

APPENDIX A

First Quarter 2014 Rainfall Data Summary

TABLE A DAILY RAINFALL SUMMARY

THE BOEING COMPANY NPDES PERMIT CA0001309

Station: AREA 1 Parameter: Rain

Month/Year: January 2014

HOUR OF THE DAY

												поог	COF IF	IL DA												
	Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Total
	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
D	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Α	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Υ	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_	11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_	14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Τ	15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H	16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E	17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M	19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
N T	21 22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
н	23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
п	24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
ļ	υı	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01

TABLE A DAILY RAINFALL SUMMARY

THE BOEING COMPANY NPDES PERMIT CA0001309

Station: AREA 1 Parameter: Rain

Month/Year: February 2014

HOUR OF THE DAY

													 	,												
	Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Total
	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.02
	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.15	0.05	0.01	0.00	0.00	0.01	0.01	0.02	0.00	0.27
D	7	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Α	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Υ	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Т	14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Н	15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Е	16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
М	18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N	20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T	21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Н	22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.06	0.10	0.04	0.25
	27	0.11	0.22	0.08	0.11	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.55
	28	0.06	0.09	0.24	0.22	0.47	0.18	0.42	0.09	0.07	0.10	0.01	0.03	0.17	0.28	0.04	0.09	0.02	0.22	0.01	0.01	0.01	0.00	0.02	0.04	2.89

TABLE A DAILY RAINFALL SUMMARY

THE BOEING COMPANY NPDES PERMIT CA0001309

Station: AREA 1 Parameter: Rain

Month/Year: March 2014

HOUR OF THE DAY

	Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Total
	1	0.00	0.01	0.03	0.04	0.03	0.11	INV	INV	INV	INV	INV	INV	0.05p	0.02	0.02	0.15	0.00	0.06	0.01	0.00	0.00	0.00	0.00	0.00	0.48*
	2	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
D	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Α	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Υ	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_	11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_	14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H	16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Е	17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N/I	18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M	19 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N	21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T	22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H	23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
••	24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10d	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	26	0.00	0.00	0.00	0.00	0.00	0.00	INV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.01	0.03	0.07

Flags: p = Power failure, invalid hour

d = Marked down, invalid hour

INV = Negative under range, invalid hour. Malfunction in the sensor produced an erroneous rainfall measurement of <0.

Notes: * = The Area 1 rain gauge malfunctioned between 0600 -1200 on March 1. The B1436 rain gauge measured 0.42" during that time and was added to the Area I rain gauge data for a total 0.9" on March 1.

APPENDIX B

First Quarter 2014 Liquid Waste Shipment Summary Table

TABLE B LIQUID WASTE SHIPMENTS

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

DATE SHIPPED	MANIFEST TRACKING NUMBER	TYPE OF LIQUID	QTY.	UNITS	TRANSPORTER	DESTINATION
1/8/2014	006792587FLE	WASTE FLAMMABLE LIQUIDS (ISOPROPYL ALCOHOL)	8	Р	Clean Harbors Environmental Services	Clean Harbors Aragonite LLC
		WASTE AMMONIA SOLUTIONS (AMMONIA SOLUTIONS)	11	Р		11600 North Aptus Road, Grantsville, UT 84029
1/14/2014	010392706JJK	HAZARDOUS WASTE LIQUID (TRICHLOROETHYLENE)	8020	Р		Siemens Water Technologies, LLC 5375 South Boyle Avenue, Los Angeles, CA 90058
1/15/2014	010392711JJK	HAZARDOUS WASTE LIQUID (ACETONE, TETRACHLOROETHYLENE)	2109	Р		Clean Harbors Aragonite LLC 11600 North Aptus Road, Grantsville, UT 84029
1/15/2014	010392713JJK	WASTE NITRIC ACID OTHER THAN RED FUMING, WITH NOT MORE THAN 20% NITRIC ACID (NITRIC ACID)	4	Р		Clean Harbors Wilmington LLC 1737 East Denni Street, Wilmington, CA 90744
		WASTE HYDROCHLORIC ACID SOLUTION	4	Р		
		HAZARDOUS WASTE LIQUID (LEAD, CADMIUM)	985	Р		
		NON-RCRA HAZARDOUS WASTE LIQUIDS (HYDREX)	164	Р		
2/5/2014	007479339FLE	HAZARDOUS WASTE LIQUID (ACETONE, TETRACHLOROETHYLENE)	6283	Р	Clean Harbors Environmental Services	Clean Harbors Aragonite LLC
2/12/2014	010392716JJK	WASTE SODIUM HYDROXIDE SOLUTION	417	Р		11600 North Aptus Road, Grantsville, UT 84029
2/26/2014	010392721JJK	NON-RCRA HAZARDOUS WASTE LIQUIDS (OIL, WATER)	20	Р		
2/26/2014	010392722JJK	WASTE FORMALDEHYDE SOLUTIONS, FLAMMABLE (FORMALDEHYDE, POTASSIUM HYDROGEN PHTHALATE)	29	Р		
		HAZARDOUS WASTE LIQUID (TRICHLOROETHYLENE)	410	Р		
		HAZARDOUS WASTE LIQUID (ACETONE, TETRACHLOROETHYLENE)	21466	Р		
3/12/2014	007479586FLE	HAZARDOUS WASTE LIQUID (CHROMIUM)	491	Р		
		HAZARDOUS WASTE LIQUID (CHROMIUM)	186	Р		
3/12/2014	007479587FLE	HAZARDOUS WASTE LIQUID (SEDIMENT CHROMIUM)	55	Р		
3/12/2014	007479588FLE	WASTE CORROSIVE LIQUID, BASIC, INORGANIC (SODIUM HYDROXIDE)	12	Р		
		HAZARDOUS WASTE LIQUID (TRICHLOROETHYLENE)	990	Р		
3/12/2014	007479592FLE	WASTE CORROSIVE LIQUID, BASIC, INORGANIC (BENTONITE, SODIUM HYDROXIDE)	253	Р		Clean Harbors Aragonite LLC 11600 North Aptus Road, Grantsville, UT 84029
		WASTE CORROSIVE LIQUID, BASIC, INORGANIC (BENTONITE, SODIUM HYDROXIDE)	305	Р		
		HAZARDOUS WASTE LIQUID (CHROMIUM, SELENIUM)	1136	Р		
3/26/2014	007479645FLE	WASTE PAINT (PAINT, XYLENE)	22	Р		
		WASTE AMINES, LIQUID, CORROSIVE (POLYAMIDE HARDNER)	23	Р		

TABLE B LIQUID WASTE SHIPMENTS

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

DATE SHIPPED	MANIFEST TRACKING NUMBER	TYPE OF LIQUID	QTY.	UNITS	TRANSPORTER	DESTINATION
1/7/2014	32800	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G	Southwest Processors Inc.	LACSD
1/7/2014	32801	WASTE WATER FROM AREA II SEWAGE TREATMENT PLANT (STP #2)	5000	G	4120 Bandini Blvd. Vernon, CA 90058	
1/7/2014	32802	WASTE WATER FROM AREA II SEWAGE TREATMENT PLANT (STP #2)	5000	G	· ·	
1/14/2014	32834	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
1/14/2014	32835	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
1/14/2014	32836	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
1/21/2014	32867	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
1/21/2014	32868	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
1/21/2014	32869	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
1/28/2014	32901	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
1/28/2014	32902	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
1/28/2014	32903	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/4/2014	32935	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/4/2014	32936	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/4/2014	32937	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/11/2014	32970	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/11/2014	32971	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/11/2014	32972	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/18/2014	33003	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/18/2014	33004	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/18/2014	33005	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/25/2014	33739	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/25/2014	33740A	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
2/25/2014	33740	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/4/2014	33777	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/4/2014	33778	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/4/2014	33779	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/11/2014	34522	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/11/2014	34523	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/11/2014	34524	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/18/2014	34562	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/18/2014	34563	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/18/2014	34564	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/25/2014	34598	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/25/2014	34599	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		
3/25/2014	34600	WASTE WATER FROM AREA I SEWAGE TREATMENT PLANT (STP #1)	5000	G		

APPENDIX C

First Quarter 2014 Discharge Monitoring Data Summary Tables

Notes:

- TCDD TEQs for the purpose of determining permit compliance are the sum of the products of the detected dioxin congener concentration multiplied by that congener's toxicity equivalency factor (TEF) and bioaccumulation equivalency factor (BEF). The resulting compliance TCDD TEQ does not include those congener concentrations that are reported as DNQ, as specified on Page 37 of the NPDES permit.
- 2. pH was determined with a field instrument and was noted as such. These results were not validated.
- 3. All of the following abbreviations and/or notes may not occur on every table.
- 4. J(DNQ) flagged results are included in the data charts; however, these results are considered to be estimated values and as such are not used to quantify the chemical concentration for compliance purposes. ND results are included in the data charts and are shown as zero. Refer to Appendix H for a list of reporting limits by constituent.
- 5. pH and temperature are identified on the table as daily maximum discharge limits. The NPDES permit limit has an instantaneous minimum (6.5) and maximum (8.5) for pH and an instantaneous maximum of 86°F for temperature.

-92.9 +/-200	A negative radiochemical analytical result indicates the count rate of the sample was less than the background condition. Radiological results are presented as activity plus or minus counting uncertainty.
\$	reported result or other information was incorrectly reported by the laboratory; result was corrected by the data validator
	based on validation of the data, a qualifier was not required
-/-	no permit limit established for daily maximum or monthly average
<(value)	analyte not detected at a concentration greater than or equal to the DL,
	MDL, or RL (see laboratory report for specific detail)
*	result not validated
*1	improper preservation of sample
*2	the ICP/MS ppb check standard was recovered above the control limit; therefore, the constituent detected was qualified as estimated (J)
*3	initial and or continuing calibration recoveries were outside acceptable control limits
*5	blank spike/blank spike duplicate relative percent difference was outside the control limit
*10	value was estimated detect or estimated non detect (J,UJ) due to deficiencies in quantitation of the constituent including constituents

reported by the laboratory as Estimated Maximum Possible

Concentration (EMPC) values

*11 no calibration was performed for this compound; result is reported as a

tentatively identified compound (TIC)

* II *III Unusual problems found with the data that have been described in

Section II, "sample management", or Section III, "method analysis". The number following the asterisk (*) will indicated the validation report

section where a description of the problem can be found.

ANR analysis not required; e.g., constituent or outfall was not required by

the permit to be sampled and analyzed over the reporting period

(annual, semi-annual, etc.)

B laboratory method blank contamination BA relative percent difference out of control bioaccumulation equivalency factor

BU analyzed out of holding time

BV sample received after holding time expired C calibration %RSD or %D were noncompliant

Comp Composite sample type

C5 Calibration verification %R was outside method control limits

CEs/100 ml cell equivalents per 100 milliliters

D The analysis with this flag should not be used because another more

technically sound analysis is available

%D percent difference between the initial and continuing calibration relative

response factors

deg F degrees Fahrenheit

DL detection limit

DNQ detected but not quantified (constituent value greater than or equal to

the laboratory method detection limit and less then the laboratory

reporting limit)

E duplicates show poor agreement

ft/sec feet per second

H holding time was exceeded

I ICP interference check solution results were unsatisfactory

J estimated value, result lower than the detection limit

J, DX estimated value, value < lowest standard (MQL), but > than MDL

K The sample dilution's set-up did not meet the oxygen depletion criteria

of at least 2 mg/l. Therefore, the reported result is an estimated value

or at least 2 mg/r. Therefore, the reported result is an estimated value

only.

L2 the laboratory control sample %R was below the method control limits

laboratory control sample %R was outside control limits

lbs/day Pounds per day LOD limit of detection

LQ LCS/LCSD recovery above method control limits

M1 matrix spike (MS) and/or MS duplicate were above the acceptance

limits due to sample matrix interference

M2 the MS and/or MS duplicate were below the acceptance limits due to

sample matrix interference

MDA/MDC minimum detectable activity/ minimum detectable concentration

MDL method detection limit
Meas Measure sample type
MFL million fibers per liter
MGD million gallons per day

MHA* Due to high level of analyte in the sample, the MS/MSD calculation

does not provide useful spike recovery information.

mg/L milligrams per liter
mg/kg milligrams per kilogram
ml/L/hr milliliters per liter per hour

MPN/100 ml most probable number per 100 milliliters

NA not applicable; no permit limit established for the constituent and/or

outfall

ND analyte value less than the LOD or MDL

NM not measured or determined NTU nephelometric turbidity unit

pCi/L picocurries per liter

Q matrix spike recovery outside of control limits

R as a validation qualifier, results are rejected; the presence or absence

of analyte cannot be verified

R (reason code in parentheses) %R for calibration not within control

limits

RL laboratory reporting limit

RL-1 reporting limit raised due to sample matrix effects

%RSD percent relative standard deviation

% survival percent survival

S surrogate recovery was outside control limits

TCDD 2.3,7,8-tetrachlorodibenzo-p-dioxin

TEQ toxic equivalent

T presumed contamination, as indicated by a detect in the trip blank

TU_c toxicity units (chronic)
U result not detected

µg/L micrograms per liter

µg/kg micrograms per kilogram

UJ result not detected at the estimated reporting limit

umhos/cm micromhos per centimeter

WHO TEF World Health Organization toxic equivalency factor

^ analysis not completed due to hold time exceedence or insufficient

sample volume

#

Per ORDER NO. R4-2010-0090 page 23 Footnote 1. The effluent limitations for total suspended solids and settable solids are not applicable for discharges during wet weather. During wet weather flow, a discharge event is greater than 0.1 inches of rainfall in a 24-hour period. No more than one sample per week need be obtained during extended periods of rainfall or the discharge of collected stormwater. A storm event must be preceded by at least 72 hours of dry weather.

(4.0)3.1/-

Represents (Dry Weather Limit) Wet Weather Limit / Monthly Average Limit.

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

		_		2/28/2014 (Gr	ab) - 03/01/201	4 (Composite)
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avq	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
Volume Discharged	MGD	17.89/-	1/Discharge	Meas	1.7337	*
CONVENTIONAL POLLUTANTS						
Oil & Grease	mg/L	15/-	1/Discharge	Grab	ND < 1.3	*
pH (Field)	pH units	6.5-8.5/-	1/Discharge	Grab	5.5	*
PRIORITY POLLUTANTS		•				
Antimony	ug/L	6.0/-	1/Discharge	Composite	0.7	J (DNQ)
Cadmium	ug/L	4.0/-	1/Discharge	Composite	ND < 0.25	Ù
Copper	ug/L	14/-	1/Discharge	Composite	8.2	
Lead	ug/L	5.2/-	1/Discharge	Composite	9.6	
Mercury	ug/L	0.13/-	1/Discharge	Composite	ND < 0.1	U
Nickel	ug/L	100/-	1/Year	Composite	7.3	J (DNQ)
Selenium	ug/L	-/-	1/Discharge	Composite	ND < 0.5	`U ´
Thallium	ug/L	2.0/-	1/Discharge	Composite	ND < 0.5	U
Total Cyanide	ug/L	9.5/-	1/Discharge	Composite	ND < 3	*
Zinc	ug/L	-/-	1/Discharge	Composite	50	
NON-CONVENTIONAL POLLUTANT		,	1,21001141.go			
Acute Toxicity	% SURVIVAL	70-90/-	1/Year	Grab	100	*
Boron	mg/L	1.0/-	1/Year	Composite	0.044	J (DNQ)
Chloride	mg/L	150/-	1/Discharge	Composite	5.5	*
Chronic Toxicity	TUC	1/-	1st & 2nd rain	Composite	1.0	*
·		•	event/Year			
Fluoride	mg/L	1.6/-	1/Year	Composite	0.16	*
Nitrate + Nitrite as Nitrogen (N)	mg/L	10/-	1/Discharge	Composite	0.99	*
Perchlorate	ug/L	6.0/-	1/Discharge	Composite	ND < 0.95	*
Sulfate	mg/L	250/-	1/Discharge	Composite	6.6	*
Temperature (Field)	deg. F	86/-	1/Discharge	Grab	54.9	*
Total Dissolved Solids	mg/L	850/-	1/Discharge	Composite	51	*
REMAINING PRIORITY POLLUTAN			_			
1,1,1-Trichloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
1,1,2,2-Tetrachloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
1,1,2-Trichloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
1,1-Dichloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
1,1-Dichloroethene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
1,2,4-Trichlorobenzene	ug/L	-/-	1/Year	Composite	ND < 0.474	U
1,2-Dichlorobenzene	ug/L	-/-	1/Year	Composite	ND < 0.19	U
1,2-Dichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.5	*
1,2-Dichloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
1,2-Dichloropropane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
1,2-Diphenylhydrazine/Azobenzene	ug/L	-/-	1/Year	Composite	ND < 0.474	U
1,3-Dichlorobenzene	ug/L	-/-	1/Year	Composite	ND < 0.19	U
1,3-Dichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
1,4-Dichlorobenzene	ug/L	-/-	1/Year	Composite	ND < 0.19	U
1,4-Dichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
2,4,6-Trichlorophenol	ug/L	-/-	1/Year	Composite	ND < 0.474	U
2,4-Dichlorophenol	ug/L	-/-	1/Year	Composite	ND < 0.948	Ü
2,4-Dimethylphenol	ug/L	-/-	1/Year	Composite	ND < 0.948	Ü
2,4-Dinitrophenol	ug/L	-/-	1/Year	Composite	ND < 1.9	Ü
2,4-Dinitrotoluene	ug/L	-/-	1/Year	Composite	ND < 1.9	Ü
2,6-Dinitrotoluene	ug/L	-/-	1/Year	Composite	ND < 1.9	Ü
2-Chloroethylvinylether	ug/L	-/-	1/Year	Grab	ND < 1	*
2-Chloronaphthalene	ug/L	-/-	1/Year	Composite	ND < 0.19	U
		· '				·

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

_	_	15 KIL K	1	2/28/2014 (G	rab) - 03/01/2014	(Composite)
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
2-Chlorophenol	ug/L	-/-	1/Year	Composite	ND < 0.474	U
2-Methyl-4,6-Dinitrophenol	ug/L	-/-	1/Year	Composite	ND < 1.9	U
2-Nitrophenol	ug/L	-/-	1/Year	Composite	ND < 0.948	U
3.3'-Dichlorobenzidine	ug/L	-/-	1/Year	Composite	ND < 1.9	U
4.4'-DDD	ug/L	-/-	1/Year	Composite	ND < 0.0038	*
4.4'-DDE	ug/L	-/-	1/Year	Composite	ND < 0.0029	*
4,4'-DDT	ug/L	-/-	1/Year	Composite	ND < 0.0038	*
4-Bromophenylphenylether	ug/L	-/-	1/Year	Composite	ND < 0.474	U
4-Chloro-3-methylphenol	ug/L	-/-	1/Year	Composite	ND < 0.19	Ü
4-Chlorophenylphenylether	ug/L	-/-	1/Year	Composite	ND < 0.19	Ü
4-Nitrophenol	ug/L	-/-	1/Year	Composite	ND < 1.9	Ü
Acenaphthene	ug/L	-/-	1/Year	Composite	ND < 0.19	Ü
Acenaphthylene	ug/L	-/-	1/Year	Composite	ND < 0.19	Ü
Acrolein	ug/L ug/L	-/-	1/Year	Grab	ND < 2.5	*
Acrylonitrile	ug/L ug/L	-/-	1/Year	Grab	ND < 2.3	*
		-/-			ND < 0.0014	*
Aldrin	ug/L		1/Year	Composite	ND < 0.0014 ND < 0.0024	*
alpha-BHC	ug/L	-/-	1/Year	Composite		
Anthracene	ug/L	-/-	1/Year	Composite	ND < 0.19	U
Aroclor 1016	ug/L	-/-	1/Year	Composite	ND < 0.24	*
Aroclor 1221	ug/L	-/-	1/Year	Composite	ND < 0.24	
Aroclor 1232	ug/L	-/-	1/Year	Composite	ND < 0.24	*
Aroclor 1242	ug/L	-/-	1/Year	Composite	ND < 0.24	*
Aroclor 1248	ug/L	-/-	1/Year	Composite	ND < 0.24	*
Aroclor 1254	ug/L	-/-	1/Year	Composite	ND < 0.24	*
Aroclor 1260	ug/L	-/-	1/Year	Composite	ND < 0.24	*
Arsenic	ug/L	-/-	1/Year	Composite	ND < 7	U
Asbestos	MFL	-/-	1/Year	Composite	ND < 1.9	*
Benzene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Benzidine	ug/L	-/-	1/Year	Composite	ND < 4.74	U
Benzo(a)anthracene	ug/L	-/-	1/Year	Composite	ND < 1.9	U
Benzo(a)pyrene	ug/L	-/-	1/Year	Composite	ND < 0.474	U
Benzo(b)fluoranthene	ug/L	-/-	1/Year	Composite	ND < 0.948	U
Benzo(g,h,i)Perylene	ug/L	-/-	1/Year	Composite	ND < 1.9	U
Benzo(k)fluoranthene	ug/L	-/-	1/Year	Composite	ND < 0.237	U
Beryllium	ug/L	-/-	1/Year	Composite	ND < 0.9	Ü
beta-BHC	ug/L	-/-	1/Year	Composite	ND < 0.0038	*
Bis (2-Chloroethoxy) Methane	ug/L	-/-	1/Year	Composite	ND < 0.19	U
Bis (2-Chloroethyl) Ether	ug/L	-/-	1/Year	Composite	ND < 0.19	Ü
Bis (2-Chloroisopropyl) Ether	ug/L	-/-	1/Year	Composite	ND < 0.19	Ü
Bis (2-Ethylhexyl) Phthalate	ug/L	-/-	1/Year	Composite	ND < 1.9	Ü
Bromodichloromethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
						*
Bromoform	ug/L	-/-	1/Year	Grab Grab	ND < 0.25	*
Bromomethane	ug/L	-/-	1/Year		ND < 0.25	
Butylbenzylphthalate	ug/L	-/-	1/Year	Crob	ND < 1.9	U *
Carbon Tetrachloride	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Chlordane	ug/L	-/-	1/Year	Composite	ND < 0.076	*
Chlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.25	
Chloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Chloroform	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Chloromethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Chromium	ug/L	-/-	1/Year	Composite	7.9	

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

		I 5 411 4		2/28/2014 (G	rab) - 03/01/2014	(Composite)
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
Chromium VI	ug/L	-/-	1/Year	Grab	0.41	J (DNQ)
Chrysene	ug/L	-/-	1/Year	Composite	ND < 0.19	Ù
cis-1,3-Dichloropropene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
delta-BHC	ug/L	-/-	1/Year	Composite	ND < 0.0033	*
Dibenzo(a,h)anthracene	ug/L	-/-	1/Year	Composite	ND < 0.237	U
Dibromochloromethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Dieldrin	ug/L	-/-	1/Year	Composite	ND < 0.0019	*
Diethylphthalate	ug/L	-/-	1/Year	Composite	ND < 0.474	U
Dimethylphthalate	ug/L	-/-	1/Year	Composite	ND < 0.237	U
Di-n-butylphthalate	ug/L	-/-	1/Year	Composite	ND < 0.948	U
Di-n-octylphthalate	ug/L	-/-	1/Year	Composite	ND < 1.9	U
Endosulfan I	ug/L	-/-	1/Year	Composite	ND < 0.0029	*
Endosulfan II	ug/L	-/-	1/Year	Composite	ND < 0.0019	*
Endosulfan Sulfate	ug/L	-/-	1/Year	Composite	ND < 0.0029	*
Endrin	ug/L	-/-	1/Year	Composite	ND < 0.0019	*
Endrin Aldehyde	ug/L	-/-	1/Year	Composite	ND < 0.0019	*
Ethylbenzene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Fluoranthene	ug/L	-/-	1/Year	Composite	ND < 0.19	U
Fluorene	ug/L	-/-	1/Year	Composite	ND < 0.19	U
Heptachlor	ug/L	-/-	1/Year	Composite	ND < 0.0029	*
Heptachlor Epoxide	ug/L	-/-	1/Year	Composite	ND < 0.0024	*
Hexachlorobenzene	ug/L	-/-	1/Year	Composite	ND < 0.474	U
Hexachlorobutadiene	ug/L	-/-	1/Year	Composite	ND < 0.474	U
Hexachlorocyclopentadiene	ug/L	-/-	1/Year	Composite	ND < 1.9	U
Hexachloroethane	ug/L	-/-	1/Year	Composite	ND < 0.474	U
Indeno(1,2,3-cd)pyrene	ug/L	-/-	1/Year	Composite	ND < 0.948	U
Isophorone	ug/L	-/-	1/Year	Composite	ND < 0.474	U
Lindane (gamma-BHC)	ug/L	-/-	1/Year	Composite	ND < 0.0029	*
Methylene chloride	ug/L	-/-	1/Year	Grab	ND < 0.88	*
Naphthalene	ug/L	-/-	1/Year	Composite	ND < 0.474	U
Naphthalene	ug/L	-/-	1/Year	Grab	ND < 0.4	*
Nitrobenzene	ug/L	-/-	1/Year	Composite	ND < 0.474	U
N-Nitrosodimethylamine	ug/L	-/-	1/Year	Composite	ND < 0.948	U
N-Nitroso-di-n-propylamine	ug/L	-/-	1/Year	Composite	ND < 0.948	U
N-Nitrosodiphenylamine	ug/L	-/-	1/Year	Composite	ND < 0.474	U
Pentachlorophenol	ug/L	-/-	1/Year	Composite	1.46	J (DNQ)
Phenanthrene	ug/L	-/-	1/Year	Composite	ND < 0.19	U
Phenol	ug/L	-/-	1/Year	Composite	ND < 0.474	U
Pyrene	ug/L	-/-	1/Year	Composite	ND < 0.19	U
Silver	ug/L	-/-	1/Year	Composite	ND < 0.5	*
Tetrachloroethene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Toluene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Toxaphene	ug/L	-/-	1/Year	Composite	ND < 0.24	*
trans-1,2-Dichloroethene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
trans-1,3-Dichloropropene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Trichloroethene	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Vinyl chloride	ug/L	-/-	1/Year	Grab	ND < 0.25	*
Xylenes (Total)	ug/L	-/-	1/Year	Grab	ND < 0.5	*
EFFLUENT MONITORING (NO LIN	MITATIONS) POI	LUTANTS				
Aluminum	ug/L	-/-	1/Year	Composite	4,400	
Chlorpyrifos	ug/L	-/-	1/Year	Composite	ND < 0.34	U

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

				2/28/2014 (Grab) - 03/01/2014 (Composite)					
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Ava	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER			
Diazinon	ug/L	-/-	1/Year	Composite	ND < 0.14	U			
E. Coli	MPN/100mL	-/-	1/Year	Grab	>=1,600				
Fecal Coliform	MPN/100mL	-/-	1/Year	Grab	>=1,600				
Hardness	mg/L	-/-	1/Year	Composite	28				
Iron	mg/L	-/-	1/Year	Composite	6.2				
Total Suspended Solids	mg/L	-/-	1/Year	Composite	120				
Trichlorofluoromethane	ug/L	-/-	1/Year	Grab	ND < 0.25	*			
Vanadium	ug/L	-/-	1/Year	Composite	13				
ADDITIONAL POLLUTANTS									
Alkalinity as CaCO3	mg/L	-/-	Additional	Grab	16	*			
Aluminum, dissolved	ug/L	-/-	Additional	Composite	190				
Antimony, dissolved	ug/L	-/-	Additional	Composite	ND < 0.5	U			
Arsenic, dissolved	ug/L	-/-	Additional	Composite	ND < 7	U			
Beryllium, dissolved	ug/L	-/-	Additional	Composite	ND < 0.9	U			
Bicarbonate Alkalinity as CaCO3	mg/L	-/-	Additional	Grab	16	*			
Boron, dissolved	mg/L	-/-	Additional	Composite	0.039	J (DNQ)			
Cadmium, dissolved	ug/L	-/-	Additional	Composite	ND < 0.25	U			
Carbonate Alkalinity as CaCO3	mg/L	-/-	Additional	Grab	ND < 4	*			
Chromium, dissolved	ug/L	-/-	Additional	Composite	ND < 2	U			
Copper, dissolved	ug/L	-/-	Additional	Composite	3.7				
Dissolved Oxygen (Field)	mg/L	-/-	Additional	Grab	5.2	*			
Hardness, dissolved	mg/L	-/-	Additional	Composite	19				
Hydroxide Alkalinity as CaCO3	mg/L	-/-	Additional	Grab	ND < 4	*			
Iron, dissolved	mg/L	-/-	Additional	Composite	0.19				
Lead, dissolved	ug/L	-/-	Additional	Composite	0.51	J (DNQ)			
Mercury, dissolved	ug/L	-/-	Additional	Composite	ND < 0.1	U			
Nickel, dissolved	ug/L	-/-	Additional	Composite	2	J (DNQ)			
Selenium, dissolved	ug/L	-/-	Additional	Composite	ND < 0.5	U			
Silver, dissolved	ug/L	-/-	Additional	Composite	ND < 0.5	*			
Thallium, dissolved	ug/L	-/-	Additional	Composite	ND < 0.5	U			
Vanadium, dissolved	ug/L	-/-	Additional	Composite	ND < 3	U			
Zinc, Dissolved	ug/L	-/-	Additional	Composite	ND < 14	U (B)			

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

Sample Type Composite Sample Date March 01, 2014

ANALYTE	SAMPLE FREQUENCY	LAB LOD (ug/L)	LAB RL (ug/L)	LAB RESULT (ug/L)	VALIDATION QUALIFIER	1998 WHO TEF	BEF Great Lakes Water Quality Initiative	TCDD Equivalent (w/out DNQ Values) (ug/L)
1,2,3,4,6,7,8-HpCDD	1/Discharge	1.25E-05	5.00E-05	2.59E-04		0.01	0.05	1.30E-07
1,2,3,4,6,7,8-HpCDF	1/Discharge	6.50E-06	5.00E-05	4.21E-05	J (DNQ)	0.01	0.01	ND
1,2,3,4,7,8,9-HpCDF	1/Discharge	1.25E-05	5.00E-05	4.57E-06	UJ (*III)	0.01	0.4	ND
1,2,3,4,7,8-HxCDD	1/Discharge	1.25E-05	5.00E-05	ND	U	0.1	0.3	ND
1,2,3,4,7,8-HxCDF	1/Discharge	6.50E-06	5.00E-05	2.61E-06	UJ (*III)	0.1	0.08	ND
1,2,3,6,7,8-HxCDD	1/Discharge	1.25E-05	5.00E-05	9.82E-06	UJ (*III)	0.1	0.1	ND
1,2,3,6,7,8-HxCDF	1/Discharge	1.25E-05	5.00E-05	1.93E-06	UJ (*III)	0.1	0.2	ND
1,2,3,7,8,9-HxCDD	1/Discharge	1.25E-05	5.00E-05	1.04E-05	UJ (*III)	0.1	0.1	ND
1,2,3,7,8,9-HxCDF	1/Discharge	6.50E-06	5.00E-05	ND	U	0.1	0.6	ND
1,2,3,7,8-PeCDD	1/Discharge	6.50E-06	5.00E-05	ND	U	1	0.9	ND
1,2,3,7,8-PeCDF	1/Discharge	6.50E-06	5.00E-05	ND	U	0.05	0.2	ND
2,3,4,6,7,8-HxCDF	1/Discharge	6.50E-06	5.00E-05	ND	U	0.1	0.7	ND
2,3,4,7,8-PeCDF	1/Discharge	6.20E-06	5.00E-05	ND	U	0.5	1.6	ND
2,3,7,8-TCDD	1/Discharge	2.50E-06	1.00E-05	ND	U	1	1	ND
2,3,7,8-TCDF	1/Discharge	2.50E-06	1.00E-05	ND	U	0.1	0.8	ND
OCDD	1/Discharge	5.00E-05	1.00E-04	2.53E-03		0.0001	0.01	2.53E-09
OCDF	1/Discharge	2.50E-05	1.00E-04	1.47E-04		0.0001	0.02	2.94E-10
TCDD TEQ w/out DNQ Values								1.32E-07

TCDD TEQ (PRIORITY POLLUTANTS) PERMIT LIMIT = 2.80E-08

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

				03/01/201	4 (Com	posite)
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avq	SAMPLE FREQUENCY	RESULT	MDA	VALIDATION QUALIFIER
NON-CONVENTIONAL POLLUTANTS						
Gross Alpha	pCi/L	15/-	1/Discharge	4.53 ± 1.61	1.63	J (C)
Gross Beta	pCi/L	50/-	1/Discharge	7.88 ± 1.39	1.17	
Strontium-90	pCi/L	8.0/-	1/Discharge	0.355 ± 0.194	0.287	
Total Combined Radium-226 & Radium 228	pCi/L	5.0/-	1/Discharge	0.780 ± 0.29	0.051	
Tritium	pCi/L	20000/-	1/Discharge	11.7 ± 150	277	U
ADDITIONAL POLLUTANTS						
Cesium 137	pCi/L	200/-	1/Discharge	-1.30 ± 6.36	11.5	U
Uranium, Total	pCi/L	20/-	1/Discharge	0.139 ± 0.157	0.218	U
ADDITIONAL POLLUTANTS WITHOUT LIMI	TS					
Potassium-40	pCi/L	-/-	1/Discharge	-27.8 ± 152	169	U

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

				2/28/2014 (Grab) - 03/01/20	14 (Composite)
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	Sample Frequency	Sample Type	Result	Concentration Result Validation Qualifier
Volume Discharged	MGD	17.89/-		Meas	1.7337	*
CONVENTIONAL POLLUTANTS		/				*
Oil & Grease	LBS/DAY	2,227/-	1/Discharge	Grab	ND	*
PRIORITY POLLUTANTS						
Antimony	LBS/DAY	0.89/-	1/Discharge	Composite	0.01	J (DNQ)
Cadmium	LBS/DAY	0.59/-	1/Discharge	Composite	ND	U
Copper	LBS/DAY	2.1/-	1/Discharge	Composite	0.12	
Lead	LBS/DAY	0.77/-	1/Discharge	Composite	0.14	
Mercury	LBS/DAY	0.02/-	1/Discharge	Composite	ND	U
Nickel	LBS/DAY	14.9/-	1/Year	Composite	0.11	J (DNQ)
TCDD TEQ_NoDNQ	LBS/DAY	4.20E-09/-	1/Discharge	Composite	1.91E-09	
Thallium	LBS/DAY	0.3/-	1/Discharge	Composite	ND	U
Total Cyanide	LBS/DAY	1.4/-	1/Discharge	Composite	ND	*
NON-CONVENTIONAL POLLUT	ANTS					
Boron	LBS/DAY	148/-	1/Year	Composite	0.64	J (DNQ)
Chloride	LBS/DAY	22,268/-	1/Discharge	Composite	79.52	*
Fluoride	LBS/DAY	238/-	1/Year	Composite	2.31	*
Nitrate + Nitrite as Nitrogen (N)	LBS/DAY	1,485/-	1/Discharge	Composite	14.31	*
Perchlorate	LBS/DAY	0.89/-	1/Discharge	Composite	ND	
Sulfate	LBS/DAY	37,113/-	1/Discharge	Composite	95.43	*
Total Dissolved Solids	LBS/DAY	126,184/-	1/Discharge	Composite	737.40	*

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

					2/28/2014	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
Volume Discharged	MGD	17.89/-	1/Discharge	Meas	0.00082105	*
CONVENTIONAL POLLUTANTS						
Oil & Grease	mg/L	15/-	1/Discharge	Grab	ND < 1.3	U
pH (Field)	pH units	6.5-8.5/-	1/Discharge	Grab	7.38	*
PRIORITY POLLUTANTS						
Antimony	ug/L	6.0/-	1/Discharge	Grab	0.7	J (DNQ)
Cadmium	ug/L	4.0/-	1/Discharge	Grab	ND < 0.25	U
Copper	ug/L	14/-	1/Discharge	Grab	12	
Lead	ug/L	5.2/-	1/Discharge	Grab	5.6	
Mercury	ug/L	0.13/-	1/Discharge	Grab	ND < 0.1	U
Nickel	ug/L	100/-	1/Year	Grab	7.9	J (DNQ)
Selenium	ug/L	-/-	1/Discharge	Grab	ND < 0.5	Ù
Thallium	ug/L	2.0/-	1/Discharge	Grab	ND < 0.5	U
Total Cyanide	ug/L	9.5/-	1/Discharge	Grab	ND < 3	U
Zinc	ug/L	-/-	1/Discharge	Grab	62	
NON-CONVENTIONAL POLLUTANT	rs	•		•		
Acute Toxicity	% SURVIVAL	70-90/-	1/Year	Grab	100	*
Boron	mg/L	1.0/-	1/Year	Grab	0.097	
Chloride	mg/L	150/-	1/Discharge	Grab	6.3	
Chronic Toxicity	TUC	1/-	1st & 2nd rain event/Year	Grab	1.0	*
Fluoride	mg/L	1.6/-	1/Year	Grab	0.12	
Nitrate + Nitrite as Nitrogen (N)	mg/L	10/-	1/Discharge	Grab	2	
Perchlorate	ug/L	6.0/-	1/Discharge	Grab	ND < 0.95	U
Sulfate	mg/L	250/-	1/Discharge	Grab	15	
Temperature (Field)	deg. F	86/-	1/Discharge	Grab	59.2	*
Total Dissolved Solids	mg/L	850/-	1/Discharge	Grab	120	
REMAINING PRIORITY POLLUTAN						
1,1,1-Trichloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	U
1,1,2,2-Tetrachloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü
1,1,2-Trichloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü
1,1-Dichloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü
1,1-Dichloroethene	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü
1,2,4-Trichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
1,2-Dichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü
1,2-Dichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.5	Ü
1,2-Dichloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü
1,2-Dichloropropane	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü
1,2-Diphenylhydrazine/Azobenzene	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
1,3-Dichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü
1,3-Dichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü
1,4-Dichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü
1,4-Dichlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü
2,4,6-Trichlorophenol	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
2,4-Dichlorophenol	ug/L	-/-	1/Year	Grab	ND < 0.948	Ü
2,4-Dimethylphenol	ug/L	-/-	1/Year	Grab	ND < 0.948	Ü
2,7 Dillieuryiphenol	_ ug/∟	-/-	i/ i cai	Giab	11D > 0.340	

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

					2/28/2014			
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER		
2,4-Dinitrophenol	ug/L	-/-	1/Year	Grab	ND < 1.9	U		
2,4-Dinitrotoluene	ug/L	-/-	1/Year	Grab	ND < 1.9	U		
2,6-Dinitrotoluene	ug/L	-/-	1/Year	Grab	ND < 1.9	U		
2-Chloroethylvinylether	ug/L	-/-	1/Year	Grab	ND < 1	U		
2-Chloronaphthalene	ug/L	-/-	1/Year	Grab	ND < 0.19	U		
2-Chlorophenol	ug/L	-/-	1/Year	Grab	ND < 0.474	U		
2-Methyl-4,6-Dinitrophenol	ug/L	-/-	1/Year	Grab	ND < 1.9	U		
2-Nitrophenol	ug/L	-/-	1/Year	Grab	ND < 0.948	U		
3,3'-Dichlorobenzidine	ug/L	-/-	1/Year	Grab	ND < 1.9	U		
4,4'-DDD	ug/L	-/-	1/Year	Grab	ND < 0.0038	U		
4,4'-DDE	ug/L	-/-	1/Year	Grab	ND < 0.0028	U		
4,4'-DDT	ug/L	-/-	1/Year	Grab	ND < 0.0038	U		
4-Bromophenylphenylether	ug/L	-/-	1/Year	Grab	ND < 0.474	U		
4-Chloro-3-methylphenol	ug/L	-/-	1/Year	Grab	ND < 0.19	U		
4-Chlorophenylphenylether	ug/L	-/-	1/Year	Grab	ND < 0.19	U		
4-Nitrophenol	ug/L	-/-	1/Year	Grab	ND < 1.9	U		
Acenaphthene	ug/L	-/-	1/Year	Grab	ND < 0.19	U		
Acenaphthylene	ug/L	-/-	1/Year	Grab	ND < 0.19	U		
Acrolein	ug/L	-/-	1/Year	Grab	ND < 2.5	U		
Acrylonitrile	ug/L	-/-	1/Year	Grab	ND < 1	Ü		
Aldrin	ug/L	-/-	1/Year	Grab	ND < 0.0014	Ü		
alpha-BHC	ug/L	-/-	1/Year	Grab	ND < 0.0024	Ü		
Anthracene	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü		
Aroclor 1016	ug/L	-/-	1/Year	Grab	ND < 0.24	Ü		
Aroclor 1221	ug/L	-/-	1/Year	Grab	ND < 0.24	Ü		
Aroclor 1232	ug/L	-/-	1/Year	Grab	ND < 0.24	Ü		
Aroclor 1242	ug/L	-/-	1/Year	Grab	ND < 0.24	U		
Aroclor 1248	ug/L	-/-	1/Year	Grab	ND < 0.24	Ü		
Aroclor 1254	ug/L	-/-	1/Year	Grab	ND < 0.24	Ü		
Aroclor 1260	ug/L	-/-	1/Year	Grab	ND < 0.24	Ü		
Arsenic	ug/L	-/-	1/Year	Grab	ND < 7	Ü		
Benzene	ug/L	-/-	1/Year	Grab	ND < 0.25	U		
Benzidine	ug/L	-/-	1/Year	Grab	ND < 4.74	U		
Benzo(a)anthracene	ug/L	-/-	1/Year	Grab	ND < 1.9	U		
Benzo(a)pyrene	ug/L	-/-	1/Year	Grab	ND < 0.474	U		
Benzo(b)fluoranthene	ug/L	-/-	1/Year	Grab	ND < 0.948	U		
Benzo(g,h,i)Perylene	ug/L	-/-	1/Year	Grab	ND < 1.9	Ü		
Benzo(k)fluoranthene	ug/L	-/-	1/Year	Grab	ND < 0.237	Ü		
Beryllium	ug/L	-/-	1/Year	Grab	1.2	J (DNQ)		
beta-BHC	ug/L	-/-	1/Year	Grab	ND < 0.0038	U		
Bis (2-Chloroethoxy) Methane	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü		
Bis (2-Chloroethyl) Ether	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü		
Bis (2-Chloroisopropyl) Ether	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü		
Bis (2-Ethylhexyl) Phthalate	ug/L	-/-	1/Year	Grab	6.71			
Bromodichloromethane	ug/L	-/-	1/Year	Grab	ND < 0.25	U		
Bromoform	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü		
	,	,	., . 001	J. 42				

