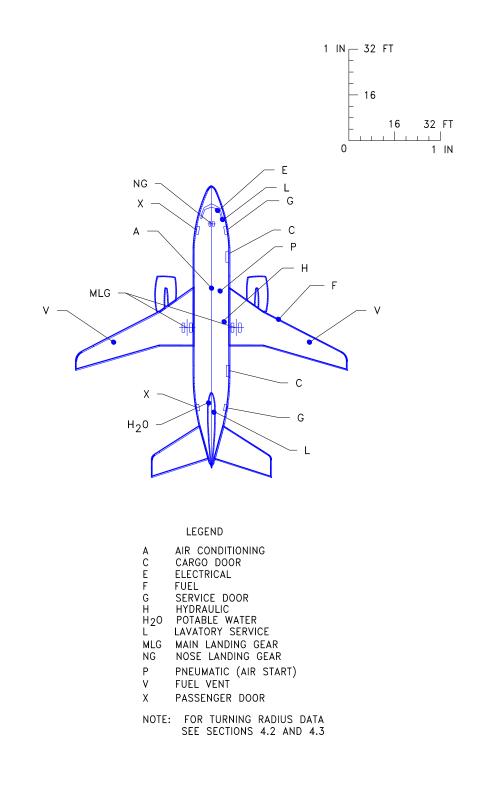
#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6

# 9.5.10 Scaled Drawings - 1:1000: Model 737-400

20 M 10 M 0 10 M 20 M

### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

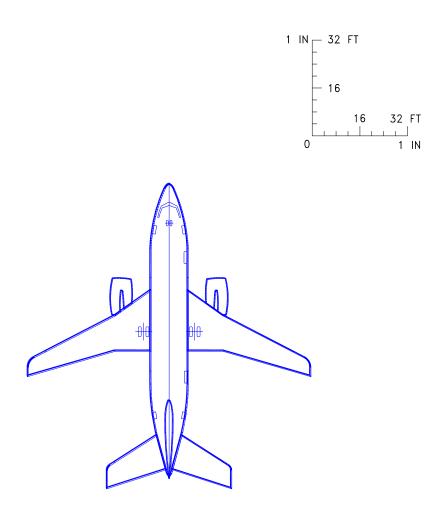

D6-58325-6

REV E

. ....

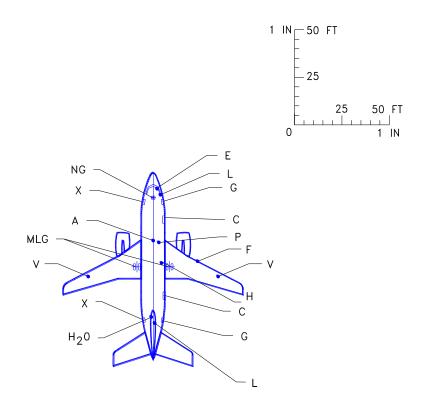
#### 9.6 MODEL 737-500

## 9.6.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-500




#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6


November 2023

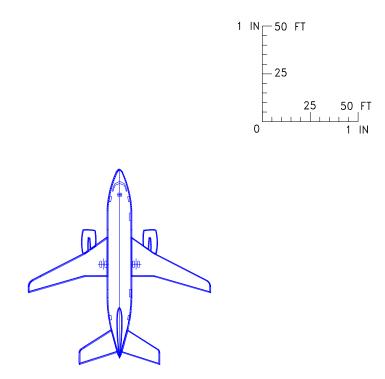




NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6



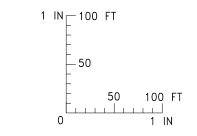



LEGEND

- AIR CONDITIONING A
- CARGO DOOR
- A C E F G H H2O ELECTRICAL
- FUEL
- SERVICE DOOR HYDRAULIC
- POTABLE WATER LAVATORY SERVICE L
- MAIN LANDING GEAR MLG
- NG NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- ٧ FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

9.6.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-500




#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

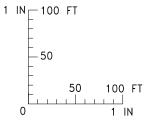
## 9.6.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-500





NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

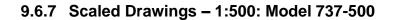

LEGEND

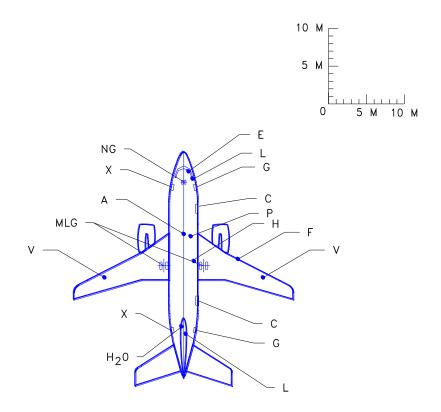
- AIR CONDITIONING А
- CARGO DOOR
- C E F ELECTRICAL
- FUEL
- G H SERVICE DOOR
- HYDRAULIC
- POTABLE WATER H20 L LAVATORY SERVICE
- MAIN LANDING GEAR MLG
- NG NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6

## 9.6.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-500





NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

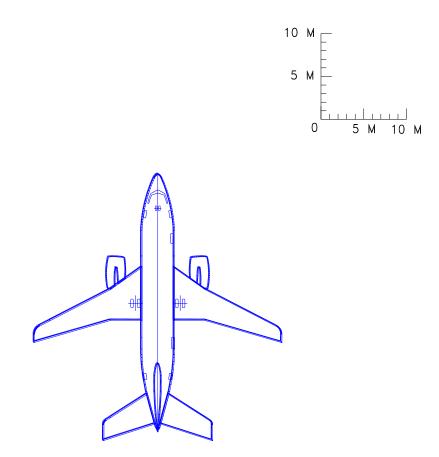
D6-58325-6

REV E

- - - - - -





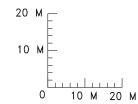

LEGEND

- AIR CONDITIONING
- CARGO DOOR ELECTRICAL
- A C E F G H
- FUEL SERVICE DOOR
- HYDRAULIC POTABLE WATER H20
- LAVATORY SERVICE L
- MAIN LANDING GEAR MLG
- NOSE LANDING GEAR NG
- PNEUMATIC (AIR START) Ρ
- ۷ FUEL VENT
- Х PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

#### D6-58325-6






NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

November 2023

## 9.6.9 Scaled Drawings - 1:1000: Model 737-500





NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

- AIR CONDITIONING А
- CARGO DOOR C E F G
- ELECTRICAL
- FUEL
- SERVICE DOOR
- H20 POTABLE WATER
- L LAVATORY SERVICE MLG
- MAIN LANDING GEAR NOSE LANDING GEAR NG
- 0 OXYGEN
- Ρ PNEUMATIC (AIR START)
- ۷ FUEL VENT
- PASSENGER DOOR χ
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

# 9.6.10 Scaled Drawings - 1:1000: Model 737-500

20 M 10 M 0 10 M 20 M

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-6

REV E

20 00020 0

November 2023