

CAGE Code 81205

# Next-Generation 737 Airplane Characteristics for Airport Planning

DOCUMENT NUMBER: REVISION: REVISION DATE:

D6-58325-7 Rev C October 2025

CONTENT OWNER:

#### **Boeing Commercial Airplanes**

All revisions to this document must be approved by the content owner before release.

Not Subject to US Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or US International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).



# **Revision Record**

| Revision Letter             | A                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Revision Date               | March 2023                                                                                                                                                                                                                                                                                                                                                   |
| Changes in This<br>Revision | All sections: Separating the 737 Airplane Characteristics for Airport Planning Manual (D6-58325-6) for 737 Classic and Next Generation Airplanes. This document gives Airplane Characteristics for Airport Planning information for 737-600/ -700/ -800/ -900.  Section 6.0: Adding Inlet Hazard Area information.  Section 7.0: Adding ACR/PCR information. |
| Revision Letter             | В                                                                                                                                                                                                                                                                                                                                                            |
| Revision Date               | December 2024                                                                                                                                                                                                                                                                                                                                                |
| Changes in This<br>Revision | Section 7.0: Updated ACR data                                                                                                                                                                                                                                                                                                                                |
| Revision Letter             | С                                                                                                                                                                                                                                                                                                                                                            |
| Revision Date               | October 2025                                                                                                                                                                                                                                                                                                                                                 |
| Changes in This<br>Revision | Minor update – 737-800F cargo volume                                                                                                                                                                                                                                                                                                                         |

## **Table of Contents**

| 1.0 SCOI | PE AND INTRODUCTION                                                   | 1-1  |
|----------|-----------------------------------------------------------------------|------|
| 1.1 Se   | COPE                                                                  | 1-1  |
| 1.2 IN   | NTRODUCTION                                                           | 1-2  |
| 1.3 A    | BRIEF DESCRIPTION OF THE 737 FAMILY OF AIRPLANES                      | 1-3  |
| 2.0 AIRP | LANE DESCRIPTION                                                      | 2-1  |
| 2.1 G    | ENERAL CHARACTERISTICS                                                | 2-1  |
| 2.1.     | 1 General Characteristics: Model 737-600                              | 2-2  |
| 2.1.     | 2 General Characteristics: Model 737-700, -700W, -700C                | 2-3  |
| 2.1.     | 3 General Characteristics: Model 737-800, -800W, -800BCF              | 2-4  |
| 2.1.     | 4 General Characteristics: Model 737-900, -900W                       | 2-5  |
| 2.1.     | 5 General Characteristics: Model 737-900ER, -900ERW                   | 2-6  |
| 2.1.     | 6 General Characteristics: Model 737 BBJ                              | 2-7  |
| 2.1.     | 7 General Characteristics: Model 737 BBJ2                             | 2-8  |
| 2.2 G    | ENERAL DIMENSIONS                                                     | 2-9  |
| 2.2.     | 1 General Dimensions: Model 737-600                                   | 2-9  |
| 2.2.     | 2 General Dimensions: Model 737-600W                                  | 2-10 |
| 2.2.     | 3 General Dimensions: Model 737-700, -700C                            | 2-11 |
| 2.2.     |                                                                       |      |
| 2.2.     | 5 General Dimensions: Model 737-800                                   | 2-13 |
| 2.2.     | 6 General Dimensions: Model 737-800W, BBJ2, -800BCF                   | 2-14 |
| 2.2.     | 7 General Dimensions: Model 737-900, -900ER                           | 2-15 |
| 2.2.     | 8 General Dimensions: Model 737-900W, -900ERW                         | 2-16 |
| 2.3 G    | ROUND CLEARANCES                                                      | 2-17 |
| 2.3.     | 1 Ground Clearances: Model 737-600, -700, -700C                       | 2-17 |
| 2.3.     | 2 Ground Clearances: Model 737-800, -900, -900ER                      | 2-18 |
| 2.3.     | 3 Ground Clearances: Model 737-700W, -800W, -900W, -900ERW, BBJ, BBJ2 | 2-19 |
| 2.3.     |                                                                       |      |
| 2.4 IN   | NTERIOR ARRANGEMENTS                                                  |      |
| 2.4.     | 1 Interior Arrangements: Model 737-600                                | 2-21 |
| 2.4.     | _                                                                     |      |
| 2.4.     | _                                                                     |      |
| 2.4.     | _                                                                     |      |
| 2.4.     |                                                                       |      |
| 2.4.     | •                                                                     |      |
| 2.4.     | _                                                                     |      |
| 2.4.     | _                                                                     |      |
| 2.5 C    | ABIN CROSS SECTIONS                                                   |      |

| 2.5.1      | Cabin Cross-Sections: Model 737-600, -700, -800, -900, BBJ1, BBJ2, Four-Abreast Seating                                 | . 2-29      |
|------------|-------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.5.2      | Cabin Cross-Sections: Model 737-600, -700, -800, -900, Six-Abreast Seating                                              | 2-30        |
| 2.6 LOW    | VER CARGO COMPARTMENTS                                                                                                  |             |
| 2.6.1      | Lower Cargo Compartments: Model 737-600, -700, -700C, -800, -800BCF, -900, -900ER With and Without Winglets, Capacities |             |
| 2.6.2      | Lower Cargo Compartments: Model 737BBJ1, 737 BBJ2, Capacities                                                           | 2-32        |
| 2.7 DOO    | OR CLEARANCES                                                                                                           |             |
| 2.7.1      | Door Clearances: Model 737, All Models, Forward Main Entry                                                              |             |
|            | Door No. 1                                                                                                              | . 2-33      |
| 2.7.2      | Door Clearances: Model 737, All Models, Optional Forward                                                                |             |
|            | Airstairs, Main Entry Door No 1                                                                                         | . 2-34      |
| 2.7.3      | Door Clearances: Model 737-600, -700, -700C, -800, -800BCF, -                                                           |             |
|            | 900, -900ER, BBJ1, BBJ2, With and Without Winglets, Locations of Sensors and Probes – Forward of Main Entry Door No 1   | 2 25        |
| 2.7.4      | Door Clearances: Model 737, All Models, Forward Service Door                                                            |             |
| 2.7.4      | Door Clearances: Model 737, All Models, Aft Entry Door and Aft                                                          | . 2-30      |
| 2.7.3      | Service Door                                                                                                            | . 2-37      |
| 2.7.6      | Door Clearances: Model 737-700C, Main Deck Cargo Door                                                                   |             |
| 2.7.7      | Door Clearances: Model 737-800BCF, Main Deck Cargo Door                                                                 |             |
| 3.0 AIRPLA | NE PERFORMANCE                                                                                                          | 3-1         |
|            | ERAL INFORMATION                                                                                                        |             |
|            | LOAD/RANGE FOR LONG RANGE CRUISE                                                                                        |             |
| 3.2.1      | Payload/Range for Long Range Cruise: Model 737-600                                                                      |             |
| 3.2.2      | Payload/Range for Long Range Cruise: Model 737-700, -700W                                                               |             |
| 3.2.3      | Payload/Range for Long Range Cruise: Model 737-700ER, -                                                                 |             |
|            | 700ERW, -700C, -700CW, BBJ1                                                                                             |             |
| 3.2.4      | Payload/Range for Long Range Cruise: Model 737-800, -800W, -800BCF, BBJ2                                                |             |
| 3.2.5      | Payload/Range for Long Range Cruise: Model 737-900, -900W                                                               | 3-6         |
| 3.2.6      | Payload/Range for Long Range Cruise: Model 737-900ER, - 900ERW, BBJ3                                                    | 3-7         |
| 3.3 FAA    | /EASA TAKEOFF RUNWAY LENGTH REQUIREMENTS                                                                                | 3-8         |
| 3.3.1      | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                  |             |
|            | Day, Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)                                             | 3-8         |
| 3.3.2      | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                  |             |
|            | Day + 27°F (STD + 15°C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)                         | 2 0         |
|            | (CTM30-/D10/-/D20 Eligilles at 20,000 LD SLS1)                                                                          | <b>3-</b> 9 |

| 3.3.3  | FAA/EASA Takeoff Runway Length Requirements - Standard<br>Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-600<br>(CFM56-7B18/-7B20 Engines at 20,000 LB SLST)                                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.3.4  | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)                                                                                |
| 3.3.5  | FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)                                                                                                           |
| 3.3.6  | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)                                                                                       |
| 3.3.7  | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)                                                                                       |
| 3.3.8  | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-600                                                                                                                             |
| 3.3.9  | (CFM56-7B22 Engines at 22,000 LB SLST)                                                                                                                                                                                                 |
| 3.3.10 | 7B24 Engines at 20,000 LB SLST)                                                                                                                                                                                                        |
| 3.3.11 | (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)                                                                                                                                                                                     |
| 3.3.12 | 700W (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST) 3-18 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700, -700W (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST) 3-19 |
| 3.3.13 | FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700, -700W (CFM56-7B26                                                                                                                               |
| 3.3.14 | Engines at 26,000 LB SLST                                                                                                                                                                                                              |
| 3.3.15 | FAA/EASA Takeoff Runway Length Requirements - Standard<br>Day + 45°F (STD + 25°C), Dry Runway: Model 737-700, -700W<br>(CFM56-7B26 Engines at 26,000 LB SLST)                                                                          |
| 3.3.16 | FAA/EASA Takeoff Runway Length Requirements - Standard<br>Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700, -700W<br>(CFM56-7B26 Engines at 26,000 LB SLST)                                                                         |
| 3.3.17 | FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700ER, -700ERW, -700C, -                                                                                                                             |

|        | 700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)                                                                  |
|--------|---------------------------------------------------------------------------------------------------------------------------|
| 3.3.18 | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                    |
|        | Day + 27°F (STD + 15°C), Dry Runway: Model 737-700ER, -                                                                   |
|        | 700ERW, -700C, -700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)                                                  |
| 3.3.19 | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                    |
|        | Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-700ER, -                                                                 |
|        | 700ERW, -700C, -700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)                                                  |
| 3.3.20 | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                    |
|        | Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700ER, -700ERW, -700C, -700CW (CFM56-7B20/-7B22/-7B24 Engines             |
|        | at 20,000 LB SLST)                                                                                                        |
| 3.3.21 | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                    |
|        | Day, Dry Runway: Model 737-700ER, -700ERW, -700C, -                                                                       |
|        | 700CW, BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)                                                                  |
| 3.3.22 | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                    |
|        | Day + 27°F (STD + 15°C), Dry Runway: Model 737-700ER, -                                                                   |
|        | 700ERW, -700C, -700CW, BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)                                                  |
| 3.3.23 | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                    |
|        | Day + 45°F (STD + 25°C), Dry Runway: Model 737-700ER, -                                                                   |
|        | 700ERW, -700C, -700CW, BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)                                                  |
| 3.3.24 | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                    |
| 3.3.2  | Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700ER, -                                                                  |
|        | 700ERW, -700C, -700CW, BBJ1 (CFM56-7B26/-7B27 Engines                                                                     |
| 3.3.25 | at 26,000 LB SLST)                                                                                                        |
| 3.3.23 | Day, Dry Runway: Model 737-800, -800W, BBJ2, -800BCF                                                                      |
|        | (CFM56-7B27-B1 Engine at 26,000 LB SLST)                                                                                  |
| 3.3.26 | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-800, -800W,         |
|        | BBJ2, -800BCF (CFM56-7B27-B1 Engine at 26,000 LB SLST) 3-33                                                               |
| 3.3.27 | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                    |
|        | Day + 45°F (STD + 25°C), Dry Runway: Model 737-800, -800W,<br>BBJ2, -800BCF (CFM56-7B27-B1 Engine at 26,000 LB SLST) 3-34 |
| 3 3 28 | FAA/EASA Takeoff Runway Length Requirements - Standard                                                                    |
| 3.3.20 | Day + 63°F (STD + 35°C), Dry Runway: Model 737-800, -800W,                                                                |
|        | BBJ2, -800BCF (CFM56-7B27-B1 Engine at 26,000 LB SLST) 3-35                                                               |
| 3.3.29 | FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-800, -800W, BBJ2, -800BCF               |
|        | (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)                                                                        |

| 3.3.30   | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-800, -800W, BBJ2, -800BCF (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)   | 2 27   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 3.3.31   | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-800, -800W, BBJ2, -800BCF (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)   |        |
| 3.3.32   | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-800, - 800W, BBJ2, -800BCF (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST) |        |
| 3.3.33   | FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-900, -900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)                                            | . 3-40 |
| 3.3.34   | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-900, -900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)                        | . 3-41 |
| 3.3.35   | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-900, -900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)                        |        |
| 3.3.36   | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-900, -900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)                       | . 3-43 |
| 3.3.37   | FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-900ER, -900ERW, BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)                                  |        |
| 3.3.38   | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-900ER, - 900ERW, BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)             |        |
| 3.3.39   | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-900ER, - 900ERW, BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)             |        |
| 3.3.40   | FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-900ER, - 900ERW, BBJ3 (CFM56-7B26/-7B27 Engines at 6,000 LB SLST)             |        |
| 3.3.41   | ,                                                                                                                                                                                    |        |
| 3.4 FAA/ | EASA LANDING RUNWAY LENGTH REQUIREMENTS                                                                                                                                              | . 3-49 |
| 3.4.1    | FAA/EASA Landing Runway Length Requirements - Flaps 30:<br>Model 737-600                                                                                                             | . 3-49 |

|       | 3.4.2 | FAA/EASA Landing Runway Length Requirements - Flaps 30:<br>Model 737-700, -700W, 700ER, -700ERW, 700C, -700CW,<br>BBJ1  | 3-50 |
|-------|-------|-------------------------------------------------------------------------------------------------------------------------|------|
|       | 3.4.3 | FAA/EASA Landing Runway Length Requirements - Flaps 30:<br>Model 737-800, -800W, -800BCF, BBJ2                          |      |
|       | 3.4.4 | FAA/EASA Landing Runway Length Requirements - Flaps 30: Model 737-900, -900W                                            | 3-52 |
|       | 3.4.5 | FAA/EASA Landing Runway Length Requirements - Flaps 30: Model 737-900ER, -900ERW, BBJ3                                  | 3-53 |
| 4.0 A | IRPLA | NE PERFORMANCE                                                                                                          | 4-1  |
| 4.1   | GENE  | ERAL INFORMATION                                                                                                        | 4-1  |
| 4.2   | TURN  | NING RADII                                                                                                              | 4-2  |
|       | 4.2.1 | Turning Radii – No Slip Angle: Model 737-600                                                                            | 4-2  |
|       | 4.2.2 | Turning Radii – No Slip Angle: Model 737-600W                                                                           | 4-3  |
|       | 4.2.3 | Turning Radii – No Slip Angle: Model 737-700                                                                            | 4-4  |
|       | 4.2.4 | Turning Radii – No Slip Angle: Model 737-700W, BBJ1                                                                     | 4-5  |
|       | 4.2.5 | Turning Radii – No Slip Angle: Model 737-800                                                                            | 4-6  |
|       | 4.2.6 | Turning Radii – No Slip Angle: Model 737-800W, -800BCF, BBJ2                                                            | 4-7  |
|       | 4.2.7 | Turning Radii – No Slip Angle: Model 737-900, -900ER                                                                    |      |
|       | 4.2.8 | Turning Radii – No Slip Angle: Model 737-900W, -900ERW                                                                  |      |
| 4.3   |       | ARANCE RADII                                                                                                            |      |
|       | 4.3.1 | Minimum Turning Radii – 3" Slip Angle: Model 737-600, -700, -800, -900, -900ER                                          |      |
|       | 4.3.2 | Minimum Turning Radii – 3" Slip Angle: Model 737-600W, -700W, -800W, -800BCF, -900W, -900ERW, BBJ1, BBJ2                |      |
| 4.4   |       | BILITY FROM COCKPIT IN STATIC POSITION: MODEL 737, MODELS                                                               |      |
| 4.5   |       | WAY AND TAXIWAY TURN PATHS                                                                                              |      |
|       |       | Runway and Taxiway Turn Paths - Runway-to-Taxiway, More<br>Than 90 Degrees, Nose Gear Tracks Centerline: Model 737, All |      |
|       |       | Models                                                                                                                  | 4-13 |
|       | 4.5.2 | Runway and Taxiway Turn Paths - Runway-to-Taxiway, 90<br>Degrees, Nose Gear Tracks Centerline: Model 737, All Models    | 4-14 |
|       | 4.5.3 | Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90<br>Degrees, Nose Gear Tracks Centerline: Model 737, All Models   | 4-15 |
|       | 4.5.4 | Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90 Degrees, Cockpit Tracks Centerline: Model 737, All Models        |      |
| 4.6   | RUN   | WAY HOLDING BAY: MODEL 737, ALL MODELS                                                                                  |      |
| _     |       | AL SERVICING                                                                                                            |      |
| 5.1   |       | LANE SERVICING ARRANGEMENT - TYPICAL                                                                                    | _ =  |
|       | TURN  | NAROUND                                                                                                                 | 5-2  |

|     | 5.1.1 | Airplane Servicing Arrangement - Typical Turnaround: Model 737-600                                    | 5-2    |
|-----|-------|-------------------------------------------------------------------------------------------------------|--------|
|     | 5.1.2 | Airplane Servicing Arrangement - Typical Turnaround: Model 737-700, -700W                             | 5-3    |
|     | 5.1.3 | Airplane Servicing Arrangement - Typical Turnaround: Model 737-700C, -700QC, -800BCF                  | 5-4    |
|     | 5.1.4 | Airplane Servicing Arrangement - Typical Turnaround: Model 737-800, -800W                             |        |
|     | 5.1.5 | Airplane Servicing Arrangement - Typical Turnaround: Model 737-900, -900ER, With and Without Winglets | 5-6    |
|     | 5.1.6 | Airplane Servicing Arrangement - Typical Turnaround: Model 737 BBJ1, BBJ2                             | 5-7    |
| 5.2 | TERN  | MINAL OPERATIONS - TURNAROUND STATION                                                                 | 5-8    |
|     | 5.2.1 | Terminal Operations – Turnaround Station: Model 737-600                                               | 5-8    |
|     | 5.2.2 | Terminal Operations – Turnaround Station: Model 737-700, - 700W                                       | 5-9    |
|     | 5.2.3 | Terminal Operations – Turnaround Station: Model 737-700C, - 700QC                                     | 5-10   |
|     | 5.2.4 | Terminal Operations – Turnaround Station: Model 737-800, - 800W                                       | 5-11   |
|     | 5.2.5 | Terminal Operations – Turnaround Station: Model 737-900, - 900ER, With and Without Winglets           | 5-12   |
|     | 5.2.6 | Terminal Operations – Turnaround Station: Model 737 BBJ1, BBJ2                                        |        |
| 5.3 | TERN  | MINAL OPERATIONS - EN ROUTE STATION                                                                   | 5-14   |
|     | 5.3.1 | Terminal Operations - En Route Station: Model 737-600                                                 | 5-14   |
|     | 5.3.2 | Terminal Operations - En Route Station: Model 737-700, -700W                                          | 5-15   |
|     | 5.3.3 | Terminal Operations - En Route Station: Model 737-800, -800W                                          | 5-16   |
|     | 5.3.4 | Terminal Operations - En Route Station: Model 737-900, -900ER, With and Without Winglets              | . 5-17 |
|     | 5.3.5 | Terminal Operations - En Route Station: Model 737 BBJ1, BBJ2                                          | 5-18   |
| 5.4 | GROU  | UND SERVICING CONNECTIONS                                                                             |        |
|     | 5.4.1 | Ground Service Connections: Model 737-600                                                             | 5-19   |
|     | 5.4.2 | Ground Service Connections: Model 737-700                                                             |        |
|     | 5.4.3 | Ground Service Connections: Model 737-700W, BBJ 1                                                     | 5-21   |
|     | 5.4.4 | Ground Service Connections: Model 737-800                                                             | 5-22   |
|     | 5.4.5 | Ground Service Connections: Model 737-800W, -800BCF, BBJ2                                             | 5-23   |
|     | 5.4.6 | Ground Service Connections: Model 737-900, -900ER                                                     | 5-24   |
|     | 5.4.7 | Ground Service Connections: Model 737-900W, -900ERW                                                   | 5-25   |
|     | 5.4.8 | Ground Servicing Connections and Capacities: Model 737,<br>All Models                                 |        |
| 5 5 | FNGI  | NE STARTING PNEUMATIC REQUIREMENTS                                                                    |        |

| 5.5.1       | Engine Start Pneumatic Requirements - Sea Level: Model 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets, BBJ1, BBJ2 | 5-27 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------|------|
| 5.6 GRO     | UND PNEUMATIC POWER REQUIREMENTS                                                                                                         |      |
| 5.6.1       | Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-600, -700, With and Without Winglets                                    |      |
| 5.6.2       | Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-800, -800BCF, -900, -900ER, With and Without Winglets                   | 5-29 |
| 5.7 CON     | DITIONED AIR REQUIREMENTS                                                                                                                |      |
| 5.7.1       | Conditioned Air Flow Requirements: Model 737-600, -700, With and Without Winglets                                                        |      |
| 5.7.2       | Conditioned Air Flow Requirements: Model 737-800, -800BCF, -900, -900ER, With and Without Winglets                                       | 5-31 |
| 5.8 GRO     | UND TOWING REQUIREMENTS                                                                                                                  |      |
| 5.8.1       | Ground Towing Requirements - English Units: Model 737,<br>All Models                                                                     |      |
| 5.8.2       | Ground Towing Requirements - Metric Units: Model 737, All Models                                                                         | 5-33 |
| 6.0 JET ENG | GINE WAKE AND NOISE DATA                                                                                                                 | 6-1  |
|             | ENGINE EXHAUST VELOCITIES AND TEMPERATURES                                                                                               |      |
| 6.1.1       | Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-600                                                                        |      |
| 6.1.2       | Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-700, -700W                                                                 |      |
| 6.1.3       | Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-800, -800W, -800BCF                                                        |      |
| 6.1.4       | Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-900, -900ER, With and Without Winglets                                     | 6-5  |
| 6.1.5       | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MLW: Model 737-600                                     |      |
| 6.1.6       | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MTW: Model 737-600                                     | 6-7  |
| 6.1.7       | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / Both Engines / MTW: Model 737-600                                   | 6-8  |
| 6.1.8       | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 1% Slope / Both Engines / MTW: Model 737-600                                   | 6-9  |
| 6.1.9       | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MLW: Model 737-700, -700W                              | 6-10 |
| 6.1.10      | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MTW: Model 737-700, -700W                              | 6-11 |
| 6.1.11      | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / Both Engines / MTW: Model 737-700, -700W                            |      |

| 6.1.12   | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 1% Slope / Both Engines / MTW: Model 737-700, -700W                                 | 6-13 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 6.1.13   | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MLW: Model 737-800, -800W, -800BCF                          | 6-14 |
| 6.1.14   | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MTW: Model 737-800, -800W, -800BCF                          | 6-15 |
| 6.1.15   | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / Both Engines / MTW: Model 737-800, -800W, -800BCF                        | 6-16 |
| 6.1.16   | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 1% Slope / Both Engines / MTW: Model 737-800, -800W, -800BCF                        | 6-17 |
| 6.1.17   | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MLW: Model 737-900, -900ER, With and Without Winglets       | 6-18 |
| 6.1.18   | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MTW: Model 737-900, -900ER, With and Without Winglets       | 6-19 |
| 6.1.19   | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / Both Engines / MTW: Model 737-900, -900ER, With and Without Winglets     | 6-20 |
| 6.1.20   | Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 1% Slope / Both Engines / MTW: Model 737-900, -900ER, With and Without Winglets     | 6-21 |
| 6.1.21   | Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-600                                                                          | 6-22 |
| 6.1.22   | Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-700, -700W                                                                   | 6-23 |
| 6.1.23   | Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-800, -800W, -800BCF                                                          | 6-24 |
| 6.1.24   | Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-900, -900ER, With and Without Winglets                                       |      |
| 6.1.25   | Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets            | 6-26 |
| 6.1.26   | Jet Engine Exhaust Temperature Contours – Breakaway Thrust:<br>Model 737-600, -700, -800, -800BCF, -900, -900ER, With and<br>Without Winglets | 6-27 |
| 6.1.27   | Jet Engine Exhaust Temperature Contours – Takeoff Thrust:<br>Model 737-600, -700, -800, -800BCF, -900, -900ER, With and<br>Without Winglets   | 6-28 |
| 6.1.28   | Inlet Hazard Areas: Models 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets                                              |      |
| 6.2 AIRP | PORT AND COMMUNITY NOISE                                                                                                                      | 6-30 |
| PAVEMI   | ENT DATA                                                                                                                                      | 7-1  |

7.0

| 7.1 | GEN   | ERAL INFORMATION                                                                            | 7-1         |
|-----|-------|---------------------------------------------------------------------------------------------|-------------|
| 7.2 | LAN   | DING GEAR FOOTPRINT                                                                         | 7-5         |
| 7   | 7.2.1 | Landing Gear Footprint: Model Advanced 737-600, -700, -800, -                               |             |
|     |       | 800BCF, -900, -900ER, With and Without Winglets                                             | 7-5         |
| 7   | 7.2.2 | Landing Gear Footprint: Model 737 BBJ1, BBJ2                                                | 7-6         |
| 7.3 | MAX   | XIMUM PAVEMENT LOADS                                                                        | 7-7         |
| 7   | 7.3.1 | Maximum Pavement Loads: Model 737-600, -700, -800, -                                        |             |
|     |       | 800BCF, -900, -900ER With and Without Winglets                                              |             |
|     | 7.3.2 | Maximum Pavement Loads: Model 737 BBJ1, BBJ2                                                |             |
|     |       | DING GEAR LOADING ON PAVEMENT                                                               |             |
| 7   | 7.4.1 | Landing Gear Loading on Pavement: Model 737-600                                             |             |
| 7   | 7.4.2 | Landing Gear Loading on Pavement: Model 737-700, -700W                                      |             |
| 7   | 7.4.3 | Landing Gear Loading on Pavement: Model 737 BBJ1                                            | . 7-12      |
| 7   | 7.4.4 | Landing Gear Loading on Pavement: Model 737-800, -800W, -                                   |             |
|     |       | 800BCF                                                                                      |             |
|     | 7.4.5 | Landing Gear Loading on Pavement: Model 737 BBJ2                                            |             |
|     | 7.4.6 | Landing Gear Loading on Pavement: Model 737-900, -900W                                      | . 7-15      |
| 7   | 7.4.7 | Landing Gear Loading on Pavement: Model 737-900ER, -                                        | <b>-</b> 10 |
| 7.5 | DI DI | 900ERW                                                                                      | . 7-16      |
| 7.5 |       | XIBLE PAVEMENT REQUIREMENTS - U.S. ARMY CORPS OF INEERS METHOD S-77-1 AND FAA DESIGN METHOD | 7 17        |
| -   | 2.5.1 | Flexible Pavement Requirements - U.S. Army Corps of Engineers                               | . /-1/      |
| ,   | .3.1  | Design Method (S-77-1) and FAA Design Method: Model 737-                                    |             |
|     |       | 600, -700, -800, -800BCF, -900, -900ER, With and Without                                    |             |
|     |       | Winglets, BBJ1, BBJ2                                                                        | . 7-18      |
| 7.6 | FLEX  | XIBLE PAVEMENT REQUIREMENTS - LCN CONVERSION                                                |             |
| 7   | 7.6.1 | Flexible Pavement Requirements - LCN Method: Model 737-600,                                 |             |
|     |       | -700, -800, -800BCF, -900, -900ER, With and Without Winglets,                               |             |
|     |       | BBJ1, BBJ2                                                                                  | . 7-20      |
| 7.7 |       | D PAVEMENT REQUIREMENTS - PORTLAND CEMENT                                                   |             |
|     |       | OCIATION DESIGN METHOD                                                                      | . 7-21      |
| 7   | 7.7.1 | Rigid Pavement Requirements - Portland Cement Association                                   |             |
|     |       | Design Method: Model 737-600, -700, -800, -800BCF, -900, -                                  | 7 22        |
| -   | 773   | 900ER, With and Without Winglets, BBJ1, BBJ2                                                | . 1-22      |
| ,   | 7.7.2 | Design Method: Model 737-600, -700 (Optional Tires)                                         | 7-23        |
| 7.8 | RIGI  | D PAVEMENT REQUIREMENTS - LCN CONVERSION                                                    |             |
|     | 7.8.1 | Radius of Relative Stiffness (Reference: Portland                                           | . /-24      |
| ,   | .0.1  | Cement Association)                                                                         | . 7-25      |
| 7   | 7.8.2 | Rigid Pavement Requirements - LCN Conversion: Model 737-                                    |             |
| ,   |       | 600, -700, -800, -800BCF, -900, -900ER With and Without                                     |             |
|     |       | Winglets, BBJ1, BBJ2                                                                        | . 7-26      |
| 7.9 | RIGI  | D PAVEMENT REQUIREMENTS - FAA DESIGN METHOD                                                 | 7-27        |

D6-58325-7

| 7.9.1       | Rigid Pavement Requirements – FAA Design Method: Model 737-600, -700, -800, -800BCF, -900, -900ER With and Without |           |
|-------------|--------------------------------------------------------------------------------------------------------------------|-----------|
|             | Winglets, BBJ1, BBJ2                                                                                               | 7-28      |
| 7.9.2       | Rigid Pavement Requirements – FAA Design Method: Model 737-600, -700 (Optional Tires)                              | 7-29      |
| 7.10 ACN/   | PCN REPORTING SYSTEM - FLEXIBLE AND RIGID                                                                          |           |
| PAVE        | EMENTS                                                                                                             | 7-30      |
| 7.10.1      | Aircraft Classification Number - Flexible Pavement: Model 737-600                                                  | 7-32      |
| 7.10.2      | Aircraft Classification Number - Rigid Pavement: Model 737-600                                                     | 7-33      |
| 7.10.3      | Aircraft Classification Number - Flexible Pavement: Model 737-                                                     |           |
|             | 600 (Optional Tires)                                                                                               | 7-34      |
| 7.10.4      | Aircraft Classification Number - Rigid Pavement: Model 737-600 (Optional Tires)                                    | 7-35      |
| 7.10.5      | Aircraft Classification Number - Flexible Pavement: Model 737-700, -700W                                           |           |
| 7.10.6      | Aircraft Classification Number - Rigid Pavement: Model 737-                                                        | , •       |
|             | 700, -700W                                                                                                         | 7-37      |
| 7.10.7      | Aircraft Classification Number - Flexible Pavement: Model 737-700, -700W (Optional Tires)                          | 7-38      |
| 7.10.8      | Aircraft Classification Number - Rigid Pavement: Model 737-                                                        |           |
|             | 700, -700W (Optional Tires)                                                                                        | 7-39      |
| 7.10.9      | Aircraft Classification Number - Flexible Pavement: Model 737 BBJ1                                                 | 7-40      |
| 7.10.10     | Aircraft Classification Number - Rigid Pavement: Model 737 BBJ1                                                    | 7-41      |
| 7.10.11     | Aircraft Classification Number - Flexible Pavement: Model 737-800, -800W, -800BCF, BBJ2                            |           |
| 7 10 12     | Aircraft Classification Number - Rigid Pavement: Model 737-                                                        | ,         |
|             | 800, -800W, -800BCF, BBJ2                                                                                          | 7-43      |
| 7.10.13     | Aircraft Classification Number - Flexible Pavement: Model 737-900, -900W                                           | 7.44      |
| 7 10 14     | ,                                                                                                                  | /-44      |
|             | Aircraft Classification Number - Rigid Pavement: Model 737-900, -900W                                              | 7-45      |
| 7.10.15     | Aircraft Classification Number - Flexible Pavement: Model 737-900ER, -900ERW                                       | 7-46      |
| 7.10.16     | Aircraft Classification Number - Rigid Pavement: Model 737-900ER, -900ERW                                          | 7-47      |
| 7.11 ACR/   | PCR REPORTING SYSTEM – FLEXIBLE AND RIGID                                                                          | ,         |
|             | EMENTS                                                                                                             | 7-48      |
| 7.11.1      | Aircraft Classification Rating - Flexible Pavement: Model 737-600                                                  |           |
| 7.11.2      | Aircraft Classification Rating - Rigid Pavement: Model 737-600                                                     |           |
| / • 1 1 • 4 | Through Chaptinearion rading Rigid I avenient. Woder /3/-000                                                       | , , , , 1 |

| 7.11.3     | Aircraft Classification Rating - Flexible Pavement: Model 737-600 (Optional Tires) | 7-52 |
|------------|------------------------------------------------------------------------------------|------|
| 7.11.4     | Aircraft Classification Rating - Rigid Pavement: Model 737-600 (Optional Tires)    | 7-53 |
| 7.11.5     | Aircraft Classification Rating - Flexible Pavement: Model 737-700, -700W           | 7-54 |
| 7.11.6     | Aircraft Classification Rating - Rigid Pavement: Model 737-700, -700W              | 7-55 |
| 7.11.7     | Aircraft Classification Rating - Flexible Pavement: Model 737-700 (Optional Tires) | 7-56 |
| 7.11.8     | Aircraft Classification Rating - Rigid Pavement: Model 737-700 (Optional Tires)    | 7-57 |
| 7.11.9     | Aircraft Classification Rating - Flexible Pavement: Model 737 BBJ1                 | 7-58 |
| 7.11.10    | Aircraft Classification Rating - Rigid Pavement: Model 737 BBJ1                    | 7-59 |
| 7.11.11    | Aircraft Classification Rating - Flexible Pavement: Model 737-800, -800W, -800BCF  | 7-60 |
| 7.11.12    | Aircraft Classification Rating - Rigid Pavement: Model 737-800, -800W, -800BCF     | 7-61 |
| 7.11.13    | Aircraft Classification Rating - Flexible Pavement: Model 737-900, -900W           | 7-62 |
| 7.11.14    | Aircraft Classification Rating - Rigid Pavement: Model 737-900, -900W              |      |
| 7.11.15    | Aircraft Classification Rating - Flexible Pavement: Model 737-900ER, -900ERW       | 7-64 |
| 7.11.16    | Aircraft Classification Rating - Rigid Pavement: Model 737-900ER, -900ERW          | 7-65 |
| 8.0 FUTURE | 737 DERIVATIVE AIRPLANES                                                           | 8-1  |
| 9.0 SCALED | 737 DRAWINGS                                                                       | 9-1  |
| 9.1 MOD    | EL 737-600                                                                         | 9-2  |
| 9.1.1      | Scaled Drawings – 1 IN. = 32 FT: Model 737-600                                     | 9-2  |
| 9.1.2      | Scaled Drawings – 1 IN. = 32 FT: Model 737-600                                     |      |
| 9.1.3      | Scaled Drawings – 1 IN. = 50 FT: Model 737-600                                     |      |
| 9.1.4      | Scaled Drawings – 1 IN. = 50 FT: Model 737-600                                     |      |
| 9.1.5      | Scaled Drawings – 1 IN. = 100 FT: Model 737-600                                    | 9-6  |
| 9.1.6      | Scaled Drawings – 1 IN. = 100 FT: Model 737-600                                    |      |
| 9.1.7      | Scaled Drawings – 1:500: Model 737-600                                             | 9-8  |
| 9.1.8      | Scaled Drawings – 1:500: Model 737-600                                             |      |
| 9.1.9      | Scaled Drawings – 1:1000: Model 737-600                                            |      |
| 9.1.10     | Scaled Drawings – 1:1000: Model 737-600                                            |      |
| 9.2 MOD    | EL 737-600W                                                                        |      |
| 9.2.1      | Scaled Drawings – 1 IN. = 32 FT: Model 737-600W                                    | 9-12 |

|     | 9.2.2  | Scaled Drawings – 1 IN. = 32 FT: Model 737-600W        | 9-13 |
|-----|--------|--------------------------------------------------------|------|
|     | 9.2.3  | Scaled Drawings – 1 IN. = 50 FT: Model 737-600W        | 9-14 |
|     | 9.2.4  | Scaled Drawings – 1 IN. = 50 FT: Model 737-600W        | 9-15 |
|     | 9.2.5  | Scaled Drawings – 1 IN. = 100 FT: Model 737-600W       | 9-16 |
|     | 9.2.6  | Scaled Drawings – 1 IN. = 100 FT: Model 737-600W       | 9-17 |
|     | 9.2.7  | Scaled Drawings – 1:500: Model 737-600W                | 9-18 |
|     | 9.2.8  | Scaled Drawings – 1:500: Model 737-600W                | 9-19 |
|     | 9.2.9  | Scaled Drawings – 1:1000: Model 737-600W               | 9-20 |
|     | 9.2.10 | Scaled Drawings – 1:1000: Model 737-600W               | 9-21 |
| 9.3 | MOD!   | EL 737-700                                             |      |
|     | 9.3.1  | Scaled Drawings – 1 IN. = 32 FT: Model 737-700         | 9-22 |
|     | 9.3.2  | Scaled Drawings – 1 IN. = 32 FT: Model 737-700         | 9-23 |
|     | 9.3.3  | Scaled Drawings – 1 IN. = 50 FT: Model 737-700         |      |
|     | 9.3.4  | Scaled Drawings – 1 IN. = 50 FT: Model 737-700         | 9-25 |
|     | 9.3.5  | Scaled Drawings – 1 IN. = 100 FT: Model 737-700        | 9-26 |
|     | 9.3.6  | Scaled Drawings – 1 IN. = 100 FT: Model 737-700        |      |
|     | 9.3.7  | Scaled Drawings – 1:500: Model 737-700                 | 9-28 |
|     | 9.3.8  | Scaled Drawings – 1:500: Model 737-700                 |      |
|     | 9.3.9  | Scaled Drawings – 1:1000: Model 737-700                | 9-30 |
|     | 9.3.10 | Scaled Drawings – 1:1000: Model 737-700                |      |
| 9.4 | MOD!   | EL 737-700W, BBJ1                                      |      |
|     | 9.4.1  | Scaled Drawings – 1 IN. = 32 FT: Model 737-700W        |      |
|     | 9.4.2  | Scaled Drawings – 1 IN. = 32 FT: Model 737 BBJ1        | 9-33 |
|     | 9.4.3  | Scaled Drawings – 1 IN. = 50 FT: Model 737-700W, BBJ1  |      |
|     | 9.4.4  | Scaled Drawings – 1 IN. = 50 FT: Model 737-700W, BBJ1  |      |
|     | 9.4.5  | Scaled Drawings – 1 IN. = 100 FT: Model 737-700W, BBJ1 |      |
|     | 9.4.6  | Scaled Drawings – 1 IN. = 100 FT: Model 737-700W, BBJ1 |      |
|     | 9.4.7  | Scaled Drawings – 1:500: Model 737-700W, BBJ1          |      |
|     | 9.4.8  | Scaled Drawings – 1:500: Model 737-700W, BBJ1          |      |
|     | 9.4.9  | Scaled Drawings – 1:1000: Model 737-700W, BBJ1         | 9-40 |
|     | 9.4.10 | Scaled Drawings – 1:1000: Model 737-700W, BBJ1         |      |
| 9.5 |        | EL 737-800                                             |      |
|     | 9.5.1  | Scaled Drawings – 1 IN. = 32 FT: Model 737-800         |      |
|     | 9.5.2  | Scaled Drawings – 1 IN. = 32 FT: Model 737-800         |      |
|     | 9.5.3  | Scaled Drawings – 1 IN. = 50 FT: Model 737-800         |      |
|     | 9.5.4  | Scaled Drawings – 1 IN. = 50 FT: Model 737-800         |      |
|     | 9.5.5  | Scaled Drawings – 1 IN. = 100 FT: Model 737-800        |      |
|     | 9.5.6  | Scaled Drawings – 1 IN. = 100 FT: Model 737-800        |      |
|     | 9.5.7  | Scaled Drawings – 1:500: Model 737-800                 |      |
|     | 9.5.8  | Scaled Drawings – 1:500: Model 737-800                 |      |
|     | 9.5.9  | Scaled Drawings – 1:1000: Model 737-800                | 9-50 |
|     |        |                                                        |      |

|     | 9.5.10 | Scaled Drawings – 1:1000: Model 737-800                   | 9-51 |
|-----|--------|-----------------------------------------------------------|------|
| 9.6 | MOD    | EL 737-800W, BBJ2                                         | 9-52 |
|     | 9.6.1  | Scaled Drawings – 1 IN. = 32 FT: Model 737-800W, BBJ2     | 9-52 |
|     | 9.6.2  | Scaled Drawings – 1 IN. = 32 FT: Model 737-800W, BBJ2     | 9-53 |
|     | 9.6.3  | Scaled Drawings – 1 IN. = 50 FT: Model 737-800W, BBJ2     | 9-54 |
|     | 9.6.4  | Scaled Drawings – 1 IN. = 50 FT: Model 737-800W, BBJ2     | 9-55 |
|     | 9.6.5  | Scaled Drawings – 1 IN. = 100 FT: Model 737-800W, BBJ2    | 9-56 |
|     | 9.6.6  | Scaled Drawings – 1 IN. = 100 FT: Model 737-800W, BBJ2    | 9-57 |
|     | 9.6.7  | Scaled Drawings – 1:500: Model 737-800W, BBJ2             | 9-58 |
|     | 9.6.8  | Scaled Drawings – 1:500: Model 737-800W, BBJ2             | 9-59 |
|     | 9.6.9  | Scaled Drawings – 1:1000: Model 737-800W, BBJ2            | 9-60 |
|     | 9.6.10 | Scaled Drawings – 1:1000: Model 737-800W, BBJ2            | 9-61 |
| 9.7 | MOD    | EL 737-900, -900ER                                        | 9-62 |
|     | 9.7.1  | Scaled Drawings – 1 IN. = 32 FT: Model 737-900, -900ER    | 9-62 |
|     | 9.7.2  | Scaled Drawings – 1 IN. = 32 FT: Model 737-900, -900ER    | 9-63 |
|     | 9.7.3  | Scaled Drawings – 1 IN. = 50 FT: Model 737-900, -900ER    | 9-64 |
|     | 9.7.4  | Scaled Drawings – 1 IN. = 50 FT: Model 737-900, -900ER    | 9-65 |
|     | 9.7.5  | Scaled Drawings – 1 IN. = 100 FT: Model 737-900, -900ER   | 9-66 |
|     | 9.7.6  | Scaled Drawings – 1 IN. = 100 FT: Model 737-900, -900ER   | 9-67 |
|     | 9.7.7  | Scaled Drawings – 1:500: Model 737-900, -900ER            | 9-68 |
|     | 9.7.8  | Scaled Drawings – 1:500: Model 737-900, -900ER            | 9-69 |
|     | 9.7.9  | Scaled Drawings – 1:1000: Model 737-900, -900ER           | 9-70 |
|     | 9.7.10 | Scaled Drawings – 1:1000: Model 737-900, -900ER           | 9-71 |
| 9.8 | MOD    | EL 737-900W, -900ERW                                      | 9-72 |
|     | 9.8.1  | Scaled Drawings – 1 IN. = 32 FT: Model 737-900W, -900ERW  | 9-72 |
|     | 9.8.2  | Scaled Drawings – 1 IN. = 32 FT: Model 737-900W, -900ERW  | 9-73 |
|     | 9.8.3  | Scaled Drawings – 1 IN. = 50 FT: Model 737-900W, -900ERW  | 9-74 |
|     | 9.8.4  | Scaled Drawings – 1 IN. = 50 FT: Model 737-900W, -900ERW  | 9-75 |
|     | 9.8.5  | Scaled Drawings – 1 IN. = 100 FT: Model 737-900W, -900ERW | 9-76 |
|     | 9.8.6  | Scaled Drawings – 1 IN. = 100 FT: Model 737-900W, -900ERW | 9-77 |
|     | 9.8.7  | Scaled Drawings – 1:500: Model 737-900W, -900ERW          | 9-78 |
|     | 9.8.8  | Scaled Drawings – 1:500: Model 737-900W, -900ERW          | 9-79 |
|     | 9.8.9  | Scaled Drawings – 1:1000: Model 737-900W, -900ERW         | 9-80 |
|     | 9.8.10 | Scaled Drawings – 1:1000: Model 737-900W, -900ERW         | 9-81 |

xvi

#### 1.0 SCOPE AND INTRODUCTION

#### 1.1 SCOPE

This document provides, in a standardized format, airplane characteristics data for general airport planning. Since operational practices vary among airlines, specific data should be coordinated with the using airlines prior to facility design. Boeing Commercial Airplanes should be contacted for any additional information required.

Content of the document reflects the results of a coordinated effort by representatives from the following organizations:

- Aerospace Industries Association
- Airports Council International North America
- Air Transport Association of America
- International Air Transport Association

The airport planner may also want to consider the information presented in the "Commercial Aircraft Design Characteristics - Trends and Growth Projections," for long range planning needs and can be accessed via the following website:

#### http://www.boeing.com/airports

The document is updated periodically and represents the coordinated efforts of the following organizations regarding future aircraft growth trends.

- International Coordinating Council of Aerospace Industries Associations
- Airports Council International North America
- Air Transport Association of America
- International Air Transport Association

#### 1.2 INTRODUCTION

This document conforms to NAS 3601. It provides characteristics of the Boeing Model 737 Next Generation airplane for airport planners and operators, airlines, architectural and engineering consultant organizations, and other interested industry agencies. Airplane changes and available options may alter model characteristics. Data contained herein is generic in scope and not customer-specific.

For additional information contact:

Boeing Commercial Airplanes 2201 Seal Beach Blvd. M/C: 110-SB02 Seal Beach, CA 90740-1515 U.S.A.

Attention: Manager, Airport Operations Engineering

Email: <u>AirportCompatibility@boeing.com</u>

#### 1.3 A BRIEF DESCRIPTION OF THE 737 FAMILY OF AIRPLANES

The 737 is a twin-engine airplane designed to operate over short to medium ranges from sea level runways of less than 6,000 ft (1,830 m) in length.

Significant features of interest to airport planners are described below:

- Underwing-mounted engines provide eye-level assessability. Nearly all system maintenance may be performed at eye level.
- Optional airstairs allow operation at airports where no passengers loading bridges or stairs are available.
- Auxiliary power unit can supply energy for engine starting, air conditioning, and electrical power while the airplane is on the ground or in flight.
- Servicing connections allow single-station pressure fueling and overwing gravity fueling.
- All servicing of the 737 is accomplished with standard ground equipment.

#### 737-600

The 737-600, along with the 737-700, -800, and -900 is the latest derivative in the 737 family of airplanes. This airplane has the same fuselage as the 737-500 and fitted with new wing, stabilizer, and tail sections. This enables the airplane to fly over longer distances. The 737-600 is 102 ft 6 in long and can carry up to 130 passengers in an alleconomy configuration.

#### 737-700

The 737-700 has the same fuselage as the 737-300 and is fitted with the new wing, stabilizer, and tail sections. The 737-700 is 110 ft 4 in long and can carry up to 148 passengers in an all-economy configuration.

#### 737-800

The 737-800 has a slightly longer fuselage than the 737-400 and is fitted with the new wing, stabilizer, and tail sections. The 737-800 is 129 ft 6 in long and can carry up to 184 passengers in an all-economy configuration.

#### 737-900

The 737-900 is a derivative of the -800 and is 96 inches longer that the -800. Two sections were added to the -800 fuselage; a 54-in section forward of the wing and a 42-in section aft of the wing. The -900 can seat as many as 189 passengers in all-economy configuration.

#### **737 BBJ1**

The Boeing Business Jet One is a 737-700 airplane that is delivered without any interior furnishings. The customer installs specific interior configurations. This 737-700 model airplane is equipped with a 737-800 landing gear configuration and has the same weight and performance capabilities as the -800. One unique feature of the 737 BBJ1 is the addition of winglets to provide improved cruise performance capabilities.

#### 737 BBJ2

The Boeing Business Jet Two is a 737-800 airplane that is delivered without any interior furnishings. The customer installs specific interior configurations. Like the 737 BBJ, the BBJ2 is equipped with winglets to provide improved cruise performance capabilities.

#### 737-600, -700, -800, -900 with Winglets

The 737-700, -800, and -900 airplanes are also delivered with winglets. Interior configurations are similar to the base airplane models. Like the BBJ airplanes, the winglets provide improved cruise performance capabilities. Winglets are installed on some 737-600 airplanes as an after-market airline option. Data for this airplane is included for dimensional information only.

### 737-900ER, -900ER with Winglets

The 737-900ER airplanes are long-range derivatives of the 737-900 and -900 with winglets and designed for higher capacity seating. Additional exit doors are installed aft of the wing to provide exit capability for the additional passenger capacity. The 737-900ER and -900ER with winglets are capable of carrying up to 215 passengers with the additional exit doors.

#### **Engines**

The 737-600, -700, -800, and -900 airplanes are equipped with advanced derivatives of the 737-300, -400, and -500 engines. These engines (CFM56-7) generate more thrust and exhibit noise characteristics that are below the current noise standards.

#### **Passenger Cabin Interiors**

Early 737s were equipped with hat-rack-type overhead stowage. Later models were equipped with a "wide-body look" interior that incorporates stowage bins in the sidewall and ceiling panels to simulate a superjet interior. More recent configurations include carryall compartments and the advanced technology interior. These interiors provide more stowage above the passenger seats.

#### **Auxiliary Fuel Tanks**

Optional auxiliary fuel tanks installed in the lower cargo compartments, provide extra range capability. Although this option increases range, it decreases payload.

#### **Document Page Applicability**

Several configurations have been developed for the 737 family of airplanes to meet varied airline requirements. Configurations shown in this document are typical and individual airlines may have different combinations of options. The airlines should be consulted for specific airplane configuration.

#### **Document Applicability**

This document contains information on all 737 Next Generation models.

Information on the 737-600, -700, -800, and -900 model airplanes formerly contained in Document D6-58325-3, 737-600/700/800/900 Airplane Characteristics for Airport Planning is now included in this document. Document D6-58325-3 is superseded and should be discarded.

Information on the 737-600, -700, -800, and -900 model airplanes with winglets formerly contained in Document D6-58325-5, 737-700/800/900 (With Winglets) Airplane Characteristics for Airport Planning is now included in this document. Document D6-58325-5 is superseded and should be discarded.

Information on the Boeing Business Jet airplanes formerly contained in Document D6-58325-4, 737-BBJ Airplane Characteristics for Airport Planning is now included in this document. Document D6-58325-4 is superseded and should be discarded.

Information on the 737-600, -700, -800, and -900 model airplanes (with and without winglets) and information on the Boeing Business Jet airplanes formerly contained in Document D6-58325-6, 737 Airplane Characteristics for Airport Planning is now included in this document. Document 58325-6 is superseded for these models but should still be used for information on all 737-100, -200, -300, -400, and -500 model airplanes.

#### 2.0 AIRPLANE DESCRIPTION

#### 2.1 GENERAL CHARACTERISTICS

<u>Maximum Design Taxi Weight (MTW)</u>. Maximum weight for ground maneuver as limited by aircraft strength and airworthiness requirements. (It includes weight of taxi and run-up fuel.)

<u>Maximum Design Takeoff Weight (MTOW)</u>. Maximum weight for takeoff as limited by aircraft strength and airworthiness requirements. (This is the maximum weight at start of the takeoff run.)

<u>Maximum Design Landing Weight (MLW)</u>. Maximum weight for landing as limited by aircraft strength and airworthiness requirements.

<u>Maximum Design Zero Fuel Weight (MZFW)</u>. Maximum weight allowed before usable fuel and other specified usable agents must be loaded in defined sections of the aircraft as limited by strength and airworthiness requirements.

<u>Operating Empty Weight (OEW)</u>. Weight of structure, powerplant, furnishing systems, unusable fuel and other unusable propulsion agents, and other items of equipment that are considered an integral part of a particular airplane configuration. Also included are certain standard items, personnel, equipment, and supplies necessary for full operations, excluding usable fuel and payload.

Maximum Payload. Maximum design zero fuel weight minus operational empty weight.

<u>Maximum Seating Capacity</u>. The maximum number of passengers specifically certificated or anticipated for certification.

Maximum Cargo Volume. The maximum space available for cargo.

Usable Fuel. Fuel available for aircraft propulsion.

## 2.1.1 General Characteristics: Model 737-600

| CHARACTERISTICS      | UNITS        | N       | MODEL 737-600 |         |  |
|----------------------|--------------|---------|---------------|---------|--|
| MAX DESIGN           | POUNDS       | 124,500 | 144,000       | 145,000 |  |
| - TAXI WEIGHT        | KILOGRAMS    | 56,472  | 65,317        | 65,770  |  |
| MAX DESIGN           | POUNDS       | 124,000 | 143,500       | 144,500 |  |
| - TAKEOFF WEIGHT     | KILOGRAMS    | 56,245  | 65,090        | 65,544  |  |
| MAX DESIGN           | POUNDS       | 120,500 | 120,500       | 121,500 |  |
| - LANDING WEIGHT     | KILOGRAMS    | 54,657  | 54,657        | 55,111  |  |
| MAX DESIGN           | POUNDS       | 113,500 | 113,500       | 114,500 |  |
| - ZERO FUEL WEIGHT   | KILOGRAMS    | 51,482  | 51,482        | 51,936  |  |
| OPERATING            | POUNDS       | 80,200  | 80,200        | 80,200  |  |
| - EMPTY WEIGHT (1)   | KILOGRAMS    | 36,378  | 36,378        | 36,378  |  |
| MAX STRUCTURAL       | POUNDS       | 33,300  | 33,300        | 34,300  |  |
| - PAYLOAD            | KILOGRAMS    | 15,104  | 15,104        | 15,558  |  |
| SEATING CAPACITY (1) | TWO-CLASS    | 108     | 108           | 108     |  |
|                      | ALL-ECONOMY  | 130     | 130           | 130     |  |
| MAX CARGO VOLUME     | CUBIC FEET   | 756     | 756           | 756     |  |
| - LOWER DECK         | CUBIC METERS | 21.4    | 21.4          | 21.4    |  |
| USABLE FUEL          | US GALLONS   | 6875    | 6875          | 6875    |  |
|                      | LITERS       | 26,024  | 26,024        | 26,024  |  |
|                      | POUNDS       | 46,062  | 46,062        | 46,062  |  |
|                      | KILOGRAMS    | 20,897  | 20,897        | 20,897  |  |

#### NOTE:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

## 2.1.2 General Characteristics: Model 737-700, -700W, -700C

| CHARACTERISTICS      | UNITS        | MODEL   | 737-700, -700\ | W, -700C |
|----------------------|--------------|---------|----------------|----------|
| MAX DESIGN           | POUNDS       | 133,500 | 153,500        | 155,000  |
| - TAXI WEIGHT        | KILOGRAMS    | 60,554  | 69,626         | 70,306   |
| MAX DESIGN           | POUNDS       | 133,000 | 153,000        | 154,500  |
| - TAKEOFF WEIGHT     | KILOGRAMS    | 60,327  | 69,399         | 70,080   |
| MAX DESIGN           | POUNDS       | 128,000 | 128,000        | 129,200  |
| - LANDING WEIGHT     | KILOGRAMS    | 58,059  | 58,059         | 58,604   |
| MAX DESIGN           | POUNDS       | 120,500 | 120,500        | 121,700  |
| - ZERO FUEL WEIGHT   | KILOGRAMS    | 54,657  | 54,657         | 55,202   |
| OPERATING            | POUNDS       | 83,000  | 83,000         | 83,000   |
| - EMPTY WEIGHT (1)   | KILOGRAMS    | 37,648  | 37,648         | 37,648   |
| MAX STRUCTURAL       | POUNDS       | 37,500  | 37,500         | 38,700   |
| - PAYLOAD            | KILOGRAMS    | 17,009  | 17,009         | 17,554   |
| SEATING CAPACITY (1) | TWO-CLASS    | 128     | 128            | 128      |
|                      | ALL-ECONOMY  | 148     | 148            | 148      |
| MAX CARGO VOLUME     | CUBIC FEET   | 1,002   | 1,002          | 1,002    |
| - LOWER DECK         | CUBIC METERS | 28.4    | 28.4           | 28.4     |
| USABLE FUEL          | US GALLONS   | 6875    | 6875           | 6875     |
|                      | LITERS       | 26,024  | 26,024         | 26,024   |
|                      | POUNDS       | 46,062  | 46,062         | 46,062   |
|                      | KILOGRAMS    | 20,897  | 20,897         | 20,897   |

#### NOTE:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

## 2.1.3 General Characteristics: Model 737-800, -800W, -800BCF

| CHARACTERISTICS      | UNITS        | 7:      | 37-800, -800 <sup>1</sup> | W       | 737-800BCF |
|----------------------|--------------|---------|---------------------------|---------|------------|
| MAX DESIGN           | POUNDS       | 156,000 | 173,000                   | 174,700 | 174,700    |
| - TAXI WEIGHT        | KILOGRAMS    | 70,760  | 78,471                    | 79,242  | 79,242     |
| MAX DESIGN           | POUNDS       | 155,500 | 172,500                   | 174,200 | 174,200    |
| - TAKEOFF WEIGHT     | KILOGRAMS    | 70,533  | 78,244                    | 79,015  | 79,015     |
| MAX DESIGN           | POUNDS       | 144,000 | 144,000                   | 146,300 | 146,300    |
| - LANDING WEIGHT     | KILOGRAMS    | 65,317  | 65,317                    | 66,360  | 66,360     |
| MAX DESIGN           | POUNDS       | 136,000 | 136,000                   | 138,300 | 138,300    |
| - ZERO FUEL WEIGHT   | KILOGRAMS    | 61,688  | 61,688                    | 62,731  | 62,731     |
| OPERATING            | POUNDS       | 91,300  | 91,300                    | 91,300  | 85,500     |
| - EMPTY WEIGHT (1)   | KILOGRAMS    | 41,412  | 41,412                    | 41,412  | 38,800     |
| MAX STRUCTURAL       | POUNDS       | 44,700  | 44,700                    | 47,000  | 47,300     |
| - PAYLOAD            | KILOGRAMS    | 20,275  | 20,275                    | 21,318  | 21,450     |
| SEATING CAPACITY (1) | TWO-CLASS    | 160     | 160                       | 160     | N/A        |
|                      | ALL-ECONOMY  | 184     | 184                       | 184     | N/A        |
| MAX CARGO VOLUME     | CUBIC FEET   | 1,591   | 1,591                     | 1,591   | 6,553      |
| - LOWER DECK (2)     | CUBIC METERS | 45.1    | 45.1                      | 45.1    | 185.6      |
| USABLE FUEL          | US GALLONS   | 6875    | 6875                      | 6875    | 6875       |
|                      | LITERS       | 26,024  | 26,024                    | 26,024  | 26,024     |
|                      | POUNDS       | 46,062  | 46,062                    | 46,062  | 46,062     |
|                      | KILOGRAMS    | 20,897  | 20,897                    | 20,897  | 20,897     |

#### NOTE:

- 1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. MAX CARGO VOLUME FOR 737-800BCF INCLUDES UPPER DECK AND LOWER DECK CAPACITIES

## 2.1.4 General Characteristics: Model 737-900, -900W

| CHARACTERISTICS      | UNITS        | MODEL 737 | -900, -900W |
|----------------------|--------------|-----------|-------------|
| MAX DESIGN           | POUNDS       | 164,500   | 174,700     |
| - TAXI WEIGHT        | KILOGRAMS    | 74,615    | 79,242      |
| MAX DESIGN           | POUNDS       | 164,000   | 174,200     |
| - TAKEOFF WEIGHT     | KILOGRAMS    | 74,389    | 79,015      |
| MAX DESIGN           | POUNDS       | 146,300   | 147,300     |
| - LANDING WEIGHT     | KILOGRAMS    | 66,360    | 66,814      |
| MAX DESIGN           | POUNDS       | 138,300   | 140,300     |
| - ZERO FUEL WEIGHT   | KILOGRAMS    | 62,731    | 63,639      |
| OPERATING            | POUNDS       | 94,580    | 94,580      |
| - EMPTY WEIGHT (1)   | KILOGRAMS    | 42,900    | 42,900      |
| MAX STRUCTURAL       | POUNDS       | 43,720    | 45,720      |
| - PAYLOAD            | KILOGRAMS    | 19,831    | 20,738      |
| SEATING CAPACITY (1) | TWO-CLASS    | 177       | 177         |
|                      | ALL-ECONOMY  | 189       | 189         |
| MAX CARGO VOLUME     | CUBIC FEET   | 1,852     | 1,852       |
| - LOWER DECK         | CUBIC METERS | 52.5      | 52.5        |
| USABLE FUEL          | US GALLONS   | 6875      | 6875        |
|                      | LITERS       | 26,024    | 26,024      |
|                      | POUNDS       | 46,062    | 46,062      |
|                      | KILOGRAMS    | 20,897    | 20,897      |

#### NOTE:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

## 2.1.5 General Characteristics: Model 737-900ER, -900ERW

| CHARACTERISTICS        | UNITS        | MODEL 7                                       |     | ER, -900ER WITH<br>GLETS |         |  |
|------------------------|--------------|-----------------------------------------------|-----|--------------------------|---------|--|
| MAX DESIGN             | POUNDS       | 164,500                                       | )   | 188,200                  |         |  |
| - TAXI WEIGHT          | KILOGRAMS    | 74,615                                        |     |                          | 85,366  |  |
| MAX DESIGN             | POUNDS       | 164,000                                       | )   |                          | 187,700 |  |
| - TAKEOFF WEIGHT       | KILOGRAMS    | 74,389                                        |     |                          | 85,139  |  |
| MAX DESIGN             | POUNDS       | 146,300                                       | )   |                          | 157,300 |  |
| - LANDING WEIGHT       | KILOGRAMS    | 66,360                                        |     |                          | 71,350  |  |
| MAX DESIGN             | POUNDS       | 138,300                                       | )   |                          | 149,300 |  |
| - ZERO FUEL WEIGHT     | KILOGRAMS    | 62,731                                        |     | 67,721                   |         |  |
| OPERATING              | POUNDS       | 98,495                                        |     | 98,495                   |         |  |
| - EMPTY WEIGHT (1)     | KILOGRAMS    | 44,676                                        |     | 44,676                   |         |  |
| MAX STRUCTURAL         | POUNDS       | 39,308                                        |     | 50,805                   |         |  |
| - PAYLOAD              | KILOGRAMS    | 17,829                                        |     |                          | 23,044  |  |
| SEATING CAPACITY (1)   | TWO-CLASS    | 177                                           |     | 177                      |         |  |
|                        | ALL-ECONOMY  | 186 WITH MID EXIT DOOR, 215<br>FAA EXIT LIMIT |     |                          |         |  |
| AUXILIARY FUEL OPTIONS | SEE NOTES    | (2)                                           | (3  | 3)                       | (4)     |  |
| MAX CARGO              | CUBIC FEET   | 1,826                                         | 1,6 | 73                       | 1,585   |  |
| - LOWER DECK           | CUBIC METERS | 51.7                                          | 47  | '.7                      | 44.9    |  |
| USABLE FUEL            | US GALLONS   | 6,875                                         | 7,3 | 90                       | 7,837   |  |
|                        | LITERS       | 26,024                                        | 27, | 974                      | 29,666  |  |
|                        | POUNDS       | 46,062                                        | 49, | 513                      | 52,507  |  |
|                        | KILOGRAMS    | 20,897                                        | 22, | 463                      | 23,822  |  |