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

					2/28/2014	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
Bromomethane	ug/L	-/-	1/Year	Grab	ND < 0.25	U
Butylbenzylphthalate	ug/L	-/-	1/Year	Grab	ND < 1.9	U
Carbon Tetrachloride	ug/L	-/-	1/Year	Grab	ND < 0.25	U
Chlordane	ug/L	-/-	1/Year	Grab	ND < 0.075	U
Chlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.25	U
Chloroethane	ug/L	-/-	1/Year	Grab	ND < 0.25	U
Chloroform	ug/L	-/-	1/Year	Grab	ND < 0.25	U
Chloromethane	ug/L	-/-	1/Year	Grab	ND < 0.25	U
Chromium	ug/L	-/-	1/Year	Grab	9.7	
Chromium VI	ug/L	-/-	1/Year	Grab	0.47	J (DNQ)
Chrysene	ug/L	-/-	1/Year	Grab	ND < 0.19	U
cis-1,3-Dichloropropene	ug/L	-/-	1/Year	Grab	ND < 0.25	U
delta-BHC	ug/L	-/-	1/Year	Grab	ND < 0.0033	U
Dibenzo(a,h)anthracene	ug/L	-/-	1/Year	Grab	ND < 0.237	U
Dibromochloromethane	ug/L	-/-	1/Year	Grab	ND < 0.25	U
Dieldrin	ug/L	-/-	1/Year	Grab	ND < 0.0019	U
Diethylphthalate	ug/L	-/-	1/Year	Grab	0.887	J (DNQ)
Dimethylphthalate	ug/L	-/-	1/Year	Grab	0.501	
Di-n-butylphthalate	ug/L	-/-	1/Year	Grab	ND < 0.948	U
Di-n-octylphthalate	ug/L	-/-	1/Year	Grab	ND < 1.9	Ü
Endosulfan I	ug/L	-/-	1/Year	Grab	ND < 0.0028	Ü
Endosulfan II	ug/L	-/-	1/Year	Grab	ND < 0.0019	Ü
Endosulfan Sulfate	ug/L	-/-	1/Year	Grab	ND < 0.0028	Ü
Endrin	ug/L	-/-	1/Year	Grab	ND < 0.0019	Ü
Endrin Aldehyde	ug/L	-/-	1/Year	Grab	ND < 0.0019	Ü
Ethylbenzene	ug/L	-/-	1/Year	Grab	ND < 0.25	Ü
Fluoranthene	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü
Fluorene	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü
Heptachlor	ug/L	-/-	1/Year	Grab	ND < 0.0028	Ü
Heptachlor Epoxide	ug/L	-/-	1/Year	Grab	ND < 0.0024	Ü
Hexachlorobenzene	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
Hexachlorobutadiene	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
Hexachlorocyclopentadiene	ug/L	-/-	1/Year	Grab	ND < 1.9	Ü
Hexachloroethane	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
Indeno(1,2,3-cd)pyrene	ug/L	-/-	1/Year	Grab	ND < 0.948	Ü
Isophorone	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
Lindane (gamma-BHC)	ug/L	-/-	1/Year	Grab	ND < 0.0028	Ü
Methylene chloride	ug/L	-/-	1/Year	Grab	ND < 0.88	Ü
Naphthalene	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
Nitrobenzene	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
N-Nitrosodimethylamine	ug/L	-/-	1/Year	Grab	ND < 0.948	Ü
N-Nitroso-di-n-propylamine	ug/L	-/-	1/Year	Grab	ND < 0.948	Ü
N-Nitrosodiphenylamine	ug/L	-/-	1/Year	Grab	ND < 0.474	Ü
Pentachlorophenol	ug/L	-/-	1/Year	Grab	ND < 0.948	Ü
Phenanthrene	ug/L	-/-	1/Year	Grab	ND < 0.19	Ü
Phenol	ug/L	-/-	1/Year	Grab	5.8	
i nenoi	ug/∟	-/-	1/ 1 641	Giab	5.0	

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

				2/28/2014			
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avq	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER	
Pyrene	ug/L	-/-	1/Year	Grab	ND < 0.19	U	
Silver	ug/L	-/-	1/Year	Grab	ND < 0.5	U	
Tetrachloroethene	ug/L	-/-	1/Year	Grab	ND < 0.25	U	
Toluene	ug/L	-/-	1/Year	Grab	ND < 0.25	U	
Toxaphene	ug/L	-/-	1/Year	Grab	ND < 0.24	U	
trans-1,2-Dichloroethene	ug/L	-/-	1/Year	Grab	ND < 0.25	U	
trans-1,3-Dichloropropene	ug/L	-/-	1/Year	Grab	ND < 0.25	U	
Trichloroethene	ug/L	-/-	1/Year	Grab	ND < 0.25	U	
Vinyl chloride	ug/L	-/-	1/Year	Grab	ND < 0.25	U	
Xylenes (Total)	ug/L	-/-	1/Year	Grab	ND < 0.5	U	
EFFLUENT MONITORING (NO LIN	MITATIONS) POLI	LUTANTS	•	•			
Aluminum	ug/Ĺ	-/-	1/Year	Grab	6,100		
Chlorpyrifos	ug/L	-/-	1/Year	Grab	ND < 0.077	U	
Diazinon	ug/L	-/-	1/Year	Grab	ND < 0.096	U (H,I)	
E. Coli	MPN/100mL	-/-	1/Year	Grab	350		
Fecal Coliform	MPN/100mL	-/-	1/Year	Grab	350		
Hardness	mg/L	-/-	1/Year	Grab	56		
Iron	mg/L	-/-	1/Year	Grab	7.8		
Total Suspended Solids	mg/L	-/-	1/Year	Grab	160		
Trichlorofluoromethane	ug/L	-/-	1/Year	Grab	ND < 0.25	U	
Vanadium	ug/L	-/-	1/Year	Grab	17		
ADDITIONAL POLLUTANTS	Ĭ						
Aluminum, dissolved	ug/L	-/-	Additional	Grab	150		
Antimony, dissolved	ug/L	-/-	Additional	Grab	ND < 0.5	U	
Arsenic, dissolved	ug/L	-/-	Additional	Grab	ND < 7	U	
Beryllium, dissolved	ug/L	-/-	Additional	Grab	ND < 0.9	U	
Boron, dissolved	mg/L	-/-	Additional	Grab	0.1		
Cadmium, dissolved	ug/L	-/-	Additional	Grab	ND < 0.25	U	
Chromium, dissolved	ug/L	-/-	Additional	Grab	ND < 2	U	
Copper, dissolved	ug/L	-/-	Additional	Grab	3.6		
Dissolved Oxygen (Field)	mg/L	-/-	Additional	Grab	5.85	*	
Hardness, dissolved	mg/L	-/-	Additional	Grab	31		
Iron, dissolved	mg/L	-/-	Additional	Grab	0.11		
Lead, dissolved	ug/L	-/-	Additional	Grab	ND < 0.5	U	
Mercury, dissolved	ug/L	-/-	Additional	Grab	ND < 0.1	UJ (R)	
Nickel, dissolved	ug/L	-/-	Additional	Grab	2.2	J (DNQ)	
Selenium, dissolved	ug/L	-/-	Additional	Grab	ND < 0.5	U	
Silver, dissolved	ug/L	-/-	Additional	Grab	ND < 0.5	U	
Thallium, dissolved	ug/L	-/-	Additional	Grab	ND < 0.5	U	
Vanadium, dissolved	ug/L	-/-	Additional	Grab	ND < 3	U	
Zinc, Dissolved	ug/L	-/-	Additional	Grab	ND < 12	U (B)	

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

Sample Type Grab Sample Date February 28, 2014

ANALYTE	SAMPLE FREQUENCY	LAB LOD (ug/L)	LAB RL (ug/L)	LAB RESULT (ug/L)	VALIDATION QUALIFIER	1998 WHO TEF	BEF Great Lakes Water Quality Initiative	TCDD Equivalent (w/out DNQ Values) (ug/L)
1,2,3,4,6,7,8-HpCDD	1/Discharge	1.25E-05	5.00E-05	7.19E-05		0.01	0.05	3.60E-08
1,2,3,4,6,7,8-HpCDF	1/Discharge	6.50E-06	5.00E-05	1.47E-05	J (DNQ)	0.01	0.01	ND
1,2,3,4,7,8,9-HpCDF	1/Discharge	1.25E-05	5.00E-05	ND	U	0.01	0.4	ND
1,2,3,4,7,8-HxCDD	1/Discharge	1.25E-05	5.00E-05	ND	U	0.1	0.3	ND
1,2,3,4,7,8-HxCDF	1/Discharge	6.50E-06	5.00E-05	ND	U	0.1	0.08	ND
1,2,3,6,7,8-HxCDD	1/Discharge	1.25E-05	5.00E-05	3.86E-06	UJ (*III)	0.1	0.1	ND
1,2,3,6,7,8-HxCDF	1/Discharge	1.25E-05	5.00E-05	ND	Ú	0.1	0.2	ND
1,2,3,7,8,9-HxCDD	1/Discharge	1.25E-05	5.00E-05	ND	U	0.1	0.1	ND
1,2,3,7,8,9-HxCDF	1/Discharge	6.50E-06	5.00E-05	ND	U	0.1	0.6	ND
1,2,3,7,8-PeCDD	1/Discharge	6.50E-06	5.00E-05	ND	U	1	0.9	ND
1,2,3,7,8-PeCDF	1/Discharge	6.50E-06	5.00E-05	ND	U	0.05	0.2	ND
2,3,4,6,7,8-HxCDF	1/Discharge	6.50E-06	5.00E-05	ND	U	0.1	0.7	ND
2,3,4,7,8-PeCDF	1/Discharge	6.20E-06	5.00E-05	ND	U	0.5	1.6	ND
2,3,7,8-TCDD	1/Discharge	2.50E-06	1.00E-05	ND	U	1	1	ND
2,3,7,8-TCDF	1/Discharge	2.50E-06	1.00E-05	ND	U	0.1	0.8	ND
OCDD	1/Discharge	5.00E-05	1.00E-04	7.64E-04		0.0001	0.01	7.64E-10
OCDF	1/Discharge	2.50E-05	1.00E-04	4.35E-05	J (DNQ)	0.0001	0.02	ND

TCDD TEQ w/out DNQ Values 3.67E-08

TCDD TEQ (PRIORITY POLLUTANTS) PERMIT LIMIT = 2.80E-08

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

				02/28/2014 (Grab)		
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avq	SAMPLE FREQUENCY	RESULT	MDA	VALIDATION QUALIFIER
NON-CONVENTIONAL POLLUTANTS						
Gross Alpha	pCi/L	15/-	1/Discharge	1.38 ± 1.19	1.79	UJ (C)
Gross Beta	pCi/L	50/-	1/Discharge	5.02 ± 1.08	1.02	
Strontium-90	pCi/L	8.0/-	1/Discharge	0.237 ± 0.217	0.349	U
Total Combined Radium-226 & Radium 228	pCi/L	5.0/-	1/Discharge	0.465 ± 0.28	0.0611	
Tritium	pCi/L	20000/-	1/Discharge	6.31 ± 147	273	U
ADDITIONAL POLLUTANTS						
Cesium 137	pCi/L	200/-	1/Discharge	0.827 ± 6.59	12.2	U
Uranium, Total	pCi/L	20/-	1/Discharge	0.372 ± 0.198	0.164	
ADDITIONAL POLLUTANTS WITHOUT LIMI	TS					
Potassium-40	pCi/L	-/-	1/Discharge	-6.27 ± 107	188	U

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

				2/28/2014		
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avq	Sample Frequency	Sample Type	Result	Concentration Result Validation Qualifier
Volume Discharged	MGD	17.89/-		Meas	0.00082105	
CONVENTIONAL POLLUTANTS						
Oil & Grease	LBS/DAY	2,227/-	1/Discharge	Grab	ND	U
PRIORITY POLLUTANTS Antimony	LBS/DAY	0.89/-	1/Discharge	Grab	4.79E-06	J (DNQ)
Cadmium	LBS/DAY	0.59/-	1/Discharge	Grab	ND	U
Copper	LBS/DAY	2.1/-	1/Discharge	Grab	8.22E-05	
Lead	LBS/DAY	0.77/-	1/Discharge	Grab	3.83E-05	
Mercury	LBS/DAY	0.02/-	1/Discharge	Grab	ND	U
Nickel	LBS/DAY	14.9/-	1/Year	Grab	5.41E-05	J (DNQ)
TCDD TEQ_NoDNQ	LBS/DAY	4.20E-09/-	1/Discharge	Grab	2.51E-13	
Thallium	LBS/DAY	0.3/-	1/Discharge	Grab	ND	U
Total Cyanide	LBS/DAY	1.4/-	1/Discharge	Grab	ND	U
NON-CONVENTIONAL POLLUTANTS						
Boron	LBS/DAY	148/-	1/Year	Grab	6.64E-04	
Chloride	LBS/DAY	22,268/-	1/Discharge	Grab	4.31E-02	
Fluoride	LBS/DAY	238/-	1/Year	Grab	8.22E-04	
Nitrate + Nitrite as Nitrogen (N)	LBS/DAY	1,485/-	1/Discharge	Grab	1.37E-02	
Perchlorate	LBS/DAY	0.89/-	1/Discharge	Grab	ND	U
Sulfate	LBS/DAY	37,113/-	1/Discharge	Grab	1.03E-01	
Total Dissolved Solids	LBS/DAY	126,184/-	1/Discharge	Grab	8.22E-01	

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

					2/28/2014	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
POLLUTANTS WITH LIMITS						
4,4'-DDD	ug/L	0.0014/-	1/Quarter	Grab	ND < 0.0038	*
4,4'-DDE	ug/L	0.001/-	1/Quarter	Grab	ND < 0.0029	*
4,4'-DDT	ug/L	0.001/-	1/Quarter	Grab	ND < 0.0038	*
Aroclor 1016	ug/L	0.0003/-	1/Quarter	Grab	ND < 0.24	*
Aroclor 1221	ug/L	0.0003/-	1/Quarter	Grab	ND < 0.24	*
Aroclor 1232	ug/L	0.0003/-	1/Quarter	Grab	ND < 0.24	*
Aroclor 1242	ug/L	0.0003/-	1/Quarter	Grab	ND < 0.24	*
Aroclor 1248	ug/L	0.0003/-	1/Quarter	Grab	ND < 0.24	*
Aroclor 1254	ug/L	0.0003/-	1/Quarter	Grab	ND < 0.24	*
Aroclor 1260	ug/L	0.0003/-	1/Quarter	Grab	ND < 0.24	*
Chlordane	ug/L	0.001/-	1/Quarter	Grab	ND < 0.077	*
Chlorpyrifos	ug/L	0.02/-	1/Quarter	Grab	ND < 0.077	*
Diazinon	ug/L	0.16/-	1/Quarter	Grab	ND < 0.096	*
Dieldrin	ug/L	0.0002/-	1/Quarter	Grab	ND < 0.0019	*
E. Coli	MPN/100 ml	235/-	1/Year	Grab	>=1,600	
Fecal Coliform	MPN/100 ml	400/-	1/Year	Grab	>=1,600	
pH (Field)	pH Units	6.5-8.5/-	1/Quarter	Grab	7.24	*
Toxaphene	ug/L	0.0003/-	1/Quarter	Grab	ND < 0.24	*
POLLUTANTS WITHOUT LIMITS						
Hardness	mg/L	-/-	1/Quarter	Grab	210	
Temperature (Field)	deg F	-/-	1/Quarter	Grab	58.01	*
Total Suspended Solids	mg/L	-/-	1/Year	Grab	460	
Water Velocity	ft/sec	-/-	1/Quarter	Meas	0.33	*
ADDITIONAL POLLUTANTS						
Dissolved Oxygen (Field)	mg/L	-/-	Additional	Grab	7.77	*
Turbidity (Field)	NTU	-/-	Additional	Grab	800	*

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

					3/10/2014	1
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
POLLUTANTS WITH LIMITS		•				
4,4'-DDD	ug/L	0.0014/-	1/Quarter	ANR	ANR	ANR
4,4'-DDE	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
4,4'-DDT	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
Aroclor 1016	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1221	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1232	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1242	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1248	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1254	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1260	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Chlordane	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
Chlorpyrifos	ug/L	0.02/-	1/Quarter	ANR	ANR	ANR
Diazinon	ug/L	0.16/-	1/Quarter	ANR	ANR	ANR
Dieldrin	ug/L	0.0002/-	1/Quarter	ANR	ANR	ANR
E. Coli	MPN/100 ml	235/-	1/Year	Grab	170	
Fecal Coliform	MPN/100 ml	400/-	1/Year	Grab	240	
pH (Field)	pH Units	6.5-8.5/-	1/Quarter	Grab	7.55	*
Toxaphene	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
POLLUTANTS WITHOUT LIMITS						
Hardness	mg/L	-/-	1/Quarter	ANR	ANR	ANR
Temperature (Field)	deg F	-/-	1/Quarter	Grab	66.74	*
Total Suspended Solids	mg/L	-/-	1/Year	ANR	ANR	ANR
Water Velocity	ft/sec	-/-	1/Quarter	ANR	ANR	ANR
ADDITIONAL POLLUTANTS						
Dissolved Oxygen (Field)	mg/L	-/-	Additional	Grab	8.65	*
Turbidity (Field)	NTU	-/-	Additional	ANR	ANR	ANR

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

					3/14/2014	ļ
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
POLLUTANTS WITH LIMITS						
4,4'-DDD	ug/L	0.0014/-	1/Quarter	ANR	ANR	ANR
4,4'-DDE	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
4,4'-DDT	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
Aroclor 1016	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1221	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1232	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1242	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1248	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1254	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1260	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Chlordane	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
Chlorpyrifos	ug/L	0.02/-	1/Quarter	ANR	ANR	ANR
Diazinon	ug/L	0.16/-	1/Quarter	ANR	ANR	ANR
Dieldrin	ug/L	0.0002/-	1/Quarter	ANR	ANR	ANR
E. Coli	MPN/100 ml	235/-	1/Year	Grab	23	
Fecal Coliform	MPN/100 ml	400/-	1/Year	Grab	23	
pH (Field)	pH Units	6.5-8.5/-	1/Quarter	Grab	7.75	*
Toxaphene	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
POLLUTANTS WITHOUT LIMITS						
Hardness	mg/L	-/-	1/Quarter	ANR	ANR	ANR
Temperature (Field)	deg F	-/-	1/Quarter	Grab	61.7	*
Total Suspended Solids	mg/L	-/-	1/Year	ANR	ANR	ANR
Water Velocity	ft/sec	-/-	1/Quarter	ANR	ANR	ANR
ADDITIONAL POLLUTANTS						
Dissolved Oxygen (Field)	mg/L	-/-	Additional	Grab	10.06	*
Turbidity (Field)	NTU	-/-	Additional	ANR	ANR	ANR

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

					3/19/2014	ı
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
POLLUTANTS WITH LIMITS						
4,4'-DDD	ug/L	0.0014/-	1/Quarter	ANR	ANR	ANR
4,4'-DDE	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
4,4'-DDT	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
Aroclor 1016	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1221	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1232	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1242	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1248	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1254	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1260	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Chlordane	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
Chlorpyrifos	ug/L	0.02/-	1/Quarter	ANR	ANR	ANR
Diazinon	ug/L	0.16/-	1/Quarter	ANR	ANR	ANR
Dieldrin	ug/L	0.0002/-	1/Quarter	ANR	ANR	ANR
E. Coli	MPN/100 ml	235/-	1/Year	Grab	540	
Fecal Coliform	MPN/100 ml	400/-	1/Year	Grab	540	
pH (Field)	pH Units	6.5-8.5/-	1/Quarter	Grab	6.1	*
Toxaphene	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
POLLUTANTS WITHOUT LIMITS						
Hardness	mg/L	-/-	1/Quarter	ANR	ANR	ANR
Temperature (Field)	deg F	-/-	1/Quarter	Grab	56.84	*
Total Suspended Solids	mg/L	-/-	1/Year	ANR	ANR	ANR
Water Velocity	ft/sec	-/-	1/Quarter	ANR	ANR	ANR
ADDITIONAL POLLUTANTS						
Dissolved Oxygen (Field)	mg/L	-/-	Additional	Grab	8.17	*
Turbidity (Field)	NTU	-/-	Additional	Grab	7.5	*

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

				3/24/2014		
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avq	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER
POLLUTANTS WITH LIMITS		•				
4,4'-DDD	ug/L	0.0014/-	1/Quarter	ANR	ANR	ANR
4,4'-DDE	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
4,4'-DDT	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
Aroclor 1016	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1221	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1232	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1242	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1248	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1254	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Aroclor 1260	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
Chlordane	ug/L	0.001/-	1/Quarter	ANR	ANR	ANR
Chlorpyrifos	ug/L	0.02/-	1/Quarter	ANR	ANR	ANR
Diazinon	ug/L	0.16/-	1/Quarter	ANR	ANR	ANR
Dieldrin	ug/L	0.0002/-	1/Quarter	ANR	ANR	ANR
E. Coli	MPN/100 ml	235/-	1/Year	Grab	170	
Fecal Coliform	MPN/100 ml	400/-	1/Year	Grab	170	
pH (Field)	pH Units	6.5-8.5/-	1/Quarter	Grab	6.89	*
Toxaphene	ug/L	0.0003/-	1/Quarter	ANR	ANR	ANR
POLLUTANTS WITHOUT LIMITS						
Hardness	mg/L	-/-	1/Quarter	ANR	ANR	ANR
Temperature (Field)	deg F	-/-	1/Quarter	Grab	60.22	*
Total Suspended Solids	mg/L	-/-	1/Year	ANR	ANR	ANR
Water Velocity	ft/sec	-/-	1/Quarter	ANR	ANR	ANR
ADDITIONAL POLLUTANTS						
Dissolved Oxygen (Field)	mg/L	-/-	Additional	Grab	5.95	*
Turbidity (Field)	NTU	-/-	Additional	ANR	ANR	ANR

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

Sample Type: Grab Sample Date February 28, 2014

ANALYTE	SAMPLE FREQUENCY	LAB LOD (ug/L)	LAB RL (ug/L)	LAB RESULT (ug/L)	VALIDATION QUALIFIER	1998 WHO TEF	BEF Great Lakes Water Quality Initiative	TCDD Equivalent (w/out DNQ Values) (ug/L)
1,2,3,4,6,7,8-HpCDD	1/Year	1.25E-05	5.00E-05	1.03E-04		0.01	0.05	5.15E-08
1,2,3,4,6,7,8-HpCDF	1/Year	6.50E-06	5.00E-05	3.80E-05	J(DNQ)	0.01	0.01	ND
1,2,3,4,7,8,9-HpCDF	1/Year	1.25E-05	5.00E-05	ND	U	0.01	0.4	ND
1,2,3,4,7,8-HxCDD	1/Year	1.25E-05	5.00E-05	ND	U	0.1	0.3	ND
1,2,3,4,7,8-HxCDF	1/Year	6.50E-06	5.00E-05	ND	U	0.1	0.08	ND
1,2,3,6,7,8-HxCDD	1/Year	1.25E-05	5.00E-05	ND	U	0.1	0.1	ND
1,2,3,6,7,8-HxCDF	1/Year	1.25E-05	5.00E-05	9.58E-06	UJ(*III)	0.1	0.2	ND
1,2,3,7,8,9-HxCDD	1/Year	1.25E-05	5.00E-05	5.20E-06	J(DNQ)	0.1	0.1	ND
1,2,3,7,8,9-HxCDF	1/Year	6.50E-06	5.00E-05	ND	U	0.1	0.6	ND
1,2,3,7,8-PeCDD	1/Year	6.50E-06	5.00E-05	ND	U	1	0.9	ND
1,2,3,7,8-PeCDF	1/Year	6.50E-06	5.00E-05	ND	U	0.05	0.2	ND
2,3,4,6,7,8-HxCDF	1/Year	6.50E-06	5.00E-05	ND	U	0.1	0.7	ND
2,3,4,7,8-PeCDF	1/Year	6.20E-06	5.00E-05	ND	U	0.5	1.6	ND
2,3,7,8-TCDD	1/Year	2.50E-06	1.00E-05	ND	U	1	1	ND
2,3,7,8-TCDF	1/Year	2.50E-06	1.00E-05	ND	U	0.1	0.8	ND
OCDD	1/Year	5.00E-05	1.00E-04	8.81E-04		0.0001	0.01	8.81E-10
OCDF	1/Year	2.50E-05	1.00E-04	8.19E-05	J(DNQ)	0.0001	0.02	ND

TCDD TEQ w/out DNQ Values	5.24E-08
TCDD TEQ Would DNQ Values	J.Z-L-00

ARROYO SIMI (FRONTIER PARK RECEIVING WATER), SEDIMENT

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

				3/19/2014			
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	SAMPLE FREQUENCY	SAMPLE TYPE	RESULT	VALIDATION QUALIFIER	
POLLUTANTS WITH LIMITS							
4,4'-DDD	ug/kg	14/-	1/Year	Grab	ND < 1.5	*	
4,4'-DDE	ug/kg	170/-	1/Year	Grab	ND < 1.5	*	
4,4'-DDT	ug/kg	25/-	1/Year	Grab	ND < 1.5	*	
Aroclor 1016	ug/kg	25,700/-	1/Year	Grab	ND < 17	*	
Aroclor 1221	ug/kg	25,700/-	1/Year	Grab	ND < 17	*	
Aroclor 1232	ug/kg	25,700/-	1/Year	Grab	ND < 17	*	
Aroclor 1242	ug/kg	25,700/-	1/Year	Grab	ND < 17	*	
Aroclor 1248	ug/kg	25,700/-	1/Year	Grab	ND < 17	*	
Aroclor 1254	ug/kg	25,700/-	1/Year	Grab	ND < 17	*	
Aroclor 1260	ug/kg	25,700/-	1/Year	Grab	ND < 17	*	
Chlordane	ug/kg	3.3/-	1/Year	Grab	ND < 10	*	
Toxaphene	ug/kg	230/-	1/Year	Grab	ND < 50	*	
POLLUTANTS WITHOUT LIMITS							
Percent Moisture	%	-/-	1/Year	Grab	22	*	
Ammonia as Nitrogen (N)	mg/kg	-/-	1/Year	Grab	3.35	J (DNQ)	
Bivalve Embryo toxicity	%	-/-	1/Year	Grab	100	*	
Conductivity (Field)	umhos/cm	-/-	1/Year	Grab	2.2	*	
Dieldrin	ug/L	-/-	1/Year	Grab	ND < 1.5	*	
Dissolved Oxygen (Field)	mg/L	-/-	1/Year	Grab	8.17	*	
pH (Field)	pH Units	-/-	1/Year	Grab	6.1	*	
Sediment toxicity	%	-/-	1/Year	Grab	100	*	
Temperature (Field)	deg F	-/-	1/Year	Grab	56.8	*	
Total Organic Carbon	mg/kg	-/-	1/Year	Grab	ND < 2,500	*	
Water Velocity	ft/sec	-/-	1/Year	Meas	0.0	*	
PARTICLE SIZE DISTRIBUTION							
Coarse Sand	%	-/-	1/Year	Grab	12.85	*	
Fine Sand	%	-/-	1/Year	Grab	4.27	*	
Gravel	%	-/-	1/Year	Grab	8.63	*	
Medium Sand	%	-/-	1/Year	Grab	73.94	*	
Silt/Clay	%	-/-	1/Year	Grab	0.31	*	
ADDITIONAL POLLUTANTS							
Turbidity (Field)	NTU	-/-	Additional	Grab	7.5	*	

APPENDIX D

First Quarter 2014 Summary of Permit Limit Exceedances

Notes:

- TCDD TEQs for the purpose of determining permit compliance are the sum of the products of the detected dioxin congener concentration multiplied by that congener's toxicity equivalency factor (TEF) and bioaccumulation equivalency factor (BEF). The resulting compliance TCDD TEQ does not include those congener concentrations that are reported as DNQ, as specified on Page 37 of the NPDES permit.
- 2. pH was determined with a field instrument and was noted as such. These results were not validated.
- 3. All of the following abbreviations and/or notes may not occur on every table.
- 4. J(DNQ) flagged results are included in the data charts; however, these results are considered to be estimated values and as such are not used to quantify the chemical concentration for compliance purposes. ND results are included in the data charts and are shown as zero. Refer to Appendix H for a list of reporting limits by constituent.
- 5. pH and temperature are identified on the table as daily maximum discharge limits. The NPDES permit limit has an instantaneous minimum (6.5) and maximum (8.5) for pH and an instantaneous maximum of 86°F for temperature.

-92.9 +/-200	A negative radiochemical analytical result indicates the count rate of the sample was less than the background condition. Radiological results are presented as activity plus or minus counting uncertainty.
\$	reported result or other information was incorrectly reported by the laboratory; result was corrected by the data validator
	based on validation of the data, a qualifier was not required
-/-	no permit limit established for daily maximum or monthly average
<(value)	analyte not detected at a concentration greater than or equal to the DL,
	MDL, or RL (see laboratory report for specific detail)
*	result not validated
*1	improper preservation of sample
*2	the ICP/MS ppb check standard was recovered above the control limit; therefore, the constituent detected was qualified as estimated (J)
*3	initial and or continuing calibration recoveries were outside acceptable control limits
*5	blank spike/blank spike duplicate relative percent difference was outside the control limit
*10	value was estimated detect or estimated non detect (J,UJ) due to deficiencies in quantitation of the constituent including constituents

FIRST QUARTER 2014 REPORTING SUMMARY NOTES THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

reported by the laboratory as Estimated Maximum Possible

Concentration (EMPC) values

*11 no calibration was performed for this compound; result is reported as a

tentatively identified compound (TIC)

* II *III Unusual problems found with the data that have been described in

Section II, "sample management", or Section III, "method analysis". The number following the asterisk (*) will indicated the validation report

section where a description of the problem can be found.

ANR analysis not required; e.g., constituent or outfall was not required by

the permit to be sampled and analyzed over the reporting period

(annual, semi-annual, etc.)

B laboratory method blank contamination BA relative percent difference out of control bioaccumulation equivalency factor

BU analyzed out of holding time

BV sample received after holding time expired C calibration %RSD or %D were noncompliant

Comp Composite sample type

C5 Calibration verification %R was outside method control limits

CEs/100 ml cell equivalents per 100 milliliters

D The analysis with this flag should not be used because another more

technically sound analysis is available

%D percent difference between the initial and continuing calibration relative

response factors

deg F degrees Fahrenheit

DL detection limit

DNQ detected but not quantified (constituent value greater than or equal to

the laboratory method detection limit and less then the laboratory

reporting limit)

E duplicates show poor agreement

ft/sec feet per second

H holding time was exceeded

I ICP interference check solution results were unsatisfactory

J estimated value, result lower than the detection limit

J, DX estimated value, value < lowest standard (MQL), but > than MDL

K The sample dilution's set-up did not meet the oxygen depletion criteria

of at least 2 mg/l. Therefore, the reported result is an estimated value

only.

L2 the laboratory control sample %R was below the method control limits

laboratory control sample %R was outside control limits

lbs/day Pounds per day LOD limit of detection

LQ LCS/LCSD recovery above method control limits

FIRST QUARTER 2014 REPORTING SUMMARY NOTES THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY

NPDES PERMIT CA0001309

M1 matrix spike (MS) and/or MS duplicate were above the acceptance

limits due to sample matrix interference

M2 the MS and/or MS duplicate were below the acceptance limits due to

sample matrix interference

MDA/MDC minimum detectable activity/ minimum detectable concentration

MDL method detection limit
Meas Measure sample type
MFL million fibers per liter
MGD million gallons per day

MHA* Due to high level of analyte in the sample, the MS/MSD calculation

does not provide useful spike recovery information.

mg/L milligrams per liter
mg/kg milligrams per kilogram
ml/L/hr milliliters per liter per hour

MPN/100 ml most probable number per 100 milliliters

NA not applicable; no permit limit established for the constituent and/or

outfall

ND analyte value less than the LOD or MDL

NM not measured or determined NTU nephelometric turbidity unit

pCi/L picocurries per liter

Q matrix spike recovery outside of control limits

R as a validation qualifier, results are rejected; the presence or absence

of analyte cannot be verified

R (reason code in parentheses) %R for calibration not within control

limits

RL laboratory reporting limit

RL-1 reporting limit raised due to sample matrix effects

%RSD percent relative standard deviation

% survival percent survival

S surrogate recovery was outside control limits

TCDD 2.3,7,8-tetrachlorodibenzo-p-dioxin

TEQ toxic equivalent

T presumed contamination, as indicated by a detect in the trip blank

TU_c toxicity units (chronic)
U result not detected

µg/L micrograms per liter

µg/kg micrograms per kilogram

UJ result not detected at the estimated reporting limit

umhos/cm micromhos per centimeter

WHO TEF World Health Organization toxic equivalency factor

^ analysis not completed due to hold time exceedence or insufficient

sample volume

FIRST QUARTER 2014 REPORTING SUMMARY NOTES THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

#

Per ORDER NO. R4-2010-0090 page 23 Footnote 1. The effluent limitations for total suspended solids and settable solids are not applicable for discharges during wet weather. During wet weather flow, a discharge event is greater than 0.1 inches of rainfall in a 24-hour period. No more than one sample per week need be obtained during extended periods of rainfall or the discharge of collected stormwater. A storm event must be preceded by at least 72 hours of dry weather.

(4.0)3.1/-

Represents (Dry Weather Limit) Wet Weather Limit / Monthly Average Limit.

SUMMARY OF PERMIT LIMIT EXCEEDANCES

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

	DAILY MAX PERMIT LIMIT EXCEEDANCES											
OUTFALL	LOCATIONS	SAMPLE DATE	SAMPLE TYPE	ANALYTE	PERMIT LIMIT DAILY MAX	DAILY MAX RESULT	UNITS	VALIDATION QUALIFIER				
Outfall 009	WS-13 Drainage	3/1/2014	Comp	Lead	5.2/-	9.6	ug/L					
Outfall 009	WS-13 Drainage	2/28/2014	Grab	pH (Field)	6.5-8.5/-	5.5	pH units	*				
Outfall 009	WS-13 Drainage	3/1/2014	Comp	TCDD TEQ w/out DNQ Values	2.80E-08	1.32E-07	ug/L					
Outfall 010	Building 203	2/28/2014	Grab	Lead	5.2/-	5.6	ug/L					
Outfall 010	Building 203	2/28/2014	Grab	TCDD TEQ w/out DNQ Values	2.80E-08	3.67E-08	ug/L					

SUMMARY OF PERMIT LIMIT EXCEEDANCES

FIRST QUARTER 2014 REPORTING SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

	SINGLE SAMPLE MAXIMUM RECEIVING WATER LIMIT EXCEEDANCES										
OUTFALL	LOCATIONS	SAMPLE DATE	SAMPLE TYPE	ANALYTE	PERMIT LIMIT DAILY MAX	DAILY MAX RESULT	UNITS	VALIDATION QUALIFIER			
Arroyo Simi	Frontier Park Receiving Water	2/28/2014	Grab	E. Coli	235/-	>=1,600	MPN/100mL				
Arroyo Simi	Frontier Park Receiving Water	2/28/2014	Grab	Fecal Coliform	400/-	>=1,600	MPN/100mL				
Arroyo Simi	Frontier Park Receiving Water	3/19/2014	Grab	E. Coli	235/-	540	MPN/100mL	-			
	Frontier Park Receiving Water	3/19/2014	Grab	Fecal Coliform	400/-	540	MPN/100mL				
Arroyo Simi	Frontier Park Receiving Water	3/19/2014	Grab	pH (Field)	6.1	6.5-8.5	pH Units	*			

	GEOMETRIC MEAN RECEIVING WATER LIMIT EXCEEDANCES										
OUTFALL	LOCATIONS	SAMPLE DATE	SAMPLE TYPE	ANALYTE	PERMIT LIMIT DAILY MAX	DAILY MAX RESULT	UNITS	VALIDATION QUALIFIER			
Arroyo Simi	Frontier Park Receiving Water	02/28-3/24/2014	Grab	E. Coli	126	225	MPN/100 ml				
Arroyo Simi	Frontier Park Receiving Water	02/28-3/24/2014	Grab	Fecal Coliform	200	241	MPN/100 ml				

APPENDIX E

First Quarter 2014 Analytical Laboratory Reports, Chain of Custody, and Validation Reports

APPENDIX E

TABLE OF CONTENTS

Section No.

1	Outfall 009 – February 28 & March 1, 2014 - MEC ^x Data Validation Report
2	Outfall 009 - February 28 & March 1, 2014 - Test America Analytical Laboratory Report
3	Outfall 009 - February 28, 2014 - Test America Analytical Laboratory Report
4	Outfall 010 - February 28, 2014 - MEC ^x Data Validation Report
5	Outfall 010 - February 28, 2014 & March 3, 2014 - Test America Analytical Laboratory Report
6	Arroyo Simi-Frontier Park - February 28, 2014 - MEC ^x Data Validation Report
7	Arroyo Simi-Frontier Park - February 28, 2014 - Test America Analytical Laboratory Report
8	Arroyo Simi-Frontier Park – March 10, 2014 - MEC ^x Data Validation Report
9	Arroyo Simi-Frontier Park - March 10, 2014 - Test America Analytical Laboratory Report
10	Arroyo Simi-Frontier Park - March 14, 2014 - MEC ^x Data Validation Report
11	Arroyo Simi-Frontier Park - March 14, 2014 - Test America Analytical Laboratory Report
12	Arroyo Simi-Frontier Park - March 19, 2014 - MEC ^x Data Validation Report
13	Arroyo Simi-Frontier Park - March 19, 2014 - Test America Analytical Laboratory Report
14	Arroyo Simi-Frontier Park - March 24, 2014 - MEC ^x Data Validation Report
15	Arroyo Simi-Frontier Park - March 24, 2014 - Test America Analytical Laboratory Report
16	Arroyo Simi-Frontier Park Sediment – March 19, 2014 - MEC ^x Data Validation Report
17	Arroyo Simi-Frontier Park Sediment - March 19, 2014 - Test America Analytical Laboratory Report
18	Arroyo Simi-Frontier Park Sediment – March 19, 2014 - Test America Analytical Laboratory Report

DATA VALIDATION REPORT

Haley & Aldrich Boeing SSFL Stormwater

SAMPLE DELIVERY GROUP: 440-71418-1

Prepared by

MEC^X 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Haley & Aldrich Boeing SSFL Stormwater

Contract Task Order: 1272.003H.01 001 Sample Delivery Group: 440-71418-1

Project Manager: K. Miller

Matrix: Water
QC Level: IV
No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica Irvine

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
Outfall009_2014 0228_Comp	440-71648-1	N/A	Water	3/1/2014 2:13:00 PM	E1613B, E200.7, E200.8, E245.1, E625, E900, E901.1, E903.0, E904.0, E905.0, E906.0, EPA-600, 100.2 (R 94 134), HASL-300 U Mod, SM2540D, SW8141A
Outfall009_2014 0228_Grab	440-71418-1	N/A	Water	2/28/2014 9:00:00 AM	E218.6, SM9221E, SM9221F

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at the laboratories on ice. The sample was transported directly from the field via courier and was received at TestAmerica-Irvine within the temperature limits of 4°C ±2°C. According to the laboratory sample receipt log for this SDG, the sample containers were received intact and properly preserved, if applicable. The COC was appropriately signed and dated by field and laboratory personnel. Custody seals were intact upon receipt at TestAmerica-Denver but were not utilized for the samples shipped to TestAmerica-St. Louis.

A revised COC was provided in the data package. This COC noted several requested analyses were not to be performed as they were not required by the permit. The case narrative for this SDG noted that as a preserved container was not received for the 525.2 analysis, an unpreserved sample was analyzed instead by Method 8141A for chlorpyrifos and diazinon. The client approved the alternate analysis.

1

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: April 3, 2014

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613B, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (2011).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613B control limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of the analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613B. The ion abundance ratios and relative retention times were within the method control limits.
- Blanks: The method blank had a detect below the reporting limit for OCDD at 0.0000072 µg/L; however, the concentration of OCDD in the associated sample significantly exceeded the method blank concentration and required no qualification. The method blank had no other detects above the estimated detection limit (EDL).

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613B.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613B. As 2,3,7,8-TCDF was not detected in the sample, confirmation analysis was unnecessary.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613B.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Any detects between the EDL and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

Several isomer target compounds were reported as EMPCs in the sample. The EMPC results were qualified as estimated nondetects, "UJ," at the level of the EMPC. Totals HpCDF, HxCDD, HxCDF, PeCDF, and TCDF were also flagged by the laboratory as containing one or more EMPC peaks. The results for the totals were qualified as estimated, "J."

B. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 3, 2014

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^x Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, 245.1, Standard Methods for the Examination of Water and Wastewater Method (2012) 2340B, and the National Functional Guidelines for Inorganic Data Review (2010).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. The total magnesium and aluminum CRI recoveries were above the control limit; however, as the samples were detected at concentrations more similar to the CCV, no qualifications were applied. The remaining CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Dissolved zinc was detected in the method blank at 16.4 µg/L; therefore, dissolved zinc in the sample was qualified as nondetected, "U," at the level of contamination. Dissolved calcium, total calcium, total zinc, and hardness were also detected in the method blank, but not at sufficient concentrations to qualify the site sample. Method blanks and CCBs had no other detects.
- Interference Check Samples: Recoveries were within 80-120%. There were negative results and detects for some unspiked analytes in the ICSAs; however, as the sample concentrations of the interferents were significantly lower than the interferent ICSA concentrations, the sample was not assessed for matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for all total analytes and dissolved mercury. Results were not assessed when the native concentration was more than 4x the spike amount. Recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method

detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 8, 2014

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, HASL-300 modified, and the National Functional Guidelines for Inorganic Data Review (2010).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were preserved within the five-day holding time.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The radium-226 and gross alpha detector efficiencies were less than 20%; therefore, detects for these analytes were qualified as estimated, "J," in the sample. The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were within the laboratory control limits. The uranium initial and continuing calibration efficiency checks were within the laboratory established control limits. The gamma spectroscopy analytes were determined at the maximum photopeak energy and all daily and annual checks were within the laboratory control limits.

- Blanks: There were no analytes detected in the method blanks or CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

- Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for tritium. Tritium was not detected in either sample.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDCs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Any
 detects between the MDC and the reporting limit were qualified as estimated, "J," and
 coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are
 valid to the MDC.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 8141A—Diazinon and Chlorpyrifos

Reviewed By: L. Calvin Date Reviewed: April 3, 2014

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in *EPA Method 8141A*, and the *National Functional Guidelines for Organic Data Review* (2008).

- Holding Times: The unpreserved water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- Calibration: Calibration criteria were met. The initial calibration average RRFs were ≥0.05 and %RSDs ≤20%. The ICV and continuing calibration RRFs were ≥0.05 and %Ds were within ≤15%.
- Blanks: The method blank had no target compound detects.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs were within laboratory-established control limits.
- Surrogate Recovery: Recoveries were within the laboratory-established control limits.

9 Revision 0

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Method accuracy and precision were evaluated based on the LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The internal standard area counts were within the method control limits established by the continuing calibration standards of ±50%, and retention times were within ±30 seconds.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 8141A. The sample was analyzed on two analytical columns for compound confirmation; however, neither target compound was detected. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- System Performance: Review of the raw data indicated no problems with system performance.

E. EPA METHOD 625 (Low Level)—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin Date Reviewed: April 3, 2014

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (2008).

 Holding Times: Extraction and analytical holding times were met. The unpreserved water sample was extracted within seven days of collection and analyzed within 40 days of extraction.

10 Revision 0

- GC/MS Tuning: The DFTPP met the method ion abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Initial calibration average RRFs were ≥0.05. The initial calibration %RSDs were ≤35% or r² values ≥0.990. ICV and CCV RRFs were ≥0.05, and %Ds were ≤20%.
- Blanks: The method blank had a detect below the reporting limit for benzoic acid at 2.36(J) µg/L. Benzoic acid detected in the sample was qualified as nondetected, "U," at the reporting limit. The method blank had no other target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratory-established control limits. The RPD for 3,3'-dichlorobenzidine exceeded the control limit of ≤25%, at 32%; however, as recoveries were acceptable and 3,3'-dichlorobenzidine was not detected in the associated sample, no qualification was necessary. Remaining RPDs were within the laboratory-established control limit.
- Surrogate Recovery: Surrogate recoveries were within laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy and precision was based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits of -50%/+100% for internal standard areas and ±30 seconds for retention times established by the continuing calibration standards.
- Compound Identification: Compound identification was verified. The laboratory analyzed semivolatile target compounds by Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was

qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

F. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 3, 2014

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 100.2 (600 R 94 134), Standard Methods for the Examination of Water and Wastewater (2006) Methods 2540D, 9221E, and 9221F, and the National Functional Guidelines for Inorganic Data Review (2010).

- Holding Times: The e. coli and fecal coliform analytical holding times are listed as immediate. As the sample was prepared within eight hours of collection, no qualifications were required. TSS was analyzed within seven days of collection. The asbestos sample was filtered within 48 hours of collection.
- Calibration: Calibration criteria were met. The balance calibration logs and biological controls were acceptable.
- Blanks: TSS was not detected in the method blank. The method blank is not applicable to the biological methods. No asbestos blank was analyzed.
- Blank Spikes and Laboratory Control Samples: The TSS recovery was within laboratoryestablished QC limits. The LCS is not applicable to the biological or asbestos methods.
- Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for TSS the RPD was within the laboratory control limit.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD samples are not applicable to these methods.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with

"DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

ANALYSIS OF WATER FOR ASBESTOS BY TEM (EPA-600 R 94 134) EPA 100.2

LAB.NO.

