
APPENDIX G

Section 2

Outfall 001 - January 18, 2010 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 01/18/10

Received: 01/18/10 Revised: 04/02/10 14:09

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 14 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: Final revised report to provide corrected units and .pdf data file for Radchem.

LABORATORY IDCLIENT IDMATRIXITA1329-01Outfall 001 (Grab)WaterITA1329-02Trip BlanksWater

Reviewed By:

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quan

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITA1329

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10 Received: 01/18/10

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)								
Reporting Units: ug/l									
Benzene	EPA 624	10A2207	0.28	0.50	ND	1	01/22/10	01/24/10	
Carbon tetrachloride	EPA 624	10A2207	0.28	0.50	ND	1	01/22/10	01/24/10	
Chloroform	EPA 624	10A2207	0.33	0.50	ND	1	01/22/10	01/24/10	
1,1-Dichloroethane	EPA 624	10A2207	0.40	0.50	ND	1	01/22/10	01/24/10	
1,2-Dichloroethane	EPA 624	10A2207	0.28	0.50	ND	1	01/22/10	01/24/10	
1,1-Dichloroethene	EPA 624	10A2207	0.42	0.50	ND	1	01/22/10	01/24/10	
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624	10A2207	1.1	2.0	ND	1	01/22/10	01/24/10	
Ethylbenzene	EPA 624	10A2207	0.25	0.50	ND	1	01/22/10	01/24/10	
Tetrachloroethene	EPA 624	10A2207	0.32	0.50	ND	1	01/22/10	01/24/10	
Toluene	EPA 624	10A2207	0.36	0.50	ND	1	01/22/10	01/24/10	
1,1,1-Trichloroethane	EPA 624	10A2207	0.30	0.50	ND	1	01/22/10	01/24/10	
1,1,2-Trichloroethane	EPA 624	10A2207	0.30	0.50	ND	1	01/22/10	01/24/10	
Trichloroethene	EPA 624	10A2207	0.26	0.50	ND	1	01/22/10	01/24/10	
Trichlorofluoromethane	EPA 624	10A2207	0.34	0.50	ND	1	01/22/10	01/24/10	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10A2207	0.50	5.0	ND	1	01/22/10	01/24/10	
Vinyl chloride	EPA 624	10A2207	0.40	0.50	ND	1	01/22/10	01/24/10	M2
Xylenes, Total	EPA 624	10A2207	0.90	1.5	ND	1	01/22/10	01/24/10	
Cyclohexane	EPA 624	10A2207	0.40	1.0	ND	1	01/22/10	01/24/10	
Surrogate: 4-Bromofluorobenzene (80-120%))				98 %				
Surrogate: Dibromofluoromethane (80-120%)	<i>6)</i>				100 %				
Surrogate: Toluene-d8 (80-120%)					104 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/18/10

Arcadia, CA 91007 Report Number: ITA1329 Received: 01/18/10

Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

	1010	OL. IDEL	, ,,	(21	11 02 1)				
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1329-02 (Trip Blanks - Wa	ter)								
Reporting Units: ug/l									
Benzene	EPA 624	10A2207	0.28	0.50	ND	1	01/22/10	01/24/10	
Carbon tetrachloride	EPA 624	10A2207	0.28	0.50	ND	1	01/22/10	01/24/10	
Chloroform	EPA 624	10A2207	0.33	0.50	ND	1	01/22/10	01/24/10	
1,1-Dichloroethane	EPA 624	10A2207	0.40	0.50	ND	1	01/22/10	01/24/10	
1,2-Dichloroethane	EPA 624	10A2207	0.28	0.50	ND	1	01/22/10	01/24/10	
1,1-Dichloroethene	EPA 624	10A2207	0.42	0.50	ND	1	01/22/10	01/24/10	
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624	10A2207	1.1	2.0	ND	1	01/22/10	01/24/10	
Ethylbenzene	EPA 624	10A2207	0.25	0.50	ND	1	01/22/10	01/24/10	
Tetrachloroethene	EPA 624	10A2207	0.32	0.50	ND	1	01/22/10	01/24/10	
Toluene	EPA 624	10A2207	0.36	0.50	ND	1	01/22/10	01/24/10	
1,1,1-Trichloroethane	EPA 624	10A2207	0.30	0.50	ND	1	01/22/10	01/24/10	
1,1,2-Trichloroethane	EPA 624	10A2207	0.30	0.50	ND	1	01/22/10	01/24/10	
Trichloroethene	EPA 624	10A2207	0.26	0.50	ND	1	01/22/10	01/24/10	
Trichlorofluoromethane	EPA 624	10A2207	0.34	0.50	ND	1	01/22/10	01/24/10	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10A2207	0.50	5.0	ND	1	01/22/10	01/24/10	
Vinyl chloride	EPA 624	10A2207	0.40	0.50	ND	1	01/22/10	01/24/10	
Xylenes, Total	EPA 624	10A2207	0.90	1.5	ND	1	01/22/10	01/24/10	
Cyclohexane	EPA 624	10A2207	0.40	1.0	ND	1	01/22/10	01/24/10	
Surrogate: 4-Bromofluorobenzene (80-120%)				98 %				
Surrogate: Dibromofluoromethane (80-120%)	6)				98 %				
Surrogate: Toluene-d8 (80-120%)					107 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: ITA1329
Sampled: 01/18/10
Received: 01/18/10

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)								
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	10A1840	1.6	4.8	ND	0.952	01/20/10	01/22/10	
2,4-Dinitrotoluene	EPA 625	10A1840	0.19	8.6	ND	0.952	01/20/10	01/22/10	
N-Nitrosodimethylamine	EPA 625	10A1840	0.095	7.6	ND	0.952	01/20/10	01/22/10	
Pentachlorophenol	EPA 625	10A1840	0.095	7.6	ND	0.952	01/20/10	01/22/10	
2,4,6-Trichlorophenol	EPA 625	10A1840	0.095	5.7	ND	0.952	01/20/10	01/22/10	
Surrogate: 2,4,6-Tribromophenol (40-120%)					94 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					76 %				
Surrogate: 2-Fluorophenol (30-120%)					64 %				
Surrogate: Nitrobenzene-d5 (45-120%)					76 %				
Surrogate: Phenol-d6 (35-120%)					72 %				
Surrogate: Terphenyl-d14 (50-125%)					96 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: ITA1329
Sampled: 01/18/10
Received: 01/18/10

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)								
Reporting Units: ug/l									
alpha-BHC	EPA 608	10A1612	0.0024	0.0094	ND	0.943	01/19/10	01/20/10	
Surrogate: Decachlorobiphenyl (45-120%)					83 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					68 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITA1329

Sampled: 01/18/10

Received: 01/18/10

HEXANE EXTRACTABLE MATERIAL

			MDL	Reporting		Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITA1329-01 (Outfall 001 (Gral	o) - Water)								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	10A1674	1.3	4.8	ND	1	01/19/10	01/19/10	
Grease)									

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITA1329 Received: 01/18/10

Attention: Bronwyn Kelly

METALS

1122									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1329-01 (Outfall 001 (Gr Reporting Units: mg/l	rab) - Water)								
Iron	EPA 200.7	10A1650	0.030	0.080	23	2	01/19/10	01/19/10	
Sample ID: ITA1329-01 (Outfall 001 (Gr	rab) - Water)								
Reporting Units: ug/l									
Mercury	EPA 245.1	10A1677	0.10	0.20	ND	1	01/19/10	01/19/10	
Manganese	EPA 200.7	10A1650	14	40	400	2	01/19/10	01/19/10	
Cadmium	EPA 200.8	10A1651	0.50	5.0	ND	5	01/19/10	01/19/10	RL1
Zinc	EPA 200.7	10A1650	12	40	76	2	01/19/10	01/19/10	
Copper	EPA 200.8	10A1651	2.5	10	12	5	01/19/10	01/19/10	
Lead	EPA 200.8	10A1651	1.0	5.0	13	5	01/19/10	01/19/10	
Selenium	EPA 200.8	10A1651	2.5	10	ND	5	01/19/10	01/19/10	RL1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: ITA1329
Sampled: 01/18/10
Received: 01/18/10

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1329-01 (Outfall 001 (G	rab) - Water)								
Reporting Units: mg/l Iron	EPA 200.7-Diss	10A2107	0.015	0.040	1.1	1	01/22/10	01/27/10	
Sample ID: ITA1329-01 (Outfall 001 (G	rab) - Water)								
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	10A2023	0.10	0.20	ND	1	01/21/10	01/21/10	C
Manganese	EPA 200.7-Diss	10A2107	7.0	20	16	1	01/22/10	01/27/10	J
Cadmium	EPA 200.8-Diss	10A2106	0.10	1.0	ND	1	01/22/10	01/25/10	
Zinc	EPA 200.7-Diss	10A2107	6.0	20	ND	1	01/22/10	01/27/10	
Copper	EPA 200.8-Diss	10A2106	0.50	2.0	2.5	1	01/22/10	01/25/10	
Lead	EPA 200.8-Diss	10A2106	0.20	1.0	0.51	1	01/22/10	01/27/10	J
Selenium	EPA 200.8-Diss	10A2106	0.50	2.0	ND	1	01/22/10	01/25/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: ITA1329
Sampled: 01/18/10
Received: 01/18/10

Attention: Bronwyn Kelly

		, , , , , , , , , , , , , , , , , , , ,	1200					
Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
(Grab) - Water)								
SM4500NH3-C	10A1730	0.50	0.50	ND	1	01/19/10	01/20/10	
SM5210B	10A1693	0.50	2.0	3.8	1	01/19/10	01/24/10	
EPA 300.0	10A1543	0.25	0.50	1.6	1	01/18/10	01/18/10	
EPA 300.0	10A1543	0.060	0.11	0.59	1	01/18/10	01/18/10	
EPA 300.0	10A1543	0.090	0.15	ND	1	01/18/10	01/18/10	
EPA 300.0	10A1543	0.15	0.26	0.59	1	01/18/10	01/18/10	
EPA 300.0	10A1543	0.20	0.50	3.8	1	01/18/10	01/18/10	
SM5540-C	10A1736	0.025	0.10	ND	1	01/19/10	01/19/10	M2
SM2540C	10A1629	1.0	10	170	1	01/19/10	01/19/10	
SM 2540D	10A2035	2.0	20	450	1	01/21/10	01/21/10	
	(Grab) - Water) SM4500NH3-C SM5210B EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 SM5540-C SM2540C	(Grab) - Water) SM4500NH3-C 10A1730 SM5210B 10A1693 EPA 300.0 10A1543 SM5540-C 10A1736 SM2540C 10A1629	Method Batch Limit (Grab) - Water) SM4500NH3-C 10A1730 0.50 SM5210B 10A1693 0.50 EPA 300.0 10A1543 0.25 EPA 300.0 10A1543 0.060 EPA 300.0 10A1543 0.090 EPA 300.0 10A1543 0.15 EPA 300.0 10A1543 0.20 SM5540-C 10A1736 0.025 SM2540C 10A1629 1.0	Method Batch Limit Limit (Grab) - Water) IOA1730 0.50 0.50 SM4500NH3-C 10A1693 0.50 2.0 SM5210B 10A1693 0.50 2.0 EPA 300.0 10A1543 0.25 0.50 EPA 300.0 10A1543 0.060 0.11 EPA 300.0 10A1543 0.090 0.15 EPA 300.0 10A1543 0.15 0.26 EPA 300.0 10A1543 0.20 0.50 SM5540-C 10A1736 0.025 0.10 SM2540C 10A1629 1.0 10	Method Batch Limit Limit Result (Grab) - Water) SM4500NH3-C 10A1730 0.50 0.50 ND SM5210B 10A1693 0.50 2.0 3.8 EPA 300.0 10A1543 0.25 0.50 1.6 EPA 300.0 10A1543 0.060 0.11 0.59 EPA 300.0 10A1543 0.090 0.15 ND EPA 300.0 10A1543 0.15 0.26 0.59 EPA 300.0 10A1543 0.20 0.50 3.8 SM5540-C 10A1736 0.025 0.10 ND SM2540C 10A1629 1.0 10 170	Method Batch Limit Limit Result Factor (Grab) - Water) SM4500NH3-C 10A1730 0.50 0.50 ND 1 SM5210B 10A1693 0.50 2.0 3.8 1 EPA 300.0 10A1543 0.25 0.50 1.6 1 EPA 300.0 10A1543 0.060 0.11 0.59 1 EPA 300.0 10A1543 0.090 0.15 ND 1 EPA 300.0 10A1543 0.15 0.26 0.59 1 EPA 300.0 10A1543 0.20 0.50 3.8 1 SM5540-C 10A1736 0.025 0.10 ND 1 SM2540C 10A1629 1.0 10 170 1	Method Batch Limit Limit Result Factor Extracted (Grab) - Water) SM4500NH3-C 10A1730 0.50 0.50 ND 1 01/19/10 SM5210B 10A1693 0.50 2.0 3.8 1 01/19/10 EPA 300.0 10A1543 0.25 0.50 1.6 1 01/18/10 EPA 300.0 10A1543 0.060 0.11 0.59 1 01/18/10 EPA 300.0 10A1543 0.090 0.15 ND 1 01/18/10 EPA 300.0 10A1543 0.15 0.26 0.59 1 01/18/10 EPA 300.0 10A1543 0.20 0.50 3.8 1 01/18/10 EPA 300.0 10A1543 0.20 0.50 3.8 1 01/18/10 EPA 300.0 10A1543 0.20 0.50 3.8 1 01/18/10 EPA 300.0	Method Batch Limit Limit Result Factor Extracted Analyzed (Grab) - Water) SM4500NH3-C 10A1730 0.50 0.50 ND 1 01/19/10 01/20/10 SM5210B 10A1693 0.50 2.0 3.8 1 01/19/10 01/24/10 EPA 300.0 10A1543 0.25 0.50 1.6 1 01/18/10 01/18/10 EPA 300.0 10A1543 0.060 0.11 0.59 1 01/18/10 01/18/10 EPA 300.0 10A1543 0.090 0.15 ND 1 01/18/10 01/18/10 EPA 300.0 10A1543 0.15 0.26 0.59 1 01/18/10 01/18/10 EPA 300.0 10A1543 0.20 0.50 3.8 1 01/18/10 01/18/10 SM5540-C 10A1736 0.025 0.10 ND 1 01/19/10 01/19/10 SM2540C 10A1629 1.0