#### NOTES:

- 1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. WITH NO AUXILIARY FUEL TANK
- 3. WITH ONE AUXILIARY FUEL TANK
- 4. WITH TWO AUXILIARY FUEL TANKS

## 2.1.6 General Characteristics: Model 737 BBJ

| CHARACTERISTICS    | UNITS     | MODEL 737 BBJ |
|--------------------|-----------|---------------|
| MAX DESIGN         | POUNDS    | 171,500       |
| - TAXI WEIGHT      | KILOGRAMS | 77,791        |
| MAX DESIGN         | POUNDS    | 171,000       |
| - TAKEOFF WEIGHT   | KILOGRAMS | 77,564        |
| MAX DESIGN         | POUNDS    | 134,000       |
| - LANDING WEIGHT   | KILOGRAMS | 60,781        |
| MAX DESIGN         | POUNDS    | 126,000       |
| - ZERO FUEL WEIGHT | KILOGRAMS | 57,152        |

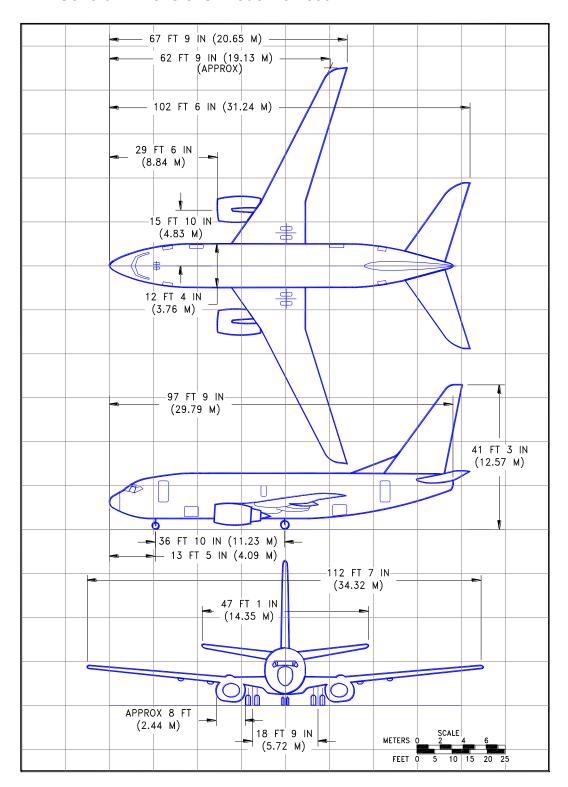
| NUMBER OF AUXILIARY FUEL TANKS |              | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|--------------------------------|--------------|--------|--------|--------|--------|--------|--------|--------|
| SPEC OPERATING                 | POUNDS       | 92,345 | 92,722 | 93,393 | 93,785 | 94,056 | 94,352 | 94,570 |
| - EMPTY WEIGHT (1)             | KILOGRAMS    | 41,886 | 42,057 | 42,362 | 43,540 | 42,663 | 42,797 | 42,896 |
| MAX STRUCTURAL                 | POUNDS       | 33,655 | 33,278 | 32,607 | 32,215 | 31,944 | 31,648 | 31,430 |
| - PAYLOAD                      | KILOGRAMS    | 15,265 | 15,094 | 14,788 | 14,612 | 14,489 | 14,355 | 14,256 |
| MAX CARGO                      | CUBIC FEET   | 611    | 515    | 415    | 319    | 268    | 214    | 160    |
| - LOWER DECK                   | CUBIC METERS | 17.3   | 14.6   | 11.7   | 9.0    | 7.6    | 6.1    | 4.6    |
| USEABLE FUEL                   | US GALLONS   | 8,360  | 8,897  | 9,399  | 9,917  | 10,213 | 10,457 | 10,697 |
|                                | LITERS       | 31,646 | 33,678 | 35,579 | 37,539 | 38,660 | 39,584 | 40,482 |
|                                | POUNDS       | 56,012 | 59,609 | 62,973 | 66,443 | 68,427 | 70,061 | 71,669 |
|                                | KILOGRAMS    | 25,411 | 27,044 | 28,570 | 30,144 | 31,044 | 31,785 | 32,515 |

#### NOTE:

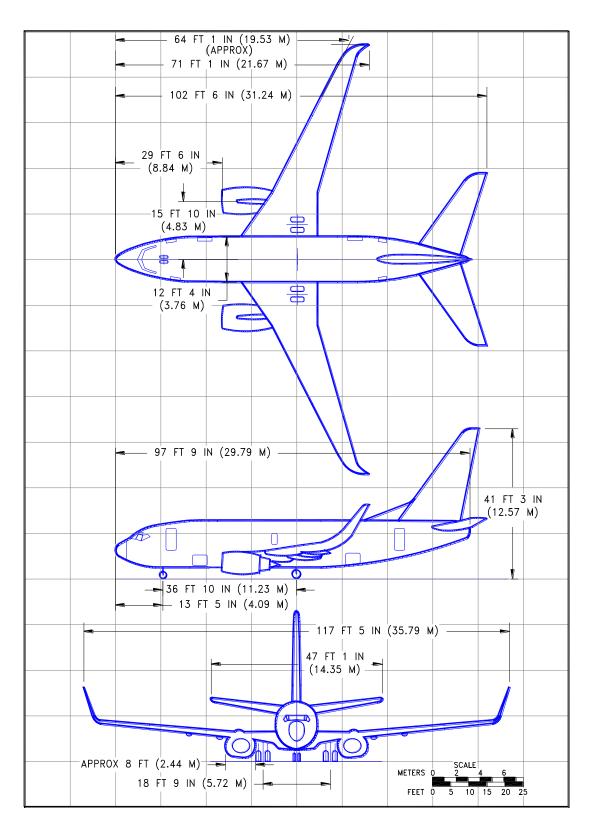
1. SPEC WEIGHT FOR NUMBER OF AUXILIARY FUEL TANKS SHOWN. CONSULT WITH AIRCRAFT OPERATOR FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

## 2.1.7 General Characteristics: Model 737 BBJ2

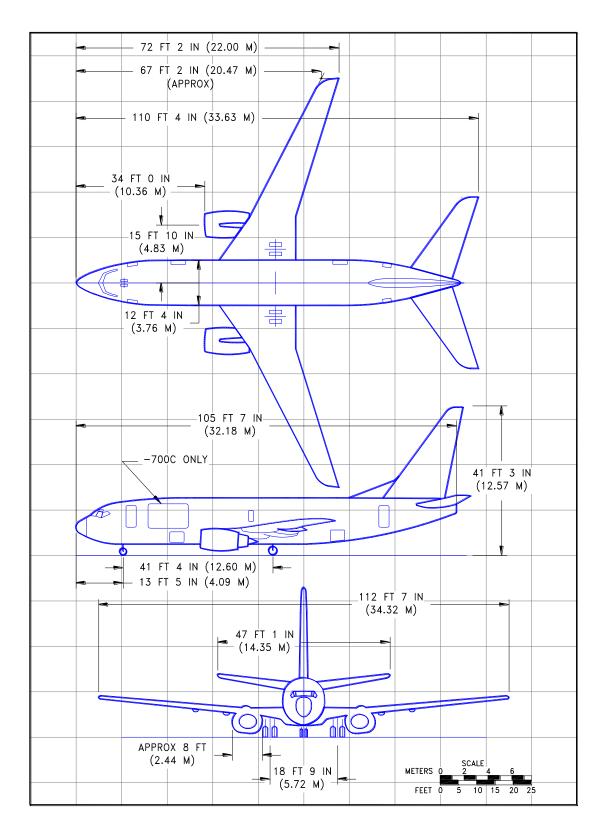
| CHARACTERISTICS    | UNITS     | MODEL 737 BBJ2 |
|--------------------|-----------|----------------|
| MAX DESIGN         | POUNDS    | 174,700        |
| - TAXI WEIGHT      | KILOGRAMS | 79,242         |
| MAX DESIGN         | POUNDS    | 174,200        |
| - TAKEOFF WEIGHT   | KILOGRAMS | 79,015         |
| MAX DESIGN         | POUNDS    | 146,300        |
| - LANDING WEIGHT   | KILOGRAMS | 66,360         |
| MAX DESIGN         | POUNDS    | 138,300        |
| - ZERO FUEL WEIGHT | KILOGRAMS | 62,731         |


| NUMBER OF AUXILIARY FUEL TANKS |              | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7       |
|--------------------------------|--------------|--------|--------|--------|--------|--------|--------|--------|---------|
| SPEC OPERATING                 | POUNDS       | 96,727 | 97,372 | 97,821 | 98,344 | 98,722 | 99,393 | 99,785 | 100,312 |
| - EMPTY WEIGHT (1)             | KILOGRAMS    | 43,874 | 44,167 | 44,370 | 44,608 | 44,779 | 45,083 | 45,261 | 45,500  |
| MAX STRUCTURAL                 | POUNDS       | 41,573 | 40,928 | 40,479 | 39,956 | 39,578 | 38,907 | 38,515 | 37,988  |
| - PAYLOAD                      | KILOGRAMS    | 18,857 | 18,564 | 18,360 | 18,123 | 17,952 | 17,647 | 17,470 | 17,231  |
| MAX CARGO                      | CUBIC FEET   | 1,546  | 1,423  | 1,331  | 1,224  | 1,116  | 1,029  | 922    | 814     |
| - LOWER DECK                   | CUBIC METERS | 43.8   | 40.3   | 37.7   | 34.7   | 31.6   | 29.2   | 26.1   | 23.1    |
| USEABLE FUEL                   | US GALLONS   | 6,875  | 7,395  | 7,837  | 8,360  | 8,879  | 9,399  | 9,917  | 10,443  |
|                                | LITERS       | 26,024 | 27,993 | 29,666 | 31,646 | 33,610 | 35,579 | 37,539 | 39,531  |
|                                | POUNDS       | 46,062 | 49,546 | 52,507 | 56,012 | 59,489 | 62,973 | 66,443 | 69,968  |
|                                | KILOGRAMS    | 20,897 | 22,478 | 23,822 | 25,411 | 26,989 | 28,570 | 30,144 | 31,743  |

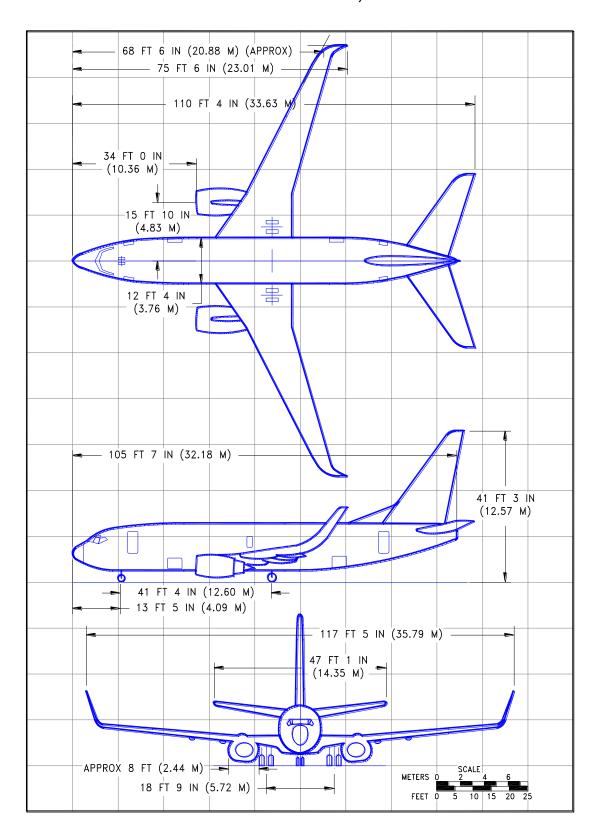
#### NOTE:


1. SPEC WEIGHT FOR NUMBER OF AUXILIARY FUEL TANKS SHOWN. CONSULT WITH AIRCRAFT OPERATOR FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

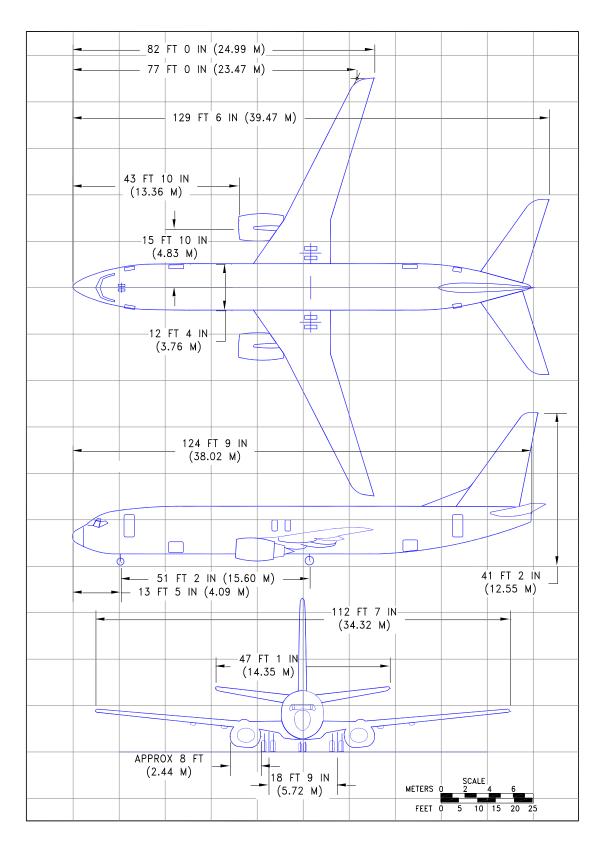
#### 2.2 GENERAL DIMENSIONS


## 2.2.1 General Dimensions: Model 737-600

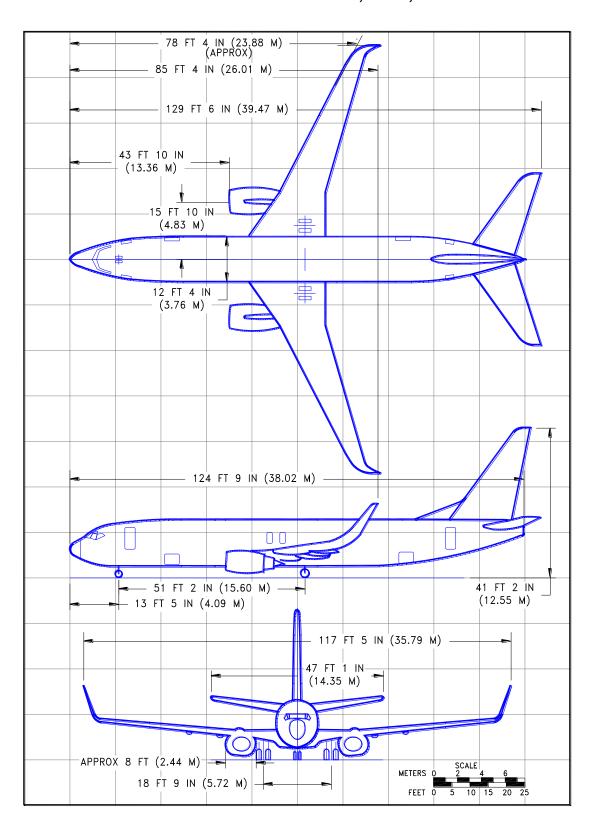



#### 2.2.2 General Dimensions: Model 737-600W

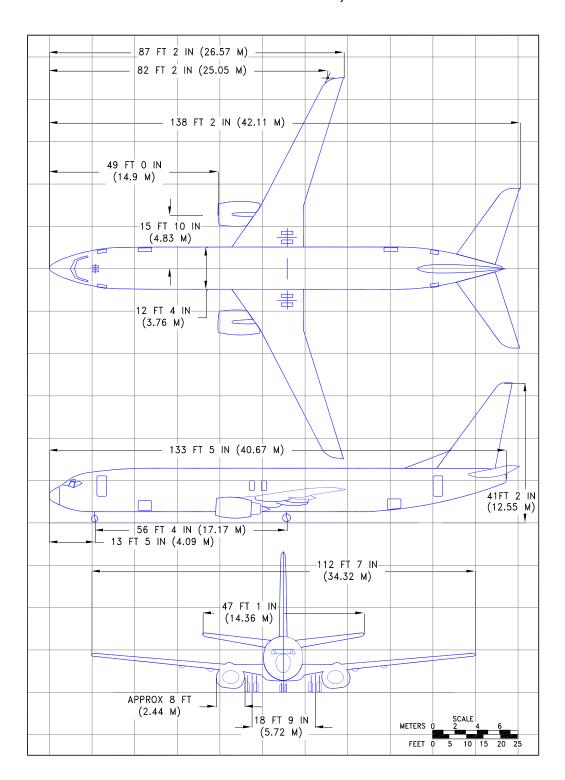



## 2.2.3 General Dimensions: Model 737-700, -700C

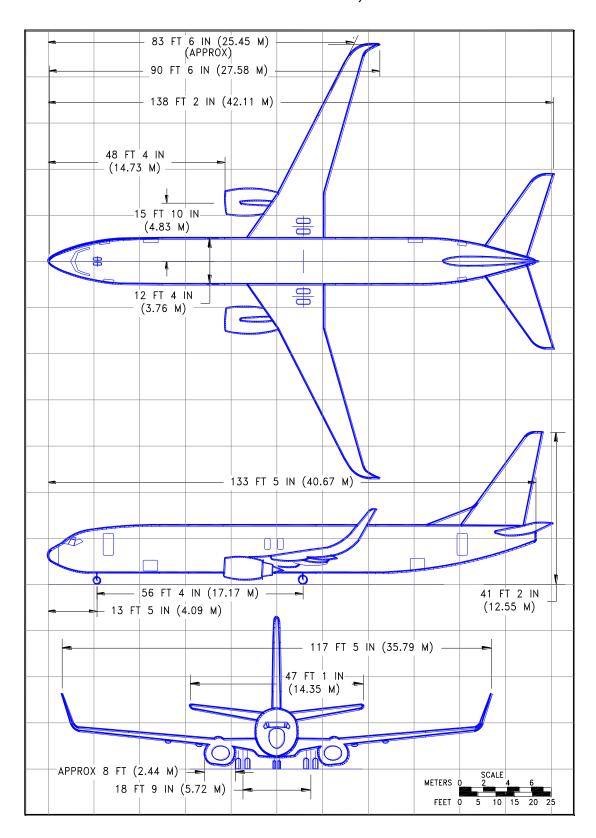



## 2.2.4 General Dimensions: Model 737-700W, BBJ1



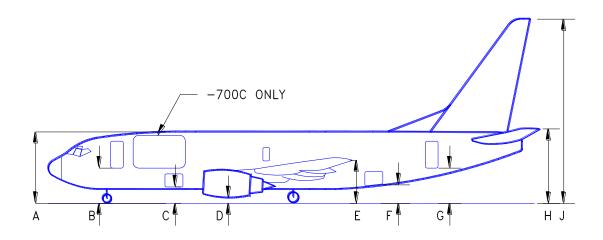

#### 2.2.5 General Dimensions: Model 737-800




## 2.2.6 General Dimensions: Model 737-800W, BBJ2, -800BCF



## 2.2.7 General Dimensions: Model 737-900, -900ER



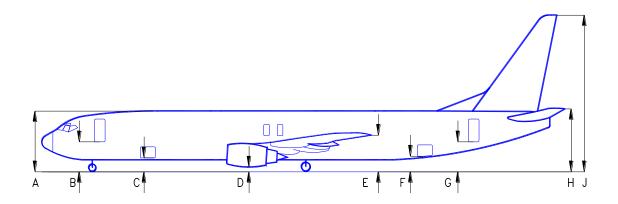

## 2.2.8 General Dimensions: Model 737-900W, -900ERW



#### 2.3 GROUND CLEARANCES

## 2.3.1 Ground Clearances: Model 737-600, -700, -700C



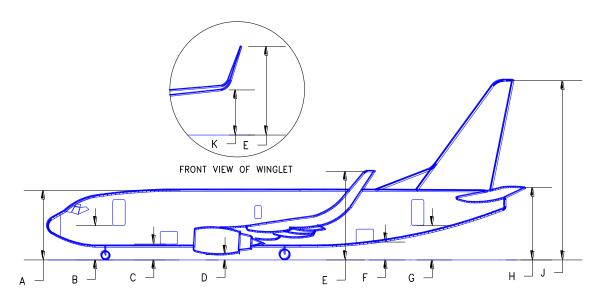

|   |                 | 737-600      |       |              |       | 737-700, -700C |       |              |       |
|---|-----------------|--------------|-------|--------------|-------|----------------|-------|--------------|-------|
|   | DESCRIPTION     | MAX (AT OEW) |       | MIN (AT MTW) |       | MAX (AT OEW)   |       | MIN (AT MTW) |       |
|   |                 | FT - IN      | М     | FT - IN      | М     | FT - IN        | М     | FT - IN      | M     |
| Α | TOP OF FUSELAGE | 18 - 2       | 5.54  | 17 - 8       | 5.38  | 18 - 3         | 5.56  | 17 - 9       | 5.41  |
| В | ENTRY DOOR NO 1 | 9 - 0        | 2.74  | 8 - 6        | 2.59  | 9 - 0          | 2.74  | 8 - 6        | 2.59  |
| С | FWD CARGO DOOR  | 4 - 9        | 1.45  | 4 - 3        | 1.30  | 4 - 9          | 1.45  | 4 - 3        | 1.30  |
| D | ENGINE          | 2 - 0        | 0.61  | 1 - 6        | 0.46  | 2 - 0          | 0.61  | 1 - 6        | 0.46  |
| Ε | WINGTIP         | 12 - 9       | 3.89  | 11 - 11      | 3.63  | 12 - 9         | 3.89  | 11 - 11      | 3.63  |
| F | AFT CARGO DOOR  | 5 - 10       | 1.78  | 5 - 4        | 1.63  | 5 - 10         | 1.78  | 5 - 4        | 1.63  |
| G | ENTRY DOOR NO 2 | 10 - 2       | 3.10  | 9 - 8        | 2.95  | 10 - 2         | 3.10  | 9 - 8        | 2.95  |
| Н | STABILIZER      | 18 - 5       | 5.61  | 17 - 11      | 5.46  | 18 - 5         | 5.61  | 17 - 11      | 5.46  |
| J | VERTICAL TAIL   | 41 - 8       | 12.70 | 40 - 10      | 12.45 | 41 - 7         | 12.67 | 40 - 10      | 12.45 |

NOTES: CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.

DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

2-17

## 2.3.2 Ground Clearances: Model 737-800, -900, -900ER

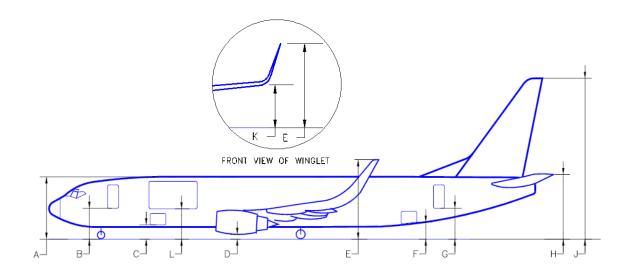



|   |                 | 737-800 |              |         |              | 737-900 |        |              |       |
|---|-----------------|---------|--------------|---------|--------------|---------|--------|--------------|-------|
|   | DESCRIPTION     | MAX (A  | MAX (AT OEW) |         | MIN (AT MTW) |         | T OEW) | MIN (AT MTW) |       |
|   |                 | FT - IN | М            | FT - IN | М            | FT - IN | М      | FT - IN      | М     |
| Α | TOP OF FUSELAGE | 18 - 3  | 5.56         | 17 - 9  | 5.41         | 18 - 4  | 5.59   | 17 - 10      | 5.44  |
| В | ENTRY DOOR NO 1 | 9 - 0   | 2.74         | 8 - 6   | 2.59         | 9 - 0   | 2.74   | 8 - 6        | 2.59  |
| С | FWD CARGO DOOR  | 4 - 9   | 1.45         | 4 - 3   | 1.30         | 4 - 9   | 1.45   | 4 - 3        | 1.30  |
| D | ENGINE          | 2 - 1   | 0.64         | 1 - 7   | 0.48         | 2 - 1   | 0.64   | 1 - 7        | 0.48  |
| Е | WINGTIP         | 12 - 10 | 3.91         | 12 - 0  | 3.66         | 12 - 10 | 3.91   | 12 - 0       | 3.66  |
| F | AFT CARGO DOOR  | 5 - 11  | 1.80         | 5 - 5   | 1.65         | 5 - 11  | 1.80   | 5 - 5        | 1.65  |
| G | ENTRY DOOR NO 2 | 10 - 3  | 3.12         | 9 - 9   | 2.97         | 10 - 3  | 3.12   | 9 - 9        | 2.97  |
| Н | STABILIZER      | 18 - 6  | 5.64         | 18- 0   | 5.49         | 18 - 7  | 5.66   | 18 - 1       | 5.51  |
| J | VERTICAL TAIL   | 41 - 5  | 12.62        | 40 - 7  | 12.37        | 41 - 5  | 12.62  | 40 - 7       | 12.37 |

**NOTES:** CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.

DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

# 2.3.3 Ground Clearances: Model 737-700W, -800W, -900W, -900ERW, BBJ, BBJ2



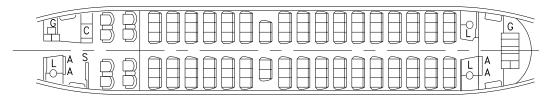

|   |                               | 737-700 WITH WINGLETS,<br>BBJ |       |            | 737-800 WITH WINGLETS,<br>BBJ2 |            |       |            | 737-900 WITH WINGLETS |            |       |            |       |
|---|-------------------------------|-------------------------------|-------|------------|--------------------------------|------------|-------|------------|-----------------------|------------|-------|------------|-------|
|   | DESCRIPTION                   | MAX (                         | OEW)  | MIN (      | MTW)                           | MAX (      | OEW)  | MIN (      | MTW)                  | MAX (      | (OEW) | MIN (      | MTW)  |
|   |                               | FT -<br>IN                    | М     | FT -<br>IN | М                              | FT -<br>IN | М     | FT -<br>IN | M                     | FT -<br>IN | M     | FT -<br>IN | М     |
| Α | TOP OF FUSELAGE               | 18 - 3                        | 5.56  | 17 - 9     | 5.41                           | 18 - 3     | 5.56  | 17 - 9     | 5.41                  | 18 - 4     | 5.59  | 17 -<br>10 | 5.41  |
| В | ENTRY DOOR NO 1               | 9 - 0                         | 2.74  | 8 - 6      | 2.59                           | 9 - 0      | 2.74  | 8 - 6      | 2.59                  | 9 - 0      | 2.74  | 8 - 6      | 2.59  |
| С | FWD CARGO DOOR                | 4 - 9                         | 1.45  | 4 - 3      | 1.30                           | 4 - 9      | 1.45  | 4 - 3      | 1.30                  | 4 - 9      | 1.45  | 4 - 3      | 1.30  |
| D | ENGINE                        | 2 - 0                         | 0.61  | 1 - 6      | 0.46                           | 2 - 1      | 0.64  | 1 - 7      | 0.48                  | 2 - 1      | 0.64  | 1 - 7      | 0.48  |
| Е | WINGTIP                       | 21 - 9                        | 6.63  | 21 - 3     | 6.48                           | 22 - 2     | 6.76  | 21 - 4     | 6.50                  | 22 - 2     | 6.76  | 21 - 4     | 6.50  |
| F | AFT CARGO DOOR                | 5 - 10                        | 1.78  | 5 - 4      | 1.63                           | 5 - 11     | 1.80  | 5 - 5      | 1.65                  | 5 - 11     | 1.80  | 5 - 5      | 1.65  |
| G | ENTRY DOOR NO 2               | 10 - 2                        | 3.10  | 9 - 8      | 2.95                           | 10 - 3     | 3.12  | 9 - 9      | 2.97                  | 10 - 3     | 3.12  | 9 - 9      | 2.97  |
| Н | STABILIZER                    | 18 - 5                        | 5.61  | 17 -<br>11 | 5.46                           | 18 - 6     | 5.64  | 18 - 0     | 5.49                  | 18 - 7     | 5.66  | 18 - 1     | 5.51  |
| J | VERTICAL TAIL                 | 41 - 7                        | 12.67 | 40 -<br>10 | 12.45                          | 41 - 5     | 12.62 | 40 - 7     | 12.37                 | 41 - 5     | 12.62 | 40 - 7     | 12.37 |
| K | BOTTOM OF<br>WINGLET (APPROX) | 13 - 9                        | 4.19  | 13 - 3     | 4.04                           | 14 - 2     | 4.32  | 13 - 4     | 4.06                  | 14 - 2     | 4.32  | 13 - 4     | 4.06  |

NOTES: CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.

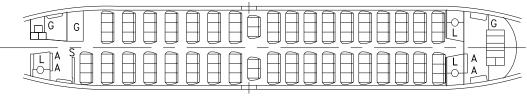
DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

#### 2.3.4 Ground Clearances: Model 737-800BCF

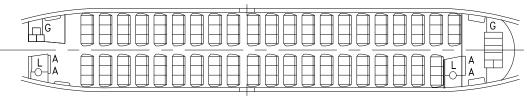



|   |                            | 737-800BCF |       |           |       |  |  |  |
|---|----------------------------|------------|-------|-----------|-------|--|--|--|
|   | DESCRIPTION                | MAX (      | (OEW) | MIN (MTW) |       |  |  |  |
| _ |                            | FT - IN    | М     | FT - IN   | М     |  |  |  |
| Α | TOP OF FUSELAGE            | 18 - 3     | 5.56  | 17 - 9    | 5.41  |  |  |  |
| В | ENTRY DOOR NO 1            | 9 - 0      | 2.74  | 8 - 6     | 2.59  |  |  |  |
| С | FWD CARGO DOOR             | 4 - 9      | 1.45  | 4 - 3     | 1.30  |  |  |  |
| D | ENGINE                     | 2 - 1      | 0.64  | 1 - 7     | 0.48  |  |  |  |
| Е | WINGTIP                    | 22 - 2     | 6.76  | 21 - 4    | 6.50  |  |  |  |
| F | AFT CARGO DOOR             | 5 - 11     | 1.80  | 5 - 5     | 1.65  |  |  |  |
| G | ENTRY DOOR NO 2            | 10 - 3     | 3.12  | 9 - 9     | 2.97  |  |  |  |
| Н | STABILIZER                 | 18 - 6     | 5.64  | 18 - 0    | 5.49  |  |  |  |
| J | VERTICAL TAIL              | 41 - 5     | 12.62 | 40 - 7    | 12.37 |  |  |  |
| К | BOTTOM OF WINGLET (APPROX) | 14 - 2     | 4.32  | 13 - 4    | 4.06  |  |  |  |
| L | MAIN DECK CARGO<br>DOOR    | 9 - 2      | 2.79  | 8 - 8     | 2.64  |  |  |  |

NOTES: CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.


DURING ROUTINE SERVICING, THE AIRPLANE REMAINS RELATIVELY STABLE, PITCH AND ELEVATION CHANGES OCCURRING SLOWLY.

#### 2.4 INTERIOR ARRANGEMENTS

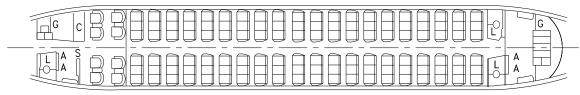

### 2.4.1 Interior Arrangements: Model 737-600



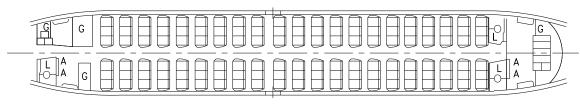
MIXED CLASS
8 FIRST CLASS SEATS AT 36-IN PITCH
100 ECONOMY CLASS SEATS AT 32-IN PITCH



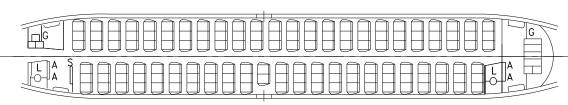
MIXED CLASS
70 BUSINESS CLASS SEATS AT 34-IN PITCH
39 ECONOMY CLASS SEATS AT 32-IN PITCH




SINGLE CLASS


123 ECONOMY CLASS SEATS AT 32-IN PITCH (SHOWN)
OR 130 ECONOMY CLASS SEATS AT 30-IN PITCH

A ATTENDANT C CLOSET G GALLEY L LAVATORY S STOWAGE


#### 2.4.2 Interior Arrangements: Model 737-700, -700W



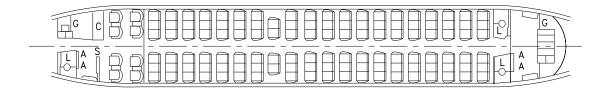
MIXED CLASS 8 FIRST CLASS SEATS AT 36-IN PITCH 120 ECONOMY CLASS SEATS AT 32-IN PITCH



MIXED CLASS 90 BUSINESS CLASS SEATS AT 34-IN PITCH 36 ECONOMY CLASS SEATS AT 32-IN PITCH

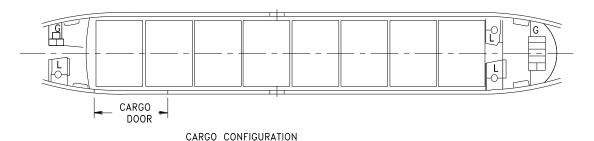


SINGLE CLASS 140 ECONOMY CLASS SEATS AT 32-IN PITCH (SHOWN)
OR 148 ECONOMY CLASS SEATS AT 30-IN PITCH


A ATTENDANT

C CLOSET

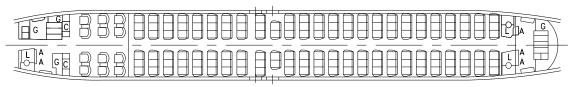
G GALLEY L LAVATORY


S STOWAGE

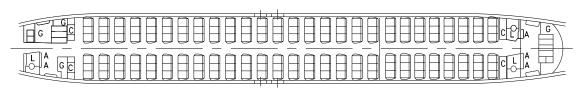
## 2.4.3 Interior Arrangements: Model 737-700C



PASSENGER CONFIGURATION - MIXED CLASS

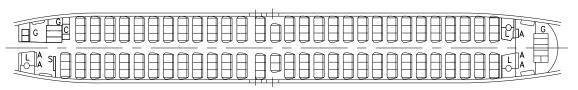

8 FIRST CLASS SEATS AT 36-IN PITCH
118 ECONOMY CLASS SEATS AT 32-IN PITCH




EIGHT 88 X 125 IN (2.24 X 3.18 M) PALLETS AS SHOWN OR EIGHT 88 X 108 IN (2.24 X 2.64 M)

A ATTENDANT C CLOSET G GALLEY L LAVATORY S STOWAGE

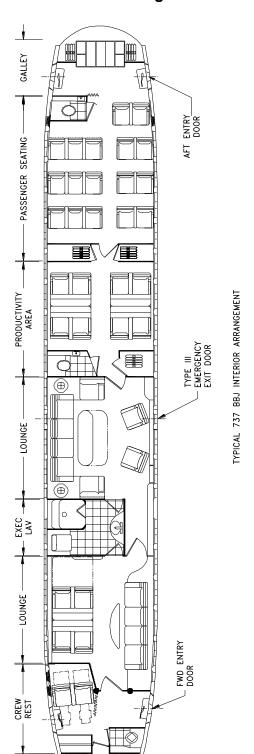
## 2.4.4 Interior Arrangements: Model 737-800, -800W




MIXED CLASS
12 FIRST CLASS SEATS AT 36-IN PITCH
148 ECONOMY CLASS SEATS AT 32-IN PITCH



MIXED CLASS


108 BUSINESS CLASS SEATS AT 34-IN PITCH
54 ECONOMY CLASS SEATS AT 32-IN PITCH



SINGLE CLASS
175 ECONOMY CLASS SEATS AT 32-IN PITCH (SHOWN)
OR 184 ECONOMY CLASS SEATS AT 30-IN PITCH

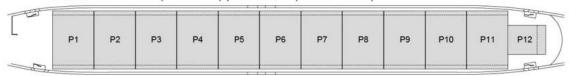
A ATTENDANT C CLOSET G GALLEY L LAVATORY S STOWAGE

# 2.4.5 Interior Arrangements: Model 737 BBJ1, 737 BBJ2

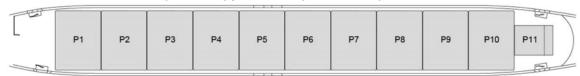


AFT ENTRY DOOR EXECUTIVE OFFICE/ STATEROOM Ρ DINING/ CONFERENCE LOUNGE FWD ENTRY DOOR CREW REST

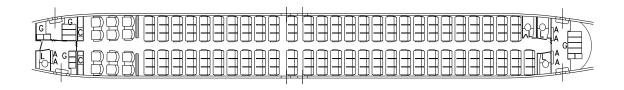
D6-58325-7


TYPICAL 737 BBJ2 INTERIOR ARRANGEMENT

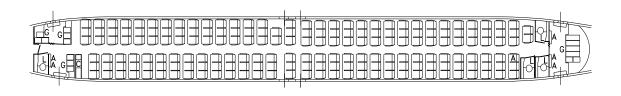
# 2.4.6 Interior Arrangements: Model 737-800BCF


#### Baseline 11 ULD (88"x 125") plus 1 ULD (60.4" x 61.5")




## Alternate 11 ULD (88"x 108") plus 1 ULD (60.4" x 61.5")




## Alternate 10 ULD (96"x 125") plus 1 ULD (60.4" x 61.5")

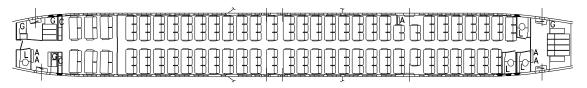


## 2.4.7 Interior Arrangements: Model 737-900, -900W



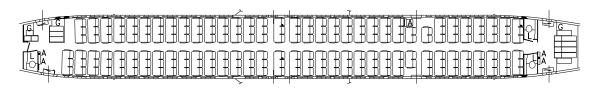
MIXED CLASS
12 FIRST CLASS SEATS AT 36-IN PITCH
165 ECONOMY CLASS SEATS AT 32-IN PITCH




SINGLE CLASS
177 ECONOMY CLASS SEATS AT 32-IN PITCH (SHOWN)
OR 189 ECONOMY CLASS SEATS AT 31-IN PITCH

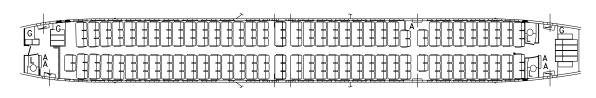
A ATTENDANT C CLOSET

G GALLEY


L LAVATORY

## 2.4.8 Interior Arrangements: Model 737-900ER, -900ERW




MIXED CLASS

12 FIRST CLASS SEATS AT 36-IN PITCH 162 ECONOMY CLASS SEATS AT 32-IN PITCH



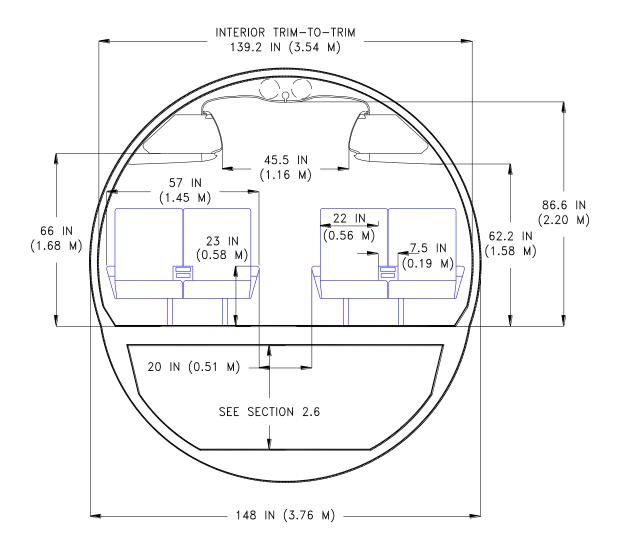
SINGLE CLASS

204 ECONOMY CLASS SEATS AT 30-IN PITCH



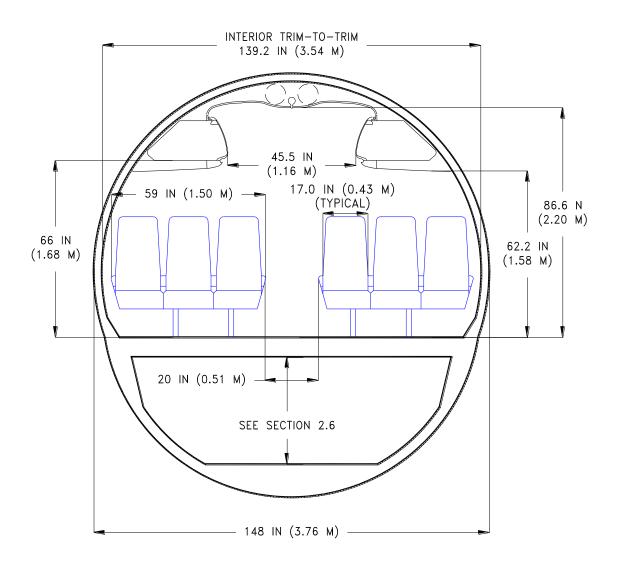
SINGLE CLASS (HIGH-DENSITY SEATING)
215 ECONOMY CLASS SEATS AT 28-IN PITCH

A ATTENDANT


G GALLEY

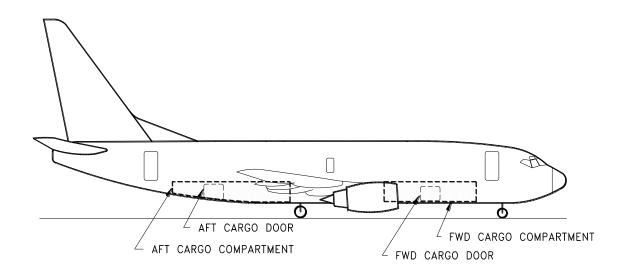
L LAVATORY

C CLOSET


#### 2.5 CABIN CROSS SECTIONS

# 2.5.1 Cabin Cross-Sections: Model 737-600, -700, -800, -900, BBJ1, BBJ2, Four-Abreast Seating



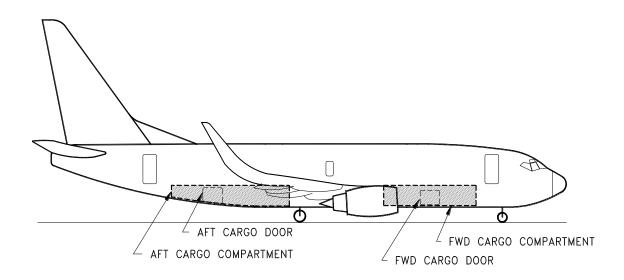

**NOTE:** CABIN INTERIOR FOR BBJ1 AND BBJ2 AIRPLANES ARE DEPENDENT ON CUSTOMER OPTION.

# 2.5.2 Cabin Cross-Sections: Model 737-600, -700, -800, -900, Six-Abreast Seating



#### 2.6 LOWER CARGO COMPARTMENTS

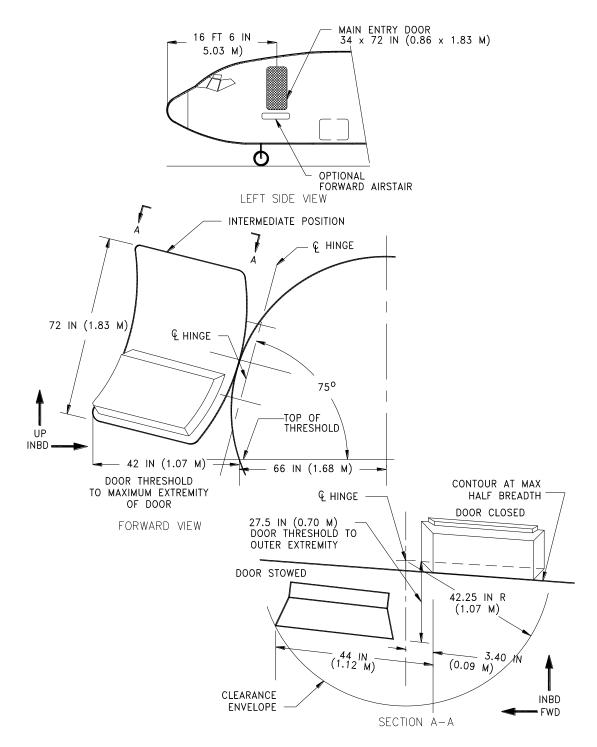
# 2.6.1 Lower Cargo Compartments: Model 737-600, -700, -700C, -800, -800BCF, -900, -900ER With and Without Winglets, Capacities




|                     | AFT C                      | CARGO COMPAR                       | TMENT                                             |                                      |                            |       |
|---------------------|----------------------------|------------------------------------|---------------------------------------------------|--------------------------------------|----------------------------|-------|
| AIRPLANE<br>MODEL   | BULK CARGO                 | AUXILIARY<br>FUEL TANK<br>CAPACITY | AUXILIARY<br>FUEL TANK<br>COMPARTMENT<br>CAPACITY | FORWARD<br>COMPARTMENT<br>BULK CARGO | TOTAL<br>BULK<br>CARGO     | NOTES |
| 737-600             | 488 CU FT<br>(13.8 CU M)   | 0                                  | 0                                                 | 268 CU FT<br>(7.6 CU M)              | 756 CU FT<br>(21.4 CU M)   | (1)   |
| 737-700,<br>-700C   | 596 CU FT<br>(16.9 CU M)   | 0                                  | 0                                                 | 406 CU FT<br>(11.5 CU M)             | 1,002 CU FT<br>(28.4 CU M) | (1)   |
| 737-800,<br>-800BCF | 899 CU FT<br>(25.5 CU M)   | 0                                  | 0                                                 | 692 CU FT<br>(19.6 CU M)             | 1,591 CU FT<br>(45.1 CU M) | (1)   |
| 737-900             | 1,012 CU FT<br>(28.7 CU M) | 0                                  | 0                                                 | 840 CU FT<br>(23.8 CU M)             | 1,852 CU FT<br>(52.5 CU M) | (1)   |
| 737-900ER           | 996 CU FT<br>(28.2 CU M)   | 0                                  | 0                                                 | 830 CU FT<br>(23.5 CU M)             | 1,826 CU FT<br>(51.7 CU M) | (2)   |
| 737-900ER           | 843 CU FT<br>(23.9 CU M)   | 520 GAL<br>(1,968 L)               | 153 CU FT<br>(4.3 CU M)                           | 830 CU FT<br>(23.5 CU M)             | 1,673 CU FT<br>(47.7 CU M) | (3)   |
| 737-900ER           | 755 CU FT<br>(21.4 CU M)   | 962 GAL<br>(3,641 L)               | 241 CU FT<br>(6.8 CU M)                           | 830 CU FT<br>(23.5 CU M)             | 1,585 CU FT<br>(44.9 CU M) | (4)   |

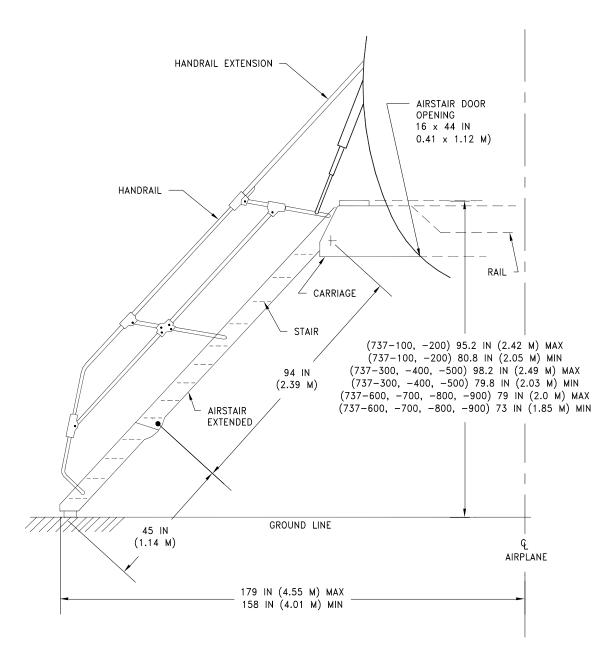
#### NOTES:

- 1. NO AUXILIARY FUEL TANK
- 2. USEABLE CAPACITY, NO AUXILIARY FUEL TANK PRELIMINARY ESTIMATES
- 3. USEABLE CAPACITY, WITH ONE AUXILIARY FUEL TANK PRELIMINARY ESTIMATES
- 4. USEABLE CAPACITY, WITH TWO AUXILIARY FUEL TANKS PRELIMINARY ESTIMATES


# 2.6.2 Lower Cargo Compartments: Model 737BBJ1, 737 BBJ2, Capacities



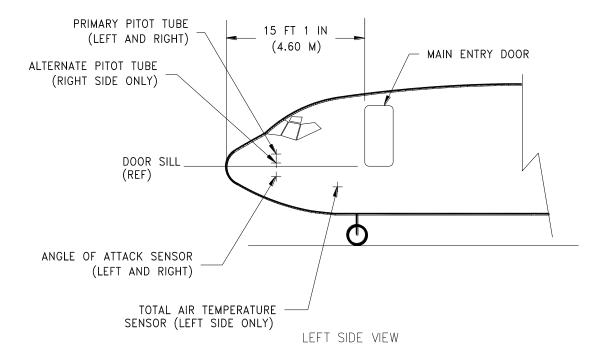
|                   | FWD C         | ARGO COMP          | ARTMENT | AFT CA        | ARGO COMP | TOTAL CARGO |                    |      |
|-------------------|---------------|--------------------|---------|---------------|-----------|-------------|--------------------|------|
| AIRPLANE<br>MODEL | NO OF         | CAPACITY AVAILABLE |         | NO OF         | CAPACITY  | ' AVAILABLE | CAPACITY AVAILABLE |      |
| MODEL             | FUEL<br>TANKS | CU FT              | CU M    | FUEL<br>TANKS | CU FT     | CU M        | CU FT              | CU M |
| 737 BBJ1          | 0             | 377                | 10.7    | 3             | 234       | 6.6         | 611                | 17.3 |
|                   | 0             | 377                | 10.7    | 4             | 138       | 3.9         | 515                | 14.6 |
|                   | 2             | 181                | 5.1     | 3             | 234       | 6.6         | 415                | 11.7 |
|                   | 2             | 181                | 5.1     | 4             | 138       | 3.9         | 319                | 9.0  |
|                   | 2             | 181                | 5.1     | 5             | 87        | 2.5         | 268                | 7.6  |
|                   | 3             | 127                | 3.6     | 5             | 87        | 2.5         | 214                | 6.1  |
|                   | 4             | 73                 | 2.1     | 5             | 87        | 2.5         | 160                | 4.6  |
| 737 BBJ2          | 0             | 985                | 27.9    | 3             | 561       | 15.9        | 1,546              | 43.8 |
|                   | 0             | 985                | 27.9    | 3             | 454       | 12.8        | 1,423              | 40.3 |
|                   | 0             | 985                | 27.9    | 5             | 346       | 9.8         | 1,331              | 37.7 |
|                   | 1             | 662                | 18.8    | 3             | 561       | 15.9        | 1,224              | 34.7 |
|                   | 1             | 662                | 18.8    | 4             | 454       | 12.8        | 1,116              | 31.6 |
|                   | 2             | 468                | 13.3    | 3             | 561       | 15.9        | 1,029              | 29.2 |
|                   | 2             | 468                | 13.3    | 4             | 454       | 12.8        | 922                | 26.1 |
|                   | 2             | 468                | 13.3    | 5             | 346       | 9.8         | 814                | 23.1 |


#### 2.7 DOOR CLEARANCES

# 2.7.1 Door Clearances: Model 737, All Models, Forward Main Entry Door No. 1

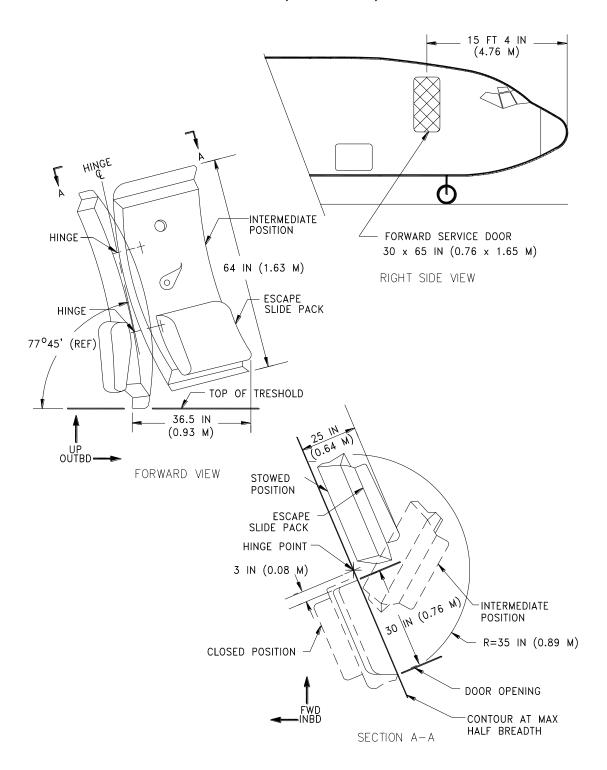


NOTES: 737-800BCF does not have Optional Forward Airstairs.

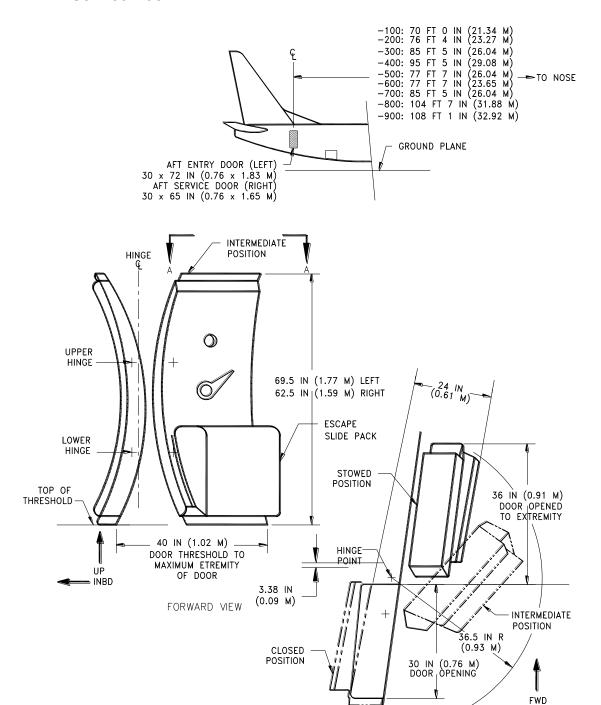

# 2.7.2 Door Clearances: Model 737, All Models, Optional Forward Airstairs, Main Entry Door No 1



NOTES: 737-800BCF does not have Optional Forward Airstairs.


Copyright © 2025 Boeing. All Rights Reserved.

# 2.7.3 Door Clearances: Model 737-600, -700, -700C, -800, -800BCF, -900, -900ER, BBJ1, BBJ2, With and Without Winglets, Locations of Sensors and Probes – Forward of Main Entry Door No 1

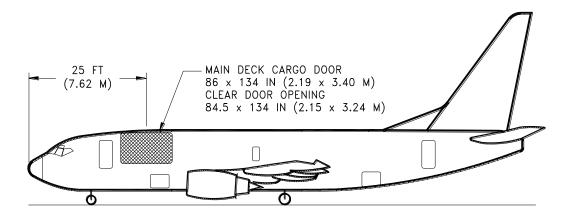


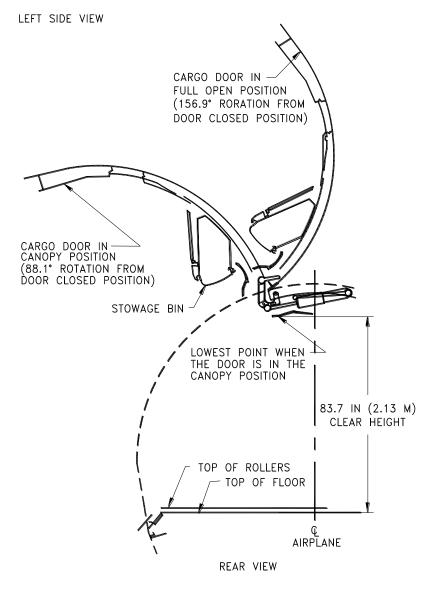

| NAME OF SENSOR             | DISTANCE AFT OF<br>NOSE | DISTANCE ABOVE (+) OR BELOW (-) DOOR SILL REFERENCE LINE | PROTRUSION FROM<br>AIRPLANE SKIN |
|----------------------------|-------------------------|----------------------------------------------------------|----------------------------------|
| PRIMARY PITOT-STATIC (L/R) | 5 FT 2 IN (1.57 M)      | +1 FT 3 IN (0.38 M)                                      | 6 IN (0.15 M)                    |
| ALTERNATE PITOT-STATIC (R) | 5 FT 2 IN (1.57 M)      | + 3 IN (0.08 M)                                          | 6 IN (0.15 M)                    |
| ANGLE OF ATTACK (L/R)      | 5 FT 2 IN (1.57 M)      | -6 IN (-0.15 M)                                          | 4 IN (0.10 M)                    |
| TOTAL AIR TEMPERATURE (L)  | 11 FT 6 IN (3.50 M)     | + 1 FT 6 IN (0.46 M)                                     | 4 IN (0.10 M)                    |

## 2.7.4 Door Clearances: Model 737, All Models, Forward Service Door

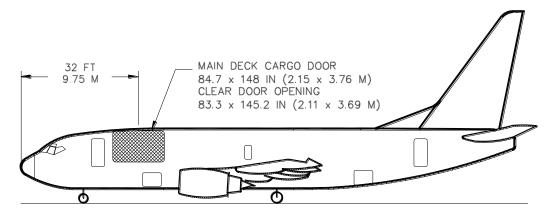


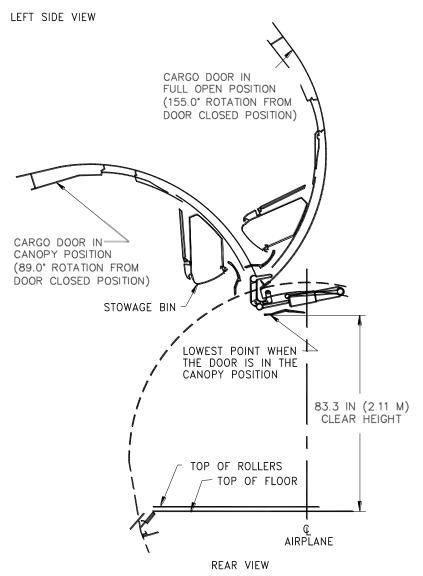
# 2.7.5 Door Clearances: Model 737, All Models, Aft Entry Door and Aft Service Door





NOTES: 737-800BCF deactivates all Overwing and Aft Entry and Service Doors.

SECTION A-A


CONTOUR AT MAXIMUM HALF BREADTH


### 2.7.6 Door Clearances: Model 737-700C, Main Deck Cargo Door





### 2.7.7 Door Clearances: Model 737-800BCF, Main Deck Cargo Door





#### 3.0 AIRPLANE PERFORMANCE

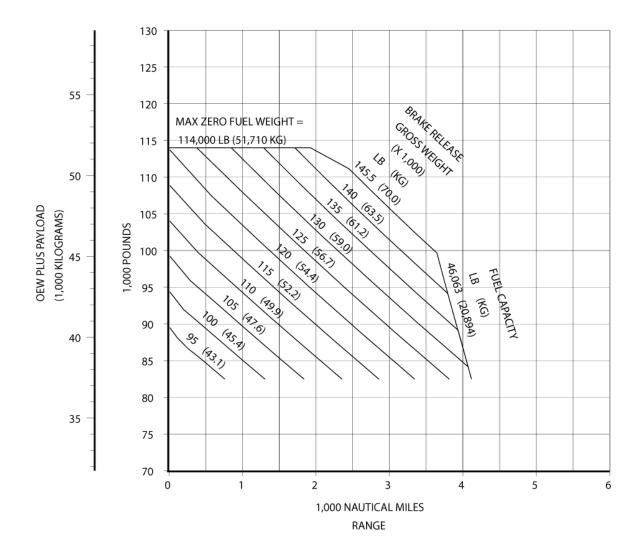
#### 3.1 GENERAL INFORMATION

The graphs in Section 3.2 provide information on payload-range capability of the 737 NG airplane. To use these graphs, if the trip range and zero fuel weight (OEW + payload) are known, the approximate takeoff weight can be found, limited by maximum zero fuel weight, maximum design takeoff weight, or fuel capacity.

The graphs in Section 3.3 provide information on FAA/EASA takeoff runway length requirements with typical engines at different pressure altitudes. Maximum takeoff weights shown on the graphs are the heaviest for the particular airplane models with the corresponding engines. Standard day temperatures for pressure altitudes shown on the FAA/EASA takeoff graphs are given below:

| PRESSURE ALTITUD | E      | STANDARD DAY TEMP |       |  |  |
|------------------|--------|-------------------|-------|--|--|
| FEET             | METERS | °F                | °C    |  |  |
| 0                | 0      | 59.0              | 15.0  |  |  |
| 2,000            | 610    | 51.9              | 11.0  |  |  |
| 4,000            | 1,219  | 44.7              | 7.1   |  |  |
| 6,000            | 1,829  | 37.6              | 3.1   |  |  |
| 8,000            | 2,438  | 30.5              | -0.8  |  |  |
| 10,000           | 3,048  | 23.3              | -4.8  |  |  |
| 12,000           | 3,658  | 16.2              | -8.8  |  |  |
| 14,000           | 4,267  | 9.1               | -12.7 |  |  |
| 15,500           | 4,724  | 3.7               | -15.7 |  |  |

The graphs in Section 3.4 provide information on landing runway length requirements for different airplane weights and airport altitudes. The maximum landing weights shown are the heaviest for the particular airplane model.