160466

Test America, Irvine

CLIENT: DATE: 3/28/2014

		FILTER	MEDIA DATA				Sample Volume (mL)
Laboratory I.D.	Client 1.D.	Туре	Diameter mm	Effective Area mm²		Analyzed Area, mm ²	
160466-1	440-71648-1	MCE	47	1017	10	0.106	5
3-25-14-BL	EMS Blank	MCE	47	1017	10	0.106	500
For Eineng							

^{*} FOR FIBERS > 10µm ONLY

INDIVIDUAL ANALYTICAL RESULTS

Laboratory I.D.	Client I.D.	No of Asbestos Fibers	Detection Limit (MF/L)	Concentration MFL Fibers >10 µm
160466-1	440-71648-1	ND	1.9	< 1.9
3-25-14-BL	EMS Blank	ND	0.02	< 0.02

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

NA Not Applicable ND None Detected

MCE Mixed Cellulose Ester

GO Grid Openings

MFL Million Fibers per Liter

LEVEL IV

Validated Sample Result Forms: 440714181

Analysis Method E1613B

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte	Fraction	CAS No	Result Value	RL MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8,9- Octachlorodibenzofuran (OCL	N DF)	39001-02-0	0.000147	0.00009480.0	ug/L			
1,2,3,4,6,7,8,9- Octachlorodibenzo-p-dioxin (OCDD)	N	3268-87-9	0.00253	0.00009480.0	ug/L	В		
1,2,3,4,6,7,8- Heptachlorodibenzofuran (HpCDF)	N	67562-39-4	0.0000421	0.00004740.0	ug/L	J	J	DNQ
1,2,3,4,6,7,8-Heptachlorodiber p-dioxin (HpCDD)	nzo-N	35822-46-9	0.000259	0.00004740.0	ug/L			
1,2,3,4,7,8,9- Heptachlorodibenzofuran (HpCDF)	N	55673-89-7	0.00000457	0.00004740.0	ug/L	QJ	UJ	*111
1,2,3,4,7,8- Hexachlorodibenzofuran (HxCDF)	N	70648-26-9	0.00000261	0.00004740.0	ug/L	QΊ	UJ	*111
1,2,3,4,7,8-Hexachlorodibenzo dioxin (HxCDD)	o-p- N	39227-28-6		0.00004740.0	ug/L	U	U	
1,2,3,6,7,8- Hexachlorodibenzofuran (HxCDF)	N	57117-44-9	0.00000193	0.00004740.0	ug/L	QJ	UJ	*III
1,2,3,6,7,8-Hexachlorodibenzo dioxin (HxCDD)	o-p- N	57653-85-7	0.00000982	0.00004740.0	ug/L	QΊ	UJ	*III
1,2,3,7,8,9- Hexachlorodibenzofuran (HxCDF)	N	72918-21-9		0.00004740.0	ug/L	U	U	
1,2,3,7,8,9-Hexachlorodibenzo dioxin (HxCDD)	o-p- N	19408-74-3	0.0000104	0.00004740.0	ug/L	QJ	UJ	*III
1,2,3,7,8- Pentachlorodibenzofuran (PeC	N CDF)	57117-41-6		0.00004740.0	ug/L	U	U	
1,2,3,7,8-Pentachlorodibenzo- dioxin (PeCDD)	p- N	40321-76-4		0.00004740.0	ug/L	U	U	
2,3,4,6,7,8- Hexachlorodibenzofuran (HxCDF)	N	60851-34-5		0.00004740.0	ug/L	U	U	
2,3,4,7,8- Pentachlorodibenzofuran (PeC	N CDF)	57117-31-4		0.00004740.0	ug/L	U	U	
2,3,7,8-Tetrachlorodibenzofur (TCDF)	an N	51207-31-9		0.00000940.0	ug/L	U	U	
2,3,7,8-Tetrachlorodibenzo-p- dioxin (TCDD)	N	1746-01-6		0.00000940.0	ug/L	U	U	
Total Heptachlorodibenzofura (HpCDF)	n N	38998-75-3	0.000113	0.00004740.0	ug/L	Q	J	*III
Total Heptachlorodibenzo-p- dioxin (HpCDD)	N	37871-00-4	0.000613	0.00004740.0	ug/L			

Tuesday, April 29, 2014

Analysis Method	E	1613B						
Total Hexachlorodibenzofuran (HxCDF)	N	55684-94-1	0.0000699	0.00004740.0	ug/L	JQ	J	*III
Total Hexachlorodibenzo-p- dioxin (HxCDD)	N	34465-46-8	0.0000618	0.00004740.0	ug/L	JQ	J	*III
Total Pentachlorodibenzofuran (PeCDF)	N	30402-15-4	0.0000107	0.00004740.0	ug/L	QJ	J	DNQ, *III
Total Pentachlorodibenzo-p- dioxin (PeCDD)	N	36088-22-9		0.00004740.0	ug/L	U	Ŭ	
Total Tetrachlorodibenzofuran (TCDF)	N	55722-27-5	0.00000136	0.00000940.0	ug/L	QJ	J	DNQ, *III
Total Tetrachlorodibenzo-p- dioxin (TCDD)	N	41903-57-5		0.00000940.0	ug/L	U	U	

Analysis Method E200.7

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM **Validation Level:** 3

Lab Sample Name: 440-71648-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Aluminum	T	7429-90-5	4400	50	25	ug/L			
Aluminum	D	7429-90-5	190	50	25	ug/L	QP		
Arsenic	T	7440-38-2		10	7.0	ug/L	U	U	
Arsenic	D	7440-38-2		10	7.0	ug/L	UQP	U	
Beryllium	T	7440-41-7		2.0	0.90	ug/L	U	U	
Beryllium	D	7440-41-7		2.0	0.90	ug/L	UQP	U	
Boron	D	7440-42-8	0.039	0.050	0.025	mg/L	J,DXQP	J	DNQ
Boron	T	7440-42-8	0.044	0.050	0.025	mg/L	J,DX	J	DNQ
Calcium	T	7440-70-2	6.4	0.10	0.050	mg/L	MB		
Calcium	D	7440-70-2	5.3	0.10	0.050	mg/L	MBQP		
Chromium	T	7440-47-3	7.9	5.0	2.0	ug/L			
Chromium	D	7440-47-3		5.0	2.0	ug/L	UQP	U	
Hardness as CaCO3	T	HARDNESSCA CO3	28	0.33	0.17	mg/L			
Hardness as CaCO3	D	HARDNESSCA CO3	19	0.33	0.17	mg/L	MBQP		
Iron	D	7439-89-6	0.19	0.040	0.020	mg/L	QP		
Iron	T	7439-89-6	6.2	0.040	0.020	mg/L			
Nickel	T	7440-02-0	7.3	10	2.0	ug/L	J,DX	J	DNQ
Nickel	D	7440-02-0	2.0	10	2.0	ug/L	J,DXQP	J	DNQ
Vanadium	D	7440-62-2		10	3.0	ug/L	UQP	U	
Vanadium	T	7440-62-2	13	10	3.0	ug/L			
Zinc	D	7440-66-6	14	20	9.0	ug/L	J,DXMBQ	U	В
Zinc	T	7440-66-6	50	20	9.0	ug/L	MB		

Tuesday, April 29, 2014 Page 2 of 7

Analysis Method E200.8

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Antimony	D	7440-36-0		2.0	0.50	ug/L	UQP	U	
Antimony	T	7440-36-0	0.70	2.0	0.50	ug/L	J,DX	J	DNQ
Cadmium	T	7440-43-9		1.0	0.25	ug/L	U	U	
Cadmium	D	7440-43-9		1.0	0.25	ug/L	UQP	U	
Copper	D	7440-50-8	3.7	2.0	0.50	ug/L	QP		
Copper	T	7440-50-8	8.2	2.0	0.50	ug/L			
Lead	D	7439-92-1	0.51	1.0	0.50	ug/L	J,DXQP	J	DNQ
Lead	T	7439-92-1	9.6	1.0	0.50	ug/L			
Selenium	D	7782-49-2		2.0	0.50	ug/L	UQP	U	
Selenium	T	7782-49-2		2.0	0.50	ug/L	U	U	
Thallium	T	7440-28-0		1.0	0.50	ug/L	U	U	
Thallium	D	7440-28-0		1.0	0.50	ug/L	UQP	U	

Analysis Method E218.6

Sample Name Outfall009_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 9:00:00 AM Validation Level: 3

Lab Sample Name: 440-71418-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units Qualifier Qualifier Chromium VI (Hexavalent) 18540-29-9 0.41 1.0 J,DX 0.25 ug/L **DNQ**

Analysis Method E245.1

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte Fraction CAS No Result RL**MDL** Result Lab Validation Validation Notes Value Qualifier Units Qualifier Mercury D 7439-97-6 0.20 0.10 ug/L UQP U U 7439-97-6 0.20 Mercury 0.10 ug/L

Tuesday, April 29, 2014 Page 3 of 7

Analysis Method E625

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,4-Trichlorobenzene	N	120-82-1		0.948	0.474	ug/L	U	U	
1,2-Dichlorobenzene	N	95-50-1		0.474	0.190	ug/L	U	U	
1,2-Diphenylhydrazine	N	122-66-7		0.948	0.474	ug/L	U	U	
1,3-Dichlorobenzene	N	541-73-1		0.474	0.190	ug/L	U	U	
1,4-Dichlorobenzene	N	106-46-7		0.474	0.190	ug/L	U	U	
2,2'-oxybis(1-Chloropropane) N	108-60-1		0.474	0.190	ug/L	U	U	
2,4,6-Trichlorophenol	N	88-06-2		0.948	0.474	ug/L	U	U	
2,4-Dichlorophenol	N	120-83-2		1.90	0.948	ug/L	U	U	
2,4-Dimethylphenol	N	105-67-9		1.90	0.948	ug/L	U	U	
2,4-Dinitrophenol	N	51-28-5		4.74	1.90	ug/L	U	U	
2,4-Dinitrotoluene	N	121-14-2		4.74	1.90	ug/L	U	U	
2,6-Dinitrotoluene	N	606-20-2		4.74	1.90	ug/L	U	U	
2-Chloronaphthalene	N	91-58-7		0.474	0.190	ug/L	U	U	
2-Chlorophenol	N	95-57-8		0.948	0.474	ug/L	U	U	
2-Nitrophenol	N	88-75-5		1.90	0.948	ug/L	U	U	
3,3'-Dichlorobenzidine	N	91-94-1		4.74	1.90	ug/L	UBA	U	
4,6-Dinitro-2-methylphenol	N	534-52-1		4.74	1.90	ug/L	U	U	
4-Bromophenyl phenyl ether	N	101-55-3		0.948	0.474	ug/L	U	U	
4-Chloro-3-methylphenol	N	59-50-7		1.90	0.190	ug/L	U	U	
4-Chlorophenyl phenyl ether	N	7005-72-3		0.474	0.190	ug/L	U	U	
4-Nitrophenol	N	100-02-7		4.74	1.90	ug/L	U	U	
Acenaphthene	N	83-32-9		0.474	0.190	ug/L	U	U	
Acenaphthylene	N	208-96-8		0.474	0.190	ug/L	U	U	
Anthracene	N	120-12-7		0.474	0.190	ug/L	U	U	
Benzidine	N	92-87-5		9.48	4.74	ug/L	U	U	
Benzo(a)anthracene	N	56-55-3		4.74	1.90	ug/L	U	U	
Benzo(a)pyrene	N	50-32-8		1.90	0.474	ug/L	U	U	
Benzo(b)fluoranthene	N	205-99-2		1.90	0.948	ug/L	U	U	
Benzo(g,h,i)perylene	N	191-24-2		4.74	1.90	ug/L	U	U	
Benzo(k)fluoranthene	N	207-08-9		0.474	0.237	ug/L	U	U	
bis(2-Chloroethoxy)methane	N	111-91-1		0.474	0.190	ug/L	U	U	
bis(2-Chloroethyl)ether	N	111-44-4		0.474	0.190	ug/L	U	U	
bis(2-Ethylhexyl)phthalate	N	117-81-7		4.74	1.90	ug/L	U	U	
Butyl benzylphthalate	N	85-68-7		4.74	1.90	ug/L	U	U	
Chrysene	N	218-01-9		0.474	0.190	ug/L	U	U	
Dibenz(a,h)anthracene	N	53-70-3		0.474	0.237	ug/L	U	U	
Diethyl phthalate	N	84-66-2		0.948	0.474	ug/L	U	U	

Tuesday, April 29, 2014 Page 4 of 7

Analysis Method	$E\epsilon$	525								
Dimethyl phthalate	N	131-11-3		0.474	0.237	ug/L	U	U		
Di-n-butylphthalate	N	84-74-2		1.90	0.948	ug/L	U	U		
Di-n-octyl phthalate	N	117-84-0		4.74	1.90	ug/L	U	U		
Fluoranthene	N	206-44-0		0.474	0.190	ug/L	U	U		
Fluorene	N	86-73-7		0.474	0.190	ug/L	U	U		
Hexachlorobenzene	N	118-74-1		0.948	0.474	ug/L	U	U		
Hexachlorobutadiene	N	87-68-3		1.90	0.474	ug/L	U	U		
Hexachlorocyclopentadiene	N	77-47-4		4.74	1.90	ug/L	U	U		
Hexachloroethane	N	67-72-1		2.84	0.474	ug/L	U	U		
Indeno(1,2,3-cd)pyrene	N	193-39-5		1.90	0.948	ug/L	U	U		
Isophorone	N	78-59-1		0.948	0.474	ug/L	U	U		
Naphthalene	N	91-20-3		0.948	0.474	ug/L	U	U		
Nitrobenzene	N	98-95-3		0.948	0.474	ug/L	U	U		
N-Nitrosodimethylamine	N	62-75-9		1.90	0.948	ug/L	U	U		
N-Nitrosodi-n-propylamine	N	621-64-7		1.90	0.948	ug/L	U	U		
N-Nitrosodiphenylamine	N	86-30-6		0.948	0.474	ug/L	U	U		
Pentachlorophenol	N	87-86-5	1.46	1.90	0.948	ug/L	J,DX	J	DNQ	
Phenanthrene	N	85-01-8		0.474	0.190	ug/L	U	U		
Phenol	N	108-95-2		0.948	0.474	ug/L	U	U		
Pyrene	N	129-00-0		0.474	0.190	ug/L	U	U		

Analysis Method E900

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM **Validation Level:** 3

Lab Sample Name: 440-71648-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha Analytes	N	GROSSALPHA	4.53	1.63	0	pCi/L		J	С
Gross Beta Analytes	N	GROSSBETA	7.88	1.17	0	pCi/L			

Analysis Method E901.1

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	N	10045-97-3	-1.30	11.5	0	pCi/L	U	U	
Potassium-40	N	13966-00-2	-27.8	169	0	pCi/L	U	U	

Tuesday, April 29, 2014 Page 5 of 7

Analysis Method E903.0

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Fraction CAS No Analyte Result RLMDL Result Lab Validation Validation Notes Value **Qualifier** Units **Qualifier** Radium-226 13982-63-3 0.180 0.0510 pCi/L \mathbf{C}

Analysis Method E904.0

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units **Oualifier Oualifier** Radium-228 15262-20-1 0.600 0.418 pCi/L

Analysis Method E905.0

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Fraction CAS No Result RLMDL Result Analyte Lab Validation Validation Notes Value Units **Oualifier** Qualifier Strontium-90 10098-97-2 0.355 0.287 pCi/L

Analysis Method E906.0

Sample Name Outfall009 20140228 Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units **Oualifier** Qualifier 10028-17-8 U Tritium 11.7 277 pCi/L U

Analysis Method HASL-300 U Mod

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units Qualifier Qualifier Uranium, Total URANIUM 0.139 0.218 pCi/L U

Tuesday, April 29, 2014 Page 6 of 7

Analysis Method RADIUM

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units Qualifier **Qualifier** Radium-226 & 228 RADIUM226228 0.780 0.051 0 pCi/L

Analysis Method SM2540D

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units **Qualifier Oualifier** Total Suspended Solids (TSS) TSS 120 5.0 2.5 mg/L

Analysis Method SM9221E

Sample Name Outfall009_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 9:00:00 AM Validation Level: 3

Lab Sample Name: 440-71418-1

Fraction CAS No RL MDL Result Analyte Result Lab Validation Validation Notes Value Units Qualifier Qualifier Fecal Coliform Bacteria COLIFORMFEC 1600 1.8 mpn/100 >=

Analysis Method SM9221F

Sample Name Outfall009_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 9:00:00 AM Validation Level: 3

Lab Sample Name: 440-71418-1

Analyte Fraction CAS No Result RL MDL Result Lab Validation Validation Notes Value Qualifier Units **Qualifier** Escherichia coli ECOLI 1600 1.8 0 mpn/100 >=

Analysis Method SW8141

Sample Name Outfall009_20140228_Co Matrix Type: WM Result Type: TRG

Sample Date: 3/1/2014 2:13:00 PM Validation Level: 3

Lab Sample Name: 440-71648-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units Qualifier Qualifier Chlorpyrifos 1.4 0.34 U U Ν 2921-88-2 ug/L U Diazinon N 333-41-5 0.47 0.14 ug/L U

Tuesday, April 29, 2014 Page 7 of 7

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-71418-1

Client Project/Site: Boeing SSFL Outfall 009 Annual

Revision: 6

For:

Haley & Aldrich, Inc. 9040 Friars Rd. San Diego, California 92108

Attn: Nancy Gardiner

Gebby Wilson

Authorized for release by: 5/8/2014 5:47:26 PM

Debby Wilson, Manager of Project Management (949)261-1022

debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Debby Wilson

5/8/2014 5:47:26 PM

Manager of Project Management

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	7
Method Summary	16
Lab Chronicle	18
QC Sample Results	20
QC Association Summary	50
Definitions/Glossary	58
Certification Summary	59
Subcontract Data	62
Chain of Custody	114
Receipt Checklists	118
Tracer Carrier Summary	122

3

4

6

8

9

11

12

1/

1

Sample Summary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-71418-1	Outfall009_20140228_Grab	Water	02/28/14 09:00	02/28/14 13:34
440-71418-2	TB-20140228	Water	02/28/14 09:00	02/28/14 13:34
440-71648-1	Outfall 009_20140228_Comp	Water	03/01/14 02:13	03/01/14 16:30

3

4

5

_

8

10

11

10

14

15

Case Narrative

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Job ID: 440-71418-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-71418-1

Comments

Revised to remove Magnesium per chain of custody. Revised to include dioxin. Revised to add Silver. Due to lab error, several analytes were preliminarily reported that are not listed in the permit. This final report does not include the following analytes not listed in the permit: 1,2,3-Trichloropropane,2-Methylnaphthalene,2-Methylphenol,2-Nitroaniline,3-Nitroaniline,4-Chloroaniline,4-Methylphenol,4-Nitroaniline,An iline,Benzoic acid,Benzyl Alcohol,cis-1,2-Dichloroethene,Dibenzofuran,1,2-Dibromoethane (Ethylene Dibromide),Diisopropyl ether,Methyl Tert Butyl Ether,Tert-Amyl Methyl Ether,Tert-Butyl Ether,Tert-Butyl Alcohol. When VOCs/SVOCs are analyzed, there are over 100 analytes that could be reported and these analytes listed above were mistakenly checked to be reported.

Receipt

The samples were received on 2/28/2014 1:34 PM and 3/1/2014 4:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.3° C, 2.8° C and 3.3° C.

A hydrochloric preserved amber was not received for method 525 for analysis of chlorpyrifos and diazinon. Per client approval, the unpreserved bottle was analyzed for these 2 compounds by EPA method 8141A.

GC/MS VOA

Method(s) 624: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for the following sample associated with batch 166328 were outside control limits: (440-71418-1 MS), (440-71418-1 MSD). The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 625: The method blank for batch 166462 contained Benzoic Acid above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 625: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 166462.

Method(s) 625: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 166462 recovered outside control limits for the following analytes: 3,3-Dichlorobenzidine. Individual recoveries were within acceptable limits.

No other analytical or quality issues were noted.

HPLC

Method(s) 218.6: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 165606 for hex chromium were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No other analytical or quality issues were noted.

GC Semi VOA

Method(s) 608: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 166337 and 167011. See Blank Spike and Blank Spike Duplicate. (LCS 440-166337/6-A)

Method(s) 608: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 166337. (LCS 440-166337/2-A)

No other analytical or quality issues were noted.

RAD

Case Narrative

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Job ID: 440-71418-1 (Continued)

Laboratory: TestAmerica Irvine (Continued)

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) 1664A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 168817.

No other analytical or quality issues were noted.

Biology

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin

Analytical notes included in the attached pdf report from TestAmerica Knoxville

Organic Prep 8141A / 3510C

Method(s) 3510/8141AC: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 216000. A LCSD was performed.

Method(s) 3510C/8141A: The following sample(s) formed emulsions during the extraction procedure: Outfall 009_20140228_Comp (440-71648-1). The emulsions were broken up using Pourbacks for all 3 spins

-

4

5

6

7

10

13

14

15

Client Sample Results

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Client Sample ID: Outfall009_20140228_Grab

TestAmerica Job ID: 440-71418-1

Lab Sample ID: 440-71418-1

Matrix: Water

Date Collected: 02/28/14 09:00 Date Received: 02/28/14 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	MD		0.50	0.25	ug/L			03/04/14 09:44	1
2-Chloroethyl vinyl ether	ND		2.0	1.0	ug/L			03/01/14 16:16	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Acrolein	ND		5.0	2.5	ug/L			03/01/14 16:16	1
1,1,2-Trichloroethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Acrylonitrile	ND		2.0	1.0	ug/L			03/01/14 16:16	1
1,1-Dichloroethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
1,1-Dichloroethene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
1,2-Dichlorobenzene	ND		0.50	0.50	ug/L			03/04/14 09:44	1
1,2-Dichloroethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
1,2-Dichloropropane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
1,3-Dichlorobenzene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
1,4-Dichlorobenzene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Benzene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Bromoform	ND		1.0	0.25	ug/L			03/04/14 09:44	1
Bromomethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Carbon tetrachloride	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Chlorobenzene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Dibromochloromethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Chloroethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Chloroform	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Chloromethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
cis-1,3-Dichloropropene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Bromodichloromethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Ethylbenzene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Methylene Chloride	ND		2.0	0.88	ug/L			03/04/14 09:44	1
Tetrachloroethene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Toluene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
trans-1,2-Dichloroethene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
trans-1,3-Dichloropropene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Trichlorofluoromethane	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Vinyl chloride	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Trichloroethene	ND		0.50	0.25	ug/L			03/04/14 09:44	1
Naphthalene	ND		1.0	0.40	ug/L			03/04/14 09:44	1
Xylenes, Total	ND		1.0	0.50	ug/L			03/04/14 09:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 128			-		03/01/14 16:16	1
Dibromofluoromethane (Surr)	118		76 - 132					03/01/14 16:16	1
4-Bromofluorobenzene (Surr)	105		80 - 120					03/04/14 09:44	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 128		03/01/14 16:16	1
Dibromofluoromethane (Surr)	118		76 - 132		03/01/14 16:16	1
4-Bromofluorobenzene (Surr)	105		80 - 120		03/04/14 09:44	1
Dibromofluoromethane (Surr)	97		76 - 132		03/04/14 09:44	1
Toluene-d8 (Surr)	110		80 - 128		03/04/14 09:44	1

Method: 218.6 - Chromium, He	•	romatograph Qualifier	ny)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	0.41	J,DX	1.0	0.25	ug/L			02/28/14 18:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	ND		4.8	1.3	mg/L		03/13/14 10:13	03/13/14 10:47	1

TestAmerica Irvine

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Lab Sample ID: 440-71418-1

Matrix: Water

02/28/14 14:46

Client Sample ID: Outfall009_20140228_Grab Date Collected: 02/28/14 09:00

Date Received: 02/28/14 13:34

Method: SM 9221E - Coliforms, Feca	al (Multiple-	Tube Fermentation)						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Coliform, Fecal	>=1600		1.8	1.8	MPN/100mL			02/28/14 14:46	1
Method: SM 9221F - E.Coli (Multiple	-Tube Ferm	entation; EC-MUG)	ı						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

Escherichia coli >=1600

Client Sample ID: TB-20140228 Lab Sample ID: 440-71418-2

1.8 MPN/100mL

Date Collected: 02/28/14 09:00 Matrix: Water

1.8

Date Received: 02/28/14 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
2-Chloroethyl vinyl ether	ND		2.0	1.0	ug/L			03/01/14 10:01	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Acrolein	ND		5.0	2.5	ug/L			03/01/14 10:01	1
1,1,2-Trichloroethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Acrylonitrile	ND		2.0	1.0	ug/L			03/01/14 10:01	1
1,1-Dichloroethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
1,1-Dichloroethene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
1,2-Dichlorobenzene	ND		0.50	0.50	ug/L			03/04/14 09:15	1
1,2-Dichloroethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
1,2-Dichloropropane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
1,3-Dichlorobenzene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
1,4-Dichlorobenzene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Benzene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Bromoform	ND		1.0	0.25	ug/L			03/04/14 09:15	1
Bromomethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Carbon tetrachloride	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Chlorobenzene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Dibromochloromethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Chloroethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Chloroform	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Chloromethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
cis-1,3-Dichloropropene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Bromodichloromethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Ethylbenzene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Methylene Chloride	ND		2.0	0.88	ug/L			03/04/14 09:15	1
Tetrachloroethene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Toluene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
trans-1,2-Dichloroethene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
trans-1,3-Dichloropropene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Trichlorofluoromethane	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Vinyl chloride	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Trichloroethene	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Naphthalene	ND		1.0	0.40	ug/L			03/04/14 09:15	1
Ethyl tert-butyl ether	ND		0.50	0.25	ug/L			03/04/14 09:15	1
Xylenes, Total	ND		1.0	0.50	ug/L			03/04/14 09:15	1

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Client Sample ID: TB-20140228 Lab Sample ID: 440-71418-2

Date Collected: 02/28/14 09:00 Date Received: 02/28/14 13:34

Matrix: Water

TestAmerica Job ID: 440-71418-1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 104 80 - 128 03/01/14 10:01 Dibromofluoromethane (Surr) 106 76 - 132 03/01/14 10:01 4-Bromofluorobenzene (Surr) 110 80 - 120 03/04/14 09:15 Dibromofluoromethane (Surr) 93 76 - 132 03/04/14 09:15 80 - 128 03/04/14 09:15 Toluene-d8 (Surr) 110

Client Sample ID: Outfall 009_20140228_Comp Lab Sample ID: 440-71648-1

Date Collected: 03/01/14 02:13 Matrix: Water

Date Received: 03/01/14 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Acenaphthylene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Anthracene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Benzidine	ND		9.48	4.74	ug/L		03/04/14 12:12	03/12/14 14:58	1
Benzo[a]anthracene	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
Benzo[b]fluoranthene	ND		1.90	0.948	ug/L		03/04/14 12:12	03/12/14 14:58	1
Benzo[k]fluoranthene	ND		0.474	0.237	ug/L		03/04/14 12:12	03/12/14 14:58	1
Benzo[a]pyrene	ND		1.90	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
Bis(2-chloroethoxy)methane	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Bis(2-chloroethyl)ether	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Bis(2-ethylhexyl) phthalate	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
4-Bromophenyl phenyl ether	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
Butyl benzyl phthalate	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
4-Chloro-3-methylphenol	ND		1.90	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
2-Chloronaphthalene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
2-Chlorophenol	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
4-Chlorophenyl phenyl ether	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Chrysene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Dibenz(a,h)anthracene	ND		0.474	0.237	ug/L		03/04/14 12:12	03/12/14 14:58	1
Di-n-butyl phthalate	ND		1.90	0.948	ug/L		03/04/14 12:12	03/12/14 14:58	1
1,2-Dichlorobenzene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
1,3-Dichlorobenzene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
1,4-Dichlorobenzene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
3,3'-Dichlorobenzidine	ND	BA	4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
2,4-Dichlorophenol	ND		1.90	0.948	ug/L		03/04/14 12:12	03/12/14 14:58	1
Diethyl phthalate	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
2,4-Dimethylphenol	ND		1.90	0.948	ug/L		03/04/14 12:12	03/12/14 14:58	1
Dimethyl phthalate	ND		0.474	0.237	ug/L		03/04/14 12:12	03/12/14 14:58	1
4,6-Dinitro-2-methylphenol	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
2,4-Dinitrophenol	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
2,4-Dinitrotoluene	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
2,6-Dinitrotoluene	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
Di-n-octyl phthalate	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
Fluoranthene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Fluorene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Hexachlorobenzene	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Lab Sample ID: 440-71648-1

Matrix: Water

Client Sample ID: Outfall 009_20140228_Comp

Date Collected: 03/01/14 02:13 Date Received: 03/01/14 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	ND		1.90	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
Hexachloroethane	ND		2.84	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
Hexachlorocyclopentadiene	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
Indeno[1,2,3-cd]pyrene	ND		1.90	0.948	ug/L		03/04/14 12:12	03/12/14 14:58	1
Isophorone	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
Naphthalene	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
Nitrobenzene	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
2-Nitrophenol	ND		1.90	0.948	ug/L		03/04/14 12:12	03/12/14 14:58	1
4-Nitrophenol	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
N-Nitrosodimethylamine	ND		1.90	0.948	ug/L		03/04/14 12:12	03/12/14 14:58	1
N-Nitrosodiphenylamine	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
N-Nitrosodi-n-propylamine	ND		1.90	0.948	ug/L		03/04/14 12:12	03/12/14 14:58	1
Pentachlorophenol	1.46	J,DX	1.90	0.948	ug/L		03/04/14 12:12	03/12/14 14:58	1
Phenanthrene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Phenol	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
Pyrene	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
1,2,4-Trichlorobenzene	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
2,4,6-Trichlorophenol	ND		0.948	0.474	ug/L		03/04/14 12:12	03/12/14 14:58	1
Benzo[g,h,i]perylene	ND		4.74	1.90	ug/L		03/04/14 12:12	03/12/14 14:58	1
bis (2-chloroisopropyl) ether	ND		0.474	0.190	ug/L		03/04/14 12:12	03/12/14 14:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	75		50 - 120				03/04/14 12:12	03/12/14 14:58	1
2-Fluorophenol	65		30 - 120				03/04/14 12:12	03/12/14 14:58	1
2,4,6-Tribromophenol	93		40 - 120				03/04/14 12:12	03/12/14 14:58	1
Nitrobenzene-d5	87		45 - 120				03/04/14 12:12	03/12/14 14:58	1
Terphenyl-d14	80		37 - 144				03/04/14 12:12	03/12/14 14:58	1
Phenol-d6	68		35 - 120				03/04/14 12:12	03/12/14 14:58	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND ND	0.48	0.24	ug/L		03/04/14 06:40	03/06/14 20:53	1
Aroclor 1221	ND	0.48	0.24	ug/L		03/04/14 06:40	03/06/14 20:53	1
Aroclor 1232	ND	0.48	0.24	ug/L		03/04/14 06:40	03/06/14 20:53	1
Aroclor 1242	ND	0.48	0.24	ug/L		03/04/14 06:40	03/06/14 20:53	1
Aroclor 1248	ND	0.48	0.24	ug/L		03/04/14 06:40	03/06/14 20:53	1
Aroclor 1254	ND	0.48	0.24	ug/L		03/04/14 06:40	03/06/14 20:53	1
Aroclor 1260	ND	0.48	0.24	ug/L		03/04/14 06:40	03/06/14 20:53	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	<u>81</u>	45 - 120				03/04/14 06:40	03/06/14 20:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0048	0.0014	ug/L		03/04/14 06:40	03/05/14 20:00	1
alpha-BHC	ND		0.0048	0.0024	ug/L		03/04/14 06:40	03/05/14 20:00	1
beta-BHC	ND		0.0095	0.0038	ug/L		03/04/14 06:40	03/05/14 20:00	1
Chlordane (technical)	ND		0.095	0.076	ug/L		03/04/14 06:40	03/05/14 20:00	1
delta-BHC	ND		0.0048	0.0033	ug/L		03/04/14 06:40	03/05/14 20:00	1
Dieldrin	ND		0.0048	0.0019	ug/L		03/04/14 06:40	03/05/14 20:00	1

TestAmerica Irvine

_

4

b

0

10

12

13

-

1,

Client: Haley & Aldrich, Inc.

Date Collected: 03/01/14 02:13

Date Received: 03/01/14 16:30

Project/Site: Boeing SSFL Outfall 009 Annual

Client Sample ID: Outfall 009_20140228_Comp

TestAmerica Job ID: 440-71418-1

Lab Sample ID: 440-71648-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Endosulfan I	ND		0.0048	0.0029	ug/L		03/04/14 06:40	03/05/14 20:00	
Endosulfan II	ND		0.0048	0.0019	ug/L		03/04/14 06:40	03/05/14 20:00	
Endosulfan sulfate	ND		0.0095	0.0029	ug/L		03/04/14 06:40	03/05/14 20:00	
Endrin	ND		0.0048	0.0019	ug/L		03/04/14 06:40	03/05/14 20:00	
Endrin aldehyde	ND		0.0095	0.0019	ug/L		03/04/14 06:40	03/05/14 20:00	
gamma-BHC (Lindane)	ND		0.0095	0.0029	ug/L		03/04/14 06:40	03/05/14 20:00	
Heptachlor	ND		0.0095	0.0029	ug/L		03/04/14 06:40	03/05/14 20:00	
Heptachlor epoxide	ND		0.0048	0.0024	ug/L		03/04/14 06:40	03/05/14 20:00	
Toxaphene	ND		0.48	0.24	ug/L		03/04/14 06:40	03/05/14 20:00	
4,4'-DDD	ND		0.0048	0.0038	ug/L		03/04/14 06:40	03/05/14 20:00	
4,4'-DDE	ND		0.0048	0.0029	ug/L		03/04/14 06:40	03/05/14 20:00	
4,4'-DDT	ND		0.0095	0.0038	ug/L		03/04/14 06:40	03/05/14 20:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	45		35 - 115				03/04/14 06:40	03/05/14 20:00	
Method: 8141A - Organopho	osphorous Pesticid	es (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorpyrifos	ND		1.4	0.34	ug/L		03/07/14 17:38	03/12/14 06:32	
Diazinon	ND		0.47	0.14	ug/L		03/07/14 17:38	03/12/14 06:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
	%Recovery 75	Qualifier	Limits 49 - 171				Prepared 03/07/14 17:38	Analyzed 03/12/14 06:32	Dil Fa
Surrogate Chlormefos Triphenylphosphate		Qualifier							Dil Fa
Chlormefos	75 102	Qualifier	49 - 171				03/07/14 17:38	03/12/14 06:32	Dil Fa

Chloride	5.5		1.0	0.50	mg/L			03/04/14 10:56	2
Nitrate Nitrite as N	0.99		0.15	0.070	mg/L			03/01/14 17:31	1
Sulfate	6.6		1.0	0.50	mg/L			03/04/14 10:56	2
Method: 314.0 - Perchlorate (IC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L			03/12/14 16:58	1
					Ü				

Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.0000094	0.00000375	ug/L		03/06/14 10:00	03/17/14 15:54	1
			7						
Total TCDD	ND		0.0000094	0.00000375	ug/L		03/06/14 10:00	03/17/14 15:54	1
			7						
1,2,3,7,8-PeCDD	ND		0.0000474	0.00000253	ug/L		03/06/14 10:00	03/17/14 15:54	1
Total PeCDD	ND		0.0000474	0.00000253	ug/L		03/06/14 10:00	03/17/14 15:54	1
1,2,3,4,7,8-HxCDD	ND		0.0000474	0.00000263	ug/L		03/06/14 10:00	03/17/14 15:54	1
1,2,3,6,7,8-HxCDD	0.00000982	QJ	0.0000474	0.00000301	ug/L		03/06/14 10:00	03/17/14 15:54	1
1,2,3,7,8,9-HxCDD	0.0000104	QJ	0.0000474	0.00000261	ug/L		03/06/14 10:00	03/17/14 15:54	1
Total HxCDD	0.0000618	JQ	0.0000474	0.00000261	ug/L		03/06/14 10:00	03/17/14 15:54	1
1,2,3,4,6,7,8-HpCDD	0.000259		0.0000474	0.00000436	ug/L		03/06/14 10:00	03/17/14 15:54	1
Total HpCDD	0.000613		0.0000474	0.00000436	ug/L		03/06/14 10:00	03/17/14 15:54	1
OCDD	0.00253	В	0.0000948	0.00000393	ug/L		03/06/14 10:00	03/17/14 15:54	1

Client: Haley & Aldrich, Inc.

Date Collected: 03/01/14 02:13

Date Received: 03/01/14 16:30

Project/Site: Boeing SSFL Outfall 009 Annual

Client Sample ID: Outfall 009_20140228_Comp

TestAmerica Job ID: 440-71418-1

Lab Sample ID: 440-71648-1

Matrix: Water

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	ND	-	0.0000094	0.00000297	ug/L		03/06/14 10:00	03/17/14 15:54	1
			7						
Total TCDF	0.0000136	QJ	0.0000094	0.00000297	ug/L		03/06/14 10:00	03/17/14 15:54	1
1,2,3,7,8-PeCDF	ND		7 0.0000474	0.00000186	ua/l		03/06/14 10:00	03/17/14 15:54	1
2,3,4,7,8-PeCDF	ND		0.0000474		ug/L		03/06/14 10:00	03/17/14 15:54	. 1
Total PeCDF	0.0000107		0.0000474	0.00000179	ug/L		03/06/14 10:00	03/17/14 15:54	
1,2,3,4,7,8-HxCDF	0.0000107		0.0000474	0.00000171	ug/L		03/06/14 10:00	03/17/14 15:54	. 1
1,2,3,6,7,8-HxCDF	0.00000193		0.0000474	0.00000171	•		03/06/14 10:00	03/17/14 15:54	1
2,3,4,6,7,8-HxCDF	ND		0.0000474	0.00000111			03/06/14 10:00	03/17/14 15:54	
1,2,3,7,8,9-HxCDF	ND		0.0000474	0.00000176	•		03/06/14 10:00	03/17/14 15:54	. 1
Total HxCDF	0.0000699	10	0.0000474	0.00000176	•		03/06/14 10:00	03/17/14 15:54	. 1
1,2,3,4,6,7,8-HpCDF	0.0000421		0.0000474	0.00000140			03/06/14 10:00	03/17/14 15:54	· · · · · · · · 1
1,2,3,4,7,8,9-HpCDF	0.0000457		0.0000474	0.00000292	ug/L		03/06/14 10:00	03/17/14 15:54	. 1
Total HpCDF	0.000113		0.0000474	0.00000232	•		03/06/14 10:00	03/17/14 15:54	. 1
OCDF	0.000117		0.0000948	0.00000228			03/06/14 10:00	03/17/14 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	92		35 - 197				03/06/14 10:00	03/17/14 15:54	1
Internal Standard	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	82		25 - 164				03/06/14 10:00	03/17/14 15:54	1
13C-1,2,3,7,8-PeCDD	82		25 - 181				03/06/14 10:00	03/17/14 15:54	1
13C-1,2,3,4,7,8-HxCDD	90		32 - 141				03/06/14 10:00	03/17/14 15:54	1
13C-1,2,3,6,7,8-HxCDD	85		28 - 130				03/06/14 10:00	03/17/14 15:54	1
13C-1,2,3,4,6,7,8-HpCDD	90		23 - 140				03/06/14 10:00	03/17/14 15:54	1
13C-OCDD	86		17 - 157				03/06/14 10:00	03/17/14 15:54	1
13C-2,3,7,8-TCDF	70		24 - 169				03/06/14 10:00	03/17/14 15:54	1
13C-1,2,3,7,8-PeCDF	82		24 - 185				03/06/14 10:00	03/17/14 15:54	1
13C-2,3,4,7,8-PeCDF	68		21 - 178				03/06/14 10:00	03/17/14 15:54	1
13C-1,2,3,4,7,8-HxCDF	81		26 - 152				03/06/14 10:00	03/17/14 15:54	

Method: 200.7	Rev 4.4 - Metals	(ICP) - Total Recoverable	

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

13C-OCDF

77

82

95

81

85

Method: 200.7 Rev 4.4 - Metals	Method: 200.7 Rev 4.4 - Metals (ICP) - Total Recoverable										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Aluminum	4400		50	25	ug/L		03/12/14 10:13	03/12/14 17:53	1		
Arsenic	ND		10	7.0	ug/L		03/12/14 10:13	03/12/14 17:53	1		
Boron	0.044	J,DX	0.050	0.025	mg/L		03/12/14 10:13	03/12/14 17:53	1		
Beryllium	ND		2.0	0.90	ug/L		03/12/14 10:13	03/12/14 17:53	1		
Chromium	7.9		5.0	2.0	ug/L		03/12/14 10:13	03/12/14 17:53	1		
Iron	6.2		0.040	0.020	mg/L		03/12/14 10:13	03/13/14 14:59	1		
Nickel	7.3	J,DX	10	2.0	ug/L		03/12/14 10:13	03/12/14 17:53	1		
Vanadium	13		10	3.0	ug/L		03/12/14 10:13	03/12/14 17:53	1		
Zinc	50	MB	20	9.0	ug/L		03/12/14 10:13	03/12/14 17:53	1		
Hardness, as CaCO3	28		0.33	0.17	mg/L		03/12/14 10:13	03/12/14 17:53	1		

26 - 123

28 - 136

29 - 147

28 - 143

26 - 138

17 - 157

TestAmerica Irvine

03/06/14 10:00 03/17/14 15:54

03/06/14 10:00 03/17/14 15:54

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Lab Sample ID: 440-71648-1

Matrix: Water

Client Sample ID: Outfall 009_20140228_Comp Date Collected: 03/01/14 02:13

Method: 200.7 Rev 4.4 - Metals (ICP) - Dissolved

Date Received: 03/01/14 16:30

General Chemistry

Total Dissolved Solids

Total Suspended Solids

Analyte

Fluoride

Cyanide, Total

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	190	QP	50	25	ug/L		03/10/14 09:25	03/10/14 23:10	1
Arsenic	ND	QP	10	7.0	ug/L		03/10/14 09:25	03/10/14 23:10	1
Boron	0.039	J,DX QP	0.050	0.025	mg/L		03/10/14 09:25	03/10/14 23:10	1
Beryllium	ND	QP	2.0	0.90	ug/L		03/10/14 09:25	03/10/14 23:10	1
Chromium	ND	QP	5.0	2.0	ug/L		03/10/14 09:25	03/10/14 23:10	1
Iron	0.19	QP	0.040	0.020	mg/L		03/10/14 09:25	03/10/14 23:10	1
Nickel	2.0	J,DX QP	10	2.0	ug/L		03/10/14 09:25	03/10/14 23:10	1
Vanadium	ND	QP	10	3.0	ug/L		03/10/14 09:25	03/10/14 23:10	1
Zinc	14	J,DX MB QP	20	9.0	ug/L		03/10/14 09:25	03/10/14 23:10	1
Hardness, as CaCO3	19	MB QP	0.33	0.17	mg/L		03/10/14 09:25	03/10/14 23:10	1
Method: 200.8 - Metals (ICP/MS) -									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.25	ug/L		03/12/14 12:34	03/12/14 17:50	1
Copper	8.2		2.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:50	1
Lead	9.6		1.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:50	1
Antimony	0.70	J,DX	2.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:50	1
Selenium	ND		2.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:50	1
Thallium	ND		1.0		ug/L		03/12/14 12:34	03/12/14 17:50	1
Silver	ND		1.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:50	1
Method: 200.8 - Metals (ICP/MS) - I		0	D.	MDI	11:4	_	Dunnand	Amahasad	D!! F
Analyte		Qualifier QP	RL		Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.25	ug/L		03/10/14 09:45	03/10/14 21:53	•
Copper	3.7		2.0	0.50	ug/L		03/10/14 09:45	03/10/14 21:53	1
Lead	0.51	J,DX QP QP	1.0		ug/L		03/10/14 09:45	03/10/14 21:53	1
Antimony			2.0		ug/L		03/10/14 09:45	03/10/14 21:53	1
Selenium	ND	QP	2.0		ug/L		03/10/14 09:45	03/10/14 21:53	1
Thallium Silver	ND ND	QP QP	1.0		ug/L ug/L		03/10/14 09:45 03/10/14 09:45	03/10/14 21:53	1 1
- Conver	ND	Qi	1.0	0.50	ug/L		00/10/14 09.43	00/10/14 21:00	'
Method: 245.1 - Mercury (CVAA)	- "	0 115				_			D.: E
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.10	ug/L		03/13/14 08:13	03/13/14 16:47	1
Method: 245.1 - Mercury (CVAA) -						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury	ND	QP	0.20	0.10	ug/L		03/13/14 07:36	03/13/14 15:16	1

Analyzed

03/06/14 15:35

03/07/14 14:15

03/05/14 22:04

03/10/14 13:27

RL

10

5.0

5.0

0.10

MDL Unit

5.0 mg/L

2.5 mg/L

3.0 ug/L

0.020 mg/L

D

Prepared

03/05/14 16:59

Result Qualifier

51

120

ND

0.16

Dil Fac

Oli - -- 4 O - -- -- I -- ID- O--45-II 000 004 40000 4

Client Sample ID: Outfall 009_20140228_Comp

Date Collected: 03/01/14 02:13 Date Received: 03/01/14 16:30 Lab Sample ID: 440-71648-1

03/04/14 14:31 03/14/14 10:57

. Matrix: Water

Method: 900.0 - Gross Alpha and Gross Beta Radioactivity	
Count	Total

			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Gross Alpha	4.53		1.52	1.61	1.63	pCi/L	03/11/14 12:28	03/17/14 07:29	1
Gross Beta	7.88		1.15	1.39	1.17	pCi/L	03/11/14 12:28	03/17/14 07:29	1

Method: 901.1 - Cesium 137 & Other Gamma Emitters (GS)

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Cesium-137	-1.30	U	6.36	6.36	11.5	pCi/L	03/04/14 15:31	03/05/14 19:22	1
Potassium-40	-27.8	U	152	152	169	pCi/L	03/04/14 15:31	03/05/14 19:22	1

Method: 903.0 - Radium-226 (GFPC)

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.180		0.0588	0.0610	0.0510	pCi/L	03/04/14 14:21	03/26/14 06:49	1

Carrier	%Yield Qualifier	Limits	Prepared	Analyzed	Dil Fac
Ba Carrier	93.5	40 - 110	03/04/14 14:21	03/26/14 06:49	1

Method: 904.0 - Radium-228 (GFPC)

			Count	Total					
		ı	Uncert.	Uncert.					
Analyte	Result Qu	ualifier	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.600		0.283	0.289	0.418	pCi/L	03/04/14 14:31	03/14/14 10:57	1
O-mi-n	0/Wi-1-1 0						Businesia	Amelianed	D# 5
Carrier	%Yield Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.5	40 - 110					03/04/14 14:31	03/14/14 10:57	1

40 - 110

Method: 905 - Strontium-90 (GFPC)

Y Carrier

				Count	Total					
				Uncert.	Uncert.					
Analyte	R	Result Qualifi	er	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Strontium-90		0.355		0.192	0.194	0.287	pCi/L	03/06/14 12:43	03/17/14 15:53	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Sr Carrier	81.9		40 - 110	=				03/06/14 12:43	03/17/14 15:53	1
Y Carrier	96.0		40 - 110					03/06/14 12:43	03/17/14 15:53	1

Method: 906.0 - Tritium, Total (LSC)

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Tritium	11.7	U	150	150	277	pCi/L	03/19/14 07:01	03/20/14 16:52	1

Method: A-01-R - Isotopic Uranium (Alpha Spectrometry)

83.5

			Count	i Ulai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	MDC U	Jnit	Prepared	Analyzed	Dil Fac	
Total Uranium	0.139	U	0.157	0.157	0.218	Ci/L	 3/11/14 09:43	03/12/14 17:40	1	

Client: Haley & Aldrich, Inc.