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)								
Reporting Units: ml/l Total Settleable Solids	SM2540F	10A1659	0.10	0.10	ND	1	01/19/10	01/19/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITA1329

Sampled: 01/18/10 Received: 01/18/10

Attention: Bronwyn Kelly

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)								
Reporting Units: NTU Turbidity	EPA 180.1	10A1657	4.0	100	650	100	01/19/10	01/19/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Report Number: ITA1329 Sampled: 01/18/10 Received: 01/18/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1329-01 (Outfall 001 (Gr	ab) - Water)								
Reporting Units: ug/l									
Perchlorate	EPA 314.0	10A1636	0.90	4.0	ND	1	01/19/10	01/19/10	
Total Cyanide	SM4500CN-E	10A1691	2.2	5.0	ND	1	01/19/10	01/19/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/18/10 Arcadia, CA 91007 Report Number: ITA1329 Received: 01/18/10

Attention: Bronwyn Kelly

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)											
Reporting Units: umhos/cm Specific Conductance	EPA 120.1	10A1624	1.0	1.0	55	1	01/19/10	01/19/10			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Sampled: 01/18/10 Received: 01/18/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

Report Number: ITA1329

ASTM 5174-91

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)												
Reporting Units: pCi/L Total Uranium	ASTM 5174-91	35029	0.21	0.693	0.455	1	02/04/10	02/08/10	Jb			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Sampled: 01/18/10 Received: 01/18/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

Report Number: ITA1329

EPA 900.0 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1329-01 (Outfall 001 Reporting Units: pCi/L	(Grab) - Water)								
Gross Alpha Gross Beta	EPA 900.0 MOD EPA 900.0 MOD	25415 25415	1.2 1.6	3 4	7.3 9	1 1	01/25/10 01/25/10	01/29/10 01/29/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Report Number: ITA1329 Sampled: 01/18/10 Received: 01/18/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

EPA 901.1 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)												
Reporting Units: pCi/L												
Cesium 137	EPA 901.1 MOD	21221	16	20	-2.2	1	01/21/10	02/02/10	U			
Potassium 40	EPA 901.1 MOD	21221	260	NA	-90	1	01/21/10	02/02/10	U			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITA1329 Received: 01/18/10

Attention: Bronwyn Kelly

EPA 903.0 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)											
Reporting Units: pCi/L											
Radium (226)	EPA 903.0 MOD	21255	0.25	1	0.1	1	01/21/10	02/08/10	U		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Report Number: ITA1329 Received: 01/18/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

EPA 904 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)												
Reporting Units: pCi/L												
Radium 228	EPA 904 MOD	21256	0.67	1	0.4	1	01/21/10	02/08/10	U			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Sampled: 01/18/10
Report Number: ITA1329

Received: 01/18/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

EPA 905 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)											
Reporting Units: pCi/L											
Strontium 90	EPA 905 MOD	21257	0.5	3	0.29	1	01/21/10	02/04/10	U		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Sampled: 01/18/10 Received: 01/18/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

Report Number: ITA1329

EPA 906.0 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITA1329-01 (Outfall 001 (Grab) - Water)											
Reporting Units: pCi/L Tritium	EPA 906.0 MOD	28080	140	500	64	1	01/28/10	01/29/10	U		

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: ITA1329
Sampled: 01/18/10
Received: 01/18/10

Attention: Bronwyn Kelly

EPA-5 1613B

				Reporting	_	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITA1329-01 (Outfall 001 ((Grab) - Water)								
Reporting Units: ug/L									
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	26267	0.000012	0.000048	0.00012	0.95	01/26/10	02/02/10	В
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	26267	0.0000058	0.000048	2.7e-005	0.95	01/26/10	02/02/10	J, B
2,3,7,8-TCDF	EPA-5 1613B	26267	0.0000023	0.0000095	2.6e-006	0.95	01/26/10	02/02/10	J, Q
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	26267	0.0000092	0.000048	ND	0.95	01/26/10	02/02/10	
1,2,3,4,7,8-HxCDD	EPA-5 1613B	26267	0.0000078	0.000048	6.8e-006	0.95	01/26/10	02/02/10	J, Q, B
1,2,3,4,7,8-HxCDF	EPA-5 1613B	26267	0.0000049	0.000048	6.8e-006	0.95	01/26/10	02/02/10	J
1,2,3,6,7,8-HxCDD	EPA-5 1613B	26267	0.0000066	0.000048	6.6e-006	0.95	01/26/10	02/02/10	J, Q, B
1,2,3,6,7,8-HxCDF	EPA-5 1613B	26267	0.0000045	0.000048	3.8e-006	0.95	01/26/10	02/02/10	J, Q, B
1,2,3,7,8,9-HxCDD	EPA-5 1613B	26267	0.0000057	0.000048	8.1e-006	0.95	01/26/10	02/02/10	J, Q, B
1,2,3,7,8,9-HxCDF	EPA-5 1613B	26267	0.0000043	0.000048	4.3e-006	0.95	01/26/10	02/02/10	J, B
1,2,3,7,8-PeCDD	EPA-5 1613B	26267	0.0000098	0.000048	ND	0.95	01/26/10	02/02/10	
1,2,3,7,8-PeCDF	EPA-5 1613B	26267	0.0000051	0.000048	ND	0.95	01/26/10	02/02/10	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	26267	0.000004	0.000048	6.3e-006	0.95	01/26/10	02/02/10	J, B
2,3,4,7,8-PeCDF	EPA-5 1613B	26267	0.0000061	0.000048	ND	0.95	01/26/10	02/02/10	
2,3,7,8-TCDD	EPA-5 1613B	26267	0.0000033	0.0000095	ND	0.95	01/26/10	02/02/10	
OCDD	EPA-5 1613B	26267	0.000022	0.000095	0.0013	0.95	01/26/10	02/02/10	В
OCDF	EPA-5 1613B	26267	0.000013	0.000095	8.4e-005	0.95	01/26/10	02/02/10	J, B
Total HpCDD	EPA-5 1613B	26267	0.000012	0.000048	0.00024	0.95	01/26/10	02/02/10	В
Total HpCDF	EPA-5 1613B	26267	0.0000058	0.000048	6.7e-005	0.95	01/26/10	02/02/10	J, B
Total HxCDD	EPA-5 1613B	26267	0.0000057		2.1e-005	0.95	01/26/10	02/02/10	J, Q, B
Total HxCDF	EPA-5 1613B	26267	0.000004	0.000048	2.1e-005	0.95	01/26/10	02/02/10	J, Q, B
Total PeCDD	EPA-5 1613B	26267	0.0000098	0.000048	ND	0.95	01/26/10	02/02/10	, 0
Total PeCDF	EPA-5 1613B	26267		0.000048	ND	0.95	01/26/10	02/02/10	
Total TCDD	EPA-5 1613B	26267	0.0000033	0.0000095	ND	0.95	01/26/10	02/02/10	
Total TCDF	EPA-5 1613B	26267		0.0000095	2.6e-006	0.95	01/26/10	02/02/10	J, Q
Surrogate: 13C-2,3,7,8-TCDF (24-169)					54 %				-, -
Surrogate: 37Cl4-2,3,7,8-TCDD (35-19					96 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (58 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (67 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (60 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32					52 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26					51 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28					63 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26					55 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29					59 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-1	· · · · · · · · · · · · · · · · · · ·				48 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-1					50 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28					60 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-1					50 %				
Surrogate: 13C-2,3,7,8-TCDD (25-164)					54 %				
Surrogate: 13C-0CDD (17-157%)	/ v /				53 %				
Surroguic. 13C-OCDD (17-137/0)					33 /0				

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200

Report Number: ITA1329 Received: 01/18/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

EPA-5 1613B

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITA1329-01RE1 (Outfall 001	(Grab) - Water) -	cont.							
Reporting Units: ug/L									
2,3,7,8-TCDF	EPA-5 1613B	26267	0.0000029	0.0000095	ND	1	01/26/10	02/02/10	
Surrogate: 13C-2,3,7,8-TCDF (24-169%)					54 %				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-197%))				100 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: ITA1329
Sampled: 01/18/10
Received: 01/18/10

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 001 (Grab) (ITA1329-01)	Hold Time (in days) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 180.1	2	01/18/2010 15:00	01/18/2010 19:00	01/19/2010 13:30	01/19/2010 13:30
EPA 300.0	2	01/18/2010 15:00	01/18/2010 19:00	01/18/2010 16:00	01/18/2010 22:29
Filtration	1	01/18/2010 15:00	01/18/2010 19:00	01/19/2010 14:30	01/19/2010 14:30
SM2540F	2	01/18/2010 15:00	01/18/2010 19:00	01/19/2010 10:30	01/19/2010 10:30
SM5210B	2	01/18/2010 15:00	01/18/2010 19:00	01/19/2010 13:30	01/24/2010 08:30
SM5540-C	2	01/18/2010 15:00	01/18/2010 19:00	01/19/2010 20:17	01/19/2010 21:13

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10A2207 Extracted: 01/22	2/10										
Blank Analyzed: 01/24/2010 (10A220)	7-BLK1)										
Benzene	ND	0.50	0.28	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
1,1-Dichloroethane	ND	0.50	0.40	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.0	1.1	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.40	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Cyclohexane	ND	1.0	0.40	ug/l							
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
Surrogate: Dibromofluoromethane	24.4			ug/l	25.0		97	80-120			
Surrogate: Toluene-d8	26.3			ug/l	25.0		105	80-120			
LCS Analyzed: 01/24/2010 (10A2207-	P\$1)										
Benzene	24.6	0.50	0.28	ug/l	25.0		98	70-120			
Carbon tetrachloride	25.1	0.50	0.28	·	25.0		100	65-140			
Chloroform	23.1	0.50	0.28	ug/l ug/l	25.0		96	70-130			
1,1-Dichloroethane	23.9	0.50	0.33	·	25.0		96 95	70-130			
· ·	25.9		0.40	ug/l			100				
1,2-Dichloroethane		0.50		ug/l	25.0			60-140			
1,1-Dichloroethene	24.4	0.50	0.42	ug/l	25.0		97	70-125			
Ethylbenzene	25.9	0.50	0.25	ug/l	25.0		103	75-125			
Tetrachloroethene	24.9	0.50	0.32	ug/l	25.0		100	70-125			
Toluene	25.5	0.50	0.36	ug/l	25.0		102	70-120			
1,1,1-Trichloroethane	23.9	0.50	0.30	ug/l	25.0		96	65-135			
1,1,2-Trichloroethane	26.1	0.50	0.30	ug/l	25.0		104	70-125			
Trichloroethene	25.2	0.50	0.26	ug/l	25.0		101	70-125			
Trichlorofluoromethane	25.1	0.50	0.34	ug/l	25.0		100	65-145			
Test America Irvine											