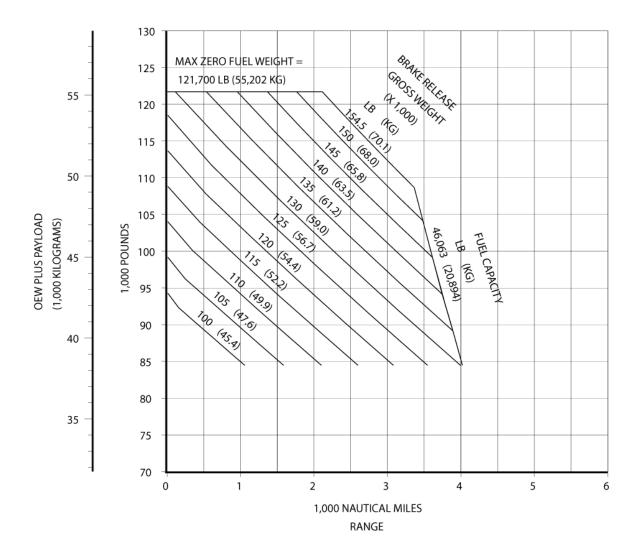

#### 3.2 PAYLOAD/RANGE FOR LONG RANGE CRUISE

## 3.2.1 Payload/Range for Long Range Cruise: Model 737-600

#### DO NOT USE FOR DISPATCH

Payload/Range 737-600 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEED
- TYPICAL MISSION RULES
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.



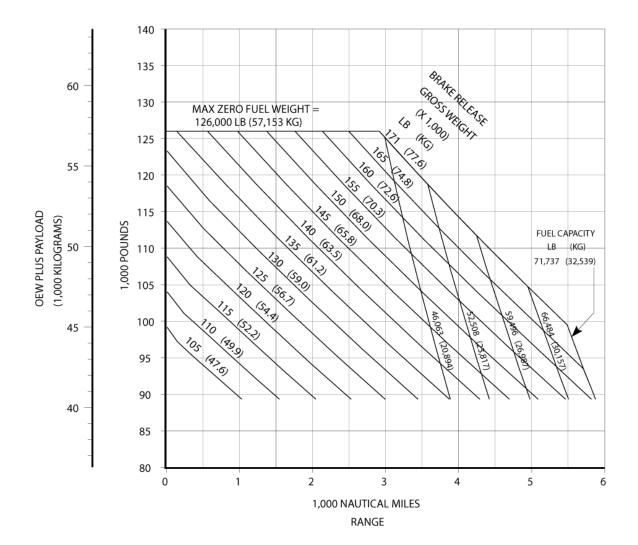

## 3.2.2 Payload/Range for Long Range Cruise: Model 737-700, -700W

#### DO NOT USE FOR DISPATCH

Payload/Range 737-700/-700W (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.



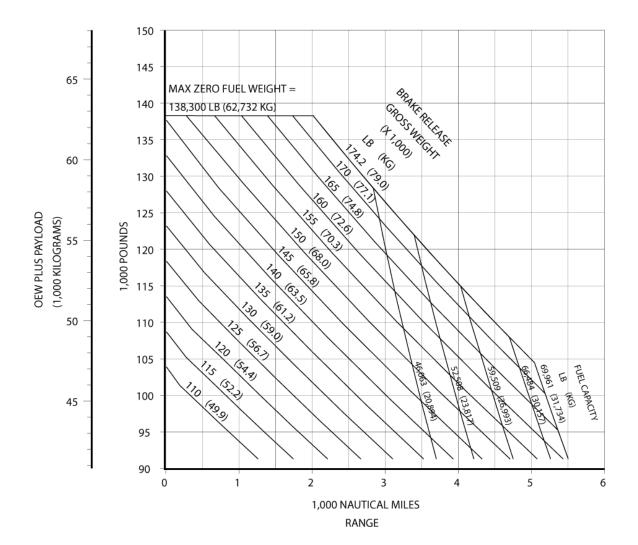

3-3

# 3.2.3 Payload/Range for Long Range Cruise: Model 737-700ER, -700ERW, -700C, -700CW, BBJ1

#### DO NOT USE FOR DISPATCH

Payload/Range 737-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.

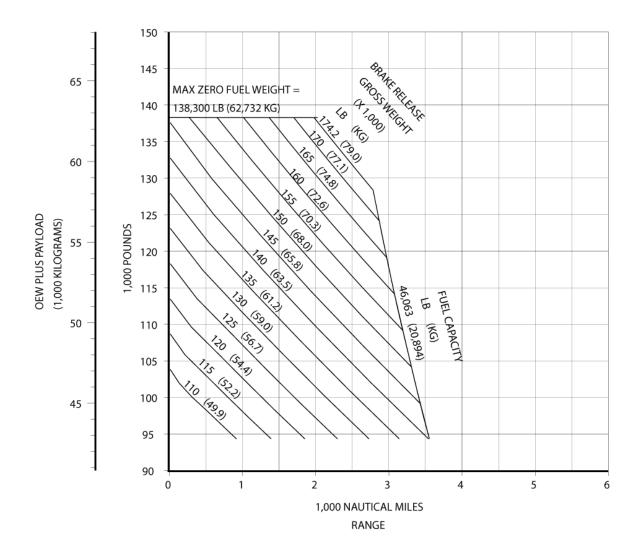



# 3.2.4 Payload/Range for Long Range Cruise: Model 737-800, -800W, -800BCF, BBJ2

#### DO NOT USE FOR DISPATCH

Payload/Range 737-800/800W/BBJ2 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.

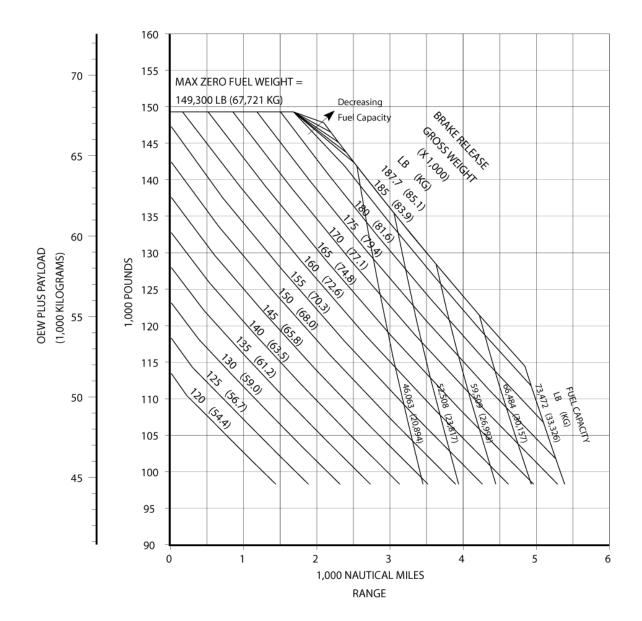



## 3.2.5 Payload/Range for Long Range Cruise: Model 737-900, -900W

#### DO NOT USE FOR DISPATCH

Payload/Range 737-900/-900W (CFM56-7B Series)

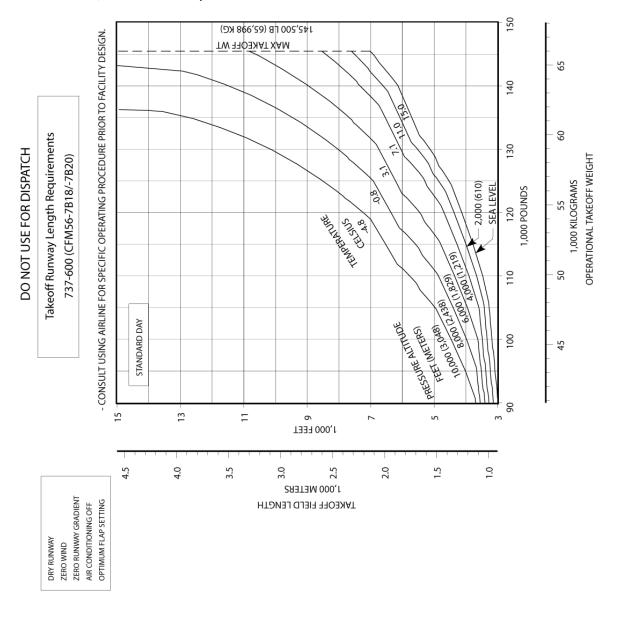
- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.



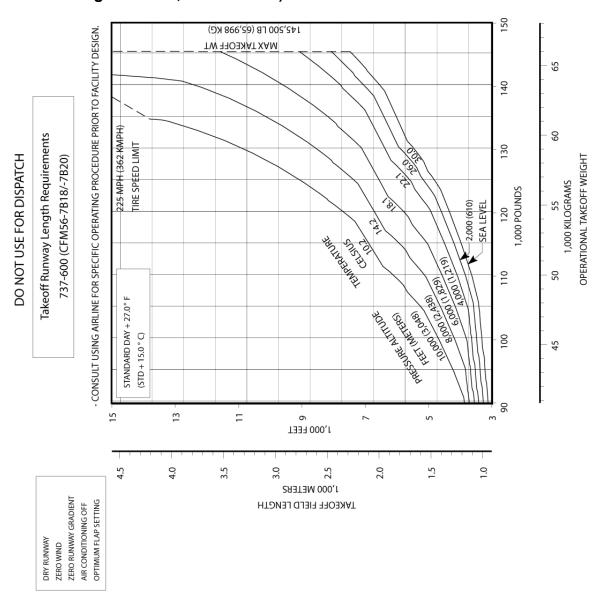

# 3.2.6 Payload/Range for Long Range Cruise: Model 737-900ER, -900ERW, BBJ3

#### DO NOT USE FOR DISPATCH

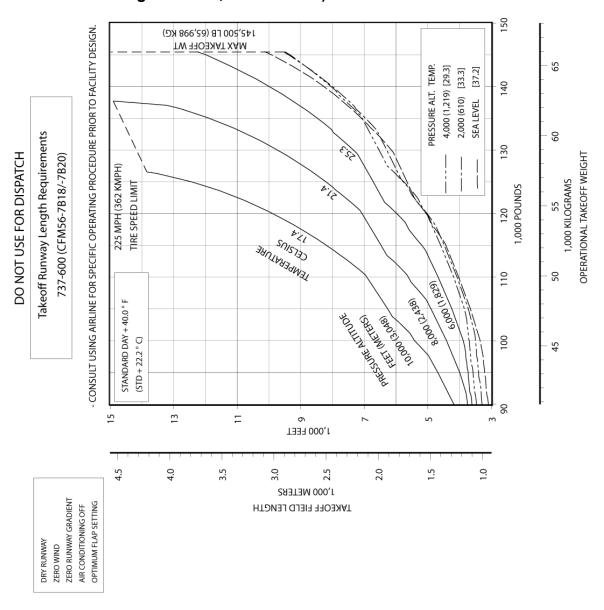
Payload/Range 737-900ER/900ERW/BBJ3 (CFM56-7B Series)


- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.

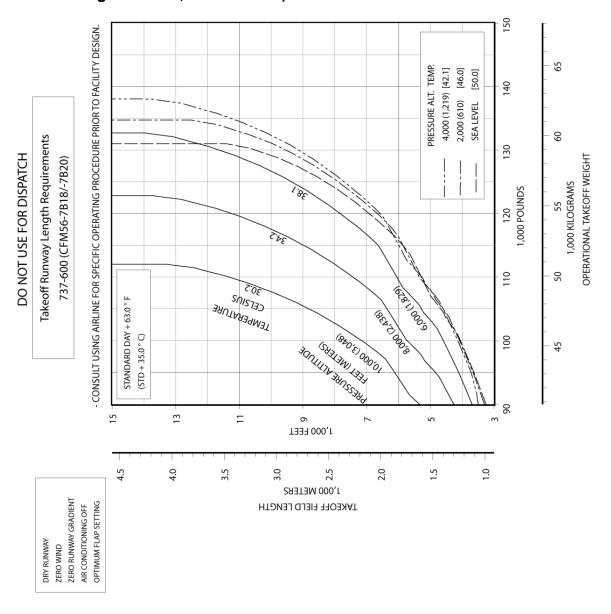



3-7

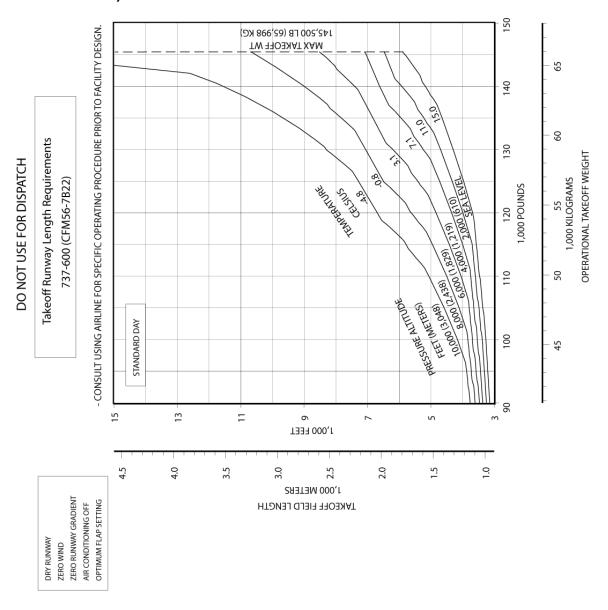
#### 3.3 FAA/EASA TAKEOFF RUNWAY LENGTH REQUIREMENTS


# 3.3.1 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)

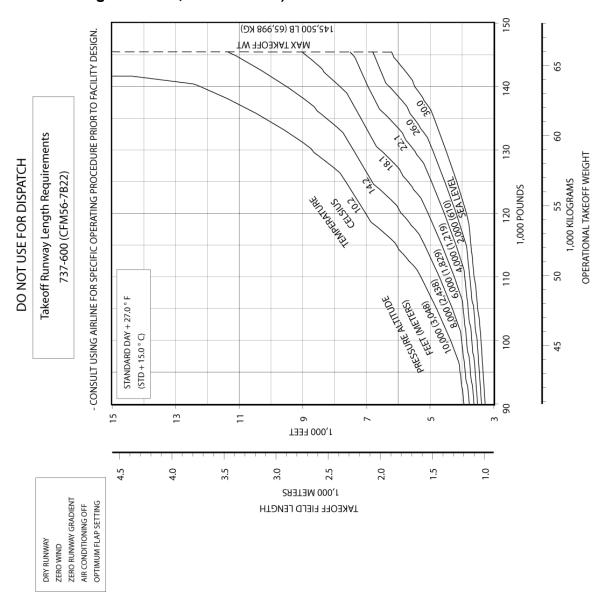



# 3.3.2 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)

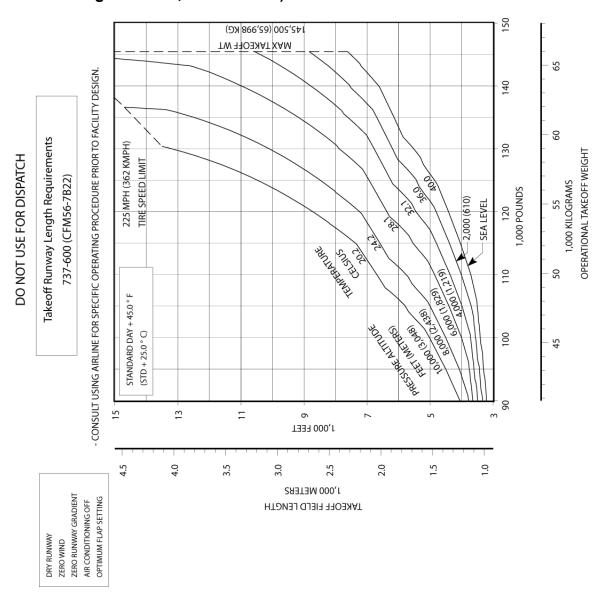



# 3.3.3 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)

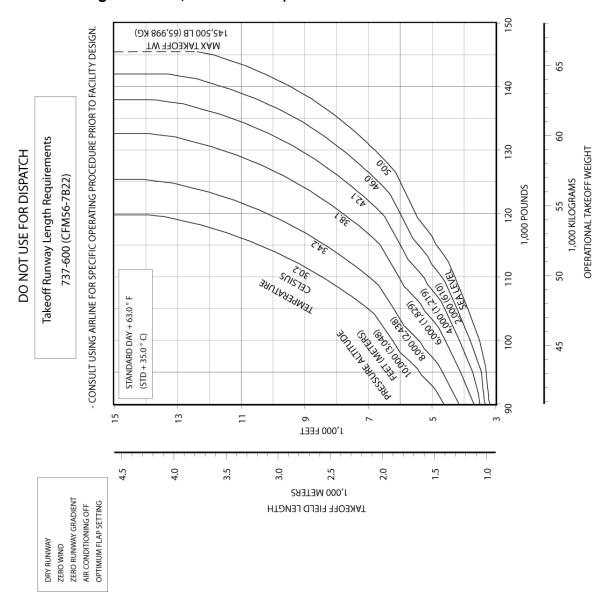



# 3.3.4 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)

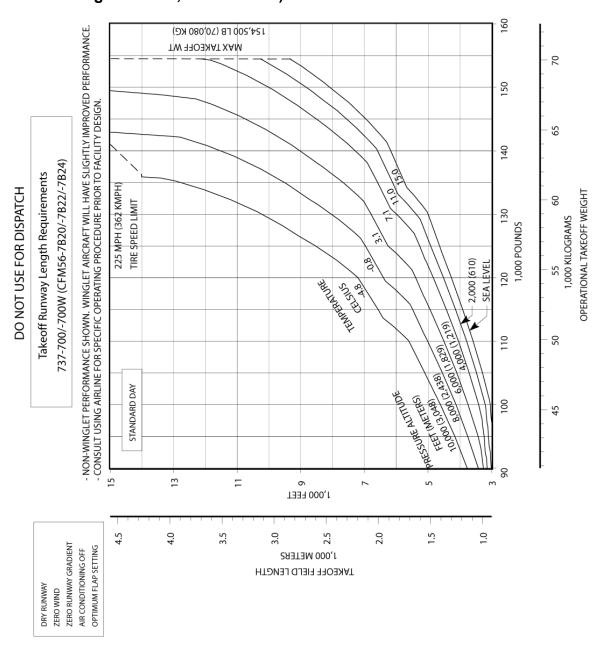



# 3.3.5 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)

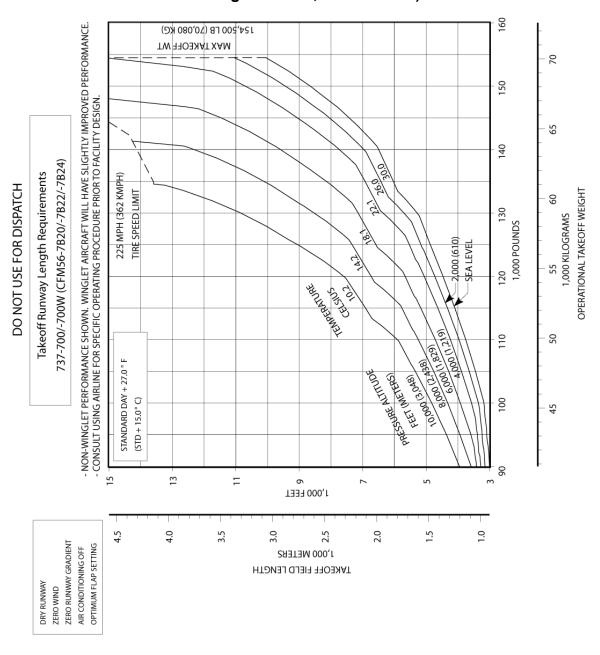



# 3.3.6 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)

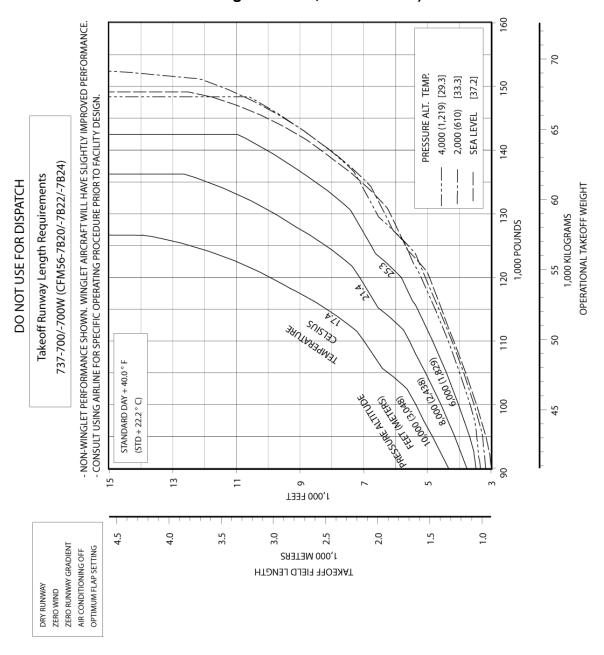



# 3.3.7 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)

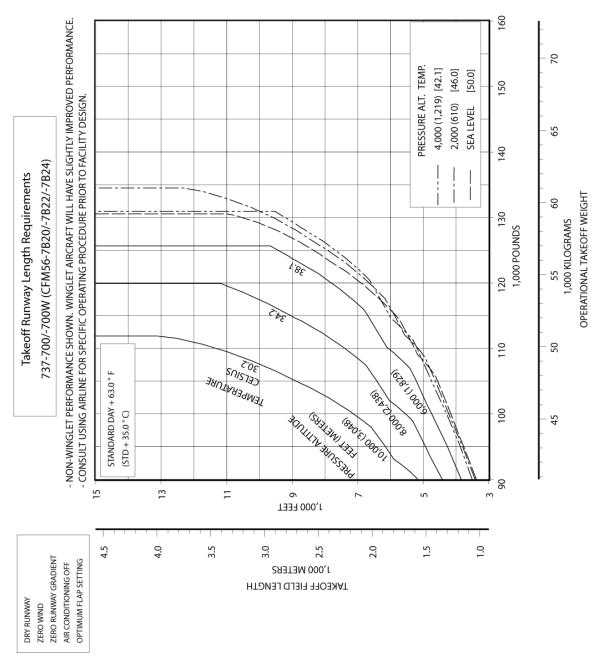



# 3.3.8 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)

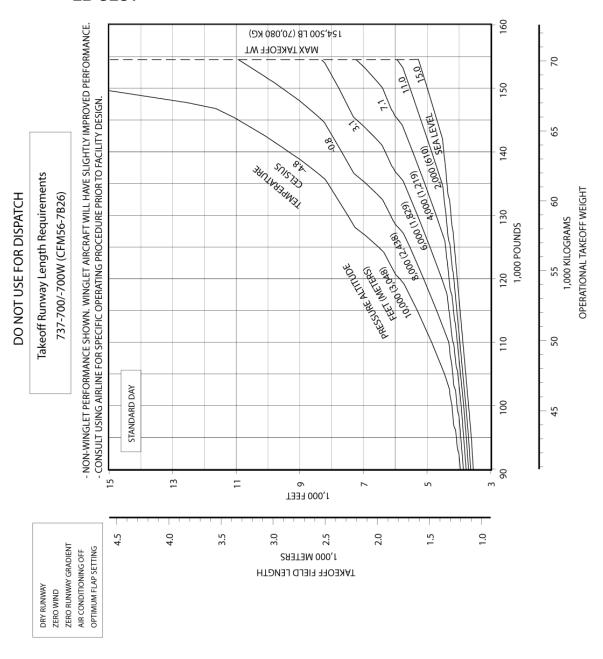



# 3.3.9 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700, 700W (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

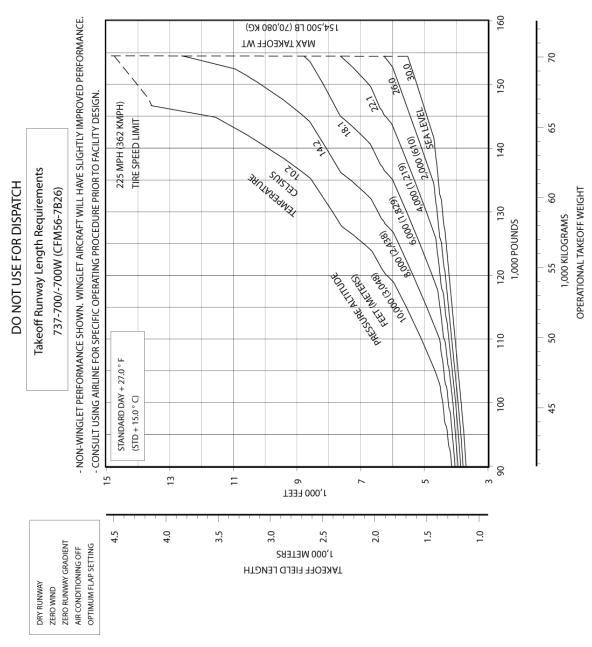



# 3.3.10 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-700, 700W (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)




# 3.3.11 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-700, -700W (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

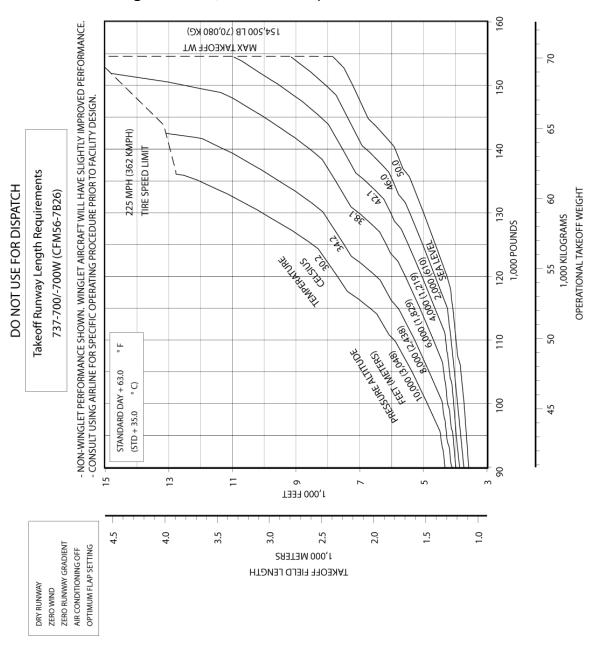



# 3.3.12 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700, -700W (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

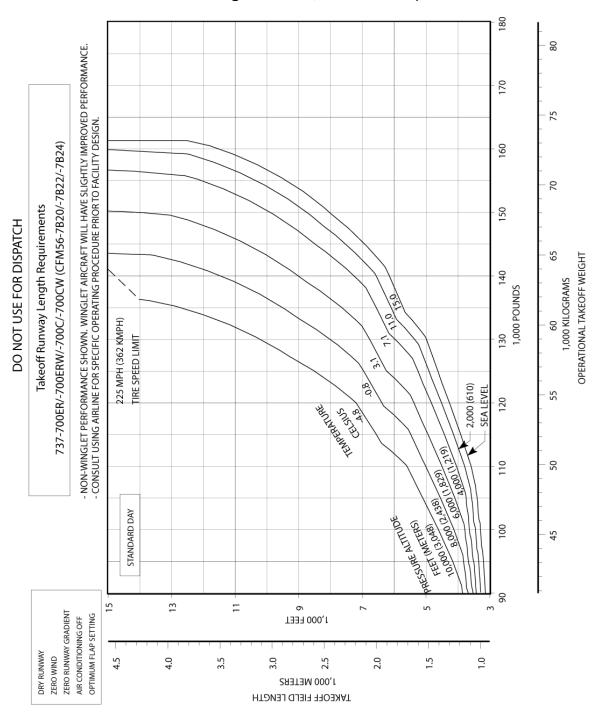



#### 3.3.13 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700, -700W (CFM56-7B26 Engines at 26,000 LB SLST

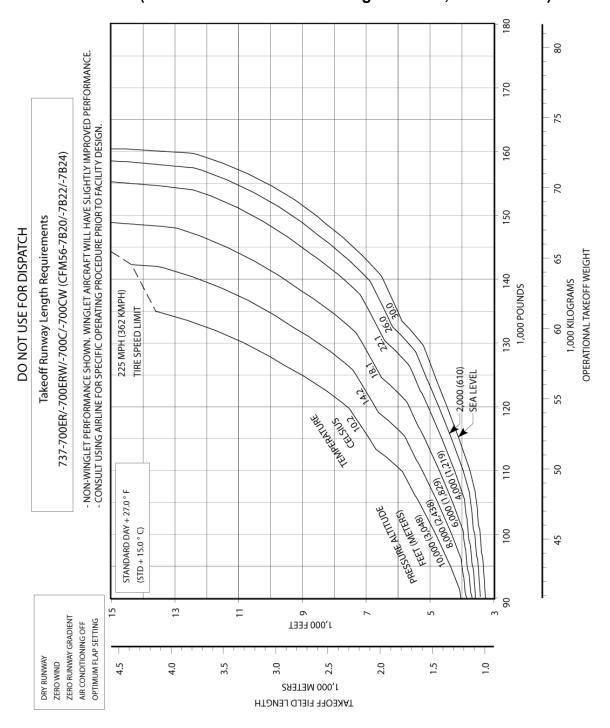



# 3.3.14 FAA/EASA Takeoff Runway Length Requirements - Standard Day, +27°F (STD + 15°C), Dry Runway: Model 737-700, -700W (CFM56-7B26 Engines at 26,000 LB SLST

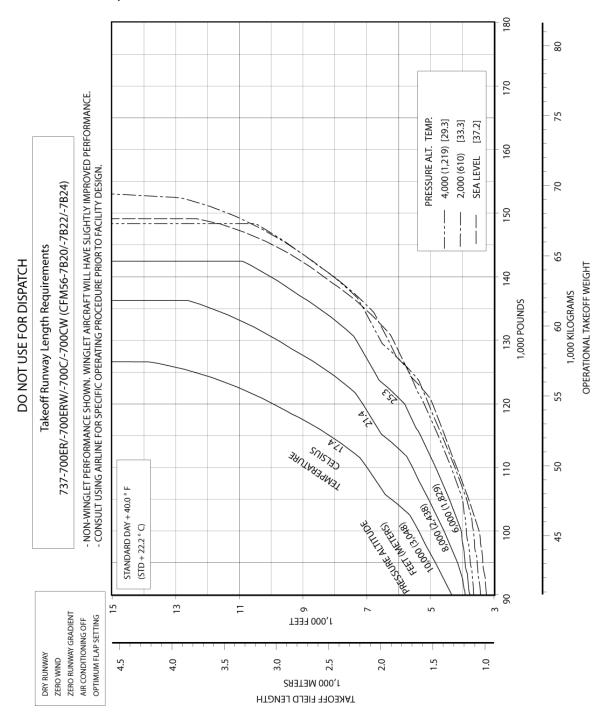



# 3.3.15 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-700, -700W (CFM56-7B26 Engines at 26,000 LB SLST)

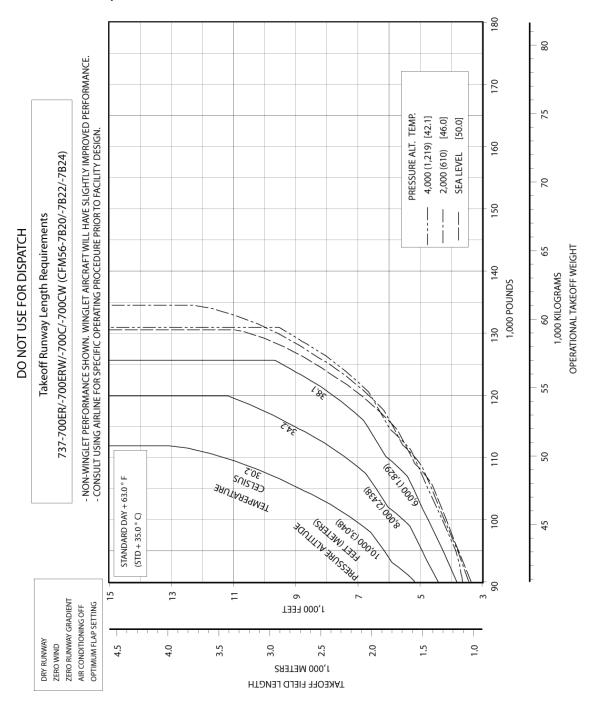



# 3.3.16 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700, -700W (CFM56-7B26 Engines at 26,000 LB SLST)

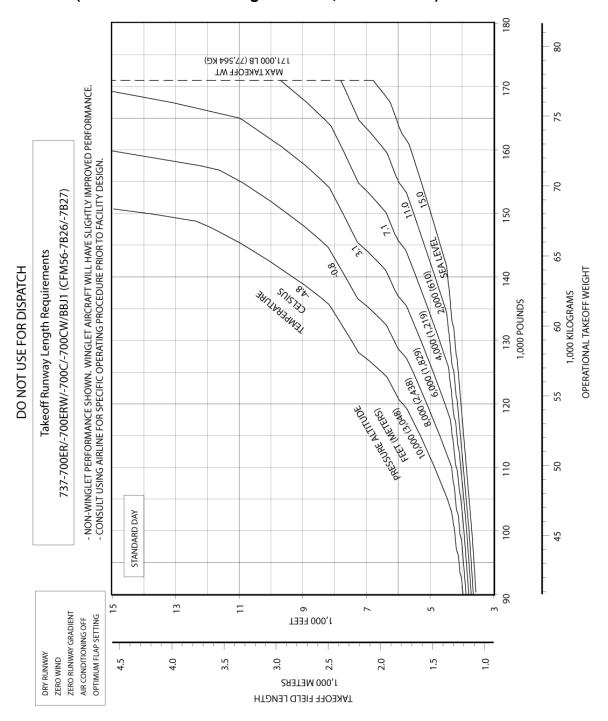



# 3.3.17 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700ER, -700ERW, -700C, -700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

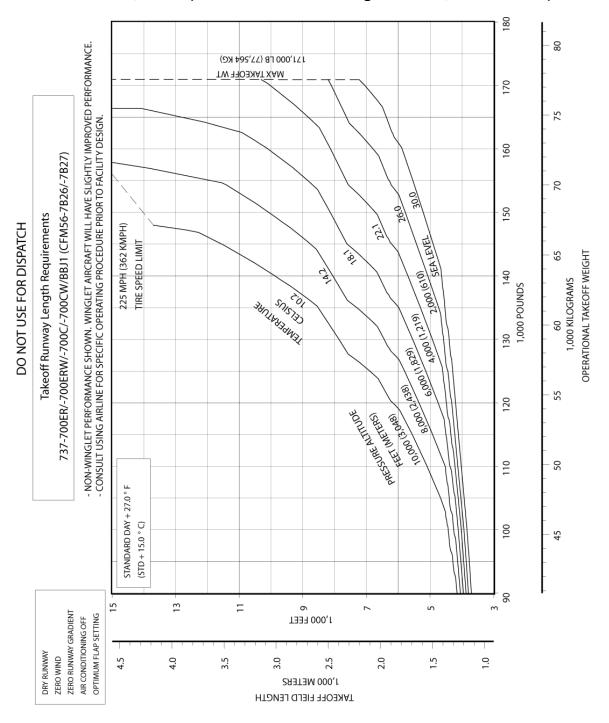



#### 3.3.18 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-700ER, -700ERW, -700C, -700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

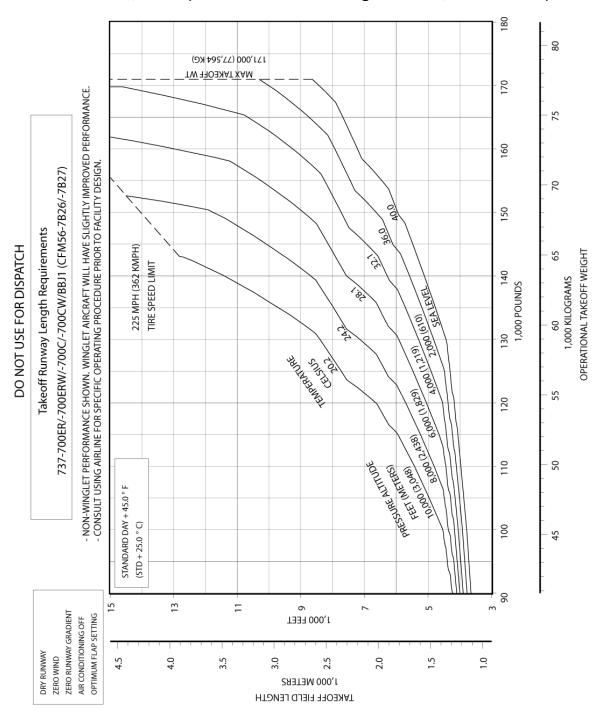



# 3.3.19 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-700ER, -700ERW, - 700C, -700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

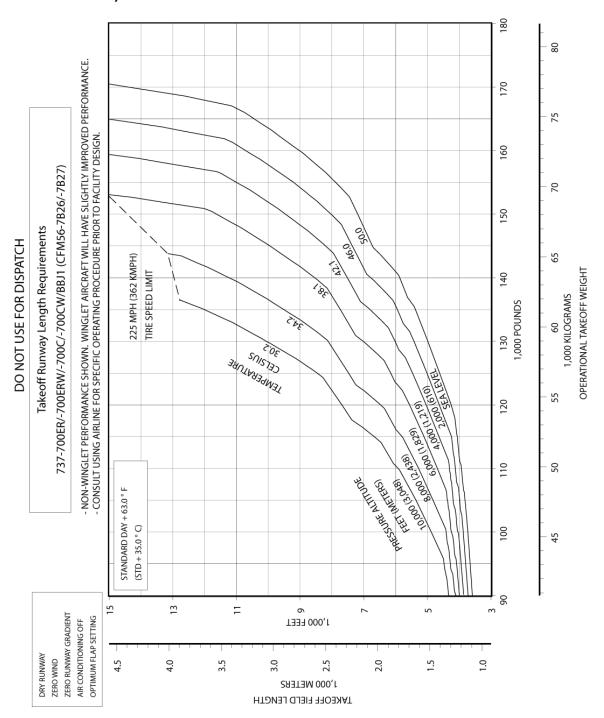



# 3.3.20 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700ER, -700ERW, -700C, -700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

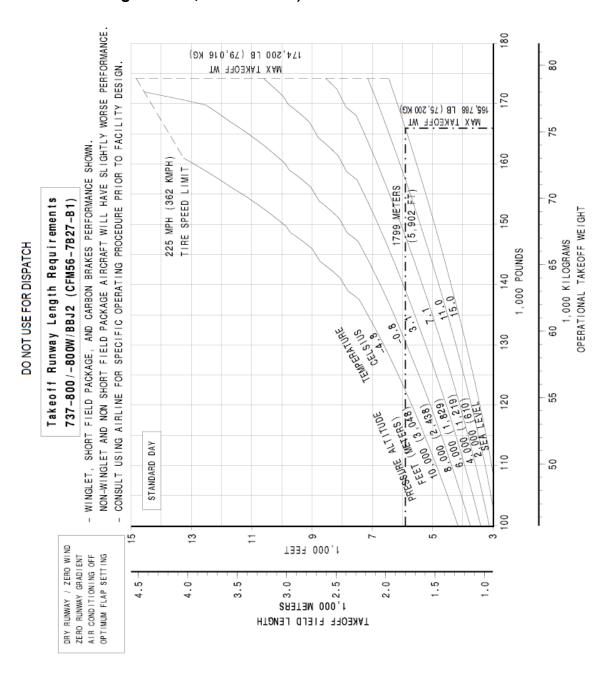



# 3.3.21 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700ER, -700ERW, -700C, -700CW, BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

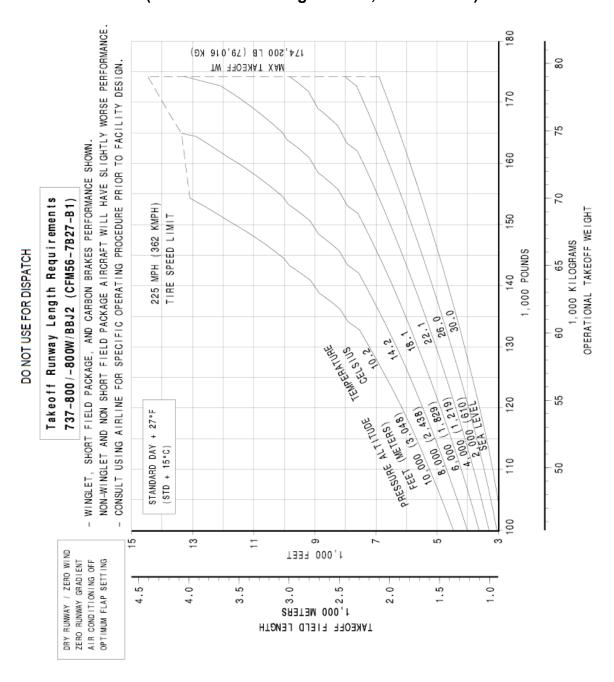



#### 3.3.22 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-700ER, -700ERW, -700C, -700CW, BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

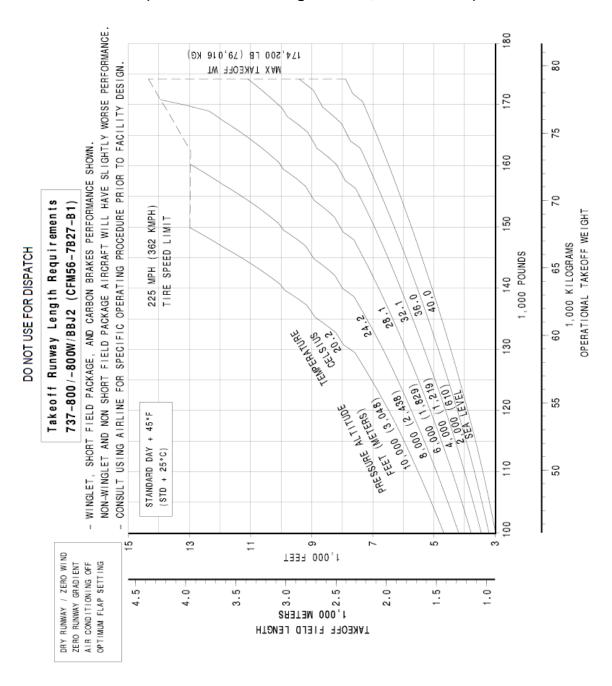



#### 3.3.23 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-700ER, -700ERW, -700C, -700CW, BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

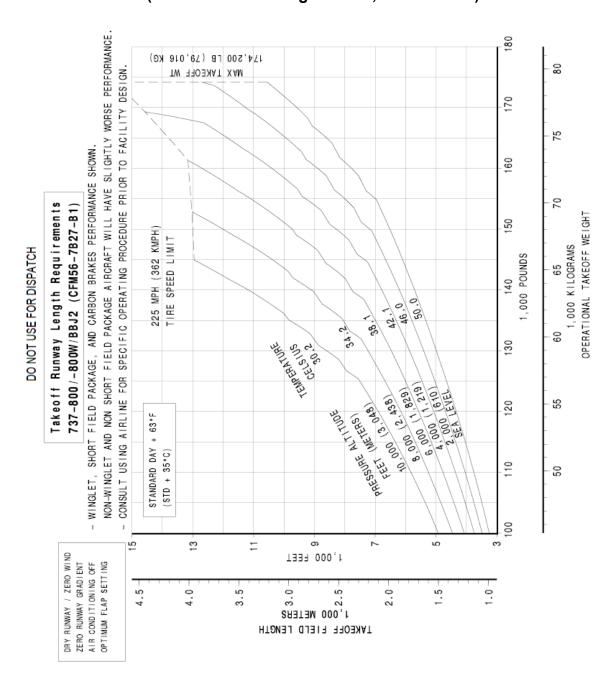



# 3.3.24 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700ER, -700ERW, -700C, -700CW, BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

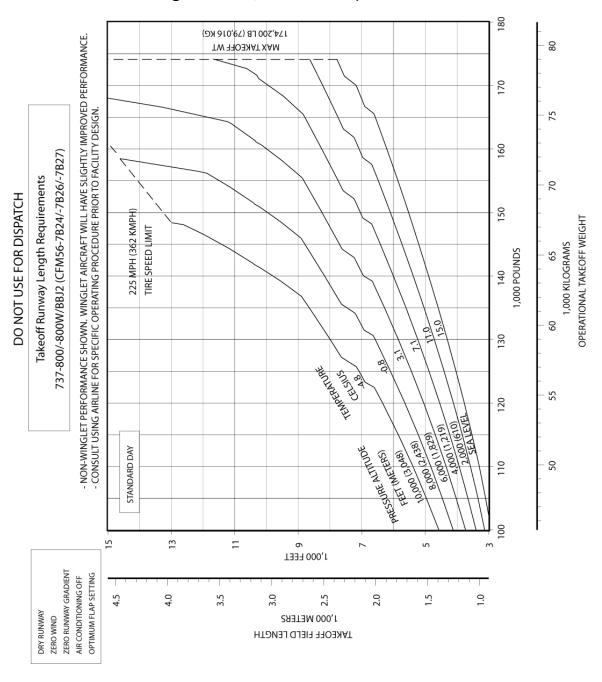



# 3.3.25 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-800, -800W, BBJ2, -800BCF (CFM56-7B27-B1 Engine at 26,000 LB SLST)

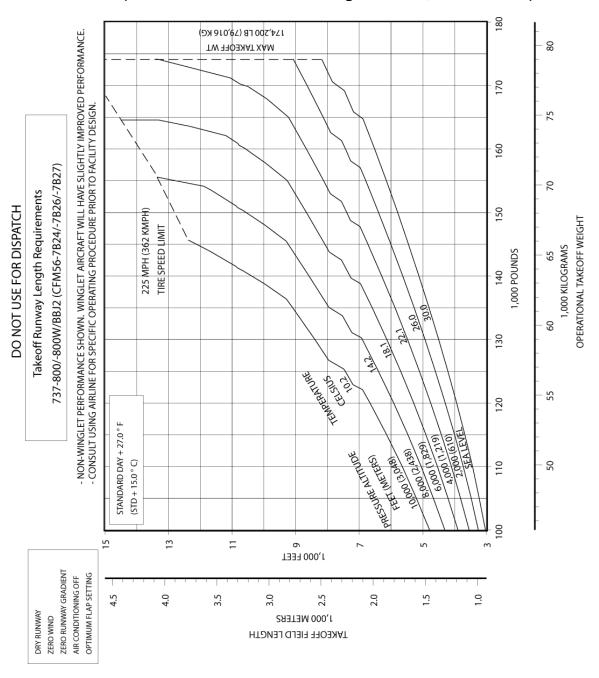



#### 3.3.26 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-800, -800W, BBJ2, - 800BCF (CFM56-7B27-B1 Engine at 26,000 LB SLST)

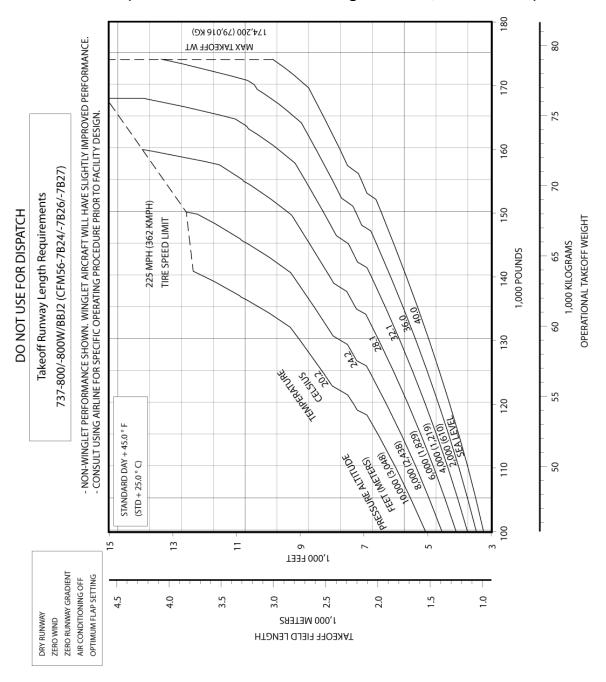



#### 3.3.27 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-800, -800W, BBJ2, - 800BCF (CFM56-7B27-B1 Engine at 26,000 LB SLST)

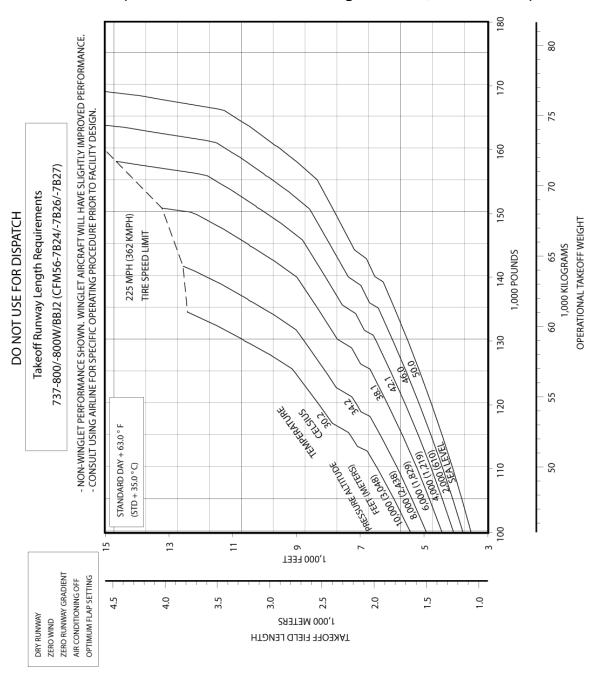



#### 3.3.28 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35°C), Dry Runway: Model 737-800, -800W, BBJ2, - 800BCF (CFM56-7B27-B1 Engine at 26,000 LB SLST)

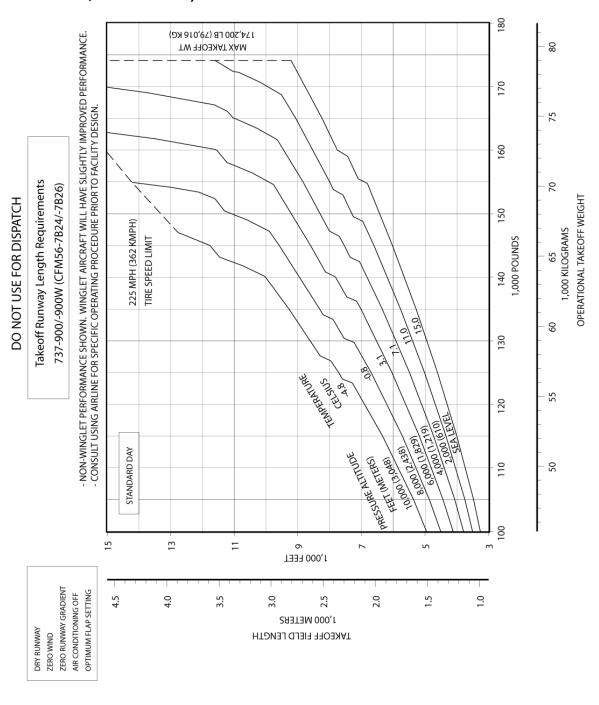



# 3.3.29 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-800, -800W, BBJ2, -800BCF (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)

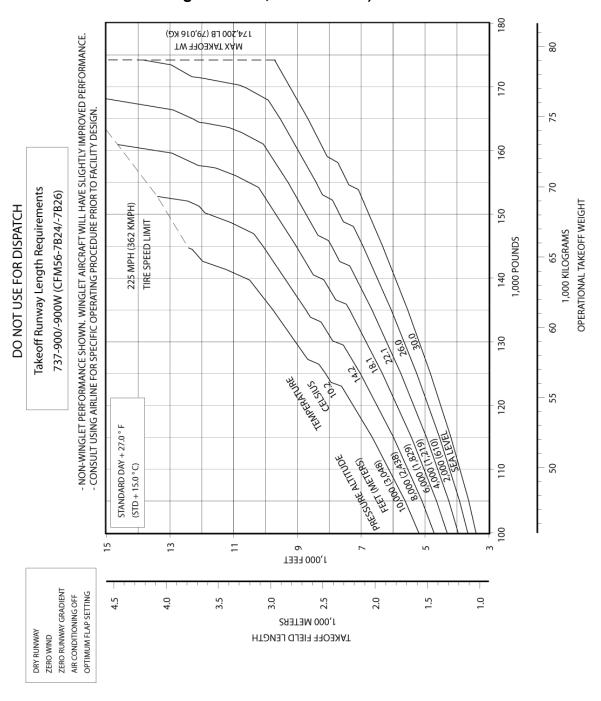



#### 3.3.30 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-800, -800W, BBJ2, -800BCF (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)

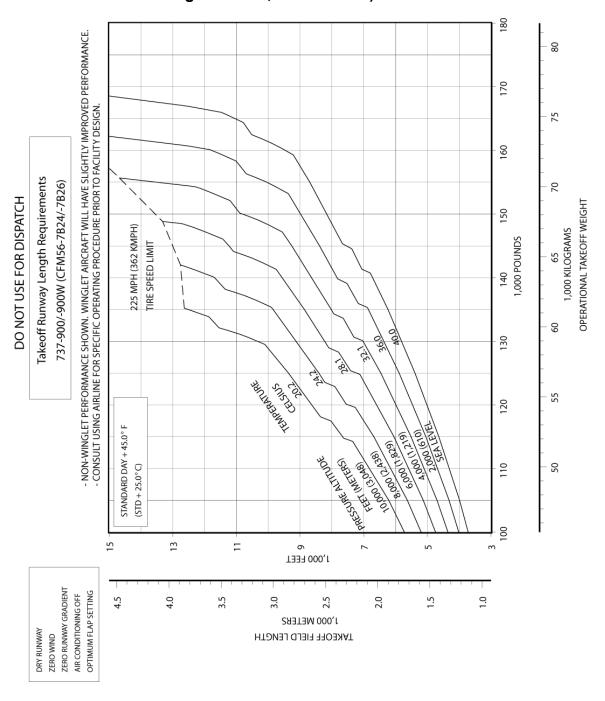



#### 3.3.31 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-800, -800W, BBJ2, -800BCF (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)

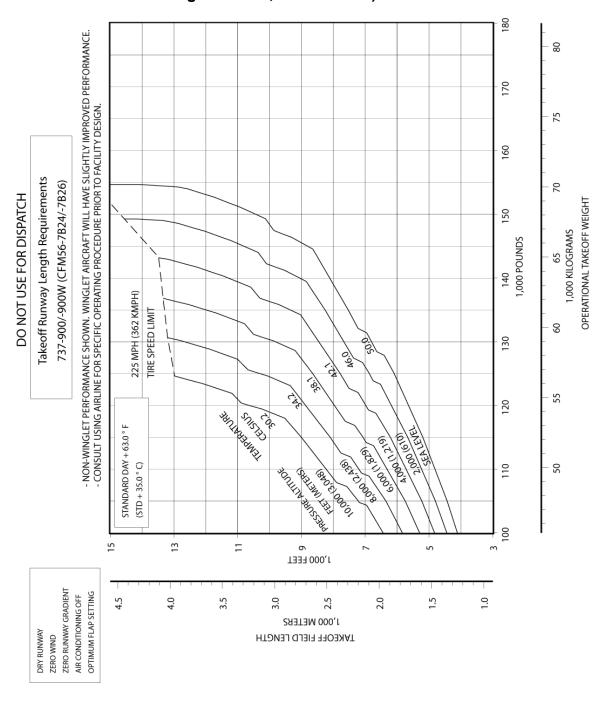



#### 3.3.32 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-800, -800W, BBJ2, - 800BCF (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)

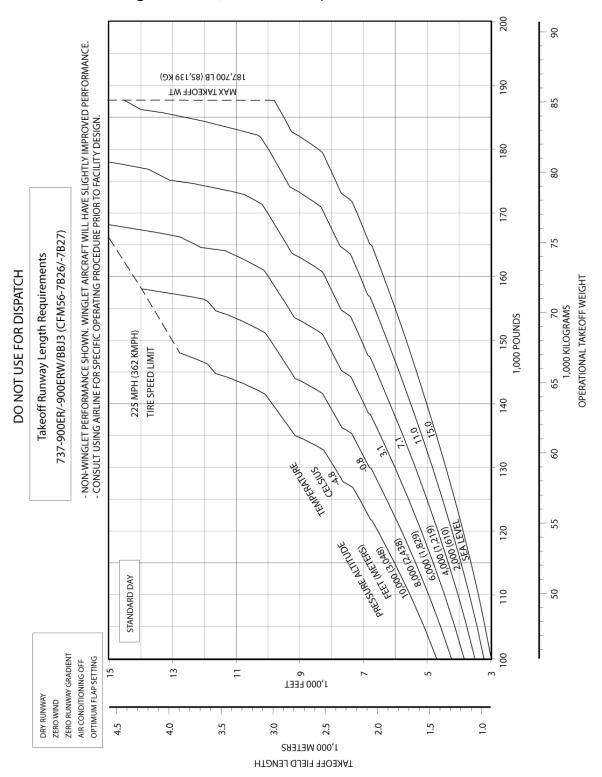



#### 3.3.33 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-900, -900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)

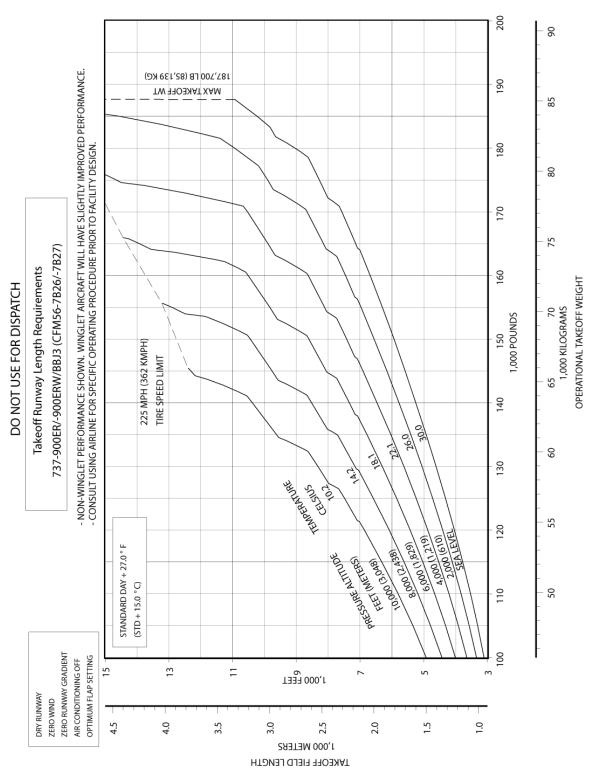



# 3.3.34 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-900, -900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)

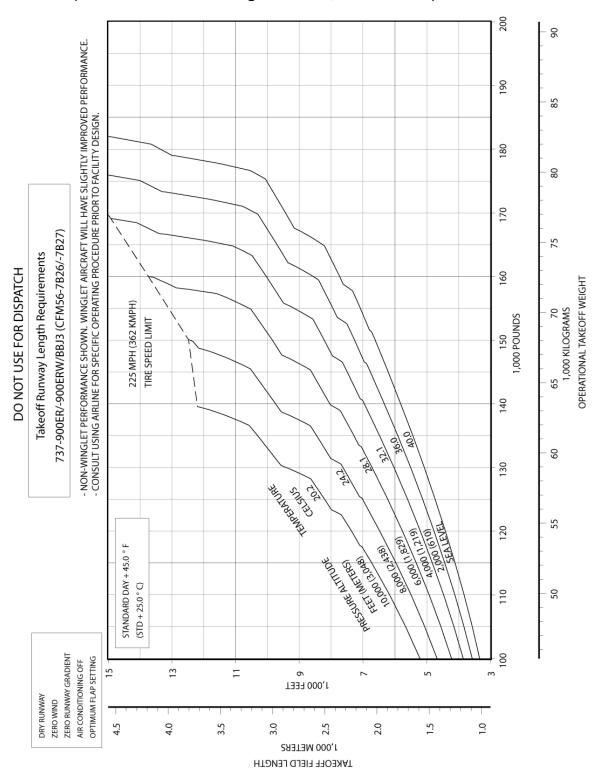



# 3.3.35 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-900, -900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)

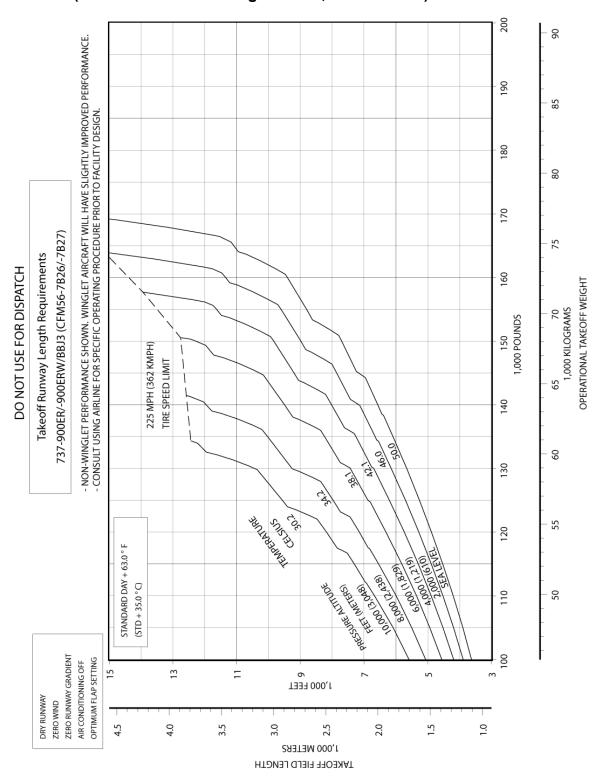



# 3.3.36 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-900, -900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)




# 3.3.37 FAA/EASA Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-900ER, -900ERW, BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)




#### 3.3.38 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-900ER, -900ERW, BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)



# 3.3.39 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-900ER, -900ERW, BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)



# 3.3.40 FAA/EASA Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-900ER, -900ERW, BBJ3 (CFM56-7B26/-7B27 Engines at 6,000 LB SLST)



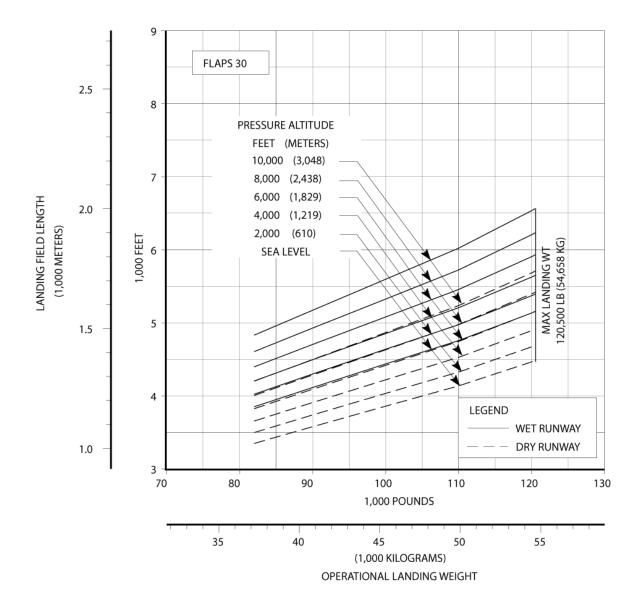
#### 3.3.41 ICAO Aerodrome Reference Code – All Models

The airplane is certified to operate up to its maximum takeoff weight (MTOW). The airplane flight manual provides field length requirements up to MTOW. The airplane reference code can vary for some models based on the airplane takeoff weight up to MTOW.