TestAmerica Job ID: 440-71418-1

Project/Site: Boeing SSFL Outfall 009 Annual

Client Sample ID: Outfall 009_20140228_Comp

Lab Sample ID: 440-71648-1

Date Collected: 03/01/14 02:13 Matrix: Water Date Received: 03/01/14 16:30

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228 Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) MDC Unit Prepared Analyzed Dil Fac (2σ+/-) 0.29 0.051 pCi/L 03/26/14 00:49 Combined Radium 226 + 0.780 0.29 228

Method Summary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL IRV
325	Semivolatile Organic Compounds (GC/MS)	EPA	TAL IRV
08 PCB LL	Polychlorinated Biphenyls (PCBs) Low level	40CFR136A	TAL IRV
08 Pesticides	Organochlorine Pesticides Low level	40CFR136A	TAL IRV
141A	Organophosphorous Pesticides (GC)	SW846	TAL DEN
18.6	Chromium, Hexavalent (Ion Chromatography)	EPA	TAL IRV
0.0	Anions, Ion Chromatography	MCAWW	TAL IRV
4.0	Perchlorate (IC)	EPA	TAL IRV
613B	Dioxins/Furans, HRGC/HRMS (1613B)	EPA-5	TAL KNX
0.7 Rev 4.4	Metals (ICP)	EPA	TAL IRV
8.00	Metals (ICP/MS)	EPA	TAL IRV
1 5.1	Mercury (CVAA)	EPA	TAL IRV
64A	HEM and SGT-HEM	1664A	TAL IRV
M 2540C	Solids, Total Dissolved (TDS)	SM	TAL IRV
Л 2540D	Solids, Total Suspended (TSS)	SM	TAL IRV
4500 CN E	Cyanide, Total (Low Level)	SM	TAL IRV
И 4500 F C	Fluoride	SM	TAL IRV
0.0	Gross Alpha and Gross Beta Radioactivity	EPA	TAL SL
1.1	Cesium 137 & Other Gamma Emitters (GS)	EPA	TAL SL
3.0	Radium-226 (GFPC)	EPA	TAL SL
4.0	Radium-228 (GFPC)	EPA	TAL SL
5	Strontium-90 (GFPC)	EPA	TAL SL
6.0	Tritium, Total (LSC)	EPA	TAL SL
01-R	Isotopic Uranium (Alpha Spectrometry)	DOE	TAL SL
226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
Л 9221E	Coliforms, Fecal (Multiple-Tube Fermentation)	SM	TAL IRV
Л 9221F	E.Coli (Multiple-Tube Fermentation; EC-MUG)	SM	TAL IRV
cute FH	Bioassay	NONE	SC0127
nnow,			
PA/821-R02-012			
sbestos	EPA 100.2 Asbestos in Drinking Water	NONE	EMS Labs
nronic Cerio,	Bioassay	NONE	SC0127
PA/821-R02-013	Congral Sub Contract Method	NONE	EMOI
uman	General Sub Contract Method	NONE	EMSL
acteriodales			

Protocol References:

1664A = EPA-821-98-002

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

DOE = U.S. Department of Energy

EPA = US Environmental Protection Agency

EPA-5 = EPA-5

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

NONE = NONE

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Method Summary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method Description

TestAmerica Job ID: 440-71418-1

Laboratory

Protocol

Laboratory References:

Method

EMS Labs = EMS Laboratories Pasadena, CA, 117 West Bellevue Drive, Ste 3, Pasadena, CA 91105-2503

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077

SC0127 = Aquatic Testing Laboratories, 4350 Transport #107, Ventura, CA 93003

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL KNX = TestAmerica Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

5

O

9

10

12

13

14

1

Client: Haley & Aldrich, Inc.

Date Received: 02/28/14 13:34

Project/Site: Boeing SSFL Outfall 009 Annual

Client Sample ID: Outfall009_20140228_Grab

Date Collected: 02/28/14 09:00

Lab Sample ID: 440-71418-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	10 mL	10 mL	166328	03/04/14 09:44	MM1	TAL IRV
Total/NA	Analysis	624		1	10 mL	10 mL	165919	03/01/14 16:16	TN	TAL IRV
Total/NA	Analysis	218.6		1	10 mL		165606	02/28/14 18:35	QPD	TAL IRV
Total/NA	Prep	1664A			1050 mL	1000 mL	168817	03/13/14 10:13	DA	TAL IRV
Total/NA	Analysis	1664A		1	1050 mL	1000 mL	168833	03/13/14 10:47	DA	TAL IRV
Total/NA	Analysis	SM 9221E		1	100 mL	100 mL	166533		KN1	TAL IRV
							(Start)	02/28/14 14:46		
							(End)	03/02/14 13:28		
Total/NA	Analysis	SM 9221F		1	100 mL	100 mL	166535		KN1	TAL IRV
							(Start)	02/28/14 14:46		
							(End)	03/02/14 13:28		

Lab Sample ID: 440-71418-2 Client Sample ID: TB-20140228

Date Collected: 02/28/14 09:00 Date Received: 02/28/14 13:34

Matrix: Water

Matrix: Water

Lab Sample ID: 440-71648-1

Batch Batch Dil Initial Final Batch Prepared Method Number Prep Type Туре Run Factor Amount Amount or Analyzed Analyst Lab Total/NA 624 MM1 TAL IRV Analysis 10 mL 10 mL 166328 03/04/14 09:15 Total/NA Analysis 624 1 10 mL 10 mL 165919 03/01/14 10:01 TN TAL IRV

Client Sample ID: Outfall 009_20140228_Comp

Date Collected: 03/01/14 02:13

Date Received: 03/01/14 16:30

Total Recoverable

Analysis

200.7 Rev 4.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	625			1055 mL	2 mL	166462	03/04/14 12:12	BB	TAL IRV
Total/NA	Analysis	625		1	1055 mL	2 mL	168395	03/12/14 14:58	VS	TAL IRV
Total/NA	Prep	608			1050 mL	2 mL	166337	03/04/14 06:40	AC	TAL IRV
Total/NA	Analysis	608 PCB LL		1	1050 mL	2 mL	167229	03/06/14 20:53	JM	TAL IRV
Total/NA	Prep	608			1050 mL	2 mL	166337	03/04/14 06:40	AC	TAL IRV
Total/NA	Analysis	608 Pesticides		1	1050 mL	2 mL	166771	03/05/14 20:00	KS	TAL IRV
Total/NA	Prep	3510C			1054.5 mL	2000 uL	216000	03/07/14 17:38	IBM	TAL DEN
Total/NA	Analysis	8141A		1	1054.5 mL	2000 uL	216330	03/12/14 06:32	AMP	TAL DEN
Total/NA	Analysis	300.0		2	5 mL		166203	03/04/14 10:56	NN	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		165941	03/01/14 17:31	NN	TAL IRV
Total/NA	Analysis	314.0		1	1 mL		168453	03/12/14 16:58	CH	TAL IRV
Total	Prep	1613			1055 mL	20 uL	4065015_P	03/06/14 10:00		TAL KNX
Total	Analysis	1613B		1			4065015	03/17/14 15:54	KBL	TAL KNX
Dissolved	Filtration	FILTRATION			250 mL	250 mL	166031	03/02/14 22:34	SN	TAL IRV
Dissolved	Prep	200.2			25 mL	25 mL	167768	03/10/14 09:25	ND	TAL IRV
Dissolved	Analysis	200.7 Rev 4.4		1	25 mL	25 mL	168091	03/10/14 23:10	DP	TAL IRV
Total Recoverable	Prep	200.2			25 mL	25 mL	168494	03/12/14 10:13	ND	TAL IRV

TestAmerica Irvine

TAL IRV

Page 18 of 122

25 mL

25 mL

168941

03/13/14 14:59

TK

Lab Chronicle

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Lab Sample ID: 440-71648-1

Matrice Water

Matrix: Water

Client Sample ID: Outfall 009_20140228_Comp

Date Collected: 03/01/14 02:13 Date Received: 03/01/14 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	200.2			25 mL	25 mL	168494	03/12/14 10:13	ND	TAL IR
Total Recoverable	Analysis	200.7 Rev 4.4		1	25 mL	25 mL	168689	03/12/14 17:53	EN	TAL IR
Dissolved	Filtration	FILTRATION			250 mL	250 mL	166031	03/02/14 22:34	SN	TAL IR
Dissolved	Prep	200.2			25 mL	25 mL	167775	03/10/14 09:45	ND	TAL IR
Dissolved	Analysis	200.8		1	25 mL	25 mL	168114	03/10/14 21:53	RC	TAL IR
Total Recoverable	Prep	200.2			25 mL	25 mL	168548	03/12/14 12:34	ND	TAL IR
Total Recoverable	Analysis	200.8		1	25 mL	25 mL	168765	03/12/14 17:50	RC	TAL IR
Dissolved	Filtration	FILTRATION			250 mL	250 mL	166031	03/02/14 22:34	SN	TAL IR
Dissolved	Prep	245.1			20 mL	20 mL	168757	03/13/14 07:36	JS1	TAL IR
Dissolved	Analysis	245.1		1	20 mL	20 mL	168953	03/13/14 15:16	DB	TAL IR
Total/NA	Prep	245.1			20 mL	20 mL	168770	03/13/14 08:13	JS1	TAL IR
Total/NA	Analysis	245.1		1	20 mL	20 mL	169065	03/13/14 16:47	DB	TAL IR
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	167190	03/06/14 15:35	XL	TAL IR
Total/NA	Analysis	SM 2540D		1	200 mL	1000 mL	167473	03/07/14 14:15	NTN	TAL IR
Total/NA	Prep	Distill/CN			50 mL	50 mL	166911	03/05/14 16:59	ВТ	TAL IR
Total/NA	Analysis	SM 4500 CN E		1	50 mL	50 mL	166965	03/05/14 22:04	ВТ	TAL IR
Total/NA	Analysis	SM 4500 F C		1		25 mL	167873	03/10/14 13:27	KYP	TAL IR
Total/NA	Prep	Evaporation			200 mL	1.0 g	109795	03/11/14 12:28	BLH	TAL SL
Total/NA	Analysis	900.0		1	200 mL		110775	03/17/14 07:29	RTM	TAL SL
Total/NA	Prep	Fill Geo-0			1000 mL	1.0 g	108350	03/04/14 15:31	RLS	TAL SL
Total/NA	Analysis	901.1		1	1000 mL	· ·	108756	03/05/14 19:22	SMP	TAL SL
Total/NA	Prep	PrecSep-21			960.91 mL	1.0 g	108343	03/04/14 14:21	RLS	TAL SL
Total/NA	Analysis	903.0		1	960.91 mL	J	112760	03/26/14 06:49	MLK	TAL SL
Total/NA	Prep	PrecSep_0			960.91 mL	1.0 g	108344	03/04/14 14:31	RLS	TAL SL
Total/NA	Analysis	904.0		1	960.91 mL		110545	03/14/14 10:57	RTM	TAL SL
Total/NA	Prep	PrecSep-7			969.40 mL	1.0 g	108916	03/06/14 12:43	RLS	TAL SI
Total/NA	Analysis	905		1	969.40 mL	-	110775	03/17/14 15:53	RTM	TAL SI
Total/NA	Prep	LSC_Dist_Susp			100.1 mL	1.0 g	111474	03/19/14 07:01	NMN	TAL SI
Total/NA	Analysis	906.0		1	100.1 mL	Š	111974	03/20/14 16:52	MLK	TAL SI
Total/NA	Prep	ExtChrom			499.52 mL	1.0 mL	109757	03/11/14 09:43	MLM	TAL SL
Total/NA	Analysis	A-01-R		1	499.52 mL		109998	03/12/14 17:40	LES	TAL SI
Total/NA	Analysis	Ra226 Ra228		1			113022	03/26/14 00:49	MCF	TAL SI
	, 0.0			•				22.22.1.00.10		

Laboratory References:

EMS Labs = EMS Laboratories Pasadena, CA, 117 West Bellevue Drive, Ste 3, Pasadena, CA 91105-2503

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077

SC0127 = Aquatic Testing Laboratories, 4350 Transport #107, Ventura, CA 93003

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL KNX = TestAmerica Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-165919/4

Matrix: Water

Analyte

Acrolein

Acrylonitrile

Analysis Batch: 165919

2-Chloroethyl vinyl ether

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв Result Qualifier RL Dil Fac MDL Unit D Prepared Analyzed ND 2.0 1.0 ug/L 03/01/14 08:59 03/01/14 08:59 ND 5.0 2.5 ug/L ND 2.0 03/01/14 08:59 1.0 ug/L

	11.10	III D				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		80 - 128		03/01/14 08:59	1
Dibromofluoromethane (Surr)	108		76 - 132		03/01/14 08:59	1

Lab Sample ID: LCS 440-165919/5 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 165919

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits 2-Chloroethyl vinyl ether 25.0 27.5 ug/L 110 37 - 150

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 106 80 - 128 Dibromofluoromethane (Surr) 108 76 - 132

Lab Sample ID: 440-71366-D-1 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 165919

MS MS %Rec. Spike Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 2-Chloroethyl vinyl ether ND 25.0 25.8 ug/L 103 10 - 140

MS MS

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	108	80 - 128
Dibromofluoromethane (Surr)	108	76 ₋ 132

Lab Sample ID: 440-71366-D-1 MSD

Analysis Batch: 165919

Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 2-Chloroethyl vinyl ether ND 25.0 27.4 ug/L 110 10 - 140 6 25

MSD MSD Surrogate %Recovery Qualifier Limits 80 - 128 Toluene-d8 (Surr) 106 Dibromofluoromethane (Surr) 109 76 - 132

Lab Sample ID: MB 440-166328/3

Matrix: Water

Analysis Batch: 166328

MB MB

Result Qualifier RLMDL Unit D Dil Fac Analyte Prepared Analyzed 0.50 03/04/14 07:53 1,1,1-Trichloroethane ND 0.25 ug/L

TestAmerica Irvine

Prep Type: Total/NA

Client Sample ID: Method Blank

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-166328/3

Matrix: Water

Analysis Batch: 166328

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
1,1,2-Trichloroethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
1,1-Dichloroethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
1,1-Dichloroethene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
1,2-Dichlorobenzene	ND		0.50	0.50	ug/L			03/04/14 07:53	1
1,2-Dichloroethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
1,2-Dichloropropane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
1,3-Dichlorobenzene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
1,4-Dichlorobenzene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Benzene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Bromoform	ND		1.0	0.25	ug/L			03/04/14 07:53	1
Bromomethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Carbon tetrachloride	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Chlorobenzene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Dibromochloromethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Chloroethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Chloroform	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Chloromethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
cis-1,3-Dichloropropene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Bromodichloromethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Ethylbenzene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Methylene Chloride	ND		2.0	0.88	ug/L			03/04/14 07:53	1
Tetrachloroethene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Toluene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
trans-1,2-Dichloroethene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
trans-1,3-Dichloropropene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Trichlorofluoromethane	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Vinyl chloride	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Trichloroethene	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Naphthalene	ND		1.0	0.40	ug/L			03/04/14 07:53	1
Ethyl tert-butyl ether	ND		0.50	0.25	ug/L			03/04/14 07:53	1
Xylenes, Total	ND		1.0	0.50	ug/L			03/04/14 07:53	1

IVID	IVID	
	_	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		80 - 120		03/04/14 07:53	1
Dibromofluoromethane (Surr)	95		76 - 132		03/04/14 07:53	1
Toluene-d8 (Surr)	109		80 - 128		03/04/14 07:53	1

Lab Sample ID: LCS 440-166328/4

Matrix: Water

Analysis Batch: 166328

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	27.3		ug/L		109	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	27.5		ug/L		110	63 _ 130	
1,1,2-Trichloroethane	25.0	25.8		ug/L		103	70 - 130	
1,1-Dichloroethane	25.0	24.1		ug/L		96	64 - 130	
1,1-Dichloroethene	25.0	30.3		ug/L		121	70 - 130	

TestAmerica Irvine

Page 21 of 122

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-166328/4

Matrix: Water

Analysis Batch: 166328

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichlorobenzene	25.0	27.3		ug/L		109	70 - 130
1,2-Dichloroethane	25.0	26.9		ug/L		108	57 - 138
1,2-Dichloropropane	25.0	27.1		ug/L		108	67 _ 130
1,3-Dichlorobenzene	25.0	26.5		ug/L		106	70 - 130
1,4-Dichlorobenzene	25.0	26.0		ug/L		104	70 _ 130
Benzene	25.0	25.6		ug/L		103	68 - 130
Bromoform	25.0	29.2		ug/L		117	60 - 148
Bromomethane	25.0	23.6		ug/L		94	64 - 139
Carbon tetrachloride	25.0	30.6		ug/L		122	60 - 150
Chlorobenzene	25.0	25.6		ug/L		102	70 - 130
Dibromochloromethane	25.0	28.2		ug/L		113	69 - 145
Chloroethane	25.0	18.7		ug/L		75	64 - 135
Chloroform	25.0	24.2		ug/L		97	70 - 130
Chloromethane	25.0	25.1		ug/L		101	47 _ 140
cis-1,3-Dichloropropene	25.0	31.3		ug/L		125	70 - 133
Bromodichloromethane	25.0	28.5		ug/L		114	70 - 132
Ethylbenzene	25.0	28.7		ug/L		115	70 - 130
Methylene Chloride	25.0	25.0		ug/L		100	52 _ 130
Tetrachloroethene	25.0	28.4		ug/L		113	70 - 130
Toluene	25.0	26.3		ug/L		105	70 - 130
trans-1,2-Dichloroethene	25.0	27.4		ug/L		110	70 - 130
trans-1,3-Dichloropropene	25.0	30.5		ug/L		122	70 - 132
Trichlorofluoromethane	25.0	28.1		ug/L		113	60 - 150
Vinyl chloride	25.0	25.7		ug/L		103	59 - 133
Trichloroethene	25.0	27.7		ug/L		111	70 - 130
Naphthalene	25.0	28.3		ug/L		113	60 - 140
Ethyl tert-butyl ether	25.0	25.3		ug/L		101	60 - 136
Xylenes, Total	75.0	89.6		ug/L		119	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		80 - 120
Dibromofluoromethane (Surr)	94		76 - 132
Toluene-d8 (Surr)	104		80 - 128

Lab Sample ID: 440-71418-1 MS

Matrix: Water

Analysis Batch: 166328

Client Sample ID: Outfall009_20140228_Grab Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		25.0	31.7		ug/L		127	70 - 130	
1,1,2,2-Tetrachloroethane	ND		25.0	27.5		ug/L		110	63 _ 130	
1,1,2-Trichloroethane	ND		25.0	29.0		ug/L		116	70 - 130	
1,1-Dichloroethane	ND		25.0	23.2		ug/L		93	65 - 130	
1,1-Dichloroethene	ND		25.0	26.1		ug/L		104	70 - 130	
1,2-Dichlorobenzene	ND		25.0	28.2		ug/L		113	70 - 130	
1,2-Dichloroethane	ND		25.0	25.7		ug/L		103	56 - 146	
1,2-Dichloropropane	ND		25.0	29.4		ug/L		117	69 - 130	
1,3-Dichlorobenzene	ND		25.0	27.5		ug/L		110	70 - 130	

TestAmerica Irvine

Page 22 of 122

TestAmerica Job ID: 440-71418-1

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-71418-1 MS

Matrix: Water

Analysis Batch: 166328

Client Sample ID: Outfall009_20140228_Grab **Prep Type: Total/NA**

Analysis Batom 100020	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dichlorobenzene	ND		25.0	26.7		ug/L		107	70 - 130
Benzene	ND		25.0	26.9		ug/L		107	66 - 130
Bromoform	ND		25.0	29.2		ug/L		117	59 ₋ 150
Bromomethane	ND		25.0	28.9		ug/L		116	62 _ 131
Carbon tetrachloride	ND		25.0	31.2		ug/L		125	60 _ 150
Chlorobenzene	ND		25.0	26.2		ug/L		105	70 - 130
Dibromochloromethane	ND		25.0	28.5		ug/L		114	70 - 148
Chloroethane	ND		25.0	21.8		ug/L		87	68 - 130
Chloroform	ND		25.0	25.3		ug/L		101	70 - 130
Chloromethane	ND		25.0	29.3		ug/L		117	39 - 144
cis-1,3-Dichloropropene	ND		25.0	33.8	LM	ug/L		135	70 - 133
Bromodichloromethane	ND		25.0	31.6		ug/L		127	70 - 138
Ethylbenzene	ND		25.0	28.8		ug/L		115	70 - 130
Methylene Chloride	ND		25.0	22.5		ug/L		90	52 _ 130
Tetrachloroethene	ND		25.0	27.5		ug/L		110	70 - 137
Toluene	ND		25.0	28.9		ug/L		115	70 - 130
trans-1,2-Dichloroethene	ND		25.0	24.4		ug/L		98	70 - 130
trans-1,3-Dichloropropene	ND		25.0	33.3		ug/L		133	70 - 138
Trichlorofluoromethane	ND		25.0	31.7		ug/L		127	60 _ 150
Vinyl chloride	ND		25.0	29.2		ug/L		117	50 - 137
Trichloroethene	ND		25.0	28.1		ug/L		113	70 - 130
Naphthalene	ND		25.0	29.2		ug/L		117	60 - 140
Ethyl tert-butyl ether	ND		25.0	25.6		ug/L		102	70 - 130
Xylenes, Total	ND		75.0	84.9		ug/L		113	70 - 133

MS MS

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	106		80 - 120
Dibromofluoromethane (Surr)	97		76 - 132
Toluene-d8 (Surr)	112		80 ₋ 128

Lab Sample ID: 440-71418-1 MSD

Matrix: Water

Analysis Batch: 166328

Client Sample ID: Outfall0	09_20140228_Grab
P	Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		25.0	28.4		ug/L		113	70 - 130	11	20
1,1,2,2-Tetrachloroethane	ND		25.0	27.2		ug/L		109	63 - 130	1	30
1,1,2-Trichloroethane	ND		25.0	28.6		ug/L		114	70 - 130	2	25
1,1-Dichloroethane	ND		25.0	25.5		ug/L		102	65 - 130	9	20
1,1-Dichloroethene	ND		25.0	30.2		ug/L		121	70 - 130	15	20
1,2-Dichlorobenzene	ND		25.0	27.0		ug/L		108	70 - 130	4	20
1,2-Dichloroethane	ND		25.0	28.8		ug/L		115	56 - 146	11	20
1,2-Dichloropropane	ND		25.0	29.3		ug/L		117	69 - 130	0	20
1,3-Dichlorobenzene	ND		25.0	26.5		ug/L		106	70 - 130	4	20
1,4-Dichlorobenzene	ND		25.0	26.1		ug/L		104	70 - 130	2	20
Benzene	ND		25.0	26.8		ug/L		107	66 - 130	0	20
Bromoform	ND		25.0	29.5		ug/L		118	59 - 150	1	25
Bromomethane	ND		25.0	25.6		ug/L		103	62 - 131	12	25

TestAmerica Irvine

Page 23 of 122

5/8/2014

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-71418-1 MSD

Matrix: Water

Analysis Batch: 166328

Client Sample ID: Outfall009_20140228_Grab

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon tetrachloride	ND		25.0	31.3		ug/L		125	60 - 150	0	25
Chlorobenzene	ND		25.0	26.2		ug/L		105	70 - 130	0	20
Dibromochloromethane	ND		25.0	28.6		ug/L		114	70 - 148	0	25
Chloroethane	ND		25.0	27.4		ug/L		110	68 - 130	23	25
Chloroform	ND		25.0	25.9		ug/L		104	70 - 130	2	20
Chloromethane	ND		25.0	24.3		ug/L		97	39 - 144	19	25
cis-1,3-Dichloropropene	ND		25.0	34.0	LM	ug/L		136	70 - 133	0	20
Bromodichloromethane	ND		25.0	30.7		ug/L		123	70 - 138	3	20
Ethylbenzene	ND		25.0	28.9		ug/L		116	70 - 130	0	20
Methylene Chloride	ND		25.0	26.4		ug/L		106	52 - 130	16	20
Tetrachloroethene	ND		25.0	27.6		ug/L		110	70 - 137	0	20
Toluene	ND		25.0	28.3		ug/L		113	70 - 130	2	20
trans-1,2-Dichloroethene	ND		25.0	28.4		ug/L		114	70 - 130	15	20
trans-1,3-Dichloropropene	ND		25.0	33.0		ug/L		132	70 - 138	1	25
Trichlorofluoromethane	ND		25.0	31.8		ug/L		127	60 - 150	0	25
Vinyl chloride	ND		25.0	26.4		ug/L		106	50 - 137	10	30
Trichloroethene	ND		25.0	28.3		ug/L		113	70 - 130	1	20
Naphthalene	ND		25.0	28.0		ug/L		112	60 - 140	4	30
Ethyl tert-butyl ether	ND		25.0	27.4		ug/L		110	70 - 130	7	25
Xylenes, Total	ND		75.0	87.7		ug/L		117	70 - 133	3	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		80 - 120
Dibromofluoromethane (Surr)	102		76 - 132
Toluene-d8 (Surr)	113		80 - 128

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-166462/1-A

Matrix: Water

Analysis Batch: 168395

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 166462**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.500	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1
Acenaphthylene	ND		0.500	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1
Anthracene	ND		0.500	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1
Benzidine	ND		10.0	5.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Benzo[a]anthracene	ND		5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Benzo[b]fluoranthene	ND		2.00	1.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Benzo[k]fluoranthene	ND		0.500	0.250	ug/L		03/04/14 12:12	03/11/14 23:23	1
Benzo[a]pyrene	ND		2.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
Bis(2-chloroethoxy)methane	ND		0.500	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1
Bis(2-chloroethyl)ether	ND		0.500	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1
Bis(2-ethylhexyl) phthalate	ND		5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
4-Bromophenyl phenyl ether	ND		1.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
Butyl benzyl phthalate	ND		5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
4-Chloro-3-methylphenol	ND		2.00	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1
2-Chloronaphthalene	ND		0.500	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1

TestAmerica Irvine

Page 24 of 122

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-166462/1-A

Matrix: Water

Surrogate

2-Fluorobiphenyl

2-Fluorophenol

2,4,6-Tribromophenol

Analysis Batch: 168395

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 166462

Analyte 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene Isophorone	RESULTE NO PROPERTY OF THE PRO	RL 1.00 0.500 0.500 0.500 2.00 0.500 0.500 0.500 5.00	0.200	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/04/14 12:12 03/04/14 12:12 03/04/14 12:12 03/04/14 12:12 03/04/14 12:12	Analyzed 03/11/14 23:23 03/11/14 23:23 03/11/14 23:23 03/11/14 23:23 03/11/14 23:23	1 1 1
4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND N	0.500 0.500 0.500 2.00 0.500 0.500 0.500 5.00	0.200 0.200 0.250 1.00 0.200 0.200	ug/L ug/L ug/L ug/L ug/L		03/04/14 12:12 03/04/14 12:12 03/04/14 12:12 03/04/14 12:12	03/11/14 23:23 03/11/14 23:23 03/11/14 23:23	
Chrysene Dibenz(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	0.500 0.500 2.00 0.500 0.500 0.500 5.00	0.200 0.250 1.00 0.200 0.200	ug/L ug/L ug/L ug/L		03/04/14 12:12 03/04/14 12:12 03/04/14 12:12	03/11/14 23:23 03/11/14 23:23	
Dibenz(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND ND ND ND ND ND ND ND ND	0.500 2.00 0.500 0.500 0.500 5.00	0.250 1.00 0.200 0.200	ug/L ug/L ug/L		03/04/14 12:12 03/04/14 12:12	03/11/14 23:23	
Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND ND ND ND ND	2.00 0.500 0.500 0.500 5.00	1.00 0.200 0.200	ug/L ug/L		03/04/14 12:12		1
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND ND ND ND	0.500 0.500 0.500 5.00	0.200	ug/L			03/11/14 23:23	
1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND ND ND ND	0.500 0.500 5.00	0.200			00/04/44 40 40		1
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobethane Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND ND ND	0.500 5.00		ug/L		03/04/14 12:12	03/11/14 23:23	1
3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND ND	5.00	0.200			03/04/14 12:12	03/11/14 23:23	1
2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND			ug/L		03/04/14 12:12	03/11/14 23:23	1
Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobethane Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene			2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	2.00	1.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene		1.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	2.00	1.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	0.500	0.250	ug/L		03/04/14 12:12	03/11/14 23:23	1
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Di-n-octyl phthalate 1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
1,2-Diphenylhydrazine(as Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Azobenzene) Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	1.00	0.500			03/04/14 12:12	03/11/14 23:23	1
Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocethane Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene				Ü				
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	0.500	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1
Hexachlorobutadiene Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	0.500	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1
Hexachloroethane Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	1.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
Hexachlorocyclopentadiene Indeno[1,2,3-cd]pyrene	ND	2.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
Indeno[1,2,3-cd]pyrene	ND	3.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
	ND	5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Isophorone	ND	2.00	1.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
	ND	1.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
Naphthalene	ND	1.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
Nitrobenzene	ND	1.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
2-Nitrophenol	ND	2.00	1.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
4-Nitrophenol	ND	5.00	2.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
N-Nitrosodimethylamine	ND	2.00	1.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
N-Nitrosodiphenylamine	ND	1.00	0.500	ug/L		03/04/14 12:12	03/11/14 23:23	1
N-Nitrosodi-n-propylamine	ND	2.00	1.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Pentachlorophenol	ND	2.00	1.00	ug/L		03/04/14 12:12	03/11/14 23:23	1
Phenanthrene	ND	0.500	0.200	ug/L		03/04/14 12:12	03/11/14 23:23	1
Phenol	ND	1.00	0.500			03/04/14 12:12	03/11/14 23:23	1
Pyrene	ND	0.500	0.200	-		03/04/14 12:12	03/11/14 23:23	1
1,2,4-Trichlorobenzene	ND	1.00	0.500			03/04/14 12:12	03/11/14 23:23	1
2,4,6-Trichlorophenol	ND	1.00	0.500			03/04/14 12:12	03/11/14 23:23	1
Benzo[g,h,i]perylene	ND	5.00	2.00	-		03/04/14 12:12	03/11/14 23:23	1
bis (2-chloroisopropyl) ether	ND	0.500	0.200	_		03/04/14 12:12	03/11/14 23:23	1
(=a.a.a.ap.ap.), aa.		0.000	3.200	- -			30 1 20.20	

TestAmerica Irvine

Dil Fac

Analyzed

03/11/14 23:23

03/11/14 23:23

Prepared

03/04/14 12:12

03/04/14 12:12

Limits

50 - 120

30 - 120

40 - 120

%Recovery Qualifier

67

61

74

QC Sample Results

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-166462/1-A

Lab Sample ID: LCS 440-166462/2-A

Matrix: Water

Analysis Batch: 168395

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 166462

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	64		45 - 120	03/04/14 12:12	03/11/14 23:23	1
Terphenyl-d14	96		37 - 144	03/04/14 12:12	03/11/14 23:23	1
Phenol-d6	69		35 - 120	03/04/14 12:12	03/11/14 23:23	1

Client Sample ID: Lab Control Sample

Lab Sample ID. LCS 440-100402/2-A					Ollelli	Jampie	EID. Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 168395	Cuilea	1.00	LCS				Prep Batch: 16646
Analyte	Spike Added		Qualifier	Unit	D	%Rec	%Rec. Limits
Acenaphthene	10.0	7.866	Quanner	ug/L		78100 -	47 - 145
Acenaphthylene	10.0	8.448		ug/L		84	33 - 145
Anthracene	10.0	8.657		ug/L		87	27 - 133
Benzidine	10.0	ND		ug/L		34	20 - 168
Benzo[a]anthracene	10.0	9.189		ug/L		92	33 - 143
Benzo[b]fluoranthene	10.0	8.296		ug/L		83	24 - 159
Benzo[k]fluoranthene	10.0	8.389		ug/L ug/L		84	11 - 162
Benzo[a]pyrene	10.0	8.478		ug/L ug/L		85	17 - 163
Bis(2-chloroethoxy)methane	10.0	8.360		_		84	33 - 184
	10.0	7.211		ug/L		72	12 - 158
Bis(2-chloroethyl)ether	10.0			ug/L		87	
Bis(2-ethylhexyl) phthalate	10.0	8.670 8.504		ug/L			8 - 158 53 - 127
4-Bromophenyl phenyl ether				ug/L		85 91	
Butyl benzyl phthalate	10.0	9.057		ug/L			10 - 152
4-Chloro-3-methylphenol	10.0	8.916		ug/L		89	22 _ 147
2-Chloronaphthalene	10.0	7.146		ug/L		71	52 - 126
2-Chlorophenol	10.0	7.262		ug/L		73	23 - 134
4-Chlorophenyl phenyl ether	10.0	7.865		ug/L		79	25 - 158
Chrysene	10.0	8.357		ug/L		84	17 _ 168
Dibenz(a,h)anthracene	10.0	8.719		ug/L		87	10 - 227
Di-n-butyl phthalate	10.0	9.608		ug/L		96	1 - 118
1,2-Dichlorobenzene	10.0	6.331		ug/L		63	32 - 129
1,3-Dichlorobenzene	10.0	6.097		ug/L		61	10 - 172
1,4-Dichlorobenzene	10.0	6.223		ug/L		62	20 - 124
3,3'-Dichlorobenzidine	10.0	6.630		ug/L		66	10 - 262
2,4-Dichlorophenol	10.0	8.036		ug/L		80	39 ₋ 135
Diethyl phthalate	10.0	9.085		ug/L		91	10 - 114
2,4-Dimethylphenol	10.0	7.996		ug/L		80	32 _ 119
Dimethyl phthalate	10.0	8.631		ug/L		86	10 - 112
4,6-Dinitro-2-methylphenol	10.0	8.615		ug/L		86	10 - 181
2,4-Dinitrophenol	10.0	7.779		ug/L		78	10 - 191
2,4-Dinitrotoluene	10.0	8.670		ug/L		87	39 - 139
2,6-Dinitrotoluene	10.0	8.500		ug/L		85	50 - 158
Di-n-octyl phthalate	10.0	9.972		ug/L		100	4 - 146
1,2-Diphenylhydrazine(as	10.0	8.487		ug/L		85	59 ₋ 124
Azobenzene)							
Fluoranthene	10.0	8.962		ug/L		90	26 - 137
Fluorene	10.0	8.353		ug/L		84	59 - 121
Hexachlorobenzene	10.0	7.948		ug/L		79	10 - 152
Hexachlorobutadiene	10.0	5.761		ug/L		58	24 - 116

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-166462/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 168395 **Prep Batch: 166462**

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hexachloroethane	10.0	5.710		ug/L		57	33 - 75	
Hexachlorocyclopentadiene	10.0	3.701	J,DX	ug/L		37	10 - 70	
Indeno[1,2,3-cd]pyrene	10.0	9.222		ug/L		92	10 - 171	
Isophorone	10.0	8.457		ug/L		85	21 - 196	
Naphthalene	10.0	7.038		ug/L		70	21 - 133	
Nitrobenzene	10.0	7.459		ug/L		75	35 - 180	
2-Nitrophenol	10.0	7.304		ug/L		73	29 _ 182	
4-Nitrophenol	10.0	8.059		ug/L		81	10 - 132	
N-Nitrosodimethylamine	10.0	7.777		ug/L		78	46 - 104	
N-Nitrosodiphenylamine	10.0	8.647		ug/L		86	57 - 106	
N-Nitrosodi-n-propylamine	10.0	8.189		ug/L		82	10 - 230	
Pentachlorophenol	10.0	9.792		ug/L		98	14 - 176	
Phenanthrene	10.0	8.490		ug/L		85	54 - 120	
Phenol	10.0	7.736		ug/L		77	5 _ 112	
Pyrene	10.0	9.378		ug/L		94	52 ₋ 115	
1,2,4-Trichlorobenzene	10.0	6.409		ug/L		64	44 - 142	
2,4,6-Trichlorophenol	10.0	8.332		ug/L		83	37 _ 144	
Benzo[g,h,i]perylene	10.0	9.024		ug/L		90	10 - 219	
bis (2-chloroisopropyl) ether	10.0	7.114		ug/L		71	36 - 166	

LCS LCS Surrogate %Recovery Qualifier Limits 2-Fluorobiphenyl 74 50 - 120 2-Fluorophenol 71 30 - 120 2,4,6-Tribromophenol 88 40 - 120 Nitrobenzene-d5 74 45 - 120 37 - 144 Terphenyl-d14 91 35 _ 120 Phenol-d6 75

Lab Sample ID: LCSD 440-166462/3-A

Matrix: Water

Analysis Batch: 168395							Prep E	Batch: 1	66462
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	10.0	6.872		ug/L		69	47 - 145	13	20
Acenaphthylene	10.0	7.449		ug/L		74	33 - 145	13	20
Anthracene	10.0	7.982		ug/L		80	27 - 133	8	20
Benzidine	10.0	ND		ug/L		45	20 - 168	27	35
Benzo[a]anthracene	10.0	8.458		ug/L		85	33 - 143	8	20
Benzo[b]fluoranthene	10.0	7.994		ug/L		80	24 - 159	4	25
Benzo[k]fluoranthene	10.0	8.062		ug/L		81	11 - 162	4	20
Benzo[a]pyrene	10.0	7.972		ug/L		80	17 - 163	6	25
Bis(2-chloroethoxy)methane	10.0	7.752		ug/L		78	33 - 184	8	20
Bis(2-chloroethyl)ether	10.0	6.201		ug/L		62	12 - 158	15	20
Bis(2-ethylhexyl) phthalate	10.0	8.193		ug/L		82	8 - 158	6	20
4-Bromophenyl phenyl ether	10.0	7.680		ug/L		77	53 - 127	10	25
Butyl benzyl phthalate	10.0	8.526		ug/L		85	10 - 152	6	20
4-Chloro-3-methylphenol	10.0	7.605		ug/L		76	22 - 147	16	25
2-Chloronaphthalene	10.0	6.154		ug/L		62	52 - 126	15	20

TestAmerica Irvine

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Page 27 of 122

Spike

LCSD LCSD

TestAmerica Job ID: 440-71418-1

Client: Haley & Aldrich, Inc.