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Quarterly Outfall 001

Sampled: 01/18/10 Received: 01/18/10

Report Number: ITA1329

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 10A2207 Extracted: 01/22/10	\										
Daten. 10A220/ Extracted. 01/22/10	<u>'</u>										
LCS Analyzed: 01/24/2010 (10A2207-BS	1)										
Vinyl chloride	20.7	0.50	0.40	ug/l	25.0		83	55-135			
Xylenes, Total	80.4	1.5	0.90	ug/l	75.0		107	70-125			
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			
Surrogate: Dibromofluoromethane	25.3			ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	26.6			ug/l	25.0		107	80-120			
Matrix Spike Analyzed: 01/24/2010 (10A	.2207-MS1)				Sou	rce: ITA	1329-01				
Benzene	20.7	0.50	0.28	ug/l	25.0	ND	83	65-125			
Carbon tetrachloride	20.6	0.50	0.28	ug/l	25.0	ND	83	65-140			
Chloroform	20.8	0.50	0.33	ug/l	25.0	ND	83	65-135			
1,1-Dichloroethane	20.1	0.50	0.40	ug/l	25.0	ND	80	65-130			
1,2-Dichloroethane	21.6	0.50	0.28	ug/l	25.0	ND	86	60-140			
1,1-Dichloroethene	17.5	0.50	0.42	ug/l	25.0	ND	70	60-130			
Ethylbenzene	23.1	0.50	0.25	ug/l	25.0	ND	93	65-130			
Tetrachloroethene	22.1	0.50	0.32	ug/l	25.0	ND	88	65-130			
Toluene	22.3	0.50	0.36	ug/l	25.0	ND	89	70-125			
1,1,1-Trichloroethane	20.4	0.50	0.30	ug/l	25.0	ND	81	65-140			
1,1,2-Trichloroethane	22.7	0.50	0.30	ug/l	25.0	ND	91	65-130			
Trichloroethene	21.3	0.50	0.26	ug/l	25.0	ND	85	65-125			
Trichlorofluoromethane	17.3	0.50	0.34	ug/l	25.0	ND	69	60-145			
Vinyl chloride	9.75	0.50	0.40	ug/l	25.0	ND	39	45-140			M2
Xylenes, Total	71.3	1.5	0.90	ug/l	75.0	ND	95	60-130			
Surrogate: 4-Bromofluorobenzene	26.1			ug/l	25.0		104	80-120			
Surrogate: Dibromofluoromethane	25.4			ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	26.7			ug/l	25.0		107	80-120			
Matrix Spike Dup Analyzed: 01/24/2010	(10A2207-M	ISD1)			Sou	rce: ITA	1329-01				
Benzene	21.6	0.50	0.28	ug/l	25.0	ND	87	65-125	5	20	
Carbon tetrachloride	21.6	0.50	0.28	ug/l	25.0	ND	87	65-140	5	25	
Chloroform	22.3	0.50	0.33	ug/l	25.0	ND	89	65-135	7	20	
1,1-Dichloroethane	20.9	0.50	0.40	ug/l	25.0	ND	84	65-130	4	20	
1,2-Dichloroethane	23.5	0.50	0.28	ug/l	25.0	ND	94	60-140	9	20	
1,1-Dichloroethene	18.6	0.50	0.42	ug/l	25.0	ND	75	60-130	6	20	
Ethylbenzene	24.0	0.50	0.25	ug/l	25.0	ND	96	65-130	4	20	
Tetrachloroethene	22.9	0.50	0.32	ug/l	25.0	ND	92	65-130	4	20	
Toluene	23.6	0.50	0.36	ug/l	25.0	ND	94	70-125	6	20	

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Batch: 10A2207 Extracted: 01/22/1	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Daten. 10A220/ Extracted. 01/22/1	<u>. U </u>										
Matrix Spike Dup Analyzed: 01/24/201	0 (10A2207-M	ISD1)			Sou	rce: ITA	1329-01				
1,1,1-Trichloroethane	21.2	0.50	0.30	ug/l	25.0	ND	85	65-140	4	20	
1,1,2-Trichloroethane	24.9	0.50	0.30	ug/l	25.0	ND	99	65-130	9	25	
Trichloroethene	22.6	0.50	0.26	ug/l	25.0	ND	90	65-125	6	20	
Trichlorofluoromethane	18.5	0.50	0.34	ug/l	25.0	ND	74	60-145	6	25	
Vinyl chloride	10.1	0.50	0.40	ug/l	25.0	ND	40	45-140	3	30	M2
Xylenes, Total	74.6	1.5	0.90	ug/l	75.0	ND	99	60-130	4	20	
Surrogate: 4-Bromofluorobenzene	26.0			ug/l	25.0		104	80-120			
Surrogate: Dibromofluoromethane	25.5			ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	26.7			ug/l	25.0		107	80-120			

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10A1840 Extracted: 01/20	0/10										
Blank Analyzed: 01/22/2010 (10A184	(A DI 1/1)										
		5.0	1.7	/1							
Bis(2-ethylhexyl)phthalate 2.4-Dinitrotoluene	ND ND	5.0 9.0	1.7 0.20	ug/l							
N-Nitrosodimethylamine	0.520	9.0 8.0	0.20	ug/l							7
Pentachlorophenol	0.320 ND	8.0	0.10	ug/l							J
2,4,6-Trichlorophenol	ND ND	6.0	0.10	ug/l							
Surrogate: 2,4,6-Tribromophenol	18.6	0.0	0.10	ug/l <i>ug/l</i>	20.0		93	40-120			
Surrogate: 2,4,6-11toromophenol Surrogate: 2-Fluorobiphenyl	8.42			ug/l ug/l	10.0		93 84	50-120			
Surrogate: 2-Fluorophenol	15.2			ug/l ug/l	20.0		76	30-120			
Surrogate: Nitrobenzene-d5	8.50			ug/l ug/l	10.0		85	45-120			
Surrogate: Phenol-d6	15.9			ug/l ug/l	20.0		79	35-120			
Surrogate: Terphenyl-d14	10.5			ug/l ug/l	10.0		105	50-125			
Surroguie. Terpnenyi-u14	10.3			ug/i	10.0		103	30-123			
LCS Analyzed: 01/22/2010 (10A1840	-BS1)										MNR1
Bis(2-ethylhexyl)phthalate	11.6	5.0	1.7	ug/l	10.0		116	65-130			
2,4-Dinitrotoluene	8.42	9.0	0.20	ug/l	10.0		84	65-120			J
N-Nitrosodimethylamine	7.60	8.0	0.10	ug/l	10.0		76	45-120			J
Pentachlorophenol	8.78	8.0	0.10	ug/l	10.0		88	50-120			
2,4,6-Trichlorophenol	8.54	6.0	0.10	ug/l	10.0		85	55-120			
Surrogate: 2,4,6-Tribromophenol	18.5			ug/l	20.0		92	40-120			
Surrogate: 2-Fluorobiphenyl	8.06			ug/l	10.0		81	50-120			
Surrogate: 2-Fluorophenol	12.3			ug/l	20.0		61	30-120			
Surrogate: Nitrobenzene-d5	7.60			ug/l	10.0		76	45-120			
Surrogate: Phenol-d6	13.9			ug/l	20.0		69	35-120			
Surrogate: Terphenyl-d14	9.84			ug/l	10.0		98	50-125			
LCS Dup Analyzed: 01/22/2010 (10A	1840-BSD1)										
Bis(2-ethylhexyl)phthalate	10.4	5.0	1.7	ug/l	10.0		104	65-130	11	20	
2,4-Dinitrotoluene	7.76	9.0	0.20	ug/l	10.0		78	65-120	8	20	J
N-Nitrosodimethylamine	7.70	8.0	0.10	ug/l	10.0		77	45-120	1	20	J
Pentachlorophenol	8.30	8.0	0.10	ug/l	10.0		83	50-120	6	25	
2,4,6-Trichlorophenol	8.00	6.0	0.10	ug/l	10.0		80	55-120	7	30	
Surrogate: 2,4,6-Tribromophenol	17.2			ug/l	20.0		86	40-120			
Surrogate: 2-Fluorobiphenyl	7.54			ug/l	10.0		75	50-120			
Surrogate: 2-Fluorophenol	12.7			ug/l	20.0		63	30-120			
Surrogate: Nitrobenzene-d5	7.32			ug/l	10.0		73	45-120			
Surrogate: Phenol-d6	14.1			ug/l	20.0		71	35-120			

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result %REC	Limits	RPD	Limit	Qualifiers
Batch: 10A1840 Extracted: 01/20/	/10									

LCS Dup Analyzed: 01/22/2010 (10A1840-BSD1)

Surrogate: Terphenyl-d14 ug/l 10.0 50-125

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A1612 Extracted: 01/19/10	<u>) </u>										
Blank Analyzed: 01/20/2010 (10A1612-B	LK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.430			ug/l	0.500		86	45-120			
Surrogate: Tetrachloro-m-xylene	0.379			ug/l	0.500		76	35-115			
LCS Analyzed: 01/20/2010 (10A1612-BS	1)										MNR1
alpha-BHC	0.394	0.010	0.0025	ug/l	0.500		79	45-115			
Surrogate: Decachlorobiphenyl	0.444			ug/l	0.500		89	45-120			
Surrogate: Tetrachloro-m-xylene	0.386			ug/l	0.500		77	35-115			
LCS Dup Analyzed: 01/20/2010 (10A161	2-BSD1)										
alpha-BHC	0.394	0.010	0.0025	ug/l	0.500		79	45-115	0.03	30	
Surrogate: Decachlorobiphenyl	0.447			ug/l	0.500		89	45-120			
Surrogate: Tetrachloro-m-xylene	0.387			ug/l	0.500		77	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte Batch: 10A1674 Extracted: 01/19/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 01/19/2010 (10A1674-B Hexane Extractable Material (Oil & Grease)	LK1) ND	5.0	1.4	mg/l							
LCS Analyzed: 01/19/2010 (10A1674-BS Hexane Extractable Material (Oil & Grease)	19.3	5.0	1.4	mg/l	20.0		96	78-114			MNR1
LCS Dup Analyzed: 01/19/2010 (10A167) Hexane Extractable Material (Oil & Grease)	4-BSD1) 19.1	5.0	1.4	mg/l	20.0		96	78-114	1	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10A1650 Extracted: 01/19/10	-										
Blank Analyzed: 01/19/2010 (10A1650-B	LK1)										
Iron	ND	0.040	0.015	mg/l							
Manganese	ND	20	7.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 01/19/2010 (10A1650-BS)	1)										
Iron	0.506	0.040	0.015	mg/l	0.500		101	85-115			
Manganese	499	20	7.0	ug/l	500		100	85-115			
Zinc	495	20	6.0	ug/l	500		99	85-115			
Matrix Spike Analyzed: 01/19/2010 (10A	1650-MS1)				Sou	rce: ITA	1325-01				
Iron	4.75	0.040	0.015	mg/l	0.500	4.61	28	70-130			MHA
Manganese	633	20	7.0	ug/l	500	162	94	70-130			
Zinc	499	20	6.0	ug/l	500	31.9	93	70-130			
Matrix Spike Dup Analyzed: 01/19/2010	(10A1650-M	SD1)			Sou	rce: ITA	1325-01				
Iron	5.00	0.040	0.015	mg/l	0.500	4.61	77	70-130	5	20	MHA
Manganese	651	20	7.0	ug/l	500	162	98	70-130	3	20	
Zinc	516	20	6.0	ug/l	500	31.9	97	70-130	3	20	
Batch: 10A1651 Extracted: 01/19/10	-										
Blank Analyzed: 01/19/2010 (10A1651-B	LK1)										
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Report Number: ITA1329