The following table shows the ICAO Aerodrome Reference Code classification for all models.

| AIRPLANE<br>MODEL | TAKEOFF WEIGHT<br>LB (KG) | AERODROME<br>REFERENCE CODE |
|-------------------|---------------------------|-----------------------------|
| 737-600           | 145,500 (65,997)          | 3C                          |
| 737-700           | 154,500 (70,080)          | 3C                          |
| 737-800           | 165,788 (75,200)          | 3C                          |
| 737-800           | 174,200 (79,016)          | 4C                          |
| 737-900           | 143,400 (65,000)          | 3C                          |
| 737-900           | 174,200 (79,016)          | 4C                          |

The reference takeoff weights are given for information only and not intended for dispatch purposes. Consult airline for specific operating procedures prior to facility design.


#### 3.4 FAA/EASA LANDING RUNWAY LENGTH REQUIREMENTS

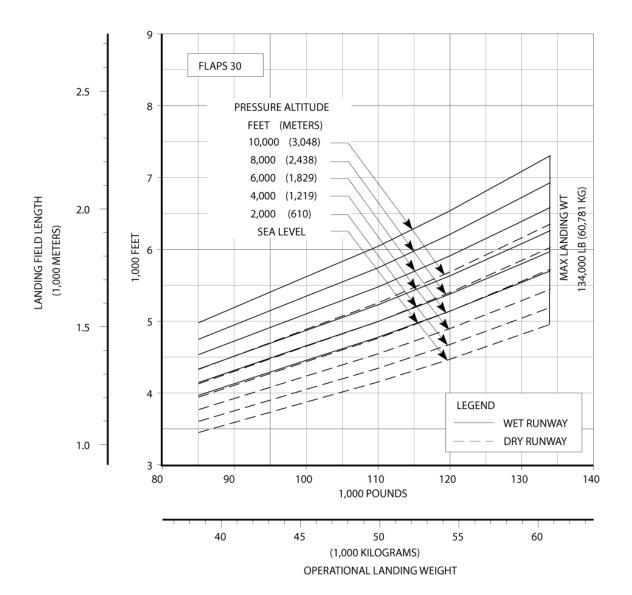
### 3.4.1 FAA/EASA Landing Runway Length Requirements - Flaps 30: Model 737-600

#### DO NOT USE FOR DISPATCH

Landing Field Length 737-600 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- AUTO SPOILERS OPERATIVE
- ANTI-SKID OPERATIVE
- ZERO RUNWAY GRADIENT
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN




# 3.4.2 FAA/EASA Landing Runway Length Requirements - Flaps 30: Model 737-700, -700W, 700ER, -700ERW, 700C, -700CW, BBJ1

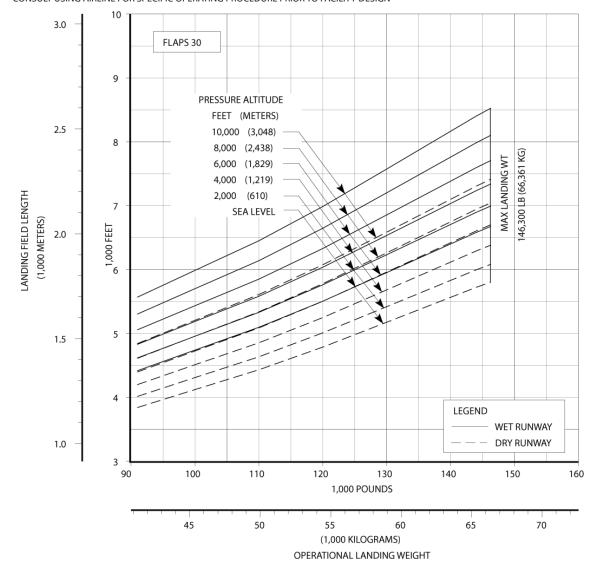
#### DO NOT USE FOR DISPATCH

Landing Field Length

737-700/-700W/-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- AUTO SPOILERS OPERATIVE
- ANTI-SKID OPERATIVE
- ZERO RUNWAY GRADIENT
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN



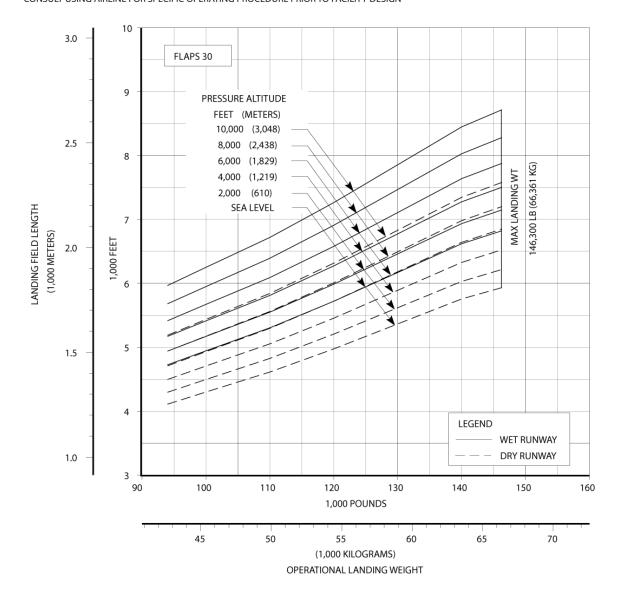

# 3.4.3 FAA/EASA Landing Runway Length Requirements - Flaps 30: Model 737-800, -800W, -800BCF, BBJ2

#### DO NOT USE FOR DISPATCH

Landing Field Length

737-800/-800W/BBJ2 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- AUTO SPOILERS OPERATIVE
- ANTI-SKID OPERATIVE
- ZERO RUNWAY GRADIENT
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN




## 3.4.4 FAA/EASA Landing Runway Length Requirements - Flaps 30: Model 737-900, -900W

#### DO NOT USE FOR DISPATCH

- STANDARD DAY, ZERO WIND
- AUTO SPOILERS OPERATIVE
- ANTI-SKID OPERATIVE
- ZERO RUNWAY GRADIENT

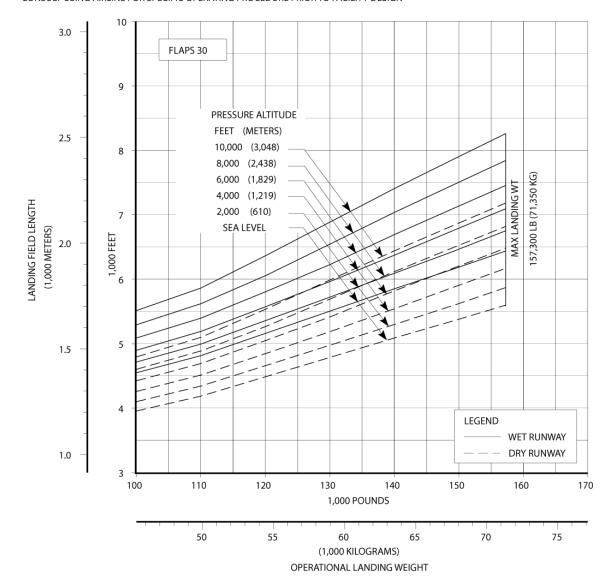
- Landing Field Length 737-900/-900W (CFM56-7B Series)
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN



## 3.4.5 FAA/EASA Landing Runway Length Requirements - Flaps 30: Model 737-900ER, -900ERW, BBJ3

#### DO NOT USE FOR DISPATCH

- STANDARD DAY, ZERO WIND


- AUTO SPOILERS OPERATIVE

- ANTI-SKID OPERATIVE

- ZERO RUNWAY GRADIENT

Landing Field Length
737-900ER/-900ERW/BBJ3 (CFM56-7B Series)

- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN



#### 4.0 AIRPLANE PERFORMANCE

#### 4.1 GENERAL INFORMATION

This section provides airplane turning capability and maneuvering characteristics.

For ease of presentation, these data have been determined from the theoretical limits imposed by the geometry of the aircraft, and where noted, provide for a normal allowance for tire slippage. As such, they reflect the turning capability of the aircraft in favorable operating circumstances. These data should be used only as guidelines for the method of determination of such parameters and for the maneuvering characteristics of this aircraft.

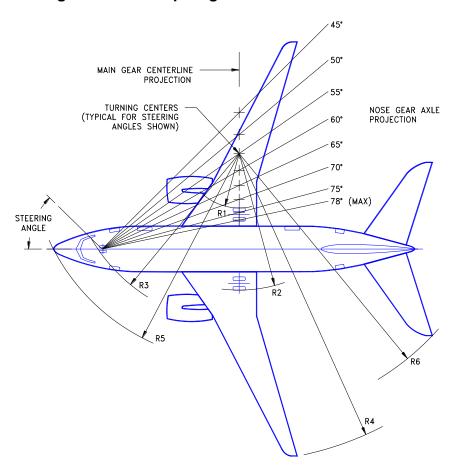
In the ground operating mode, varying airline practices may demand that more conservative turning procedures be adopted to avoid excessive tire wear and reduce possible maintenance problems. Airline operating procedures will vary in the level of performance over a wide range of operating circumstances throughout the world. Variations from standard aircraft operating patterns may be necessary to satisfy physical constraints within the maneuvering area, such as adverse grades, limited area, or high risk of jet blast damage. For these reasons, ground maneuvering requirements should be coordinated with the using airlines prior to layout planning.

Section 4.2 presents turning radii for various nose gear steering angles. Radii for the main and nose gears are measured from the turn center to the outside of the tire.

Section 4.3 shows data on minimum width of pavement required for 180° turn.

Section 4.4 provides pilot visibility data from the cockpit and the limits of ambinocular vision through the windows. Ambinocular vision is defined as the total field of vision seen simultaneously by both eyes.

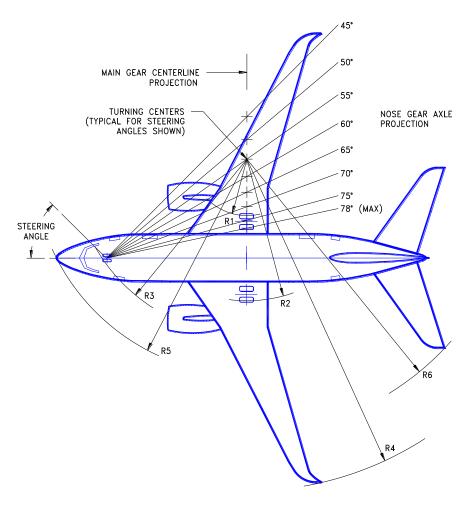
Section 4.5 shows approximate wheel paths for various runway and taxiway turn scenarios on a 100 ft (30 m) runway and 50 ft (15 m) taxiway system. Boeing 737 Series aircraft are capable of operating on 100 ft wide runways. However, for design purposes, the FAA and ICAO recommend that the minimum runway width for the 737 Series aircraft is 150 ft (45 m).


The pavement fillet geometries are based on the FAA's Advisory Circular (AC) 150/5300-13 (thru change 16). They represent typical fillet geometries built at many airports worldwide. ICAO and other civil aviation authorities publish many different fillet design methods. Prior to determining the size of fillets, airports are advised to check with the airlines regarding the operating procedures and aircraft types they expect to use at the airport. Further, given the cost of modifying fillets and the operational impact to ground movement and air traffic during construction, airports may want to design critical fillets for larger aircraft types to minimize future operational impacts.

Section 4.6 illustrates a typical runway holding bay configuration.

D6-58325-7

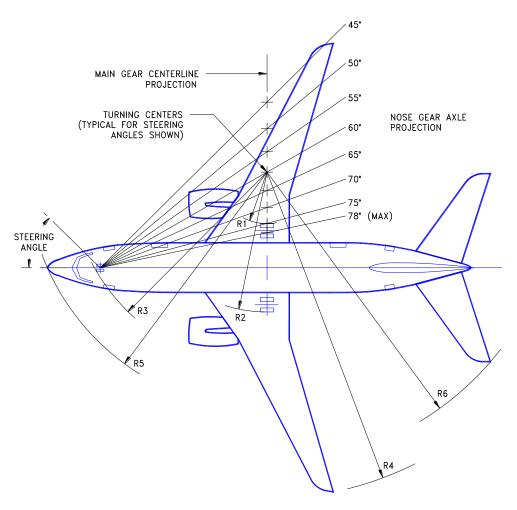
#### 4.2 TURNING RADII


### 4.2.1 Turning Radii - No Slip Angle: Model 737-600



NOTES: \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

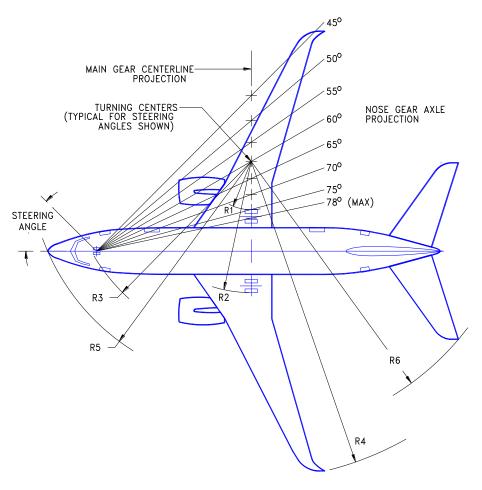
| STEERING<br>ANGLE |      | INER<br>AR |      | UTER<br>AR | R3 N<br>GE | IOSE<br>AR | R4<br>WING TIP |      | R5<br>NOSE |      | R6<br>TAIL |      |
|-------------------|------|------------|------|------------|------------|------------|----------------|------|------------|------|------------|------|
| (DEG)             | FT   | М          | FT   |            |            | М          | FT             | М    | FT         | М    | FT         | M    |
| 30                | 52.1 | 15.9       | 75.2 | 22.9       | 74.0       | 22.6       | 121.2          | 36.9 | 81.0       | 24.7 | 101.7      | 31.0 |
| 35                | 40.9 | 12.5       | 64.0 | 19.5       | 64.6       | 19.7       | 110.2          | 33.6 | 72.6       | 22.1 | 92.3       | 28.1 |
| 40                | 32.2 | 9.8        | 55.3 | 16.9       | 57.8       | 17.6       | 101.6          | 31.0 | 66.6       | 20.3 | 85.3       | 26.0 |
| 45                | 25.2 | 7.7        | 48.3 | 14.7       | 52.7       | 16.1       | 94.7           | 28.9 | 62.2       | 19.0 | 79.9       | 24.3 |
| 50                | 26.2 | 5.9        | 42.4 | 12.9       | 48.7       | 14.9       | 88.88          | 27.1 | 58.9       | 17.9 | 75.5       | 23.0 |
| 55                | 14.2 | 4.3        | 37.3 | 11.4       | 45.7       | 13.9       | 83.8           | 25.6 | 56.4       | 17.2 | 71.9       | 21.9 |
| 60                | 9.7  | 2.9        | 32.8 | 10.0       | 43.3       | 13.2       | 79.4           | 24.2 | 54.5       | 16.6 | 68.9       | 21.0 |
| 65                | 5.6  | 1.7        | 28.7 | 8.7        | 41.4       | 12.6       | 75.5           | 23.0 | 53.0       | 16.2 | 66.3       | 20.2 |
| 70                | 1.8  | 0.6        | 24.9 | 7.6        | 40.0       | 12.2       | 71.8           | 21.9 | 51.9       | 15.8 | 64.1       | 19.5 |
| 78 (MAX)          | -3.7 | -1.1       | 19.4 | 5.9        | 38.5       | 11.7       | 66.4           | 20.2 | 50.8       | 15.5 | 61.0       | 18.6 |


### 4.2.2 Turning Radii - No Slip Angle: Model 737-600W



NOTES: \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

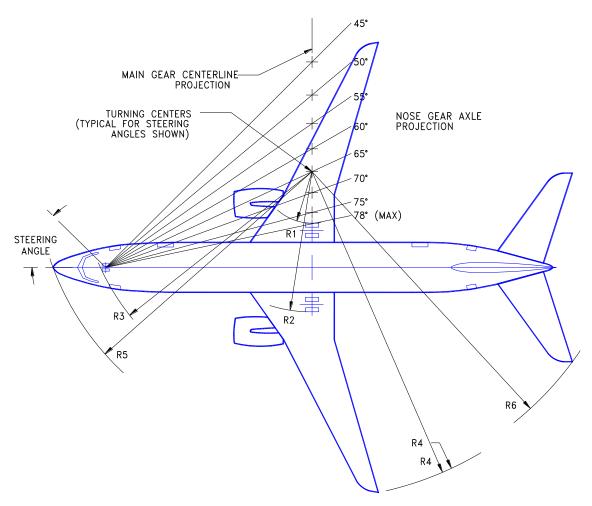
| STEERING<br>ANGLE | R1 IN<br>GE | INER<br>AR | _    | UTER<br>AR |      | IOSE<br>AR | R<br>WING |      |      | 5<br>SE | R<br>TA | 6<br>NL |
|-------------------|-------------|------------|------|------------|------|------------|-----------|------|------|---------|---------|---------|
| (DEG)             | FT          | М          | FT   | М          | FT   | М          | FT        | М    | FT   | М       | FT      | М       |
| 30                | 52.7        | 16.1       | 75.8 | 23.1       | 75.1 | 22.9       | 124.7     | 38.0 | 81.7 | 24.9    | 75.8    | 23.1    |
| 35                | 41.4        | 12.6       | 64.5 | 19.7       | 65.6 | 20.0       | 113.5     | 34.6 | 73.2 | 22.3    | 64.5    | 19.7    |
| 40                | 32.7        | 10.0       | 55.8 | 17.0       | 58.7 | 17.9       | 104.9     | 32.0 | 67.1 | 20.5    | 55.8    | 17.0    |
| 45                | 25.5        | 7.8        | 48.6 | 14.8       | 53.4 | 16.3       | 98.0      | 29.9 | 62.7 | 19.1    | 48.6    | 14.8    |
| 50                | 19.6        | 6.0        | 42.7 | 13.0       | 49.4 | 15.1       | 92.1      | 28.1 | 59.3 | 18.1    | 42.7    | 13.0    |
| 55                | 14.4        | 4.4        | 37.5 | 11.4       | 46.2 | 14.1       | 87.1      | 26.6 | 56.8 | 17.3    | 37.5    | 11.4    |
| 60                | 9.9         | 3.0        | 33.0 | 10.0       | 43.8 | 13.3       | 82.7      | 25.2 | 54.9 | 16.7    | 33.0    | 10.0    |
| 65                | 5.7         | 1.8        | 28.8 | 8.8        | 41.9 | 12.8       | 78.7      | 24.0 | 53.4 | 16.3    | 28.8    | 8.8     |
| 70                | 2.0         | .6         | 25.1 | 7.6        | 40.4 | 12.3       | 75.1      | 22.9 | 52.3 | 15.9    | 25.1    | 7.6     |
| 78 (MAX)          | 3.7         | 1.1        | 19.4 | 5.9        | 38.9 | 11.9       | 69.7      | 21.2 | 51.1 | 15.6    | 19.4    | 5.9     |


### 4.2.3 Turning Radii - No Slip Angle: Model 737-700



NOTES: \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

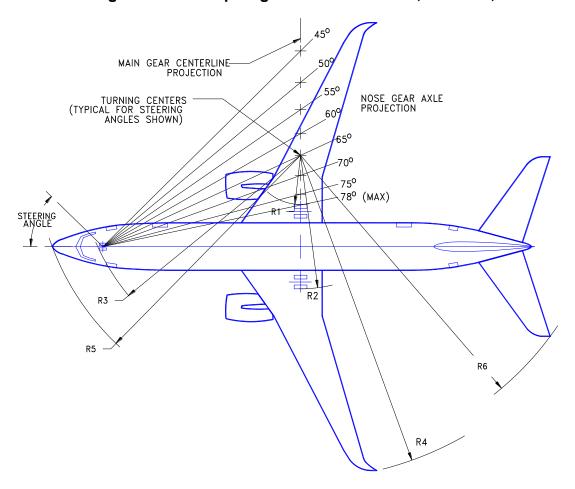
| STEERING<br>ANGLE |      | INER<br>AR |      | UTER<br>AR |      | IOSE<br>AR | R<br>WING | 4<br>3 TIP |      | SE   | R<br>TA | 6<br>NL |
|-------------------|------|------------|------|------------|------|------------|-----------|------------|------|------|---------|---------|
| (DEG)             | FT   | М          | FT   | М          | FT   | М          | FT        | М          | FT   | M    | FT      | M       |
| 30                | 59.9 | 18.3       | 83.0 | 25.3       | 83.0 | 25.3       | 128.9     | 39.3       | 90.0 | 27.4 | 110.1   | 33.6    |
| 35                | 47.4 | 14.4       | 70.5 | 21.5       | 72.5 | 22.1       | 116.5     | 35.5       | 80.4 | 24.5 | 99.5    | 30.3    |
| 40                | 37.6 | 11.5       | 60.7 | 18.5       | 64.8 | 19.8       | 106.9     | 32.6       | 73.5 | 22.4 | 91.6    | 27.9    |
| 45                | 29.7 | 9.1        | 52.8 | 16.1       | 59.0 | 18.0       | 99.1      | 30.2       | 68.5 | 20.9 | 85.5    | 26.0    |
| 50                | 23.0 | 7.0        | 46.2 | 14.1       | 54.6 | 16.7       | 92.6      | 28.2       | 64.7 | 19.7 | 80.5    | 24.5    |
| 55                | 17.3 | 5.3        | 40.4 | 12.3       | 51.2 | 15.6       | 86.9      | 26.5       | 61.8 | 18.8 | 76.5    | 23.3    |
| 60                | 12.3 | 3.7        | 35.4 | 10.8       | 48.5 | 14.8       | 82.0      | 25.0       | 59.6 | 18.2 | 73.1    | 22.3    |
| 65                | 7.7  | 2.3        | 30.8 | 9.4        | 46.4 | 14.2       | 77.5      | 23.6       | 58.0 | 17.7 | 70.2    | 21.4    |
| 70                | 3.5  | 1.1        | 26.6 | 8.2        | 44.8 | 13.7       | 73.4      | 22.4       | 56.7 | 17.3 | 67.7    | 20.6    |
| 78 (MAX)          | -2.8 | -0.8       | 20.3 | 6.2        | 43.1 | 13.1       | 67.3      | 20.5       | 55.4 | 16.9 | 64.4    | 19.6    |


### 4.2.4 Turning Radii - No Slip Angle: Model 737-700W, BBJ1



NOTES: \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

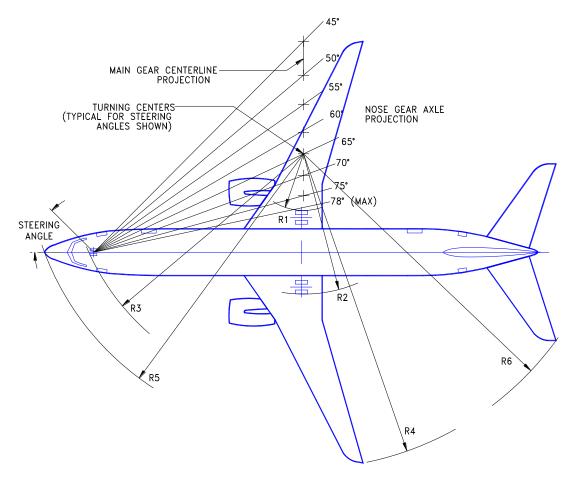
| STEERING<br>ANGLE |      | INER<br>AR |      | UTER<br>AR |      | IOSE<br>AR | R<br>WING | 4<br>3 TIP | R<br>NO | 5<br>SE | R<br>TA | -    |
|-------------------|------|------------|------|------------|------|------------|-----------|------------|---------|---------|---------|------|
| (DEG)             | FT   | М          | FT   | М          | FT   | М          | FT        | М          | FT      | М       | FT      | M    |
| 30                | 59.9 | 18.3       | 83.0 | 25.3       | 83.5 | 25.5       | 131.8     | 40.2       | 90.0    | 27.4    | 110.1   | 33.6 |
| 35                | 47.4 | 14.4       | 70.5 | 21.5       | 72.5 | 22.1       | 119.4     | 36.4       | 80.4    | 24.5    | 99.5    | 30.3 |
| 40                | 37.6 | 11.5       | 60.7 | 18.5       | 64.8 | 19.8       | 109.8     | 33.5       | 73.5    | 22.4    | 91.6    | 27.9 |
| 45                | 29.7 | 9.1        | 52.8 | 16.1       | 59.0 | 18.0       | 102.0     | 31.1       | 68.5    | 20.9    | 85.5    | 26.0 |
| 50                | 23.0 | 7.0        | 46.2 | 14.1       | 54.6 | 16.7       | 95.5      | 29.1       | 64.7    | 19.7    | 80.5    | 24.5 |
| 55                | 17.3 | 5.3        | 40.4 | 12.3       | 51.2 | 15.6       | 89.9      | 27.4       | 61.8    | 18.8    | 76.5    | 23.3 |
| 60                | 12.3 | 3.7        | 35.4 | 10.8       | 48.5 | 14.8       | 85.0      | 25.9       | 59.6    | 18.2    | 73.1    | 22.3 |
| 65                | 7.7  | 2.3        | 30.8 | 9.4        | 46.4 | 14.2       | 80.5      | 24.5       | 58.0    | 17.7    | 70.2    | 21.4 |
| 70                | 3.5  | 1.1        | 26.6 | 8.1        | 44.8 | 13.7       | 76.4      | 23.3       | 56.7    | 17.3    | 67.7    | 20.6 |
| 78 (MAX)          | -2.8 | -0.8       | 20.3 | 6.2        | 43.1 | 13.1       | 70.4      | 21.5       | 55.4    | 16.9    | 64.4    | 19.6 |


### 4.2.5 Turning Radii – No Slip Angle: Model 737-800



NOTES: \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

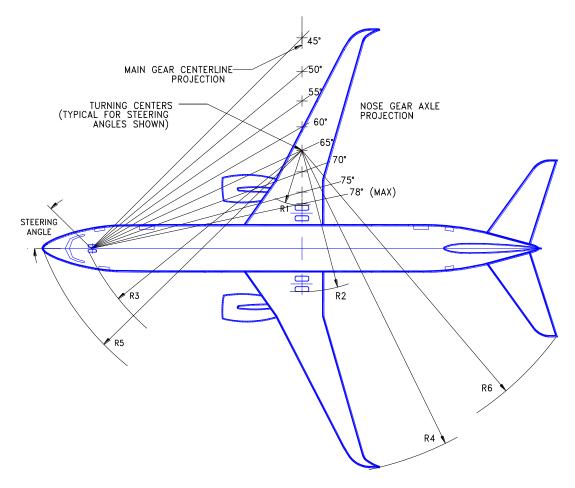
| STEERING<br>ANGLE |      | INER<br>AR | R2 O  | UTER<br>AR | R3 N<br>GE | OSE<br>AR | R<br>WING | 4<br>3 TIP | R<br>NO | 5<br>SE | R<br>TA | 6<br>NL |
|-------------------|------|------------|-------|------------|------------|-----------|-----------|------------|---------|---------|---------|---------|
| (DEG)             | FT   | М          | FT    | M          | FT         | М         | FT        | М          | FT      | М       | FT      | M       |
| 30                | 76.9 | 23.4       | 100.0 | 30.5       | 102.7      | 31.3      | 145.8     | 44.4       | 109.5   | 33.4    | 129.5   | 39.5    |
| 35                | 61.4 | 18.7       | 84.5  | 25.8       | 89.6       | 27.3      | 130.4     | 39.7       | 97.4    | 29.7    | 116.4   | 35.5    |
| 40                | 49.3 | 15.0       | 72.4  | 22.1       | 80.1       | 24.4      | 118.5     | 36.1       | 88.7    | 27.0    | 106.6   | 32.5    |
| 45                | 39.5 | 12.0       | 62.6  | 19.1       | 72.9       | 22.2      | 108.8     | 33.2       | 82.3    | 25.1    | 99.0    | 30.2    |
| 50                | 18.2 | 9.5        | 54.4  | 16.6       | 67.4       | 20.6      | 100.7     | 30.7       | 77.4    | 23.6    | 93.0    | 28.3    |
| 55                | 24.2 | 7.4        | 47.3  | 14.4       | 63.2       | 19.3      | 93.7      | 28.6       | 73.8    | 22.5    | 88.0    | 26.8    |
| 60                | 17.9 | 5.5        | 41.0  | 12.5       | 59.8       | 18.3      | 87.5      | 26.7       | 70.9    | 21.6    | 83.9    | 25.6    |
| 65                | 12.3 | 3.7        | 35.4  | 10.8       | 57.3       | 17.5      | 82.0      | 25.0       | 68.8    | 21.0    | 80.4    | 24.5    |
| 70                | 7.0  | 2.1        | 30.1  | 9.2        | 55.3       | 16.9      | 76.9      | 23.4       | 67.1    | 20.5    | 77.5    | 23.6    |
| 78 (MAX)          | -0.7 | -0.2       | 22.4  | 6.8        | 53.2       | 16.2      | 69.4      | 21.1       | 65.4    | 19.9    | 73.6    | 22.4    |


### 4.2.6 Turning Radii - No Slip Angle: Model 737-800W, -800BCF, BBJ2



NOTES: \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

|                   | R    | 1         | R                     | 2         | R        | 3        | R         | 4    | R     | 25   | R     | 6    |
|-------------------|------|-----------|-----------------------|-----------|----------|----------|-----------|------|-------|------|-------|------|
| STEERING<br>ANGLE |      | IER<br>AR | OU <sup>1</sup><br>GE | ΓER<br>AR | NO<br>GE | SE<br>AR | WII<br>TI |      | NO    | SE   | TAIL  |      |
| (DEGREES)         | FT   | М         | FT                    | М         | FT       | М        | FT        | М    | FT    | M    | FT    | M    |
| 30                | 77.5 | 23.6      | 100.6                 | 30.7      | 103.7    | 31.6     | 149.1     | 45.4 | 110.1 | 33.6 | 129.8 | 39.6 |
| 35                | 61.9 | 18.9      | 85.0                  | 25.9      | 90.6     | 27.6     | 133.6     | 4.07 | 97.9  | 29.8 | 116.6 | 35.5 |
| 40                | 49.7 | 15.2      | 72.8                  | 22.2      | 80.9     | 24.7     | 121.6     | 37.1 | 89.2  | 27.2 | 106.7 | 32.5 |
| 45                | 39.8 | 12.1      | 62.9                  | 19.2      | 73.6     | 22.4     | 111.9     | 34.1 | 82.7  | 25.2 | 99.0  | 30.2 |
| 50                | 31.6 | 9.6       | 54.7                  | 16.7      | 68.0     | 20.7     | 103.8     | 31.6 | 77.8  | 23.7 | 92.9  | 28.3 |
| 55                | 24.4 | 7.4       | 47.5                  | 14.5      | 63.7     | 19.43    | 96.8      | 29.5 | 74.1  | 22.6 | 87.9  | 26.8 |
| 60                | 18.1 | 5.5       | 41.2                  | 12.6      | 60.3     | 18.4     | 90.6      | 27.6 | 71.3  | 21.7 | 83.8  | 25.5 |
| 65                | 12.4 | 3.8       | 35.8                  | 10.8      | 57.7     | 17.6     | 85.1      | 25.9 | 69.1  | 21.1 | 80.3  | 24.5 |
| 70                | 7.2  | 2.2       | 30.3                  | 9.2       | 55.6     | 17.0     | 80.0      | 24.4 | 67.4  | 20.6 | 77.3  | 23.6 |
| 78 (MAX)          | -0.6 | -0.2      | 22.5                  | 6.9       | 53.5     | 16.3     | 72.5      | 22.1 | 65.7  | 20.0 | 73.3  | 22.3 |

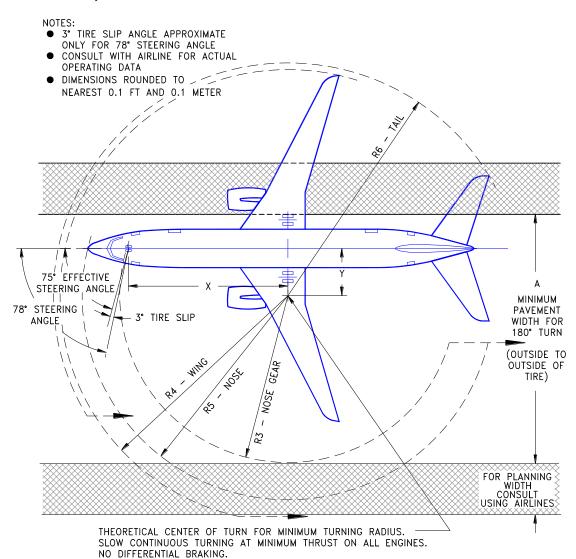

### 4.2.7 Turning Radii - No Slip Angle: Model 737-900, -900ER



NOTES: \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

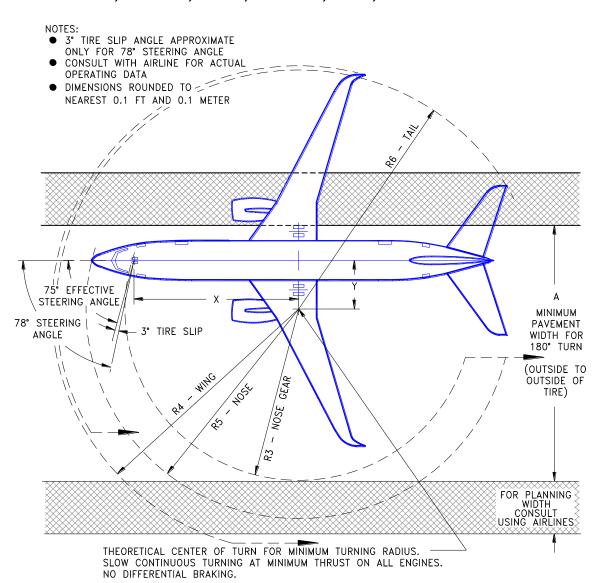
|                   | R    | 21        | R     | 2         | R           | 3        | R     | 4        | R     | :5   | R     | .6   |
|-------------------|------|-----------|-------|-----------|-------------|----------|-------|----------|-------|------|-------|------|
| STEERING<br>ANGLE |      | IER<br>AR |       | TER<br>AR | NO<br>GE    | SE<br>AR | WI    | NG<br>IP | NO    | SE   | TAIL  |      |
| (DEGREES)         | FT   | M         | FT    | М         | M FT M FT M |          | М     | FT       | М     | FT   | M     |      |
| 30                | 86.0 | 26.2      | 109.1 | 33.2      | 113.5       | 34.6     | 154.8 | 47.2     | 119.9 | 36.5 | 138.8 | 42.3 |
| 35                | 68.9 | 21.0      | 92.0  | 28.0      | 99.1        | 30.2     | 137.8 | 42.0     | 106.4 | 32.4 | 124.1 | 37.8 |
| 40                | 55.5 | 16.9      | 78.6  | 24.0      | 88.5        | 27.0     | 124.6 | 38.0     | 96.7  | 29.5 | 113.2 | 34.5 |
| 45                | 44.7 | 13.6      | 67.8  | 20.7      | 80.6        | 24.6     | 113.9 | 34.7     | 89.6  | 27.3 | 104.8 | 31.9 |
| 50                | 35.7 | 10.9      | 58.8  | 17.9      | 74.4        | 22.7     | 105.0 | 32.0     | 84.2  | 25.7 | 98.0  | 29.9 |
| 55                | 27.9 | 8.9       | 51.0  | 15.5      | 69.7        | 21.2     | 97.3  | 29.7     | 80.1  | 24.4 | 92.5  | 28.2 |
| 60                | 21.0 | 6.4       | 44.1  | 13.4      | 66.0        | 20.1     | 90.5  | 27.6     | 76.9  | 23.4 | 88.0  | 26.9 |
| 65                | 14.7 | 4.5       | 37.8  | 11.5      | 63.1        | 19.2     | 84.4  | 25.7     | 74.5  | 22.7 | 84.1  | 25.6 |
| 70                | 8.9  | 2.7       | 32.0  | 9.8       | 60.9        | 18.6     | 78.7  | 24.0     | 72.6  | 22.1 | 80.8  | 24.6 |
| 78 (MAX)          | 0.4  | 0.1       | 23.5  | 7.2       | 58.5        | 17.8     | 70.4  | 21.5     | 70.7  | 21.5 | 76.5  | 23.4 |

### 4.2.8 Turning Radii - No Slip Angle: Model 737-900W, -900ERW



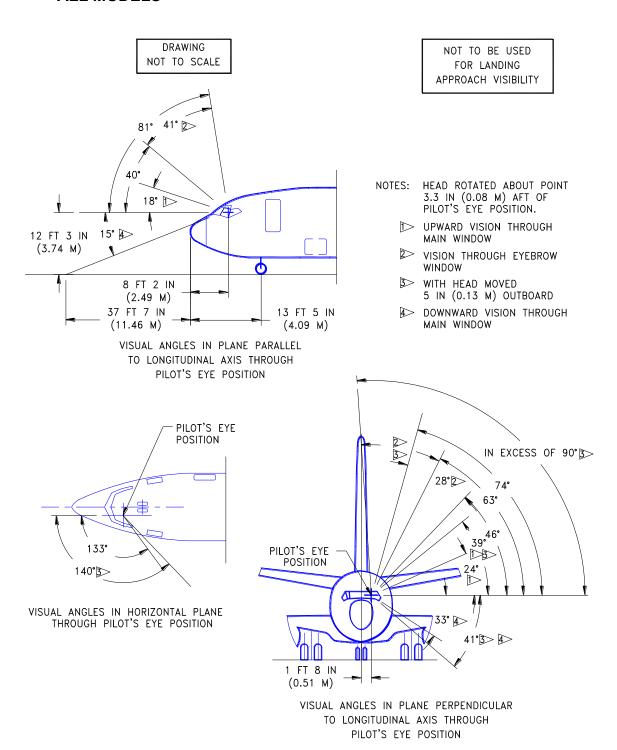

NOTES: \* ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN \* CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

|                   | R    | 1         | R     | 2         | R         | 3        | R     | 4    | R     | :5   | R     | .6   |
|-------------------|------|-----------|-------|-----------|-----------|----------|-------|------|-------|------|-------|------|
| STEERING<br>ANGLE |      | IER<br>AR |       | TER<br>AR | NO<br>GE  | SE<br>AR | WI    |      | NO    | SE   | TAIL  |      |
| (DEGREES)         | FT   | М         | FT    | М         | FT M FT M |          | М     | FT   | М     | FT   | M     |      |
| 30                | 86.0 | 26.2      | 109.1 | 33.2      | 113.5     | 34.6     | 157.6 | 48.0 | 119.9 | 36.5 | 138.8 | 42.3 |
| 35                | 68.9 | 21.0      | 92.0  | 28.0      | 99.1      | 30.2     | 140.6 | 42.9 | 106.4 | 32.4 | 124.1 | 37.8 |
| 40                | 55.5 | 16.9      | 78.6  | 24.0      | 88.5      | 27.0     | 127.5 | 38.8 | 96.7  | 29.5 | 113.2 | 34.5 |
| 45                | 44.7 | 13.6      | 67.8  | 20.7      | 80.6      | 24.6     | 118.8 | 35.6 | 89.6  | 27.3 | 104.8 | 31.9 |
| 50                | 35.7 | 10.9      | 58.8  | 17.9      | 74.4      | 22.7     | 107.9 | 32.9 | 84.2  | 25.7 | 98.0  | 29.9 |
| 55                | 27.9 | 8.9       | 51.0  | 15.5      | 69.7      | 21.2     | 100.2 | 30.6 | 80.1  | 24.4 | 92.5  | 28.2 |
| 60                | 21.0 | 6.4       | 44.1  | 13.4      | 66.0      | 20.1     | 93.5  | 28.5 | 76.9  | 23.4 | 0.88  | 26.9 |
| 65                | 14.7 | 4.5       | 37.8  | 11.5      | 63.1      | 19.2     | 87.4  | 26.6 | 74.5  | 22.7 | 84.1  | 25.6 |
| 70                | 8.9  | 2.7       | 32.0  | 9.8       | 60.9      | 18.6     | 81.8  | 24.9 | 72.6  | 22.1 | 80.8  | 24.6 |
| 78 (MAX)          | 0.4  | 0.1       | 23.5  | 7.2       | 58.5      | 17.8     | 73.6  | 22.4 | 70.7  | 21.5 | 76.5  | 23.4 |


#### 4.3 CLEARANCE RADII

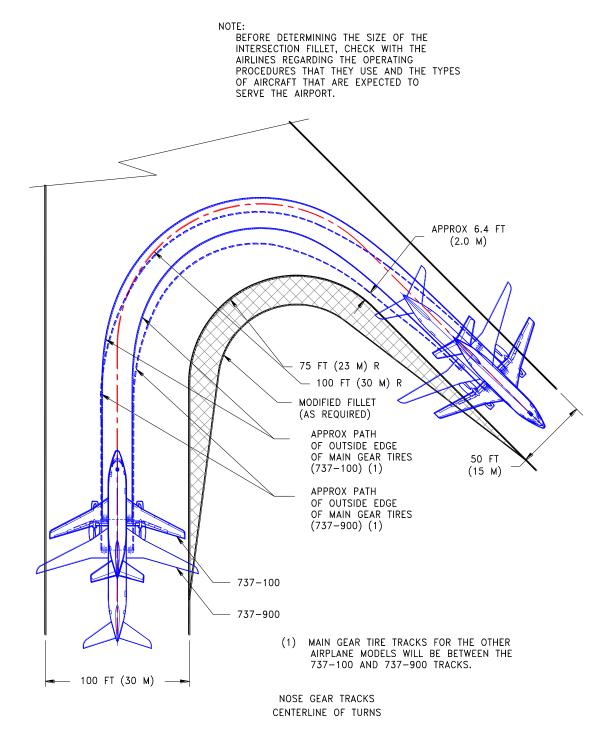
# 4.3.1 Minimum Turning Radii – 3" Slip Angle: Model 737-600, -700, -800, -900, -900ER




| AIRPLANE           | EFFECTIVE              | )    | <b>(</b> | Y    | ,   | -    | 4    | R    | 3    | R    | 4    | R5   |      | R6   |      |
|--------------------|------------------------|------|----------|------|-----|------|------|------|------|------|------|------|------|------|------|
| MODEL              | TURNING<br>ANGLE (DEG) | FT   | М        | FT   | М   | FT   | М    | FT   | М    | FT   | М    | FT   | М    | FT   | М    |
| 737-600            | 75                     | 36.8 | 11.2     | 9.9  | 3.0 | 60.8 | 18.5 | 39.6 | 12.1 | 68.4 | 20.9 | 51.2 | 15.6 | 62.0 | 18.9 |
| 737-700            | 75                     | 41.3 | 12.6     | 11.1 | 3.4 | 66.9 | 20.4 | 44.3 | 13.5 | 69.6 | 21.2 | 55.9 | 17.0 | 65.5 | 20.0 |
| 737-800            | 75                     | 51.2 | 15.6     | 13.7 | 4.2 | 79.7 | 24.3 | 54.5 | 16.6 | 72.1 | 22.0 | 66.0 | 20.1 | 74.8 | 22.8 |
| 737-900,<br>-900ER | 75                     | 56.3 | 17.2     | 15.1 | 4.6 | 86.4 | 26.3 | 59.8 | 18.2 | 73.5 | 22.4 | 71.4 | 21.8 | 78.6 | 23.9 |

## 4.3.2 Minimum Turning Radii – 3" Slip Angle: Model 737-600W, -700W, -800W, -800BCF, -900W, -900ERW, BBJ1, BBJ2

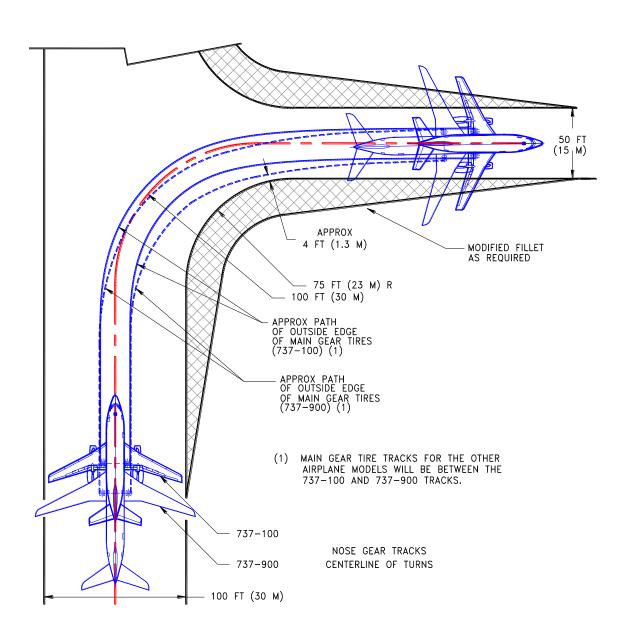



| AIRPLANE            | EFFECTIVE              | )    | (    | Υ    | ,   | A    | 4    | R    | 3    | R    | 4    | R    | 5    | R    | 6    |
|---------------------|------------------------|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|
| MODEL               | TURNING<br>ANGLE (DEG) | FT   | М    | FT   | M   | FT   | М    |
| 737-600             | 75                     | 36.8 | 11.2 | 9.9  | 3.0 | 60.8 | 18.5 | 39.6 | 12.1 | 71.7 | 21.8 | 51.2 | 15.6 | 62.0 | 18.9 |
| 737-700<br>737BBJ   | 75                     | 41.3 | 12.6 | 11.1 | 3.4 | 66.9 | 20.4 | 44.3 | 13.5 | 72.8 | 22.2 | 55.9 | 17.0 | 65.5 | 20.0 |
| 737-800<br>737 BBJ2 | 75                     | 51.2 | 15.6 | 13.7 | 4.2 | 79.7 | 24.3 | 54.5 | 16.6 | 75.3 | 23.0 | 66.0 | 20.1 | 74.8 | 22.8 |
| 737-900,<br>-900ER  | 75                     | 56.3 | 17.2 | 15.1 | 4.6 | 86.4 | 26.3 | 59.8 | 18.2 | 76.7 | 23.4 | 71.4 | 21.8 | 78.6 | 23.9 |

### 4.4 VISIBILITY FROM COCKPIT IN STATIC POSITION: MODEL 737, ALL MODELS



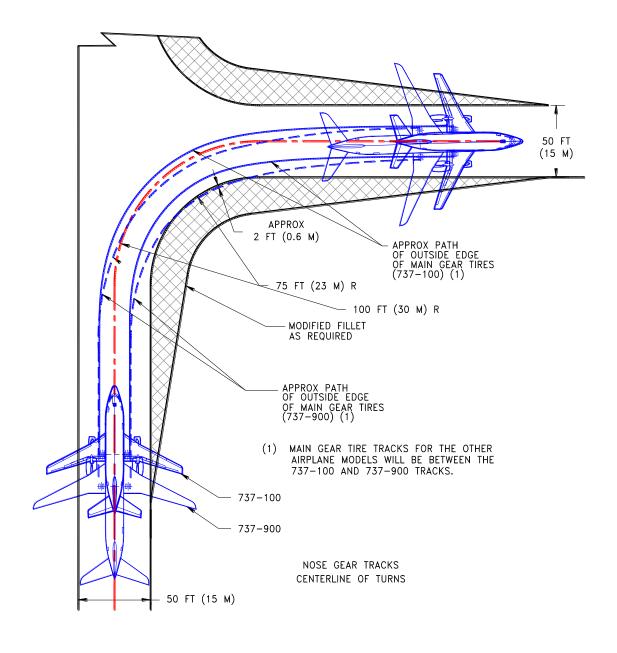
#### 4.5 RUNWAY AND TAXIWAY TURN PATHS


# 4.5.1 Runway and Taxiway Turn Paths - Runway-to-Taxiway, More Than 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models



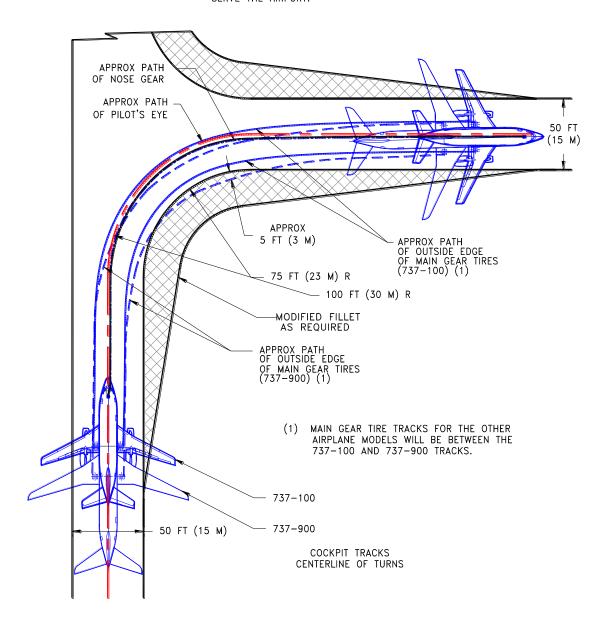
# 4.5.2 Runway and Taxiway Turn Paths - Runway-to-Taxiway, 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models

NOTE:


BEFORE DETERMINING THE SIZE OF THE INTERSECTION FILLET, CHECK WITH THE AIRLINES REGARDING THE OPERATING PROCEDURES THAT THEY USE AND THE TYPES OF AIRCRAFT THAT ARE EXPECTED TO SERVE THE AIRPORT.



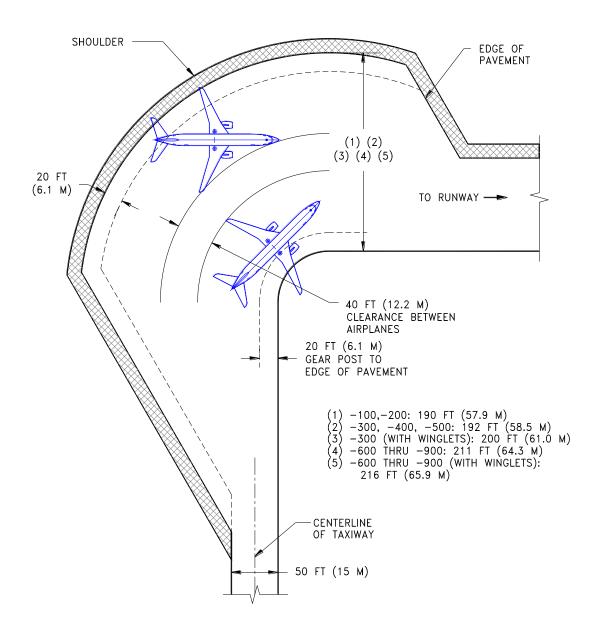
# 4.5.3 Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models


NOTE:

BEFORE DETERMINING THE SIZE OF THE INTERSECTION FILLET, CHECK WITH THE AIRLINES REGARDING THE OPERATING PROCEDURES THAT THEY USE AND THE TYPES OF AIRCRAFT THAT ARE EXPECTED TO SERVE THE AIRPORT.



# 4.5.4 Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90 Degrees, Cockpit Tracks Centerline: Model 737, All Models


NOTE:
BEFORE DETERMINING THE SIZE OF THE INTERSECTION FILLET, CHECK WITH THE AIRLINES REGARDING THE OPERATING PROCEDURES THAT THEY USE AND THE TYPES OF AIRCRAFT THAT ARE EXPECTED TO SERVE THE AIRPORT.



#### 4.6 RUNWAY HOLDING BAY: MODEL 737, ALL MODELS

#### NOTE:

BEFORE DETERMINING THE SIZE OF THE PAVEMENT AND SHOULDER, CHECK WITH THE AIRLINES REGARDING THE OPERATING PROCEDURES THAT THEY USE AND THE AIRCRAFT TYPES THAT ARE EXPECTED TO SERVE THE AIRPORT.



#### 5.0 TERMINAL SERVICING

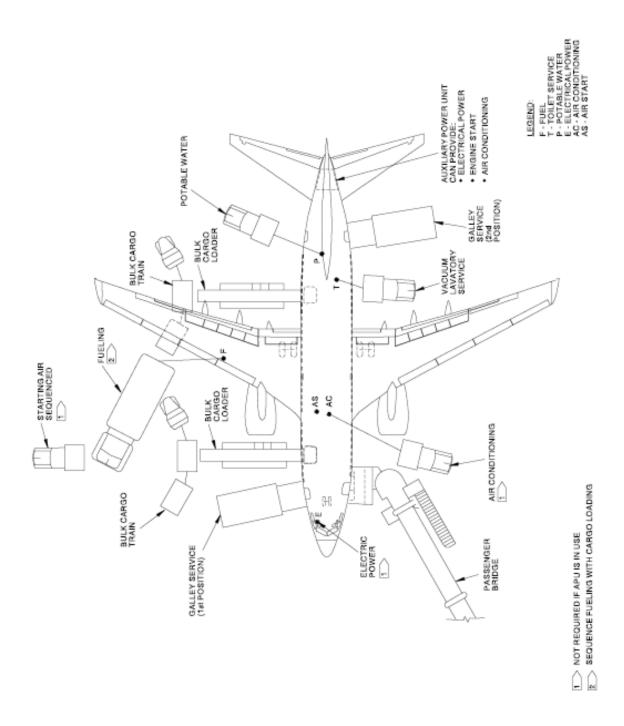
During turnaround at the terminal, certain services must be performed on the aircraft, usually within a given time, to meet flight schedules. This section shows service vehicle arrangements, schedules, locations of service points, and typical service requirements. The data presented in this section reflect ideal conditions for a single airplane. Service requirements may vary according to airplane condition and airline procedure.

Section 5.1 shows typical arrangements of ground support equipment during turnaround. As noted, if the auxiliary power unit (APU) is used, the electrical, air start, and air-conditioning service vehicles would not be required. Passenger loading bridges or portable passenger stairs could be used to load or unload passengers.

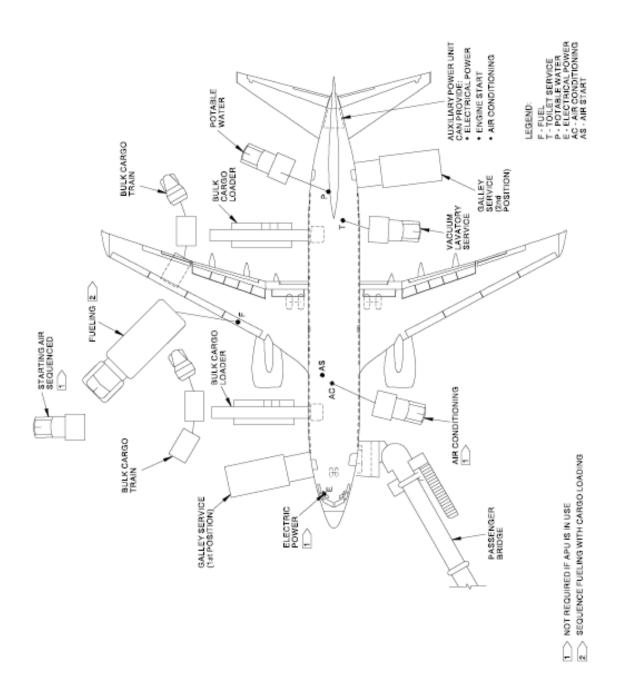
Sections 5.2 and 5.3 show typical service times at the terminal. These charts give typical schedules for performing service on the airplane within a given time. Service times could be rearranged to suit availability of personnel, airplane configuration, and degree of service required.

Section 5.4 shows the locations of ground service connections in graphic and in tabular forms. Typical capacities and service requirements are shown in the tables. Services with requirements that vary with conditions are described in subsequent sections.

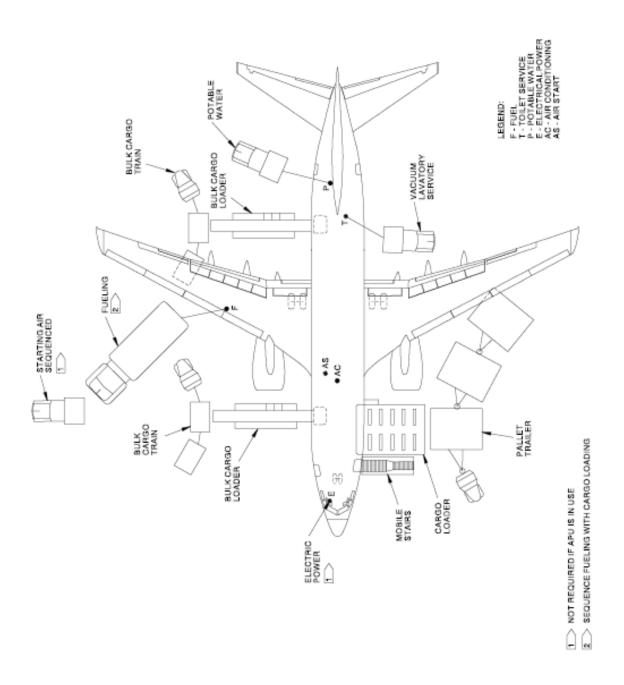
Section 5.5 shows typical sea level air pressure and flow requirements for starting different engines. The curves are based on an engine start time of 90 seconds.


Section 5.6 shows pneumatic requirements for heating and cooling (air conditioning) using high pressure air to run the air cycle machine. The curves show airflow requirements to heat or cool the airplane within a given time and ambient conditions. Maximum allowable pressure and temperature for air cycle machine operation are 60 psia and 450°F, respectively.

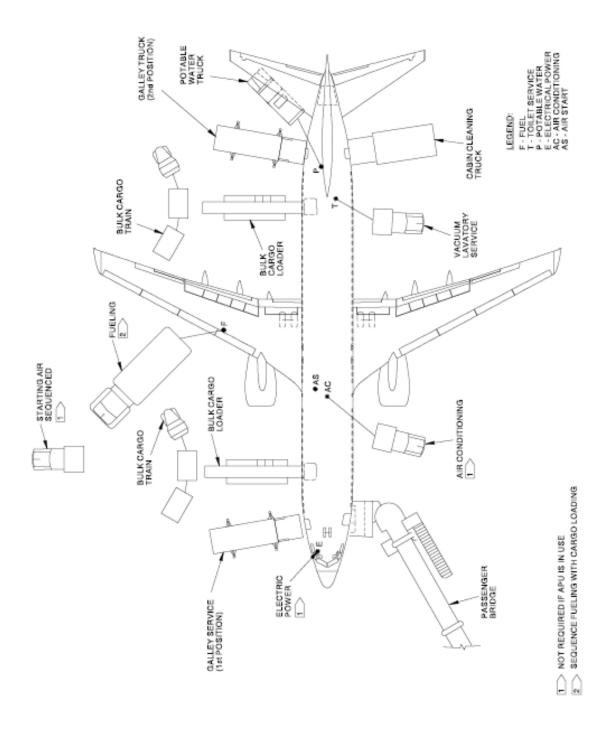
Section 5.7 shows pneumatic requirements for heating and cooling the airplane, using low pressure conditioned air. This conditioned air is supplied through an 8-in ground air connection (GAC) directly to the passenger cabin, bypassing the air cycle machines.


Section 5.8 shows ground towing requirements for various ground surface conditions.