Analysis Batch: 168395

Matrix: Water

4-Nitrophenol

N-Nitrosodimethylamine

N-Nitrosodiphenylamine

1,2,4-Trichlorobenzene

2,4,6-Trichlorophenol

Benzo[g,h,i]perylene

bis (2-chloroisopropyl) ether

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

N-Nitrosodi-n-propylamine

Project/Site: Boeing SSFL Outfall 009 Annual

Lab Sample ID: LCSD 440-166462/3-A

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 166462

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Chlorophenol	10.0	6.298		ug/L		63	23 - 134	14	25
4-Chlorophenyl phenyl ether	10.0	7.076		ug/L		71	25 - 158	11	20
Chrysene	10.0	7.369		ug/L		74	17 - 168	13	20
Dibenz(a,h)anthracene	10.0	6.752		ug/L		68	10 - 227	25	25
Di-n-butyl phthalate	10.0	9.032		ug/L		90	1 - 118	6	20
1,2-Dichlorobenzene	10.0	5.360		ug/L		54	32 - 129	17	25
1,3-Dichlorobenzene	10.0	5.215		ug/L		52	10 - 172	16	25
1,4-Dichlorobenzene	10.0	5.287		ug/L		53	20 - 124	16	25
3,3'-Dichlorobenzidine	10.0	4.788	J,DX BA	ug/L		48	10 - 262	32	25
2,4-Dichlorophenol	10.0	7.122		ug/L		71	39 - 135	12	20
Diethyl phthalate	10.0	8.433		ug/L		84	10 - 114	7	30
2,4-Dimethylphenol	10.0	6.925		ug/L		69	32 - 119	14	25
Dimethyl phthalate	10.0	7.860		ug/L		79	10 - 112	9	30
4,6-Dinitro-2-methylphenol	10.0	7.157		ug/L		72	10 - 181	18	25
2,4-Dinitrophenol	10.0	7.483		ug/L		75	10 - 191	4	25
2,4-Dinitrotoluene	10.0	7.962		ug/L		80	39 - 139	9	20
2,6-Dinitrotoluene	10.0	7.806		ug/L		78	50 ₋ 158	9	20
Di-n-octyl phthalate	10.0	8.907		ug/L		89	4 - 146	11	20
1,2-Diphenylhydrazine(as Azobenzene)	10.0	7.691		ug/L		77	59 - 124	10	25
Fluoranthene	10.0	8.739		ug/L		87	26 - 137	3	20
Fluorene	10.0	7.455		ug/L		75	59 - 121	11	20
Hexachlorobenzene	10.0	7.133		ug/L		71	10 - 152	11	20
Hexachlorobutadiene	10.0	5.028		ug/L		50	24 - 116	14	25
Hexachloroethane	10.0	4.975		ug/L		50	33 - 75	14	25
Hexachlorocyclopentadiene	10.0	3.599	J,DX	ug/L		36	10 - 70	3	30
Indeno[1,2,3-cd]pyrene	10.0	7.354		ug/L		74	10 - 171	23	25
Isophorone	10.0	7.449		ug/L		74	21 - 196	13	20
Naphthalene	10.0	6.093		ug/L		61	21 - 133	14	20
Nitrobenzene	10.0	6.516		ug/L		65	35 _ 180	13	25
2-Nitrophenol	10.0	6.529		ug/L		65	29 - 182	11	25

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

7.315

6.677

7.514

7.335

8.398

7.818

6.949

7.646

5.568

7.084

7.052

6.173

ug/L

73

67

75

73

84

78

69

76

56

71

71

62

10 - 132

46 - 104

57 - 106

10 - 230

14 - 176

54 - 120

5 - 112

52 - 115

44 - 142

37 - 144

10 - 219

36 - 166

10

15

14

11

15

8

11

20

14

16

25

30

35

20

20

25

20

25

25

20

30

25

20

	LCSD	LCSD)			
Surrogate	%Recovery	Qualifier	Limits			
2-Fluorobiphenyl	65		50 - 120			
2-Fluorophenol	62		30 - 120			
2 4 6-Tribromonhenol	80		40 120			

TestAmerica Irvine

Page 28 of 122

4

6

g

10

11

13

14

15

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 440-166462/3-A

Matrix: Water

Analysis Batch: 168395

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 166462

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	67		45 - 120
Terphenyl-d14	78		37 - 144
Phenol-d6	67		35 _ 120

Method: 608 PCB LL - Polychlorinated Biphenyls (PCBs) Low level

Lab Sample ID: MB 440-166337/1-A

Matrix: Water

Analysis Batch: 167229

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 166337

мв мв Dil Fac MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Aroclor 1016 ND 0.50 0.25 ug/L 03/04/14 06:40 03/06/14 16:10 Aroclor 1221 ND 0.50 0.25 ug/L 03/04/14 06:40 03/06/14 16:10 Aroclor 1232 ND 0.50 0.25 ug/L 03/04/14 06:40 03/06/14 16:10 ND 03/04/14 06:40 Aroclor 1242 0.50 0.25 ug/L 03/06/14 16:10 Aroclor 1248 ND 0.50 0.25 ug/L 03/04/14 06:40 03/06/14 16:10 Aroclor 1254 ND 0.50 0.25 ug/L 03/04/14 06:40 03/06/14 16:10 Aroclor 1260 ND 0.50 0.25 ug/L 03/04/14 06:40 03/06/14 16:10

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	107	45 - 120	03/04/14 06:40	03/06/14 16:10	1

LCS LCS

Lab Sample ID: LCS 440-166337/6-A

Lab Sample ID: LCSD 440-166337/7-A

Matrix: Water

Matrix: Water

Analysis Batch: 167229

Analysis Batch: 167229

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 166337**

%Rec.

Analyte	Add	ed Result	Qualifier	Unit	D	%Rec	Limits
Aroclor 1016		00 1.70		ug/L	_	85	50 - 115
Aroclor 1260	2	00 1.85		ug/L		93	60 - 120

Spike

LCS LCS

Surrogate	%Recovery Qualifie	r Limits
DCB Decachlorobiphenyl (Surr)	112	45 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 166337

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier L	Jnit	D	%Rec	Limits	RPD	Limit	
Aroclor 1016	2.00	1.75		ıg/L	_	88	50 - 115	3	30	
Aroclor 1260	2.00	1.85	ι	ıg/L		93	60 - 120	0	25	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	111		45 - 120

Project/Site: Boeing SSFL Outfall 009 Annual

Client: Haley & Aldrich, Inc. TestAmerica Job ID: 440-71418-1

Method: 608 Pesticides - Organochlorine Pesticides Low level

Lab Sample ID: MB 440-166337/1-A

Matrix: Water

Analysis Batch: 166771

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 166337**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0050	0.0015	ug/L		03/04/14 06:40	03/05/14 16:46	1
alpha-BHC	ND		0.0050	0.0025	ug/L		03/04/14 06:40	03/05/14 16:46	1
beta-BHC	ND		0.010	0.0040	ug/L		03/04/14 06:40	03/05/14 16:46	1
Chlordane (technical)	ND		0.10	0.080	ug/L		03/04/14 06:40	03/05/14 16:46	1
delta-BHC	ND		0.0050	0.0035	ug/L		03/04/14 06:40	03/05/14 16:46	1
Dieldrin	ND		0.0050	0.0020	ug/L		03/04/14 06:40	03/05/14 16:46	1
Endosulfan I	ND		0.0050	0.0030	ug/L		03/04/14 06:40	03/05/14 16:46	1
Endosulfan II	ND		0.0050	0.0020	ug/L		03/04/14 06:40	03/05/14 16:46	1
Endosulfan sulfate	ND		0.010	0.0030	ug/L		03/04/14 06:40	03/05/14 16:46	1
Endrin	ND		0.0050	0.0020	ug/L		03/04/14 06:40	03/05/14 16:46	1
Endrin aldehyde	ND		0.010	0.0020	ug/L		03/04/14 06:40	03/05/14 16:46	1
gamma-BHC (Lindane)	ND		0.010	0.0030	ug/L		03/04/14 06:40	03/05/14 16:46	1
Heptachlor	ND		0.010	0.0030	ug/L		03/04/14 06:40	03/05/14 16:46	1
Heptachlor epoxide	ND		0.0050	0.0025	ug/L		03/04/14 06:40	03/05/14 16:46	1
Toxaphene	ND		0.50	0.25	ug/L		03/04/14 06:40	03/05/14 16:46	1
4,4'-DDD	ND		0.0050	0.0040	ug/L		03/04/14 06:40	03/05/14 16:46	1
4,4'-DDE	ND		0.0050	0.0030	ug/L		03/04/14 06:40	03/05/14 16:46	1
4,4'-DDT	ND		0.010	0.0040	ug/L		03/04/14 06:40	03/05/14 16:46	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 35 - 115 03/04/14 06:40 03/05/14 16:46 Tetrachloro-m-xylene 73

Lab Sample ID: LCS 440-166337/2-A

Matrix: Water

Analysis Batch: 166771

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 166337**

Analysis Batch. 100771						1 1cp Daten. 100001	
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	0.250	0.148		ug/L		59	40 - 115
alpha-BHC	0.250	0.170		ug/L		68	45 - 115
beta-BHC	0.250	0.158		ug/L		63	55 - 115
delta-BHC	0.250	0.196		ug/L		78	55 ₋ 115
Dieldrin	0.250	0.187		ug/L		75	55 - 115
Endosulfan I	0.250	0.181		ug/L		72	55 - 115
Endosulfan II	0.250	0.190		ug/L		76	55 - 120
Endosulfan sulfate	0.250	0.194		ug/L		78	60 - 120
Endrin	0.250	0.193		ug/L		77	55 - 115
Endrin aldehyde	0.250	0.208		ug/L		83	50 - 120
gamma-BHC (Lindane)	0.250	0.168		ug/L		67	45 - 115
Heptachlor	0.250	0.176		ug/L		70	45 - 115
Heptachlor epoxide	0.250	0.179		ug/L		72	55 ₋ 115
4,4'-DDD	0.250	0.188		ug/L		75	55 - 120
4,4'-DDE	0.250	0.180		ug/L		72	50 - 120
4,4'-DDT	0.250	0.206		ug/L		83	55 ₋ 120

LCS LCS

%Recovery Qualifier Limits Surrogate Tetrachloro-m-xylene 70 35 - 115

50 - 120

45 _ 115

45 - 115

55 - 115

55 - 120

50 - 120

55 - 120

Client Sample ID: Method Blank

58

60

66

73

69

81

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 608 Pesticides - Organochlorine Pesticides Low level (Continued)

Lab Sample ID: LCSD 440-166337/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA Analysis Batch: 166771 **Prep Batch: 166337** Spike LCSD LCSD babbA Result Qualifier %Rec Limits RPD Limit Analyte Unit Aldrin 0.250 0.126 ug/L 51 40 - 115 16 30 alpha-BHC 0.250 0.139 56 45 - 115 20 30 ug/L beta-BHC 0.250 0.149 ug/L 60 55 - 115 6 30 delta-BHC 0.250 0.184 ug/L 73 55 - 115 6 30 Dieldrin 0.250 0.177 ug/L 71 55 - 115 5 30 Endosulfan I 0.250 0.169 ug/L 68 55 - 115 30 74 Endosulfan II 0.250 55 - 120 3 0.184 ug/L 30 Endosulfan sulfate 0.250 0.191 ug/L 76 60 - 120 30 Endrin 0.250 0.183 73 30 ug/L 55 - 1155

0.203

0.145

0.150

0.166

0.182

0.172

0.203

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

0.250

0.250

0.250

0.250

4,4'-DDD 0.250 4,4'-DDE 0.250 4,4'-DDT 0.250 LCSD LCSD Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 54 35 - 115

Method: 8141A - Organophosphorous Pesticides (GC)

Lab Sample ID: MB 280-216000/1-A

Matrix: Water

Endrin aldehyde

Heptachlor

gamma-BHC (Lindane)

Heptachlor epoxide

Analysis Batch: 216330

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorpyrifos	ND		1.5	0.36	ug/L		03/07/14 17:38	03/12/14 04:52	1
Diazinon	ND		0.50	0.15	ug/L		03/07/14 17:38	03/12/14 04:52	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Chlormefos 73 49 _ 171 03/07/14 17:38 03/12/14 04:52 Triphenylphosphate 94 60 - 154 03/07/14 17:38

Lab Sample ID: LCS 280-216000/2-A

Matrix: Water

Analysis Batch: 216330

to grant the state of the state								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorpyrifos	4.00	3.30		ug/L		83	35 - 124	
Diazinon	4.00	3.52		ug/L		88	46 - 115	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Chlormefos	87		49 - 171
Triphenylphosphate	106		60 - 154

TestAmerica Irvine

30

30

30

30

30

30

30

14

16

8

3

Prep Batch: 216000

Prep Type: Total/NA

03/12/14 04:52

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 216000

Client: Haley & Aldrich, Inc. Project/Site: Boeing SSFL Outfall 009 Annual

Method: 8141A - Organophosphorous Pesticides (GC) (Continued)

Lab Sample ID: LCSD 280-216000/3-A			Client Sample ID: Lab Control Sample	le Dup
Matrix: Water			Prep Type: To	tal/NA
Analysis Batch: 216330			Prep Batch: 2	216000
Sni	ike I	LCSD LCSD	%Rec.	RPD

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorpyrifos	4.00	3.37		ug/L		84	35 - 124	2	34
Diazinon	4.00	3.46		ug/L		87	46 - 115	2	40

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Chlormefos	85		49 - 171
Triphenylphosphate	98		60 - 154

Method: 218.6 - Chromium, Hexavalent (Ion Chromatography)

Lab Sample ID: MB 440-165606/3 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 165606

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		1.0	0.25	ug/L			02/28/14 06:26	1

Lab Sample ID: LCS 440-165606/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 165606

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	50.0	50.3		ug/L		101	90 - 110	

Lab Sample ID: MRL 440-165606/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 165606

	Spike	MRL	MRL				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	1.00	1.13		ug/L		113	50 - 150	

Lab Sample ID: 440-71405-A-3 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 165606

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	760		500	1110	LN	ug/L		70	90 - 110	

Lab Sample ID: 440-71405-A-3 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 165606

Allalysis Datcii. 100000												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chromium hexavalent	760		500	1180	IN	ua/l		84	90 - 110	6	10	

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Client Sample ID: Method Blank

Client Sample ID: Method Blank

%Rec.

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 440-165941/4

Matrix: Water

Analysis Batch: 165941

MB MB

Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed 150 70 mg/L 03/01/14 11:09 Nitrate Nitrite as N ND

Lab Sample ID: MB 440-166203/4

Matrix: Water

Analysis Batch: 166203

MB MB

Sample Sample

Analyte	Result Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	0.50	0.25 r	mg/L			03/03/14 17:15	1
Sulfate	ND	0.50	0.25 r	mg/L			03/03/14 17:15	1

Lab Sample ID: LCS 440-166203/2	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 166203	

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 5.00	4.65		mg/L		93	90 - 110	
Sulfate	5.00	4.54		mg/L		91	90 - 110	

Lab Sample ID: 440-71579-C-1 MS	Client Sample ID: Matrix Spike
Matrix: Water	Prep Type: Total/NA
Analysis Ratch: 166203	

MS MS

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	ı	D	%Rec	Limits	
Chloride	6.4		5.00	10.5		mg/L		_	82	80 - 120	
Sulfate	5.6		5.00	9.78		mg/L			84	80 - 120	

Spike

Lab Sample ID: 440-71579-C-1 MSD

Matrix: Water				Prep Type: To	tal/NA
Analysis Batch: 166203					
	Sample Sample	Spike	MSD MSD	%Rec.	RPD

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	6.4		5.00	10.7		mg/L		86	80 - 120	2	20
Sulfate	5.6		5.00	9.98		mg/L		88	80 - 120	2	20

Method: 314.0 - Perchlorate (IC)

Lab Sample ID: MB 440-168453/3

Matrix: Water

Analysis Batch: 168453

7, 0.00.0	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L			03/12/14 09:17	1

Lab Sample ID: LCS 440-168453/6

Matrix: Water

Analysis Batch: 168453							
	Spike	LCS LCS				%Rec.	
Analyte	Added	Result Qualific	er Unit	D	%Rec	Limits	
Perchlorate	25.0	28.5	ug/L		114	85 - 115	

TestAmerica Irvine

5/8/2014

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Method: 314.0 - Perchlorate (IC) (Continued)

Lab Sample ID: MRL 440-168453/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 168453

Spike MRL MRL %Rec. Added Analyte Result Qualifier Limits Unit D %Rec 4.00 75 - 125 Perchlorate 4.04 ug/L 101

Lab Sample ID: 440-72320-M-3 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 168453

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Perchlorate ND 25.0 24.8 ug/L 99 80 - 120

Lab Sample ID: 440-72320-M-3 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 168453

MSD MSD %Rec. RPD Sample Sample Spike Limit Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Perchlorate ND 25.0 24.3 80 - 120 ug/L

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B)

Lab Sample ID: H4C060000015B Client Sample ID: Method Blank **Matrix: Water Prep Type: Total**

Analysis Batch: 4065015 Prep Batch: 4065015_P

Analysis Baten. 4000010	МВ	МВ						rep Baten. 400	_
Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.0000100	0.00000470	ug/L		03/06/14 10:00	03/14/14 23:44	1
Total TCDD	ND		0.0000100	0.00000470	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,7,8-PeCDD	ND		0.0000500	0.00000226	ug/L		03/06/14 10:00	03/14/14 23:44	1
Total PeCDD	ND		0.0000500	0.00000226	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,4,7,8-HxCDD	ND		0.0000500	0.00000167	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,6,7,8-HxCDD	ND		0.0000500	0.00000194	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,7,8,9-HxCDD	ND		0.0000500	0.00000167	ug/L		03/06/14 10:00	03/14/14 23:44	1
Total HxCDD	ND		0.0000500	0.00000167	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,4,6,7,8-HpCDD	ND		0.0000500	0.00000300	ug/L		03/06/14 10:00	03/14/14 23:44	1
Total HpCDD	ND		0.0000500	0.00000300	ug/L		03/06/14 10:00	03/14/14 23:44	1
OCDD	0.00000722	QJ	0.000100	0.00000221	ug/L		03/06/14 10:00	03/14/14 23:44	1
2,3,7,8-TCDF	ND		0.0000100	0.00000345	ug/L		03/06/14 10:00	03/14/14 23:44	1
Total TCDF	ND		0.0000100	0.00000345	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,7,8-PeCDF	ND		0.0000500	0.00000211	ug/L		03/06/14 10:00	03/14/14 23:44	1
2,3,4,7,8-PeCDF	ND		0.0000500	0.00000189	ug/L		03/06/14 10:00	03/14/14 23:44	1
Total PeCDF	ND		0.0000500	0.00000189	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,4,7,8-HxCDF	ND		0.0000500	0.000000940	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,6,7,8-HxCDF	ND		0.0000500	0.000000910	ug/L		03/06/14 10:00	03/14/14 23:44	1
2,3,4,6,7,8-HxCDF	ND		0.0000500	0.000000870	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,7,8,9-HxCDF	ND		0.0000500	0.000000980	ug/L		03/06/14 10:00	03/14/14 23:44	1
Total HxCDF	ND		0.0000500	0.000000870	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,4,6,7,8-HpCDF	ND		0.0000500	0.00000156	ug/L		03/06/14 10:00	03/14/14 23:44	1
1,2,3,4,7,8,9-HpCDF	ND		0.0000500	0.00000224	ug/L		03/06/14 10:00	03/14/14 23:44	1
Total HpCDF	ND		0.0000500	0.00000156	ug/L		03/06/14 10:00	03/14/14 23:44	1
OCDF	ND		0.000100	0.00000287	ug/L		03/06/14 10:00	03/14/14 23:44	1

TestAmerica Irvine

Page 34 of 122

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: H4C060000015B

Matrix: Water

Analysis Batch: 4065015

Client Sample ID: Method Blank **Prep Type: Total** Prep Batch: 4065015_P

	IVIB	IVIB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	100		35 - 197	03/06/14 10:00	03/14/14 23:44	1

37CI4-2,3,7,8-TCDD	100		35 - 197	03/06/14 10:00	03/14/14 23:44	1
	MB	MB				
Internal Standard	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	85		25 - 164	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,7,8-PeCDD	96		25 - 181	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,4,7,8-HxCDD	93		32 - 141	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,6,7,8-HxCDD	89		28 - 130	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,4,6,7,8-HpCDD	87		23 - 140	03/06/14 10:00	03/14/14 23:44	1
13C-OCDD	82		17 - 157	03/06/14 10:00	03/14/14 23:44	1
13C-2,3,7,8-TCDF	81		24 - 169	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,7,8-PeCDF	90		24 - 185	03/06/14 10:00	03/14/14 23:44	1
13C-2,3,4,7,8-PeCDF	79		21 - 178	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,4,7,8-HxCDF	81		26 - 152	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,6,7,8-HxCDF	79		26 - 123	03/06/14 10:00	03/14/14 23:44	1
13C-2,3,4,6,7,8-HxCDF	81		28 - 136	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,7,8,9-HxCDF	90		29 - 147	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,4,6,7,8-HpCDF	82		28 - 143	03/06/14 10:00	03/14/14 23:44	1
13C-1,2,3,4,7,8,9-HpCDF	77		26 - 138	03/06/14 10:00	03/14/14 23:44	1
13C-OCDF	77		17 - 157	03/06/14 10:00	03/14/14 23:44	

Lab Sample ID: H4C060000015C

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total

Analysis Batch: 4065015	Spike	LCS	LCS				Prep Batch: 4065015_P %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,3,7,8-TCDD	0.000200	0.000195		ug/L		97	67 - 158
1,2,3,7,8-PeCDD	0.00100	0.000993		ug/L		99	70 - 142
1,2,3,4,7,8-HxCDD	0.00100	0.000933		ug/L		93	70 - 164
1,2,3,6,7,8-HxCDD	0.00100	0.000955		ug/L		96	76 ₋ 134
1,2,3,7,8,9-HxCDD	0.00100	0.000941		ug/L		94	64 - 162
1,2,3,4,6,7,8-HpCDD	0.00100	0.000911		ug/L		91	70 - 140
OCDD	0.00200	0.00184	В	ug/L		92	78 ₋ 144
2,3,7,8-TCDF	0.000200	0.000203		ug/L		102	75 ₋ 158
1,2,3,7,8-PeCDF	0.00100	0.000934		ug/L		93	80 - 134
2,3,4,7,8-PeCDF	0.00100	0.000934		ug/L		93	68 - 160
1,2,3,4,7,8-HxCDF	0.00100	0.000929		ug/L		93	72 - 134
1,2,3,6,7,8-HxCDF	0.00100	0.000945		ug/L		94	84 - 130
2,3,4,6,7,8-HxCDF	0.00100	0.000947		ug/L		95	70 ₋ 156
1,2,3,7,8,9-HxCDF	0.00100	0.000955		ug/L		95	78 - 130
1,2,3,4,6,7,8-HpCDF	0.00100	0.000916		ug/L		92	82 - 122
1,2,3,4,7,8,9-HpCDF	0.00100	0.000907		ug/L		91	78 - 138
OCDF	0.00200	0.00184		ug/L		92	63 - 170
	C8 1 C8						

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
37CI4-2,3,7,8-TCDD	103		31 - 191

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: H4C060000015C **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total** Analysis Batch: 4065015 Prep Batch: 4065015 P

	LCS	LCS	
Internal Standard	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	86		20 - 175
13C-1,2,3,7,8-PeCDD	101		21 - 227
13C-1,2,3,4,7,8-HxCDD	92		21 - 193
13C-1,2,3,6,7,8-HxCDD	84		25 - 163
13C-1,2,3,4,6,7,8-HpCDD	95		26 - 166
13C-OCDD	97		13 - 199
13C-2,3,7,8-TCDF	84		22 - 152
13C-1,2,3,7,8-PeCDF	96		21 - 192
13C-2,3,4,7,8-PeCDF	89		13 - 328
13C-1,2,3,4,7,8-HxCDF	83		19 - 202
13C-1,2,3,6,7,8-HxCDF	82		21 - 159
13C-2,3,4,6,7,8-HxCDF	84		22 - 176
13C-1,2,3,7,8,9-HxCDF	86		17 - 205
13C-1,2,3,4,6,7,8-HpCDF	86		21 - 158
13C-1,2,3,4,7,8,9-HpCDF	80		20 - 186
13C-OCDF	86		13 - 199

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 440-168494/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 168689 **Prep Batch: 168494**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		50	25	ug/L		03/12/14 10:13	03/12/14 17:48	1
Arsenic	ND		10	7.0	ug/L		03/12/14 10:13	03/12/14 17:48	1
Boron	ND		0.050	0.025	mg/L		03/12/14 10:13	03/12/14 17:48	1
Beryllium	ND		2.0	0.90	ug/L		03/12/14 10:13	03/12/14 17:48	1
Chromium	ND		5.0	2.0	ug/L		03/12/14 10:13	03/12/14 17:48	1
Nickel	ND		10	2.0	ug/L		03/12/14 10:13	03/12/14 17:48	1
Vanadium	ND		10	3.0	ug/L		03/12/14 10:13	03/12/14 17:48	1
Zinc	9.65	J,DX	20	9.0	ug/L		03/12/14 10:13	03/12/14 17:48	1
Hardness, as CaCO3	ND		0.33	0.17	mg/L		03/12/14 10:13	03/12/14 17:48	1
	Aluminum Arsenic Boron Beryllium Chromium Nickel Vanadium Zinc	Analyte Result Aluminum ND Arsenic ND Boron ND Beryllium ND Chromium ND Nickel ND Vanadium ND Zinc 9.65	Aluminum ND Arsenic ND Boron ND Beryllium ND Chromium ND Nickel ND Vanadium ND Zinc 9.65 J,DX	Analyte Result Qualifier RL Aluminum ND 50 Arsenic ND 10 Boron ND 0.050 Beryllium ND 2.0 Chromium ND 5.0 Nickel ND 10 Vanadium ND 10 Zinc 9.65 J,DX 20	Analyte Result Aluminum Qualifier RL MDL Arsenic ND 50 25 Arsenic ND 10 7.0 Boron ND 0.050 0.025 Beryllium ND 2.0 0.90 Chromium ND 5.0 2.0 Nickel ND 10 2.0 Vanadium ND 10 3.0 Zinc 9.65 J,DX 20 9.0	Analyte Result Qualifier RL MDL Unit Aluminum ND 50 25 ug/L Arsenic ND 10 7.0 ug/L Boron ND 0.050 0.025 mg/L Beryllium ND 2.0 0.90 ug/L Chromium ND 5.0 2.0 ug/L Nickel ND 10 2.0 ug/L Vanadium ND 10 3.0 ug/L Zinc 9.65 J,DX 20 9.0 ug/L	Analyte Result Qualifier RL MDL Unit D Aluminum ND 50 25 ug/L Arsenic ND 10 7.0 ug/L Boron ND 0.050 0.025 mg/L Beryllium ND 2.0 0.90 ug/L Chromium ND 5.0 2.0 ug/L Nickel ND 10 3.0 ug/L Vanadium ND 10 3.0 ug/L Zinc 9.65 J,DX 20 9.0 ug/L	Analyte Result Qualifier RL MDL Unit D Prepared Aluminum ND 50 25 ug/L 03/12/14 10:13 Arsenic ND 10 7.0 ug/L 03/12/14 10:13 Boron ND 0.050 0.025 mg/L 03/12/14 10:13 Beryllium ND 2.0 0.90 ug/L 03/12/14 10:13 Chromium ND 5.0 2.0 ug/L 03/12/14 10:13 Nickel ND 10 2.0 ug/L 03/12/14 10:13 Vanadium ND 10 3.0 ug/L 03/12/14 10:13 Zinc 9.65 J,DX 20 9.0 ug/L 03/12/14 10:13	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Aluminum ND 50 25 ug/L 03/12/14 10:13 03/12/14 17:48 Arsenic ND 10 7.0 ug/L 03/12/14 10:13 03/12/14 17:48 Boron ND 0.050 0.025 mg/L 03/12/14 10:13 03/12/14 17:48 Beryllium ND 2.0 0.90 ug/L 03/12/14 10:13 03/12/14 17:48 Chromium ND 5.0 2.0 ug/L 03/12/14 10:13 03/12/14 17:48 Nickel ND 10 2.0 ug/L 03/12/14 10:13 03/12/14 17:48 Vanadium ND 10 3.0 ug/L 03/12/14 10:13 03/12/14 17:48 Zinc 9.65 J,DX 20 9.0 ug/L 03/12/14 10:13 03/12/14 17:48

Lab Sample ID: MB 440-168494/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable Prep Batch: 168494**

Analysis Batch: 168941 MB MB

Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Iron ND 0.040 0.020 mg/L 03/12/14 10:13 03/13/14 14:55

Lab Sample ID: LCS 440-168494/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total Recoverable Analysis Batch: 168689 **Prep Batch: 168494**

_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	 500	493		ug/L		99	85 - 115	
Arsenic	500	498		ug/L		100	85 - 115	

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 440-168494/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable Prep Batch: 168494 Analysis Batch: 168689**

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Boron	0.500	0.488		mg/L		98	85 - 115
Beryllium	500	513		ug/L		103	85 ₋ 115
Chromium	500	497		ug/L		99	85 _ 115
Nickel	500	534		ug/L		107	85 - 115
Vanadium	500	517		ug/L		103	85 _ 115
Zinc	500	503		ug/L		101	85 - 115

Lab Sample ID: LCS 440-168494/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 168941 Prep Batch: 168494 Spike LCS LCS %Rec.

Result Qualifier

Unit

D

%Rec

Limits

Iron 0.500 0.516 mg/L 103 85 - 115 Lab Sample ID: 440-71648-1 MS Client Sample ID: Outfall 009_20140228_Comp **Matrix: Water Prep Type: Total Recoverable**

Added

Analysis Batch: 168689

Analyte

Prep Batch: 168494 MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier %Rec Unit Limits Aluminum 4400 500 6450 BB 409 ug/L 70 - 130 Arsenic ND 500 501 ug/L 100 70 - 130Boron 0.044 J,DX 0.500 0.537 mg/L 99 70 - 130 Beryllium ND 500 519 ug/L 104 70 - 130 7.9 500 Chromium 503 ug/L 99 70 - 130 500 Nickel 538 106 70 - 130 7.3 J.DX ug/L 500 103 70 - 130 Vanadium 13 526 ug/L 70 - 130 Zinc 50 MB 500 537 97 ug/L

Lab Sample ID: 440-71648-1 MS Client Sample ID: Outfall 009 20140228 Comp **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 168941 Prep Batch: 168494 MS MS

Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Iron 6.2 0.500 6.49 BB mg/L 57 70 - 130

Lab Sample ID: 440-71648-1 MSD Client Sample ID: Outfall 009_20140228_Comp **Matrix: Water Prep Type: Total Recoverable**

Analysis Petah, 169690

								Prep i	satch: 1	68494
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4400		500	5550	BB	ug/L		230	70 - 130	15	20
ND		500	495		ug/L		99	70 - 130	1	20
0.044	J,DX	0.500	0.539		mg/L		99	70 - 130	0	20
ND		500	513		ug/L		103	70 - 130	1	20
7.9		500	508		ug/L		100	70 - 130	1	20
7.3	J,DX	500	531		ug/L		105	70 - 130	1	20
13		500	530		ug/L		104	70 - 130	1	20
50	MB	500	539		ug/L		98	70 - 130	0	20
	Result 4400 ND 0.044 ND 7.9 7.3	ND 0.044 J,DX ND 7.9 7.3 J,DX	Result Qualifier Added 4400 500 ND 500 0.044 J,DX 0.500 ND 500 7.9 500 7.3 J,DX 500 13 500	Result Qualifier Added Result 4400 500 5550 ND 500 495 0.044 J,DX 0.500 0.539 ND 500 513 7.9 500 508 7.3 J,DX 500 531 13 500 530	Result Qualifier Added Result Qualifier 4400 500 5550 BB ND 500 495 0.044 J,DX 0.500 0.539 ND 500 513 7.9 500 508 7.3 J,DX 500 531 13 500 530	Result Qualifier Added Result Qualifier Unit 4400 500 5550 BB ug/L ND 500 495 ug/L 0.044 J,DX 0.500 0.539 mg/L ND 500 513 ug/L 7.9 500 508 ug/L 7.3 J,DX 500 531 ug/L 13 500 530 ug/L	Result Qualifier Added Result Qualifier Unit D 4400 500 5550 BB ug/L ND 500 495 ug/L 0.044 J,DX 0.500 0.539 mg/L ND 500 513 ug/L 7.9 500 508 ug/L 7.3 J,DX 500 531 ug/L 13 500 530 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 4400 500 5550 BB ug/L 230 ND 500 495 ug/L 99 0.044 J,DX 0.500 0.539 mg/L 99 ND 500 513 ug/L 103 7.9 500 508 ug/L 100 7.3 J,DX 500 531 ug/L 105 13 500 530 ug/L 104	Sample Result Sample Qualifier Added Added Result Qualifier Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Result Qualifier Added Added Result Qualifier Qualifier Unit D %Rec WRec Limits RPD 4400 500 5550 BB ug/L 230 70 - 130 15 ND 500 495 ug/L 99 70 - 130 1 ND 500 513 ug/L 103 70 - 130 1 7.9 500 508 ug/L 100 70 - 130 1 7.3 J,DX 500 531 ug/L 105 70 - 130 1 13 500 530 ug/L 104 70 - 130 1

TestAmerica Irvine

Drop Potoby 469404

Spike

Added

0.500

MSD MSD

5.58 BB

Result Qualifier

Unit

mg/L

D

TestAmerica Job ID: 440-71418-1

Client: Haley & Aldrich, Inc. Project/Site: Boeing SSFL Outfall 009 Annual

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Sample Sample

6.2

Result Qualifier

MR MR

Lab Sample ID: 440-71648-1 MSD

Matrix: Water

Analyte

Iron

Analysis Batch: 168941

Client Sample ID: Outfall 009_20140228_Comp **Prep Type: Total Recoverable Prep Batch: 168494**

-124

%Rec. RPD Limit Limits %Rec

Lab Sample ID: MB 440-166031/1-B

Matrix: Water

Analysis Batch: 168091

Client Sample ID: Method Blank **Prep Type: Dissolved**

70 - 130

Prep Batch: 167768

15

IVID	IVID							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		50	25	ug/L		03/10/14 09:25	03/10/14 22:55	1
ND		10	7.0	ug/L		03/10/14 09:25	03/10/14 22:55	1
ND		0.050	0.025	mg/L		03/10/14 09:25	03/10/14 22:55	1
ND		2.0	0.90	ug/L		03/10/14 09:25	03/10/14 22:55	1
ND		5.0	2.0	ug/L		03/10/14 09:25	03/10/14 22:55	1
ND		0.040	0.020	mg/L		03/10/14 09:25	03/10/14 22:55	1
ND		10	2.0	ug/L		03/10/14 09:25	03/10/14 22:55	1
ND		10	3.0	ug/L		03/10/14 09:25	03/10/14 22:55	1
16.4	J,DX	20	9.0	ug/L		03/10/14 09:25	03/10/14 22:55	1
0.176	J,DX	0.33	0.17	mg/L		03/10/14 09:25	03/10/14 22:55	1
	Result ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND	Result Qualifier RL ND 50 ND 10 ND 0.050 ND 2.0 ND 5.0 ND 0.040 ND 10 ND 10 16.4 J,DX 20	Result Qualifier RL MDL ND 50 25 ND 10 7.0 ND 0.050 0.025 ND 2.0 0.90 ND 5.0 2.0 ND 0.040 0.020 ND 10 2.0 ND 10 3.0 16.4 J,DX 20 9.0	Result Qualifier RL MDL Unit ND 50 25 ug/L ND 10 7.0 ug/L ND 0.050 0.025 mg/L ND 2.0 0.90 ug/L ND 5.0 2.0 ug/L ND 0.040 0.020 mg/L ND 10 2.0 ug/L ND 10 3.0 ug/L 16.4 J,DX 20 9.0 ug/L	Result Qualifier RL MDL Unit D ND 50 25 ug/L ug/L ND 10 7.0 ug/L ND 0.050 0.025 mg/L ND 2.0 0.90 ug/L ND 5.0 2.0 ug/L ND 10 2.0 ug/L ND 10 3.0 ug/L 16.4 J,DX 20 9.0 ug/L	Result Qualifier RL MDL Unit D Prepared ND 50 25 ug/L 03/10/14 09:25 ND 10 7.0 ug/L 03/10/14 09:25 ND 0.050 0.025 mg/L 03/10/14 09:25 ND 2.0 0.90 ug/L 03/10/14 09:25 ND 5.0 2.0 ug/L 03/10/14 09:25 ND 0.040 0.020 mg/L 03/10/14 09:25 ND 10 2.0 ug/L 03/10/14 09:25 ND 10 3.0 ug/L 03/10/14 09:25 16.4 J,DX 20 9.0 ug/L 03/10/14 09:25	Result ND Qualifier RL MDL Unit D Prepared Analyzed ND 50 25 ug/L 03/10/14 09:25 03/10/14 22:55 ND 10 7.0 ug/L 03/10/14 09:25 03/10/14 22:55 ND 0.050 0.025 mg/L 03/10/14 09:25 03/10/14 22:55 ND 2.0 0.90 ug/L 03/10/14 09:25 03/10/14 22:55 ND 5.0 2.0 ug/L 03/10/14 09:25 03/10/14 22:55 ND 0.040 0.020 mg/L 03/10/14 09:25 03/10/14 22:55 ND 10 2.0 ug/L 03/10/14 09:25 03/10/14 22:55 ND 10 3.0 ug/L 03/10/14 09:25 03/10/14 22:55 ND 10 3.0 ug/L 03/10/14 09:25 03/10/14 22:55 16.4 J,DX 20 9.0 ug/L 03/10/14 09:25 03/10/14 22:55

Lab Sample ID: LCS 440-166031/2-B

Matrix: Water

Analysis Batch: 168091

Client Sample ID: Lab Control Sample Prep Type: Dissolved

Prep Batch: 167768

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	500	444		ug/L		89	85 _ 115	
Arsenic	500	491		ug/L		98	85 _ 115	
Boron	0.500	0.469		mg/L		94	85 - 115	
Beryllium	500	487		ug/L		97	85 _ 115	
Chromium	500	479		ug/L		96	85 _ 115	
Iron	0.500	0.490		mg/L		98	85 _ 115	
Nickel	500	471		ug/L		94	85 _ 115	
Vanadium	500	493		ug/L		99	85 - 115	
Zinc	500	487		ug/L		97	85 _ 115	

Lab Sample ID: 440-71673-F-1-C MS

Matrix: Water

Analysis Batch: 168091

Client Sample ID: Matrix Spike

Prep Type: Dissolved Prep Batch: 167768

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	57	QP	500	541		ug/L		97	70 - 130	
Arsenic	ND	QP	500	511		ug/L		102	70 - 130	
Boron	0.065	QP	0.500	0.556		mg/L		98	70 - 130	
Beryllium	ND	QP	500	508		ug/L		102	70 - 130	
Chromium	ND	QP	500	496		ug/L		99	70 - 130	
Iron	0.066	QP	0.500	0.568		mg/L		100	70 - 130	
Nickel	2.4	J,DX QP	500	482		ug/L		96	70 - 130	
Vanadium	ND	QP	500	515		ug/L		103	70 - 130	
Zinc	10	J,DX MB	500	504		ug/L		99	70 - 130	

Client: Haley & Aldrich, Inc. Project/Site: Boeing SSFL Outfall 009 Annual

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 440-71673-F-1-D MSD

Matrix: Water

Analysis Batch: 168091

Client Sample ID: Matrix Spike Duplicate

Prep Type: Dissolved

Prep Batch: 167768

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	57	QP	500	554		ug/L		99	70 - 130	2	20
Arsenic	ND	QP	500	518		ug/L		104	70 - 130	1	20
Boron	0.065	QP	0.500	0.561		mg/L		99	70 - 130	1	20
Beryllium	ND	QP	500	518		ug/L		104	70 - 130	2	20
Chromium	ND	QP	500	500		ug/L		100	70 - 130	1	20
Iron	0.066	QP	0.500	0.580		mg/L		103	70 - 130	2	20
Nickel	2.4	J,DX QP	500	489		ug/L		97	70 - 130	1	20
Vanadium	ND	QP	500	521		ug/L		104	70 - 130	1	20
Zinc	10	J,DX MB	500	509		ug/L		100	70 - 130	1	20

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 440-168548/1-A

Matrix: Water

Analysis Batch: 168765

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 168548

	MB	MB MB										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Cadmium	ND		1.0	0.25	ug/L		03/12/14 12:34	03/12/14 17:45	1			
Copper	ND		2.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:45	1			
Lead	ND		1.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:45	1			
Antimony	ND		2.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:45	1			
Selenium	ND		2.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:45	1			
Thallium	ND		1.0	0.50	ug/L		03/12/14 12:34	03/12/14 17:45	1			
Silver	ND		1.0	0.50	ua/l		03/12/14 12:34	03/12/14 17:45	1			

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 440-168548/2-A **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 168765

Prep Batch: 168548

	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cadmium	80.0	81.2		ug/L		102	85 - 115		
Copper	80.0	80.2		ug/L		100	85 - 115		
Lead	80.0	84.5		ug/L		106	85 - 115		
Antimony	80.0	82.0		ug/L		103	85 - 115		
Selenium	80.0	81.3		ug/L		102	85 - 115		
Thallium	80.0	82.6		ug/L		103	85 - 115		
Silver	80.0	80.4		ug/L		100	85 - 115		

Lab Sample ID: 440-71648-1 MS

Matrix: Water

Analysis Batch: 168765

Client Sample ID: Outfall 009_20140228_Comp **Prep Type: Total Recoverable**

Prep Batch: 168548

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	ND	-	80.0	80.9		ug/L		101	70 - 130	
Copper	8.2		80.0	84.5		ug/L		95	70 - 130	
Lead	9.6		80.0	92.5		ug/L		104	70 - 130	
Antimony	0.70	J,DX	80.0	77.1		ug/L		96	70 - 130	
Selenium	ND		80.0	78.4		ug/L		98	70 - 130	

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 440-71648-1 MS

Matrix: Water

Analysis Batch: 168765

Client Sample ID: Outfall 009_20140228_Comp **Prep Type: Total Recoverable**

Prep Batch: 168548

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Thallium	ND		80.0	81.8		ug/L		102	70 - 130	 _
Silver	ND		80.0	80.7		ug/L		101	70 - 130	

Lab Sample ID: 440-71648-1 MSD

Matrix: Water

Analysis Batch: 168765

Client Sample ID: Outfall 009_20140228_Comp

Prep Type: Total Recoverable

Prep Batch: 168548

Allalysis Datell. 100703								Daten. I	100340		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		80.0	77.9		ug/L		97	70 - 130	4	20
Copper	8.2		80.0	84.4		ug/L		95	70 - 130	0	20
Lead	9.6		80.0	91.7		ug/L		103	70 - 130	1	20
Antimony	0.70	J,DX	80.0	71.4		ug/L		88	70 - 130	8	20
Selenium	ND		0.08	77.5		ug/L		97	70 - 130	1	20
Thallium	ND		80.0	81.3		ug/L		102	70 - 130	1	20
Silver	ND		80.0	78.2		ug/L		98	70 - 130	3	20

Lab Sample ID: MB 440-166031/1-C

Matrix: Water

Analysis Batch: 168114

Client Sample ID: Method Blank

Prep Type: Dissolved

Prep Batch: 167775

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND	1.0	0.25	ug/L		03/10/14 09:45	03/10/14 21:34	1
Copper	ND	2.0	0.50	ug/L		03/10/14 09:45	03/10/14 21:34	1
Lead	ND	1.0	0.50	ug/L		03/10/14 09:45	03/10/14 21:34	1
Antimony	ND	2.0	0.50	ug/L		03/10/14 09:45	03/10/14 21:34	1
Selenium	ND	2.0	0.50	ug/L		03/10/14 09:45	03/10/14 21:34	1
Thallium	ND	1.0	0.50	ug/L		03/10/14 09:45	03/10/14 21:34	1
Silver	ND	1.0	0.50	ug/L		03/10/14 09:45	03/10/14 21:34	1

мв мв

Lab Sample ID: LCS 440-166031/2-C

Matrix: Water

Analysis Batch: 168114

Client Sample ID: Lab Control Sample

Prep Type: Dissolved Prep Batch: 167775

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Cadmium 80.0 74.8 ug/L 94 85 - 115 80.0 79.5 99 85 - 115 Copper ug/L 80.0 77.2 97 Lead ug/L 85 - 115 Antimony 80.0 78.0 98 85 - 115 ug/L Selenium 80.0 80.7 ug/L 101 85 - 115 Thallium 80.0 76.2 ug/L 95 85 - 115 Silver 80.0 81.2 ug/L 102 85 - 115

Lab Sample ID: 440-71553-O-1-D MS

Matrix: Water

Analysis Batch: 168114

Client Sample ID: Matrix Spike **Prep Type: Dissolved**

Prep Batch: 167775

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cadmium ND QP 80.0 76.0 95 ug/L 70 - 130 Copper 3.6 80.0 70 - 130 84.2 ug/L 101

TestAmerica Irvine

Page 40 of 122

Client: Haley & Aldrich, Inc. Project/Site: Boeing SSFL Outfall 009 Annual

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 440-71553-O-1-D MS **Matrix: Water**

Analysis Batch: 168114

Client Sample ID: Matrix Spike **Prep Type: Dissolved**

Prep Batch: 167775

c.
ts
130
130
130
130
130
1 1

Lab Sample ID: 440-71553-O-1-E MSD

Matrix: Water

Client Sample ID: Matrix Spike Duplicate

Prep Type: Dissolved

Analysis Batch: 168114								Prep Batch: 167			
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND	QP	80.0	74.9		ug/L		94	70 - 130	1	20
Copper	3.6		80.0	82.2		ug/L		98	70 - 130	2	20
Lead	ND	QP	80.0	78.1		ug/L		98	70 - 130	0	20
Antimony	ND	QP	80.0	79.0		ug/L		99	70 - 130	1	20
Selenium	ND		80.0	80.4		ug/L		100	70 - 130	1	20
Thallium	ND	QP	80.0	78.0		ug/L		97	70 - 130	1	20
Silver	ND	QP	80.0	80.4		ug/L		100	70 - 130	0	20

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 440-168770/1-A

Matrix: Water

Analysis Batch: 169065

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 168770

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.10	ug/L		03/13/14 08:13	03/13/14 16:42	1

8.28

ug/L

Lab Sample ID: LCS 440-168770/2-A

Matrix: Water

Analysis Batch: 169065

Client Sample ID: Lab Control Sample

85 - 115

Prep Type: Total/NA

Prep Batch: 168770

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

8.00

Lab Sample ID: 440-71648-1 MS

Matrix: Water

Mercury

Analysis Batch: 169065

Client Sample ID: Outfall 009_20140228_Comp

104

Prep Type: Total/NA

Prep Batch: 168770

%Rec.