Sampled: 01/18/10

Received: 01/18/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A1651 Extracted: 01/19/10											
Batch, 10A1031 Extracted, 01/15/10	=										
LCS Analyzed: 01/19/2010 (10A1651-BS	1)										
Cadmium	81.2	1.0	0.10	ug/l	80.0		101	85-115			
Copper	78.1	2.0	0.50	ug/l	80.0		98	85-115			
Lead	80.5	1.0	0.20	ug/l	80.0		101	85-115			
Selenium	82.9	2.0	0.50	ug/l	80.0		104	85-115			
Matrix Spike Analyzed: 01/19/2010 (10A	1651-MS1)				Sou	rce: ITA	1325-01				
Cadmium	79.1	1.0	0.10	ug/l	80.0	0.157	99	70-130			
Copper	79.1	2.0	0.50	ug/l	80.0	6.81	90	70-130			
Lead	78.5	1.0	0.20	ug/l	80.0	3.41	94	70-130			
Selenium	83.9	2.0	0.50	ug/l	80.0	0.825	104	70-130			
Matrix Spike Dup Analyzed: 01/19/2010	(10A1651-MS	SD1)			Sou	rce: ITA	1325-01				
Cadmium	80.1	1.0	0.10	ug/l	80.0	0.157	100	70-130	1	20	
Copper	80.1	2.0	0.50	ug/l	80.0	6.81	92	70-130	1	20	
Lead	81.3	1.0	0.20	ug/l	80.0	3.41	97	70-130	4	20	
Selenium	86.6	2.0	0.50	ug/l	80.0	0.825	107	70-130	3	20	
Batch: 10A1677 Extracted: 01/19/10											
	_										
Blank Analyzed: 01/19/2010 (10A1677-B	LK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 01/19/2010 (10A1677-BS	1)										
Mercury	8.18	0.20	0.10	ug/l	8.00		102	85-115			
Matrix Spike Analyzed: 01/19/2010 (10A	1677-MS1)				Sou	rce: ITA	1326-01				
Mercury	8.19	0.20	0.10	ug/l	8.00	ND	102	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10A1677 Extracted: 01/19	9/10										
Matrix Spike Dup Analyzed: 01/19/2		Sou	rce: ITA	1326-01							
Mercury	8.18	0.20	0.10	ug/l	8.00	ND	102	70-130	0.1	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10A2023 Extracted: 01/21/10	=										
Blank Analyzed: 01/21/2010 (10A2023-B	LK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 01/21/2010 (10A2023-BS)	1)										
Mercury	8.84	0.20	0.10	ug/l	8.00		110	85-115			
Matrix Spike Analyzed: 01/21/2010 (10A	2023-MS1)				Sou	rce: ITA	1481-02				
Mercury	8.85	0.20	0.10	ug/l	8.00	ND	111	70-130			
Matrix Spike Dup Analyzed: 01/21/2010	(10A2023-MS	SD1)			Sou	rce: ITA	1481-02				
Mercury	8.92	0.20	0.10	ug/l	8.00	ND	111	70-130	0.8	20	
Batch: 10A2106 Extracted: 01/22/10	_										
Blank Analyzed: 01/25/2010 (10A2106-B	LK1)										
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
LCS Analyzed: 01/25/2010 (10A2106-BS)	1)										
Cadmium	78.4	1.0	0.10	ug/l	80.0		98	85-115			
Copper	80.7	2.0	0.50	ug/l	80.0		101	85-115			
Lead	83.0	1.0	0.20	ug/l	80.0		104	85-115			
Selenium	78.8	2.0	0.50	ug/l	80.0		98	85-115			
Matrix Spike Analyzed: 01/25/2010 (10A	2106-MS1)				Sou	rce: ITA	1328-01				
Cadmium	81.9	1.0	0.10	ug/l	80.0	ND	102	70-130			
Copper	86.8	2.0	0.50	ug/l	80.0	2.76	105	70-130			
Lead	84.9	1.0	0.20	ug/l	80.0	0.620	105	70-130			
Selenium	82.3	2.0	0.50	ug/l	80.0	ND	103	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10A2106 Extracted: 01/22/10	<u>) </u>										
Matrix Spike Dup Analyzed: 01/25/2010	-01/27/2010 ((10A2106-MS	SD1)		Sou	rce: ITA	1328-01				
Cadmium	74.6	1.0	0.10	ug/l	80.0	ND	93	70-130	9	20	
Copper	79.9	2.0	0.50	ug/l	80.0	2.76	96	70-130	8	20	
Lead	77.9	1.0	0.20	ug/l	80.0	0.620	97	70-130	9	20	
Selenium	74.9	2.0	0.50	ug/l	80.0	ND	94	70-130	9	20	
Batch: 10A2107 Extracted: 01/22/10	<u>) </u>										
D	T TZ4)										
Blank Analyzed: 01/27/2010 (10A2107-B	′										
Iron	ND	0.040	0.015	mg/l							
Manganese	ND	20	7.0	ug/l							
Zinc	10.7	20	6.0	ug/l							J
LCS Analyzed: 01/27/2010 (10A2107-BS	1)										
Iron	0.477	0.040	0.015	mg/l	0.500		95	85-115			
Manganese	492	20	7.0	ug/l	500		98	85-115			
Zinc	481	20	6.0	ug/l	500		96	85-115			
Matrix Spike Analyzed: 01/27/2010 (10A	2107-MS1)				Sou	rce: ITA	1329-01				
Iron	1.70	0.040	0.015	mg/l	0.500	1.14	112	70-130			
Manganese	505	20	7.0	ug/l	500	15.6	98	70-130			
Zinc	482	20	6.0	ug/l	500	ND	96	70-130			
Matrix Spike Dup Analyzed: 01/27/2010	(10A2107-M	ISD1)			Sou	rce: ITA	1329-01				
Iron	1.75	0.040	0.015	mg/l	0.500	1.14	121	70-130	3	20	
Manganese	514	20	7.0	ug/l	500	15.6	100	70-130	2	20	
Zinc	492	20	6.0	ug/l	500	ND	98	70-130	2	20	

Sampled: 01/18/10

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Report Number: ITA1329 Received: 01/18/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10A1543 Extracted: 01/18/10											
Butter 10:110 to Extracted 01/10/10	-										
Blank Analyzed: 01/18/2010 (10A1543-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 01/18/2010 (10A1543-BS	1)										
Chloride	4.85	0.50	0.25	mg/l	5.00		97	90-110			
Nitrate-N	1.09	0.11	0.060	mg/l	1.13		96	90-110			
Nitrite-N	1.50	0.15	0.090	mg/l	1.52		98	90-110			
Sulfate	9.91	0.50	0.20	mg/l	10.0		99	90-110			
Matrix Spike Analyzed: 01/18/2010 (10A	1543-MS1)				Sou	rce: ITA	1246-02				
Chloride	8.13	0.50	0.25	mg/l	5.00	3.08	101	80-120			
Nitrate-N	1.91	0.11	0.060	mg/l	1.13	0.702	107	80-120			
Nitrite-N	1.61	0.15	0.090	mg/l	1.52	0.122	98	80-120			
Sulfate	15.6	0.50	0.20	mg/l	10.0	5.22	104	80-120			
Matrix Spike Analyzed: 01/18/2010 (10A	1543-MS2)				Sou	rce: ITA	1327-01				
Chloride	155	10	5.0	mg/l	50.0	109	93	80-120			
Nitrate-N	21.4	2.2	1.2	mg/l	11.3	9.74	103	80-120			
Nitrite-N	17.1	3.0	1.8	mg/l	15.2	ND	113	80-120			
Sulfate	256	10	4.0	mg/l	100	160	96	80-120			
Matrix Spike Dup Analyzed: 01/18/2010	(10A1543-M	SD1)			Sou	rce: ITA	1246-02				
Chloride	8.26	0.50	0.25	mg/l	5.00	3.08	104	80-120	2	20	
Nitrate-N	1.95	0.11	0.060	mg/l	1.13	0.702	111	80-120	2	20	
Nitrite-N	1.65	0.15	0.090	mg/l	1.52	0.122	100	80-120	2	20	
Sulfate	15.9	0.50	0.20	mg/l	10.0	5.22	107	80-120	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10A1624 Extracted: 01/19/10	_										
	_										
Blank Analyzed: 01/19/2010 (10A1624-B	LK1)										
Specific Conductance	ND	1.0	1.0	umhos/cm							
LCS Analyzed: 01/19/2010 (10A1624-BS)	1)										
Specific Conductance	1420	1.0	1.0	umhos/cm	1410		101	90-110			
Duplicate Analyzed: 01/19/2010 (10A162	4-DUP1)				Sou	rce: ITA1	1293-03				
Specific Conductance	112	1.0	1.0	umhos/cm		111			0.09	5	
Batch: 10A1629 Extracted: 01/19/10											
Blank Analyzed: 01/19/2010 (10A1629-B	LK1)										
Total Dissolved Solids	ND	10	1.0	mg/l							
LCS Analyzed: 01/19/2010 (10A1629-BS)	1)										
Total Dissolved Solids	1000	10	1.0	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/19/2010 (10A162	9-DUP1)				Sou	rce: ITA1	1307-01				
Total Dissolved Solids	12.0	10	1.0	mg/l		12.0			0	10	
Batch: 10A1636 Extracted: 01/19/10	_										
	_										
Blank Analyzed: 01/19/2010 (10A1636-B	LK1)										
Perchlorate	ND	4.0	0.90	ug/l							
LCS Analyzed: 01/19/2010 (10A1636-BS)	1)										
Perchlorate	25.1	4.0	0.90	ug/l	25.0		101	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Units	Level	Result	/0KEC	Limits	KI D	Lillit	Quanners
Batch: 10A1636 Extracted: 01/19/10	=										
Matrix Spike Analyzed: 01/19/2010 (10A	1636-MS1)				Sou	rce: ITA	1329-01				
Perchlorate	29.5	4.0	0.90	ug/l	25.0	ND	118	80-120			
Matrix Spike Dup Analyzed: 01/19/2010	(10A1636-MS	SD1)			Sou	rce: ITA	1329-01				
Perchlorate	28.7	4.0	0.90	ug/l	25.0	ND	115	80-120	2	20	
Batch: 10A1657 Extracted: 01/19/10	_										
Dlawk Analyzadi 01/10/2010 (10A1657 D	I IZ1)										
Blank Analyzed: 01/19/2010 (10A1657-B) Turbidity	ND	1.0	0.040	NTU							
•					Con	rce: ITA1	1274 01				
Duplicate Analyzed: 01/19/2010 (10A165 Turbidity	0.800	1.0	0.040	NTU	Sou	0.810	12/4-01		1	20	J
•		1.0	0.0.0	1110	C		1222 01		•	20	Ü
Duplicate Analyzed: 01/19/2010 (10A165 Turbidity	7-DUP2) 20.5	1.0	0.040	NTU	Sou	rce: ITA1 20.7	1333-01		1	20	
•		1.0	0.040	NIO		20.7			1	20	
Batch: 10A1691 Extracted: 01/19/10	-										
Blank Analyzed: 01/19/2010 (10A1691-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 01/19/2010 (10A1691-BS	1)										
Total Cyanide	198	5.0	2.2	ug/l	200		99	90-110			
Matrix Spike Analyzed: 01/19/2010 (10A	1691-MS1)				Sou	rce: ITA	1331-01				
Total Cyanide	201	5.0	2.2	ug/l	200	ND	101	70-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A1691 Extracted: 01/19/10	_										
Matrix Spike Dup Analyzed: 01/19/2010	(10A1691-MS	D 1)			Sou	rce: ITA1	331-01				
Total Cyanide	203	5.0	2.2	ug/l	200	ND	102	70-115	1	15	
Batch: 10A1693 Extracted: 01/19/10	_										
Blank Analyzed: 01/24/2010 (10A1693-B	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.50	mg/l							
LCS Analyzed: 01/24/2010 (10A1693-BS)	1)										
Biochemical Oxygen Demand	214	100	25	mg/l	198		108	85-115			
LCS Dup Analyzed: 01/24/2010 (10A1693	B-BSD1)										
Biochemical Oxygen Demand	198	100	25	mg/l	198		100	85-115	8	20	
Batch: 10A1730 Extracted: 01/19/10	_										
Blank Analyzed: 01/20/2010 (10A1730-Bl	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.50	mg/l							
LCS Analyzed: 01/20/2010 (10A1730-BS)	1)										
Ammonia-N (Distilled)	10.4	0.50	0.50	mg/l	10.0		104	80-115			
Matrix Spike Analyzed: 01/20/2010 (10A	1730-MS1)		Source: ITA1289-05								
Ammonia-N (Distilled)	10.4	0.50	0.50	mg/l	10.0	ND	104	70-120			
Matrix Spike Dup Analyzed: 01/20/2010	(10A1730-MS	D1)			Sou	rce: ITA1	289-05				
Ammonia-N (Distilled)	10.4	0.50	0.50	mg/l	10.0	ND	104	70-120	0	15	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A1736 Extracted: 01/19/10	_										
Blank Analyzed: 01/19/2010 (10A1736-Bl	LK1)										
Surfactants (MBAS)	ND	0.10	0.025	mg/l							
LCS Analyzed: 01/19/2010 (10A1736-BS)	1)										
Surfactants (MBAS)	0.262	0.10	0.025	mg/l	0.250		105	90-110			
Matrix Spike Analyzed: 01/19/2010 (10A	1736-MS1)				Sou	rce: ITA1	1329-01				
Surfactants (MBAS)	0.0544	0.10	0.025	mg/l	0.250	ND	22	50-125			M2, J
Matrix Spike Dup Analyzed: 01/19/2010	(10A1736-MS	D1)			Sou	rce: ITA1	1329-01				
Surfactants (MBAS)	0.0512	0.10	0.025	mg/l	0.250	ND	20	50-125	6	20	M2, J
Batch: 10A2035 Extracted: 01/21/10	_										
Blank Analyzed: 01/21/2010 (10A2035-B	I IZ1)										
Total Suspended Solids	ND	10	1.0	mg/l							
•		10	1.0	mg/i							
LCS Analyzed: 01/21/2010 (10A2035-BS)	1)										
Total Suspended Solids	1020	10	1.0	mg/l	1000		102	85-115			
Duplicate Analyzed: 01/21/2010 (10A203	5-DUP1)				Sou	rce: ITA1	1595-01				
Total Suspended Solids	18.0	10	1.0	mg/l		18.0			0	10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

ASTM 5174-91

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 35029 Extracted: 02/04/10											
Matrix Spike Dup Analyzed: 02/08/2010	(F0A20048600	01D)			Sou	rce: F0A2	20048600	1			
Total Uranium	29.2	0.7	0.2	pCi/L	27.7	-0.0334	105	62-150	2	20	
Matrix Spike Analyzed: 02/08/2010 (F0A	200486001S)				Sou	rce: F0A2	20048600	1			
Total Uranium	28.8	0.7	0.2	pCi/L	27.7	-0.0334	104	62-150			
Blank Analyzed: 02/08/2010 (F0B040000	029B)				Sou	rce:					
Total Uranium	-0.0623	0.693	0.21	pCi/L				-			U
LCS Analyzed: 02/08/2010 (F0B0400000	29C)				Sou	rce:					
Total Uranium	29.2	0.7	0.2	pCi/L	27.7		105	90-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

EPA 900.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 25415 Extracted: 01/25/10											
Matrix Spike Analyzed: 01/29/2010 (F0A	.200486001S)				Sou	rce: F0A2	20048600	1			
Gross Alpha	6.9	3	1	pCi/L	49.4	0.98	12	35-150			а
Gross Beta	10	4	1.6	pCi/L	68.1	0.83	14	54-150			а
Duplicate Analyzed: 01/29/2010 (F0A200	486001X)				Sou	rce: F0A2	20048600	1			
Gross Alpha	0.71	3	1.4	pCi/L		0.98		-			Jb
Gross Beta	1.6	4	1.6	pCi/L		0.83		-			Jb
Blank Analyzed: 01/29/2010 (F0A250000	415B)				Sou	rce:					
Gross Alpha	-0.03	3	0.71	pCi/L				-			U
Gross Beta	-0.26	4	1.5	pCi/L				-			U
LCS Analyzed: 01/29/2010 (F0A2500004	15C)				Sou	rce:					
Gross Alpha	45.4	3	0.9	pCi/L	49.4		92	62-134			
Gross Beta	73.4	4	1.6	pCi/L	68.1		108	58-133			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