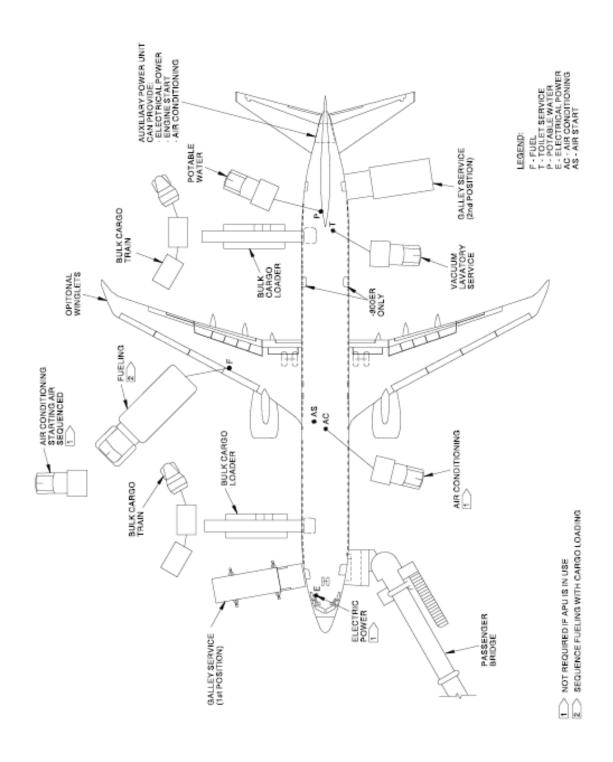
### 5.1 AIRPLANE SERVICING ARRANGEMENT - TYPICAL TURNAROUND


# 5.1.1 Airplane Servicing Arrangement - Typical Turnaround: Model 737-600




# 5.1.2 Airplane Servicing Arrangement - Typical Turnaround: Model 737-700, -700W




# 5.1.3 Airplane Servicing Arrangement - Typical Turnaround: Model 737-700C, -700QC, -800BCF



# 5.1.4 Airplane Servicing Arrangement - Typical Turnaround: Model 737-800, -800W



# 5.1.5 Airplane Servicing Arrangement - Typical Turnaround: Model 737-900, -900ER, With and Without Winglets



# 5.1.6 Airplane Servicing Arrangement - Typical Turnaround: Model 737 BBJ1, BBJ2

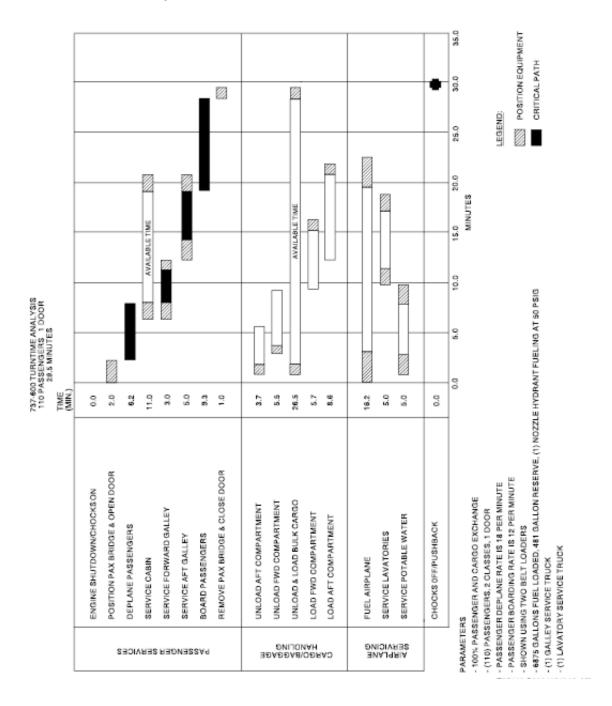
#### NOTE

AIRPLANE SERVICING ARRANGEMENT CHARTS

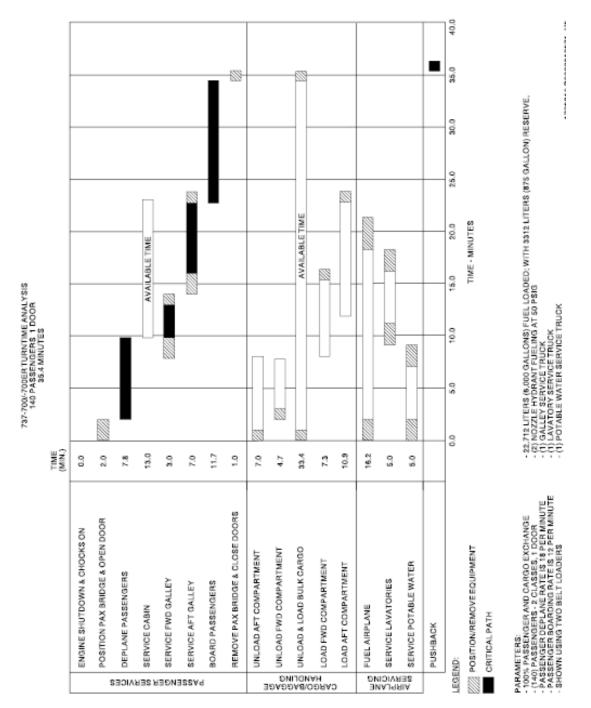
ARE NOT INCLUDED IN THIS DOCUMENT

BECAUSE THE DIFFERENT CONFIGURATIONS

OF BOEING BUSINESS JET AIRPLANES

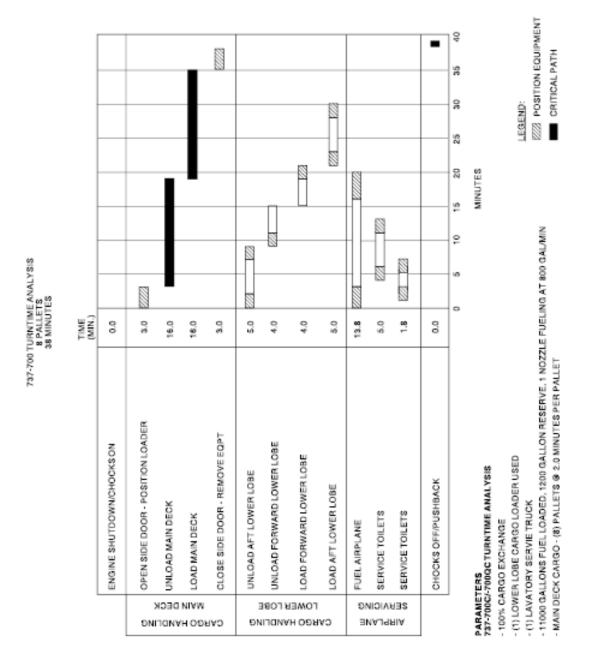

HAVE INDIVIDUAL REQUIREMENTS.

CONSULT AIRCRAFT USER/OPERATOR FOR CURRENT

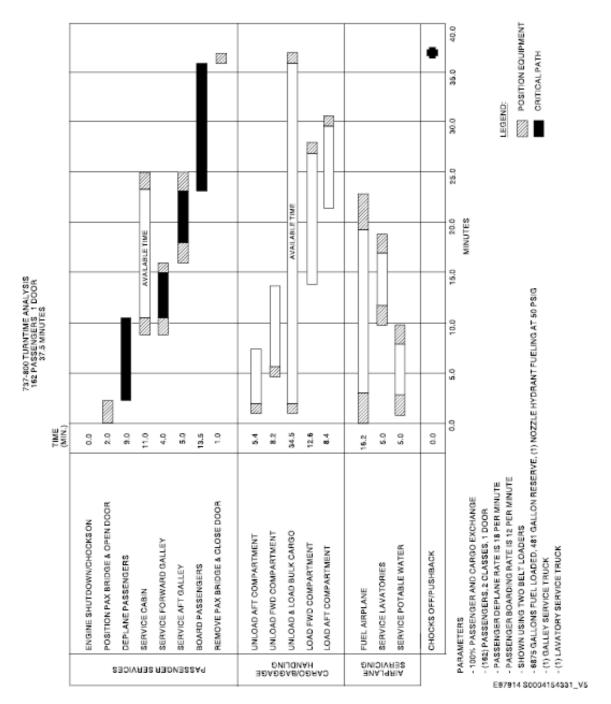

REQUIREMENTS

#### 5.2 TERMINAL OPERATIONS - TURNAROUND STATION

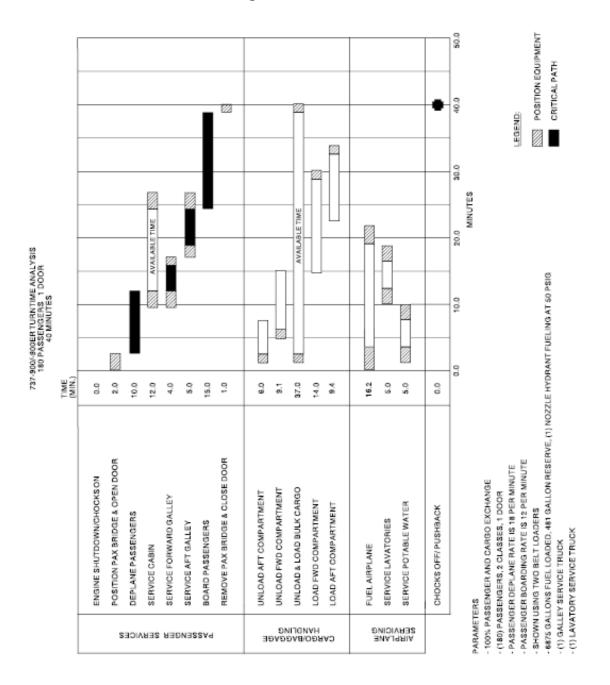
### 5.2.1 Terminal Operations – Turnaround Station: Model 737-600




### 5.2.2 Terminal Operations - Turnaround Station: Model 737-700, -700W




Not Subject to EAR or ITAR. Copyright © 2025 Boeing. All Rights Reserved.


# 5.2.3 Terminal Operations – Turnaround Station: Model 737-700C, - 700QC



### 5.2.4 Terminal Operations - Turnaround Station: Model 737-800, -800W



# 5.2.5 Terminal Operations – Turnaround Station: Model 737-900, -900ER, With and Without Winglets



### 5.2.6 Terminal Operations – Turnaround Station: Model 737 BBJ1, BBJ2

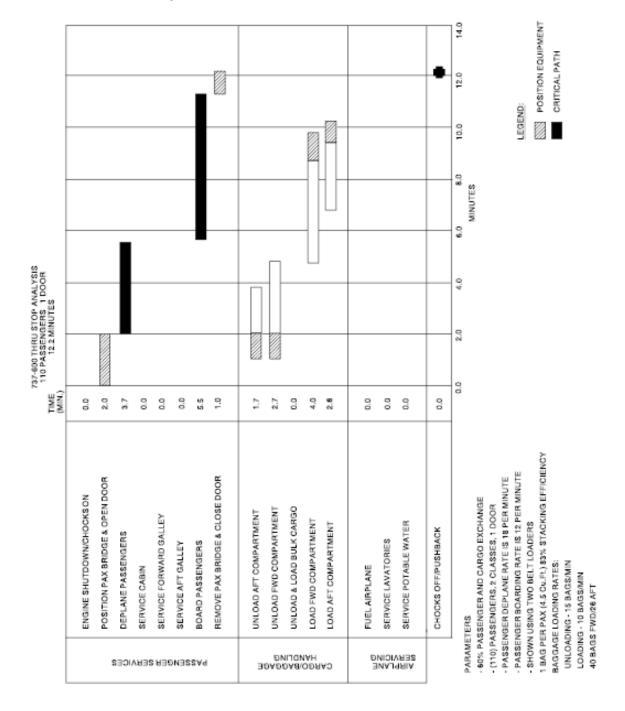
#### **NOTE**

TURNAROUND STATION TIME CHARTS

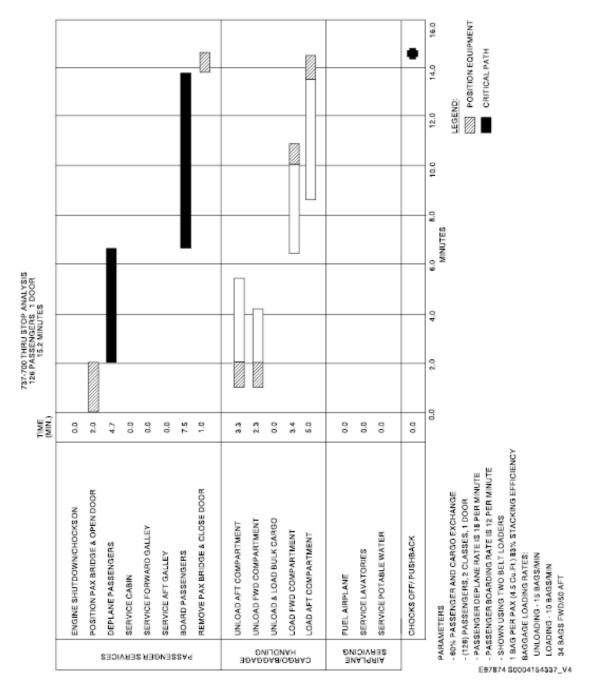
ARE NOT INCLUDED IN THIS DOCUMENT

BECAUSE THE DIFFERENT CONFIGURATIONS

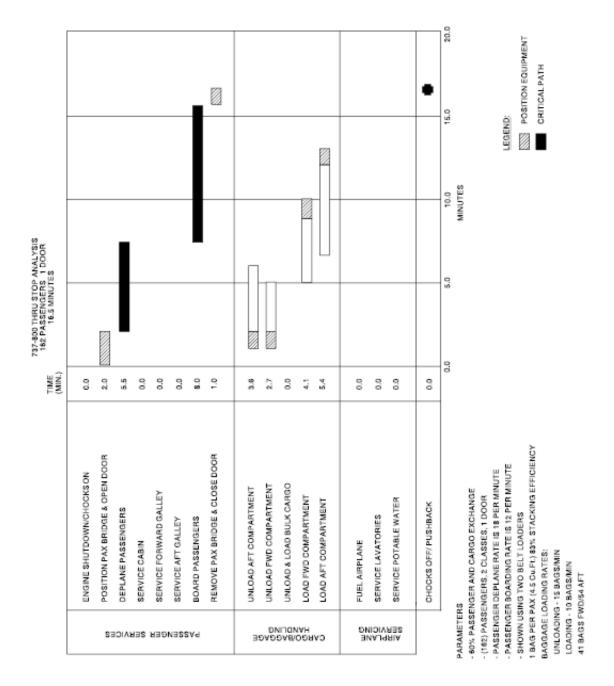
OF BOEING BUSINESS JET AIRPLANES


HAVE INDIVIDUAL REQUIREMENTS.

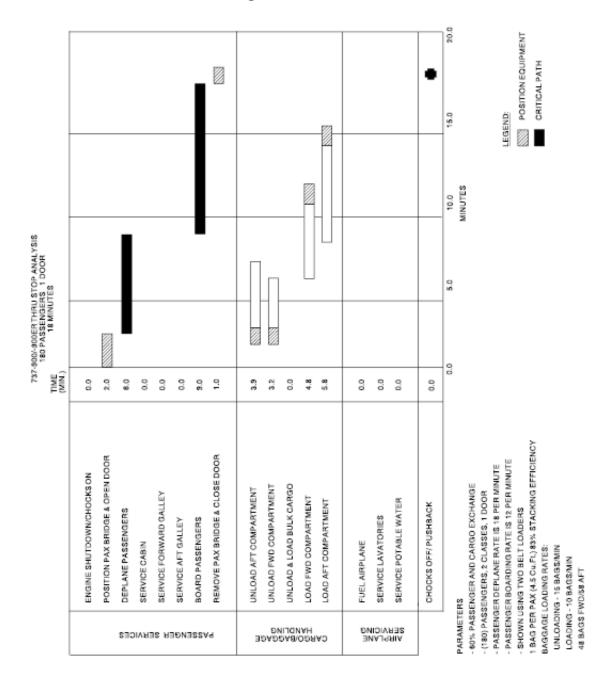
CONSULT AIRCRAFT USER/OPERATOR FOR CURRENT


REQUIREMENTS

#### 5.3 TERMINAL OPERATIONS - EN ROUTE STATION


### 5.3.1 Terminal Operations - En Route Station: Model 737-600




### 5.3.2 Terminal Operations - En Route Station: Model 737-700, -700W



### 5.3.3 Terminal Operations - En Route Station: Model 737-800, -800W



## 5.3.4 Terminal Operations - En Route Station: Model 737-900, -900ER, With and Without Winglets



### 5.3.5 Terminal Operations - En Route Station: Model 737 BBJ1, BBJ2

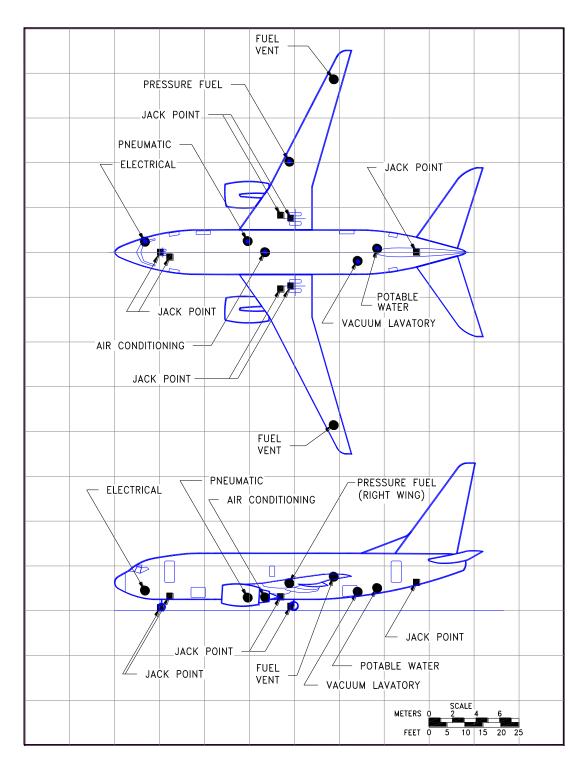
#### **NOTE**

ENROUTE TERMINAL OPERATIONS TIME CHARTS

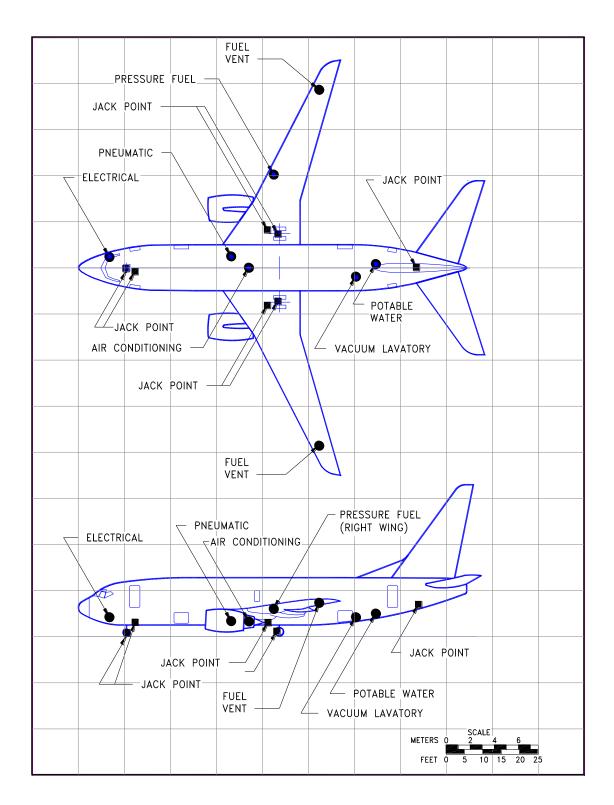
ARE NOT INCLUDED IN THIS DOCUMENT

BECAUSE THE DIFFERENT CONFIGURATIONS

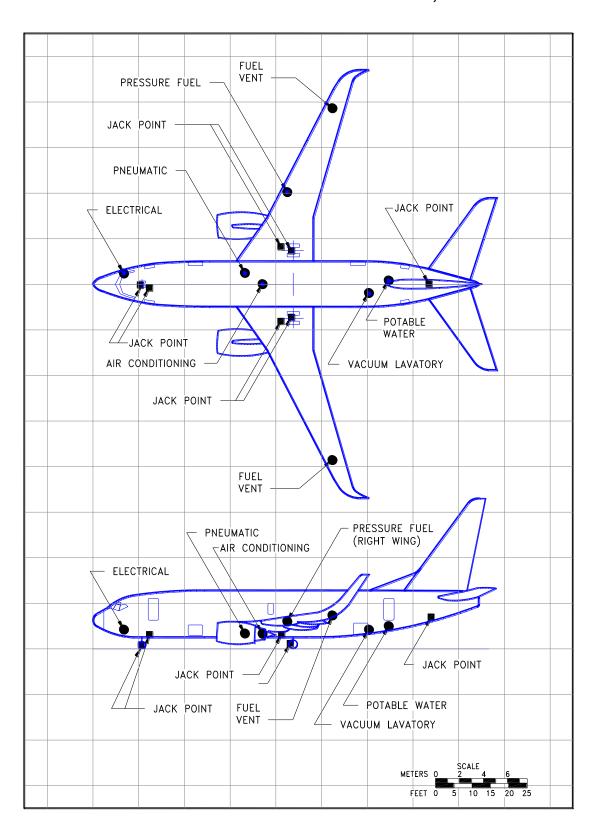
OF BOEING BUSINESS JET AIRPLANES


HAVE INDIVIDUAL REQUIREMENTS.

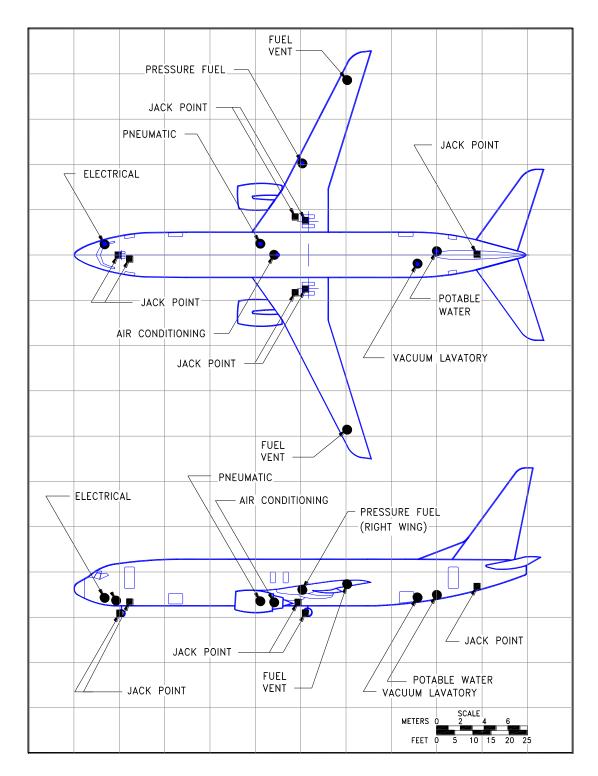
CONSULT AIRCRAFT USER/OPERATOR FOR CURRENT


REQUIREMENTS

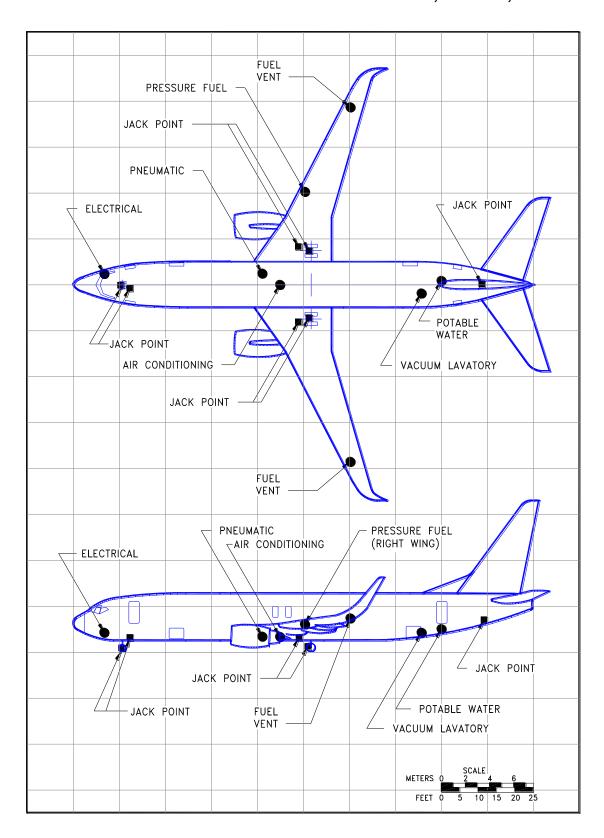
### 5.4 GROUND SERVICING CONNECTIONS


### 5.4.1 Ground Service Connections: Model 737-600

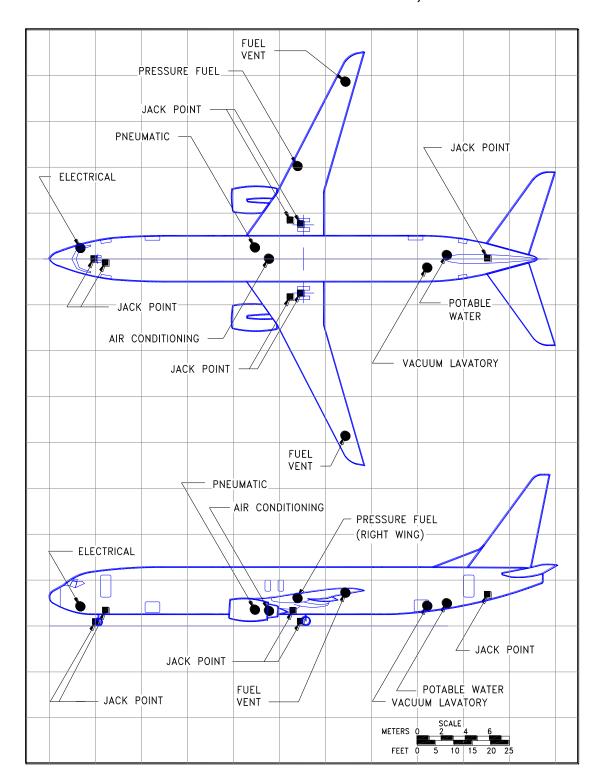



### 5.4.2 Ground Service Connections: Model 737-700

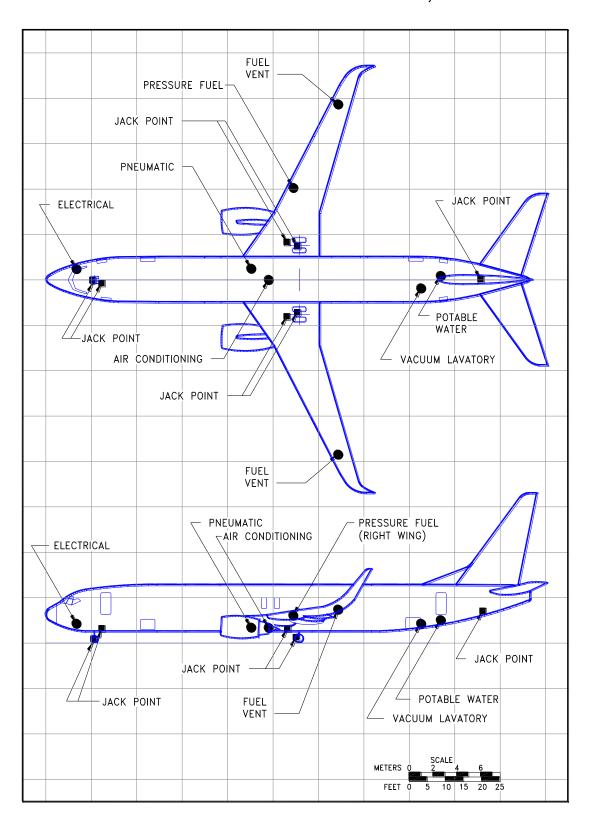



### 5.4.3 Ground Service Connections: Model 737-700W, BBJ 1




### 5.4.4 Ground Service Connections: Model 737-800




### 5.4.5 Ground Service Connections: Model 737-800W, -800BCF, BBJ2



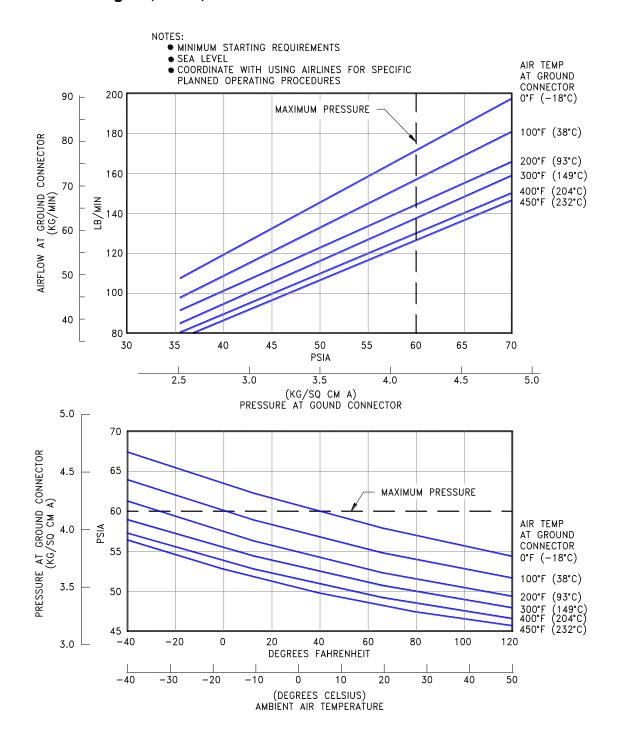
### 5.4.6 Ground Service Connections: Model 737-900, -900ER



### 5.4.7 Ground Service Connections: Model 737-900W, -900ERW

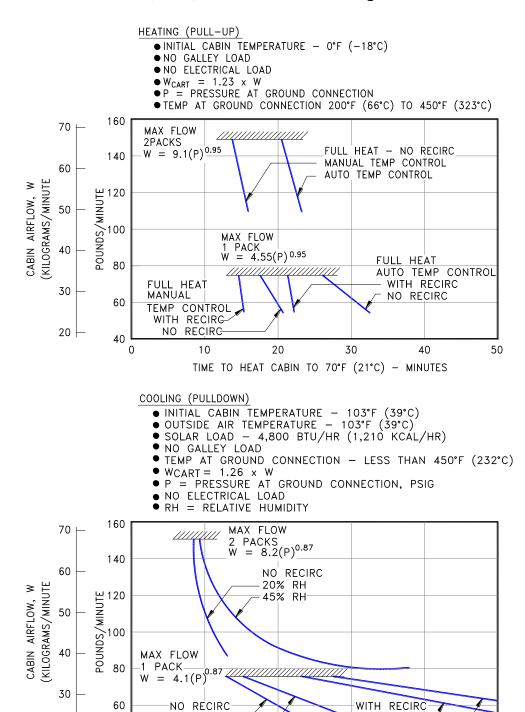


### 5.4.8 Ground Servicing Connections and Capacities: Model 737, All Models


|                                                                                 | MODEL   | DISTANCE AFT<br>OF<br>NOSE |      | DISTANCE FROM AIRPLANE<br>CENTERLINE |      |         |      | MAX HEIGHT<br>ABOVE  |     |
|---------------------------------------------------------------------------------|---------|----------------------------|------|--------------------------------------|------|---------|------|----------------------|-----|
| SYSTEM                                                                          |         |                            |      | LH SIDE                              |      | RH SIDE |      | GROUND               |     |
|                                                                                 |         | FT – IN                    | М    | FT – IN                              | М    | FT – IN | M    | FT – IN              | М   |
| CONDITIONED AIR<br>ONE 8-IN (20.3 CM) PORT                                      | 737-600 | 35 – 3                     | 10.7 | 0                                    | 0    | 0       | 0    | 4 – 4                | 1.3 |
|                                                                                 | 737-700 | 39 – 9                     | 12.1 | 0                                    | 0    | 0       | 0    | 4 – 3                | 1.3 |
|                                                                                 | 737-800 | 49 – 7                     | 15.1 | 0                                    | 0    | 0       | 0    | 4 – 3                | 1.3 |
|                                                                                 | 737-900 | 54 – 9                     | 16.7 | 0                                    | 0    | 0       | 0    | 4 – 3                | 1.3 |
| ELECTRICAL  ONE CONNECTION - 60  KVA, 200/115 V AC 400 HZ,  3-PHASE EACH        | 737-600 | 8 – 6                      | 2.6  | -                                    | -    | 3 – 1   | 0.9  | 7 – 5                | 2.3 |
|                                                                                 | 737-700 | 8 – 6                      | 2.6  | -                                    | -    | 3 – 1   | 0.9  | 7 – 4                | 2.2 |
|                                                                                 | 737-800 | 8 – 6                      | 2.6  | -                                    | -    | 3 – 1   | 0.9  | 7 – 5                | 2.3 |
|                                                                                 | 737-900 | 8 – 6                      | 2.6  | -                                    | -    | 3 – 1   | 0.9  | 7 – 4                | 2.2 |
| FUEL ONE UNDERWING- PRESSURE CONNECTOR ON RIGHT WING (SEE SEC 2.1 FOR CAPACITY) | 737-600 | 48 – 8                     | 14.8 | -                                    | -    | 25 - 3  | 7.7  | 9 – 9                | 3.0 |
|                                                                                 | 737-700 | 53 – 2                     | 16.2 | -                                    | -    | 25 - 3  | 7.7  | 9 – 9                | 3.0 |
|                                                                                 | 737-800 | 63 – 0                     | 19.2 | -                                    | -    | 25 - 3  | 7.7  | 9 – 8                | 2.9 |
|                                                                                 | 737-900 | 68 – 2                     | 20.8 | -                                    | -    | 25 - 3  | 7.7  | 9 – 8                | 2.9 |
| FUEL FUEL VENT ON UNDERSIDE OF BOTH WINGTIPS                                    | 737-600 | 61 – 0                     | 18.6 | 48 – 3                               | 14.7 | 48 – 3  | 14.7 |                      | •   |
|                                                                                 | 737-700 | 65 – 6                     | 20.0 | 48 – 3                               | 14.7 | 48 – 3  | 14.7 | UNDERSIDE OF<br>WING |     |
|                                                                                 | 737-800 | 75 – 4                     | 22.0 | 48 – 3                               | 14.7 | 48 – 3  | 14.7 |                      |     |
|                                                                                 | 737-900 | 80 – 6                     | 24.5 | 48 – 3                               | 14.7 | 48 – 3  | 14.7 |                      |     |
| LAVATORY ONE CONNECTION FOR VACUUM LAVATORY                                     | 737-600 | 67 – 9                     | 20.7 | 2 – 7                                | 8.0  | -       |      | 6 – 3                | 1.9 |
|                                                                                 | 737-700 | 75 – 7                     | 23.0 | 2 – 7                                | 0.8  | -       | -    | 6 – 4                | 1.9 |
|                                                                                 | 737-800 | 94 – 9                     | 28.9 | 2 – 7                                | 0.8  | -       | -    | 6 – 3                | 1.9 |
|                                                                                 | 737-900 | 103 – 5                    | 31.5 | 2 – 7                                | 0.8  | -       | -    | 6 – 3                | 1.9 |
| OXYGEN INDIVIDUAL CANISTERS IN EACH PASSENGER SERVICE UNIT                      | 737-600 | 18 – 11                    | 5.8  | -                                    | -    | 0 – 10  | 0.3  | 6 – 5                | 2.0 |
|                                                                                 | 737-700 | 18 – 11                    | 5.8  | -                                    | -    | 0 – 10  | 0.3  | 6 – 4                | 1.9 |
|                                                                                 | 737-800 | 18 – 11                    | 5.8  | -                                    | -    | 0 – 10  | 0.3  | 6 – 5                | 2.0 |
|                                                                                 | 737-900 | 18 – 11                    | 5.8  | -                                    | -    | 0 – 10  | 0.3  | 6 – 4                | 1.9 |
| PNEUMATIC ONE 3-IN (7.6-CM) PORT FOR ENGINE START AND AIRCONDITIONING PACKS     | 737-600 | 37 – 1                     | 11.3 | -                                    | -    | 3 – 0   | 0.9  | 4 – 8                | 1.4 |
|                                                                                 | 737-700 | 41 – 7                     | 12.7 | -                                    | -    | 3 – 0   | 0.9  | 4 – 8                | 1.4 |
|                                                                                 | 737-800 | 51 – 5                     | 15.7 | -                                    | -    | 3 – 0   | 0.9  | 4 – 8                | 1.4 |
|                                                                                 | 737-900 | 56 – 7                     | 17.3 | -                                    | -    | 3 – 0   | 0.9  | 4 – 7                | 1.4 |
| POTABLE WATER ONE SERVICE CONNECTION 0.75-IN (1.9 CM)                           | 737-600 | 73 – 1                     | 22.3 | -                                    | -    | 1 – 0   | 0.3  | 6 – 10               | 2.1 |
|                                                                                 | 737-700 | 80 – 11                    | 24.7 | -                                    | -    | 1 – 0   | 0.3  | 6 – 10               | 2.1 |
|                                                                                 | 737-800 | 100 – 1                    | 30.5 | -                                    | -    | 1 – 0   | 0.3  | 6 – 9                | 2.1 |
|                                                                                 | 737-900 | 108 – 9                    | 33.2 | -                                    | -    | 1 – 0   | 0.3  | 6 – 9                | 2.1 |

#### NOTES:

- DISTANCES ROUNDED TO THE NEAREST INCH AND 0.1 METER.
- AIRPLANE MODEL DESIGNATIONS ALSO INCLUDE ALL DERIVATIVES.


#### 5.5 ENGINE STARTING PNEUMATIC REQUIREMENTS

# 5.5.1 Engine Start Pneumatic Requirements - Sea Level: Model 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets, BBJ1, BBJ2



#### 5.6 GROUND PNEUMATIC POWER REQUIREMENTS

### 5.6.1 Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-600, -700, With and Without Winglets



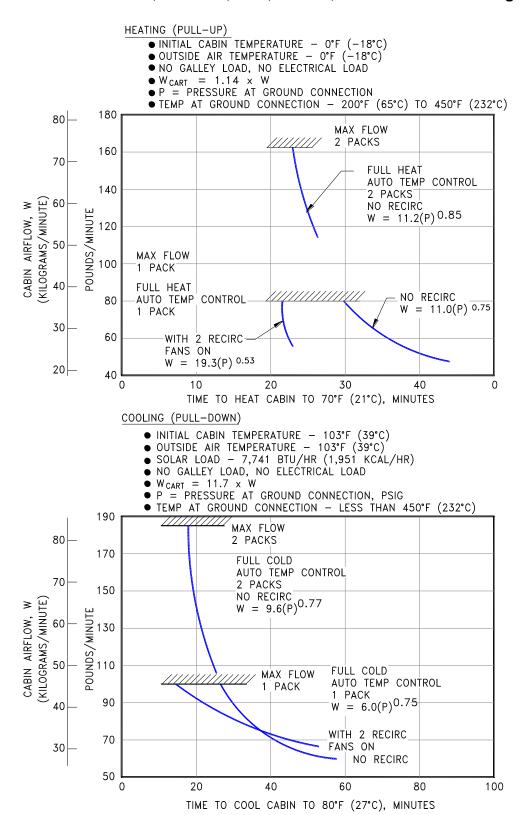
40

TIME TO COOL CABIN TO 80°F (27°C) - MINUTES

20% RH-

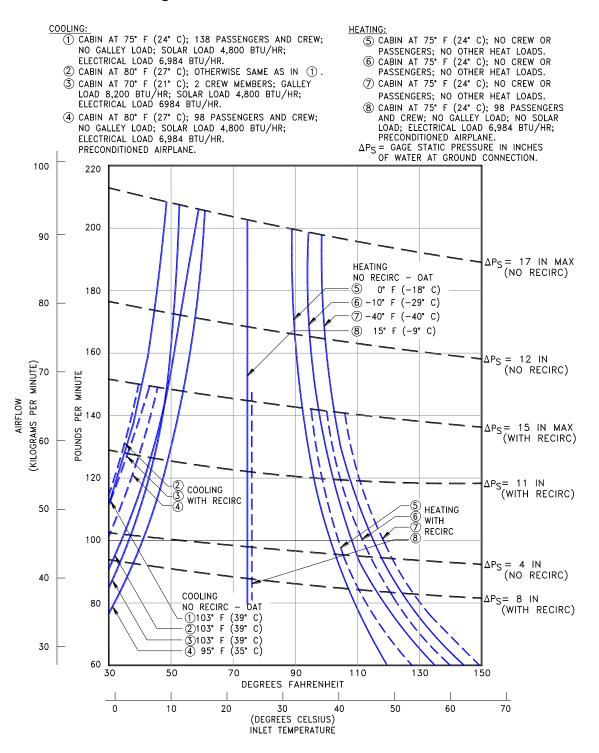
45% RH

100

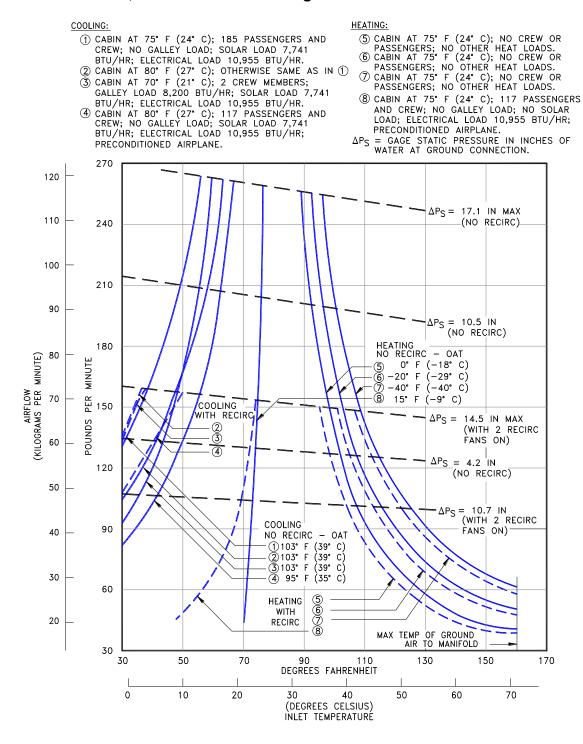

20% RH

45% RH

20


40 L

### 5.6.2 Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-800, -800BCF, -900, -900ER, With and Without Winglets

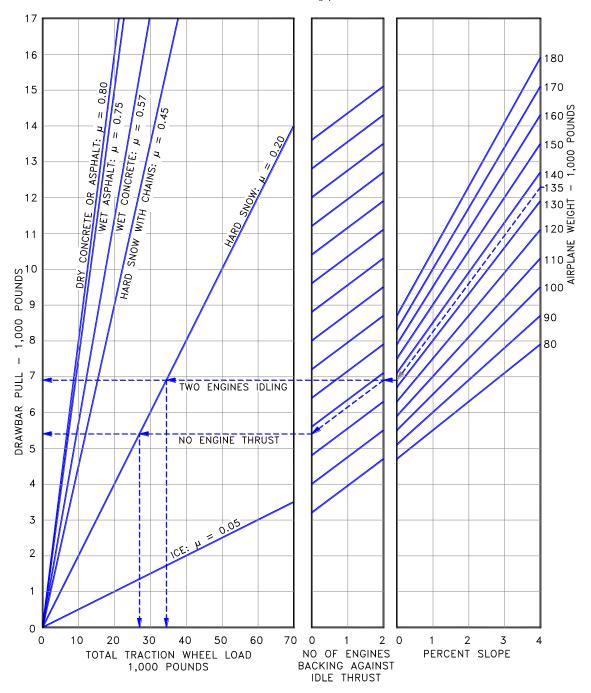



#### 5.7 CONDITIONED AIR REQUIREMENTS

### 5.7.1 Conditioned Air Flow Requirements: Model 737-600, -700, With and Without Winglets



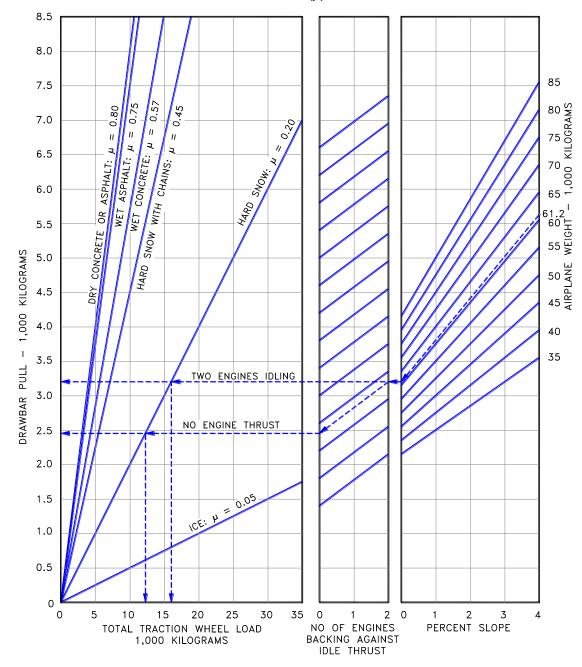
### 5.7.2 Conditioned Air Flow Requirements: Model 737-800, -800BCF, -900, -900ER, With and Without Winglets




#### 5.8 GROUND TOWING REQUIREMENTS

#### 5.8.1 **Ground Towing Requirements - English Units: Model 737, All Models**

#### NOTES:


- UNUSUAL BREAKAWAY CONDITIONS NOT REFLECTED
- ESTIMATED FOR RUBBER-TIRED TOW VEHICLES
   COEFFICIENT OF FRICTION (µ) APPROXIMATE



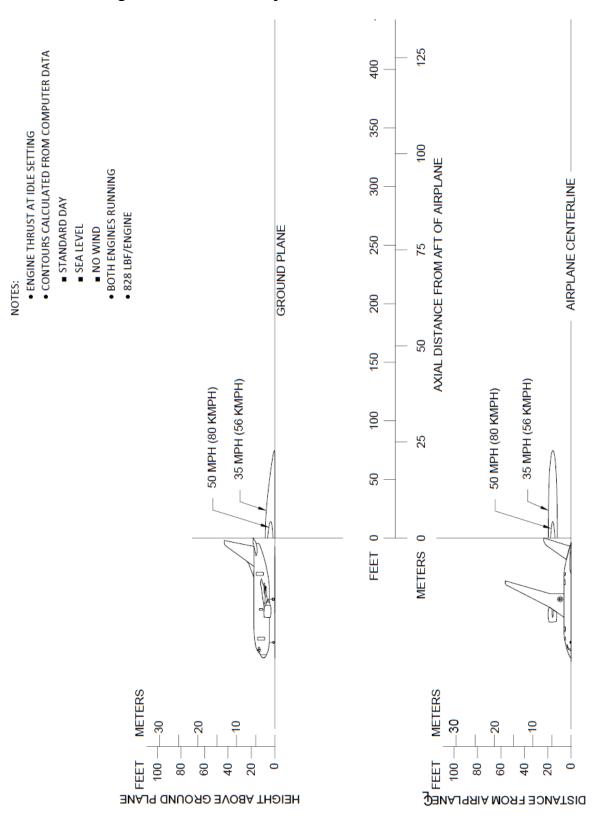
#### 5.8.2 **Ground Towing Requirements - Metric Units: Model 737, All Models**

#### NOTES:

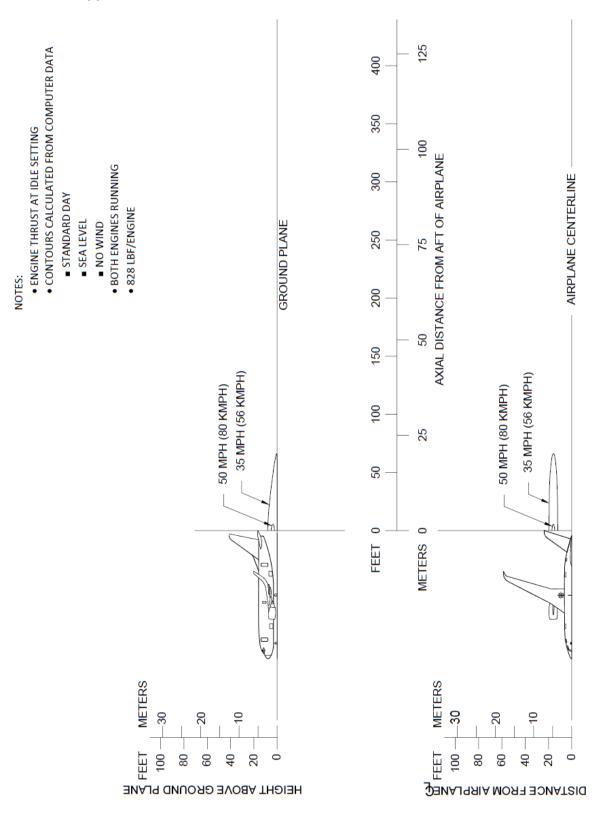
- UNUSUAL BREAKAWAY CONDITIONS NOT REFLECTED
   ESTIMATED FOR RUBBER—TIRED TOW VEHICLES
   COEFFICIENT OF FRICTION (µ) APPROXIMATE



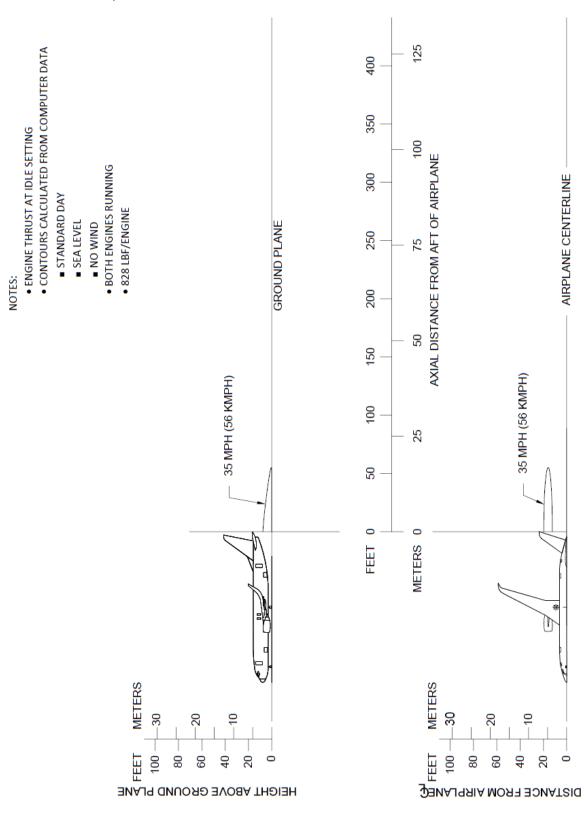
#### 6.0 JET ENGINE WAKE AND NOISE DATA


#### 6.1 JET ENGINE EXHAUST VELOCITIES AND TEMPERATURES

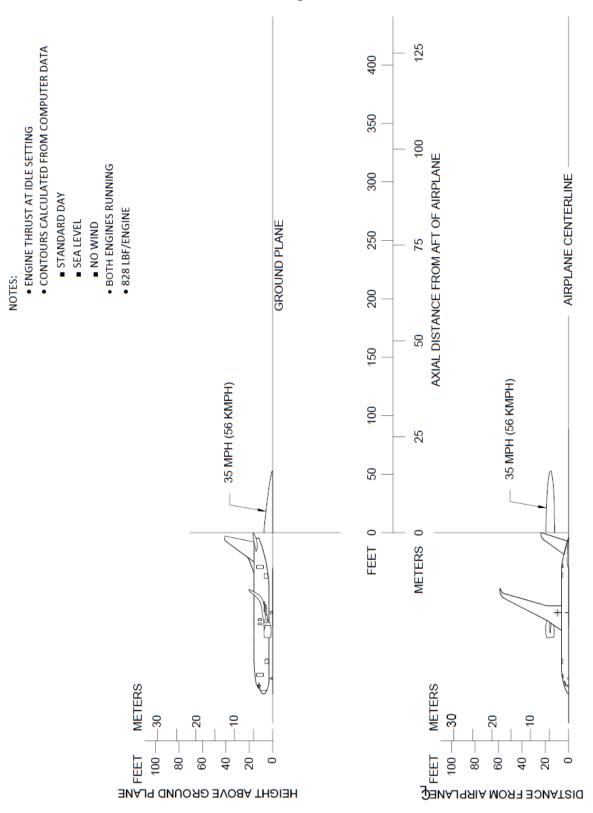
This section shows jet engine exhaust velocity and temperature contours aft of the 737 Series of airplanes. The contours were calculated from a standard computer analysis using three-dimensional viscous flow equations with mixing of primary, fan, and free-stream flow. The presence of the ground plane is included in the calculations as well as engine tilt and toe-in. Mixing of flows from the engines is also calculated. The analysis does not include thermal buoyancy effects which tend to elevate the jet wake above the ground plane. The buoyancy effects are considered to be small relative to the exhaust velocity and therefore are not included.


The graphs show jet wake velocity and temperature contours for representative engines. The results are valid for sea level, static, standard day conditions. The effect of wind on jet wakes is not included. There is evidence to show that a downwind or an upwind component does not simply add or subtract from the jet wake velocity, but rather carries the whole envelope in the direction of the wind. Crosswinds may carry the jet wake contour far to the side at large distances behind the airplane.

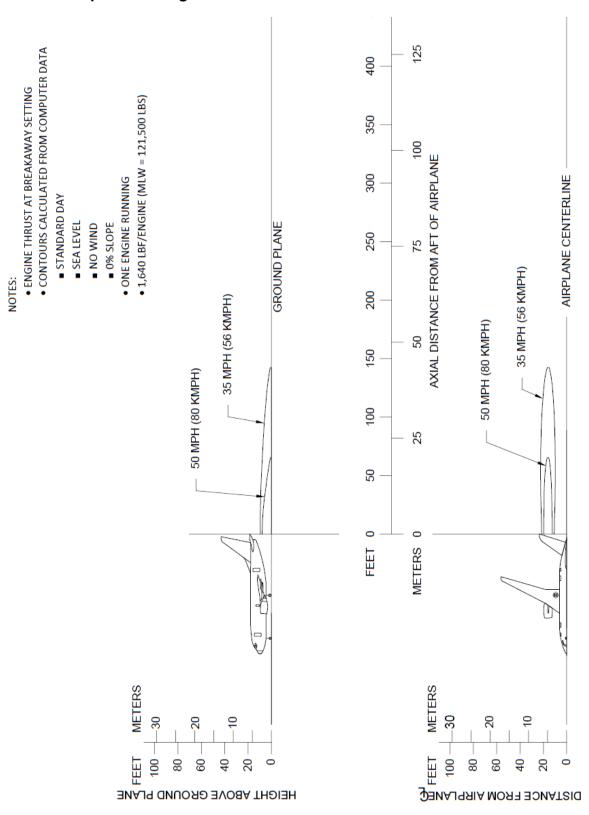
It should be understood, these exhaust velocity contours reflect steady-state, at maximum taxi weight, and not transient-state exhaust velocities. A steady-state is achieved with the aircraft in a fixed location, engine running at a given thrust level and measured when the contours stop expanding and stabilize in size, which could take several seconds. The steady-state condition, therefore, is conservative. Contours shown also do not account for performance variables such as ambient temperature or field elevation. For the terminal area environment, the transient-state is a more accurate representation of the actual exhaust contours when the aircraft is in motion and encountering static air with forward or turning movement, but it is very difficult to model on a consistent basis due to aircraft weight, weather conditions, the high degree of variability in terminal and apron configurations, and intensive numerical calculations. If the contours presented here are overly restrictive for terminal operations, The Boeing Company recommends conducting an analysis of the actual exhaust contours experienced by the using aircraft at the airport.