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Mercury ND 8.00 8.24 ug/L 103 70 - 130

Lab Sample ID: 440-71648-1 MSD

Matrix: Water

Analysis Batch: 169065

Client Sample ID: Outfall 009_20140228_Comp

Prep Type: Total/NA **Prep Batch: 168770** RPD %Rec.

Spike MSD MSD Sample Sample Result Qualifier Analyte Result Qualifier Added Unit %Rec Limit Mercury ND 8.00 8.46 106 20 ug/L 70 _ 130

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Prep Batch: 168757

Prep Type: Dissolved

Prep Batch: 168757

Prep Type: Total/NA

Prep Batch: 168817

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 245.1 - Mercury (CVAA) (Continued)

Lab Sample ID: MB 440-166031/1-E Client Sample ID: Method Blank **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 168953

мв мв

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.20 03/13/14 07:36 Mercury ND 0.10 ug/L 03/13/14 15:11

Lab Sample ID: LCS 440-166031/2-E Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 168953

Prep Type: Dissolved Prep Batch: 168757 LCS LCS Spike

Analyte Added Result Qualifier Unit %Rec Limits Mercury 8.00 8.29 ug/L 104 85 - 115

Client Sample ID: Outfall 009_20140228_Comp Lab Sample ID: 440-71648-1 MS

Matrix: Water

Analysis Batch: 168953

MB MB

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits QP 8.00 7.67 Mercury ND ug/L 70 - 130

Lab Sample ID: 440-71648-1 MSD Client Sample ID: Outfall 009_20140228_Comp **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 168953

Prep Batch: 168757 Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Limit ND QP 8.00 Mercury 8.12 ug/L 102 70 - 130 20

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 440-168817/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 168833

RL Result Qualifier MDL Unit D Prepared Dil Fac Analyte Analyzed

HEM 5.0 03/13/14 10:13 ND 1.4 mg/L 03/13/14 10:47

Lab Sample ID: LCS 440-168817/2-A **Matrix: Water**

Analysis Batch: 168833

Prep Batch: 168817 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits

HEM 20.0 16.6 mg/L 83 78 - 114

Lab Sample ID: LCSD 440-168817/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 168833 **Prep Batch: 168817**

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit HEM 20.0 16.1 mg/L 80 78 - 114

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Duplicate

Client Sample ID: Method Blank

Analyzed

03/07/14 14:15

Client Sample ID: Lab Control Sample

%Rec.

Limits

85 - 115

Client Sample ID: Outfall 009_20140228_Comp

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

RPD

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

RPD

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 440-167190/1

Matrix: Water

Analysis Batch: 167190

мв мв

Sample Sample Result Qualifier

MB MB

Sample Sample

Result Qualifier

1700

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 10 **Total Dissolved Solids** ND 5.0 mg/L 03/06/14 15:35

1000

LCS LCS

DU DU

Qualifier

MDL Unit

0.50 ma/L

LCS LCS

DU DU

126

Result Qualifier

1030

Result Qualifier

Result

RL

1.0

Spike

Added

1000

1650

958

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

D

%Rec

Prepared

%Rec

103

96

Lab Sample ID: LCS 440-167190/2

Matrix: Water

Analysis Batch: 167190

Spike Added

Analyte **Total Dissolved Solids**

Lab Sample ID: 440-72002-A-1 DU

Matrix: Water

Analysis Batch: 167190

Total Dissolved Solids

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-167473/2

Matrix: Water

Analysis Batch: 167473

Result

Qualifier ND Total Suspended Solids

Lab Sample ID: LCS 440-167473/1

Matrix: Water Analysis Batch: 167473

Analyte

Total Suspended Solids Lab Sample ID: 440-71648-1 DU

Matrix: Water

Analysis Batch: 167473

Total Suspended Solids 120

Method: SM 4500 CN E - Cyanide, Total (Low Level)

Lab Sample ID: MB 440-166911/1-A

Matrix: Water

Analyte

Analysis Batch: 166965

мв мв

Analyte Result Qualifier Cyanide, Total ND

RL 5.0 MDL Unit 3.0 ug/L

Prepared 03/05/14 16:59

Analyzed 03/05/14 22:04

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 166911

RPD

Limit

Dil Fac

RPD

Limit

Dil Fac

10

Client: Haley & Aldrich, Inc.

Cyanide, Total

Cyanide, Total

Fluoride

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

90 - 110

70 - 115

90 - 110

Client Sample ID: Matrix Spike Duplicate

101

Method: SM 4500 CN E - Cyanide, Total (Low Level) (Continued)

ND

Lab Sample ID: LCS 440-166911/2-A					Client	Sample	ID: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 166965							Prep Batch: 166911
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

101

97.4

ug/L

mg/L

Lab Sample ID: 440-71837-L-5-B MS Matrix: Water Analysis Batch: 166965									Client	Sample ID: Matr Prep Type: Di Prep Batch	ssolved
	-	Sample	Sample	Spike	MS	MS				%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	

100

100

Lab Sample ID: 440-71837-L-5-	-C MSD						Client Sa	ample ID): Matrix S _l	pike Dur	licate
Matrix: Water									Prep Ty	pe: Diss	olved
Analysis Batch: 166965									Prep l	Batch: 1	66911
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	ND		100	96.1	-	ug/L		96	70 - 115	1	15

Method: SM 4500 F C - Fluoride

Lab Sample ID: 440-71565-D-5 MSD

Lab Sample ID: MB 440-167873/10	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 167873	
MR MR	

Analyte	Result Qua	alifier RL	MDL (Unit E	D	Prepared	Analyzed	Dil Fac
Fluoride	ND	0.10	0.020	mg/L			03/10/14 10:56	1

Lab Sample ID: LCS 440-167873/9					Client	Sample	ID: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 167873							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

0.939

0.995

Lab Sample ID: 440-71565-D-5 MS Matrix: Water								Client	•	: Matrix Spike ype: Total/NA
Analysis Batch: 167873										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	0.31		1.00	1.37		mg/L		106	80 - 120	

Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 167873											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	0.31		1.00	1.37		mg/L		106	80 - 120	0	20

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 900.0 - Gross Alpha and Gross Beta Radioactivity

Lab Sample ID: MB 160-109795/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 110776 Prep Batch: 109795

			Count	i otai					
	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Gross Alpha	0.7193	U	0.882	0.886	1.46	pCi/L	03/11/14 12:28	03/16/14 20:17	1
Gross Beta	-0.07036	U	0.523	0.523	0.934	pCi/L	03/11/14 12:28	03/16/14 20:17	1

Lab Sample ID: LCS 160-109795/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 109795** Analysis Batch: 110776 Total LCS LCS Spike Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ MDC Unit %Rec Limits Gross Alpha 50.1 56.17 7.90 1.58 pCi/L 112 75 - 125

Lab Sample ID: LCSB 160-109795/3-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 110776** Prep Batch: 109795 Total

Spike LCSB LCSB Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ MDC Unit %Rec Limits Gross Beta 97.8 99.03 10.4 0.906 pCi/L 101 75 - 125

Lab Sample ID: 440-71432-P-1-J MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA Analysis Batch: 110776 **Prep Batch: 109795**

Total Sample Sample Spike MS MS Uncert. %Rec. Added MDC Unit Analyte Result Qual Result Qual $(2\sigma + / -)$ %Rec Limits Gross Alpha 0.735 U 50.1 56.38 7.70 1.16 pCi/L 112 35 - 150

Lab Sample ID: 440-71432-P-1-K MSBT Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 110776 Total Spike MSRT MSRT Uncert. %Rec. Sample Sample Analyte Added MDC Unit %Rec Result Qual Result Qual $(2\sigma + / -)$ Limits Gross Beta 1.87 97.8 101.9 10.7 0.863 pCi/L 102 89 - 143

Lab Sample ID: 440-71432-P-1-I DU **Client Sample ID: Duplicate**

Matrix: Water Prep Type: Total/NA Analysis Batch: 110776 Prep Batch: 109795

Total DU DU Sample Sample Uncert. RER Analyte Result Qual Result Qual $(2\sigma + / -)$ MDC Unit RER Limit Gross Alpha 0.735 Ū 1.226 Ū 0.896 1.27 pCi/L 0.29 Gross Beta 1.87 0.668 0.844 pCi/L 1.799 0.05

TestAmerica Irvine

Prep Batch: 109795

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 901.1 - Cesium 137 & Other Gamma Emitters (GS)

Lab Sample ID: MB 160-108350/1-A

Matrix: Water

Analysis Batch: 108749

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 108350

			Count	Total					
	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Cesium-137	0.3382	U	6.82	6.82	13.1	pCi/L	03/04/14 15:31	03/05/14 19:17	1
Potassium-40	-46.42	U	206	206	242	pCi/L	03/04/14 15:31	03/05/14 19:17	1

Lab Sample ID: LCS 160-108350/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 108751

Prep Type: Total/NA

Prep Batch: 108350

				rotar					
	Spike	LCS	LCS	Uncert.				%Rec.	
Analyte	Added	Result	Qual	(2σ+/-)	MDC	Unit	%Rec	Limits	
Americium-241	137000	136200		15700	469	pCi/L	99	90 - 111	
Cesium-137	50300	50870		5050	174	pCi/L	101	90 - 111	
Cobalt-60	58600	58100		5730	88.8	pCi/L	99	89 - 110	

Lab Sample ID: 440-71432-P-1-D DU **Client Sample ID: Duplicate**

Matrix: Water

Analysis Batch: 108757

Prep Type: Total/NA

Prep Batch: 108350

Total Sample Sample DU DU Uncert. RER Result Qual Result Qual Analyte (2σ+/-) MDC Unit RER Limit -0.785 U 2.559 U Cesium-137 5.71 9.99 pCi/L 0.28 Potassium-40 -58.4 U -90.57 U 429 0.04 228 pCi/L

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-108343/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 112760

Prep Type: Total/NA

Prep Batch: 108343

			Count	iotai					
	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.01807	Ū	0.0276	0.0276	0.0476	pCi/L	03/04/14 14:21	03/26/14 06:48	1

Total

MB MB

Carrier %Yield Qualifier Limits Prepared Dil Fac Analyzed

40 - 110 Ba Carrier 03/04/14 14:21 03/26/14 06:48 107

Total

Lab Sample ID: LCS 160-108343/2-A **Client Sample ID: Lab Control Sample**

Count

Matrix: Water

Analysis Batch: 112760

Prep Type: Total/NA

Prep Batch: 108343

LCS LCS %Rec. Spike Uncert. Analyte Added (2σ+/-) MDC Unit Limits Result Qual %Rec Radium-226 11.2 10 45 1.01 0.0622 pCi/L 93 68 - 137

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 106 40 - 110

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample ID: 440-71553-A-3-J DU

Matrix: Water

Analysis Batch: 112760

Client Sample ID: Duplicate Prep Type: Total/NA

Prep Batch: 108343

Total

	Sample	Sample	DU	DU	Uncert.				RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	MDC	Unit	RER	Limit
Radium-226	0.0759		 0.04733	U	0.0422	0.0647	pCi/L	 0.34	1

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 105 40 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-108344/1-A Client Sample ID: Method Blank

Total

Matrix: Water

Analysis Batch: 110545

Count

Prep Type: Total/NA

Prep Batch: 108344

MB MB Uncert. Uncert. Dil Fac Analyte Result Qualifier (2σ+/-) (2σ+/-) MDC Unit Prepared Analyzed 03/04/14 14:31 Radium-228 0.02881 U 0.162 0.162 0.287 pCi/L 03/14/14 10:56

MB MB

Carrier	%Yield	Qualifier Limits	Prepared	Analyzed	Dil Fac
Ba Carrier	107	40 - 110	03/04/14 14:31	03/14/14 10:56	1
Y Carrier	86.3	40 - 110	03/04/14 14:31	03/14/14 10:56	1

Lab Sample ID: LCS 160-108344/2-A **Client Sample ID: Lab Control Sample**

Total

Matrix: Water

Matrix: Water

Analysis Batch: 110545

Analysis Batch: 110545

Prep Type: Total/NA

Prep Batch: 108344

LCS LCS Spike Uncert. %Rec. Analyte Added Result Qual (2σ+/-) MDC Unit %Rec Limits Radium-228 3.94 3.581 0.510 0.305 pCi/L 56 - 140 91

LCS LCS

Carrier	%Yield	Qualifier	Limits
Ba Carrier	106		40 - 110
Y Carrier	86.3		40 - 110

Lab Sample ID: 440-71553-A-3-K DU **Client Sample ID: Duplicate**

Prep Type: Total/NA

Prep Batch: 108344

RER

Total Uncert.

Analyte	Result Qual	Result Qual	(2σ+/-)	MDC Unit	RER	Limit
Radium-228	0.224 U	0.5199	0.237	0.337 pCi/L	0.68	1

DU DU

DU DU

Sample Sample

Carrier	%Yield	Qualifier	Limits
Ba Carrier	105		40 - 110
Y Carrier	89.2		40 - 110

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Method: 905 - Strontium-90 (GFPC)

Lab Sample ID: MB 160-108916/1-A

Lab Sample ID: LCS 160-108916/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 110775

Analyte

Analysis Batch: 110775

Client Sample ID: Method Blank	K
Prep Type: Total/NA	4

Prep Batch: 108916

Prepared Analyzed Dil Fac

Strontium-90	0.2009	U	0.159	0.160	0.252	pCi/L	03/06/14 12:43	03/17/14 15:52	1	
	MB MB									
Carrier	%Yield Qualit	ier Lin	nits				Prepared	Analyzed	Dil Fac	

Total

Uncert.

(2σ+/-)

MDC Unit

Count

Uncert.

(2σ+/-)

Sr Carrier 91.1 40 - 110 Y Carrier 40 - 110 90.4

мв мв

Result Qualifier

03/06/14 12:43 03/17/14 15:52

03/17/14 15:52

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 108916

Prep Batch: 108916

03/06/14 12:43

Total LCS LCS %Rec. Spike Uncert. Added MDC Unit Limits Analyte Result Qual $(2\sigma + / -)$ %Rec Strontium-90 9.12 9.942 0.987 0.263 pCi/L 109 90 - 134

LCS LCS Carrier %Yield Qualifier Limits Sr Carrier 92.4 40 - 110 86.7 40 - 110 Y Carrier

Lab Sample ID: 440-71553-A-3-G DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 110775

Total Sample Sample DU DU Uncert. RER Analyte Result Qual Result Qual $(2\sigma + / -)$ MDC Unit RER Limit Strontium-90 0.0228 U -0.07515 U 0.266 pCi/L 0.141 0.32

DU DU Carrier %Yield Qualifier Limits Sr Carrier 88.5 40 - 110 Y Carrier 93.6 40 - 110

Method: 906.0 - Tritium, Total (LSC)

Lab Sample ID: MB 160-111474/1-A

Matrix: Water

Analysis Batch: 111974

Client Sample ID: Metho	d Blank
Pren Tyne: T	otal/NA

Prep Batch: 111474

			Count	iotai					
	МВ	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	MDC	Unit	Prepared	Analyzed	Dil Fac
Tritium	86.04	U	160	160	276	pCi/L	03/19/14 07:01	03/20/14 16:04	1

Client: Haley & Aldrich, Inc.

Analysis Batch: 111974

Project/Site: Boeing SSFL Outfall 009 Annual

Lab Sample ID: LCS 160-111474/2-A

Method: 906.0 - Tritium, Total (LSC) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 111474

Total LCS LCS %Rec. Spike Uncert. Added Result Qual (2σ+/-) MDC Unit %Rec Limits Analyte 3600 Tritium 3543 524 279 pCi/L 74 - 114

Lab Sample ID: 440-71553-Y-1-B MS Client Sample ID: Matrix Spike

Matrix: Water

Matrix: Water

Analysis Batch: 111974

Prep Type: Total/NA Prep Batch: 111474

Total Sample Sample Spike MS MS Uncert. %Rec. Result Qual Analyte Result Qual Added $(2\sigma + / -)$ MDC Unit %Rec Limits 6.31 U 3600 Tritium 3709 537 276 pCi/L 103 67 - 130

Lab Sample ID: 440-71648-1 DU Client Sample ID: Outfall 009_20140228_Comp

Matrix: Water

Analysis Batch: 111974

Prep Type: Total/NA

Prep Batch: 111474

Total Sample Sample DU DU Uncert. RER Result Qual Result Qual (2σ+/-) MDC Unit RER Limit Analyte 11.7 U 27.93 U Tritium 150 273 pCi/L 0.05

Method: A-01-R - Isotopic Uranium (Alpha Spectrometry)

Lab Sample ID: MB 160-109757/1-A Client Sample ID: Method Blank

Total

Matrix: Water

Analysis Batch: 109997

Prep Type: Total/NA **Prep Batch: 109757**

MR MR Uncert. Uncert. (2σ+/-) (2σ+/-) MDC Unit Analyte Result Qualifier Prepared Analyzed Dil Fac Total Uranium -0.04656 U 0.168 0.168 0.269 pCi/L 03/11/14 09:43 03/12/14 17:40

Lab Sample ID: LCS 160-109757/2-A Client Sample ID: Lab Control Sample

Count

Matrix: Water Prep Type: Total/NA

Analysis Batch: 110043 Prep Batch: 109757 Total Spike LCS LCS Uncert. %Rec.

Analyte Added Result Qual $(2\sigma + / -)$ MDC Unit %Rec Limits Uranium-234 12.7 13.83 1.62 0.261 pCi/L 109 84 - 120 Uranium-238 1.55 0.202 pCi/L 101 13.0 13.09 83 _ 121

LCS LCS Tracer %Yield Qualifier

Limits 30 - 110 Uranium-232 80.6

Lab Sample ID: 440-71432-P-1-G DU **Client Sample ID: Duplicate**

Matrix: Water Prep Type: Total/NA Prep Batch: 109757 Analysis Batch: 110056

Total Sample Sample DU DU Uncert. RER Result Qual Result Qual (2σ+/-) Analyte MDC Unit RER Limit 0.116 U 0.01477 U pCi/L **Total Uranium** 0.1538 0.251 0.36

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

GC/MS VOA

Analysis Batch: 165919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71366-D-1 MS	Matrix Spike	Total/NA	Water	624	_
440-71366-D-1 MSD	Matrix Spike Duplicate	Total/NA	Water	624	
440-71418-1	Outfall009_20140228_Grab	Total/NA	Water	624	
440-71418-2	TB-20140228	Total/NA	Water	624	
LCS 440-165919/5	Lab Control Sample	Total/NA	Water	624	
MB 440-165919/4	Method Blank	Total/NA	Water	624	

Analysis Batch: 166328

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71418-1	Outfall009_20140228_Grab	Total/NA	Water	624	 -
440-71418-1 MS	Outfall009_20140228_Grab	Total/NA	Water	624	
440-71418-1 MSD	Outfall009_20140228_Grab	Total/NA	Water	624	
440-71418-2	TB-20140228	Total/NA	Water	624	
LCS 440-166328/4	Lab Control Sample	Total/NA	Water	624	
MB 440-166328/3	Method Blank	Total/NA	Water	624	

GC/MS Semi VOA

Prep Batch: 166462

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	625	
LCS 440-166462/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 440-166462/3-A	Lab Control Sample Dup	Total/NA	Water	625	
MB 440-166462/1-A	Method Blank	Total/NA	Water	625	

Analysis Batch: 168395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	625	166462
LCS 440-166462/2-A	Lab Control Sample	Total/NA	Water	625	166462
LCSD 440-166462/3-A	Lab Control Sample Dup	Total/NA	Water	625	166462
MB 440-166462/1-A	Method Blank	Total/NA	Water	625	166462

GC Semi VOA

Prep Batch: 166337

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	608	
LCS 440-166337/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCS 440-166337/6-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 440-166337/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 440-166337/7-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 440-166337/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 166771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	608 Pesticides	166337
LCS 440-166337/2-A	Lab Control Sample	Total/NA	Water	608 Pesticides	166337
LCSD 440-166337/3-A	Lab Control Sample Dup	Total/NA	Water	608 Pesticides	166337
MB 440-166337/1-A	Method Blank	Total/NA	Water	608 Pesticides	166337

TestAmerica Irvine

Page 50 of 122

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

GC Semi VOA (Continued)

Analysis Batch: 167229

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	608 PCB LL	166337
LCS 440-166337/6-A	Lab Control Sample	Total/NA	Water	608 PCB LL	166337
LCSD 440-166337/7-A	Lab Control Sample Dup	Total/NA	Water	608 PCB LL	166337
MB 440-166337/1-A	Method Blank	Total/NA	Water	608 PCB LL	166337

Prep Batch: 216000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	3510C	
LCS 280-216000/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 280-216000/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 280-216000/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 216330

Lab Sample ID 440-71648-1	Client Sample ID Outfall 009_20140228_Comp	Prep Type Total/NA	Matrix Water	Method 8141A	Prep Batch 216000
LCS 280-216000/2-A	Lab Control Sample	Total/NA	Water	8141A	216000
LCSD 280-216000/3-A	Lab Control Sample Dup	Total/NA	Water	8141A	216000
MB 280-216000/1-A	Method Blank	Total/NA	Water	8141A	216000

HPLC/IC

Analysis Batch: 165606

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71405-A-3 MS	Matrix Spike	Total/NA	Water	218.6	
440-71405-A-3 MSD	Matrix Spike Duplicate	Total/NA	Water	218.6	
440-71418-1	Outfall009_20140228_Grab	Total/NA	Water	218.6	
LCS 440-165606/2	Lab Control Sample	Total/NA	Water	218.6	
MB 440-165606/3	Method Blank	Total/NA	Water	218.6	
MRL 440-165606/4	Lab Control Sample	Total/NA	Water	218.6	

Analysis Batch: 165941

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	300.0	
440-71648-1 MS	Outfall 009_20140228_Comp	Total/NA	Water	300.0	
440-71648-1 MSD	Outfall 009_20140228_Comp	Total/NA	Water	300.0	
LCS 440-165941/2	Lab Control Sample	Total/NA	Water	300.0	
MB 440-165941/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 166203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71579-C-1 MS	Matrix Spike	Total/NA	Water	300.0	
440-71579-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	300.0	
LCS 440-166203/2	Lab Control Sample	Total/NA	Water	300.0	
MB 440-166203/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 168453

,					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	314.0	
440-72320-M-3 MS	Matrix Spike	Total/NA	Water	314.0	

TestAmerica Irvine

Page 51 of 122

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

HPLC/IC (Continued)

Analysis Batch: 168453 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-72320-M-3 MSD	Matrix Spike Duplicate	Total/NA	Water	314.0	
LCS 440-168453/6	Lab Control Sample	Total/NA	Water	314.0	
MB 440-168453/3	Method Blank	Total/NA	Water	314.0	
MRL 440-168453/5	Lab Control Sample	Total/NA	Water	314.0	

Specialty Organics

Analysis Batch: 4065015

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total	Water	1613B	
H4C060000015B	Method Blank	Total	Water	1613B	
H4C060000015C	Lab Control Sample	Total	Water	1613B	

Prep Batch: 4065015_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total	Water	1613	
H4C060000015B	Method Blank	Total	Water	1613	
H4C060000015C	Lab Control Sample	Total	Water	1613	

Metals

Filtration Batch: 166031

- Thirdion Batch: 10000	•				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71553-O-1-D MS	Matrix Spike	Dissolved	Water	FILTRATION	
440-71553-O-1-E MSD	Matrix Spike Duplicate	Dissolved	Water	FILTRATION	
440-71648-1	Outfall 009_20140228_Comp	Dissolved	Water	FILTRATION	
440-71648-1 MS	Outfall 009_20140228_Comp	Dissolved	Water	FILTRATION	
440-71648-1 MSD	Outfall 009_20140228_Comp	Dissolved	Water	FILTRATION	
440-71673-F-1-C MS	Matrix Spike	Dissolved	Water	FILTRATION	
440-71673-F-1-D MSD	Matrix Spike Duplicate	Dissolved	Water	FILTRATION	
LCS 440-166031/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
LCS 440-166031/2-C	Lab Control Sample	Dissolved	Water	FILTRATION	
LCS 440-166031/2-E	Lab Control Sample	Dissolved	Water	FILTRATION	
MB 440-166031/1-B	Method Blank	Dissolved	Water	FILTRATION	
MB 440-166031/1-C	Method Blank	Dissolved	Water	FILTRATION	
MB 440-166031/1-E	Method Blank	Dissolved	Water	FILTRATION	
440-71673-F-1-D MSD LCS 440-166031/2-B LCS 440-166031/2-C LCS 440-166031/2-E MB 440-166031/1-B MB 440-166031/1-C	Matrix Spike Duplicate Lab Control Sample Lab Control Sample Lab Control Sample Method Blank Method Blank	Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved	Water Water Water Water Water Water	FILTRATION FILTRATION FILTRATION FILTRATION FILTRATION FILTRATION	

Prep Batch: 167768

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Dissolved	Water	200.2	166031
440-71673-F-1-C MS	Matrix Spike	Dissolved	Water	200.2	166031
440-71673-F-1-D MSD	Matrix Spike Duplicate	Dissolved	Water	200.2	166031
LCS 440-166031/2-B	Lab Control Sample	Dissolved	Water	200.2	166031
MB 440-166031/1-B	Method Blank	Dissolved	Water	200.2	166031

Prep Batch: 167775

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71553-O-1-D MS	Matrix Spike	Dissolved	Water	200.2	166031
440-71553-O-1-E MSD	Matrix Spike Duplicate	Dissolved	Water	200.2	166031
440-71648-1	Outfall 009_20140228_Comp	Dissolved	Water	200.2	166031

TestAmerica Irvine

5/8/2014

.

Page 52 of 122

- 3

4

5

7

_

10

12

13

14

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Metals (Continued)

Prep Batch: 167775 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 440-166031/2-C	Lab Control Sample	Dissolved	Water	200.2	166031
MB 440-166031/1-C	Method Blank	Dissolved	Water	200.2	166031

Analysis Batch: 168091

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Dissolved	Water	200.7 Rev 4.4	167768
440-71673-F-1-C MS	Matrix Spike	Dissolved	Water	200.7 Rev 4.4	167768
440-71673-F-1-D MSD	Matrix Spike Duplicate	Dissolved	Water	200.7 Rev 4.4	167768
LCS 440-166031/2-B	Lab Control Sample	Dissolved	Water	200.7 Rev 4.4	167768
MB 440-166031/1-B	Method Blank	Dissolved	Water	200.7 Rev 4.4	167768

Analysis Batch: 168114

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71553-O-1-D MS	Matrix Spike	Dissolved	Water	200.8	167775
440-71553-O-1-E MSD	Matrix Spike Duplicate	Dissolved	Water	200.8	167775
440-71648-1	Outfall 009_20140228_Comp	Dissolved	Water	200.8	167775
LCS 440-166031/2-C	Lab Control Sample	Dissolved	Water	200.8	167775
MB 440-166031/1-C	Method Blank	Dissolved	Water	200.8	167775

Prep Batch: 168494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total Recoverable	Water	200.2	
440-71648-1 MS	Outfall 009_20140228_Comp	Total Recoverable	Water	200.2	
440-71648-1 MSD	Outfall 009_20140228_Comp	Total Recoverable	Water	200.2	
LCS 440-168494/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-168494/1-A	Method Blank	Total Recoverable	Water	200.2	

Prep Batch: 168548

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total Recoverable	Water	200.2	
440-71648-1 MS	Outfall 009_20140228_Comp	Total Recoverable	Water	200.2	
440-71648-1 MSD	Outfall 009_20140228_Comp	Total Recoverable	Water	200.2	
LCS 440-168548/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-168548/1-A	Method Blank	Total Recoverable	Water	200.2	

Analysis Batch: 168689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total Recoverable	Water	200.7 Rev 4.4	168494
440-71648-1 MS	Outfall 009_20140228_Comp	Total Recoverable	Water	200.7 Rev 4.4	168494
440-71648-1 MSD	Outfall 009_20140228_Comp	Total Recoverable	Water	200.7 Rev 4.4	168494
LCS 440-168494/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	168494
MB 440-168494/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	168494

Prep Batch: 168757

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Dissolved	Water	245.1	166031
440-71648-1 MS	Outfall 009_20140228_Comp	Dissolved	Water	245.1	166031
440-71648-1 MSD	Outfall 009_20140228_Comp	Dissolved	Water	245.1	166031
LCS 440-166031/2-E	Lab Control Sample	Dissolved	Water	245.1	166031
MB 440-166031/1-E	Method Blank	Dissolved	Water	245.1	166031

TestAmerica Irvine

Page 53 of 122

3

6

8

9

10

12

13

14

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Metals (Continued)

Analysis Batch: 168765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total Recoverable	Water	200.8	168548
440-71648-1 MS	Outfall 009_20140228_Comp	Total Recoverable	Water	200.8	168548
440-71648-1 MSD	Outfall 009_20140228_Comp	Total Recoverable	Water	200.8	168548
LCS 440-168548/2-A	Lab Control Sample	Total Recoverable	Water	200.8	168548
MB 440-168548/1-A	Method Blank	Total Recoverable	Water	200.8	168548

Prep Batch: 168770

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	245.1	
440-71648-1 MS	Outfall 009_20140228_Comp	Total/NA	Water	245.1	
440-71648-1 MSD	Outfall 009_20140228_Comp	Total/NA	Water	245.1	
LCS 440-168770/2-A	Lab Control Sample	Total/NA	Water	245.1	
MB 440-168770/1-A	Method Blank	Total/NA	Water	245.1	

Analysis Batch: 168941

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total Recoverable	Water	200.7 Rev 4.4	168494
440-71648-1 MS	Outfall 009_20140228_Comp	Total Recoverable	Water	200.7 Rev 4.4	168494
440-71648-1 MSD	Outfall 009_20140228_Comp	Total Recoverable	Water	200.7 Rev 4.4	168494
LCS 440-168494/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	168494
MB 440-168494/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	168494

Analysis Batch: 168953

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Dissolved	Water	245.1	168757
440-71648-1 MS	Outfall 009_20140228_Comp	Dissolved	Water	245.1	168757
440-71648-1 MSD	Outfall 009_20140228_Comp	Dissolved	Water	245.1	168757
LCS 440-166031/2-E	Lab Control Sample	Dissolved	Water	245.1	168757
MB 440-166031/1-E	Method Blank	Dissolved	Water	245.1	168757

Analysis Batch: 169065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	245.1	168770
440-71648-1 MS	Outfall 009_20140228_Comp	Total/NA	Water	245.1	168770
440-71648-1 MSD	Outfall 009_20140228_Comp	Total/NA	Water	245.1	168770
LCS 440-168770/2-A	Lab Control Sample	Total/NA	Water	245.1	168770
MB 440-168770/1-A	Method Blank	Total/NA	Water	245.1	168770

General Chemistry

Prep Batch: 166911

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	Distill/CN	
440-71837-L-5-B MS	Matrix Spike	Dissolved	Water	Distill/CN	
440-71837-L-5-C MSD	Matrix Spike Duplicate	Dissolved	Water	Distill/CN	
LCS 440-166911/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
MB 440-166911/1-A	Method Blank	Total/NA	Water	Distill/CN	

TestAmerica Irvine

6

8

10

11

13

14

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

General Chemistry (Continued)

Analysis Batch: 166965

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	SM 4500 CN E	166911
440-71837-L-5-B MS	Matrix Spike	Dissolved	Water	SM 4500 CN E	166911
440-71837-L-5-C MSD	Matrix Spike Duplicate	Dissolved	Water	SM 4500 CN E	166911
LCS 440-166911/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	166911
MB 440-166911/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	166911

Analysis Batch: 167190

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	SM 2540C	
440-72002-A-1 DU	Duplicate	Total/NA	Water	SM 2540C	
LCS 440-167190/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 440-167190/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 167473

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	SM 2540D	
440-71648-1 DU	Outfall 009_20140228_Comp	Total/NA	Water	SM 2540D	
LCS 440-167473/1	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 440-167473/2	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 167873

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71565-D-5 MS	Matrix Spike	Total/NA	Water	SM 4500 F C	
440-71565-D-5 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 F C	
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	SM 4500 F C	
LCS 440-167873/9	Lab Control Sample	Total/NA	Water	SM 4500 F C	
MB 440-167873/10	Method Blank	Total/NA	Water	SM 4500 F C	

Prep Batch: 168817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71418-1	Outfall009_20140228_Grab	Total/NA	Water	1664A	
LCS 440-168817/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 440-168817/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	
MB 440-168817/1-A	Method Blank	Total/NA	Water	1664A	

Analysis Batch: 168833

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-	-71418-1	Outfall009_20140228_Grab	Total/NA	Water	1664A	168817
LCS	440-168817/2-A	Lab Control Sample	Total/NA	Water	1664A	168817
LCS	D 440-168817/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	168817
MB 4	440-168817/1-A	Method Blank	Total/NA	Water	1664A	168817

Rad

Prep Batch: 108343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Ba	atch
440-71553-A-3-J DU	Duplicate	Total/NA	Water	PrecSep-21	
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	PrecSep-21	
LCS 160-108343/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
MB 160-108343/1-A	Method Blank	Total/NA	Water	PrecSep-21	

TestAmerica Irvine

5/8/2014

Page 55 of 122

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Rad (Continued)

Prep Batch: 108344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71553-A-3-K DU	Duplicate	Total/NA	Water	PrecSep_0	
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	PrecSep_0	
LCS 160-108344/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
MB 160-108344/1-A	Method Blank	Total/NA	Water	PrecSep_0	

Prep Batch: 108350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71432-P-1-D DU	Duplicate	Total/NA	Water	Fill_Geo-0	
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	Fill_Geo-0	
LCS 160-108350/2-A	Lab Control Sample	Total/NA	Water	Fill_Geo-0	
MB 160-108350/1-A	Method Blank	Total/NA	Water	Fill_Geo-0	

Prep Batch: 108916

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71553-A-3-G DU	Duplicate	Total/NA	Water	PrecSep-7	·
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	PrecSep-7	
LCS 160-108916/2-A	Lab Control Sample	Total/NA	Water	PrecSep-7	
MB 160-108916/1-A	Method Blank	Total/NA	Water	PrecSep-7	

Prep Batch: 109757

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71432-P-1-G DU	Duplicate	Total/NA	Water	ExtChrom	
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	ExtChrom	
LCS 160-109757/2-A	Lab Control Sample	Total/NA	Water	ExtChrom	
MB 160-109757/1-A	Method Blank	Total/NA	Water	ExtChrom	

Prep Batch: 109795

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71432-P-1-I DU	Duplicate	Total/NA	Water	Evaporation	
440-71432-P-1-J MS	Matrix Spike	Total/NA	Water	Evaporation	
440-71432-P-1-K MSBT	Matrix Spike	Total/NA	Water	Evaporation	
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	Evaporation	
LCS 160-109795/2-A	Lab Control Sample	Total/NA	Water	Evaporation	
LCSB 160-109795/3-A	Lab Control Sample	Total/NA	Water	Evaporation	
MB 160-109795/1-A	Method Blank	Total/NA	Water	Evaporation	

Prep Batch: 111474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71553-Y-1-B MS	Matrix Spike	Total/NA	Water	LSC_Dist_Susp	
440-71648-1	Outfall 009_20140228_Comp	Total/NA	Water	LSC_Dist_Susp	
440-71648-1 DU	Outfall 009_20140228_Comp	Total/NA	Water	LSC_Dist_Susp	
LCS 160-111474/2-A	Lab Control Sample	Total/NA	Water	LSC_Dist_Susp	
MB 160-111474/1-A	Method Blank	Total/NA	Water	LSC_Dist_Susp	

Biology

Analysis Batch: 166533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71418-1	Outfall009_20140228_Grab	Total/NA	Water	SM 9221E	

TestAmerica Irvine

2

4

၁ —

7

9

10

4.0

13

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Biology (Continued)

Analysis Batch: 166535

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71418-1	Outfall009_20140228_Grab	Total/NA	Water	SM 9221F	

4

5

6

8

9

11

14

14

Definitions/Glossary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Qualifiers

GC/MS VOA

LM MS and/or MSD above acceptance limits. See Blank Spike (LCS)

GC/MS Semi VOA

Quaimer	Qualifier Description
DA	Deletive several difference and of several

BA Relative percent difference out of control

J,DX Estimated value; value < lowest standard (MQL), but >than MDL

HPLC/IC

Qualifier	Qualifier Description
-----------	-----------------------

LN MS and/or MSD below acceptance limits. See Blank Spike (LCS)

J,DX Estimated value; value < lowest standard (MQL), but >than MDL

DIOXIN

J Estimated result. Result is less than the reporting limit.

Q Estimated maximum possible concentration (EMPC).

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Metals

Qualifier	Qualifier Description

QP Holding time Immediate. Analyzed as close to receipt as possible J,DX Estimated value; value < lowest standard (MQL), but >than MDL

MB Analyte present in the method blank
BB Sample > 4X spike concentration

Rad

U Result is less than the sample detection limit.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Irvine

5/8/2014

3

4

7

8

10

44

12

13

Ik

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-14
California	LA Cty Sanitation Districts	9	10256	01-31-15
California	State Program	9	2706	06-30-14
Hawaii	State Program	9	N/A	01-29-15 *
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-29-15
Northern Mariana Islands	State Program	9	MP0002	01-31-14 *
Oregon	NELAP	10	4005	01-29-15
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

Laboratory: TestAmerica Denver

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	DoD ELAP		2907.01	10-31-15
A2LA	ISO/IEC 17025		2907.01	10-31-15
Alabama	State Program	4	40730	09-30-12 *
Alaska (UST)	State Program	10	UST-30	04-05-15
Arizona	State Program	9	AZ0713	12-19-14
Arkansas DEQ	State Program	6	88-0687	06-01-14 *
California	State Program	9	2513	08-31-14
Colorado	State Program	8	N/A	09-30-14
Connecticut	State Program	1	PH-0686	09-30-14
Florida	NELAP	4	E87667	06-30-14 *
Georgia	State Program	4	N/A	06-30-14
Illinois	NELAP	5	200017	04-30-14 *
lowa	State Program	7	370	12-01-14
Kansas	NELAP	7	E-10166	04-30-14 *
Louisiana	NELAP	6	30785	06-30-14 *
Maine	State Program	1	CO0002	03-03-15
Maryland	State Program	3	268	03-31-14
Minnesota	NELAP	5	8-999-405	12-31-14
Nevada	State Program	9	CO0026	07-31-14
New Hampshire	NELAP	1	205310	04-28-14 *
New Jersey	NELAP	2	CO004	06-30-14 *
New Mexico	State Program	6	CO00026	06-30-14
New York	NELAP	2	11964	03-31-15
North Carolina DENR	State Program	4	358	12-31-14
North Dakota	State Program	8	R-034	06-30-14
Oklahoma	State Program	6	8614	08-31-14
Oregon	NELAP	10	CO200001	01-09-15
Pennsylvania	NELAP	3	68-00664	07-30-14 *
South Carolina	State Program	4	72002001	06-30-14
Texas	NELAP	6	T104704183-13-8	10-01-14
USDA	Federal		P330-13-00202	07-02-16
Utah	NELAP	8	CO00026	07-31-14
Virginia	NELAP	3	460232	06-14-14
Washington	State Program	10	C583	08-03-14

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Irvine

5/8/2014

11

12

10

Le

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Laboratory: TestAmerica Denver (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
West Virginia DEP	State Program	3	354	11-30-14
Wisconsin	State Program	5	999615430	08-31-14
Wyoming (UST)	A2LA	8	2907.01	10-31-15

Laboratory: TestAmerica Knoxville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0688	06-17-14
California	State Program	9	2423	06-30-14
Colorado	State Program	8	N/A	02-28-15
Connecticut	State Program	1	PH-0223	09-30-15
Florida	NELAP	4	E87177	06-30-14
Georgia	State Program	4	906	06-13-14
Hawaii	State Program	9	N/A	04-13-14
lowa	State Program	7	375	08-01-14
Kansas	NELAP	7	E-10349	10-31-14
Kentucky (DW)	State Program	4	90101	12-31-14
L-A-B	DoD ELAP		L2311	02-13-16
Louisiana	NELAP	6	83979	06-30-14
Louisiana	NELAP	6	LA110001	12-31-14
Maryland	State Program	3	277	03-31-14
Michigan	State Program	5	9933	04-13-14
Nevada	State Program	9	TN00009	07-31-14
New Jersey	NELAP	2	TN001	06-30-14
New York	NELAP	2	10781	04-01-14
North Carolina DENR	State Program	4	64	12-31-14
North Carolina DHHS	State Program	4	21705	07-31-14
Ohio VAP	State Program	5	CL0059	03-26-15
Oklahoma	State Program	6	9415	08-31-14
Pennsylvania	NELAP	3	68-00576	12-31-14
South Carolina	State Program	4	84001	06-30-14
Tennessee	State Program	4	2014	04-13-14
Texas	NELAP	6	T104704380-TX	08-31-14
USDA	Federal		P330-13-00260	08-29-16
Utah	NELAP	8	QUAN3	07-31-14
Virginia	NELAP	3	460176	09-14-14
Virginia	State Program	3	165	06-30-14
Washington	State Program	10	C593	01-19-15
West Virginia DEP	State Program	3	345	04-30-14
West Virginia DHHR	State Program	3	9955C	12-31-14
Wisconsin	State Program	5	998044300	08-31-14

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

 Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	MO00054	06-30-14
California	NELAP	9	09266CA	03-31-14 *
Connecticut	State Program	1	PH-0241	03-31-15
Florida	NELAP	4	E87689	06-30-14

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Irvine

2

5

7

9

11

. .

14

11:

Certification Summary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Laboratory: TestAmerica St. Louis (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Illinois	NELAP	5	200023	11-30-14
Iowa	State Program	7	373	12-01-14
Kansas	NELAP	7	E-10236	10-31-14
Kentucky (DW)	State Program	4	90125	12-31-14
L-A-B	DoD ELAP		L2305	01-10-16
Louisiana	NELAP	6	LA140007	12-31-14
Maryland	State Program	3	310	09-30-14
Missouri	State Program	7	780	06-30-14
Nevada	State Program	9	MO000542013-1	07-31-14
New Jersey	NELAP	2	MO002	06-30-14 *
New Mexico	State Program	6		06-30-10 *
New York	NELAP	2	11616	03-31-15
North Dakota	State Program	8	R207	06-30-14
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	2013-049	08-31-14
Pennsylvania	NELAP	3	68-00540	02-28-15
South Carolina	State Program	4	85002001	06-30-14
Texas	NELAP	6	T104704193-13-6	07-31-14
USDA	Federal		P330-07-00122	01-09-17
USEPA Reg V SDWA	Federal	1	WG-15J	08-30-14
Utah	NELAP	8	MO000542013-5	07-31-14
Virginia	NELAP	3	2236	06-14-14 *
Washington	State Program	10	C592	08-30-14
West Virginia DEP	State Program	3	381	08-30-14

TestAmerica Irvine

Page 61 of 122

5/8/2014

3

4

Q

9

11

12

13

14

 $^{^{\}star}$ Expired certification is currently pending renewal and is considered valid.