EPA 901.1 MOD

Analyte Batch: 21221 Extracted: 01/21/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 02/02/2010 (F0A20	0486001X)				Sou	rce: F0A	20048600	1			
Cesium 137	0.1	20	18	pCi/L		1.9		-			U
Potassium 40	-90	NA	300	pCi/L		-100		-			U
Blank Analyzed: 02/02/2010 (F0A21000	0221B)				Sou	rce:					
Cesium 137	2.8	20	11	pCi/L				-			U
Potassium 40	-100	NA	200	pCi/L				-			U
LCS Analyzed: 02/02/2010 (F0A210000)	221C)				Sou	rce:					
Americium 241	139000	NA	500	pCi/L	141000		99	87-110			
Cobalt 60	86100	NA	200	pCi/L	87900		98	89-110			
Cesium 137	52900	20	200	pCi/L	53100		100	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

EPA 903.0 MOD

Analyte Batch: 21255 Extracted: 01/21/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 02/08/2010 (F0A210000) Radium (226)	0.014	1	0.13	pCi/L	Sour	rce:		-			U
LCS Analyzed: 02/08/2010 (F0A2100002 Radium (226)	255C) 10.6	1	0.1	pCi/L	Sou : 11.3	rce:	94	68-136			
LCS Dup Analyzed: 02/08/2010 (F0A210 Radium (226)	0000255L) 10.9	1	0.1	pCi/L	Sou 11.3	rce:	97	68-136	3	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

EPA 904 MOD

Analyte Batch: 21256 Extracted: 01/21/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 02/08/2010 (F0A210000 Radium 228	0256B) -0.19	1	0.45	pCi/L	Sour	rce:		-			U
LCS Analyzed: 02/08/2010 (F0A2100002) Radium 228	56C) 6.7	1	0.45	pCi/L	Sou : 6.45	rce:	104	60-142			
LCS Dup Analyzed: 02/08/2010 (F0A210 Radium 228	7.41	1	0.42	pCi/L	Sou 1 6.45	rce:	115	60-142	10	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

EPA 905 MOD

Analyte Batch: 21257 Extracted: 01/21/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 02/04/2010 (F0A210000 Strontium 90	257B) 0.16	3	0.51	pCi/L	Sour	rce:		-			U
LCS Analyzed: 02/04/2010 (F0A2100002 Strontium 90	57C) 7.62	3	0.53	pCi/L	Sou 1 6.81	rce:	112	80-130			
LCS Dup Analyzed: 02/04/2010 (F0A210 Strontium 90	000257L) 6.42	3	0.46	pCi/L	Sou : 6.81	rce:	94	80-130	17	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

EPA 906.0 MOD

Analyte Batch: 28080 Extracted: 01/28/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 01/29/2010 (F0A200	0486001X)				Sou	rce: F0A2	20048600	1			
Tritium	-49	500	140	pCi/L		99		-			U
Matrix Spike Analyzed: 01/29/2010 (F0A	200494001S)				Sou	rce: ITA1	1329-01				
Tritium	4350	500	140	pCi/L	4540	64	94	62-147			
Blank Analyzed: 01/28/2010 (F0A280000	080B)				Sou	rce:					
Tritium	250	500	140	pCi/L				-			Jb
LCS Analyzed: 01/28/2010 (F0A2800000	80C)				Sou	rce:					
Tritium	4680	500	140	pCi/L	4540		103	85-112			

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Quarterly Outfall 001

Report Number: ITA1329

Sampled: 01/18/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA-5 1613B

Analyte	Result	Reporting Limit	g MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 26267 Extracted: 01/26/10											
Batch. 2020/ Extracted. 01/20/10											
Blank Analyzed: 02/02/2010 (G0A26000	0267B)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	7.9e-006	0.00005	0.0000056	ug/L				-			J
1,2,3,4,6,7,8-HpCDF	6.9e-006	0.00005	0.0000044	ug/L				-			J
2,3,7,8-TCDF	ND	0.00001	0.000002	ug/L				-			
1,2,3,4,7,8,9-HpCDF	ND	0.00005	0.0000071	ug/L				-			
1,2,3,4,7,8-HxCDD	4.6e-006	0.00005	0.0000048	ug/L				-			J
1,2,3,4,7,8-HxCDF	ND	0.00005	0.0000039	ug/L				-			
1,2,3,6,7,8-HxCDD	6.5e-006	0.00005	0.0000041	ug/L				-			J
1,2,3,6,7,8-HxCDF	5.7e-006	0.00005	0.0000034	ug/L				-			J
1,2,3,7,8,9-HxCDD	2.7e-006	0.00005	0.0000033	ug/L				-			J, Q
1,2,3,7,8,9-HxCDF	2.2e-006	0.00005	0.0000036	ug/L				-			J, Q
1,2,3,7,8-PeCDD	ND	0.00005	0.0000067	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	0.0000038	ug/L				-			
2,3,4,6,7,8-HxCDF	6e-006	0.00005	0.0000031	ug/L				-			J, Q
2,3,4,7,8-PeCDF	ND	0.00005	0.0000042	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	0.0000027	ug/L				-			
OCDD	2e-005	0.0001	0.0000089	ug/L				-			J, Q
OCDF	1.6e-005	0.0001	0.0000089	ug/L				-			J
Total HpCDD	7.9e-006	0.00005	0.0000056	ug/L				-			J
Total HpCDF	6.9e-006	0.00005	0.0000044	ug/L				-			J
Total HxCDD	1.4e-005	0.00005	0.0000035	ug/L				-			J, Q
Total HxCDF	1.4e-005	0.00005	0.0000031	ug/L				-			J, Q
Total PeCDD	ND	0.00005	0.0000067	ug/L				-			
Total PeCDF	ND	0.00005	0.0000026	ug/L				-			
Total TCDD	ND	0.00001	0.0000027	ug/L				-			
Total TCDF	ND	0.00001	0.000002	ug/L				-			
Surrogate: 13C-2,3,7,8-TCDF	0.0012			ug/L	0.002		60	24-169			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00077			ug/L	0.0008		96	35-197			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0018			ug/L	0.002		91	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0021			ug/L	0.002		104	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0019			ug/L	0.002		93	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0017			ug/L	0.002		83	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0015			ug/L	0.002		77	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0018			ug/L	0.002		88	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0017			ug/L	0.002		85	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0017			ug/L	0.002		85	29-147			

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001

Report Number: ITA1329

Reporting

Sampled: 01/18/10 Received: 01/18/10

RPD

Data

METHOD BLANK/QC DATA

EPA-5 1613B

Spike

Source

Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 26267 Extracted: 01/26/1	10										
Blank Analyzed: 02/02/2010 (G0A26	60000267B)				Sou	ırce:					
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0013			ug/L	0.002		65	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0013			ug/L	0.002		66	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0019			ug/L	0.002		93	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0014			ug/L	0.002		69	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0012			ug/L	0.002		61	25-164			
Surrogate: 13C-OCDD	0.0036			ug/L	0.004		89	17-157			
LCS Analyzed: 02/02/2010 (G0A260	0000267C)				Sou	ırce:					
1,2,3,4,6,7,8-HpCDD	0.00102	0.00005	0.0000092	ug/L	0.001		102	70-140			
1,2,3,4,6,7,8-HpCDF	0.00108	0.00005	0.0000073	ug/L	0.001		108	82-122			
2,3,7,8-TCDF	0.0002	0.00001	0.0000027	ug/L	0.0002		100	75-158			
1,2,3,4,7,8,9-HpCDF	0.00111	0.00005	0.0000012	ug/L	0.001		111	78-138			
1,2,3,4,7,8-HxCDD	0.00103	0.00005	0.0000078	ug/L	0.001		103	70-164			
1,2,3,4,7,8-HxCDF	0.00114	0.00005	0.0000051	ug/L	0.001		114	72-134			
1,2,3,6,7,8-HxCDD	0.000964	0.00005	0.0000063	ug/L	0.001		96	76-134			
1,2,3,6,7,8-HxCDF	0.00102	0.00005	0.0000045	ug/L	0.001		102	84-130			
1,2,3,7,8,9-HxCDD	0.000912	0.00005	0.0000055	ug/L	0.001		91	64-162			
1,2,3,7,8,9-HxCDF	0.00102	0.00005	0.0000046	ug/L	0.001		102	78-130			
1,2,3,7,8-PeCDD	0.000999	0.00005	0.0000085	ug/L	0.001		100	70-142			
1,2,3,7,8-PeCDF	0.00104	0.00005	0.0000054	ug/L	0.001		104	80-134			
2,3,4,6,7,8-HxCDF	0.00104	0.00005	0.000004	ug/L	0.001		104	70-156			
2,3,4,7,8-PeCDF	0.00106	0.00005	0.000006	ug/L	0.001		106	68-160			
2,3,7,8-TCDD	0.000175	0.00001	0.0000038	ug/L	0.0002		88	67-158			
OCDD	0.002	0.0001	0.0000021	ug/L	0.002		100	78-144			
OCDF	0.00214	0.0001	0.000001	ug/L	0.002		107	63-170			
Surrogate: 13C-2,3,7,8-TCDF	0.00112			ug/L	0.002		56	24-169			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000752			ug/L	0.0008		94	35-197			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00169			ug/L	0.002		84	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00191			ug/L	0.002		96	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00165			ug/L	0.002		83	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00133			ug/L	0.002		66	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00139			ug/L	0.002		69	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00175			ug/L	0.002		88	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00162			ug/L	0.002		81	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00161			ug/L	0.002		80	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00124			ug/L	0.002		62	25-181			
Toot A moving Invine											

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329

Received: 01/18/10

METHOD BLANK/QC DATA

EPA-5 1613B

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 26267 Extracted: 01/26/10											
LCS Analyzed: 02/02/2010 (G0A260000)	267C)				Sou	rce:					
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00123			ug/L	0.002		62	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00171			ug/L	0.002		86	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00127			ug/L	0.002		63	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.00116			ug/L	0.002		58	25-164			
Surrogate: 13C-OCDD	0.00318			ug/L	0.004		80	17-157			

MWH-Pasadena/Boeing

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: ITA1329
Sampled: 01/18/10
Received: 01/18/10

Arcadia, CA 91007 Report Number: ITA1329 Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
<u>LabNumber</u>	Analysis	Analyte	Units	Result	MRL	Limit
ITA1329-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0	4.8	10
ITA1329-01	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0.0019	0.0094	0.01
ITA1329-01	624-Boeing 001/002Q (Fr113+X+I	Fr1,1-Dichloroethene	ug/l	0	0.50	3.2
ITA1329-01	624-Boeing 001/002Q (Fr113+X+I	FrTrichloroethene	ug/l	0	0.50	5
ITA1329-01	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.7	6.5
ITA1329-01	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	8.6	9.1
ITA1329-01	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.25	4.8	4
ITA1329-01	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	7.6	8.1
ITA1329-01	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	7.6	8.2
ITA1329-01	Ammonia-N, Titr 4500NH3-C (w/c	li:Ammonia-N (Distilled)	mg/l	0.28	0.50	2
ITA1329-01	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	3.82	2.0	20
ITA1329-01	Cadmium-200.8	Cadmium	ug/l	0.22	5.0	2
ITA1329-01	Chloride - 300.0	Chloride	mg/l	1.56	0.50	150
ITA1329-01	Copper-200.8	Copper	ug/l	12	10	7.1
ITA1329-01	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	0	5.0	4.3
ITA1329-01	Iron-200.7	Iron	mg/l	23	0.080	0.3
ITA1329-01	Lead-200.8	Lead	ug/l	13	5.0	2.6
ITA1329-01	Manganese-200.7	Manganese	ug/l	403	40	50
ITA1329-01	MBAS - SM5540-C	Surfactants (MBAS)	mg/l	0	0.10	0.5
ITA1329-01	Nitrate-N, 300.0	Nitrate-N	mg/l	0.59	0.11	8
ITA1329-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
ITA1329-01	Nitrogen, NO3+NO2 -N EPA 300.0	0 Nitrate/Nitrite-N	mg/l	0.59	0.26	8
ITA1329-01	Perchlorate 314.0 - Default	Perchlorate	ug/l	0	4.0	6
ITA1329-01	Selenium-200.8	Selenium	ug/l	1.01	10	4.1
ITA1329-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.1
ITA1329-01	Sulfate-300.0	Sulfate	mg/l	3.83	0.50	300
ITA1329-01	TDS - SM2540C	Total Dissolved Solids	mg/l	171	10	950
ITA1329-01	TSS - SM2540D	Total Suspended Solids	mg/l	452	20	15
ITA1329-01	Zinc-200.7	Zinc	ug/l	76	40	54

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

MWH-Pasadena/Boeing

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/18/10

Arcadia, CA 91007 Report Number: ITA1329 Received: 01/18/10
Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
ITA1329-02	624-Boeing 001/002Q (Fr11)	3+X+Fr1,1-Dichloroethene	ug/l	0	0.50	3.2
ITA1329-02	624-Boeing 001/002Q (Fr11)	3+X+FrTrichloroethene	ug/l	0	0.50	5

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/18/10

Arcadia, CA 91007 Report Number: ITA1329 Received: 01/18/10
Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

я	Sniked analyte	outside of stated (OC limits

- **B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.

impacted.