### 6.1.1 Jet Engine Exhaust Velocity Contours - Idle Thrust: Model 737-600

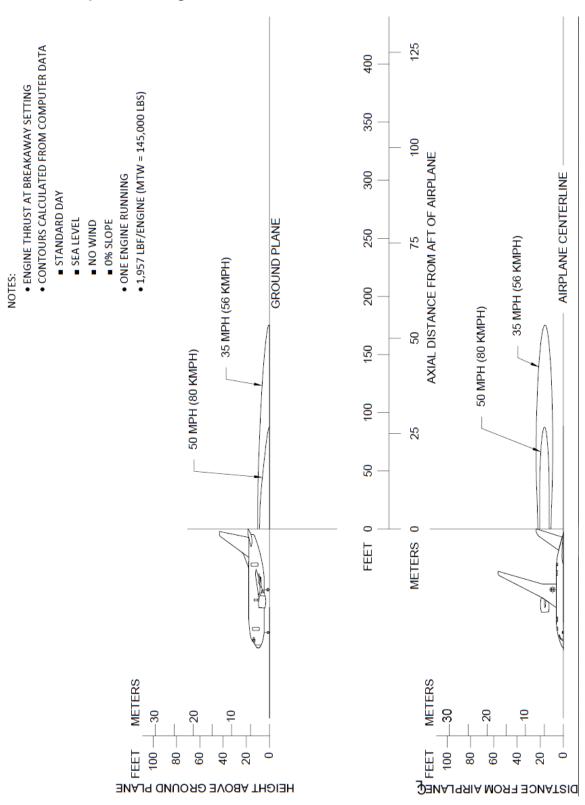



### 6.1.2 Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-700, -700W

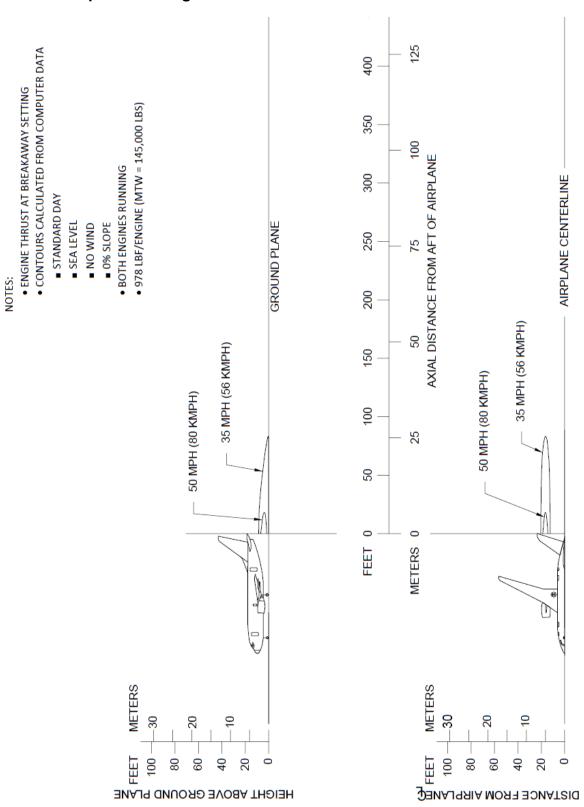



## 6.1.3 Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-800, -800W, -800BCF

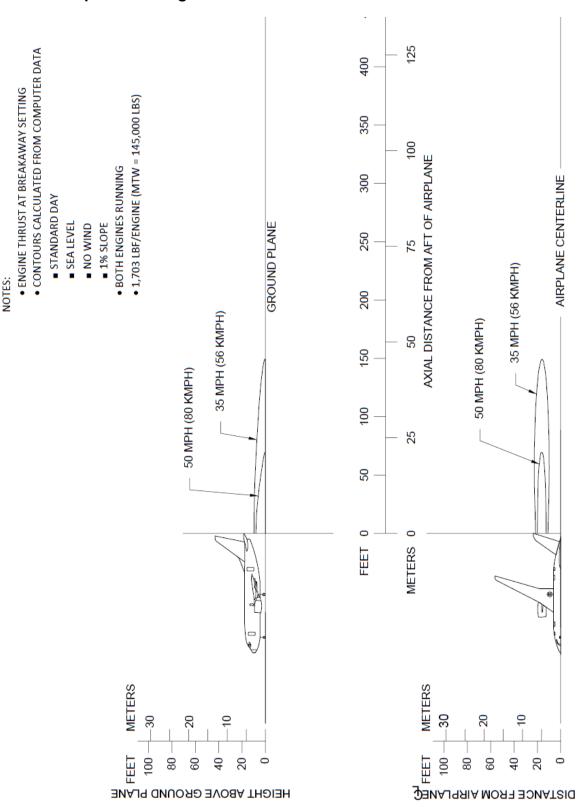



## 6.1.4 Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-900, -900ER, With and Without Winglets

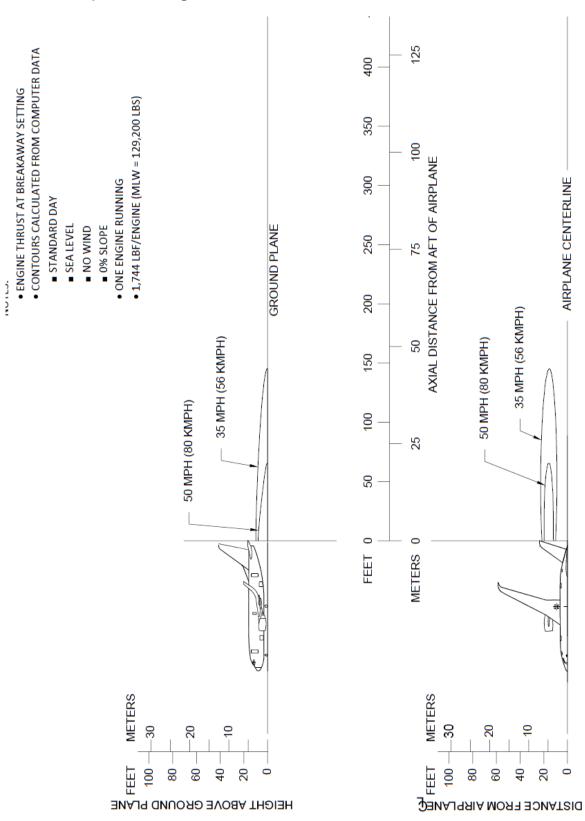



## 6.1.5 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MLW: Model 737-600

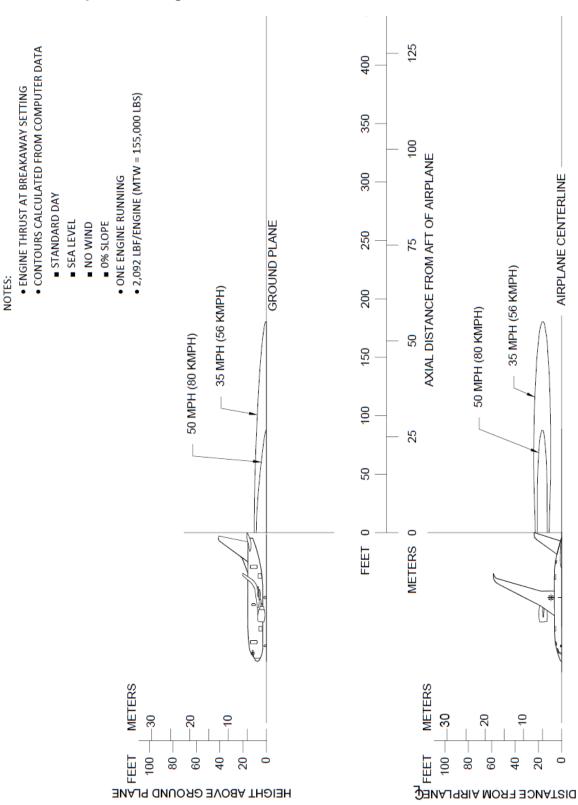



## 6.1.6 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MTW: Model 737-600

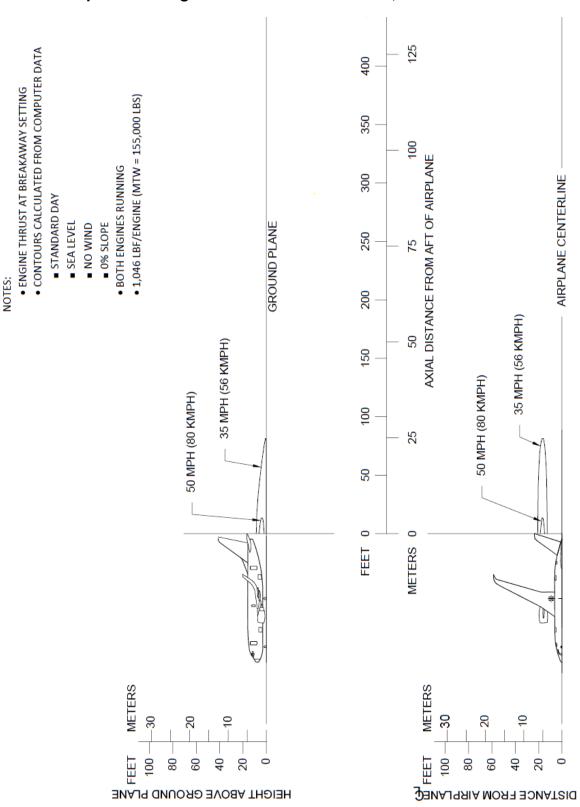



## 6.1.7 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / Both Engines / MTW: Model 737-600

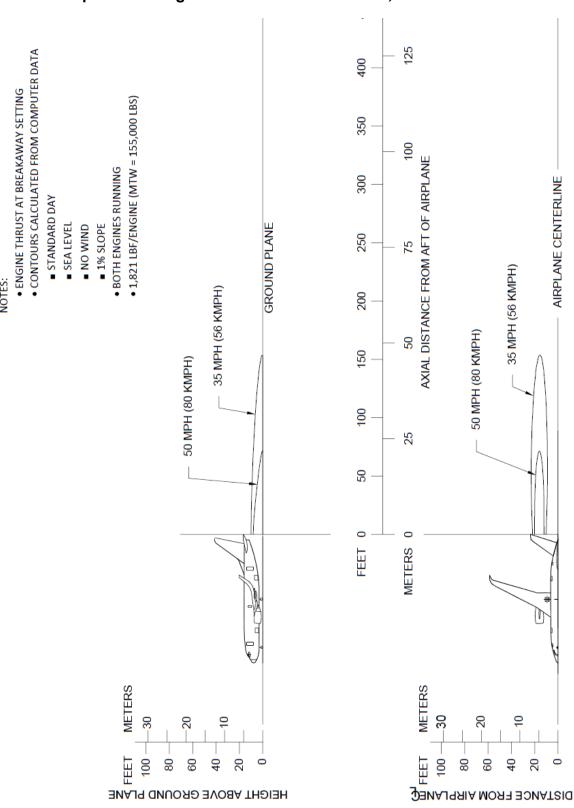



## 6.1.8 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 1% Slope / Both Engines / MTW: Model 737-600

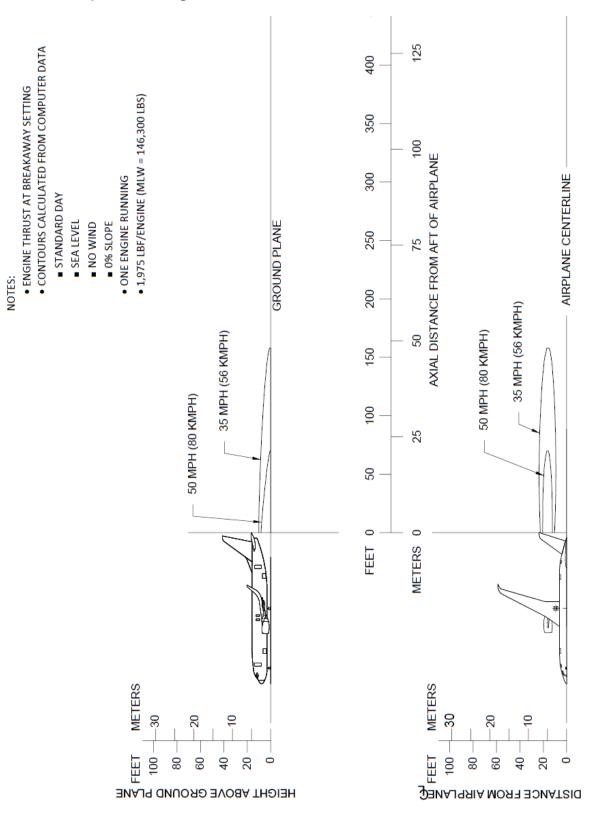



## 6.1.9 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MLW: Model 737-700, -700W




## 6.1.10 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MTW: Model 737-700, -700W

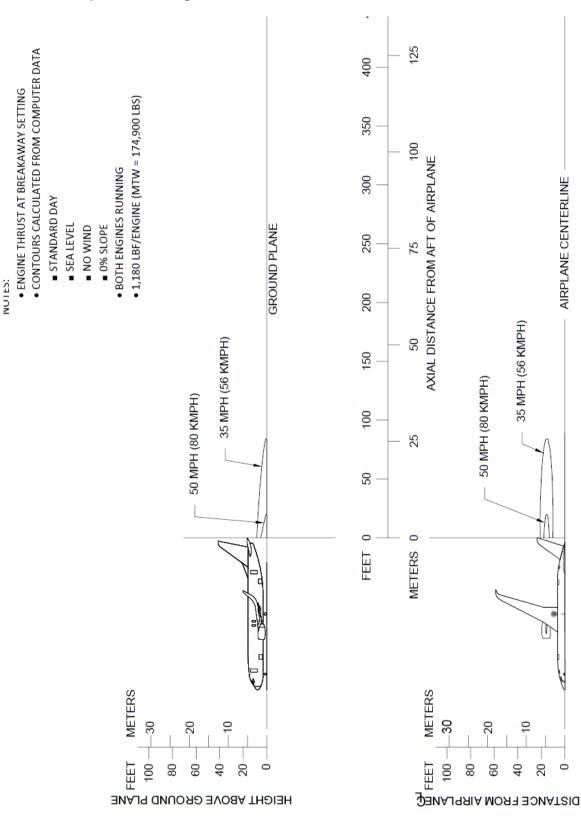



## 6.1.11 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / Both Engines / MTW: Model 737-700, -700W

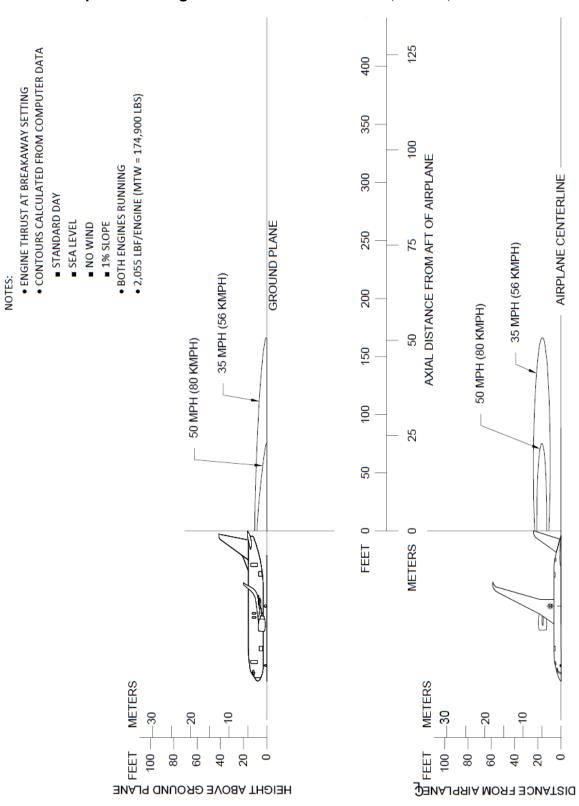


### 6.1.12 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 1% Slope / Both Engines / MTW: Model 737-700, -700W

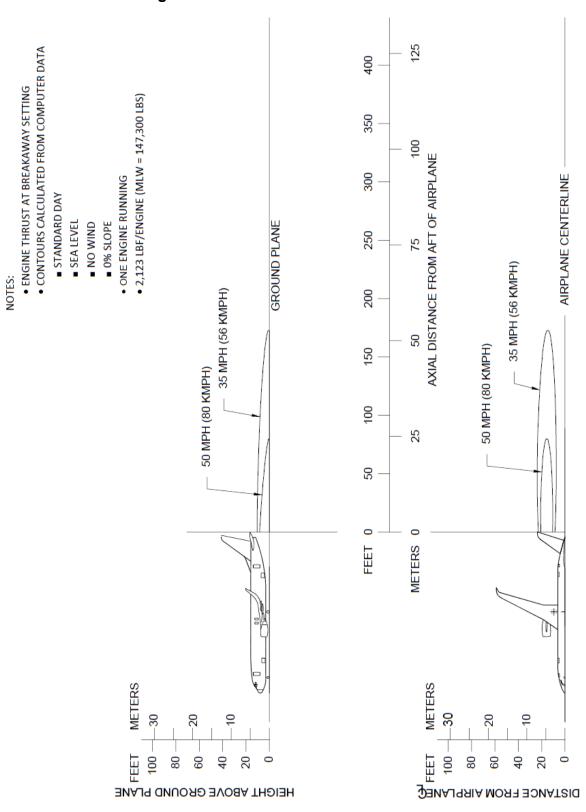



## 6.1.13 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MLW: Model 737-800, -800W, -800BCF

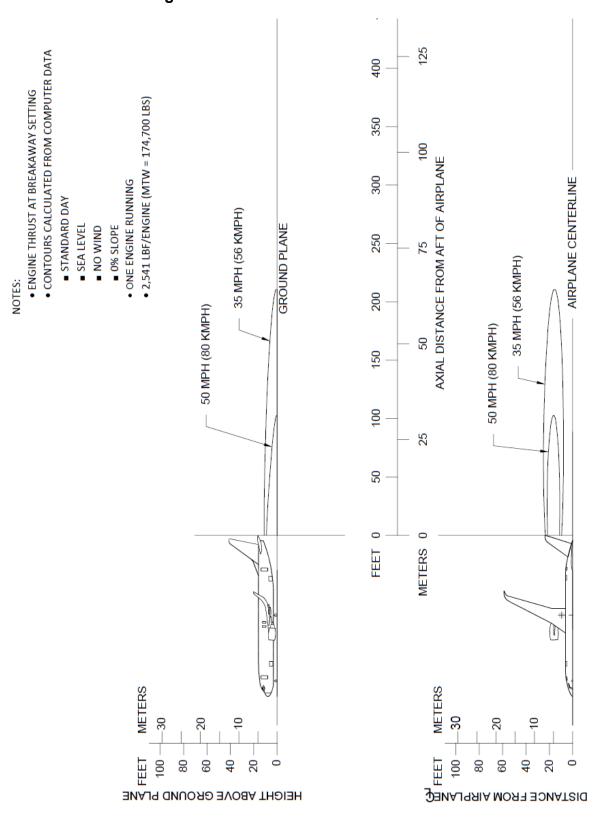



## 6.1.14 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MTW: Model 737-800, -800W, -800BCF

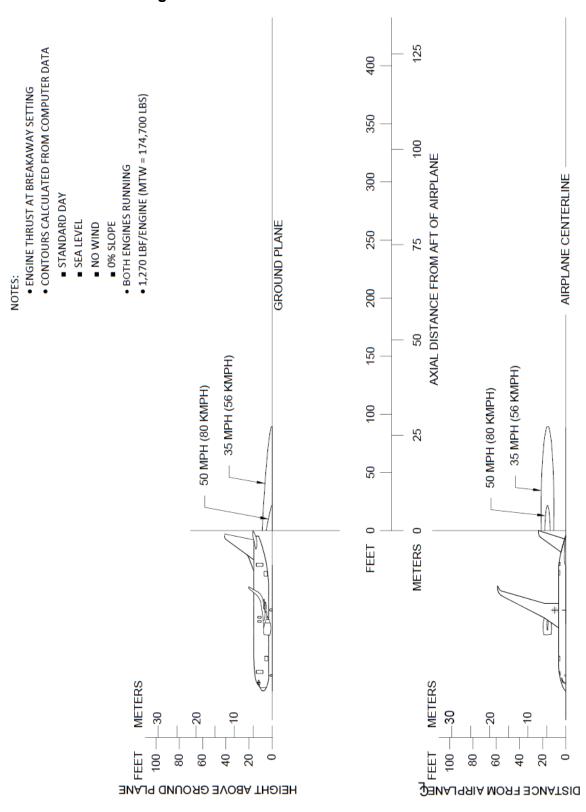



## 6.1.15 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / Both Engines / MTW: Model 737-800, -800W, -800BCF

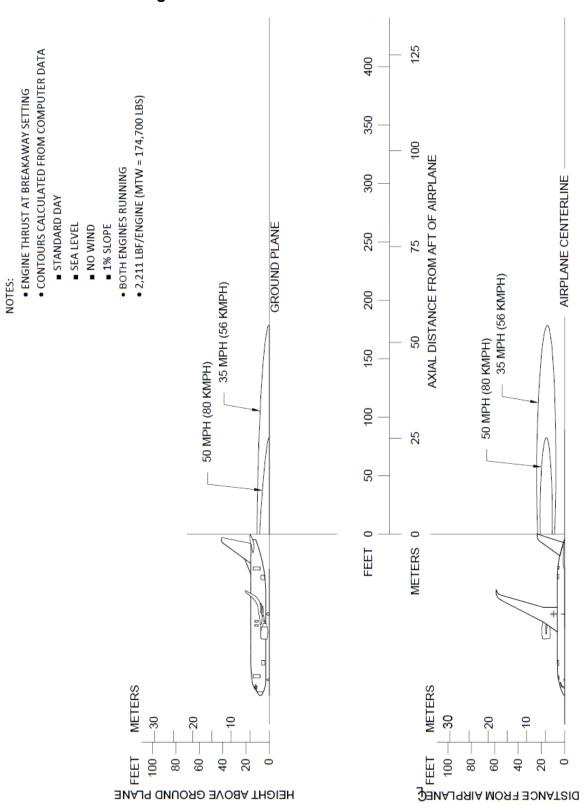



### 6.1.16 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 1% Slope / Both Engines / MTW: Model 737-800, -800W, -800BCF

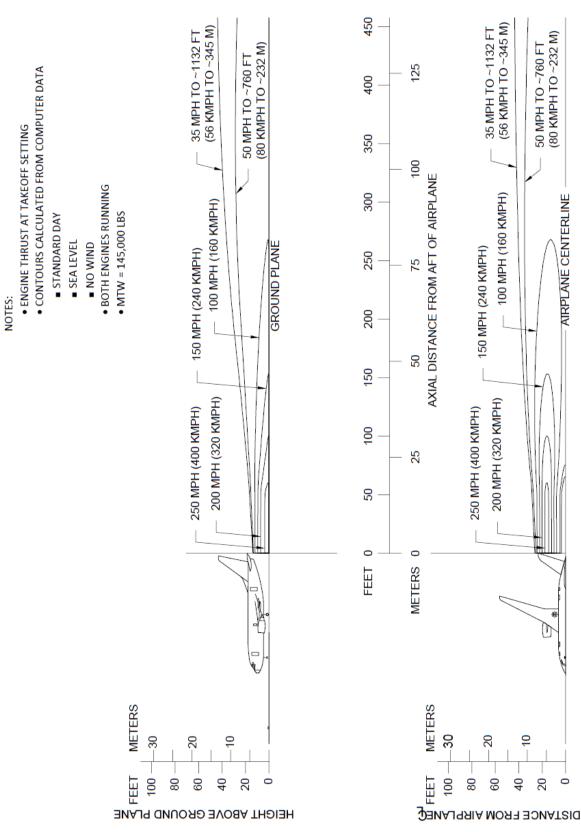



# 6.1.17 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MLW: Model 737-900, -900ER, With and Without Winglets

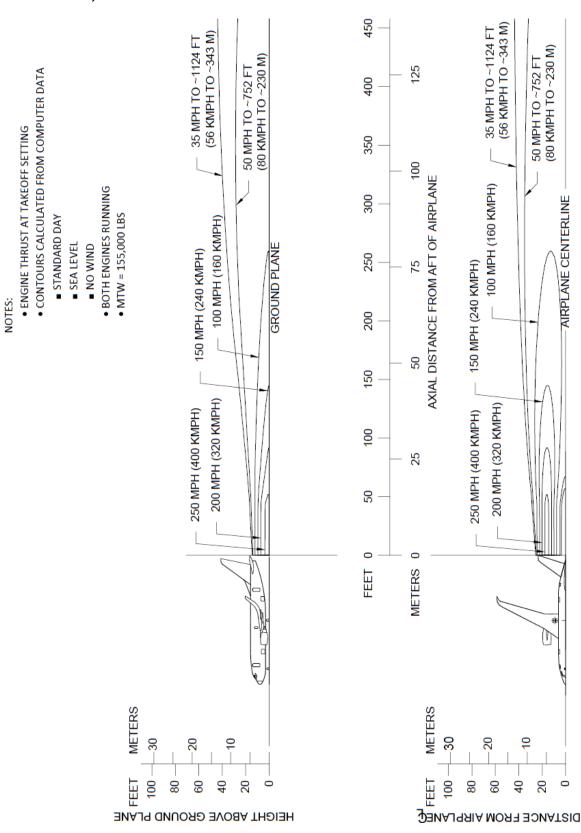



# 6.1.18 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / One Engine / MTW: Model 737-900, -900ER, With and Without Winglets

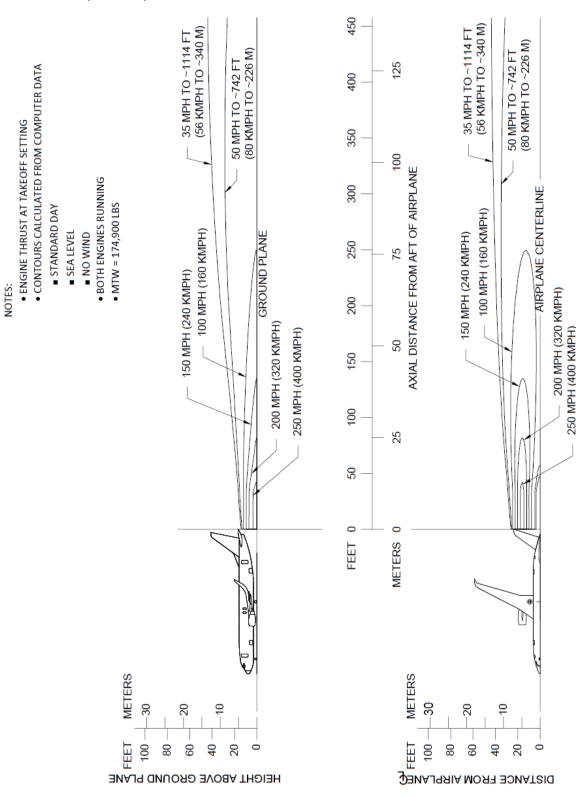



# 6.1.19 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 0% Slope / Both Engines / MTW: Model 737-900, -900ER, With and Without Winglets

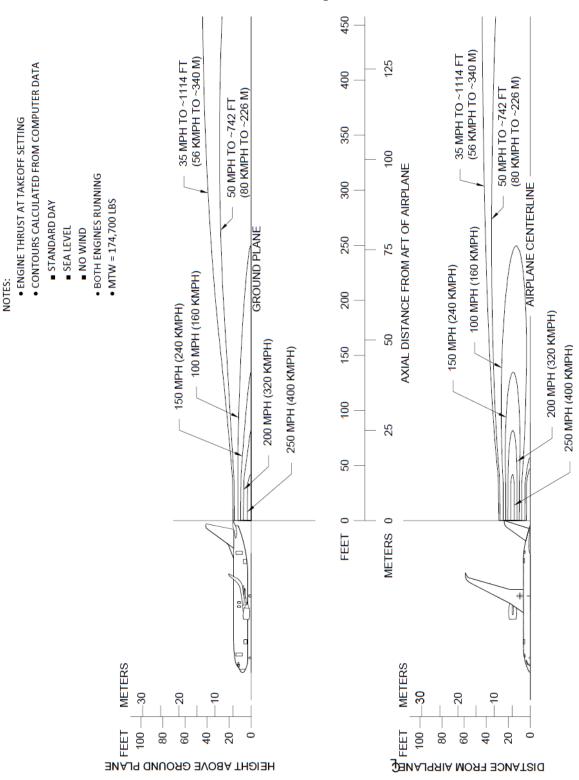



# 6.1.20 Jet Engine Exhaust Velocity Contours - Breakaway Thrust / 1% Slope / Both Engines / MTW: Model 737-900, -900ER, With and Without Winglets




## 6.1.21 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-600




## 6.1.22 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-700, -700W



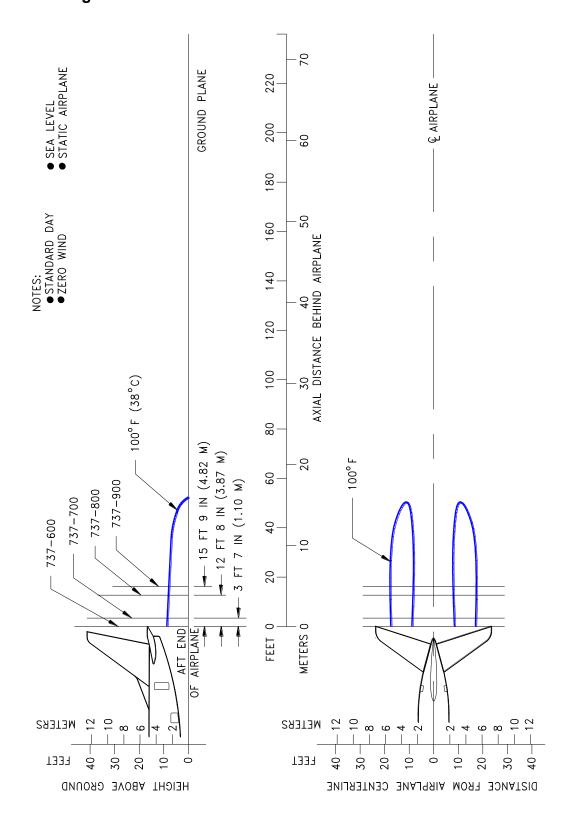
## 6.1.23 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-800, -800W, -800BCF



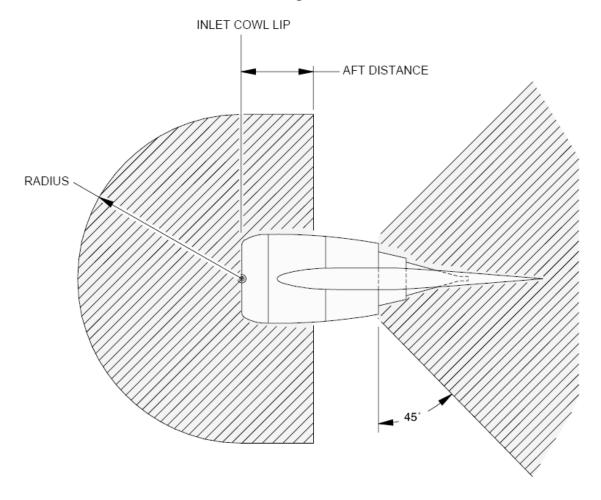
## 6.1.24 Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-900, -900ER, With and Without Winglets



## 6.1.25 Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets


Temperature contours for idle power conditions are not shown as the maximum temperature aft of the 737-600, -700, -800, -900, -900ER is predicated to be less than 100° F (38° C) for standard day conditions of 59° F (15° C).

# 6.1.26 Jet Engine Exhaust Temperature Contours – Breakaway Thrust: Model 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets


Temperature contours for breakaway power conditions are not shown as the maximum temperature aft of the 737-600, -700, -800, -900, -900ER is predicated to be less than  $100^{\circ}$  F (38° C) for standard day conditions of 59° F (15° C).

6-27

# 6.1.27 Jet Engine Exhaust Temperature Contours – Takeoff Thrust: Model 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets



# 6.1.28 Inlet Hazard Areas: Models 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets



**INLET HAZARD AREA** 

|                  | RAI   | DIUS  | AFT DISTANCE |       |
|------------------|-------|-------|--------------|-------|
| IDLE THRUST      | 10 FT | 3.1 M | 4 FT         | 1.2 M |
| BREAKAWAY THRUST | 14 FT | 4.2 M | 5 FT         | 1.5 M |
| TAKEOFF THRUST   | 14 FT | 4.2 M | 5 FT         | 1.5 M |

#### 6.2 AIRPORT AND COMMUNITY NOISE

Airport noise is of major concern to the airport and community planner. The airport is a major element in the community's transportation system and, as such, is vital to its growth. However, the airport must also be a good neighbor, and this can be accomplished only with proper planning. Since aircraft noise extends beyond the boundaries of the airport, it is vital to consider the impact on surrounding communities. Many means have been devised to provide the planner with a tool to estimate the impact of airport operations. Too often they oversimplify noise to the point where the results become erroneous. Noise is not a simple subject; therefore, there are no simple answers.

The cumulative noise contour is an effective tool. However, care must be exercised to ensure that the contours, used correctly, estimate the noise resulting from aircraft operations conducted at an airport.

The size and shape of the single-event contours, which are inputs into the cumulative noise contours, are dependent upon numerous factors. They include the following:

#### 1. **Operational Factors**

- a. Aircraft Weight-Aircraft weight is dependent on distance to be traveled, enroute winds, payload, and anticipated aircraft delay upon reaching the destination.
- b. Engine Power Settings-The rates of ascent and descent and the noise levels emitted at the source are influenced by the power setting used.
- c. Airport Altitude-Higher airport altitude will affect engine performance and thus can influence noise.

#### 2. Atmospheric Conditions-Sound Propagation

- a. Wind-With stronger headwinds, the aircraft can take off and climb more rapidly relative to the ground. Also, winds can influence the distribution of noise in surrounding communities.
- b. Temperature and Relative Humidity-The absorption of noise in the atmosphere along the transmission path between the aircraft and the ground observer varies with both temperature and relative humidity.
- 3. Surface Condition-Shielding, Extra Ground Attenuation (EGA)
  - a. Terrain-If the ground slopes down after takeoff or before landing, noise will be reduced since the aircraft will be at a higher altitude above ground. Additionally, hills, shrubs, trees, and large buildings can act as sound buffers.

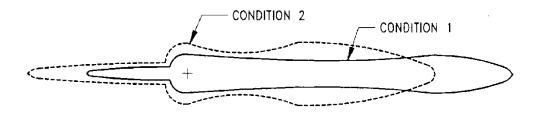
All these factors can alter the shape and size of the contours appreciably. To demonstrate the effect of some of these factors, estimated noise level contours for two different

D6-58325-7

Not Subject to EAR or ITAR. Copyright © 2025 Boeing. All Rights Reserved. operating conditions are shown below. These contours reflect a given noise level upon a ground level plane at runway elevation.

#### Condition 1

| Landing | Takeoff |
|---------|---------|
| Landing | Takeof  |


Maximum Structural Landing Maximum Gross Takeoff

Weight Weight 10-knot Headwind Zero Wind

3° Approach 84 °F

84 °F Humidity 15%

Humidity 15%



#### Condition 2

Humidity 70%

| Landing                                  | Takeoff                                |
|------------------------------------------|----------------------------------------|
| 85% of Maximum Structural Landing Weight | 80% of Maximum Gross<br>Takeoff Weight |
| 10-knot Headwind                         | 10-knot Headwind                       |
| 3° Approach                              | 59 °F (15 °C)                          |
| 59 °F (15 °C)                            | Humidity 70%                           |

As indicated from the data, the contour size varies substantially with operating and atmospheric conditions. Most aircraft operations are, of course, conducted at less than maximum gross weights because average flight distances are much shorter than maximum aircraft range capability and average load factors are less than 100%. Therefore, in developing cumulative contours for planning purposes, it is recommended that the airlines serving a particular city be contacted to provide operational information.

In addition, there are no universally accepted methods for developing aircraft noise contours or for relating the acceptability of specific zones to specific land uses. It is

therefore expected that noise contour data for particular aircraft and the impact assessment methodology will be changing. To ensure that the best currently available information of this type is used in any planning study, it is recommended that it be obtained directly from the Office of Environmental Quality in the Federal Aviation Administration in Washington, D.C.

It should be noted that the contours shown herein are only for illustrating the impact of operating and atmospheric conditions and do not represent the single-event contour of the family of aircraft described in this document. It is expected that the cumulative contours will be developed as required by planners using the data and methodology applicable to their specific study.

#### 7.0 PAVEMENT DATA

#### 7.1 GENERAL INFORMATION

A brief description of the pavement charts that follow will help in their use for airport planning. A brief description of the pavement charts that follow will help in their use for airport planning. Each airplane configuration is depicted with a minimum range of five loads imposed on the main landing gear to aid in interpolation between the discrete values shown. All curves for any single chart represent data based on rated loads and tire pressures considered normal and acceptable by current aircraft tire manufacturer's standards. Tire pressures, where specifically designated on tables and charts, are at values obtained under loaded conditions as certificated for commercial use.

Section 7.2 presents basic data on the landing gear footprint configuration, maximum design taxi loads, and tire sizes and pressures.

Maximum pavement loads for certain critical conditions at the tire-to-ground interface are shown in Section 7.3, with the tires having equal loads on the struts.

Pavement requirements for commercial airplanes are customarily derived from the static analysis of loads imposed on the main landing gear struts. The charts in Section 7.4 are provided in order to determine these loads throughout the stability limits of the airplane at rest on the pavement. These main landing gear loads are used as the point of entry to the pavement design charts, interpolating load values where necessary.

The flexible pavement design curves (Section 7.5) are based on procedures set forth in Instruction Report No. S-77-1, <u>Procedures for Development of CBR Design Curves</u>, June 1977, and as modified according to the methods described in FAA Advisory Circular 150/5320-6D, <u>Airport Pavement Design and Evaluation</u>, July 1995. Instruction Report No. S-77-1 was prepared by the U.S. Army Corps of Engineers Waterways Experiment Station, Soils and Pavements Laboratory, Vicksburg, Mississippi. The line showing 10,000 coverages is used to calculate Aircraft Classification Number (ACN).

The following procedure is used to develop the curves, such as shown in Section 7.5:

- 1. Having established the scale for pavement depth at the bottom and the scale for CBR at the top, an arbitrary line is drawn representing 5,000 annual departures.
- 2. Values of the aircraft gross weight are then plotted.

**REV C** 

- 3. Additional annual departure lines are drawn based on the load lines of the aircraft gross weights already established.
- 4. An additional line representing 10,000 coverages (used to calculate the flexible pavement Aircraft Classification Number) is also placed.

All Load Classification Number (LCN) curves (Sections 7.6 and 7.8) have been developed from a computer program based on data provided in International Civil

D6-58325-7

Aviation Organization (ICAO) Document 9157-AN/901, <u>Aerodrome Design Manual</u>, Part 3, "Pavements", Second Edition, 1983. LCN values are shown directly for parameters of weight on main landing gear, tire pressure, and radius of relative stiffness (\*) for rigid pavement or pavement thickness or depth factor (h) for flexible pavement.

Rigid pavement design curves (Section 7.7) have been prepared with the Westergaard equation in general accordance with the procedures outlined in the <u>Design of Concrete Airport Pavement</u>, 1955 edition, by Robert G. Packard, published by the Portland Cement Association, 5420 Old Orchard Road, Skokie, Illinois 60077-1083. These curves are modified to the format described in the Portland Cement Association publication XP6705-2, <u>Computer Program for Airport Pavement Design (Program PDILB)</u>, 1968, by Robert G. Packard.

The following procedure is used to develop the rigid pavement design curves shown in Section 7.7:

- 5. Having established the scale for pavement thickness to the left and the scale for allowable working stress to the right, an arbitrary load line is drawn representing the main landing gear maximum weight to be shown.
- 6. Values of the subgrade modulus (k) are then plotted.
- 7. Additional load lines for the incremental values of weight on the main landing gear are drawn on the basis of the curve for k = 300, already established.

The rigid pavement design curves (Section 7.9) have been developed based on methods used in the FAA Advisory Circular AC 150/5320-6D, July 1995. The following procedure is used to develop the curves, such as shown in Section 7.9:

- 8. Having established the scale for pavement flexure strength on the left and temporary scale for pavement thickness on the right, an arbitrary load line is drawn representing the main landing gear maximum weight to be shown at 5,000 coverages.
- 9. Values of the subgrade modulus (k) are then plotted.
- 10. Additional load lines for the incremental values of weight are then drawn on the basis of the subgrade modulus curves already established.
- 11. The permanent scale for the rigid-pavement thickness is then placed. Lines for other than 5,000 coverages are established based on the aircraft pass-to-coverage ratio.

The ACN/PCN system (Section 7.10) as referenced in ICAO Annex 14, <u>Aerodromes</u>, Volume I, "Aerodrome Design and Operations," Ninth Edition, July 2022, provides a standardized international airplane/pavement rating system replacing the various S, T, TT, LCN, AUW, ISWL, etc., rating systems used throughout the world. ACN is the Aircraft Classification Number and PCN is the Pavement Classification Number. An

D6-58325-7

Copyright © 2025 Boeing. All Rights Reserved.

aircraft having an ACN equal to or less than the PCN can operate on the pavement subject to any limitation on the tire pressure. Numerically, the ACN is two times the derived single-wheel load expressed in thousands of kilograms, where the derived single wheel load is defined as the load on a single tire inflated to 181 psi (1.25 MPa) that would have the same pavement requirements as the aircraft. Computationally, the ACN/PCN system uses the PCA program PDILB for rigid pavements and S-77-1 for flexible pavements to calculate ACN values.

The ACR-PCR system (Section 7.11) follows ICAO Annex 14, <u>Aerodromes</u>, Volume I, "Aerodrome Design and Operations," Ninth Edition, July 2022, and guidance from ICAO Doc 9157-AN/901, <u>Aerodrome Design Manual</u>, Part 3, "Pavements," Third Edition, 2022, replacing the ACN/PCN system used throughout the world. ACR is the Aircraft Classification Rating and PCR is the Pavement Classification Rating. The ACR-PCR system allows an aircraft having an ACR equal to or less than the PCR to operate on the pavement subject to any limitation on the tire pressure. Numerically, the ACR is two times the derived single-wheel load expressed in hundreds of kilograms, where the derived single wheel load is defined as the load on a single tire inflated to 218 psi (1.5 MPa) that would have the same pavement requirements as the aircraft.

The method of pavement evaluation is left up to the airport with the results of their evaluation presented as follows:

| PCN/<br>PCR | PAVEMENT<br>TYPE | SUBGRADE<br>CATEGORY | TIRE PRESSURE<br>CATEGORY | EVALUATION<br>METHOD |
|-------------|------------------|----------------------|---------------------------|----------------------|
|             | R = Rigid        | A = High             | W = No Limit              | T = Technical        |
|             | F = Flexible     | B = Medium           | X = To 254 psi (1.75 MPa) | U = Using Aircraft   |
|             |                  | C = Low              | Y = To 181 psi (1.25 MPa) |                      |
|             |                  | D = Ultra Low        | Z = To 73 psi (0.5 MPa)   |                      |

ACN values for flexible pavements are calculated for the following four subgrade categories:

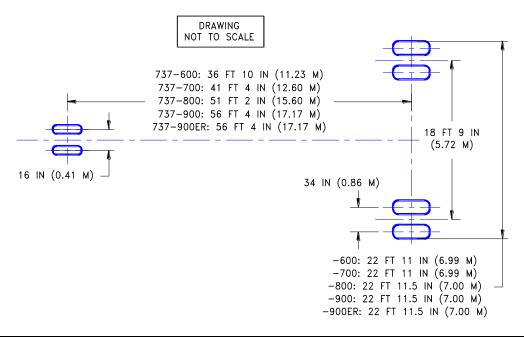
Code A - High strength; characterized by CBR 15 and representing all CBR values above 13.

Code B - Medium strength; characterized by CBR 10 and representing a range in CBR of 8 to 13.

Code C - Low strength; characterized by CBR 6 and representing a range in CBR of 4 to 8.

Code D - Ultra-low strength; characterized by CBR 3 and representing all CBR values below 4.

ACN values for rigid pavements are calculated for the following four subgrade categories:


- Code A High strength; characterized by  $k=150~\text{MN/m}^3$  (552.6 pci) and representing all k values above 120 MN/m<sup>3</sup>.
- Code B Medium strength; characterized by  $k = 80 \text{ MN/m}^3$  (294.7 pci) and representing a range in k values of 60 to 120 MN/m<sup>3</sup>.
- Code C Low strength; characterized by  $k = 40 \text{ MN/m}^3$  (147.4 pci) and representing a range in k values of 25 to  $60 \text{ MN/m}^3$ .
- Code D characterized by  $k = 20 \text{ MN/m}^3$  (73.7 pci) and representing all k values below 25 MN/m<sup>3</sup>.

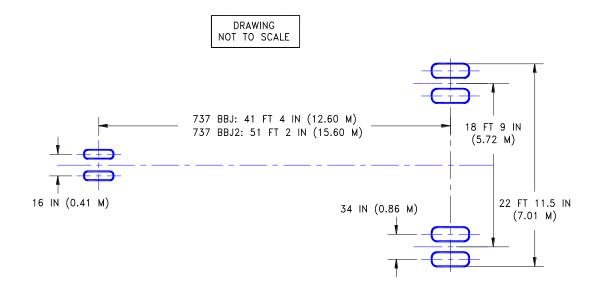
ACR values at any mass on rigid and flexible pavements are calculated for the following four subgrade categories:

- Code A High strength; characterized by E = 200 MPa (29,008 psi) and representing all E values equal to or above 150 MPa, for rigid and flexible pavements.
- Code B Medium strength; characterized by E = 120 MPa (17,405 psi) and representing a range in E equal to or above 100 MPa and strictly less than 150 MPa, for rigid and flexible pavements.
- Code C Low strength; characterized by E = 80 MPa (11,603 psi) and representing a range in E equal to or above 60 MPa and strictly less than 100 MPa, for rigid and flexible pavements.
- Code D Ultra-low strength; characterized by E = 50 MPa (7,252 psi) and representing all E values strictly less than 60 MPa, for rigid and flexible pavements.

#### 7.2 LANDING GEAR FOOTPRINT

## 7.2.1 Landing Gear Footprint: Model Advanced 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets




|                       | UNITS | 737-600            | 737-700          | 737-800         | 737-900 | 737-900ER     |  |  |  |  |
|-----------------------|-------|--------------------|------------------|-----------------|---------|---------------|--|--|--|--|
| MAXIMUM               | LB    | 145,000            | 155,000          | 174,700         | 174,700 | 188,200       |  |  |  |  |
| DESIGN TAXI<br>WEIGHT | KG    | 65,770             | 70,306           | 79,242          | 79,242  | 85,366        |  |  |  |  |
|                       |       |                    |                  |                 |         |               |  |  |  |  |
| NOSE GEAR             | IN    |                    |                  | 07v7 75 45 40DD |         |               |  |  |  |  |
| TIRE SIZE             | IIN   |                    | 27x7.75-15, 12PR |                 |         |               |  |  |  |  |
| NOSE GEAR             | PSI   | 206                | 205              | 185             | 163     | 164           |  |  |  |  |
| TIRE PRESSURE         | MPa   | 1.42               | 1.41             | 1.28            | 1.12    | 1.13          |  |  |  |  |
| MAIN GEAR             | IN    | U42 5y46 /         | 0-21, 26PR       | H44.5x16.5      | 21 20DD | H44.5x16.5-21 |  |  |  |  |
| TIRE SIZE             | IIN   | H43.3X 10.1        | 30PR             |                 |         |               |  |  |  |  |
| MAIN GEAR             | PSI   | 182                | 182 197          |                 | 204     |               |  |  |  |  |
| TIRE PRESSURE         | MPa   | 1.25 1.36 1.41 1.5 |                  |                 |         |               |  |  |  |  |

#### OPTIONAL TIRES

| MAN GEAR<br>TIRE SIZE | IN  | H44.5x16.5-21<br>28PR *[1] | H44.5x16.5-21<br>28PR | NOT AVAILABLE | NOT AVAILABLE | NOT AVAILABLE |
|-----------------------|-----|----------------------------|-----------------------|---------------|---------------|---------------|
| MAIN GEAR             | PSI | 168                        | 179                   | NOT AVAILABLE | NOT AVAILABLE | NOT AVAILABLE |
| TIRE PRESSURE         | MPa | 1.16                       | 1.23                  | NOT AVAILABLE | NOT AVAILABLE | NOT AVAILABLE |

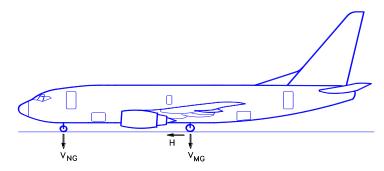
**NOTE:** 1. H44.5x16.5-21, 28PR TIRE CERTIFICATED ON 737-600 UP TO 144,000 LB (65,317 KG)

### 7.2.2 Landing Gear Footprint: Model 737 BBJ1, BBJ2



|                                   | UNITS              | 737-BBJ              | 737-BBJ2             |  |
|-----------------------------------|--------------------|----------------------|----------------------|--|
| MAXIMUM DESIGN TAXI               | LB                 | 171,500              | 174,700              |  |
| WEIGHT                            | KG                 | 77,790 79,250        |                      |  |
| PERCENT OF WEIGHT<br>ON MAIN GEAR |                    | SEE SECTION 7.4      |                      |  |
| NOSE GEAR TIRE SIZE               | IN                 | 27x7.7-15, 12 PR     |                      |  |
| NOSE GEAR TIRE                    | PSI                | 185                  |                      |  |
| PRESSURE                          | MPa                | 1.28                 |                      |  |
| MAIN GEAR TIRE SIZE               | IN                 | H44.5x16.5-21, 28 PR | H44.5x16.5-21, 28 PR |  |
| MAIN GEAR TIRE                    | PSI                | 196                  | 204                  |  |
| PRESSURE                          | KG/CM <sup>2</sup> | 1.35                 | 1.41                 |  |

### 7.3 MAXIMUM PAVEMENT LOADS


## 7.3.1 Maximum Pavement Loads: Model 737-600, -700, -800, -800BCF, -900, -900ER With and Without Winglets

V<sub>NG</sub> = MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER OF GRAVITY

V<sub>MG</sub> = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY

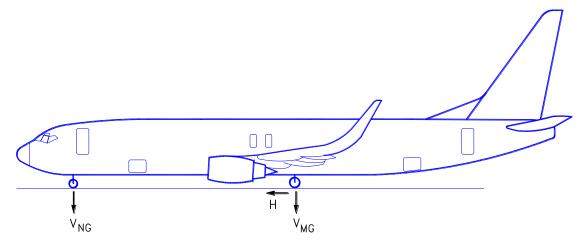
H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING

NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM DESIGN TAXI WEIGHT



|                   |       |                                 |                               | $V_{NG}$                                            | V <sub>MG</sub> PER                           | н Р                                                  | ER STRUT                            |
|-------------------|-------|---------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------|
| AIRPLANE<br>MODEL | UNITS | MAX<br>DESIGN<br>TAXI<br>WEIGHT | STATIC AT<br>MOST FWD<br>C.G. | STATIC +<br>BRAKING 10<br>FT/SEC <sup>2</sup> DECEL | STRUT AT<br>MAX LOAD<br>AT STATIC<br>AFT C.G. | STEADY<br>BRAKING<br>10 FT/SEC <sup>2</sup><br>DECEL | AT INSTANTANEOU S BRAKING (µ = 0.8) |
| 737-600           | LB    | 124,500                         | 16,839                        | 26,489                                              | 58,333                                        | 19,298                                               | 46,666                              |
|                   | KG    | 56,472                          | 7,638                         | 12,015                                              | 26,459                                        | 8,708                                                | 21,167                              |
| 737-600           | LB    | 144,000                         | 19,020                        | 30,180                                              | 66,708                                        | 22,320                                               | 53,366                              |
|                   | KG    | 65,317                          | 8,627                         | 13,689                                              | 30,258                                        | 10,124                                               | 24,206                              |
| 737-600           | LB    | 145,000                         | 19,000                        | 30,236                                              | 66,454                                        | 22,475                                               | 53,163                              |
|                   | KG    | 65,771                          | 8,618                         | 13,715                                              | 30,143                                        | 10,194                                               | 24,114                              |
| 737-700           | LB    | 133,500                         | 17,558                        | 26,711                                              | 63,000                                        | 20,692                                               | 50,400                              |
|                   | KG    | 60,554                          | 7,963                         | 12,116                                              | 28,576                                        | 9,386                                                | 22,861                              |
| 737-700           | LB    | 153,500                         | 18,740                        | 29,265                                              | 71,482                                        | 23,792                                               | 57,185                              |
|                   | KG    | 69,626                          | 8,500                         | 13,274                                              | 32,424                                        | 10,792                                               | 25,939                              |
| 737-700           | LB    | 155,000                         | 16,925                        | 27,552                                              | 71,060                                        | 24,025                                               | 56,847                              |
|                   | KG    | 70,307                          | 7,677                         | 12,497                                              | 32,232                                        | 10,898                                               | 25,785                              |
| 737-800           | LB    | 156,000                         | 16,770                        | 25,510                                              | 75,062                                        | 24,180                                               | 60,050                              |
|                   | KG    | 70,750                          | 7,607                         | 11,571                                              | 34,047                                        | 10,968                                               | 27,442                              |
| 737-800           | LB    | 173,000                         | 17,059                        | 26,752                                              | 82,143                                        | 26,815                                               | 65,715                              |
|                   | KG    | 78,471                          | 7,738                         | 12,134                                              | 37,259                                        | 12,163                                               | 29,808                              |
| 737-800, -        | LB    | 174,700                         | 15,100                        | 24,886                                              | 81,730                                        | 27,078                                               | 65,384                              |
| 800BCF            | KG    | 79,242                          | 6,849                         | 11,279                                              | 37,060                                        | 12,282                                               | 29,658                              |
| 737-900           | LB    | 164,500                         | 14,998                        | 23,369                                              | 78,962                                        | 25,498                                               | 63,169                              |
|                   | KG    | 74,616                          | 6,803                         | 10,600                                              | 35,817                                        | 11,566                                               | 28,653                              |
| 737-900           | LB    | 174,700                         | 14,155                        | 23,045                                              | 81,743                                        | 27,078                                               | 65,394                              |
|                   | KG    | 79,242                          | 6,421                         | 10,453                                              | 37,078                                        | 12,282                                               | 29,662                              |

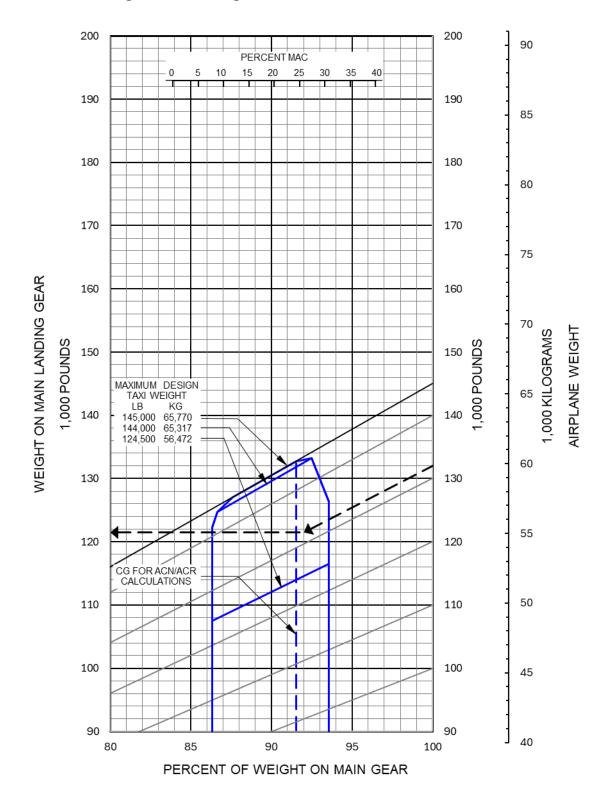
|                   |       | MAY                             |                               | $V_{NG}$           |        | H PE                                                 | ER STRUT                            |
|-------------------|-------|---------------------------------|-------------------------------|--------------------|--------|------------------------------------------------------|-------------------------------------|
| AIRPLANE<br>MODEL | UNITS | MAX<br>DESIGN<br>TAXI<br>WEIGHT | STATIC AT<br>MOST FWD<br>C.G. | OST FWD BRAKING 10 |        | STEADY<br>BRAKING<br>10 FT/SEC <sup>2</sup><br>DECEL | AT INSTANTANEOU S BRAKING (µ = 0.8) |
| 737-900ER         | LB    | 188,200                         | 15,206                        | 24,810             | 88,993 | 29,227                                               | 71,194                              |
|                   | KG    | 85,366                          | 6,897                         | 11,254             | 40,367 | 13,257                                               | 32,293                              |


### 7.3.2 Maximum Pavement Loads: Model 737 BBJ1, BBJ2

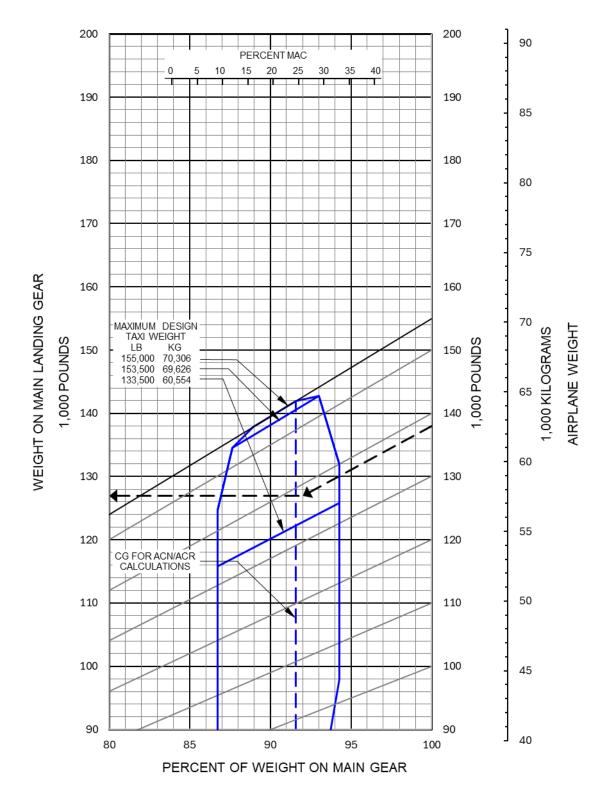
V<sub>NG</sub> = MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER OF GRAVITY

 $V_{MG}$  = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY

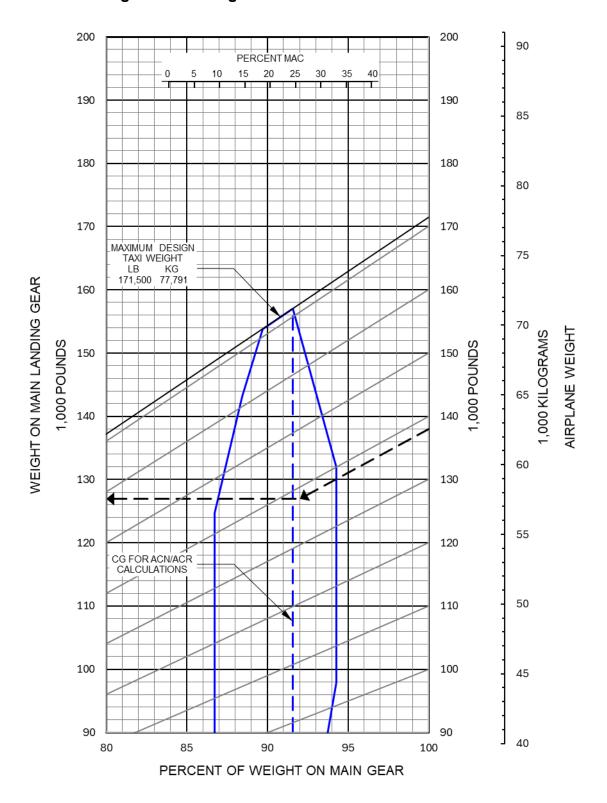
H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING


NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM DESIGN TAXI WEIGHT

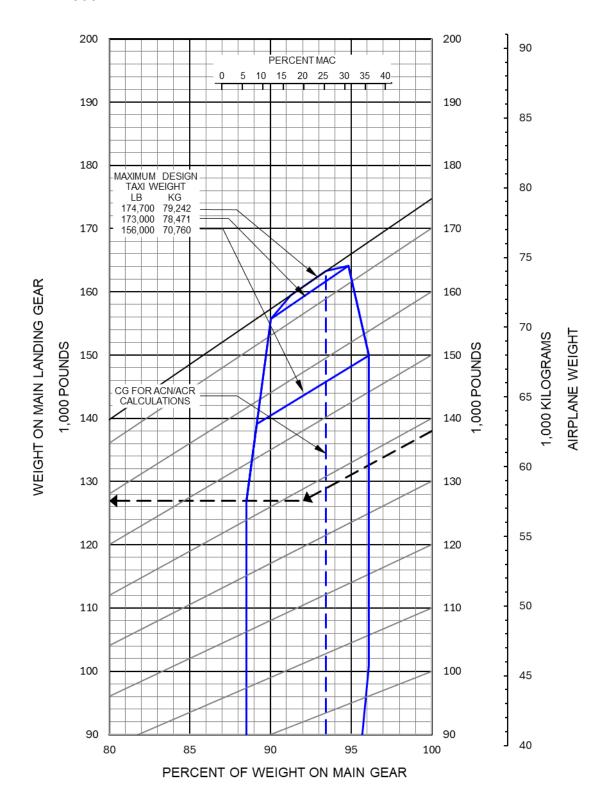



|                   |       |                                 | $V_{NG}$                      |                                                     | V <sub>MG</sub> PER                           | H PER STRUT                                          |                                     |
|-------------------|-------|---------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------|
| AIRPLANE<br>MODEL | UNITS | MAX<br>DESIGN<br>TAXI<br>WEIGHT | STATIC AT<br>MOST FWD<br>C.G. | STATIC +<br>BRAKING 10<br>FT/SEC <sup>2</sup> DECEL | STRUT AT<br>MAX LOAD<br>AT STATIC<br>AFT C.G. | STEADY<br>BRAKING<br>10 FT/SEC <sup>2</sup><br>DECEL | AT INSTANTANEOU S BRAKING (µ = 0.8) |
| 737 BBJ           | LB    | 171,500                         | 17,400                        | 29,400                                              | 78,700                                        | 26,600                                               | 62,900                              |
|                   | KG    | 77,800                          | 7,900                         | 13,340                                              | 35,700                                        | 12,100                                               | 28,550                              |
| 737 BBJ2          | LB    | 174,700                         | 15,100                        | 24,900                                              | 81,700                                        | 27,100                                               | 65,400                              |
|                   | KG    | 79,250                          | 6,850                         | 11,300                                              | 37,050                                        | 12,300                                               | 29,650                              |

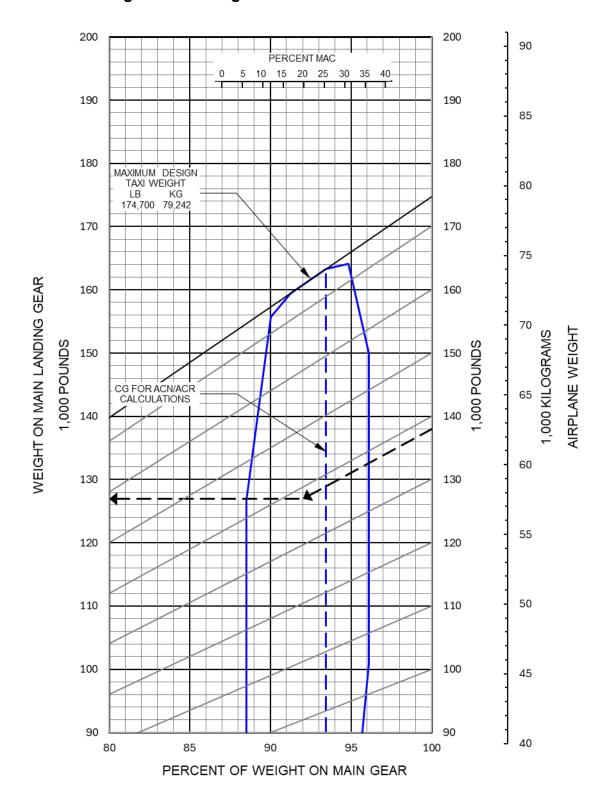
#### 7.4 LANDING GEAR LOADING ON PAVEMENT


### 7.4.1 Landing Gear Loading on Pavement: Model 737-600

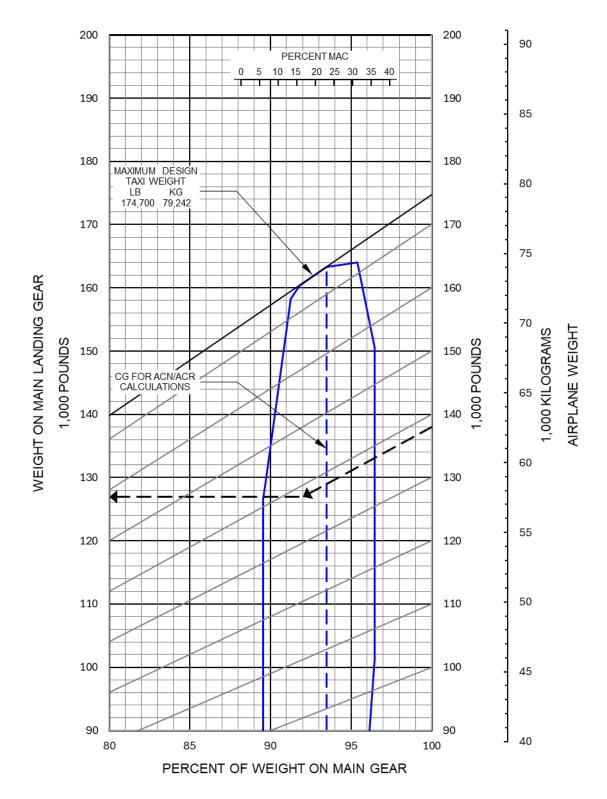



### 7.4.2 Landing Gear Loading on Pavement: Model 737-700, -700W

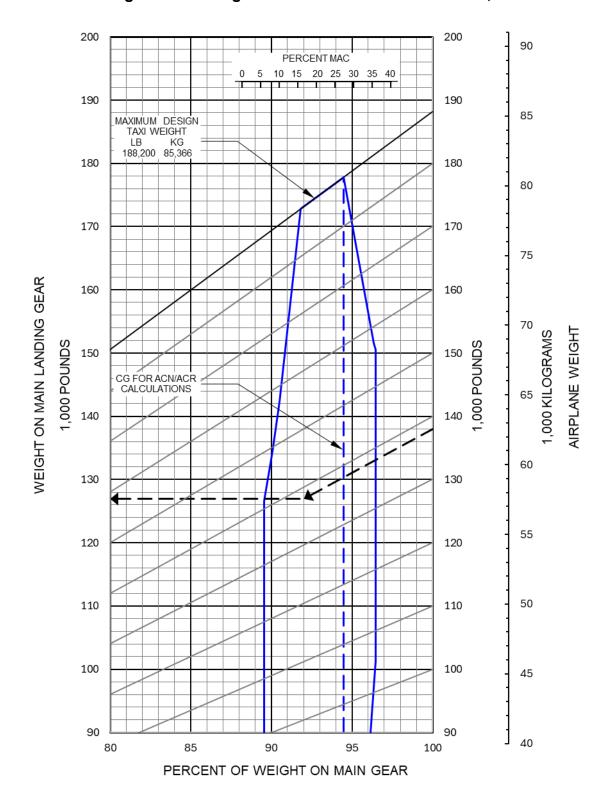



### 7.4.3 Landing Gear Loading on Pavement: Model 737 BBJ1




## 7.4.4 Landing Gear Loading on Pavement: Model 737-800, -800W, -800BCF




### 7.4.5 Landing Gear Loading on Pavement: Model 737 BBJ2



### 7.4.6 Landing Gear Loading on Pavement: Model 737-900, -900W

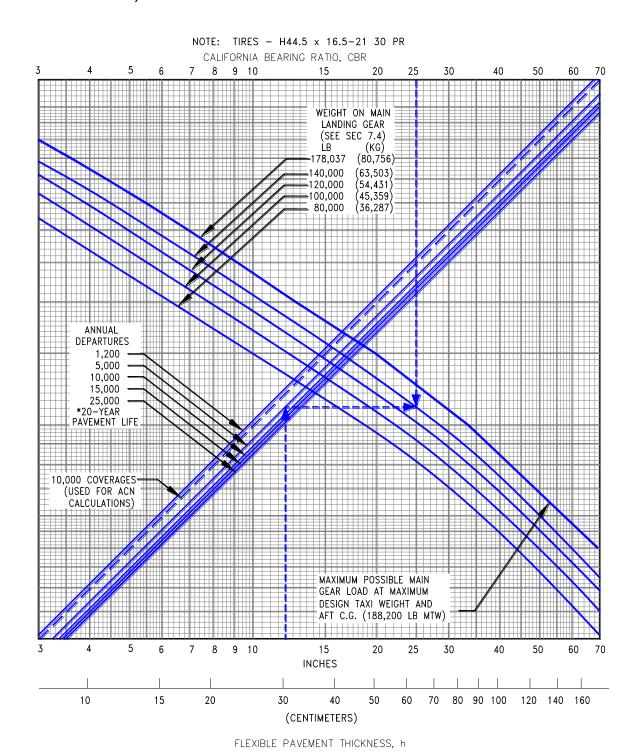


### 7.4.7 Landing Gear Loading on Pavement: Model 737-900ER, -900ERW



### 7.5 FLEXIBLE PAVEMENT REQUIREMENTS - U.S. ARMY CORPS OF ENGINEERS METHOD S-77-1 AND FAA DESIGN METHOD

The following flexible-pavement design chart presents the data of five incremental maingear loads at the minimum tire pressure required at the maximum design taxi weight.


In the example shown in the next page, for a CBR of 25 and an annual departure level of 10,000, the required flexible pavement thickness for an airplane with a main gear loading of 85,000 pounds is 8.2 inches. Similar examples are shown in succeeding charts.

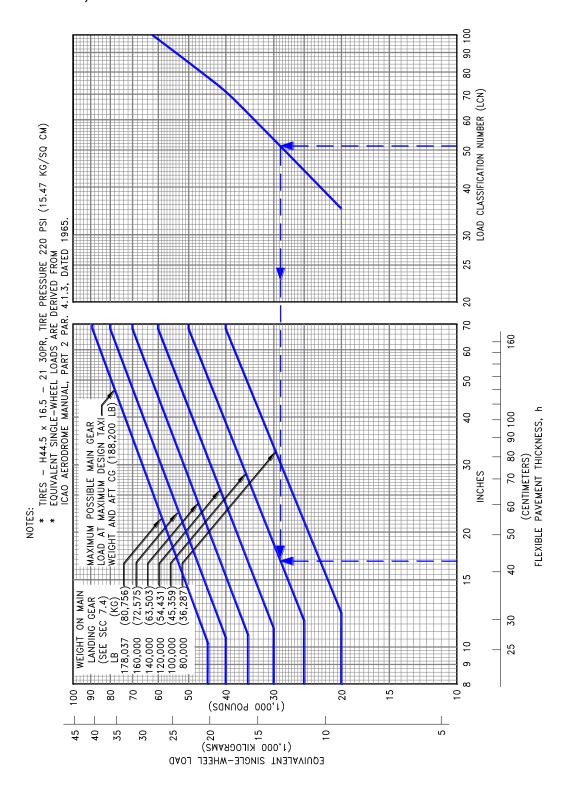
The line showing 10,000 coverages is used for ACN calculations (see Section 7.10).