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675/ 786-0262

http://www.emsl.com E-mail: MicrobiologyLab@emsl.com

Project: Boeing SSFL Outfall 009 Annual / Project# 44009879 / Job# 440-71418-1 Date Amended:

Real-Time PCR Analysis for Human Bacteroides

Based on a published method SAM: 348 - 357, 2010), EMSL Test Code: M199, Revision No. 3, 04/18/2011

Lab Sample Number	Client Sample ID	Location	Amount Received	Amount Sampled	CEs /100 mL
0235-1	Outfall 009_2014 (440-71418-1)	N/A	150 mL Water	150 mL Water	None Detected

EMSL maintains liability limited to cost of analysis. Interpretation of the data contained in this report is the responsibility of the client. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. The above test report relates only to the items tested. EMSL bears no responsibility for sample collection activities or analytical method limitations.

Note: The PCR primer is HF183 and the qPCR probe and primer was evaluated in 2010 by EPA scientists. The real-time PCR based on HF183 detects human specific bacteroides predominantly with minor cross-detections on chicken and dog fecal materials. CEs: Cell Equivalents, measured by PCR using genomic DNA standards.

Quar L:

Quanyi "Charlie" Li, Ph.D. Director, DNA Analysis Laboratory

LABORATORY REPORT

Date:

March 5, 2014

Client:

Test America - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-14030103-001

Job No.:

440-71418-1

Sample ID.:

440-71418-1

Sample Control:

The sample was received by ATL in a chilled state, within the recommended hold

time and with the chain of custody record attached.

Date Sampled:

02/28/14

Date Received: Temp. Received:

03/01/14

Chlorine (TRC):

4.2°C 0.0 mg/l

Date Tested:

03/01/14 to 03/05/14

Sample Analysis:

The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample. All testing was conducted under the direct supervision of Joseph A. LeMay. Daily test readings were taken by Joseph A. LeMay (initialed: JAL) and Jacob LeMay (initialed: J).

Result Summary:

Sample ID.

Results

440-71418-1

100% Survival (TUa = 0.0)

Quality Control:

Reviewed and approved by:

Joseph A. LeMa

Laboratory Director

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Aquatic Testing Laboratories

Lab No.: A-14030103-001

Client/ID: TestAmerica 440-71418-1 Outfall 009

Start Date: 03/01/2014

TEST SUMMARY

Species: Pimephales promelas.

Age: (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 4.

Control water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C. Number of fish per chamber: 10.

QA/QC No.: RT-140301.

TEST DATA

			11201	DAIA						
	:	°C	DO			# D	ead		Analyst & Time	
		ر 	DO	pН	Α	В	С	D		eadings
INITIAL	Control	73./	8.3	79	0	6	0	0	2	
INITIAL	100%	ک. ا	8.1	8.0	0	0	0	0	1415	3-1-14
24 Hr	Control	19.9	8.0	8.0	0	0	0	8	1	
24 Hr	100%	ں ، تع	8.1	8 ~	Ø	ر ا	Ø	0	1400	3-2-14
48 Hr	Control	2.1	2.9	29	U	J	6	0	2	
46 FIF	100%	٤٠. ن	7.5	79	0	0	0	O	1345	3-3.11
Donous 1	Control	2.1	8.1	ξU	U	0	v	O	1	
Renewal	100%	١٠٠٧	81	gw	0	٥	0	a	1345	14
70 11-	Control	8.2	8.0	7.9	0	0	0	0	7	
72 Hr	100%	ں ۔وکے	75	7.8	2	0	0	U	1330	3-4-14
06 Un	Control	که. >	78	8.4	0	0	0	0	1	
96 Hr	100%	v, 3	2.6	8.1	0	0	0	U	1230	3-5-14

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: £./; Conductivity: 78.3 umho; Temp: 4.2°C; DO: 10.1 mg/l; Alkalinity: 10 mg/l; Hardness: 35 mg/l; NH₃-N: 0.2 mg/l.

Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No.

Control: Alkalinity: 55 mg/l; Hardness: 9/ mg/l; Conductivity: 275 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No.

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

Percent Survival In: Control: /w % 100% Sample: ______%

Chain of Custody Record

I	les:
I	⇉
I	3
I	⊈.
	8
1	

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297			0	Chain of Custody	of Cus		Record	<u>d</u>				TestA	THE LEADER IN ENVIRONMENTAL TESTING
Client Information (Sub Contract Lab)	Sampler:			Lab PM: Wilson,	on, Debby S	S			Carrier Tracking No(s):	ng No(s):		COC No: 440-30074.1	
Clent Contact: Shipping/Receiving	Phone:			E-Mail: debby	E-Mail: debby.wilson@testameric	testameric	ainc.com					Page: Page 1 of 1	
Company: Aquatic Testing Laboratories							Analys	Analysis Requested	ested			Job#: 440-71418-1	
Address: 4350 Transport #107,	Due Date Requested: 3/12/2014											Preservation Codes:	des:
City Ventura	TAT Requested (days):	s):									AND T	A - HCL B - NaOH C - Zn Acetata	M - Hexane N - None
State, Zip. CA, 93003					M 30							D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone:	PO#				- C-13						i indi	F - MeOH G - Amchlor	R - Na2S2SO3 S - H2SO4
Email:	WO#										S	I - Ice J - Dt Water	U - Acetone V - MCAA
Project Name: Boeing SSFL Outfall 009 Annual	Project #: 44009879			:	, EPA	U12					taine	K-EDTA L-EDA	W - ph 4-5 Z - other (specify)
Site:	SSOW#				minnov	21-R02-					oficion	Other:	
			Sample Type	Matrix (w=water, 9=solid,	(Acute FH	IOW, EFAG					l H imber		
Sample Identification - Client ID (Lab ID)	Sample Date	253	G=grab) Preserva	G=grab) BT=Tissue, A=Air)	X Fie								Special Instructions/Note:
Outfall 009_2014 (440-71418-1)	2/28/14	09:00 Pacific		Water	×								
						_			_				
											4		
											Line		
										+			
Possible Hazard Identification					Sampl	Sample Disposal	(A fee	ay be ass	essed if s	amples a	re retaine	may be assessed if samples are retained longer than 1 month)	month)
Deliverable Requested: I, II, III, IV, Other (specify)					Special	Special Instructions/QC Requirements	ns/QC Req	uirements	ents:		Alchive For	e ros	MOILINS
Empty Kit Relinquished by:	0	Date:			Time:				Method	Method of Shipment:			
Relinquished by	Date/Time/3///	0900		Company T	70	eceived by:		ج ح	•	Date/Time:	1-16	9:30	Company
Relinquished by:	Date/Time: / / Date/Time:	12:30		Company Company	Recei	elved by:				Date/Time:	_[\	1228	Company AC
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					Coo	Cooler Temperate	ure(s) °C and Other Remarks:	Other Rema	rks	4,2	14		

REFERENCE TOXICANT DATA

3

...

5

6

R

9

10

12

13

-

FATHEAD MINNOW ACUTE Reference Toxicant - SDS

QA/QC Batch No.: RT-140301

TEST SUMMARY

Species: Pimephales promelas.

Age: 12 days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF. Source: In-lab culture.

Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs. Test chamber: 600 ml beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

TEST DATA

					1,	LSI DA	1A						
		INITIAI	_			24 Hr					48 Hr		
Date/Time:	3-1-	14	1130	3 ~ 2	114		(1)	0	5-3	-14		11.	کن
Analyst:		1	2			1					1		
	°C	DO	pН	~	DO	pН	# D	ead	%	DO	pН	# D	ead
			pii		ЪО	pri	Α	В		100	рП	Α	В
Control	127	8-1	79	199	8.0	77	0	ں	Zv. 1	8,0	29	0	0
1.0 mg/l	179	8.3	79	198	gv	8.0	0	0	20. U	8,0	79	0	0
2.0 mg/l	17.4	8.3	79	197	ह 0	ر. ه	0	O	199	8. 1	24	0	0
4.0 mg/l	129	8.1	7.4	198	اء	8.0	0	O	19.2	8. }	79	1	(
8.0 mg/l	18.8	8-0	79	129	ر پ	8~1)	10	10	1	_	1	,	•
16.0 mg/l	19.8	٤. /	29	19.8	٤.٧	7.9	10	ιυ	ı	_	1	_	-

	F	RENEWA	\L			72 Hr					96 Hr		
Date/Time:	3-3	-14	1130	3-6	1-14		115	15	3-5-1	14		1115	-
Analyst:		1			-	2					2		
	°C	DO	pН	°C	DO	pН	# D	ead	°C	DO	aU.	# D	ead
		DO	pii	L		pm	Α	В		100	pН	Α	В
Control	20.1	8>	820	≥0. ₹	28	28	0	O	2.4	21	7-8	0	6
1.0 mg/l	2.7	6.4	Sus	υ3	28	29	0	0	٤٥. >	7.6	28	0	0
2.0 mg/l	ه٠/	8.>	2.0	ઝ . (8.0	2.4	O	0	ک <i>ی</i> ک	8.0	2.8	0	0
4.0 mg/l	20.1	8.3	8.0	25.1	c. 1	29	O	٥	<i>ک.</i> رح	8.2	7.8	J	0
8.0 mg/1		•	1	,	1	J	,	,	J	_	-	1	ĺ
16.0 mg/l	ن ا	1	u	~	-	~		-	1	/	_	_	

Comments:

Control: Alkalinity: 56 mg/l; Hardness: 71 mg/l; Conductivity: 275 umho.

SDS: Alkalinity: 55 mg/l; Hardness: 93 mg/l; Conductivity: 268 umho.

Concentration-response relationship acceptable? (see attached computer analysis):

response curve normal)

No (dose interrupted indicated or non-normal)

3

4

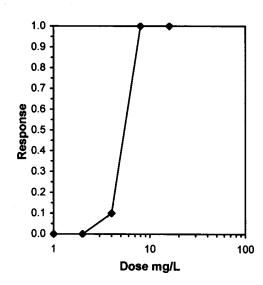
6

8

9

11

13


				Acute Fish Test-96	Hr Survival	
Start Date:	3/1/2014	11:30	Test ID:	RT140301f	Sample ID:	REF-Ref Toxicant
End Date:	3/5/2014	11:15	Lab ID:	CAATL-Aquatic Testing Lab	s Sample Type:	SDS-Sodium dodecyl sulfate
Sample Date:	3/1/2014		Protocol:	ACUTE-EPA-821-R-02-012	Test Species:	PP-Pimephales promelas
Comments:					•	• •
Conc-mg/L	1	2	- 111			
D-Control	1.0000	1.0000				
1	1.0000	1.0000				
2	1.0000	1.0000				
4	0.9000	0.9000				
8	0.0000	0.0000				
16	0.0000	0.0000				

			Tra	ansform:	Arcsin Sc	uare Roof	1	Number Tota	al
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp Numb	oer
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	0.9000	0.9000	1.2490	1.2490	1.2490	0.000	2	2	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20
16	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				
Equality of variance cannot be confirmed				

Trimmed Spearman-Karber

Trim Level EC50 95% CL 5.2780 0.0% 4.8093 5.7924 5.0% 6.0611 5.3968 4.8053 10.0% 5.4432 5.1395 5.7648 20.0% 5.4432 5.1395 5.7648 Auto-0.0% 5.2780 4.8093 5.7924

FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-140301	
SOURCE: In-Lab Culture	
DATE HATCHED: 2-17-14	
APPROXIMATE QUANTITY:	
GENERAL APPEARANCE:	
# MORTALITIES 48 HOURS PRIOR FO TO USE IN TESTING:	
DATE USED IN LAB: 3/1/	
AVERAGE FISH WEIGHT: 0.006 gm	

LOADING LIMITS: 0.65 gm/liter @ 20°C, 0.40 gm/liter @ 25°C

Approximately 1000 fish per 10 liters limit if held overnight for acclimation without filtration @ 20°C for fish with a mean weight of 0.006 gm.

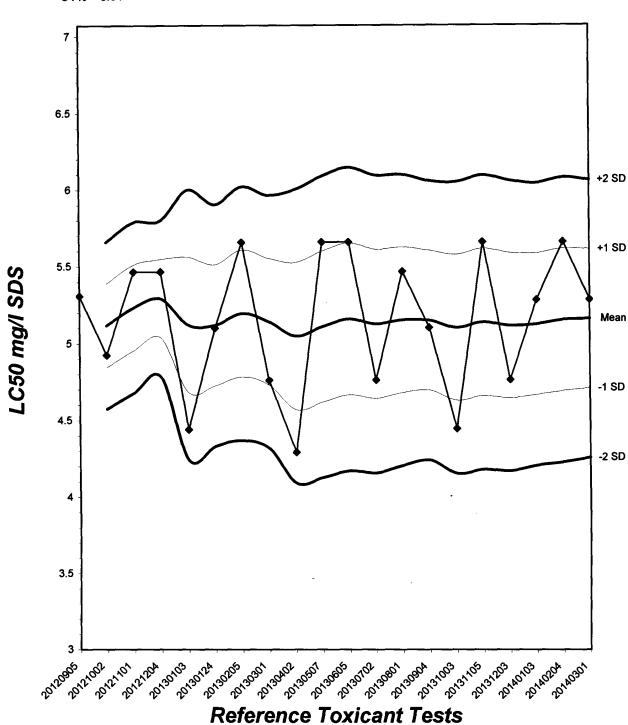
Approximately 650 fish per 10 liters limit if held overnight for acclimation without filtration @ 25°C for fish with a mean weight of 0.006 gm.

200 ml test solution volume = 0.013 gm mean fish weight limit @ 20°C; 0.008 @ 25°C 250 ml test solution volume = 0.016 gm mean fish weight limit @ 20°C; 0.010 @ 25°C

ACCLIMATION WATER QUALITY:

Temp.: 19-9 °C pH: 7-9 Ammonia: ____ mg/l NH₃-N

DO: _______mg/l Alkalinity: ______mg/l Hardness: ______mg/l


READINGS RECORDED BY:

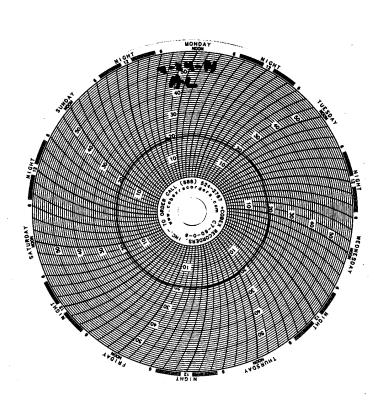
DATE: 3-1-14

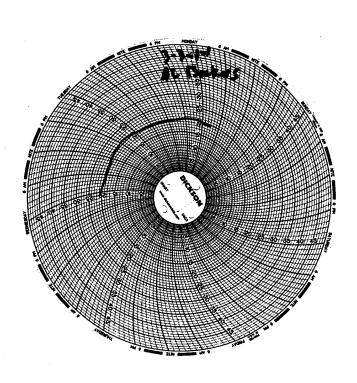
Page 69 of 122

Fathead Minnow Acute Laboratory Control Chart

Page 70 of 122

4 [




Test Temperature Chart

Test No: RT-140301

Date Tested: 03/01/14 to 03/05/14

Acceptable Range: 20 +/- 1°C

__

4

6

7

0

10

12

4 4

1

5/8/2014

DATE:

April 1, 2014

CUSTOMER:

Test America-Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

ATTENTION:

Debby Wilson

REPORT NO:

160466

REFERENCE:

COC# 440-30113.1, JOB# 440-71418-1, PROJECT# 440098919

SUBJECT:

ANALYSIS OF WATER SAMPLES FOR ASBESTOS BY TEM

ACCREDITATION:

CDPH - ELAP 1119

The date and times of collection, UV-Ozone Treatment and filtration are as follows:

SAMPLE NO:

Outfall 009_2014 (440-71648-1)

DATE COLLECTED:

March 1, 2014 at 0213

RECEIVED:

March 3, 2014 at 1004 (No I.D.) COC and Sample Identification March 24, 2014 at 1500

UV-Ozone Treatment:

March 25, 2014 1330 - 1630

FILTERED:

March 25, 2014 at 1656

DATE ANALYZED:

March 28, 2014

In the drinking water document, EPA 600 R 94 134, 100.2, samples are analyzed for fibers >10 um in length. The regulation calls for an MCL (maximum contaminant level) of 7 MFL (million of fibers per liter) and an analytical sensitivity of 0.2 MFL.

The analytical sensitivity of 0.2 MFL was not reached due to turbidity.

The results of the analysis and the detection limit(s) are summarized on the following page(s), accompanied by the chain of custody.

Respectfully submitted, EMS Laboratories, Inc.

BMKHE

B.M. Kolk

Laboratory Director

BMK/am

Note: The report shall not be reproduced, except in full without the written approval of EMS Laboratories, Inc.

Note: The results of the analysis are based upon the sample submitted to the laboratory. No representation is made regarding the sampling area other than that implied by the analytical results for the immediate vicinity of the samples analyzed as calculated from the data presented with those samples. All the analytical quality control data meet the requirement of the procedure unless otherwise indicated. Any deviation or exclusion from the test method is noted in this cover letter. Unless otherwise noted in this cover letter the samples were received properly packaged, clearly identified and intact.

ANALYSIS OF WATER FOR ASBESTOS BY TEM (EPA-600 R 94 134) EPA 100.2

LAB.NO.

160466

CLIENT:

Test America, Irvine

		FILTER I	MEDIA DATA				1
Laboratory I.D.	Client 1.D.	Туре	Diameter mm	Effective Area mm ²	No. of G.O.	Analyzed Area, mm²	Sample Volume (ml
160466-1	440-71648-1	MCE	47	1017	10	0.106	5
3-25-14-BL	EMS Blank	MCE	47	1017	10	0.106	500

^{*} FOR FIBERS > 10µm ONLY

INDIVIDUAL ANALYTICAL RESULTS

Laboratory I.D.	Client I.D.	No of Asbestos Fibers	Detection Limit (MF/L)	Concentration MFL Fibers >10 µm
160466-1	440-71648-1	ND	1.9	< 1.9
3-25-14-BL	EMS Blank	ND ND	0.02	< 0.02

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

Authorized Signature

NA Not Applicable ND None Detected MCE Mixed Cellulose Ester

GO Grid Openings MFL Million Fibers per Liter

EMS LABORATORIES INC 117 W Bellevue Drive / Pasadena CA 91105-2548 / 626-568-4065

117 West Bellevue Drive. #3____Pasadena, California 91105-2503 • 626-568-4065 **EMS LABORATORIES**

ı	
I	S
ł	Ge C
1	
ı	•
Į	\$2
1	**
į	Ş
1	É
į	
ı	ဍ
ı	ૂ
	≗
1	æ
I	-
ı	SS
i	₹
ı	
ı	-
I	-
Į	
i	
ı	m
ı	111
l	ш
l	$\overline{\mathbf{r}}$
l	<u> </u>
	\Box
	7
	7
	П
	\equiv
	U
	m
	7
	Q
	_
	n
	Ë
	>
i	īīī
	LL.

7	EM AS	BES	ASBESTUS A	7	NALYSIS	•	Sample No. 100.2	[6] [6]	0. 100 .2	11	EMS Lab No.	0 l	1
3	Air O War A	SAIPLE ME D	LENGTHS All Sizes (EPA)	MCE	FILTER TYPE / AREA (mm±) MCE 385		£	DIRECT PREP					
N	Office Sol	□	0 (ma)	\$ § Ø □	λ		1]	S	H600A -	- Scrial No. 542-36-01 - Serial No. 542-05-06	Z/D
	VIETHOD OF ANALYSIS	NALYSIS	2,3 <u>7</u>	Other	1 2	d.	+	420	_	S	ENERG	BNERGY DISPERSIVE X-RAY SYSTEM	
T	LEVEL OF ANALYSIS	SISXIVA	PCM Ranger □	0.45 µm [-		X	Thermo	Thermo 4405C-3NUT	
đ I	Chrysoile CD, CCDO Amplible AD, ADO	RR	≥5.0 µm length)	[] []	2 0.22 jun Other	31	Volume Working Vo	Volume Working Volume 550 O			Grid Address:	8	1
DE	ASPECT RATIO	I KATTO	Ö :	G.O. Area (mm²) 0.0	301	al l	Weight Ashed Area			VN	Screen Magnificati Camèra Constant: Acceleratine Volta	ion: 7000	× I
51	EPA/600/R-94/134	100.1	100.2	No. of G.C. to Analyze (O	0 2		Prepared B.	Prepared By JAP	4	\mathbf{V}	Beam Current: K-Factor: Analyst	rent:	l∢ l ∣
S		Crinching	Dimensions (mm)			Fiber Classification	cation			E E	EDS Analysis		
	Opening		Width Length	NAM TM CM	CD CO CMO CDO	5	AD AX ADX	AX ADX AD ADOLAZOLAZZ		×	2	Comments	
4	CHOINN									•	工		
	F3 NN							+					
	134 John									-	-		
	P36 MSD										-		
	646400								Ī	1			
7										+			
5													
	Figh NSD								Ī	+	-		ł
	OM! NS0					<u> </u>		$oxed{\mathbb{F}}$		+			
	Gry NSÚ	-											
	1000 13A					<u> </u>							
	>		·							20 K.			
										-			
					·								
	OBSERVATIONS:	IONS:		Clean		_ ا				ן נ	'		
			Gondition of the Grid:	Gypsum:	Very Light	-1 1-			Moderate Moderate Moderate		Heavy	Very Heavy	
							appy [5	Paginag Lill		Loided		

LABORATORY REPORT

Date:

March 11, 2014

Client:

TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson Aquatic **Testina** Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-14030107-001

Job No.:

440-71648-1

Sample I.D.:

Outfall 009 (440-71648-1)

Sample Control:

The sample was received by ATL chilled, within the recommended hold time and

with the chain of custody record attached. Testing conducted on only one sample per

client instruction.

Date Sampled:

03/01/14

Date Received: Temp. Received: 03/01/14 4.4°C

Chlorine (TRC):

 $0.0 \, \text{mg/l}$

Date Tested:

03/01/14 to 03/08/14

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample. All testing was conducted under the direct supervision of Joseph A. LeMay. Daily test readings were taken by Joseph A. LeMay (initialed: JAL) and Jacob LeMay (initialed: J).

Result Summary:

Chronic:

NOEC

Ceriodaphnia Survival:

TUc 100% 1.0

Ceriodaphnia Reproduction:

100%

1.0

Quality Control:

Reviewed and approved by:

Laboratory Directe

2

2

5

4

6

8

10

12

14

10

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Date Tested: 03/01/14 to 03/08/14

Lab No.: A-14030107-001

Client/ID: TestAmerica - Outfall 009

TEST SUMMARY

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Source: In-laboratory culture.

Food: .1 ml YTC, algae per day.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Test solution volume: 15 ml.

Number of replicates: 10.

Number of test organisms per vessel: 1. Number of replicates: 10. Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW).

Test duration: 7 days.

QA/QC Batch No.: RT-140301. Statistics: ToxCalc computer program.

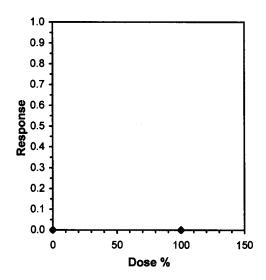
RESULTS SUMMARY

Percent Survival	Mean Number of Young Per Female
100%	23.8
100%	29.8
	100%

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

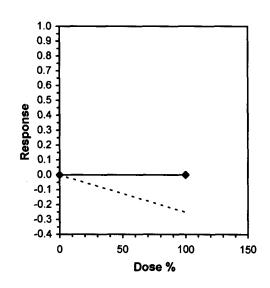

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (23.8 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 6.8%)
Statistically significantly different concentrations relative difference > 13 %	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

Ceriodaphnia Survival and Reproduction Test-7 Day Survival										
Start Date:	3/1/2014 1	4:45	Test ID:	14030107	С		Sample ID);	Outfall 009	9
End Date:	3/8/2013 1	14:45	Lab ID:	CAATL-Ad	uatic Tes	ting Labs	Sample Ty	ype:	SRW2-Inc	lustrial stormwater
Sample Date:	3/1/2014 (02:13	Protocol:	FWCH 4T	H-EPA-82	1-R-02-0	Test Spec	ies:	CD-Cerio	laphnia dubia
Comments:							-			-
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

				Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU		
Fisher's Exact Test	100	>100		1		
Treatments vs D-Control						

Linear Interpolation (200 Resamples) **Point** % SD 95% CL Skew IC05 >100 IC10 >100 IC15 >100 IC20 >100 IC25 >100 IC40 >100 IC50 >100


Ceriodaphnia Survival and Reproduction Test-Reproduction Start Date: 3/1/2014 14:45 Test ID: 14030107c Sample ID: Outfall 009 **End Date:** 3/8/2013 14:45 Lab ID: **CAATL-Aquatic Testing Labs Sample Type:** SRW2-Industrial stormwater Sample Date: 3/1/2014 02:13 Protocol: FWCH 4TH-EPA-821-R-02-0 Test Species: CD-Ceriodaphnia dubia Comments: Conc-% 2 6 9 10 23.000 25.000 D-Control 24.000 25.000 27.000 27.000 23.000 21.000 24.000 19.000 29.000 31.000 28.000 30.000 28.000 28.000 32.000 100 29.000 32.000 31.000

			Transform: Untransformed				1-Tailed		Isot	onic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	23.800	1.0000	23.800	19.000	27.000	10.443	10				26.800	1.0000
100	29.800	1.2521	29.800	28.000	32.000	5.434	10	-6.396	1.734	1.627	26.800	1.0000

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.96303		0.905		-0.4007	0.16221
F-Test indicates equal variances (p = 0.22)	2.35593		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	1.6267	0.06835	180	4.4	5.1E-06	1, 18
Treetments vs D. Control						

Treatments vs D-Control

			Linear Interpolation (200 Resamples					
Point	%	SD	95% CL	Skew				
IC05	>100							
IC10	>100							
IC15	>100				1.0			
IC20	>100				0.9 🕽			
IC25	>100				0.8			
IC40	>100				0.7			
IC50	>100				0.6			

Aquatic Testing Laboratories

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-14030107-001

Client ID: TestAmerica - Outfall 009 Start Date: 03/01/2014

DAY DAY	onem id: i	i estAmen	ica - Ot	man oc	<u> </u>								Start	Date. U.	3/01/2	014
Time of Readings: 1445 1745 1			DA	Y 1	DA	Y 2	1	DAY 3	D/	AY 4	DA	Y 5	D/	AY 6	I	DAY 7
Time of Realings			0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr
Control DO	Analyst I	nitials:	2	1	7	0	1	2	1	1	2	2	1	2	1	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Time of Re	eadings:	1445	1445	1445	1445	144	5 14u	1445	1415	1415	1430	(432	1415	145	1445
Control PH \$\begin{align*}{c c c c c c c c c c c c c c c c c c c		DO	R.U						7	51	8.0	8.	8.1	grad	8-1	8.0
Temp 247 249 242 246 246 247 249 249 249 250	Control	рН							1						8.1	821
DO		Temp						1			74.9	250			 	7
PH	<u></u>	DO						 	╬			¢v		78	RI	
Temp 245 746 247 246 246 250 250 247 250 250 250 240 147 247	100%								┪		╟──		 		<u> </u>	+
Additional Parameters	10070				 						(_	+
Conductivity (umohms)						240	1									
Alkalinity (mg/l CaCO ₂) Hardness (mg/l CaCO ₂) Ammonia (mg/l NH ₂ N) Source of Neonates Replicate: A B C D E F G H I J Brood ID: Number of Young Produced A B C D E F G H I J Total Live Young Adults Analyst Initials 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>										-	- -		/	пріс	
Hardness (mg/l CaCO ₂)																
Control Cont				·				+			-					
Replicate: A B C D E F G H 1 J									0.1							
Sample Day Y Y Y Y S S S Y S S																
Sample Day A B C D E F G H I J	Rep	Replicate: A B C						D	Е	F		G	Н	I		J
Sample Day A B C D E F G H I J Young No. Live	Bro			4	10	45	46	5	6 0	56	41	6,1	-	75		
Control A B C D E F G H I J Young Adults Initials 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			<u>-</u>				Numbe	r of Youn	g Produceo	 =		T	tal Live			Analyst
Control 2	Sample	•	Day	A	В	С	D	E I	G	Н	ı	- 11 ,				
Control 3	· · · · · · · · · · · · · · · · · · ·		Ţ		00	0	0	00	70	0	00	2	0	10	л	7
Control 4 3 0 0 3 4 3 2 3 3 2 23 10 1 5 0 6 8 0 0 0 8 0 7 8 37 10 1 6 6 6 16 15 10 7 8 0 6 0 0 6 10 10 7 15 0 0 14 12 10 14 10 13 15 103 10 1 Total 24 25 27 27 23 21 24 19 23 29 23 8 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2		00	0	0	00	0 0	0	00	/	0	10	<i>,</i> /	/.
Control 4 3 0 0 3 4 3 2 3 3 2 23 10 1 5 0 6 8 0 0 0 8 0 7 8 37 10 1 6 6 10 15 10 7 8 0 6 0 0 6 10 1 7 15 0 0 14 12 10 14 10 13 15 103 10 1 Total 24 25 27 27 23 21 24 19 23 25 23 28 10 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			3	- 0	7 3	4	0	00	C	0	0 0	ン	7	10		1
100% 6 6 16 15 10 7 8 0 6 0 0 6 10 10 10 11 15 0 0 0 14 12 10 14 10 13 15 103 10 10 10 10 10 10 10 10 10 10 10 10 10	Control	.	4		3 <u>0</u>	0	3		3 2	3				10		1
1	Condo	·	5		26	10	0	00		0	7 2	5	37	10		1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-		-	-	15		2		6	0	<u> </u>	 _	10	_	A.
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u> </u>			7 -	101	-			110)	_ _	
2 000000000000000000000000000000000000					\Box	T				+	<u></u>					1
3 U U 3 5 5 4 0 0 0 3 28 0 6 4 7 9 0 0 0 0 5 4 3 0 28 10 10 5 0 0 11 12 1 1 8 9 10 9 10 80 10 10 6 15 19 17 12 1 5 16 16 14 16 19 162 10 10 7 19 19 19 10 10 10 0 0 0						0				 				_	_	1
100% 4 7 9 0 0 0 0 5 4 3 0 28 10 10 10 10 10 10 10 10 10 10 10 10 10						2		1	7	+ +				_	$-\parallel$	7
5 0 0 11 12 1 1 8 9 10 9 10 80 10 1 6 15 19 12 15 16 16 14 16 19 162 10 1- 7 13 13 16 16 10 14 16 19 162 10 1-				1-	2 0	13	31		1 2	· u				10	 	
6 18 19 17 12 1 5 16 16 14 16 19 162 10 1- 7 15 18 16 20 10 10 0 0 0 0 0	100%) (711	121		3 4	10			20	10		7
1 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10			6		7 (4		121	51	016	14	7/	-	62			The
			7		5) (5	10	201	10/1	5) ()		O)	が り	0			九
			Total	T _a	9137	131	29	3112	8 31	120	28	37	2975			1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CHAIN OF CUSTODY

А

_


6

8

9

44

12

Empty Kit Relinquish

delinquished by:

relinquished by:

elinquished by

Date/Time

Company

Received by: Received by: Received by

Date/Time

Company

Cooler Temperature(s) ⁶C and Other Remarks

Time:

すべ

Date/Time:

Method of Shipment:

Special Instructions/QC Requirements

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Montt

Months

Custody Seal No.

Deliverable Requested: I, II, III, IV, Other (specify)

Possible Hazard Identification

nconfirmed

Test America version 7/19/2010

CHAIN OF CUSTODY FORM

Tess			Belinguished Rv				Outlali 009 W	Outfatt 009 W	Outfall 009 W	Outfall 009 W	Outfall 009 W	Outlast 009 W	-	Outlail 009 W	Outrall 009 W	Outfall 009 W	Ourtail 009 W		Outfall 009 W	Description Matrix	nager	Test America Contact: Debby Wilson	Haley & Aldrich 9040 Friars Road Suite 220 San Diego, CA 92108-5860	Client Name/Address:	
Dund				-			1L Poly / 1,	1L Paly 1	1L Amber 2	1L Amber 2	500 mL Poly 1	1 Gal Poly 1	500 mL Amber †	2.5 Gai Cube 1	1L Poly 1	S00 mL Paly 1	500 mL Poly 2	_	1L Poly 1	t Type cont	Nancy Gardiner プロ(及例からな	ct: Debby Wilson	uite 220)8-5860	Ç.	
7-1-14	2001	444					Outfall 009_2014	Outlast 009_2014 Comp	Outral 009_2014	Outfall 009_2014	Outlast 009_2014 Comp	Outfail 009_2014 Comp	Outfall 009_2014 Comp	Outfall 009_2014 Comp	Outtail 009_2014 Comp	Outfall 009_2014 Comp	Outfall 009_2014	Outlail 009_2014	Outlail 009_2014 Comp	Sample I.D.			Annual are C Storm	. ,	
12:30	1130	000		These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for			Y												5120 P1-72-3		Phone Number: 619.285.7132, 658.337.4061(cell) Field Manager: Jeff Bannon Field Manager: Jeff Bannon		Annual and Routine Outfall 009 COMPOSITE Stormwater at SW-13	Project:	
g Hacan	Xeco		B	ided to the s	_		\dashv	None			NaOH	None	None 7	None 7	a Pope	None	None 4A	ļ.,	HNO ₂	Preservative Bottle #			3		
	- Co		Legend: R = Routine, A = Annual	ame work o			5	19	16A, 16B	14A, 14B	۴		78	7A	6	5	4A, 4B	3A, 38	2A ×		Recoverable	Metals: Sb,	Cd, Cu, Pb,	Γ	æ
2		K)	R=R	rder to			4	_						L		_	L	×		-	D (and all con	·] ² ,
	0	5	Outing		H	Н	\dashv	+			\dashv		-	\vdash		×	×	\vdash	_	TDS	5O ₄ , NO ₃ +NO ₂	-N			2
7	アイグ	No.	2	P or or		Н	×	7			1			-	<u> </u>		-	\vdash		TSS				1	~
1/2		ka .	BULK	0 2		П		1							×	Γ				Tota Hg.	Dissolved Me	etals: Sb, Co	d, Cu, Pb,		7
1-14 123	DCS (1	lither 1		or Outfall 009 to									,	×						Tritic Corr Radi	ss Alpha(900.0 um (H-3) (906.0 ibined Radium ium 228 (904.0 CS-137 (901.0	0), Sr-90 (90 226 (903.0 0), Uranium	05.0), Total or 903.1) &		
IÇ.	Ki	8			H	Н	4	4		4	4	×		L		-	_			_	onic Toxicity				7 7
Data Requirements: (Chack) No Lavel IV:	Sample Integrity: (Qheck	24 Hour		the same event.			-	1			×			-		-	-	-	×		l Recoverable B, V, TI, Fe, Al			ANALYSIS REQUIRED	R/A A
rements: (1	Con Con					П	1	1							×						Dissolved Me B, V, TI, Fe, Al			EOU!	>
Species	on ice:																×				erchiorate			ğ	Þ
All Lavel IV:		72 Hour: _								×										Pest PP	icides/PCBs , (Chlorpyrifos	, Diazinon +		>
	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.								×											svo	Cs (625) + PP				> >
	o h.h	•			Ц			×										Ш		Asbe	estos (100.2)				
NPDES Level IV.	0	10 Day:										Only test if first or second rain events of the year	analysis	Unfiltered and unpreserved	Filter win 24hrs of receipt at lab, if R and A metals overlap, analyze once				If R and A metals overlap, analyze once			Comments			

REFERENCE TOXICANT DATA

Aquatic Testing Laboratories

CERIODAPHNIA CHRONIC BIOASSAY **EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl**

QA/QC Batch No.: RT-140301

Date Tested: 03/01/14 to 03/08/14

TEST SUMMARY

Test type: Daily static-renewal. Species: Ceriodaphnia dubia.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival Mean Number Young Per Fem					
Control	100%		24.4			
0.25 g/l	100%		24.9			
0.5 g/l	100%		21.0			
1.0 g/l	90%		12.5	*		
2.0 g/l	80%		1.8	*		
4.0 g/l	0%	*	0	**		

^{*} Statistically significantly less than control at P = 0.05 level ** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

CHRONIC TOXICITY

Survival LC50	2.2 g/l
Reproduction IC25	0.65 g/l

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥ 15 young per surviving control female	Pass (24.4 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD < 47% for reproduction	Pass (PMSD = 17.0%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 48.8%)
Concentration response relationship acceptable	Pass (Response curve normal)

Ceriodaphnia Survival and Reproduction Test-7 Day Survival Start Date: 3/1/2014 14:30 Test ID: RT140301c Sample ID: **REF-Ref Toxicant**

End Date: 3/8/2014 14:45 Sample Date: 3/1/2014

Lab ID: CAATL-Aquatic Testing Labs Sample Type: Protocol: FWCH-EPA-821-R-02-013 Test Species:

NACL-Sodium chloride CD-Ceriodaphnia dubia

Comments:

Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	
2	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	0.9000	0.9000	. 1	9	10	10	0.5000	0.0500	1	10
2	0.8000	0.8000	2	8	10	10	0.2368	0.0500	2	10
4	0.0000	0.0000	10	0	10	10			10	10

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU		
Fisher's Exact Test	2	4	2.82843		 	
Treatments vs D-Control						

Maximum Likelihood-Probit

Control Chi-Sq

4.3269

95% Fiducial Limits **Parameter** Value SE 5.45608 1.55772 2.40296 8.5092 Slope Intercept 3.1133 0.60976 1.91817 4.30843 **TSCR**

1001				
Point	Probits	gm/L	95% Fidu	cial Limits
EC01	2.674	0.83066	0.22973	1.24325
EC05	3.355	1.10746	0.43213	1.52706
EC10	3.718	1.29096	0.60071	1.71668
EC15	3.964	1.43166	0.74619	1.86774
EC20	4.158	1.55433	0.88237	2.0067
EC25	4.326	1.66792	1.01408	2.14416
EC40	4.747	1.99234	1.39806	2.60948
EC50	5.000	2.21716	1.64834	3.02161
EC60	5.253	2.46736	1.89637	3.58565
EC75	5.674	2.94727	2.29007	4.9819
EC80	5.842	3.16266	2.44219	5.73664
EC85	6.036	3.43366	2.61952	6.79487
EC90	6.282	3.80788	2.84588	8.45277
EC95	6.645	4.43884	3.19497	11.7661

5.918 3.9194 22.1604

7.326

0.9 - 0.8 - 0.7 - 0.6 - 0.6 - 0.4 - 0.3 - 0.2 - 0.1 - 0.2 - 0.2 - 0.1 - 0.2 - 0.2 - 0.1 - 0.2 - 0.2 - 0.1 - 0.2 - 0.2 - 0.1 - 0.2 -		
0.0] - 0.1	1 10 100	0
	Dose gm/L	

Critical P-value

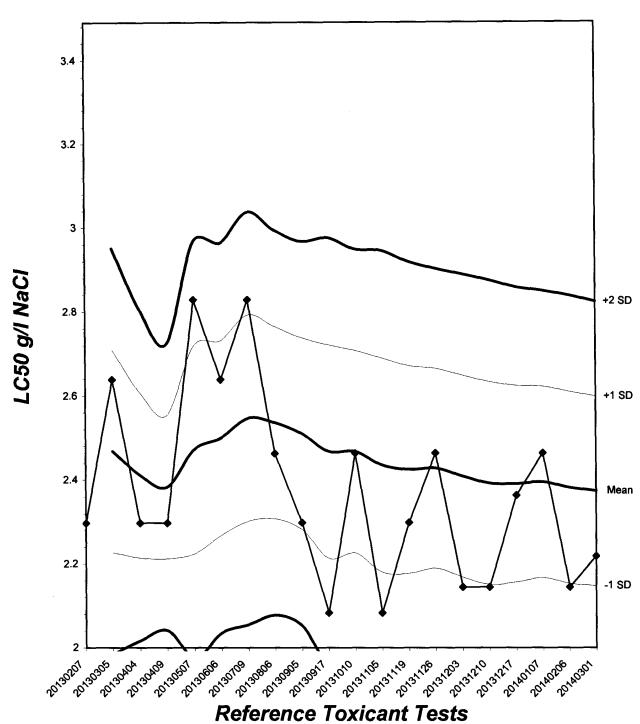
0.23

7.81472

Mu

0.3458

Sigma


0.18328

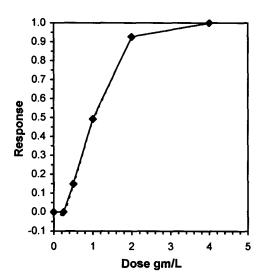
iter

EC99

Ceriodaphnia Chronic Survival Laboratory Control Chart

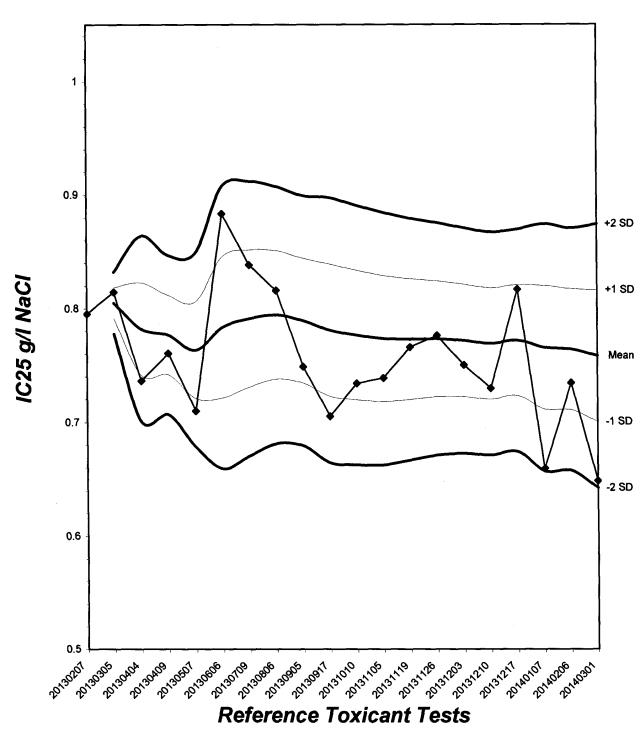
CV% = 9.51

Page 87 of 122


Ceriodaphnia Survival and Reproduction Test-Reproduction												
Start Date:	3/1/2014	14:30	Test ID:	RT140301	lc		Sample ID):	REF-Ref	Toxicant		
End Date:	3/8/2014	14:45	Lab ID:	CAATL-A	quatic Tes	sting Labs	Sample Ty	ype:	NACL-Soc	dium chloride)	
Sample Date:	3/1/2014		Protocol:	FWCH-EF	A-821-R	-02-013	Test Spec	ies:	CD-Cerio	daphnia dubia	а	
Comments:							•			•		
Conc-gm/L	1	2	3	4	5	6	7	8	9	10		
D-Control	23.000	28.000	23.000	24.000	25.000	27.000	22.000	22.000	25.000	25.000		
0.25	24.000	24.000	26.000	27.000	23.000	24.000	29.000	24.000	23.000	25.000		
0.5	24.000	20.000	26.000	27.000	21.000	28.000	21.000	10.000	10.000	23.000		
1	17.000	8.000	18.000	11.000	17.000	18.000	18.000	10.000	0.000	8.000		
2	0.000	2.000	0.000	2.000	3.000	3.000	2.000	2.000	2.000	2.000		
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

		_	Transform: Untransformed					Rank	1-Tailed	onic	
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	24.400	1.0000	24.400	22.000	28.000	8.242	10			24.650	1.0000
0.25	24.900	1.0205	24.900	23.000	29.000	7.679	10	112.00	76.00	24.650	1.0000
0.5	21.000	0.8607	21.000	10.000	28.000	30.367	10	88.50	76.00	21.000	0.8519
*1	12.500	0.5123	12.500	0.000	18.000	48.917	10	55.00	76.00	12.500	0.5071
*2	1.800	0.0738	1.800	0.000	3.000	57.378	10	55.00	76.00	1.800	0.0730
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests	·				Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution	$(p \le 0.05)$		0.89154	0.947	-1.1118	2.53918
Bartlett's Test indicates unequal	variances (p = 2.78E	-07)		36.0813	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711				· · · · · · · · · · · · · · · · · · ·	
Trantmonto va D Control								