MWH-Pasadena/Boeing

- J Estimated result. Result is less than the reporting limit.
- **Jb** Result is greater than sample detection limit but less than stated reporting limit.
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

- **Q** Estimated maximum possible concentration (EMPC).
- **RL1** Reporting limit raised due to sample matrix effects.
- U Result is less than the sample detection limit.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001

Sampled: 01/18/10

Report Number: ITA1329 Received: 01/18/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 120.1	Water	X	X
EPA 1664A	Water	X	X
EPA 180.1	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1-Diss	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2540C	Water	X	
SM2540F	Water	X	X
SM4500CN-E	Water	X	X
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003 Analysis Performed: Bioassay-7 dy Chrnic

Samples: ITA1329-01

Analysis Performed: Level 4 Data Package

Samples: ITA1329-01

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/18/10

Arcadia, CA 91007 Report Number: ITA1329 Received: 01/18/10
Attention: Bronwyn Kelly

TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045 Method Performed: ASTM 5174-91

Samples: ITA1329-01

Method Performed: EPA 900.0 MOD

Samples: ITA1329-01

Method Performed: EPA 901.1 MOD

Samples: ITA1329-01

Method Performed: EPA 903.0 MOD

Samples: ITA1329-01

Method Performed: EPA 904 MOD

Samples: ITA1329-01

Method Performed: EPA 905 MOD

Samples: ITA1329-01

Method Performed: EPA 906.0 MOD

Samples: ITA1329-01

TestAmerica West Sacramento

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITA1329-01, ITA1329-01RE1

CHAIN OF CUSTODY FORM Test America version 6/29/09

															3																
Page 1 of 2		Field readings: (Log in and include in	report Temp and pH)	Temp %= 54.9 %	Ş	Time of readings =	1800	Comments																						4	
g.		Field readings: (Log in and inc	report Te	Temp :	PH = 4.5	Time of r	_	0							\)		ork order.		ا. ا				X
[TA1329															1								_		d to this wo	10 0	Normat X		~		NPDES Level IV:
ITA	ANALYSIS REQUIRED																					<i>'</i>		n event.	Composite samples will follow and are to be added to this work order.	und time: (Check)			Sample Integrity: (Check) Intact: On loe:		Data Requirements: (Check) No Level IV: All Level IV:
	ANALYSI																			$\frac{1}{}$				r this storn	ill follow ar	Turn-arou		Γ	Sample In intact:	Т	Data Require No Level IV:
CHAIN OF CUSTODY FORM															1									tfall 001 fo	amples w	-	0:9]/ 07-8}-				N(8/10 1970)
Y Y					O 49-		uctivit - Resi						×		*				A	-		-		for Ou	posite s	. Æ.	1-2-1	lime:		lime:	1)/8/
ISTO				stable)	ecove	ı İsto	ot) əbi	Cyan				×			1			1/9	*						V.) ate	/	Date/Time		Date/Time:	5
ე ::				HEM)	I- 1- 99	t) əs	Greas	.8 IIO			×							1/	E					site sa	event						
Ö							saple (×		_			1	 	_			_		_	_	odwo	Storm			3		1 (
CHAIL			113	+ Freon	səuə	IVX +	+Z9 S	Bottle #	*1A, 1B, 1C, X	2	3A, 3B	4	5A, 5B	6A, 6B, 6C X	-22		d	Space						COC Page 2 of 2 will list the composite samples for Outfall 001 for this storm event.		Received By	The state of the s	Received By		Received By	1
		PDES all 001						Preservative	HC!	None	HCI	NaOH	None	HCI	None		B	1						Page 2 of 2	on of Outfal		(6:20)	Ž.	19:00 10:00	N.	
	ect:	Boeing-SSFL NPDES Quarterly Outfall 001 GRAB			Phone Number:	(626) 568-6691	(626) 568-6515	Sampling Date/Time	aesi ai			_	_		1		\int							8	Grab Porti	10	N.8 1/0 (B.S)				
	Project:	Boeing- Quarte GRAB			Pho	(626	(626		III			\dashv			III	1				4		4			re the	Time:	_	Time:	01-51-1	Time:	
6/29/09			Doak		<u>~</u>		Q	er # of Cont.	2	y 1	er 2	oly 1	oly 2	6	oiv.	1				\dashv	+	-	-		ples a	Date/Time	_	Date/Time:	1	Date/Time:	
Test America version 6/29/09	.,	Suite 200	t: Joseph		nwyn Kel	Mayramchel	Emily Alfano	Container Type	VOAs	1L Poly	1L Amber	500 mL Poly	500 mL Poly	VOAs	vv 150 mt Poiv-	 /									nese Sam	1	2	1	m	8	-
\meric	/Address	adia da Ave, 9	a Contact		ager: Bro	haykah	Zwild	Sample Matrix	W	W	*	>	>	*	V					-		_				<u>,</u>	~		1		
Test A	Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007	Test America Contact: Joseph Doak		Project Manager: Bronwyn Kelly		Sampler:	Sample Description	Outfall 001	Outfall 001	Outfall 001	Outfall 001	Outfall 001	Trip Blanks	- Outfall 901											Relinquished by	3	Relinquished By	1100	Relinquished By	

																	ی د	5	6					_				
		Comments					24 TAT - Mn and Fe exceeded 2/16/09	24 TAT				24 TAT	24 TAT					Unfiltered and unpreserved	analysis	Only test if first and second rain event of the year	Filter win 24hrs of receipt at lab							チャイン
				n, re	ווי ואוני	Z 'əs										_									order.	X		NPDES Level IV.
	Cn' bp' Ha' Cq') :sli																			×				work	10 Day: Normal:		NPO6
			ţţì	oxic	T oin	СРГО														×			Ц		this			. 1
ANALYSIS REQUIRED	.co (00.00), Total Beta (00.00), Total 8 (0.200), 0.000 (0.200), K-00.000 (0.800), K-1)	. Sr. S6 (Jr.	(0.80) 2 mui (0.40)	e) (6- BeA 89 (8	-H) m bənic SS mı	Tritiun Comb												×	<					ent.	Samples are to be added to this work order.	Check) 72 Hour 5 Day:	Sheck)	: (Check) All Level IV:
VALYSIS	uene, Bis(2- MA, PCP (SVOCs																×							ists the grab samples for Outfall 001 for this storm event.	es are to	ind time: (Sample Integrity: (Check)	ments
A	PP + PP	itsə	7 + (8	09) (внс	edqlA										×								his st	ampl	Tum-arou 24 Hour. 48 Hour.	Sample Intact:	Data Require
			(2.05	8E) N	l-sino	mmA									×									fort	Grab S	8		(4:00)
			SST	,sat	dity, T	idnuT								×										II 001		9		9
			N-9	Nitrit	(N-9	Nitrat							×											Outfa	ever	18-10 18-10	ë	. 0
	erchlorate	Ч, Р.	NO ₂ -N	1O3+1	N '*O	cı.' a					13	×												for (torm	Sate/Time	Date/Time	Date/Time:
			(SA8	M) si	ctant	Surta	- 14				×											. / .	1/3	nples	this			° ~
		(O see	qedu	(S0 e	BOD				X												, ,	7	ıb saı	1 for	3	2	11
	(\$	suet	coude	lls b	ns) C	тсы			×															e gra	alt-00	de		
	s: Cn' bp' Hg' Cq'	letal			Recc n, Mr		×	×															6	ists th	outfall 001 for this storm event.	D	_	1
						Bottle #	8A`	88	9A, 9B	10	114, 118	12A, 12B"	13 .	14A, 14B.	. 31	16A, 16B	17A, 17B	18A	18B	19	20.	2	,		-		Received By	Received By
	PDES AL DO AL DO					Preservative	HNO ₃	HNO ₃	None	None	None	None	None	None	H₂SO₄	None	None	None	None	None	None			COC Page 1 of 2	These Samples are the Composite Portion	18/1016:4	(p.b)	
i	Boeing-SSFL NPDES Quarterly Outfall 001 GOMPOSITE しんんら		Phone Number:	(626) 568-6691 Fax Number:	(626) 568-6515	ling ime	ē																	GEA/S	e the G	1/8/	,	
Project:	oeing- uarter compe		hone h	(626) 568-66 Fax Number:	26) 56	Sampling Date/Time	예외	-					_						_		>				les an		12.6	
ď			<u> </u>	<u>6 1,</u>	9	# of Cont.	1 1/1	1	2	1	2	2	1	2	1	2	2	-	-	-	1	1			Samp	Date/Time:	Date/Time	Date/Time:
) Doal		lly				٧	,	_	Α	oly	_	oly	oly	oly		وَ	ope	nper	agr					ese.	og () Dar	Dat
	Suite 200 : Joseph		nwyn Ke	ا و	£.	Container Type	1L Poly	1L Poly	1L Amber	1L Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	1L Amber	1L Amber	2.5 Gal Cube	500 mL Amber	1 Gal Cube	1L Poly				F			7
ddress	dia a Ave, \$ 11007 Contact		ter: Bro	Magnism Over	MIM	Sample Matrix	Μ	Μ	Μ	Μ	W	×	Μ	Α	8	8	3	>		8	>					J	C	
Cient Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak		Project Manager: Bronwyn Kelly	Sampler:		Sample Description	Outfall 001	Outfall 001 Dup	Outfall 001	Outfall 001	Outfail 001	Outfall 001		Outfall 001	Outfall 001					Relinquished By	Relinguished By	Relinquished By						

LABORATORY REPORT

Date:

January 27, 2010

Client:

TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-10011902-001

Sample I.D.:

ITA1329-01 (Outfall 001)

Sample Control:

The sample was received by ATL within the recommended hold time, chilled and

with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled:

01/18/10

Date Received:

01/19/10 2.1°C

Temp. Received: Chlorine (TRC):

0.0 mg/l

Date Tested:

01/19/10 to 01/26/10

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

NOEC

TUc

Ceriodaphnia Survival:

100%

1.0

Ceriodaphnia Reproduction:

100%

1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-10011902-001

Date Tested: 01/19/10 to 01/26/10

Client/ID: Test America - ITA1329-01 (Outfall 001)

TEST SUMMARY

Test type: Daily static-renewal.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

QA/QC Batch No.: RT-100119.

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female									
Control	100%	25.4									
100% Sample	100%	27.7									
* Sample not statistically significantly less than Control.											

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (25.4 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 8.3%)
Statistically significantly different concentrations relative difference > 13 %	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

Ceriodaphnia Survival and Reproduction Test-7 Day Survival

Start Date: 1/19/2010 14:00 End Date: 1/26/2010 14:00

Test ID: 10011902c

Sample ID:

ITA1329-01 EFF2-Industrial

Lab ID: CAATL-Aquatic Testing Labs Sample Type: Protocol: FWCH EPA

Sample Date: 1/18/2010 15:00 Comments:

Test Species:

CD-Ceriodaphnia dubia

Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

			· · · · · · · · · · · · · · · · · · ·	Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

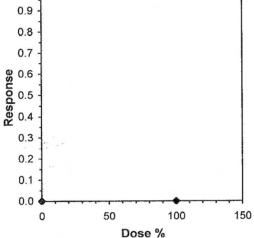
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	100	>100		1	

Treatments vs D-Control

Point

IC05

IC10

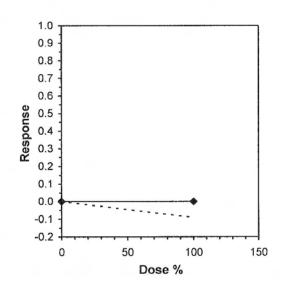

IC15 IC20

IC25

IC40

IC50

Linear Interpolation (200 Resamples) 95% CL Skew % SD >100 >100 1.0 >100 >100 0.9 >100 0.8 >100 >100



			Cerioda	aphnia Su	rvival and	Reprodu	iction Tes	t-Repro	duction		
Start Date:	1/19/2010	14:00	Test ID:	10011902	0		Sample ID	:	ITA1329-0	1	
End Date:	1/26/2010	14:00	Lab ID:	CAATL-Ac	uatic Test	ting Labs	Sample Ty	/pe:	EFF2-Indu	ıstrial	
Sample Date:	1/18/2010	15:00	Protocol:	FWCH EP	A		Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-%	1	2	3	4	5	6	7	88	9	10	
D-Control	26.000	29.000	25.000	28.000	25.000	22.000	22.000	27.000	24.000	26.000	
	25.000	29.000	21.000	29.000	26.000	30.000	32.000	29.000	28.000	28.000	