The FAA design method uses a similar procedure using total airplane weight instead of weight on the main landing gears. The equivalent main gear loads for a given airplane weight could be calculated from Section 7.4. For the flexible pavement design refer to the FAA AC 150/5320-6 "Airport Pavement Design and Evaluation" and pavement design program FAARFIELD. Both are available on the FAA website:

FAA AC 150/5320-6F: https://www.faa.gov/airports/resources/advisory\_circulars/FAARFIELD: https://www.faa.gov/airports/engineering/design\_software/

# 7.5.1 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets, BBJ1, BBJ2




#### 7.6 FLEXIBLE PAVEMENT REQUIREMENTS - LCN CONVERSION

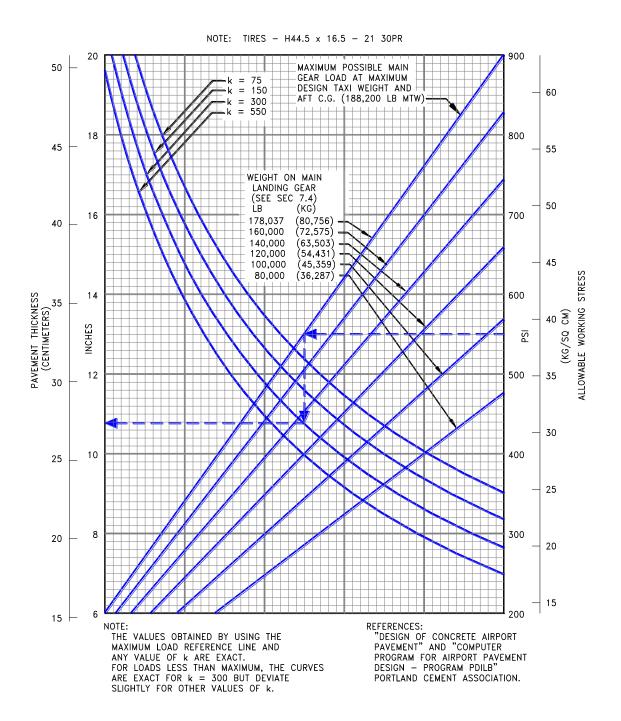
To determine the airplane weight that can be accommodated on a particular flexible pavement, both the Load Classification Number (LCN) of the pavement and the thickness must be known.

In the example shown on the next page, flexible pavement thickness is shown at 23.75 in. with an LCN of 42. For these conditions, the apparent maximum allowable weight permissible on the main landing gear is 85,000 lb for an airplane with 138 to 146-psi main gear tires. Similar examples are shown in succeeding charts.

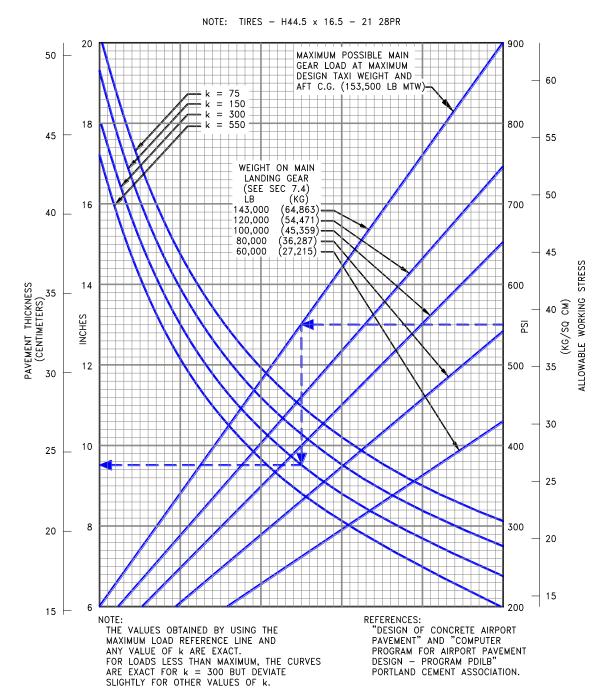
Note: If the resultant aircraft LCN is not more that 10% above the published pavement LCN, the bearing strength of the pavement can be considered sufficient for unlimited use by the airplane. The figure 10% has been chosen as representing the lowest degree of variation in LCN that is significant (reference: <a href="ICAO">ICAO</a> <a href="Aerodrome Manual">Aerodrome Manual</a>, Part 2, "Aerodrome Physical Characteristics," Chapter 4, Paragraph 4.1.5.7v, 2nd Edition dated 1965).

# 7.6.1 Flexible Pavement Requirements - LCN Method: Model 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets, BBJ1, BBJ2




### 7.7 RIGID PAVEMENT REQUIREMENTS - PORTLAND CEMENT ASSOCIATION DESIGN METHOD

The Portland Cement Association method of calculating rigid pavement requirements is based on the computerized version of "Design of Concrete Airport Pavement" (Portland Cement Association, 1965) as described in XP6705-2, "Computer Program for Airport Pavement Design" by Robert G. Packard, Portland Cement Association, 1968.


The following rigid pavement design chart presents the data for five incremental main gear loads at the minimum tire pressure required at the maximum design taxi weight.

In the example shown on the next page, for an allowable working stress of 400 psi, a main gear load of 70,000 lb, and a subgrade strength (k) of 300, the required rigid pavement thickness is 7.7 in. Similar examples are shown in succeeding charts.

# 7.7.1 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-600, -700, -800, -800BCF, -900, -900ER, With and Without Winglets, BBJ1, BBJ2



# 7.7.2 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-600, -700 (Optional Tires)

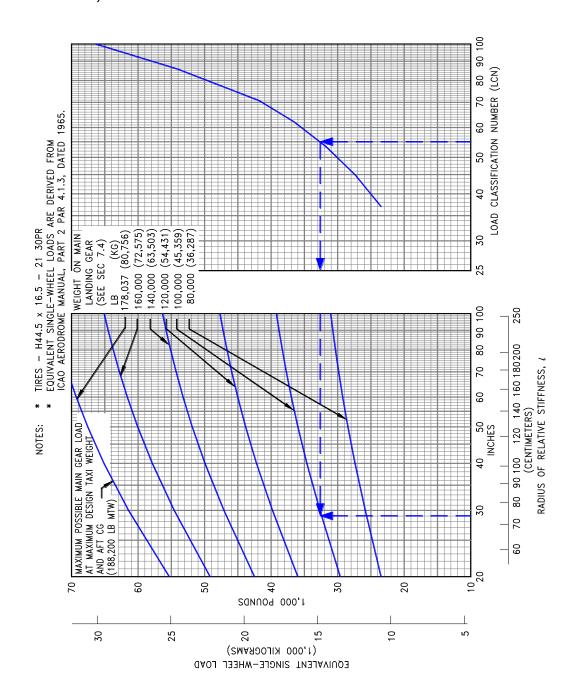


#### 7.8 RIGID PAVEMENT REQUIREMENTS - LCN CONVERSION

To determine the airplane weight that can be accommodated on a particular rigid pavement, both the LCN of the pavement and the radius of relative stiffness () of the pavement must be known.

In the examples shown in Section 7.8.2 for a rigid pavement with a radius of relative stiffness of 47 with an LCN of 91, and 7.8.3 for a rigid pavement with a radius of relative stiffness of 47 with an LCN of 87, the apparent maximum allowable weight permissible on the main landing gear is 600,000 lb (272,155 kg) for an airplane with 221-psi (15.54 kg/cm<sup>2</sup>) main tires.

Note: If the resultant aircraft LCN is not more that 10% above the published pavement LCN, the bearing strength of the pavement can be considered sufficient for unlimited use by the airplane. The figure 10% has been chosen as representing the lowest degree of variation in LCN that is significant (reference: <a href="ICAO">ICAO</a> <a href="Manual Part 2">Aerodrome Design Manual</a>, Part 2, "Aerodrome Physical Characteristics," Chapter 4, Paragraph 4.1.5.7v, 2nd Edition dated 1965).


### 7.8.1 Radius of Relative Stiffness (Reference: Portland Cement Association)

RADIUS OF RELATIVE STIFFNESS (A)
VALUES IN INCHES

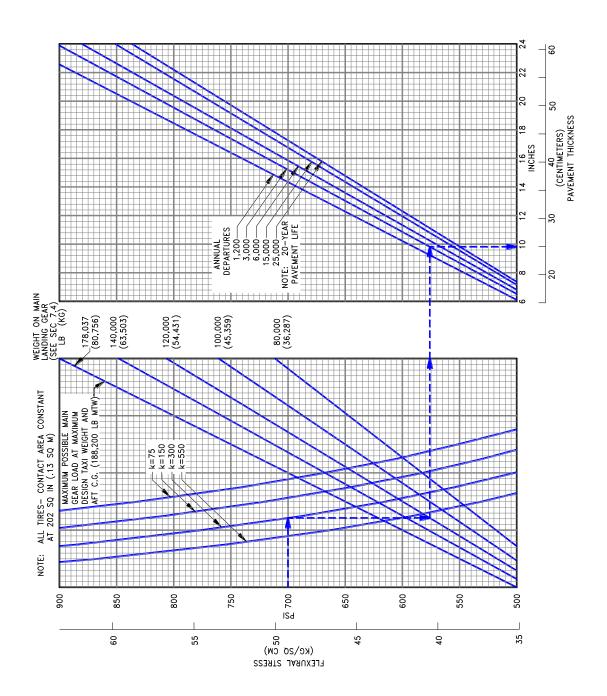
WHERE: E = YOUNG'S MODULUS OF ELASTICITY = 4 x  $10^6$  psi k = SUBGRADE MODULUS, LB PER CU IN d = RIGID PAVEMENT THICKNESS, IN  $\mu$  = POISSON'S RATIO = 0.15

|      | k =   | k =   | k =   | k =   | k =   | k =   | k =   | k =   | k =   | k =   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| d    | 75    | 100   | 150   | 200   | 250   | 300   | 350   | 400   | 500   | 550   |
| 6.0  | 31.48 | 29.29 | 26.47 | 24.63 | 23.30 | 22.26 | 21.42 | 20.71 | 19.59 | 19.13 |
| 6.5  | 33.42 | 31.10 | 28.11 | 26.16 | 24.74 | 23.63 | 22.74 | 21.99 | 20.80 | 20.31 |
| 7.0  | 35.33 | 32.88 | 29.71 | 27.65 | 26.15 | 24.99 | 24.04 | 23.25 | 21.99 | 21.47 |
| 7.5  | 37.21 | 34.63 | 31.29 | 29.12 | 27.54 | 26.31 | 25.32 | 24.49 | 23.16 | 22.61 |
| 8.0  | 39.06 | 36.35 | 32.84 | 30.56 | 28.91 | 27.62 | 26.57 | 25.70 | 24.31 | 23.73 |
| 8.5  | 40.87 | 38.04 | 34.37 | 31.99 | 30.25 | 28.90 | 27.81 | 26.90 | 25.44 | 24.84 |
| 9.0  | 42.66 | 39.70 | 35.88 | 33.39 | 31.57 | 30.17 | 29.03 | 28.07 | 26.55 | 25.93 |
| 9.5  | 44.43 | 41.35 | 37.36 | 34.77 | 32.88 | 31.42 | 30.23 | 29.24 | 27.65 | 27.00 |
| 10.0 | 46.17 | 42.97 | 38.83 | 36.13 | 34.17 | 32.65 | 31.41 | 30.38 | 28.73 | 28.06 |
| 10.5 | 47.89 | 44.57 | 40.27 | 37.48 | 35.44 | 33.87 | 32.58 | 31.52 | 29.81 | 29.10 |
| 11.0 | 49.59 | 46.15 | 41.70 | 38.81 | 36.70 | 35.07 | 33.74 | 32.63 | 30.86 | 30.14 |
| 11.5 | 51.27 | 47.72 | 43.12 | 40.12 | 37.95 | 36.26 | 34.89 | 33.74 | 31.91 | 31.16 |
| 12.0 | 52.94 | 49.26 | 44.51 | 41.43 | 39.18 | 37.43 | 36.02 | 34.83 | 32.94 | 32.17 |
| 12.5 | 54.58 | 50.80 | 45.90 | 42.71 | 40.40 | 38.60 | 37.14 | 35.92 | 33.97 | 33.17 |
| 13.0 | 56.21 | 52.31 | 47.27 | 43.99 | 41.60 | 39.75 | 38.25 | 36.99 | 34.98 | 34.16 |
| 13.5 | 57.83 | 53.81 | 48.63 | 45.25 | 42.80 | 40.89 | 39.34 | 38.05 | 35.99 | 35.14 |
| 14.0 | 59.43 | 55.30 | 49.97 | 46.50 | 43.98 | 42.02 | 40.43 | 39.10 | 36.98 | 36.11 |
| 14.5 | 61.01 | 56.78 | 51.30 | 47.74 | 45.15 | 43.14 | 41.51 | 40.15 | 37.97 | 37.07 |
| 15.0 | 62.58 | 58.24 | 52.62 | 48.97 | 46.32 | 44.25 | 42.58 | 41.18 | 38.95 | 38.03 |
| 15.5 | 64.14 | 59.69 | 53.93 | 50.19 | 47.47 | 45.35 | 43.64 | 42.21 | 39.92 | 38.98 |
| 16.0 | 65.69 | 61.13 | 55.23 | 51.40 | 48.61 | 46.45 | 44.69 | 43.22 | 40.88 | 39.92 |
| 16.5 | 67.22 | 62.55 | 56.52 | 52.60 | 49.75 | 47.53 | 45.73 | 44.23 | 41.83 | 40.85 |
| 17.0 | 68.74 | 63.97 | 57.80 | 53.79 | 50.87 | 48.61 | 46.77 | 45.23 | 42.78 | 41.77 |
| 17.5 | 70.25 | 65.38 | 59.07 | 54.97 | 51.99 | 49.68 | 47.80 | 46.23 | 43.72 | 42.69 |
| 18.0 | 71.75 | 66.77 | 60.34 | 56.15 | 53.10 | 50.74 | 48.82 | 47.22 | 44.65 | 43.60 |
| 19.0 | 74.72 | 69.54 | 62.83 | 58.47 | 55.30 | 52.84 | 50.84 | 49.17 | 46.50 | 45.41 |
| 20.0 | 77.65 | 72.26 | 65.30 | 60.77 | 57.47 | 54.91 | 52.83 | 51.10 | 48.33 | 47.19 |
| 21.0 | 80.55 | 74.96 | 67.73 | 63.03 | 59.61 | 56.95 | 54.80 | 53.00 | 50.13 | 48.95 |
| 22.0 | 83.41 | 77.62 | 70.14 | 65.27 | 61.73 | 58.98 | 56.75 | 54.88 | 51.91 | 50.68 |
| 23.0 | 86.23 | 80.25 | 72.51 | 67.48 | 63.82 | 60.98 | 58.67 | 56.74 | 53.67 | 52.40 |
| 24.0 | 89.03 | 82.85 | 74.86 | 69.67 | 65.89 | 62.95 | 60.57 | 58.58 | 55.41 | 54.10 |
| 25.0 | 91.80 | 85.43 | 77.19 | 71.84 | 67.94 | 64.91 | 62.46 | 60.41 | 57.13 | 55.78 |

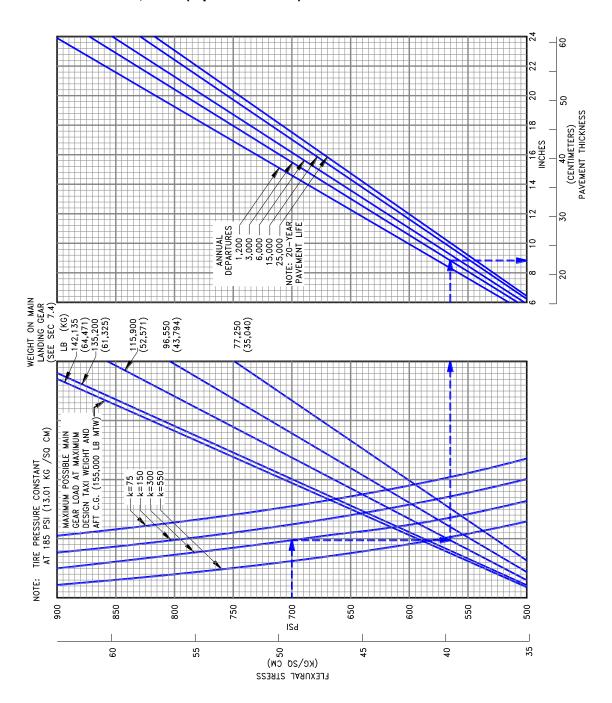
# 7.8.2 Rigid Pavement Requirements - LCN Conversion: Model 737-600, -700, -800, -800BCF, -900, -900ER With and Without Winglets, BBJ1, BBJ2



#### 7.9 Rigid Pavement Requirements - FAA Design Method


The following rigid pavement design charts present data on five incremental main gear loads at the minimum tire pressure required at the maximum design taxi weight.

In the example shown in the next page, the pavement flexural stress is shown at 700 psi, the subgrade strength is shown at k = 550, and the annual departure level is 6,000. For these conditions, the required rigid pavement thickness for an airplane with main gear load of 100,000 pounds is 10.4 inches. Similar examples are shown in succeeding charts.


For the rigid pavement design refer to the FAA AC 150/5320-6F "Airport Pavement Design and Evaluation" and pavement design program FAARFIELD. Both are available on the FAA website:

FAA AC 150/5320-6F: https://www.faa.gov/airports/resources/advisory\_circulars/FAARFIELD: https://www.faa.gov/airports/engineering/design\_software/

# 7.9.1 Rigid Pavement Requirements – FAA Design Method: Model 737-600, -700, -800, -800BCF, -900, -900ER With and Without Winglets, BBJ1, BBJ2



# 7.9.2 Rigid Pavement Requirements – FAA Design Method: Model 737-600, -700 (Optional Tires)



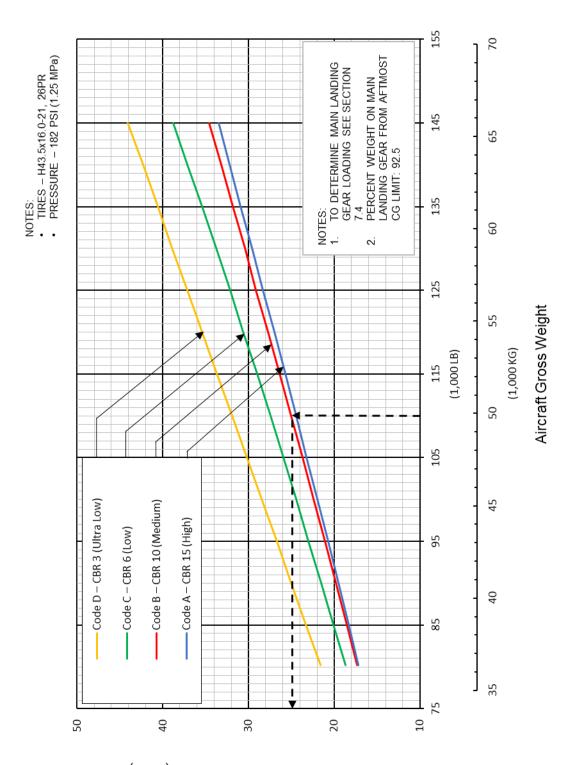
#### 7.10 ACN/PCN REPORTING SYSTEM - FLEXIBLE AND RIGID PAVEMENTS

To determine the ACN of an aircraft on flexible or rigid pavement, both the aircraft gross weight and the subgrade strength category must be known. The chart in Section 7.10.1 shows that for a 737-600 aircraft with gross weight of 110,000 lb on a medium strength subgrade (Code B), the flexible pavement ACN is 25. In Section 7.10.2, for the same aircraft weight and medium subgrade strength (Code B), the rigid pavement ACN is 28.7, which rounded to the nearest whole number is reported as 29.

The following table provides ACN data in tabular format similar to the one used by ICAO in Doc 9157-AN/901, <u>Aerodrome Design Manual</u>, Part 3, "Pavements," Second Edition, 1983. If the ACN for an intermediate weight between maximum taxi weight and the minimum weight specified in the table is required, Sections 7.10.1 through 7.10.16 should be consulted.

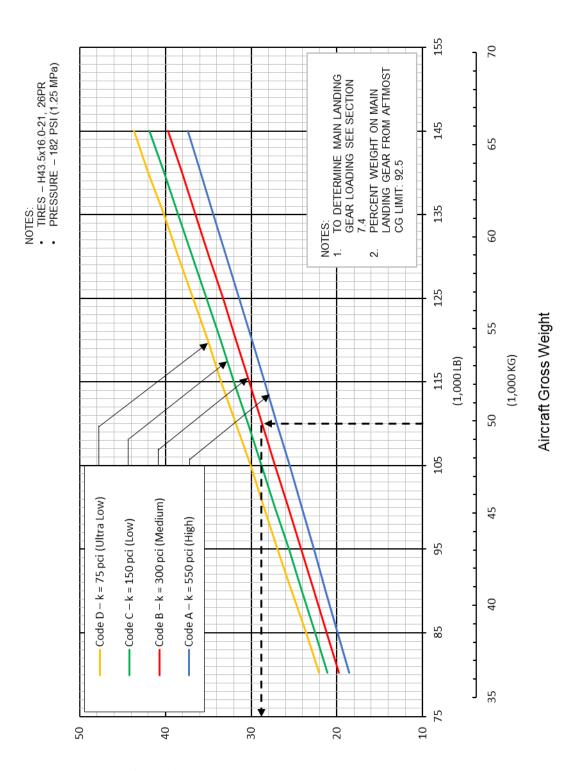
The ACN curve graphs were developed based on standard recommended practices from ICAO Annex 14, <u>Aerodromes</u>, Volume I, "Aerodrome Design and Operations," Ninth Edition, July 2022, and guidance material from ICAO Doc 9157-AN/901, <u>Aerodrome Design Manual</u>, Part 3, "Pavements," Second Edition, 1983. The Federal Aviation Administration has developed the "ICAO-ACN 1.0" program to calculate the ACN values for aircraft on flexible and rigid airport pavements, and it is available for download at:

https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/icao-acn-10.


**REV C** 

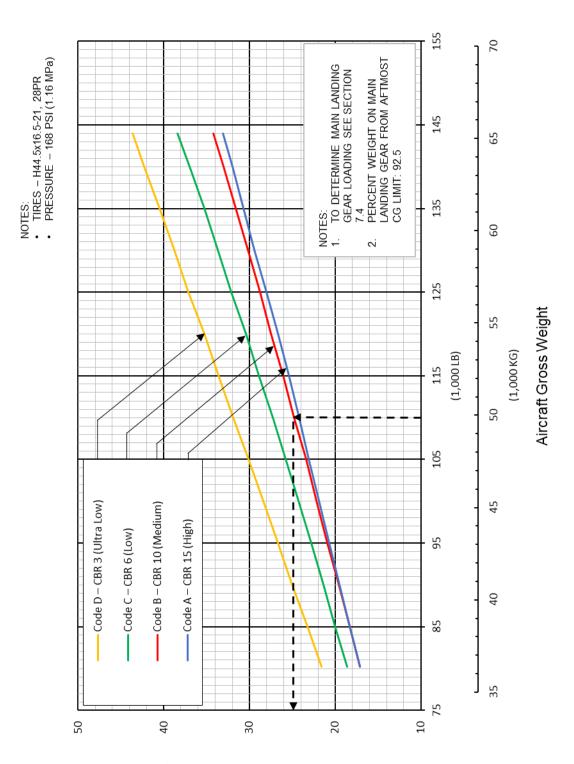
|                              |                                                             |                                          |                               |                | ACN FOR FLEXIBLE<br>PAVEMENT SUBGRADES<br>CBR |              |                    |                       | ACN FOR RIGID<br>PAVEMENT SUBGRADES<br>k, pci (MN/m³) |                     |                          |  |
|------------------------------|-------------------------------------------------------------|------------------------------------------|-------------------------------|----------------|-----------------------------------------------|--------------|--------------------|-----------------------|-------------------------------------------------------|---------------------|--------------------------|--|
| AIRCRAFT<br>TYPE             | MAXIMUM TAXI<br>WEIGHT<br>MINIMUM<br>WEIGHT *[1]<br>Ib (kg) | LOAD<br>ON<br>ONE<br>MAIN<br>GEAR<br>LEG | TIRE<br>PRESSURE<br>psi (MPa) | НІGН (A)<br>15 | MEDIUM (B)<br>10                              | LOW (C)<br>6 | ULTRA LOW (D)<br>3 | HIGH (A)<br>550 (150) | MEDIUM (B)<br>300 (80)                                | LOW (C)<br>150 (40) | ULTRA LOW (D)<br>75 (20) |  |
|                              | 145,000 (65,770)                                            | (70)                                     |                               | 34             | 35                                            | 39           | 44                 | 37                    | 40                                                    | 42                  | 44                       |  |
| 737-600                      | 80,200 (36,378)                                             | 46.25                                    | 182 (1.25)                    | 17             | 17                                            | 19           | 22                 | 19                    | 20                                                    | 21                  | 22                       |  |
| 737-600                      | 144,000 (65,317)                                            | 46.25                                    | 168 (1.16)                    | 33             | 34                                            | 38           | 44                 | 36                    | 39                                                    | 41                  | 43                       |  |
| (OPTIONAL<br>TIRE)           | 80,200 (36,378)                                             |                                          |                               | 17             | 17                                            | 19           | 22                 | 18                    | 19                                                    | 21                  | 22                       |  |
| THE)                         | 155,000 (70,306)                                            | 45.78                                    | 197 (1.36)                    | 36             | 38                                            | 42           | 47                 | 41                    | 43                                                    | 46                  | 47                       |  |
| 737-700                      | 83,000 (37,648)                                             |                                          |                               | 18             | 18                                            | 19           | 22                 | 20                    | 21                                                    | 22                  | 23                       |  |
| 737-700                      | 155,000 (70,306)                                            | 45.78                                    | 179 (1.23)                    | 36             | 37                                            | 42           | 47                 | 40                    | 42                                                    | 45                  | 47                       |  |
| (OPTIONAL<br>TIRE)           | 83,000 (37,648)                                             |                                          |                               | 18             | 18                                            | 19           | 22                 | 19                    | 20                                                    | 22                  | 23                       |  |
| ,                            | 171,500 (77,791)                                            | 45.80                                    | 196 (1.35)                    | 41             | 43                                            | 48           | 53                 | 46                    | 49                                                    | 51                  | 53                       |  |
| 737 BBJ1                     | 92,345 (41,886)                                             |                                          |                               | 20             | 20                                            | 22           | 26                 | 22                    | 24                                                    | 25                  | 26                       |  |
| 737-800,<br>-800BCF,<br>BBJ2 | 174,700 (79,242)                                            | 46.73                                    | 204 (1.41)                    | 43             | 45                                            | 50           | 55                 | 49                    | 52                                                    | 54                  | 56                       |  |
|                              | 80,800 (36,650)                                             |                                          |                               | 18             | 18                                            | 19           | 22                 | 20                    | 21                                                    | 22                  | 23                       |  |
| 737-900                      | 174,700 (79,242)                                            | 46.74                                    | 204 (1.41)                    | 43             | 45                                            | 50           | 55                 | 49                    | 52                                                    | 54                  | 56                       |  |
|                              | 94,580 (42,900)                                             |                                          |                               | 21             | 22                                            | 23           | 27                 | 24                    | 25                                                    | 27                  | 28                       |  |
| 737-900ER                    | 188,200 (85,366)                                            | 47.04                                    | 220 (1.52)                    | 48             | 51                                            | 56           | 61                 | 56                    | 58                                                    | 61                  | 63                       |  |
|                              | 98,495 (44,676)                                             | 47.24                                    |                               | 23             | 23                                            | 25           | 29                 | 26                    | 27                                                    | 29                  | 30                       |  |

<sup>\*[1]</sup> Minimum weight used solely as a baseline for ACN curve generation.


NOTE: VALUES FOR 737-700, -800, -900, -900ER ARE VALID FOR MODELS WITH AND WITHOUT WINGLETS.

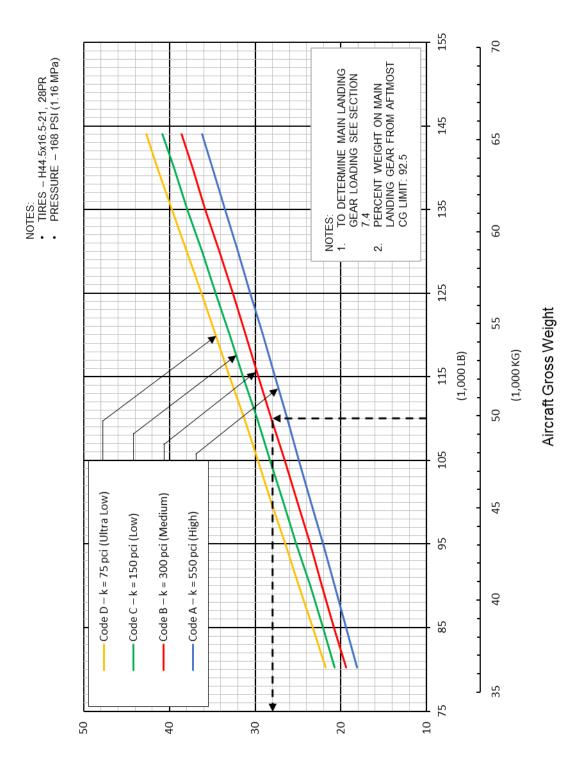
#### 7.10.1 Aircraft Classification Number - Flexible Pavement: Model 737-600




Aircraft Classification Number (ACN)

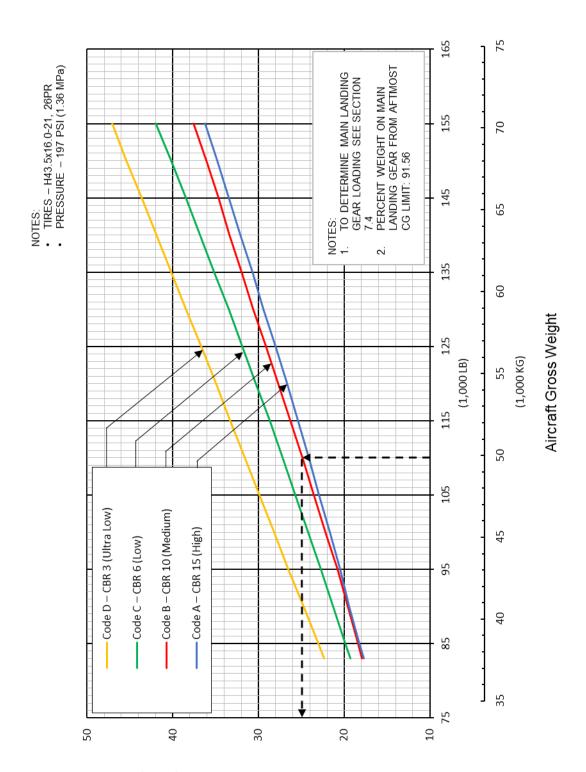
#### 7.10.2 Aircraft Classification Number - Rigid Pavement: Model 737-600




Aircraft Classification Number (ACN)

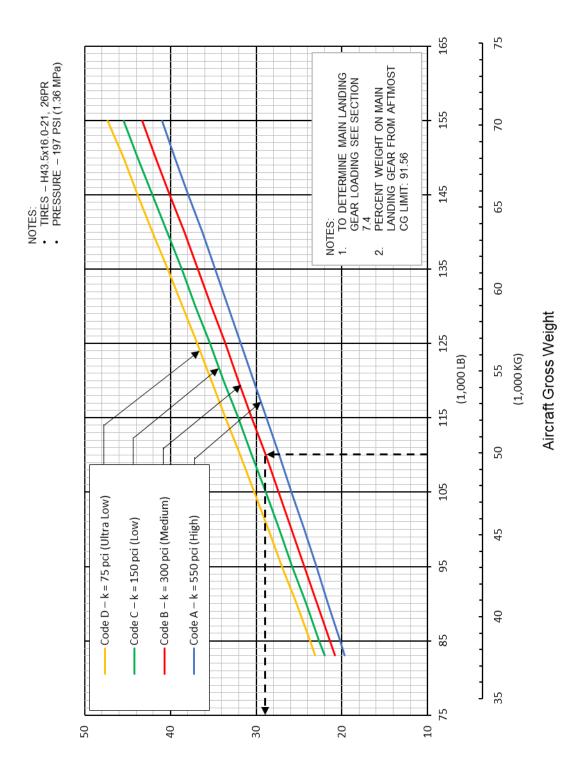
### 7.10.3 Aircraft Classification Number - Flexible Pavement: Model 737-600 (Optional Tires)




Aircraft Classification Number (ACN)

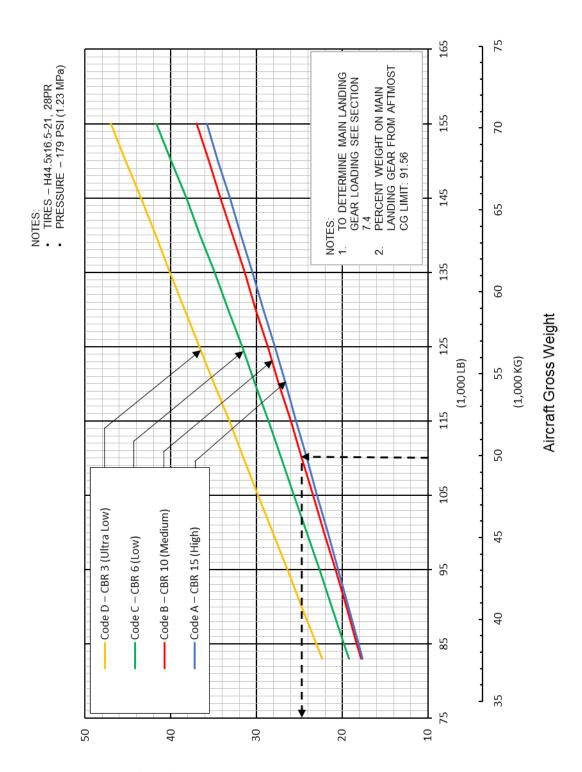
# 7.10.4 Aircraft Classification Number - Rigid Pavement: Model 737-600 (Optional Tires)




Aircraft Classification Number (ACN)

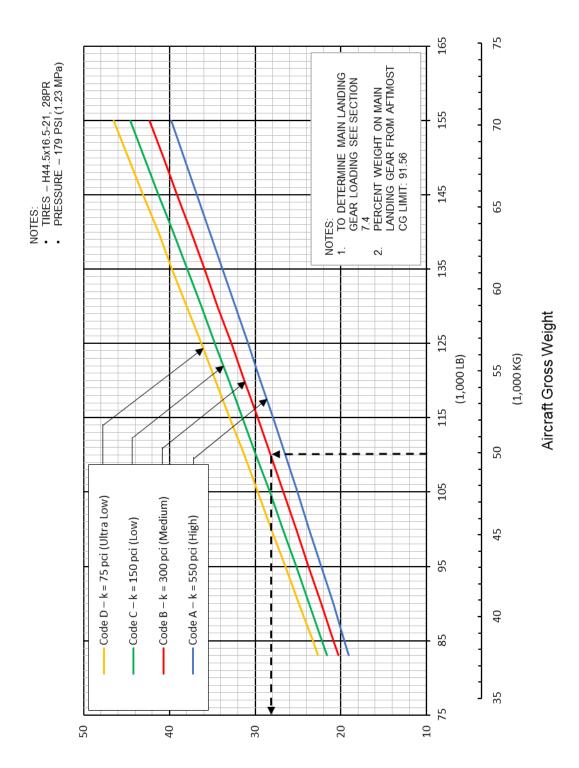
### 7.10.5 Aircraft Classification Number - Flexible Pavement: Model 737-700, -700W




Aircraft Classification Number (ACN)

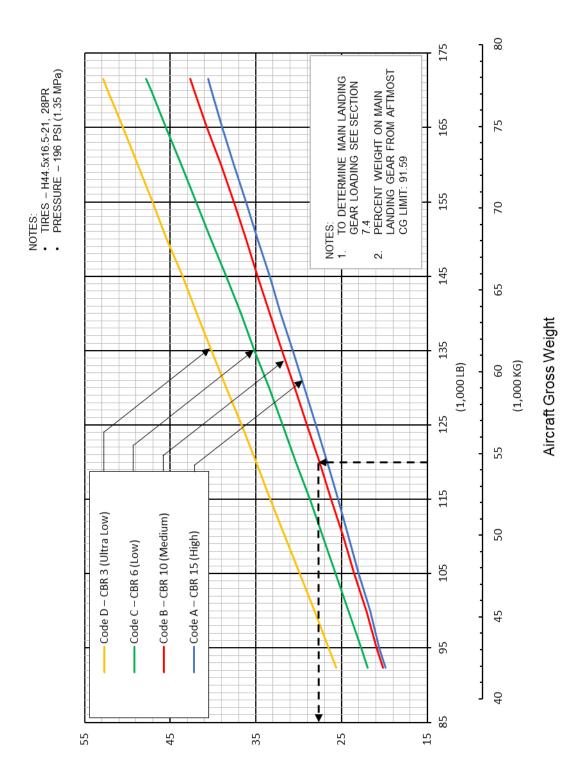
# 7.10.6 Aircraft Classification Number - Rigid Pavement: Model 737-700, - 700W




Aircraft Classification Number (ACN)

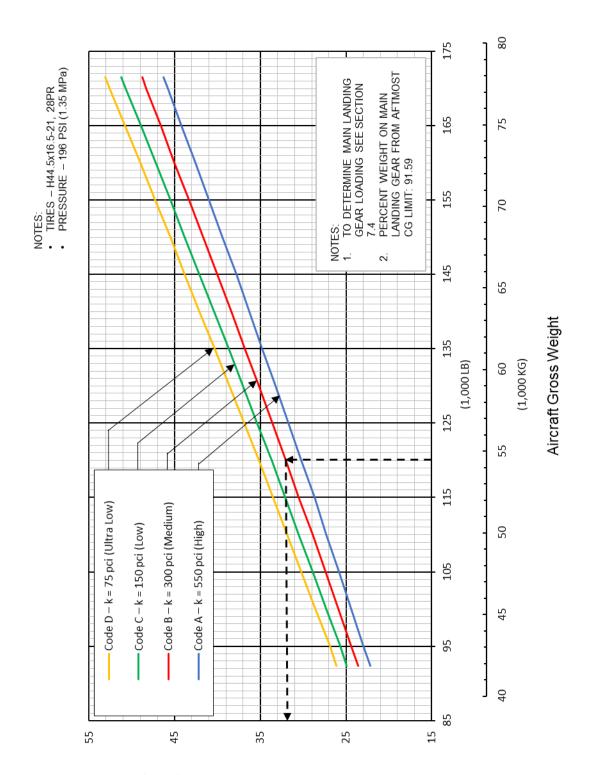
# 7.10.7 Aircraft Classification Number - Flexible Pavement: Model 737-700, -700W (Optional Tires)




Aircraft Classification Number (ACN)

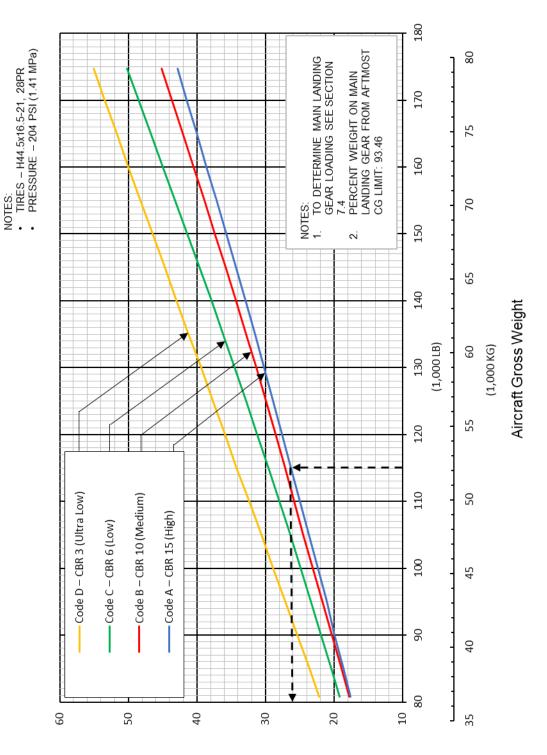
# 7.10.8 Aircraft Classification Number - Rigid Pavement: Model 737-700, - 700W (Optional Tires)




Aircraft Classification Number (ACN)

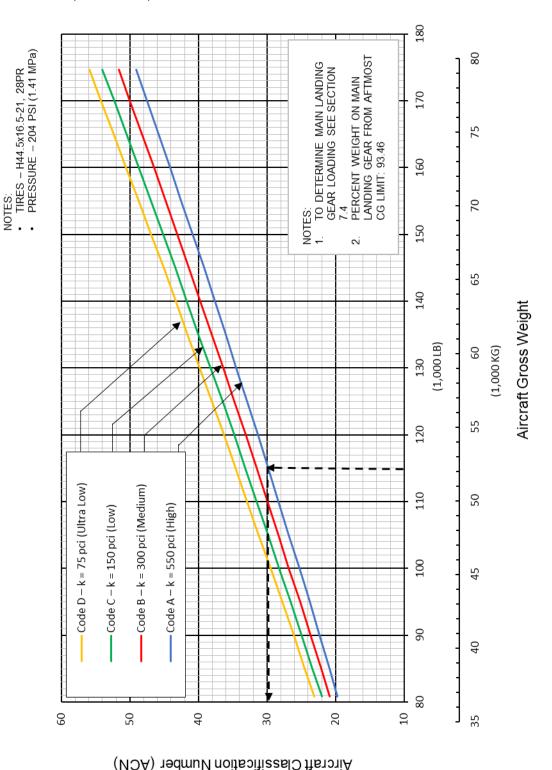
### 7.10.9 Aircraft Classification Number - Flexible Pavement: Model 737 BBJ1




Aircraft Classification Number (ACN)

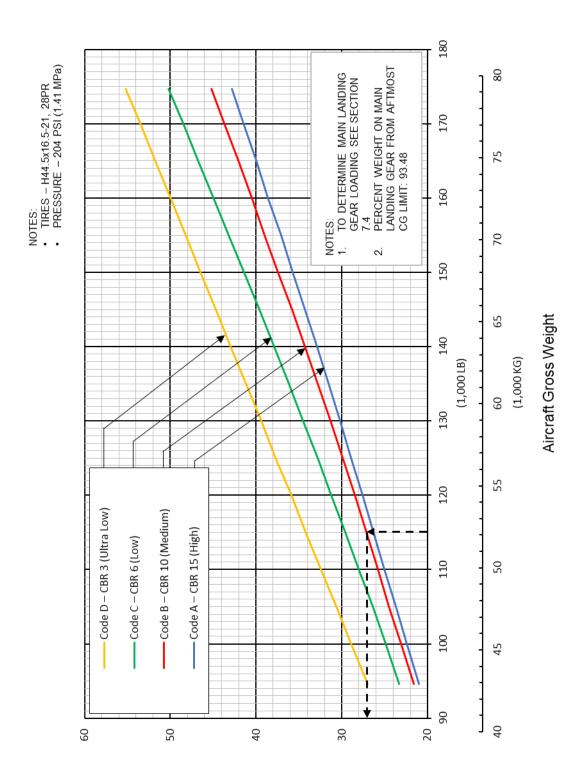
#### 7.10.10 Aircraft Classification Number - Rigid Pavement: Model 737 BBJ1




Aircraft Classification Number (ACM)

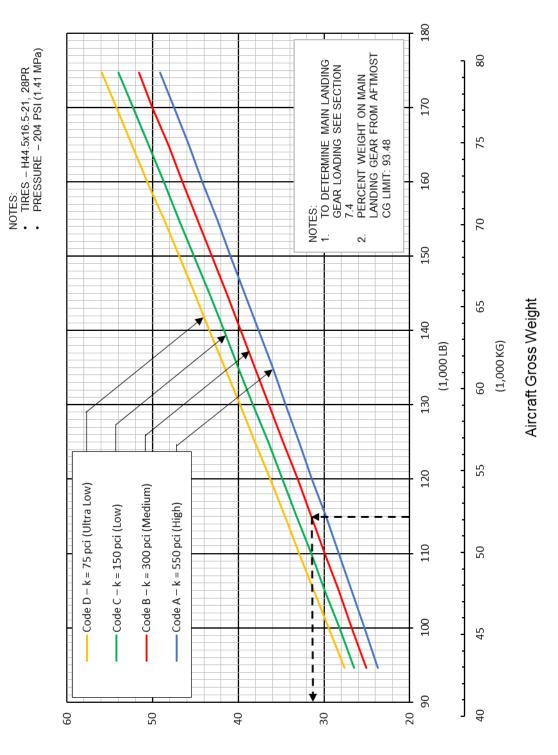
# 7.10.11 Aircraft Classification Number - Flexible Pavement: Model 737-800, -800W, -800BCF, BBJ2




Aircraft Classification Number (ACN)

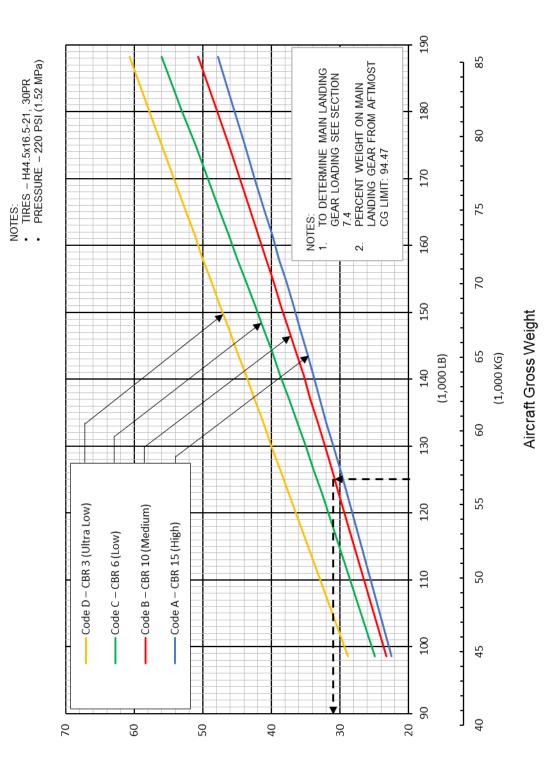
# 7.10.12 Aircraft Classification Number - Rigid Pavement: Model 737-800, - 800W, -800BCF, BBJ2




D6-58325-7

### 7.10.13 Aircraft Classification Number - Flexible Pavement: Model 737-900, -900W




Aircraft Classification Number (ACN)

# 7.10.14 Aircraft Classification Number - Rigid Pavement: Model 737-900, - 900W



Aircraft Classification Number (ACN)

### 7.10.15 Aircraft Classification Number - Flexible Pavement: Model 737-900ER, -900ERW



Aircraft Classification Number (ACM)

# 7.10.16 Aircraft Classification Number - Rigid Pavement: Model 737-900ER, -900ERW



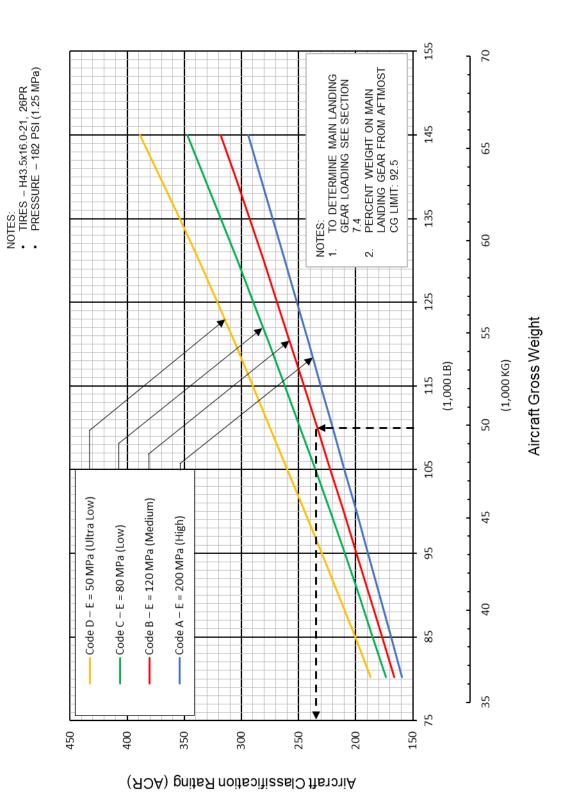
Aircraft Classification Number (ACN)

#### 7.11 ACR/PCR REPORTING SYSTEM – FLEXIBLE AND RIGID PAVEMENTS

To determine the ACR of an aircraft on flexible or rigid pavement, both the aircraft gross weight and the subgrade strength category must be known. The chart in Section 7.11.1 shows that for a 737-600 aircraft with gross weight of 110,000 lb on a medium strength subgrade (Code B), the flexible pavement ACR is 234, which rounded to the nearest multiple of ten is reported as 230. In Section 7.11.2, for the same aircraft weight and medium subgrade strength (Code B), the rigid pavement ACR is 291, which rounded to the nearest multiple of ten is reported as 290.

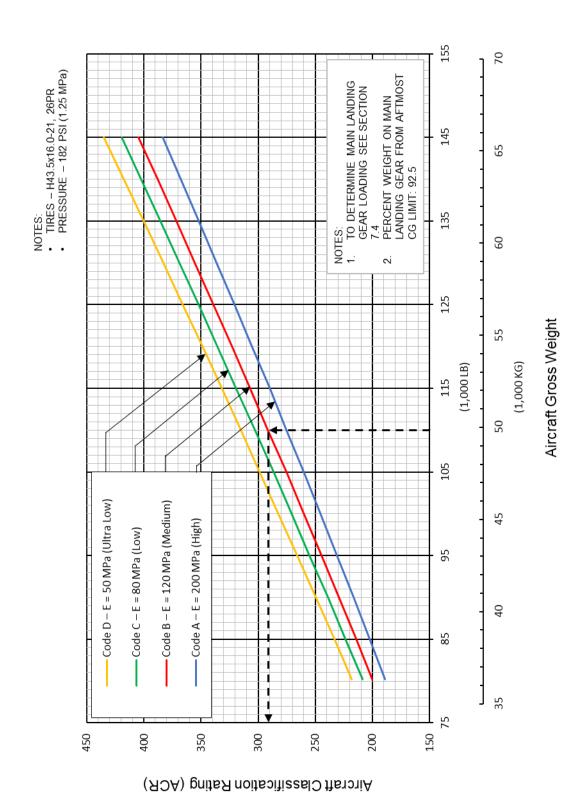
The following table provides ACR data in tabular format. If the ACR for an intermediate weight between maximum taxi weight and the minimum weight specified in the table is required, Sections 7.11.1 through 7.11.16 can be consulted.

The ACR curve graphs were developed based on standard recommended practices from ICAO Annex 14, <u>Aerodromes</u>, Volume I, "Aerodrome Design and Operations," Ninth Edition, July 2022, and guidance material from ICAO Doc 9157-AN/901, <u>Aerodrome Design Manual</u>, Part 3, "Pavements," Third Edition, 2022. The Federal Aviation Administration has developed the "ICAO-ACR 1.4" program to calculate the ACR values for aircraft on flexible and rigid airport pavements", and it is available for download at:

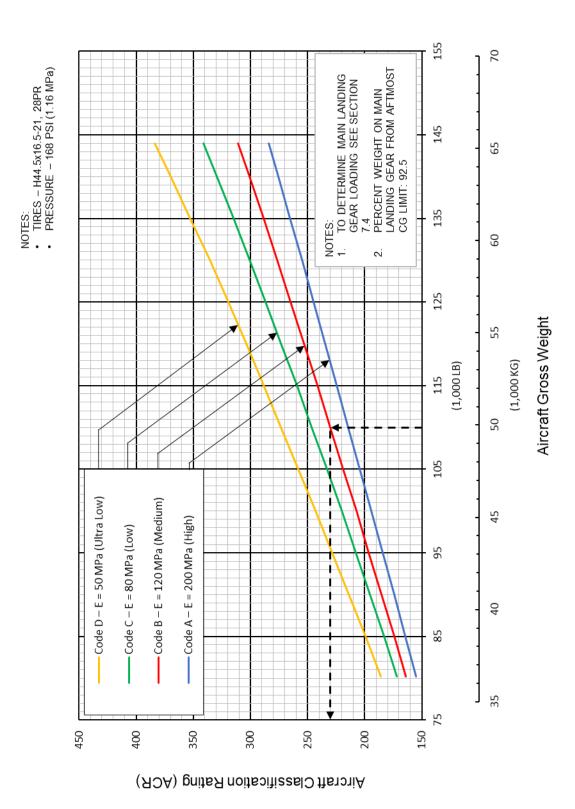

https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/ICAO-ACR-14.

|                              |                                                  | ACR FOR FLEXIBLE<br>PAVEMENT SUBGRADES   |                               |                         |                           | ACR FOR RIGID<br>PAVEMENT SUBGRADES |                             |                         |                           |                       |                             |
|------------------------------|--------------------------------------------------|------------------------------------------|-------------------------------|-------------------------|---------------------------|-------------------------------------|-----------------------------|-------------------------|---------------------------|-----------------------|-----------------------------|
| AIRCRAFT<br>TYPE             | MAXIMUM TAXI<br>WEIGHT<br>MINIMUM<br>WEIGHT *[1] | LOAD<br>ON<br>ONE<br>MAIN<br>GEAR<br>LEG | TIRE<br>PRESSURE<br>psi (MPa) | HIGH (A)<br>E = 200 MPa | MEDIUM (B)<br>E = 120 MPa | LOW (C)<br>E = 80 MPa               | ULTRA LOW (D)<br>E = 50 MPa | HIGH (A)<br>E = 200 MPa | MEDIUM (B)<br>E = 120 MPa | LOW (C)<br>E = 80 MPa | ULTRA LOW (D)<br>E = 50 MPa |
|                              | lb (kg)                                          | (%)                                      |                               |                         |                           |                                     | <b>1</b>                    |                         |                           |                       | ח                           |
| 737-600                      | 145,000 (65,770)                                 | 46.25                                    | 182 (1.25)                    | 290                     | 320                       | 350                                 | 390                         | 380                     | 400                       | 420                   | 430                         |
| 737-000                      | 80,200 (36,378)                                  |                                          |                               | 160                     | 170                       | 170                                 | 190                         | 190                     | 200                       | 210                   | 220                         |
| 737-600<br>(OPTIONAL         | 144,000 (65,317)                                 | 46.25                                    | 168 (1.16)                    | 280                     | 310                       | 340                                 | 380                         | 370                     | 390                       | 410                   | 430                         |
| TIRE)                        | 80,200 (36,378)                                  |                                          |                               | 160                     | 160                       | 170                                 | 190                         | 180                     | 200                       | 210                   | 220                         |
| 707 700                      | 155,000 (70,306)                                 | 45.78                                    | 197 (1.36)                    | 320                     | 340                       | 380                                 | 420                         | 420                     | 440                       | 450                   | 470                         |
| 737-700                      | 83,000 (37,648)                                  |                                          |                               | 170                     | 170                       | 180                                 | 190                         | 200                     | 210                       | 220                   | 230                         |
| 737-700                      | 155,000 (70,306)                                 | 45.78                                    | 179 (1.23)                    | 310                     | 340                       | 370                                 | 420                         | 410                     | 430                       | 450                   | 460                         |
| (OPTIONAL<br>TIRE)           | 83,000 (37,648)                                  |                                          |                               | 160                     | 170                       | 180                                 | 190                         | 190                     | 210                       | 210                   | 220                         |
| 707 DD 14                    | 171,500 (77,791)                                 | 45.80                                    | 196 (1.35)                    | 360                     | 390                       | 420                                 | 480                         | 470                     | 500                       | 510                   | 530                         |
| 737 BBJ1                     | 92,345 (41,886)                                  |                                          |                               | 190                     | 190                       | 200                                 | 220                         | 230                     | 240                       | 250                   | 260                         |
| 737-800,<br>-800BCF,<br>BBJ2 | 174,700 (79,242)                                 | 46.73                                    | 204 (1.41)                    | 380                     | 410                       | 450                                 | 510                         | 500                     | 520                       | 540                   | 560                         |
|                              | 80,800 (36,650)                                  |                                          |                               | 170                     | 170                       | 180                                 | 190                         | 200                     | 210                       | 220                   | 230                         |
| 737-900                      | 174,700 (79,242)                                 | 40.7.                                    | 204 (1.41)                    | 380                     | 410                       | 450                                 | 510                         | 500                     | 520                       | 540                   | 560                         |
|                              | 94,580 (42,900)                                  | 46.74                                    |                               | 200                     | 200                       | 210                                 | 230                         | 240                     | 250                       | 260                   | 270                         |
| 737-900ER                    | 188,200 (85,366)                                 | 47.24                                    | 220 (1.52)                    | 420                     | 460                       | 500                                 | 570                         | 560                     | 590                       | 600                   | 620                         |
|                              | 98,495 (44,676)                                  |                                          |                               | 210                     | 220                       | 230                                 | 250                         | 260                     | 270                       | 280                   | 290                         |

<sup>\*[1]</sup> Minimum weight used solely as a baseline for ACR curve generation.

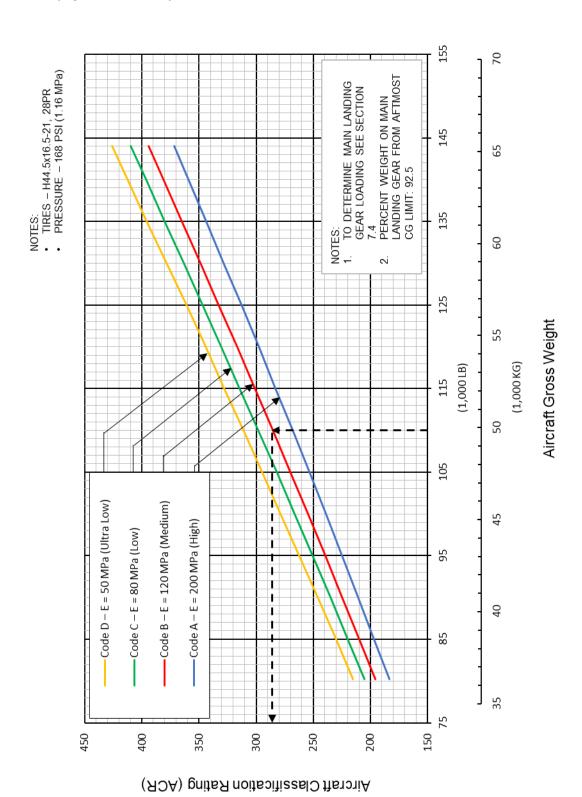

NOTE: VALUES FOR 737-700, -800, -900, -900ER ARE VALID FOR MODELS WITH AND WITHOUT WINGLETS.