Management of Acad and Acad and Acad and Acad and Acad acad acad acad acad acad acad aca			Transform: Untransformed						1-Tailed		Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	25.400	1.0000	25.400	22.000	29.000	9.130	10				26.550	1.0000
100	27.700	1.0906	27.700	21.000	32.000	11.036	10	-1.896	1.734	2.104	26.550	1.0000

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.95741		0.905		-0.7614	0.83786
F-Test indicates equal variances (p = 0.42)	1.7376		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	2.10403	0.08284	26.45	7.36111	0.07419	1, 18
Treatments vs D-Control						

Linear Interpolation (200 Resamples) Point IC05 95% CL Skew % SD >100 IC10 >100 IC15 >100 >100 IC20 IC25 >100 IC40 >100 IC50 >100

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Aquatic Testing Laboratories

Lab No.: A-10011902-001

Client ID: TestAmerica - ITA1329-01 OC | Start Date: 01/19/2010

Client ID: T	estAmer	ca - 11	A1329						***************************************		r			Start Date: 01/19/2010			
	1.0	DA	Y 1		DAY 2		DAY 3		DA	Y 4		DAY 5	_	DA	Y 6	D.	AY 7
,,		0 hr	24hr	0 hr	24hr	0 hr		4hr	0 hr	24hr	0 hr		4hr	0 hr	24hr	0 hr	24hr
Analyst I	nitials:	Som	Pun	Ru	for	B	0 K	m	Ba	L	Rm	. 6		1	5	11	
Time of Re	eadings:	1400	1500	1500	1430	143		00	1400	1500	ISO	13	w	13 W	1430	1430	1400
	DO	9.1	8.2	8:1	8.0	9.	08	.4	9.3	8.1	8.3	12	.2	8.3	8-2	8.2	8.3
Control	pН	1.8	29	8,0	7-8	7.7	7 2	.8	7.7	7.9	2.7	12	22	7-6	2.7	7.2	26
	Temp	253	24.7	25.	124.6	25.	0 24	1.3	254	24.4	25.	7 21	1.3	24.4	24.2	25.2	244
	DO	9.0	7.5	8.	7.4	9.	4 7	5	9.9	7.6	8.8	3	8.5	9-0	26	9.7	8.2
100%	pН	7.6	7.3	7.4	12-2	6.	8 7.	5	7.3	6.9	6.7	7 7	24	24	7.6	72	7-1
	Temp	24.7	25.0	25.0	24.9	24.	421	1.4	24.5	24.6	24.5	5 2	4.3	24-11	24.2	24.8	24-6
	Ac	lditional	Paramet	ers					Con	itrol					100% San	nple	
	Со	nductivity	y (umohn	ns)					3	45		_			64		
	Al	kalinity (ı	mg/I CaC	CO ₃)					2			_			17		
	H	ardness (n	ng/l CaC	O ₃)					9.	2		_		2	21		
	Aı	nmonia (ı	mg/l NH3	-N)					<0	./				0.4			
		Part of the same				Source of Neonates											
Rep	olicate:		Α	В			D	+	Е	F	_	G		H	1	=	J
Bro	od ID:		5 D	4 E	5		6E		5F	61		56		4 I	6-	410	bJ
Sample		Day	_			Numb	er of Y	oung I	Produced			-Investment		al Live	No. Liv		Analyst Initials
				A E	С	D	E	F	G	Н	I	J	Y .	oung	Adults		initiais
	-	1		26		0	0	0	0	0	0	0	(2	10	-	<u>~</u>
		2		2 0	0	0	0	0	10	0	0	0	Ç		10		3
	-	4	┨.	1 6		2	4	3	10	2	2	9	3	7	10		1
Control	-	5		1 2	7 -	3	0	7	0	3	8	G	5	8	10	-	/// ///
		6		2/	14	18	14	$\frac{\mathcal{O}}{\mathcal{O}}$	8	16	IL	0	-	03	10		1//
		7		31	5/13)	0	0	12	10	0	0	13	1	0	10		1/2
		Total		62	925	28	25	27	7.7	2)	24	26	2	54	10		1/
		1		0 6	0	0	0	0	0	0	0	0	C)	(0		k_
		2	- (00	0	0	0	0	0	0	0	0	(O_{\perp}	10		3-
		3		00	0	0	4	5	0	5	4	4	2	2	10		LA-
100%		4		4 5	, 4	2	7	X	5	12	8	2	(0	10		1/1
10078		5		9/10	2 7	8	0	0	9	0	0	0	1	(>	10	1	YA
	_	6		0	110	16	15	1/	118	117	16	1/	1	300	10		HA.
	<u></u>	7	//	66	90	0	(16)	0	1/12	1(18)	(24)		1 4	524	10		1/2
II.	ll l	Total		25/2	9/21	29	26	30	32	29	28	28	1	99	11)		

Circled fourth brood not used in statistical analysis.

 7^{th} day only used if <60% of the surviving control females have produced their third brood.

SUBCONTRACT ORDER TestAmerica Irvine

ITA1329

SEN	DIN	GI	ARC)RA	TORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756

Project Location: CA - CALIFORNIA

Receipt Temperature: 7~1 °C

Ice: (Y)/ N

Standard TAT is reques	ted unless specific due date	is requested. => Due Date:	Initials:
Analysis	Units	Expires	Comments
Sample ID: ITA1329-01 (0	Outfall 001 (Grab) - Water)	Sampled: 01/18/10 15:00	
Bioassay-7 dy Chrnic	N/A	01/20/10 03:00	Cerio, EPA/821-R02-013, Sub to Aguatic testing
EDD + Level 4	N/A	02/15/10 15:00	Excel EDD email to pm,Include Std logs for Lvl IV
Containers Supplied: 1 gal Poly (AE)			

Released By
Released By

1-19-19 7-30 Date/Time 1-19-10/10:50

Received By

Date/Time /

Date/Time

Page 1 of 1

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-100119

Date Tested: 01/19/10 to 01/26/10

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Surv	ival	Mean Num Young Per	
Control	100%		23.4	
0.25 g/l	100%		25.0	
0.5 g/l	100%		24.3	
1.0 g/l	100%		13.7	*
2.0 g/l	100%		2.7	*
4.0 g/l	0%	*	0	**

^{*} Statistically significantly less than control at P = 0.05 level

** Reproduction data from concentrations greater than survival NŒC are

excluded from statistical analysis.

CHRONIC TOXICITY

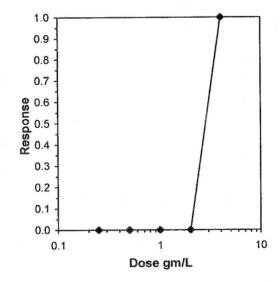
Survival LC50	2.8 g/l
Reproduction IC25	0.79 g/l

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (23.4 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD < 47% for reproduction	Pass (PMSD = 9.5%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 41.5%)
Concentration response relationship acceptable	Pass (Response curve normal)

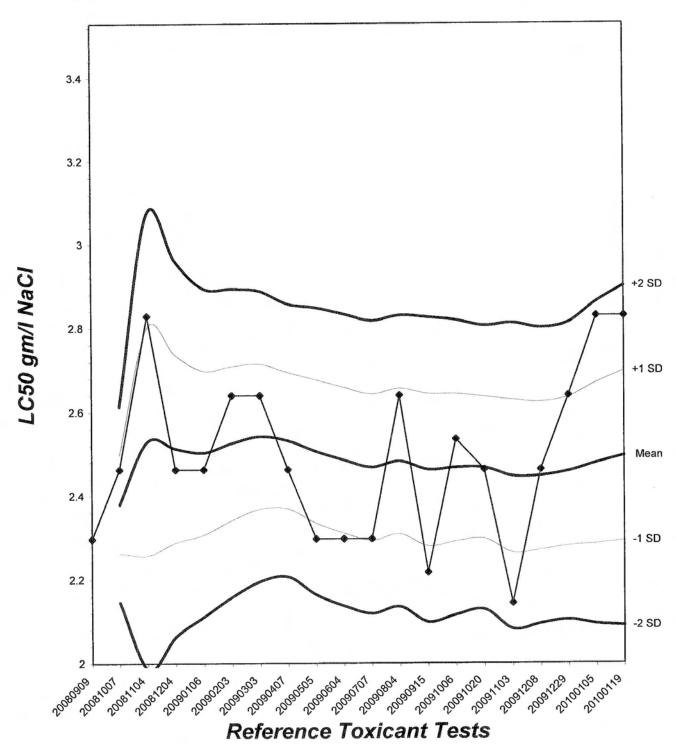
									Manager	16.		
	-1.70		Cerioda	aphnia Sur	vival and	Reprodu	iction Tes	t-7 Day S	Survival			
Start Date:	1/19/2010	14:00		RT100119	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN CO		Sample ID		REF-Ref T	oxicant		
End Date:	1/26/2010	14:00	Lab ID:	CAATL-Ad	uatic Tes	ting Labs	Sample Ty	pe:	NACL-Soc	lium chloride		
Sample Date:				otocol: FWCH EPA Test Species: CD-Ceriodaphnia dubia								
Comments:												
Conc-gm/L	1	2	3	4	5	6	7	88	9	10		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
0.25		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
0.5		1.0000		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
1	1.0000	1.0000		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
2	1.0000	1.0000		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
4		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000		0	10	10	10	1.0000	0.0500	0	10
,	1.0000		0	10	10	10	1.0000	0.0500	0	10
4	0.0000	0.0000	10	0	10	10			10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

Trim Level

Graphical Method

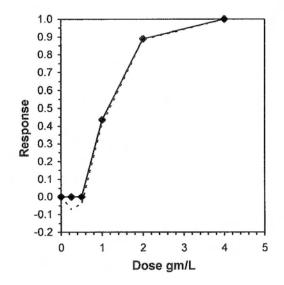

EC50 2.8284 0.0%

2.8284

Ceriodaphnia Chronic Survival Laboratory Control Chart

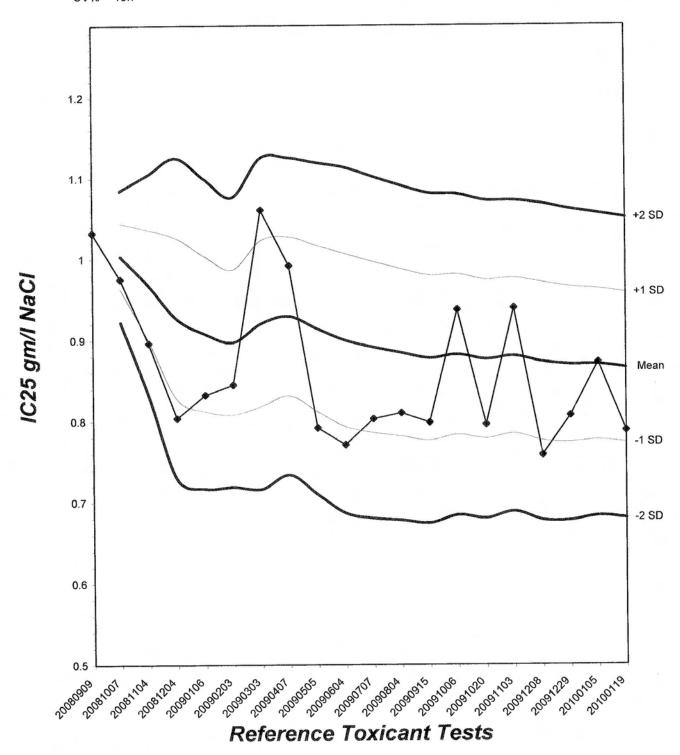
CV% = 8.13

			Ceriod	aphnia Su	rvival and	Reprodu	iction Tes	t-Repro	duction			
Start Date:	1/19/2010	14:00	Test ID:	RT100119	C		Sample ID	:	REF-Ref T	oxicant		
nd Date:	1/26/2010	14:00	Lab ID:	DID: CAATL-Aquatic Testing Labs Sample Type: NACL-Sodium chloride								
Sample Date:	1/19/2010		Protocol:	tocol: FWCH EPA Test Species: CD-Ceriodaphnia dubia								
Comments:								****				
Conc-gm/L	1	2	3	4	5	6	7	8	9	10		
D-Control	23.000	25.000	21.000	24.000	23.000	25.000	25.000	21.000	22.000	25.000		
0.25	23.000	26.000	27.000	24.000	24.000	25.000	27.000	22.000	28.000	24.000		
0.5	22.000	26.000	25.000	26.000	24.000	22.000	26.000	23.000	25.000	24.000		
1	17.000	14.000	10.000	14.000	14.000	12.000	8.000	20.000	13.000	15.000		
2	0.000	2.000	3.000	5.000	3.000	3.000	7.000	0.000	2.000	2.000		
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		