#### 7.11.1 Aircraft Classification Rating - Flexible Pavement: Model 737-600

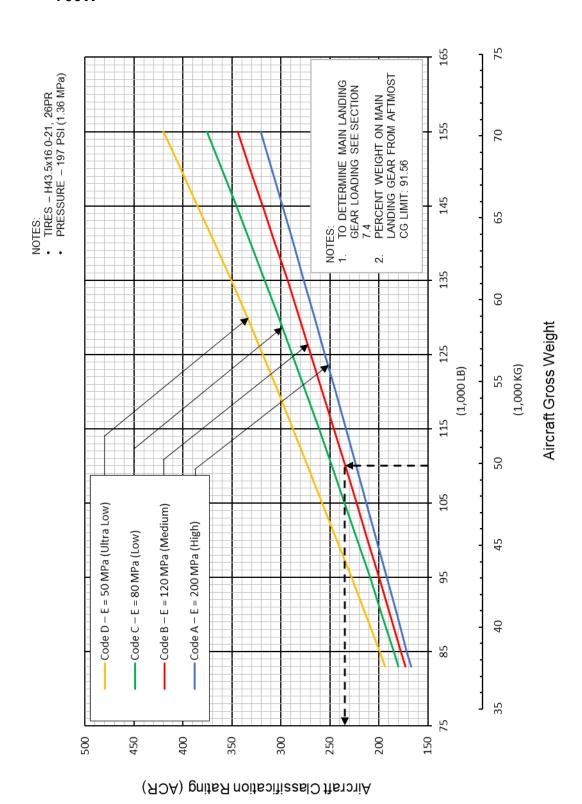



D6-58325-7

#### 7.11.2 Aircraft Classification Rating - Rigid Pavement: Model 737-600




# 7.11.3 Aircraft Classification Rating - Flexible Pavement: Model 737-600 (Optional Tires)

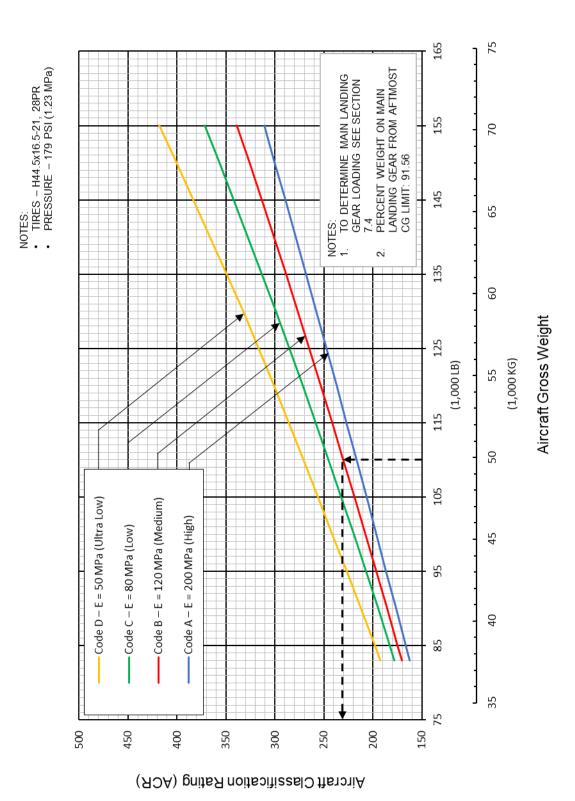



D6-58325-7

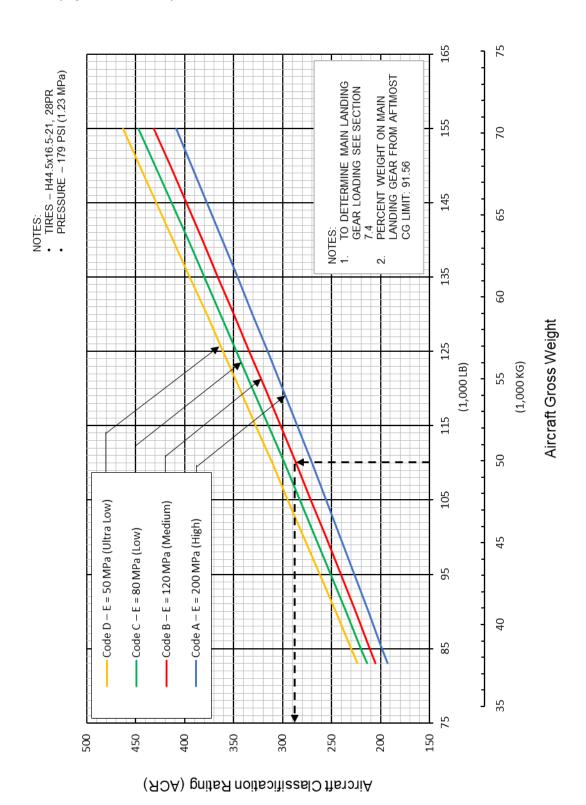
# 7.11.4 Aircraft Classification Rating - Rigid Pavement: Model 737-600 (Optional Tires)




### 7.11.5 Aircraft Classification Rating - Flexible Pavement: Model 737-700, - 700W

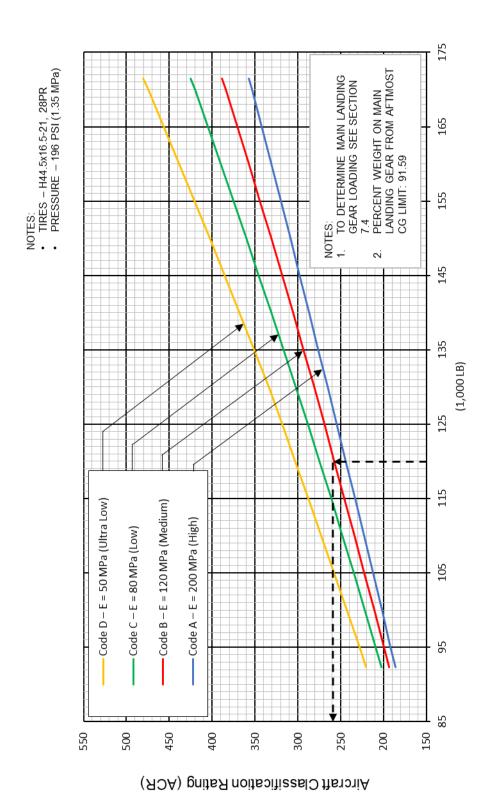



D6-58325-7

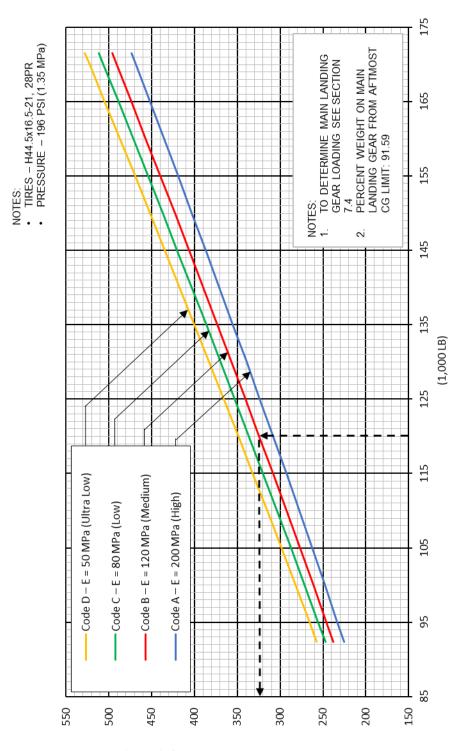

# 7.11.6 Aircraft Classification Rating - Rigid Pavement: Model 737-700, - 700W



# 7.11.7 Aircraft Classification Rating - Flexible Pavement: Model 737-700 (Optional Tires)

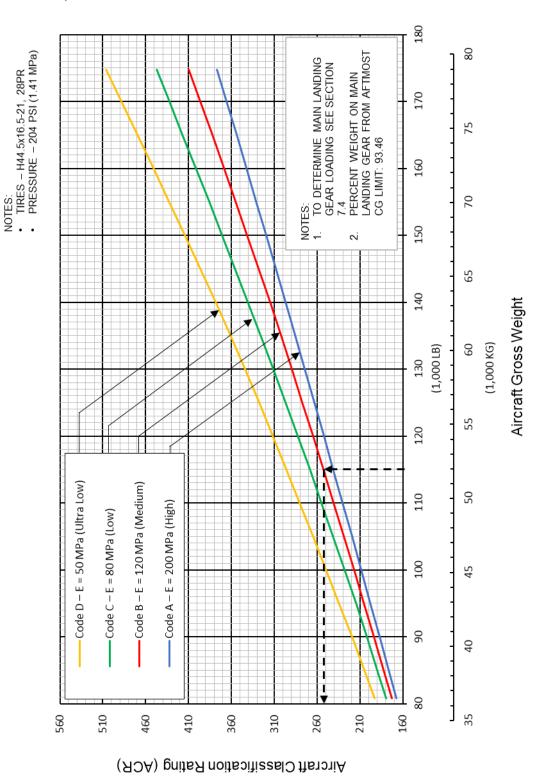



# 7.11.8 Aircraft Classification Rating - Rigid Pavement: Model 737-700 (Optional Tires)

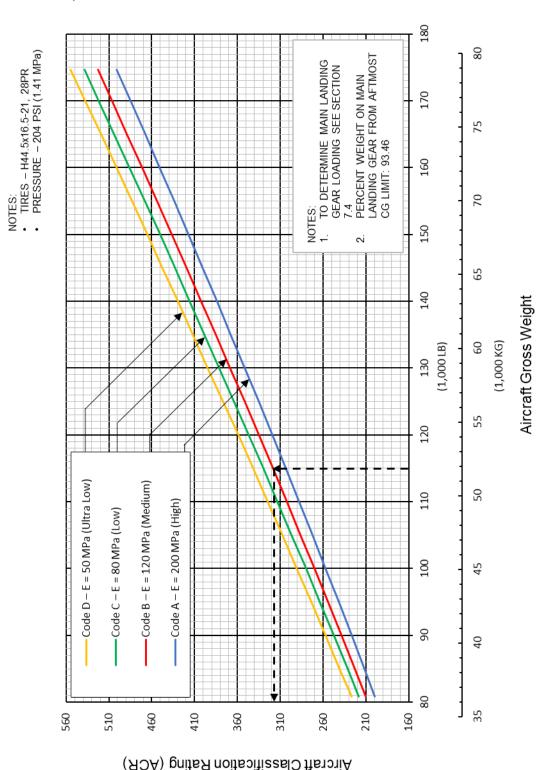



7-57

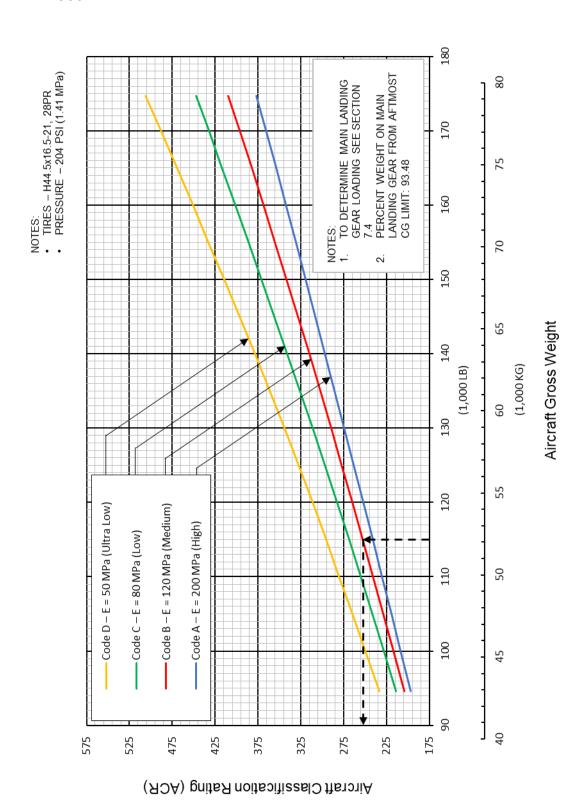
# 7.11.9 Aircraft Classification Rating - Flexible Pavement: Model 737 BBJ1



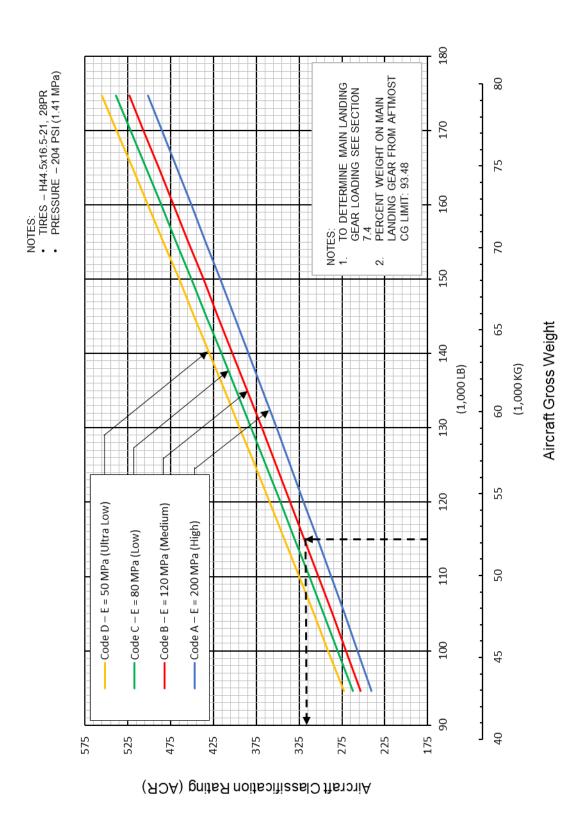

# 7.11.10 Aircraft Classification Rating - Rigid Pavement: Model 737 BBJ1



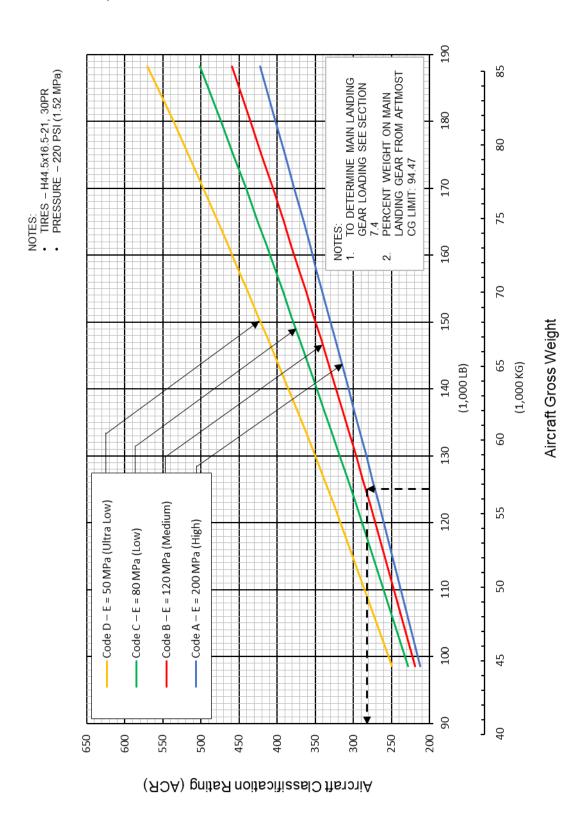

Aircraft Classification Rating (ACR)


# 7.11.11 Aircraft Classification Rating - Flexible Pavement: Model 737-800, - 800W, -800BCF

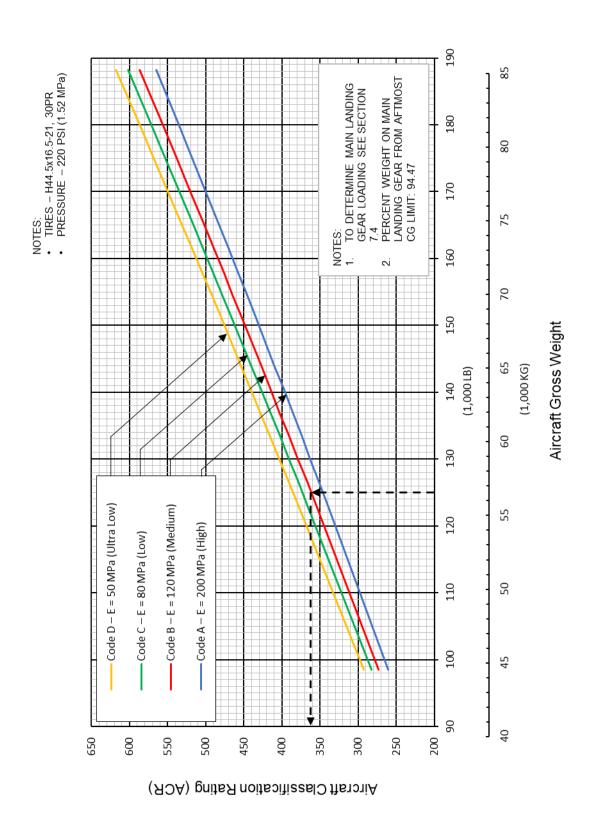



# 7.11.12 Aircraft Classification Rating - Rigid Pavement: Model 737-800, - 800W, -800BCF




# 7.11.13 Aircraft Classification Rating - Flexible Pavement: Model 737-900, - 900W




# 7.11.14 Aircraft Classification Rating - Rigid Pavement: Model 737-900, - 900W



# 7.11.15 Aircraft Classification Rating - Flexible Pavement: Model 737-900ER, -900ERW

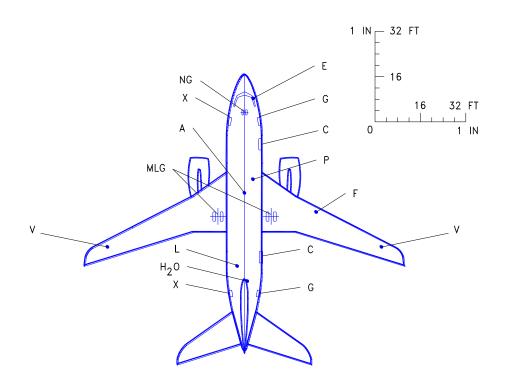


# 7.11.16 Aircraft Classification Rating - Rigid Pavement: Model 737-900ER, - 900ERW



### 8.0 FUTURE 737 DERIVATIVE AIRPLANES

Development of these derivatives will depend on airline requirements. The impact of airline requirements on airport facilities will be a consideration in the configuration and design of these derivatives.


### 9.0 SCALED 737 DRAWINGS

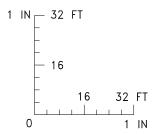
The drawings in the following pages show airplane plan view drawings, drawn to approximate scale as noted. The drawings may not come out to exact scale when printed or copied from this document. Printing scale should be adjusted when attempting to reproduce these drawings. Three-view drawing files of the 737 airplane models, along with other Boeing airplane models, can be downloaded from the following website:

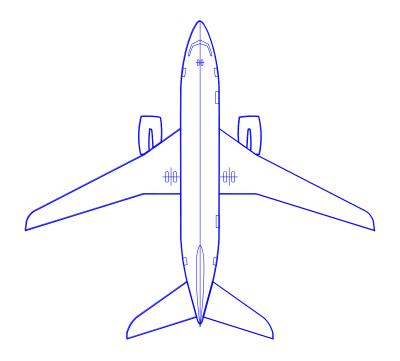
http://www.boeing.com/airports

## 9.1 MODEL 737-600

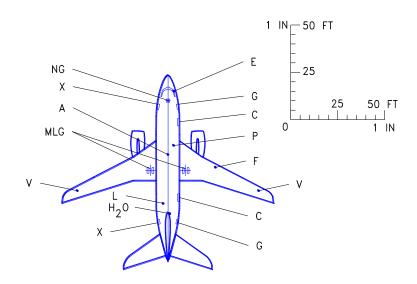
# 9.1.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-600




### LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE
V FUEL VENT

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


PASSENGER DOOR

# 9.1.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-600





# 9.1.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-600

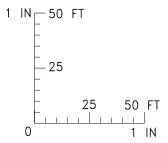


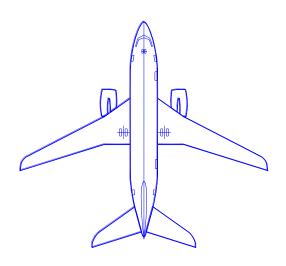
### LEGEND

A AIR CONDITIONING C CARGO DOOR E ELECTRICAL

F FUEL

G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

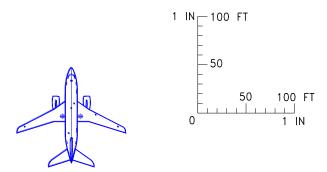

V FUEL VENT X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-7

# 9.1.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-600






NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

9-5

### 9.1.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-600



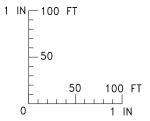
### NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

### LEIGEONEDN D

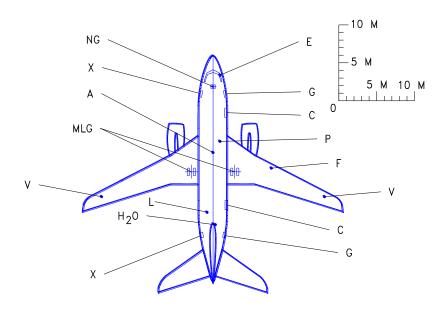
A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL

G SERVICE DOOR


H<sub>2</sub>O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT

X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.1.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-600

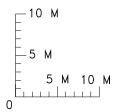


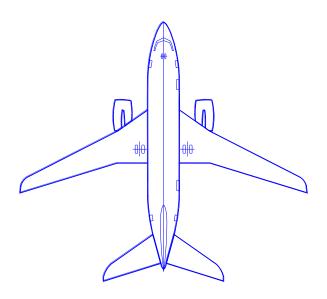


# 9.1.7 Scaled Drawings - 1:500: Model 737-600



### LEGEND

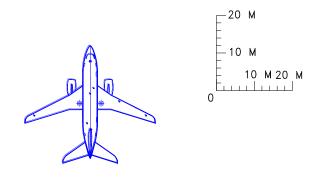

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL


G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.1.8 Scaled Drawings - 1:500: Model 737-600





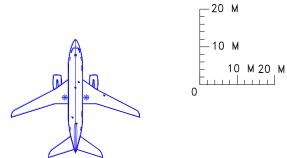

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-7

#### 9.1.9 Scaled Drawings - 1:1000: Model 737-600

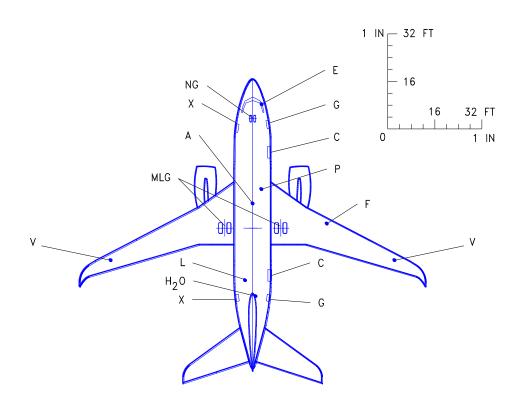


NOTE:


SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

### LEGEND

- AIR CONDITIONING CARGO DOOR
- E F G **ELECTRICAL**
- FUEL
- SERVICE DOOR POTABLE WATER H20
- МĹС MAIN LANDING GEAR NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- VACUUM LAVATORY SERVICE L
- ٧ FUEL VENT
- Χ PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.1.10 Scaled Drawings - 1:1000: Model 737-600



## 9.2 MODEL 737-600W

#### 9.2.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-600W



### **LEGEND**

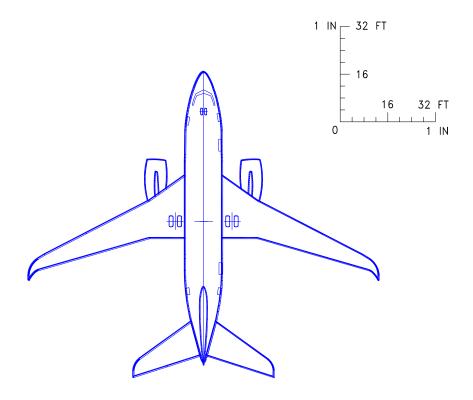
AIR CONDITIONING CARGO DOOR

C E F ELECTRICAL

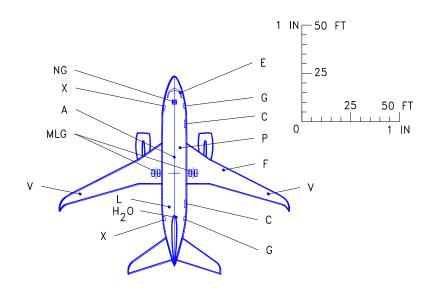
FUEL

G SERVICE DOOR H<sub>2</sub>O POTABLE WATER MLG MAIN LANDING GEAR NOSE LANDING GEAR NG PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE

FUEL VENT PASSENGER DOOR


Χ

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

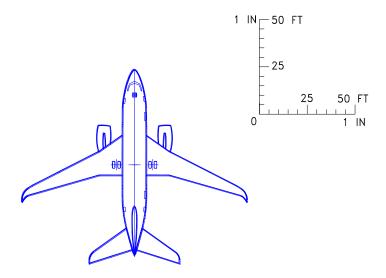

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-7

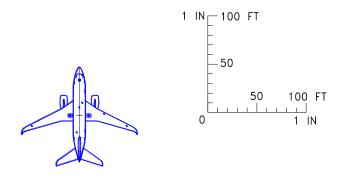
# 9.2.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-600W



#### 9.2.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-600W




### LEGEND


- AIR CONDITIONING Α CARGO DOOR С ELECTRICAL
- Ē **FUEL**
- SERVICE DOOR POTABLE WATER G H<sub>2</sub>0 MLG MAIN LANDING GEAR NG NOSE LANDING GEAR PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE
- FUEL VENT
- PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.2.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-600W

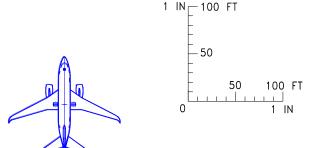


#### 9.2.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-600W

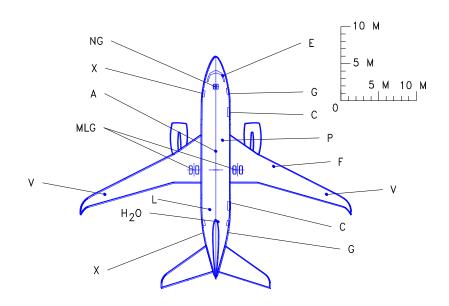


NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


### LEIQEGNEDN D

- AIR CONDITIONING A C E F
- CARGO DOOR ELECTRICAL
- **FUEL**
- G SERVICE DOOR H<sub>2</sub>0 POTABLE WATER
- MLG MAIN LANDING GEAR
- NOSE LANDING GEAR NG PNEUMATIC (AIR START)
- VACUUM LAVATORY SERVICE
- FUEL VENT ٧
- Χ PASSENGER DOOR

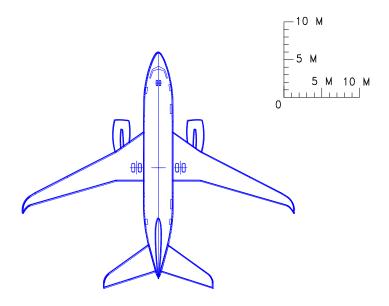

NOTE: FOR TURNING RADIUS DATA

SEE SECTIONS 4.2 AND 4.3

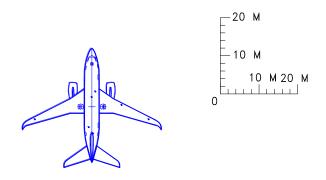
# 9.2.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-600W



# 9.2.7 Scaled Drawings - 1:500: Model 737-600W




### LEGEND


AIR CONDITIONING CARGO DOOR ELECTRICAL Ε **FUEL** SERVICE DOOR POTABLE WATER G H<sub>2</sub>0 MAIN LANDING GEAR MLG NOSE LANDING GEAR NG PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE FUEL VENT PASSENGER DOOR Χ

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.2.8 Scaled Drawings – 1:500: Model 737-600W



## 9.2.9 Scaled Drawings - 1:1000: Model 737-600W

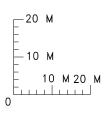


NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

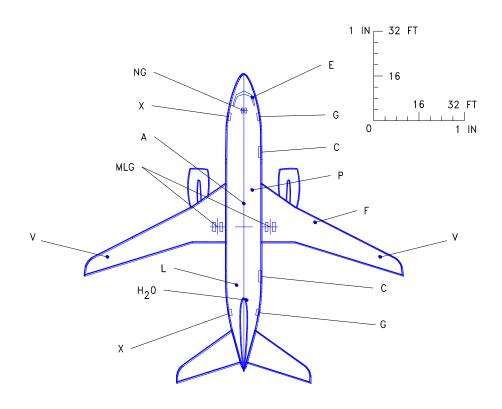
### LEGEND

- A AIR CONDITIONING C CARGO DOOR
- E ELECTRICAL F FUEL
- G SERVICE DOOR H<sub>2</sub>O POTABLE WATER
- MLG MAIN LANDING GEAR NG NOSE LANDING GEAR
- P PNEUMATIC (AIR START)
  L VACUUM LAVATORY SERVICE
- V FUEL VENT
- X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-7


# 9.2.10 Scaled Drawings – 1:1000: Model 737-600W



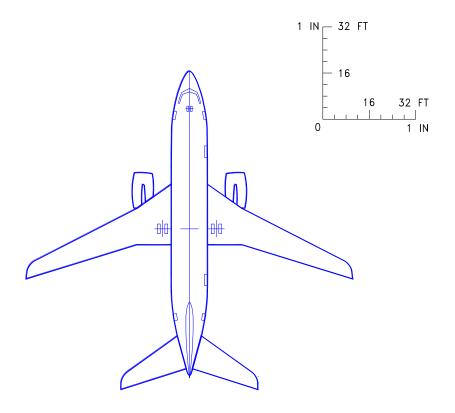


## 9.3 MODEL 737-700

# 9.3.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-700



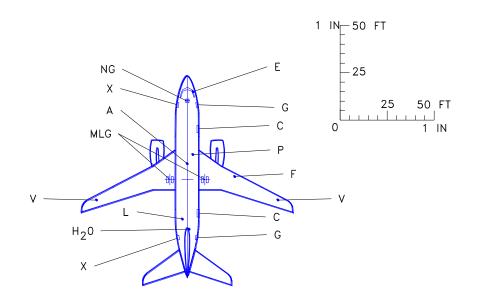
### LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H<sub>2</sub>O POTABLE WATER

MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


# 9.3.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-700



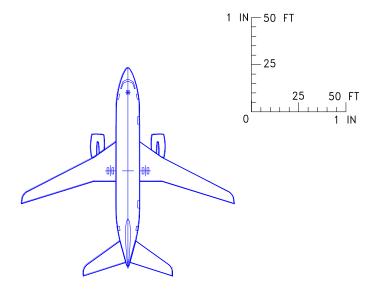
NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-7

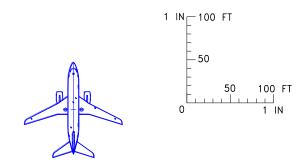
#### 9.3.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-700



### LEGEND


- AIR CONDITIONING A C E F G CARGO DOOR ELECTRICAL **FUEL** SERVICE DOOR
- H<sub>2</sub>0 POTABLE WATER MLG MAIN LANDING GEAR NG NOSE LANDING GEAR PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE
- FUEL VENT
- Χ PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-7

# 9.3.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-700



# 9.3.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-700



NOTE:

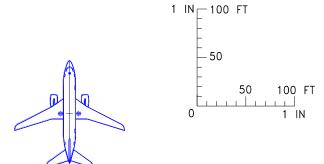
SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

### LEGEND

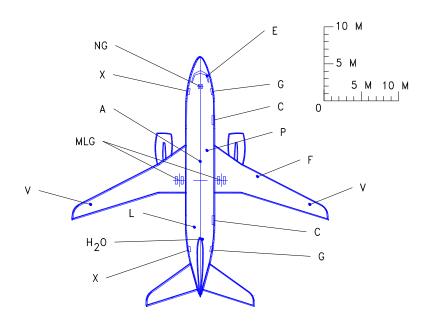
A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H<sub>2</sub>O POTABLE WATER

H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT


X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

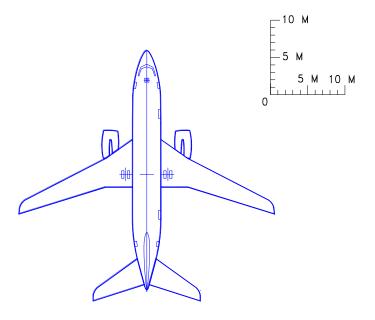

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-7

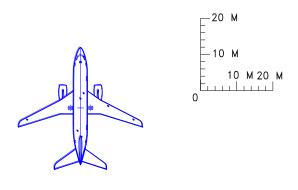
# 9.3.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-700



## 9.3.7 Scaled Drawings - 1:500: Model 737-700




#### LEGEND


AIR CONDITIONING С CARGO DOOR E F **ELECTRICAL** FUEL SERVICE DOOR POTABLE WATER G H<sub>2</sub>0 МĹС MAIN LANDING GEAR NOSE LANDING GEAR NG PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE FUEL VENT Χ PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.3.8 Scaled Drawings – 1:500: Model 737-700

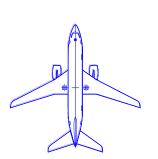


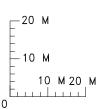
#### 9.3.9 Scaled Drawings - 1:1000: Model 737-700



NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

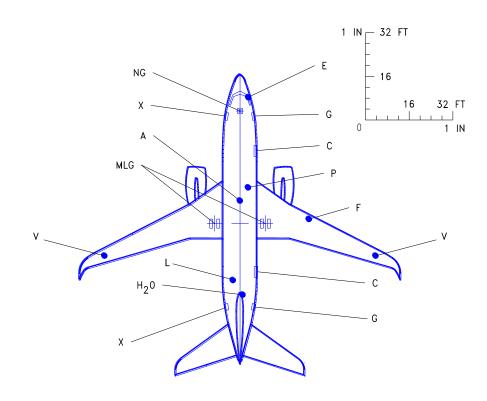

#### LEGEND


- AIR CONDITIONING A C
- CARGO DOOR
- Ē F ELECTRICAL
- **FUEL**
- SERVICE DOOR POTABLE WATER G
- H<sub>2</sub>0 мĹС MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE L
- ٧ FUEL VENT
- PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

## 9.3.10 Scaled Drawings - 1:1000: Model 737-700

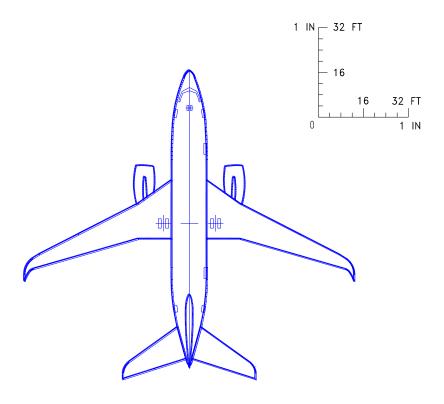





NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

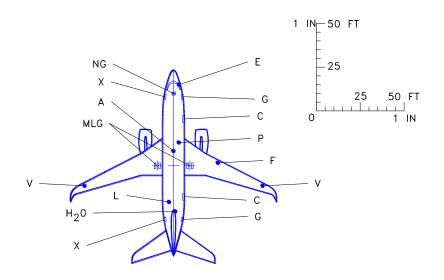
### 9.4 MODEL 737-700W, BBJ1

## 9.4.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-700W




#### LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE
V FUEL VENT
X PASSENGER DOOR

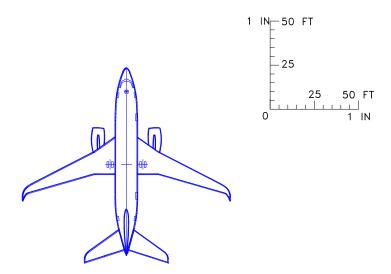

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

## 9.4.2 Scaled Drawings – 1 IN. = 32 FT: Model 737 BBJ1

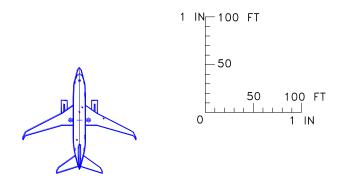


NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

## 9.4.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-700W, BBJ1




### LEGEND


- A AIR CONDITIONING
  C CARGO DOOR
  E ELECTRICAL
  F FUEL
- G SERVICE DOOR
  H2O POTABLE WATER
  MLG MAIN LANDING GEAR
  NG NOSE LANDING GEAR
  P PNEUMATIC (AIR START)
  L VACUUM LAVATORY SERVICE
- V FUEL VENT X PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

## 9.4.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-700W, BBJ1



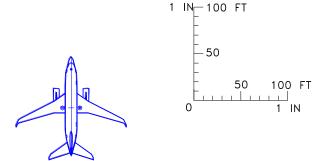
## 9.4.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-700W, BBJ1



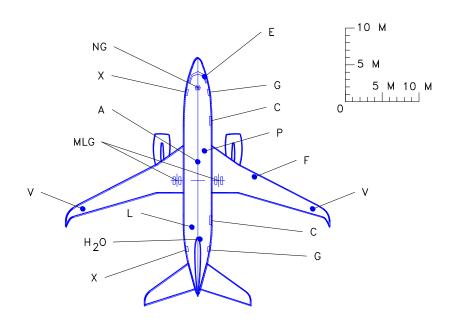
NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

### LEGEND


- A AIR CONDITIONING C CARGO DOOR
- E ELECTRICAL
- F FUEL
- G SERVICE DOOR
- H<sub>2</sub>O POTABLE WATER
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- P PNEUMATIC (AIR START)
  L VACUUM LAVATORY SERVICE
- V FUEL VENT
- X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA


SEE SECTIONS 4.2 AND 4.3

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

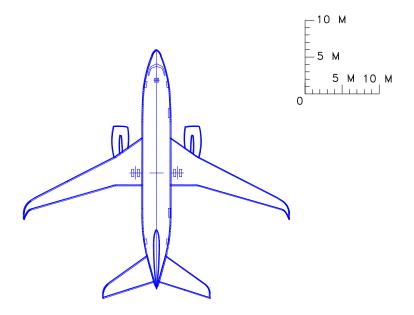
## 9.4.6 Scaled Drawings - 1 IN. = 100 FT: Model 737-700W, BBJ1



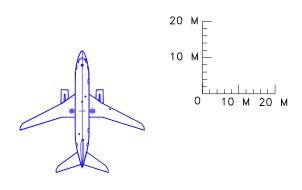
## 9.4.7 Scaled Drawings – 1:500: Model 737-700W, BBJ1



#### LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

# 9.4.8 Scaled Drawings – 1:500: Model 737-700W, BBJ1

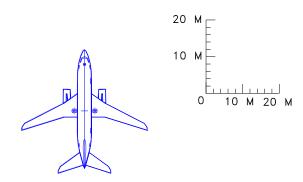


#### Scaled Drawings - 1:1000: Model 737-700W, BBJ1 9.4.9



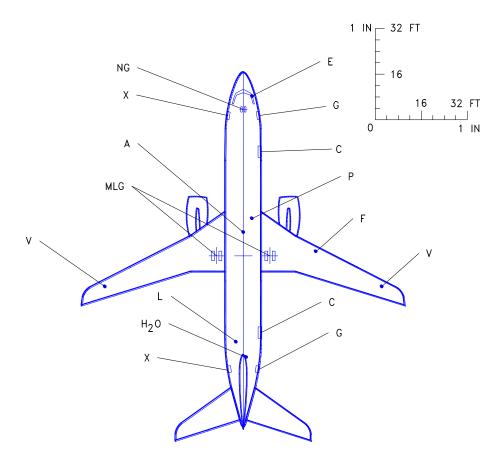
NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


#### LEGEND

- AIR CONDITIONING
- CARGO DOOR C E F ELECTRICAL
- FUEL
- G SERVICE DOOR H<sub>2</sub>O POTABLE WATER
- MLG MAIN LANDING GEAR NG NOSE LANDING GEAR
- PNEUMATIC (AIR START)
- VACUUM LAVATORY SERVICE
- FUEL VENT
- PASSENGER DOOR Χ

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

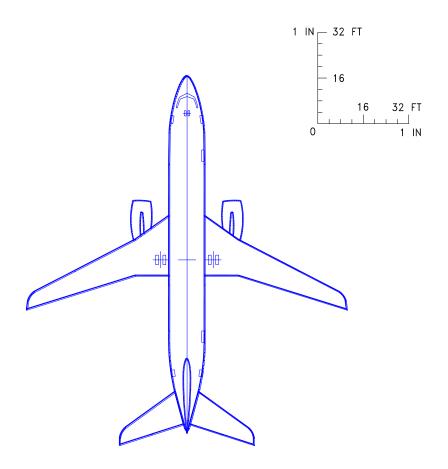
## 9.4.10 Scaled Drawings - 1:1000: Model 737-700W, BBJ1



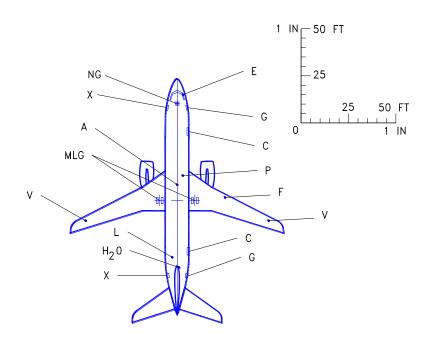
### 9.5 MODEL 737-800

## 9.5.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-800




#### LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE
V FUEL VENT


X PASSENGER DOOR

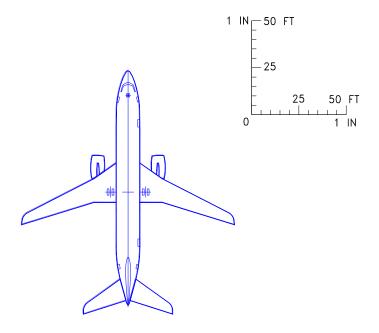
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

## 9.5.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-800

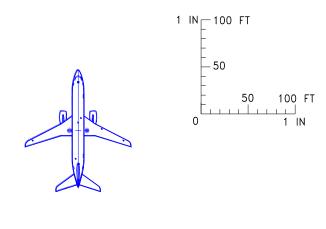


## 9.5.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-800




#### LEGEND

AIR CONDITIONING C E F CARGO DOOR ELECTRICAL FUEL G SERVICE DOOR H<sub>2</sub>0 POTABLE WATER MLG MAIN LANDING GEAR NG NOSE LANDING GEAR PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE FUEL VENT Χ PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

## 9.5.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-800



### 9.5.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-800

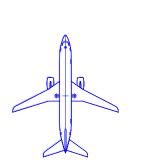


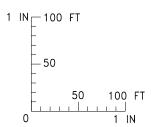
NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

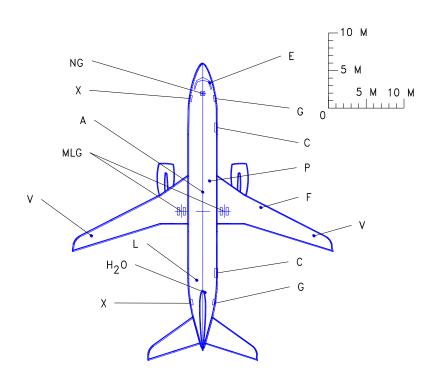
#### LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H<sub>2</sub>O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR


P PNEUMATIC (AIR START) L VACUUM LAVATORY SERVICE


V FUEL VENT X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

## 9.5.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-800





## 9.5.7 Scaled Drawings - 1:500: Model 737-800



#### LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR

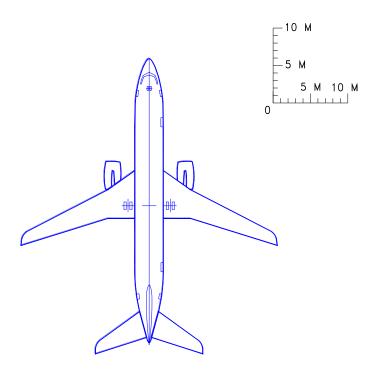
G SERVICE DOOR

H2O POTABLE WATER

MLG MAIN LANDING GEAR

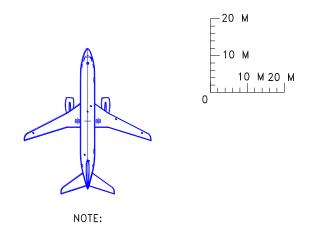
NG NOSE LANDING GEAR

P PNEUMATIC (AIR START)


L VACUUM LAVATORY SERVICE

V FUEL VENT

V FUEL VENT X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

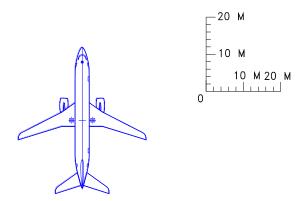
## 9.5.8 Scaled Drawings - 1:500: Model 737-800



NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

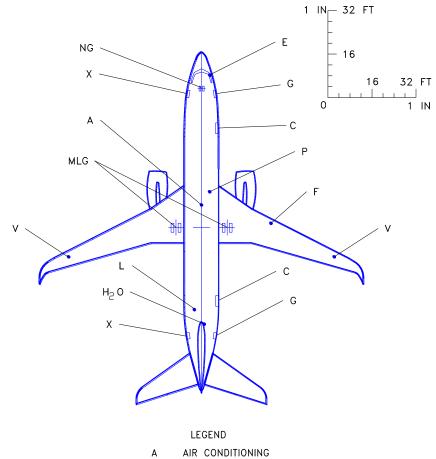
### 9.5.9 Scaled Drawings - 1:1000: Model 737-800




SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

### LEGEND

- A AIR CONDITIONING
  C CARGO DOOR
  E ELECTRICAL
  F FUEL
- G SERVICE DOOR
  H2O POTABLE WATER
  MLG MAIN LANDING GEAR
  NG NOSE LANDING GEAR
  P PNEUMATIC (AIR START)
- L VACUUM LAVATORY SERVICE
  V FUEL VENT
- X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.5.10 Scaled Drawings - 1:1000: Model 737-800



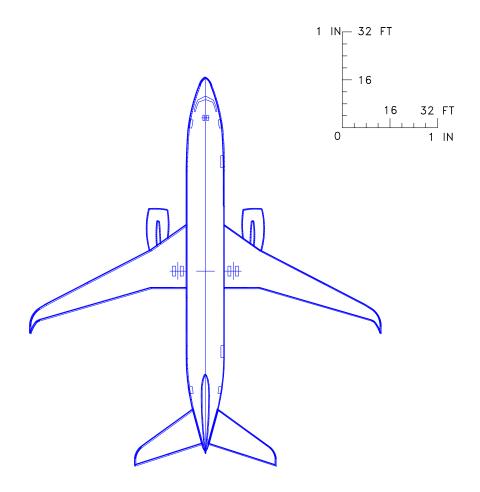
### 9.6 MODEL 737-800W, BBJ2

#### Scaled Drawings - 1 IN. = 32 FT: Model 737-800W, BBJ2 9.6.1

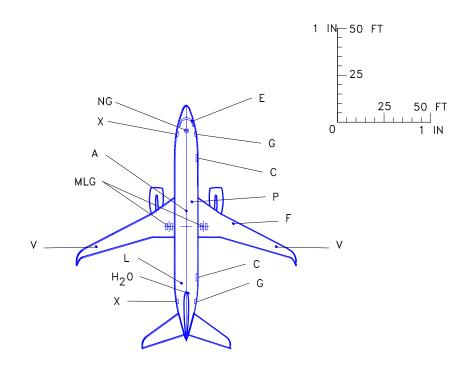


A C E F CARGO DOOR ELECTRICAL

FUEL


SERVICE DOOR POTABLE WATER H<sub>2</sub>0 MAIN LANDING GEAR MLG

NG NOSE LANDING GEAR PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE


FUEL VENT PASSENGER DOOR Χ

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

## 9.6.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-800W, BBJ2



#### 9.6.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-800W, BBJ2



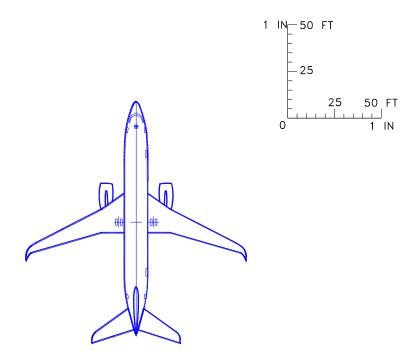
#### LEGEND

AIR CONDITIONING CARGO DOOR

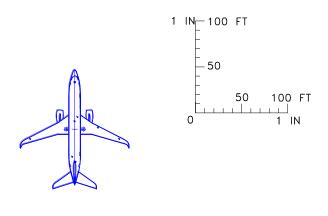
C E F **ELECTRICAL** 

**FUEL** 

G SERVICE DOOR H<sub>2</sub>O POTABLE WATER MLG MAIN LANDING GEAR NOSE LANDING GEAR
PNEUMATIC (AIR START)
VACUUM LAVATORY SERVICE NG


FUEL VENT

PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

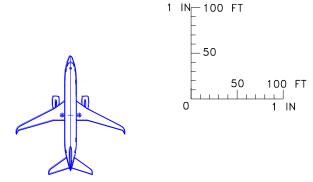
## 9.6.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-800W, BBJ2



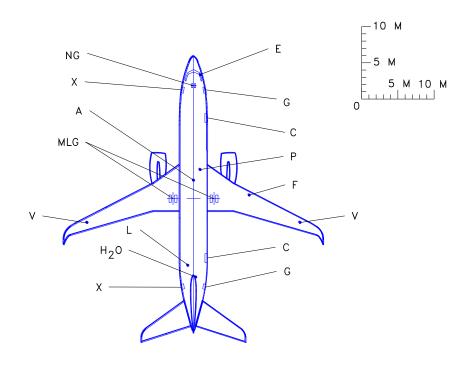
## 9.6.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-800W, BBJ2



NOTE:


SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

#### LEGEND


- A AIR CONDITIONING
  C CARGO DOOR
  E ELECTRICAL
  F FUEL
- G SERVICE DOOR
  H2O POTABLE WATER
  MLG MAIN LANDING GEAR
  NG NOSE LANDING GEAR
  P PNEUMATIC (AIR START)
  L VACUUM LAVATORY SERVICE
- V FUEL VENT X PASSENGER DOOR

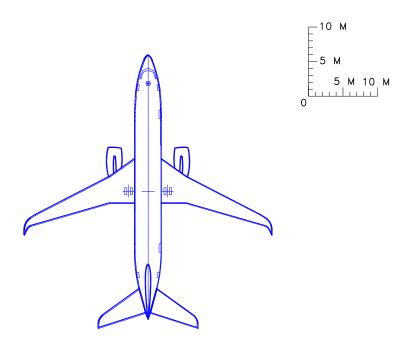
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

## 9.6.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-800W, BBJ2

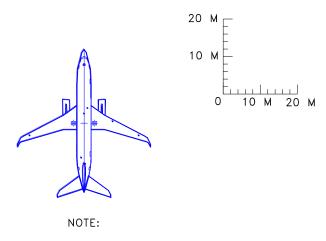


## 9.6.7 Scaled Drawings - 1:500: Model 737-800W, BBJ2




### LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE
V FUEL VENT


X PASSENGER DOOR

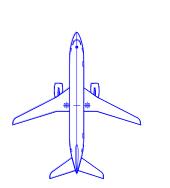
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

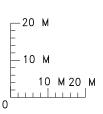
## 9.6.8 Scaled Drawings – 1:500: Model 737-800W, BBJ2



## 9.6.9 Scaled Drawings - 1:1000: Model 737-800W, BBJ2



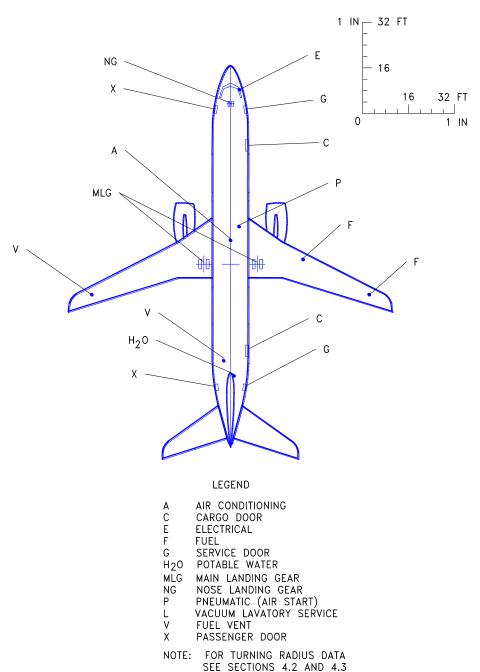

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


#### LEGEND

- A AIR CONDITIONING
  C CARGO DOOR
  E ELECTRICAL
  F FUEL
  G SERVICE DOOR
  H<sub>2</sub>O POTABLE WATER
- MLG MAIN LANDING GEAR
  NG NOSE LANDING GEAR
  P PNEUMATIC (AIR START)
  L VACUUM LAVATORY SERVICE
- V FUEL VENT X PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

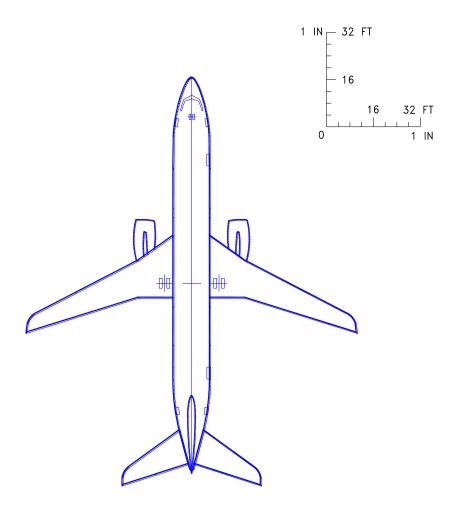
NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

# 9.6.10 Scaled Drawings – 1:1000: Model 737-800W, BBJ2

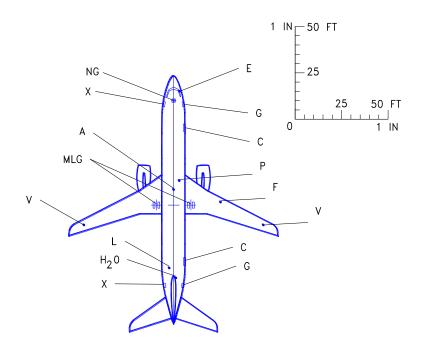





NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING


### 9.7 MODEL 737-900, -900ER

### 9.7.1 Scaled Drawings – 1 IN. = 32 FT: Model 737-900, -900ER



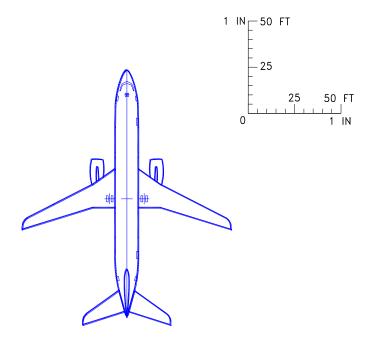

SEE SECTIONS 4.2 AND 4.3

## 9.7.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-900, -900ER

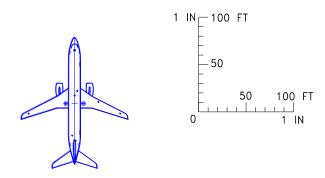


### 9.7.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-900, -900ER




#### LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H20 POTABLE WATER
MLG MAIN LANDING GEAR
NOS LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE


V FUEL VENT X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.7.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-900, -900ER



### 9.7.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-900, -900ER



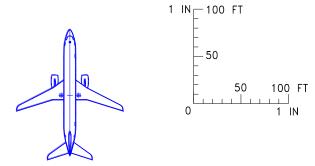
NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

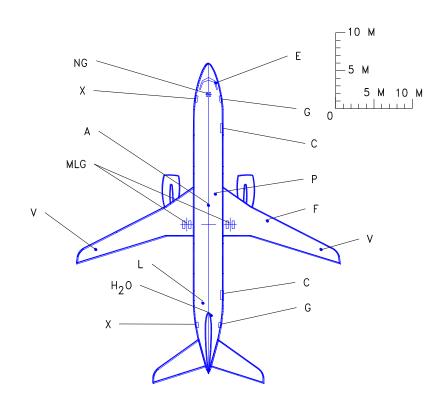
#### LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT


X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

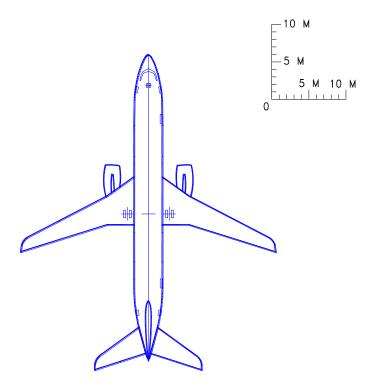

### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

D6-58325-7

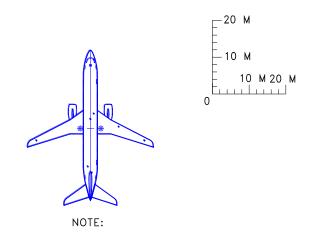
# 9.7.6 Scaled Drawings - 1 IN. = 100 FT: Model 737-900, -900ER



### 9.7.7 Scaled Drawings - 1:500: Model 737-900, -900ER




#### LEGEND


AIR CONDITIONING CARGO DOOR Ē ELECTRICAL FUEL G SERVICE DOOR H<sub>2</sub>0 POTABLE WATER MAIN LANDING GEAR NOSE LANDING GEAR MLG NG PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE ٧ FUEL VENT PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

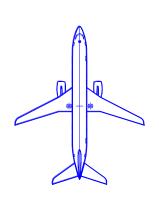
# 9.7.8 Scaled Drawings – 1:500: Model 737-900, -900ER

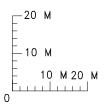


### 9.7.9 Scaled Drawings - 1:1000: Model 737-900, -900ER



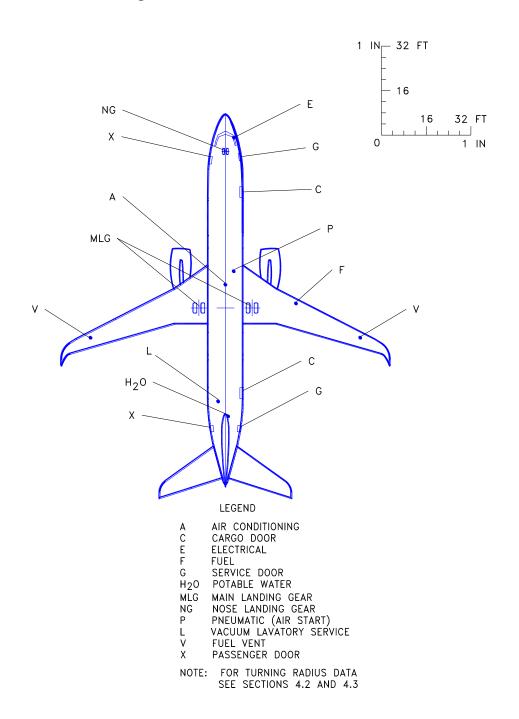
SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


#### LEGEND

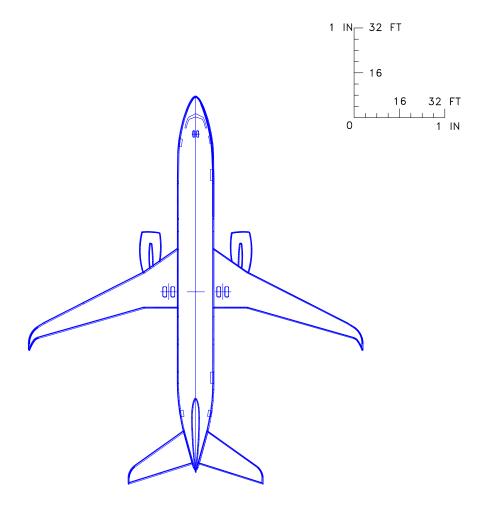

- A AIR CONDITIONING
- C CARGO DOOR E ELECTRICAL
- F FUEL
- G SERVICE DOOR
  H2O POTABLE WATER
  MLG MAIN LANDING GEAR
  NG NOSE LANDING GEAR
  P PNEUMATIC (AIR START)
  L VACUUM LAVATORY SERVICE
- V FUEL VENT X PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

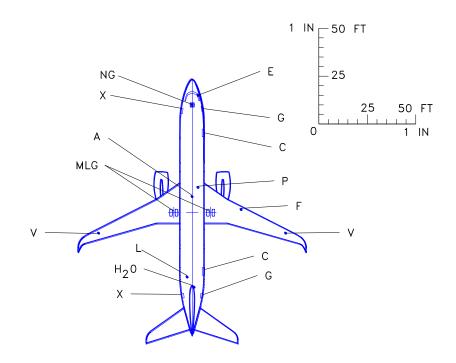
D6-58325-7


# 9.7.10 Scaled Drawings – 1:1000: Model 737-900, -900ER






### 9.8 MODEL 737-900W, -900ERW


### 9.8.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-900W, -900ERW



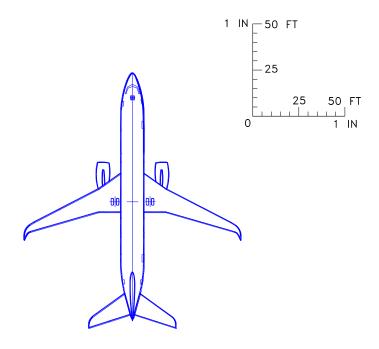
# 9.8.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-900W, -900ERW



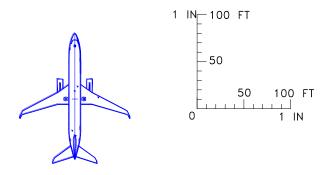
### 9.8.3 Scaled Drawings - 1 IN. = 50 FT: Model 737-900W, -900ERW



#### LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL

G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE


V FUEL VENT X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.8.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-900W, -900ERW



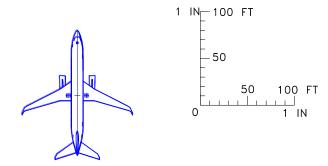
### 9.8.5 Scaled Drawings - 1 IN. = 100 FT: Model 737-900W, -900ERW



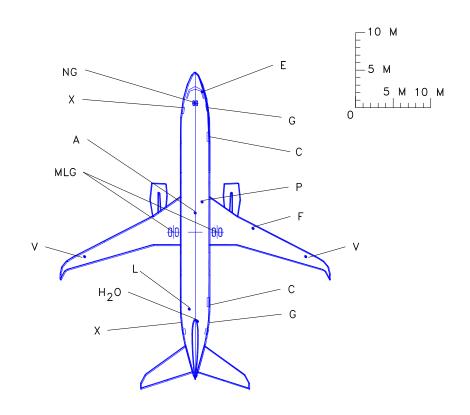
NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

#### LEGEND


- A AIR CONDITIONING C CARGO DOOR E ELECTRICAL
- F FUEL
- G SERVICE DOOR H<sub>2</sub>O POTABLE WATER MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
  P PNEUMATIC (AIR START)
  L VACUUM LAVATORY SERVICE
- V FUEL VENT
- X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


#### NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

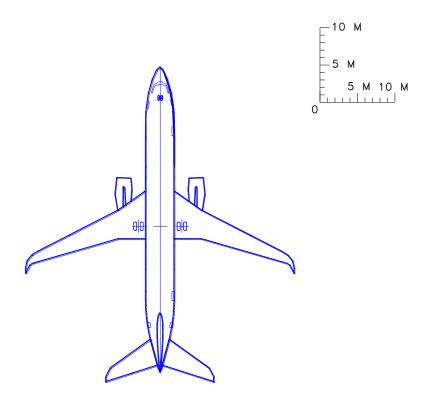
D6-58325-7

# 9.8.6 Scaled Drawings - 1 IN. = 100 FT: Model 737-900W, -900ERW

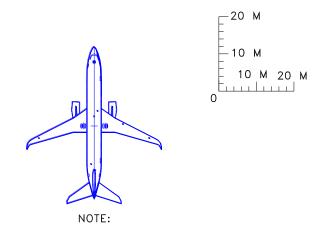


### 9.8.7 Scaled Drawings - 1:500: Model 737-900W, -900ERW




### LEGEND

AIR CONDITIONING C E CARGO DOOR ELECTRICAL F FUEL G SERVICE DOOR POTABLE WATER H20 мĹС MAIN LANDING GEAR NOSE LANDING GEAR PNEUMATIC (AIR START) NG Ρ VACUUM LAVATORY SERVICE L V FUEL VENT


X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.8.8 Scaled Drawings – 1:500: Model 737-900W, -900ERW

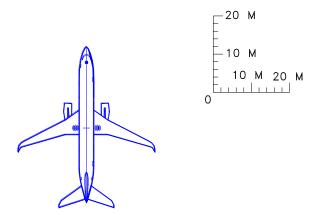


### 9.8.9 Scaled Drawings - 1:1000: Model 737-900W, -900ERW



SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

#### LEGEND


AIR CONDITIONING С CARGO DOOR Ε ELECTRICAL FUEL G SERVICE DOOR H20 POTABLE WATER MLG MAIN LANDING GEAR NOSE LANDING GEAR NG PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE

V FUEL VENT

X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

# 9.8.10 Scaled Drawings – 1:1000: Model 737-900W, -900ERW



9-81