			Transforn	n: Untrans	sformed		_	1-Tailed	Isotonic		
Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
23.400	1.0000	23.400	21.000	25.000	7.037	10				24.233	1.0000
25.000	1.0684	25.000	22.000	28.000	7.775	10	-1.608	2.223	2.212	24.233	1.0000
24.300	1.0385	24.300	22.000	26.000	6.449	10	-0.905	2.223	2.212	24.233	1.0000
13.700	0.5855	13.700	8.000	20.000	24.585	10	9.750	2.223	2.212	13.700	0.5653
2.700	0.1154	2.700	0.000	7.000	78.178	10	20.807	2.223	2.212	2.700	0.1114
0.000	0.0000	0.000	0.000	0.000	0.000	10				0.000	0.0000
	23.400 25.000 24.300 13.700 2.700	23.400 1.0000 25.000 1.0684 24.300 1.0385 13.700 0.5855 2.700 0.1154	Mean N-Mean Mean 23.400 1.0000 23.400 25.000 1.0684 25.000 24.300 1.0385 24.300 13.700 0.5855 13.700 2.700 0.1154 2.700	Mean N-Mean Mean Min 23.400 1.0000 23.400 21.000 25.000 1.0684 25.000 22.000 24.300 1.0385 24.300 22.000 13.700 0.5855 13.700 8.000 2.700 0.1154 2.700 0.000	Mean N-Mean Mean Min Max 23.400 1.0000 23.400 21.000 25.000 25.000 1.0684 25.000 22.000 28.000 24.300 1.0385 24.300 22.000 26.000 13.700 0.5855 13.700 8.000 20.000 2.700 0.1154 2.700 0.000 7.000	23.400 1.0000 23.400 21.000 25.000 7.037 25.000 1.0684 25.000 22.000 28.000 7.775 24.300 1.0385 24.300 22.000 26.000 6.449 13.700 0.5855 13.700 8.000 20.000 24.585 2.700 0.1154 2.700 0.000 7.000 78.178	Mean N-Mean Mean Min Max CV% N 23.400 1.0000 23.400 21.000 25.000 7.037 10 25.000 1.0684 25.000 22.000 28.000 7.775 10 24.300 1.0385 24.300 22.000 26.000 6.449 10 13.700 0.5855 13.700 8.000 20.000 24.585 10 2.700 0.1154 2.700 0.000 7.000 78.178 10	Mean N-Mean Mean Min Max CV% N t-Stat 23.400 1.0000 23.400 21.000 25.000 7.037 10 25.000 1.0684 25.000 22.000 28.000 7.775 10 -1.608 24.300 1.0385 24.300 22.000 26.000 6.449 10 -0.905 13.700 0.5855 13.700 8.000 20.000 24.585 10 9.750 2.700 0.1154 2.700 0.000 7.000 78.178 10 20.807	Mean N-Mean Mean Min Max CV% N t-Stat Critical 23.400 1.0000 23.400 21.000 25.000 7.037 10 25.000 1.0684 25.000 22.000 28.000 7.775 10 -1.608 2.223 24.300 1.0385 24.300 22.000 26.000 6.449 10 -0.905 2.223 13.700 0.5855 13.700 8.000 20.000 24.585 10 9.750 2.223 2.700 0.1154 2.700 0.000 7.000 78.178 10 20.807 2.223	Mean N-Mean Mean Min Max CV% N t-Stat Critical MSD 23.400 1.0000 23.400 21.000 25.000 7.037 10 25.000 1.0684 25.000 22.000 28.000 7.775 10 -1.608 2.223 2.212 24.300 1.0385 24.300 22.000 26.000 6.449 10 -0.905 2.223 2.212 13.700 0.5855 13.700 8.000 20.000 24.585 10 9.750 2.223 2.212 2.700 0.1154 2.700 0.000 7.000 78.178 10 20.807 2.223 2.212	Mean N-Mean Mean Min Max CV% N t-Stat Critical MSD Mean 23.400 1.0000 23.400 21.000 25.000 7.037 10 24.233 25.000 1.0684 25.000 22.000 28.000 7.775 10 -1.608 2.223 2.212 24.233 24.300 1.0385 24.300 22.000 26.000 6.449 10 -0.905 2.223 2.212 24.233 13.700 0.5855 13.700 8.000 20.000 24.585 10 9.750 2.223 2.212 13.700 2.700 0.1154 2.700 0.000 7.000 78.178 10 20.807 2.223 2.212 2.700

Auxiliary Tests					Statistic		Critical	Skew	Kurt						
Shapiro-Wilk's Test indicates non	mal distribu	ition (p >	0.05)		0.98781		0.947		0.1743 1						
Bartlett's Test indicates equal var	riances (p =	0.12)			7.30799		13.2767								
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df					
Dunnett's Test	0.5	1	0.70711		2.21194	0.09453	925.67	4.94889	2.0E-27	4, 45					
Treatments us D Central															

Treatments vs D-Control


Linear Interpolation (200 Resamples)	inear	Interpola	tion (200	Resamples)
--------------------------------------	-------	-----------	-----------	------------

Point	gm/L	SD	95%	CL	Skew
IC05	0.5575	0.0143	0.5110	0.5655	-2.0775
IC10	0.6150	0.0146	0.5755	0.6311	-0.4724
IC15	0.6725	0.0178	0.6297	0.6978	0.1744
IC20	0.7301	0.0222	0.6808	0.7720	0.4277
IC25	0.7876	0.0272	0.7293	0.8440	0.5197
IC40	0.9601	0.0466	0.8758	1.0814	0.8653
IC50	1.1439	0.0763	0.9761	1.2715	-0.1589

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 10.7

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-100119

Start Date:01/19/2010

				Nu	mbei	of Yo	oung	Produ	ıced			Total	No.	Analyst
Sample	Day	A	В	C	D	E	F	G	H	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	R
	2	0	0	0	0	Ŏ	0	0	0	0	0	0	10	A
	3	0	0	0	0	0	0	0	0	0	0	0	10	2
01	4	3	4	3	5	3	u	4	3	3	4	36	10	1
Control	5	6	9	0	0	0	0	8	フ	9	8	47	10	1/2
	6	14	0	8	7	8	フ	13	0	0	0	57	10	1/2
	7	0	17	10	12	15	14	0	11	10	13	94	10	
	Total	23	25	21	24	23	25	25	21	22	25	234	10	1
	1	0	0	0	0	0	0	0	0	0	0	0	10	R
	2	0	0	0	0	0	0	0	0	0	0	0.	10	R
	3	0	0	0	0	0	C	0	0	4	0	U a	-10	R
	4	3	4	5	5	3	4	4	3	0	4	H35	10	h
0.25 g/l	5	8	0	0	C	0	7	8	7	9	8	47	10	h
	6	0	8	10	7	8	0	0	0	15	0	48	10	10
	7	12	14	12	12	13	14	15	12	0	12	1160	210	1
	Total	23	26	27	24	24	25	27	2	28	24	2261	10	
	1	0	0	0	0	0	0	0	0	0	0	U	10	R
	2	0	0	0	0	0	0	0	0	0	0	0	10	R
	3	0	0	C	0	0	0	0	0	0	C	0	10	R
2.5 "	4	3	4	5	1	3	3	4	3	3	4	36	10	.9
0.5 g/l	5	7	8	0	0	0	0	0	8	9	9	41	10	In
	6	0	14	7	8	9	9	10	12	0	0	69	10	0
	7	12	0	13	14	12	10	12	0	13	11	97	10	100
	Total	22	26	25	26	24	22	26	23	25	24	243	10	110

Circled fourth brood not used in statistical analysis.

7th day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-100119

Start Date:01/19/2010

				Nı	ımbe	r of Y	oung]	Produ	ced			Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	B
	2	0	0	0	0	0	0	0	0	0	0	Ŏ	10	En
	3	0	0	0	0	0	0	0	3	0	2	5	10	Ra
1.0 α/Ι	4	3	2	4	3	3	2	3	0	4	0	24	10	h
1.0 g/l	5	6	0	0	0	0	0	0	7	0	6	19	10	10
	6	0	5	6	4	3	4	5	0	0	0	27	10	0
	7	8	7	0	7	8	6	0	10	9	7	62	10	1/2
	Total	17	14	10	14	14	12	8	20	13	15	137	10	16
	1	0	0	0	0	0	Ü	0	0	0	0	0	10	R
	2	0	0	0	0	0	0	0	0	0	0	0	10	La
	3	0	0	0	0	0	0	0	0	0	0	0	10	La
2.0 -//	4	C	0	C	0	0	O	0	C	C	0	0	10	1/2
2.0 g/l	5	0	2	3	Z	0	3	0	0	0	2	12	10	
1.0	6	0	0	0	0	3	0	3	0	0	0	6	10	V
	7	0	0	0	3	0	0	4	0	2	0	9	10	(V
	Total	0	2	3	5	3	3	\Box	0	2	2	27	10	
	1	X	X	X	×	X	X	×	×	×	×	0	0	a
	2	_	enterior)	_		gautter	g	_		-	-	~		
1 =	3			_	~		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ggylarddin		-		garantag
40.4	4				-		diam'r.	,comm		_		-		green to the same
4.0 g/l	5	_			_	-	_	_		green,	-	parameter .		
	6	_		~			_	- ~		-		1	gillateratulus	and American
	7	4			_	_	-		-	- December	grana			garana and and and and and and and and and
	Total	()	C	0	0	0	0	0	0	0	0	\mathcal{C}	0	1

Circled fourth brood not used in statistical analysis.

7th day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

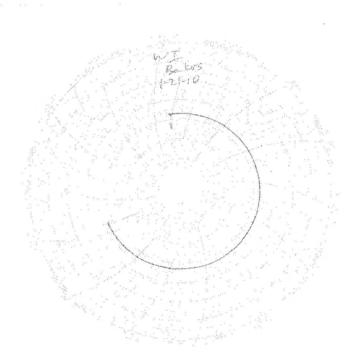
Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

OA/OC No.: RT-100119

Start Date:01/19/2010

QA/QC No.: RT-100119 Start Date:01/19/2)10			
		DAY 1		DAY 2		DAY 3		DAY 4		DAY 5		DAY 6		DAY 7		
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	
Analyst Initials:		Rm	hom	Ru	h	B	, Ron	Rn	Ra	Ru	h	~	2	~	L	
Time of Readings:		1400	1400	1400	1430	1430	1330			1900	1330	BI 0	Ha	1-1a)	Her	
Control	DO	9.1	8.3	8.0	8:1	9.0	8.0	9.3	8.0	8.3	8.0	83	8.2	8:5	8.0	
	pН	7.8	8.0	8.0	7.8	2.2	7.9	2.7	7.9	7.7	80	7-6	8-0	7.7	7-6	
	Temp	25.3	25.3	25.4	25.0	25.6	25.0	25.4	248	25.7	247	25.0	244	249	24.2	
0.25 g/l	DO	9.1	8.3	8.0	8.0	9.0	8.0	9.2	8.0	8.3	8-1	85	8-0	8.2	8-2	
	pН	7.8	8.0	8.0	7.8	2.7	7.9	7.7	7.9	7.7	80	7.7	80	25	7.9	
	Temp	25.3	25.4	25.4	25.1	25.1	25.1	25.4	25.1	25,7	24,2	25-2	247	25.0	243	
0.5 g/l	DO	9.0	8.2	8.0	8,0	8.9	8.1	9.2	8.0	8.3	5.2	5-5	8-3	8-3	83	
	pН	2.2	8.0	8.0	7-8	7.7	7.9	2.7	7.9	2.7	TI	2-8	8-0	7-9	80	
	Temp	25.3	25.4	25.5	25.2	25.0	25.1	25.4	25.3	25.7	24.3	29.7	24.5	24.9	245	
1.0 g/l	DO	9.0	8.3	8.0	8.0	8.7	8.1	9.3	8.0	8.3	81	8-6	81	8.3	8.3	
	pН	2.7	8.1	8.0	7.8	7.7	7.9	2.7	7.9	2.7	80	29	7-9	7-8	7.9	
	Temp	25.3	25.5	25.5	25.1	25.	125.1	25.5	25.3	25.8	24.5	24.8	24.7	25.0	243	
2.0 g/l	DO	8.9	8.3	7.9	8.1	8.5	8.3	9.3	8.0	8.2	81	8,6	80	8.2	80	
	pН	7.7	8.1	8.0	7.8	7.7	7.9	7.7	2.9	7.6	7-5	7-1	7-5	7.8	29	
	Temp	25.2	25.5	25.6	25.1	25.1	25.2	25.5	25.3	25.9	242	24.1	24.2	251	24,5	
4.0 g/l	DO	8.7	8.4	_	-			-	_		_	glibro	Williams.	***************************************	· ·	
	рН	7.7	8.1	\$			_		-		,			-	-	
	Temp	25.	25.5			~	and the same of th				_			domina.	-	
Dissolved Oxygen (DO) readings are in mg/l O ₂ ; Temperature (Temp) readings are in °C.																
Additional Parameters					Contr			ol		_	F		High Concentration		ion	
					Day 1		Day 3		Day 5		Day 1		Day 3		Day 5	
Conductivity (μS)					345		340		330		6800		3210		3650	
Alkalinity (mg/l CaCO ₃) Hardness (mg/l CaCO ₃)					72		72		24	_	72		73		24	
	92	College by a service of the	93	Street Street and Dollar Street Stree		92		9	92		90					
								Veonates		T	_ T		T .	 -		
Replicate:		\dashv	A 2.4	B 2.0	C		D On	E 10	F		G C		H 1 20 1E		2 F	
Brood ID:			2A	3A	11	٤	213	313	10	. 0	(m	20	16		21	




Test Temperature Chart

Test No: RT-100122

Date Tested: 01/19/10 to 01/26/10

Acceptable Range: 25+/- 1°C