Treat	tments	ve D	Con	trol
Hea	unenis	VS D	-601	ILI OI

			Linear Interpolation (200 Resamp								
Point	gm/L	SD	95%	CL	Skew						
IC05	0.3344	0.0654	0.2687	0.5260	1.5114						
IC10	0.4188	0.0777	0.3248	0.5791	0.5633						
IC15	0.5028	0.0825	0.3651	0.6503	0.1708	1.0					
IC20	0.5753	0.0892	0.4086	0.7125	-0.0646	0.9					
IC25	0.6478	0.0955	0.4483	0.7916	-0.2974	4					
IC40	0.8653	0.1050	0.7070	1.0953	0.0763	0.8 -					
IC50	1.0164	0.1171	0.8473	1.2664	0.1866	0.7					

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 7.67

Page 89 of 122

R

Start Date:	3/1/2014	14:30	Test ID:	RT140301	C		Sample ID) <u>:</u>	REF-Ref	oxicant
End Date:	3/8/2014	14:45	Lab ID:	CAATL-Ad	quatic Test	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride
Sample Date:	3/1/2014		Protocol:	FWCH-EF	A-821-R-	02-013	Test Spec	ies:	CD-Cerio	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	23.000	28.000	23.000	24.000	25.000	27.000	22.000	22.000	25.000	25.000
0.25	24.000	24.000	26.000	27.000	23.000	24.000	29.000	24.000	23.000	25.000
0.5	24.000	20.000	26.000	27.000	21.000	28,000	21.000	10.000	10.000	23.000
1	17.000	8.000	18.000	11.000	17.000	18.000	18.000	10.000	0.000	8.000
2	0.000	2.000	0.000	2.000	3.000	3.000	2.000	2.000	2.000	2.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	_		Transform	n: Untran	sformed			1-Tailed		
Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
24.400	1.0000	24.400	22.000	28.000	8.242	10				
24.900	1.0205	24.900	23.000	29.000	7.679	10	-0.268	2.223	4.143	
21.000	0.8607	21.000	10.000	28.000	30.367	10	1.824	2.223	4.143	
12.500	0.5123	12.500	0.000	18.000	48.917	10	6.386	2.223	4.143	
1.800	0.0738	1.800	0.000	3.000	57.378	10	12.127	2.223	4.143	
0.000	0.0000	0.000	0.000	0.000	0.000	10				
	24.400 24.900 21.000 12.500 1.800	24.400 1.0000 24.900 1.0205 21.000 0.8607 12.500 0.5123 1.800 0.0738	Mean N-Mean Mean 24.400 1.0000 24.400 24.900 1.0205 24.900 21.000 0.8607 21.000 12.500 0.5123 12.500 1.800 0.0738 1.800	Mean N-Mean Mean Min 24.400 1.0000 24.400 22.000 24.900 1.0205 24.900 23.000 21.000 0.8607 21.000 10.000 12.500 0.5123 12.500 0.000 1.800 0.0738 1.800 0.000	Mean N-Mean Mean Min Max 24.400 1.0000 24.400 22.000 28.000 24.900 1.0205 24.900 23.000 29.000 21.000 0.8607 21.000 10.000 28.000 12.500 0.5123 12.500 0.000 18.000 1.800 0.0738 1.800 0.000 3.000	24.400 1.0000 24.400 22.000 28.000 8.242 24.900 1.0205 24.900 23.000 29.000 7.679 21.000 0.8607 21.000 10.000 28.000 30.367 12.500 0.5123 12.500 0.000 18.000 48.917 1.800 0.0738 1.800 0.000 3.000 57.378	Mean N-Mean Mean Min Max CV% N 24.400 1.0000 24.400 22.000 28.000 8.242 10 24.900 1.0205 24.900 23.000 29.000 7.679 10 21.000 0.8607 21.000 10.000 28.000 30.367 10 12.500 0.5123 12.500 0.000 18.000 48.917 10 1.800 0.0738 1.800 0.000 3.000 57.378 10	Mean N-Mean Mean Min Max CV% N t-Stat 24.400 1.0000 24.400 22.000 28.000 8.242 10 24.900 1.0205 24.900 23.000 29.000 7.679 10 -0.268 21.000 0.8607 21.000 10.000 28.000 30.367 10 1.824 12.500 0.5123 12.500 0.000 18.000 48.917 10 6.386 1.800 0.0738 1.800 0.000 3.000 57.378 10 12.127	Mean N-Mean Mean Min Max CV% N t-Stat Critical 24.400 1.0000 24.400 22.000 28.000 8.242 10 24.900 1.0205 24.900 23.000 29.000 7.679 10 -0.268 2.223 21.000 0.8607 21.000 10.000 28.000 30.367 10 1.824 2.223 12.500 0.5123 12.500 0.000 18.000 48.917 10 6.386 2.223 1.800 0.0738 1.800 0.000 3.000 57.378 10 12.127 2.223	Mean N-Mean Mean Min Max CV% N t-Stat Critical MSD 24.400 1.0000 24.400 22.000 28.000 8.242 10 24.900 1.0205 24.900 23.000 29.000 7.679 10 -0.268 2.223 4.143 21.000 0.8607 21.000 10.000 28.000 30.367 10 1.824 2.223 4.143 12.500 0.5123 12.500 0.000 18.000 48.917 10 6.386 2.223 4.143 1.800 0.0738 1.800 0.000 3.000 57.378 10 12.127 2.223 4.143

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution	$(p \le 0.05)$	***	0.89154		0.947		-1.1118	2.53918
Bartlett's Test indicates unequal	variances (_l	p = 2.78E	-07)		36.0813		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	0.5	1	0.70711		4.14333	0.16981	961.07	17.3644	8.3E-17	4, 45
Treatments vs D-Control										

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-140301

Start Date:03/01/2014

				N	umbo		7				= +	T	1	3/01/2014
Sample	Day	A	В	$\frac{1}{\mathbf{C}}$	D	E	F	Prod G	H	I	J	Total Live	No. Live	Analyst Initials
	1	0	0	0	0	╁╼	+-	+	┼—	 	+-	Young	Adults	
	2	C	+	+	0		0	 	0	U	0	0	10	h
	3	0	+	0	0	3	C	0	0	0	0	0	10	1
	4	3	4	+	2	U	 	7	2	4	0		10	1
Control	5	C	 	0		┝	+	2	2	4	1	27	10	12
	6	╁──	C	8	10		0		2	0	6	40	10	1
		6	8	0	10	14	8	10	0	8	16	68	10	1/2
	7	114	9	112	12	0	114	10	12	+	0	103	IU	
	Total	23	28	23	124	25	77	22	22	25	25	244	10	5
	1	0	0	0	0	0	0	Ø	0	0	0	0	10	h
	2	0	0	0	0	0	0	0	0	C	0	0	10	1
	3	0	0	0	C	3	2	0	0	2	C	7	10	1
0.25 g/i	4	3	3	4	5	U	U	4	4	0	3	726		1
0.23 g/1	5	0	Q	0	0	6	7	10	8	フ	0	38	10	h
	6		8	10	8	17	15	0	12	14	7	95	10	1-
i	7	14	13	12	74	0	0	15	0	O	15		10	
	Total	24	24	26	27	23	24	29	24	23	25	239	10	
	l	0	0	0	0	0	0	0	0	c	O	0		1
	2	0	0	0	0	0	0	0	0			0	10	1
	3	0	0	C	0		0	0		0	<u> </u>	3		
0.5.4	4	3	4	3	3	0	4	3	3	2	3	28	(0	1
0.5 g/l	5	0	0	0	0					0	0	6	10	1
	6	フ	6	9	9	- 1	9	1	5	8	ᆌ	80	10	
	7	14	10	14	12	7)	1	12	ót	0	13	93	10	
	Total	24	20	261	27	21/2	18	2(10	70	22	2(1)	<i>(7)</i>	1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

Aquatic Testing Laboratories

QA/QC No.: RT-140301

Start Date: 03/01/2014

			====	Nu	mber	r of Y	oung l	Produ	ced			Total	No.	Analyst
Sample	Day	Α	В	C	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	0	U	0	0	0	0	0	0	0	0	0	10	en
	2	0	0	0	0	0	0	0	0	0	0	U	10	1
	3	0	0	0	0	2	0	0	0	c	0	2	10	1
1.0 - //	4	2	2	3	0	0	3	3	0	0	2.	15	10	1
1.0 g/l	5	0	0	٢	4	6	0	¥ 7	4	X	0	28	9	n
1	6	5	6	0	J	0	5	0	6	[]	6	35	9	2
	7	10	0	8	0	9	10	8	0	(O	4	9	2
·	Total	つ	8	18	11	17	18	18	10	0	8	125	9	1
	1	0	0	0	0	0	0	0	0	0	0	0	10	2
	2	0	0	0	0	0	0	0	0	C	0	0	10	1
	3	0	0	0	0	0	0	0	0	O	C	0	10	1
	4	X	0	0	0	a	O	C	0	0	U	0	9	0-
2.0 g/l	5		2	0	0	3	0	0	2	0	0	フ	9	e
	6		X	0	Z	0	U	2	0	2	0	6	8	2
	7	-	_	U	0	ပ	3	0	0	0	2	- 5	8	2
	Total	0	2	O	2	3	3	2	ک	2	2	18	8	2
	1	X	×	×	×	>	×	×	\rightarrow	×	X	0	O	1
	2	_	-		_	_		_	-	_		,		
	3	_		_	_	-	_	_	_	_	_	(_
40.7	4	~	_	_	_	_	_					<u> </u>		
4.0 g/l	5		_	_	_	_	_	_		_	_			_
	6		_	_	_	_	_	_	-	_	-	~		~
	7	_	_			_	-	_	_	_	-			
! 	Total	0	0	O	0	0	0	O	0	0	C	0	0	R

Circled fourth brood not used in statistical analysis.

⁷th day only used if <60% of the surviving control females have produced their third brood.

Aquatic Testing Laboratories

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

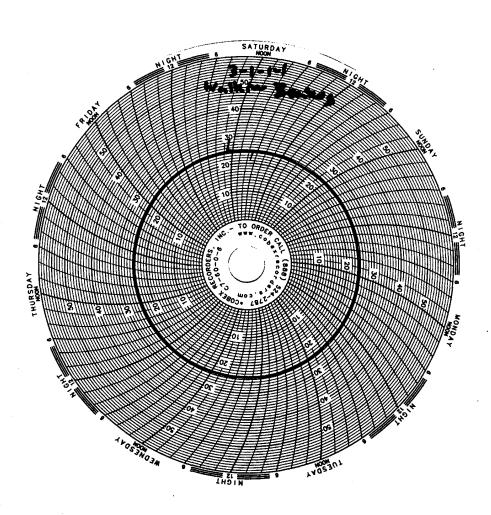
QA/QC No.: RT-140301 Start Date: 03/01/2014

						<u> </u>					_ : _				
	:	DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DA	Y 5	DA	Υ 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	1	1	N	2	1	2	1	1	2	7	2	2	2	2
Time of R	eadings:	1430	1445	1445	1430	1430	1470	1420	yw	1400	1400	(yw	1400	lew	1445
	DO	8.1	8)	8.7	O. 3	57	81	8-1	29	8.2	ايو	8.7	81	823	80
Control	pН	80	7.9	80	8.0	8~	81	5.1	SU	8.1	8-1	8.1	82	29	52
	Temp	247	૧૫ ૪	≥ 46	248	247	25.0	24.7	ર ષ્ઠ	দেএ	25.1	ه٠25	25~	25.0	247
	DO	&5	8.4/	8.7	27	8.2	81	8.1	>1	8.0	80	8.0	8.5	87	27
0.25 g/l	pН	\$10	7.9	K J	80	29	\$ U	8-0	60	8.0	81	7.9	29	ر کا	87
	Temp	246	24. %	246	247	247	250	ч7	25.0	2520	75-1	25./	८५०	52.1	24.4
	DO	825	8.4	8,3	28	8.2	€.3	8.2	80	8,2	81	8-0	د 1	80	77
0.5 g/l	pН	8.0	80	80	ያህ	8-0	51	8-0	S	8.0	ىو	21	80	8-0	80
	Temp	246	245	745	24.8	2Y.7	72.1	247	250	25.0	1-25	श्ला	25-0	500	24.8
	DO	8.7	813	813	77	3.1	8.5	8.2	81	8.3	8-1	28	51	81	26
1.0 g/l	pН	8.0	80	8.0	80	9.0	81	8.0	80	8.0	su	7.9	su	820	80
	Temp	348	29.7	746	24.7	247	52:0	249	25-0	25.0	25.1	75-1	250	२५ १	747
	DO	8.4	8'1	8.1	82	8.4	8.1	8.4	9,1	8.4	g. }	220	6 -0	8.4	78
2.0 g/l	pН	3 · 0	80	8.0	8.1	8.0	81	8.1	ر. و	8.0	8~	8.0	8.0	8.0	81
	Temp	24.6	24.8	346	24. >	7 25	20.0	25	229	25.0	2500	73.1	78.0	55,1	24.8
	DO	8,5	8,5		`	_	1	`	-	1	-		,		_
4.0 g/l	рН	8:0	80	_		-			-		~		_	_	_
	Temp	247	0.25	_	_		-		_			-		_	Ţ.

Dissolved Oxygen (DO) readings are in mg/l O2; Temperature (Temp) readings are in °C.

A 11'4' I D		Control		High Concentration				
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5		
Conductivity (µS)	215	283	293	5281	2961	3014		
Alkalinity (mg/l CaCO ₃)	55	56	57	56	55	5 %		
Hardness (mg/l CaCO ₃)	91	93	91	92	71	90		

				Source of	Neonates					
Replicate:	A	В	С	D	Е	F	G	Н	I	J
Brood ID:	1.0	2.4	34	113	38	₹ E	3 <i>E</i>	18	14	217



Test Temperature Chart

Test No: RT-140301

Date Tested: 03/01/14 to 03/08/14

Acceptable Range: 25 +/- 1°C

1

5

7

0

10

12

1/

H4C040431 Analytical Report	1
Sample Receipt Documentation	16

_

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. 440-71648-1

Boeing SSFL Outfalls

Lot #: H4C040431

Debby Wilson

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

March 18, 2014

ct Manager

ANALYTICAL METHODS SUMMARY

H4C040431

PARAMETER		ANALYTICAL METHOD
Dioxins/F	urans, HRGC/HRMS	EPA-5 1613B
Reference	s:	
EPA-5	"Method 1613: Tetra- through Octa- Chlor Furans by Isotope Dilution, HRGC/HRMS, R EPA, OCTOBER 1994	

SAMPLE SUMMARY

H4C040431

SAMPLED SAMP WO # SAMPLE# CLIENT SAMPLE ID DATE TIME M257N 001 OUTFALL 009_2014 03/01/14 02:13 NOTE(S): - The analytical results of the samples listed above are presented on the following pages. - All calculations are performed before rounding to avoid round-off errors in calculated results. - Results noted as "ND" were not detected at or above the stated limit. - This report must not be reproduced, except in full, without the written approval of the laboratory. - Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

The results reported herein are applicable to the samples submitted for analysis only. If you have any questions about this report, please call (865) 291-3000 to speak with the TestAmerica project manager listed on the cover page.

This report shall not be reproduced except in full, without the written approval of the laboratory.

The original chain of custody documentation is included with this report.

Sample Receipt

There were no problems with the condition of the samples received.

Quality Control and Data Interpretation

Unless otherwise noted, all holding times and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

Comment:

The total estimated detection limits (EDLs) were manually changed to the lowest EDL reported within that homolog group.

The following flags are used to qualify results for chlorinated dioxin and furan results:

J – The reported result is an estimate. The amount reported is below the Minimum Level (ML). The qualitative definition of the ML is "the lowest level at which the analytical system must give a reliable signal and an acceptable calibration point". The ML was introduced in EPA Methods 1624 and 1625 in 1980 and was promulgated in these methods in 1984 at 40 CFR Part 136, Appendix A. For the purposes of this report, the ML is qualitatively defined as described above, and quantitatively defined as follows:

Minimum Level: The concentration or mass of analyte in the sample that corresponds to the lowest calibration level in the initial calibration. It represents a concentration (in the sample extract) equivalent to that of the lowest calibration standard, after corrections for method-specified sample weights, volumes and cleanup procedures has been employed.

Example: The lowest calibration level for TCDD in the initial calibration is 0.5 pg/uL. A mass of 10 pg of 2,3,7,8-TCDD in the sample would result in a concentration of 0.5 pg/uL in the sample extract (at a final volume of 20 uL). Since the concentration in the sample extract corresponds to the concentration in the lowest calibration standard, the 10 pg mass in the sample components is the ML. If the sample extract is further diluted, the ML will increase by the dilution factor.

Example: A 1/10 dilution is performed on the sample extract described above. The ML for 2,3,7,8-TCDD becomes 100 pg rather than the default of 10 pg.

E – The reported result is an estimate. The amount reported is above the Upper Calibration Level (UCL) described below. The quantitative definition of the UCL is listed below:

Upper Calibration Level: The concentration or mass of analyte in the sample that corresponds to the highest calibration level in the initial calibration. It is equivalent to the concentration of the highest calibration standard, assuming that all method-specified sample weights, volumes, and cleanup procedures have been employed.

Example: The maximum calibration level for TCDD in the initial calibration is 200 pg/uL. A mass of 4000 pg of 2,3,7,8-TCDD in the sampling components would result in a concentration of 200 pg/uL in the sample extract (at a final volume of 20 uL). Since the concentration in the sample extract corresponds to the concentration in the highest calibration standard, the 4000 pg mass in the sample components is the UCL. If the sample extract is further diluted, the ML will increase by the dilution factor.

Example: A 1/10 dilution is performed on the sample extract described above. The UCL for 2,3,7,8-TCDD becomes 40,000 pg rather than the default of 4000 pg. In this example, all positive 2,3,7,8-TCDD results above 40,000 pg are flagged with an E.

- **B** The analyte is present in the associated method blank at a detectable level. For this analysis, there is no method specified reporting level other than the qualitative criterion that peaks must exhibit a signal-to-noise ratio of ≥2.5 to 1. Therefore, the presence of any reportable amount of the analyte in the blank will result in a B qualifier on all associated samples.
- **Q** Estimated maximum possible concentration. This qualifier is used when the result is generated from chromatographic data that does not meet all the qualitative criteria for a positive identification given in the method. These may include one or more of the following:
 - Ion abundance ratios must be within specified limits (+/-15% of theoretical ion abundance ratio).
 - Retention time criteria (relative to the method-specified isotope labeled retention time standard).
 - Co-maximization criterion. The two quantitation ion peaks must reach their maxima within 2 seconds of each other.
 - 2,3,7,8-TCDF result is reported from the non-isomer specific Rtx-5 column.
 - Polychlorinated dibenzofuran purity. An interference may be present on the indicated polychlorinated dibenzofuran when a polychlorinated diphenyl ether peak is present and maximizes within +/- 3 seconds of the dibenzofuran candidate.
- ${f S}$ Ion suppression evident. The trace indicating the signal from the lock mass of the calibration compound shows a deflection at the retention time of the analyte. This may indicate a temporary suppression of the instrument sensitivity due to a matrix-borne interference.
- **C** Coeluting Isomer. The isomer is known to coelute with another member of its homologue group, or the peak shape is shouldered, indicating the likelihood of a coeluting isomer.

X – Other. See explanation in narrative.

Laboratory studies supporting risk assessment and Total Maximum Daily Load (TMDL) evaluations, frequently use qualified data reported as low as the Method Detection Limit (MDL), or the Estimated Detection Limit (EDL). Several of EPA's isotope dilution methods employ the EDL. 1,2,3 The EDL is based on a direct measurement of the signal-to-noise (S/N) ratio acquired during sample analysis. This S/N measurement is used to calculate the concentration in the sample corresponding to the minimum intensity of the smallest quantifiable peak. The EDL reflects the amount of the particular analyte which would be required to cause a positive result for the particular analysis. Because the S/N obtained covaries with recovery, instrument sensitivity and sample-specific cleanup efficacy, the EDL is a more valid measure of the sensitivity of the entire analytical process for the specific sample than is an MDL run periodically on a reference matrix.

The EDL is typically calculated according to the following equation:

Estimated Detection Limit =
$$\frac{N \times 2.5 \times Qis}{His \times RRF \times W \times S}$$

Where:

Ν peak to peak noise of quantitation ion signal in the region of the ion chromatogram where the compound of interest is expected to elute

His peak height of quantitation ion for appropriate internal standard

ng of internal standard added to sample Qis

RRF = mean relative response factor of compound obtained during initial calibration

W amount of sample extracted (grams or liters)

S percent solids (optional, if results are requested to be reported on dry weight basis)

(The area of the internal standard is sometimes used instead of height, along with an area-toheight conversion factor.)

This method of estimating the detection limit differs from the MDL in that it does not carry the requirement that the sample be statistically distinguished as being from a contaminated population. As results approach the EDL, the risk of false positives and the analytical uncertainty increase significantly. However, a low false positive well below the ML or MDL is often closer to the true value than an assumption that the target analyte is present at the detection or reporting limits. For relatively clean samples, MDL studies may give an elevated estimate of the detection limit. Additionally, on contaminated samples, the MDL may give a falsely low estimate of the detection limit.

Analyte Concentration =
$$\frac{As \times Qis}{Ais \times RRF \times W \times S}$$

Where:

Sum of areas of the target peaks As

Qis = ng of internal standard added to sample
Ais = Sum of areas of the internal standard peaks

RRF = mean relative response factor of compound obtained during initial calibration

W = amount of sample extracted (grams or liters)

S = percent solids (optional, if results are requested to be reported on dry weight

basis)

In sample data, peaks must have an intensity of ≥2.5 times the height of the background noise in order to be considered. Careful examination of the two equations above reveals that for the concentration of the smallest peak detectable (per the EDL equation) to exactly equal the smallest peaks that are calculated, requires that the average height to area ratio obtained during the calibration must equal the area to height ratio for every peak obtained near 2.5 times the noise. When the area to height ratio on a peak in a sample is less than the average obtained during calibration, the calculated result will correspond to a peak that would have been less than 2.5 times the noise on the calibration. This is the result of normal variability. Because the source methods for the EDL (SW-846 8290 and 8280A) do not provide for censoring of results by any other magnitude standard than being 2.5 times the noise, the laboratory does not censor at the calculated EDL. Hence, detections may be reported below the estimated detection limits.

Footnotes:

- 1. Code of Federal Regulations, Part 136, Chapter 1, Appendix 1, October 1994: Method 1613 Tetra- Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution High Resolution Gas Chromatography/High Resolution Mass Spectrometry.
- 2. U.S. EPA. Test Methods for Evaluating Solid Waste, Volume II, SW-846, Update III, December 1996. Method 8280A: The Analysis of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by High Resolution Gas Chromatography/Low Resolution Mass Spectrometry.
- 3. U.S. EPA. Test Methods for Evaluating Solid Waste, SW-846. Third Edition. March 1995 Method 8290: Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by High Resolution Gas Chromatography/High Resolution Mass Spectrometry.

__

6

8

10

12

4

3

4

5

6

8

11

12

14

L

CERTIFICATION SUMMARY

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Knoxville	L-A-B	DoD ELAP		L2311
TestAmerica Knoxville	Arkansas DEQ	State Program	6	88-0688
TestAmerica Knoxville	California	State Program	9	2423
TestAmerica Knoxville	Colorado	State Program	8	N/A
TestAmerica Knoxville	Connecticut	State Program	1	PH-0223
TestAmerica Knoxville	Florida	NELAC	4	E87177
TestAmerica Knoxville	Georgia	State Program	4	906
TestAmerica Knoxville	Hawaii	State Program	9	N/A
TestAmerica Knoxville	Indiana	State Program	5	C-TN-02
TestAmerica Knoxville	Iowa	State Program	7	375
TestAmerica Knoxville	Kansas	NELAC	7	E-10349
TestAmerica Knoxville	Kentucky	State Program	4	90101
TestAmerica Knoxville	Louisiana DOHH	State Program	6	LA110001
TestAmerica Knoxville	Louisiana DEQ	NELAC	6	83979
TestAmerica Knoxville	Maryland	State Program	3	277
TestAmerica Knoxville	Michigan	State Program	5	9933
TestAmerica Knoxville	Minnesota	NELAC	5	047-999-429
TestAmerica Knoxville	Nevada	State Program	9	TN00009
TestAmerica Knoxville	New Jersey	NELAC	2	TN001
TestAmerica Knoxville	New York	NELAC	2	10781
TestAmerica Knoxville	North Carolina DENR	State Program	4	64
TestAmerica Knoxville	North Carolina DHHS	State Program	4	21705
TestAmerica Knoxville	Ohio	OVAP	5	CL0059
TestAmerica Knoxville	Oklahoma	State Program	6	9415
TestAmerica Knoxville	Pennsylvania	NELAC	3	68-00576
TestAmerica Knoxville	South Carolina	State Program	4	84001
TestAmerica Knoxville	Tennessee	State Program	4	2014
TestAmerica Knoxville	Texas	NELAC	6	T104704380-TX
TestAmerica Knoxville	Federal	USDÁ		P330-11-00035
TestAmerica Knoxville	Utah	NELAC	8	QUAN3
TestAmerica Knoxville	Virginia	NELAC	3	460176
TestAmerica Knoxville	Virginia	State Program	3	165
TestAmerica Knoxville	Washington	State Program	10	C593
TestAmerica Knoxville	West Virginia DEP	State Program	3	345
TestAmerica Knoxville	West Virginia DHHR	State Program	3	9955C

TestAmerica Knoxville | West Virginia DHHR | State Program | 3 | 9955C |
Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

TestAmerica Irvine Sample ID: OUTFALL 009_2014

Method:

EPA-5 1613B

Trace Level Organic Compounds

Instrument ID....: M2A

Lot - Sample #:	H4C040431 - 001	Work Order #:	M257N1AA	Matrix: WG
Date Sampled:	03/01/14	Date Received:	03/04/14	Dilution Factor: 1
Prep Date:	03/06/14	Analysis Date:	03/17/14	

Prep Batch #: 4065015

Initial Wgt/Vol: 1055 mL Analyst ID: Kathryn B. Lay

PARAMETER	RESULT		MINIMUM LEVEL	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		0.0000947	0.00000375	ug/L
Total TCDD	ND		0.00000947	0.00000375	ug/L
1,2,3,7,8-PeCDD	ND		0.0000474	0.00000253	ug/L
Total PeCDD	ND		0.0000474	0.00000253	ug/L
1,2,3,4,7,8-HxCDD	ND		0.0000474	0.00000263	ug/L
1,2,3,6,7,8-HxCDD	0.00000982	QЈ	0.0000474	0.00000301	ug/L
1,2,3,7,8,9-HxCDD	0.0000104	QJ	0.0000474	0.00000261	ug/L
Total HxCDD	0.0000618	J Q	0.0000474	0.00000261	ug/L
1,2,3,4,6,7,8-HpCDD	0.000259		0.0000474	0.00000436	ug/L
Total HpCDD	0.000613		0.0000474	0.00000436	ug/L
OCDD	0.00253	В	0.0000948	0.00000393	ug/L
2,3,7,8-TCDF	ND		0.00000947	0.00000297	ug/L
Total TCDF	0.00000136	QЈ	0.00000947	0.00000297	ug/L
1,2,3,7,8-PeCDF	ND		0.0000474	0.00000186	ug/L
2,3,4,7,8-PeCDF	ND		0.0000474	0.00000179	ug/L
Total PeCDF	0.0000107	QJ	0.0000474	0.00000179	ug/L
1,2,3,4,7,8-HxCDF	0,00000261	QЈ	0.0000474	0.00000171	ug/L
1,2,3,6,7,8-HxCDF	0.00000193	QJ	0.0000474	0.00000174	ug/L
2,3,4,6,7,8-HxCDF	ND		0.0000474	0.00000146	ug/L
1,2,3,7,8,9-HxCDF	ND		0.0000474	0.00000176	ug/L
Total HxCDF	0.0000699	J Q	0.0000474	0.00000146	ug/L
1,2,3,4,6,7,8-HpCDF	0.0000421	J	0.0000474	0.00000230	ug/L
1,2,3,4,7,8,9-HpCDF	0.00000457	QJ	0.0000474	0.00000292	ug/L
Total HpCDF	0.000113	Q	0.0000474	0.00000230	ug/L
OCDF	0.000147		0.0000948	0.00000228	ug/L

TestAmerica Irvine

Matrix....: WG

LIMITS

35 - 197

Sample ID: OUTFALL 009_2014

Trace Level Organic Compounds

Work Order #....: M257N1AA

	22.00.0101				
Date Sampled:	03/01/14	Date Received:	03/04/14	Dilution Fact	or: 1
Prep Date:	03/06/14	Analysis Date:	03/17/14		
Prep Batch #:	4065015	•			
Initial Wgt/Vol:	1055 mL	Instrument ID:	M2A	Method: H	EPA-5 1613B
Analyst ID:	Kathryn B. Lay				
TAMBODALA I OFFIAN	D. A. D.D.C.	PERCENT			COVERY
INTERNAL STAN	DARDS	RECOVEI	XY	LIM	
13C-2,3,7,8-TCDD		82		25 -	
13C-1,2,3,7,8-PeCD		82		25 -	
13C-1,2,3,4,7,8 - Hx0	CDD	90		32 -	141
13C-1,2,3,6,7,8-Hx0		85		28 -	130
13C-1,2,3,4,6,7,8-H	pCDD	90		23 -	140
13C-OCDD		86		17 -	157
13 C-2,3,7,8-TCDF		70		24 -	169
13C-1,2,3,7,8-PeCD	F	82		24 -	185
13C-2,3,4,7,8-PeCD	F	68		21 -	178
13C-1,2,3,4,7,8-HxC	CDF	81		26 -	152
13C-1,2,3,6,7,8-HxC	CDF	77		26 -	123
13C-2,3,4,6,7,8 - HxC	CDF	82		28 -	136
13C-1,2,3,7,8,9-HxC	CDF	95		29 -	147
13C-1,2,3,4,6,7,8-H _]	pCDF	81		28 -	143
13C-1,2,3,4,7,8,9-H ₁	pCDF	85		26 -	138
13C-OCDF	-	80		17 -	157
		PERCENT	1	REG	COVERY

RECOVERY

QUALIFIERS

SURROGATE

37C14-2,3,7,8-TCDD

Lot - Sample #....:

- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC).

H4C040431 - 001

Method Blank Report

Trace Level Organic Compounds

Lot - Sample #....: H4C060000 - 015B 1

Work Order #....: M26QE1AA

Matrix....:

WATER

Dilution Factor:

Prep Date: Prep Batch #: 03/06/14

Analysis Date...: 03/14/14

Instrument ID....: M2A

Initial Wgt/Vol:

4065015 1000 mL

Method:

EPA-5 1613B

Analyst ID:

Patricia(Trish) M. Parsly

PARAMETER	RESULT	MINIMUM LEVEL	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND	0.0000100	0.00000470	ug/L
Total TCDD	ND	0.0000100	0.00000470	ug/L
1,2,3,7,8-PeCDD	ND	0.0000500	0.00000226	ug/L,
Total PeCDD	ND	0.0000500	0.00000226	ug/L
1,2,3,4,7,8-HxCDD	ND	0.0000500	0.00000167	ug/L
1,2,3,6,7,8-HxCDD	ND	0.0000500	0.00000194	ug/L
1,2,3,7,8,9 - HxCDD	ND	0.0000500	0.00000167	ug/L
Total HxCDD	ND	0.0000500	0.00000167	ug/L
1,2,3,4,6,7,8-HpCDD	ND	0,0000500	0.00000300	ug/L
Total HpCDD	ND	0.0000500	0.00000300	ug/L
OCDD	0.00000722 Q J	0.000100	0.00000221	ug/L
2,3,7,8-TCDF	ND	0.0000100	0.00000345	ug/L
Total TCDF	ND	0.0000100	0.00000345	ug/L
1,2,3,7,8-PeCDF	ND	0.0000500	0.00000211	ug/L
2,3,4,7,8-PeCDF	ND	0.0000500	0.00000189	ug/L
Total PeCDF	ND	0.0000500	0.00000189	ug/L
1,2,3,4,7,8-HxCDF	ND	0.0000500	0.000000940	ug/L
1,2,3,6,7,8-HxCDF	ND	0.0000500	0.000000910	ug/L
2,3,4,6,7,8-HxCDF	ND	0.0000500	0.000000870	ug/L
1,2,3,7,8,9-HxCDF	ND	0.0000500	0.000000980	ug/L
Total HxCDF	ND	0.0000500	0.000000870	ug/L
1,2,3,4,6,7,8-HpCDF	ND	0.0000500	0.00000156	ug/L
1,2,3,4,7,8,9-HpCDF	ND	0.0000500	0.00000224	ug/L
Total HpCDF	ND	0.0000500	0.00000156	ug/L
OCDF	ND	0.000100	0.00000287	ug/L

Method Blank Report

Trace Level Organic Compounds

Lot - Sample #....: H4C060000 - 015B

Work Order #....: M26QE1AA

Matrix....:

WATER

Dilution Factor: Prep Date....:

1

Analysis Date...: 03/14/14

. / . .

Prep Batch #:
Initial Wgt/Vol:

03/06/14 4065015

1000 mL

Instrument ID....: M2A

Method:

EPA-5 1613B

Analyst ID:

Patricia(Trish) M. Parsly

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	85	25 - 164
13C-1,2,3,7,8-PeCDD	96	25 - 181
13C-1,2,3,4,7,8-HxCDD	93	32 - 141
13C-1,2,3,6,7,8-HxCDD	89	28 - 130
13C-1,2,3,4,6,7,8-HpCDD	87	23 - 140
13C-OCDD	82	17 - 157
13C-2,3,7,8-TCDF	81	24 - 169
13C-1,2,3,7,8-PeCDF	90	24 - 185
13C-2,3,4,7,8-PeCDF	79	21 - 178
13C-1,2,3,4,7,8-HxCDF	81	26 - 152
13C-1,2,3,6,7,8-HxCDF	79	26 - 123
13C-2,3,4,6,7,8-HxCDF	81	28 - 136
13C-1,2,3,7,8,9-HxCDF	90	29 - 147
13C-1,2,3,4,6,7,8-HpCDF	82	28 - 143
13C-1,2,3,4,7,8,9-HpCDF	77	26 - 138
13C-OCDF	77	17 - 157
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	100	35 - 197

QUALIFIERS

- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC).

3

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #: LCS Lot-Sample# :	H4C040431 H4C060000 - 01		er#: M26QE1A	AC-LCS		Matrix:	WATER
Prep Date:	03/06/14	Analysis Da	ate: 03/15/14			•	
Prep Batch #:	4065015	7 Killing Sid Di	03/13/14				
Dilution Factor:	1						
Analyst ID:	Melissa A. David	dson Instrument	ID: M2A		Mathad .	EPA-5 1613B	
<u>-</u>		ason anstrument	ID: MZA		Method	EPA-3 1013B	
Initial Wgt/Vol:	1000 mL						
PARAMETER	SPIKE AMOUI	MEASURED NT AMOUNT	UNITS	PERO RECO	CENT OVERY	RECOVERY LIMITS	
2,3,7,8-TCDD	${0.0002}$	0.0001	ug/L	97		(67 - 158)	
1,2,3,7,8-PeCDD	0.0010	0.0009	ug/L	99		(70 - 142)	
1,2,3,4,7,8-HxCDD	0.0010	0.0009	ug/L	93		(70 - 164)	
1,2,3,6,7,8-HxCDD	0.0010	0.0009	ug/L	96		(76 - 134)	
1,2,3,7,8,9-HxCDD	0.0010	0.0009	ug/L	94		(64 - 162)	
1,2,3,4,6,7,8-HpCDI	0.0010	0.0009	ug/L	91		(70 - 140)	
OCDD	0.0020	0.0018	ug/L	92	В	(78 - 144)	
2,3,7,8-TCDF	0.0002	0.0002	ug/L	102		(75 - 158)	
1,2,3,7,8-PeCDF	0.0010	0.0009	ug/L	93		(80 - 134)	
2,3,4,7,8-PeCDF	0.0010	0.0009	ug/L	93		(68 - 160)	
1,2,3,4,7,8-HxCDF	0.0010	0.0009	ug/L	93		(72 - 134)	
1,2,3,6,7,8-HxCDF	0.0010	0.0009	ug/L	94		(84 - 130)	
2,3,4,6,7,8-HxCDF	0.0010	0.0009	ug/L	95		(70 - 156)	
1,2,3,7,8,9-HxCDF	0.0010	0.0009	ug/L	95		(78 - 130)	
1,2,3,4,6,7,8-HpCDH		0.0009	ug/L	92		(82 - 122)	
1,2,3,4,7,8,9-HpCDI		0.0009	ug/L	91		(78 - 138)	
OCDF	0.0020	0.0018	ug/L	92		(63 - 170)	
INTERNAL STANDAI	RD		PERCENT RECOVERY			RECOVERY LIMITS	
13C-2,3,7,8-TCDD			86			(20 - 175)	
13C-1,2,3,7,8-PeCDI)		101			(21 - 227)	
13C-1,2,3,4,7,8-HxC			92			(21 - 193)	
13C-1,2,3,6,7,8-HxC			84			(25 - 163)	
13C-1,2,3,4,6,7,8-Hp			95			(26 - 166)	
13C-OCDD			97			(13 - 199)	
13C-2,3,7,8-TCDF			84			(22 - 152)	
13C-1,2,3,7,8-PeCDI	7		96			(21 - 192)	
13C-2,3,4,7,8-PeCDF			89			(13 - 328)	
13C-1,2,3,4,7,8-HxC			83			(19 - 202)	
13C-1,2,3,6,7,8-HxC			82			(21 - 159)	
13C-2,3,4,6,7,8-HxC	DF		84			(22 - 176)	
13C-1,2,3,7,8,9-HxC			86			(17 - 205)	
13C-1,2,3,4,6,7,8-Hp	CDF		86			(21 - 158)	
13C-1,2,3,4,7,8,9-Hp			80			(20 - 186)	
13C-OCDF			86			(13 - 199)	
SURROGATE			PERCENT RECOVERY			RECOVERY LIMITS	
				-			
37Cl4-2,3,7,8-TCDD			103			(31 - 191)	

3

4

5

7

10

12

14

13

LA RORA	TORV	CONTROL	SAMPLI	FDATA	REPORT

Trace Level Organic Compounds

Notes:

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

5/8/2014

Sample Receipt Documentation

THE LEADER IN ENVIRONMENTAL TRISTING **TestAmerico**

Chain of Custody Record

H4C040431

Phone (949) 261-1022 Fax (949) 260-3297

Irvine, CA 92614-5817

TestAmerica Irvine 17461 Derian Ave Suite 100

ں <u>ف</u> N - None
O - AsNaO2
P - Na2O45
Q - Na2SO3
R - Na2SSO3
S - H2SO4
T - TSP Dotecahydrate
U - Acetone
V - MCAA
W - ph 4.5
Z - other (specify) KEC. @ 2.8, 17, 0.9, 0.7, 1.0 Special Instructions/Note: See QAS, Boeing_w/u to zero. ug/L RH 3-4-14 STRAKS INTACT Company Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) FED EX# 5426 43213998 reservation Codes: E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid 440-30150.1 Page: Page 1 of 1 440-71648-1 D - Nitric Acid 030 6 COOLERS Archive For custopy Date/Time: Method of Shipment Cooler Temperature(s) °C and Other Remarks: Disposal By Lab **Analysis Requested** Special Instructions/QC Requirements: Lab PW:
Wilson, Debby S
E-Mail:
debby wilson@testamericainc.com 뷡 Received by: × Time: HM Matrix Water Company Company Type (C=comp, Sample G=grab) 3 Sample 02:13 Pacific Time Date: FAT Requested (days): Date/Time: 3/3/[L]Due Date Requested: 3/13/2014 Sample Date 3/1/14 Project #: 44009879 SSOW#: Date/Time: Date/Time: Phone: ₩O₩ Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No.: Sample Identification - Client ID (Lab ID) 865-291-3000(Tel) 865-584-4315(Fax) Outfall 009_2014 (440-71648-1) Possible Hazard Identification FestAmerica Laboratories, Inc. Empty Kit Relinquished by: 5815 Middlebrook Pike, Project Name: Boeing SSFL outfalls Shipping/Receiving Relinquished by Relinquished by: Inconfirmed elinquished by State, Zip: TN, 37921 Knoxville

Time:		QA026R27.doc
□ 19a Other		Date: 3/4/14
	ictions:	1
19. Was the sampler identified on the COC?	Quote #: 90493 PM Instru	Sample Receiving Associate:

	-	F				
Review Items		Yes	°	NA V	If No, what was the problem?	Comments/Actions Taken
1. Do sample container labels match COC?					□ 1a Do not match COC	
(IDs, Dates, Times)					1 1h Incomplete information	
					1 to Marking emoared	
					1 of I also tom	
					1 tu bacci totii	
	-,	_				W
		_			LIT CUC not received	0.000
				ļ	□ 1g Other:	
2. Is the cooler temperature within limits? (> freezing	50				□ 2a Temp Blank =	
temp. of water to 6 °C, VOST: 10°C)		_			□ 2b Cooler Temp =	
Thermometer ID: 1(60		_			□ 2c Cooling initiated for recently	
		•			collected samples, ice present.	
3. Were samples received with correct chemical		,			□ 3a See box 3A for pH Preservation	
preservative (excluding Encore)?				_	□ 3b Other:	
4. Were custody seals present/intact on cooler and/or		\			□ 4a Not present	
containers?		_			□ 4b Not intact	
					□ 4c Other:	
5. Were all of the samples listed on the COC received?	d?				□ 5a Samples received-not on COC	
		_			☐ 5b Samples not received-on COC	
6. Were all of the sample containers received intact?					□ 6a Leaking	
		_			□ 6b Broken	
7. Were VOA samples received without headspace?					☐ 7a Headspace (VOA only)	440000
8. Were samples received in appropriate containers?					□ 8a Improper container	
9. Did you check for residual chlorine, if necessary?		-		-	□ 9a Could not be determined due to	
(e.g. 1613B, 1668)		_			matrix interference	
10. Were samples received within holding time?	/				□ 10a Holding time expired	
11. For rad samples, was sample activity info. provided?	jp;	_			□ Incomplete information	
12. For 1613B water samples is pH<9?					If no, was pH adjusted to pH 7 - 9 with sulfuric acid?	pH test strip lot number: HC399982
13. Are the shipping containers intact?				-	□ 13a Leaking	Box 3A: pH Box 9A: Residual
		,	1	+	□ 13b Other:	Preservation Chlorine
- 1					□ 14a Not relinquished	Preservative:
 Are tests/parameters listed for each sample? 		7			□ 15a Incomplete information	Lot Number:
16. Is the matrix of the samples noted?		1			□ 15a Incomplete information	Exp Date:
17. Is the date/time of sample collection noted?		/				Analyst:
18. Is the client and project name/# identified?			_			Date:
19. Was the sampler identified on the COC?		_				1 me:
Quote #: 90493 PM Instructions:						
					1//	
Sample Receiving Associate:			П	Date: 7	4/0/1	OA03607 400 102013

TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST Lot Number: #4/C04043/

			· 「	Teus.	70	. Fall		Roll	, 1	į								/ \	<u>,</u>			~		S	P[Tex	Sa	ğê.	<u> </u>		Test	
	سيسعر إ	<i>(</i>		ne mentenanay	na inha a	Relinquished By		Railinguished By					Cythall 009	Outfall 009	Outfall BO9	Outal oos	ວັນນັລກິ 009	Trip Blanks	Trip Edanks	Outfall bos	Outtail one	Outfall 009	Sample Description	Sampler: X	Project Manager_ Nancy Gardiner	1	Test America Contact: Debby Wilson	San Diego, CA 92109-5860	19040 Fnars Road Sulte 220	Client Name/Address:		Test America vondon 7/19/2010	
_		\			77	5				-			*	\$	L M), M.	₩.	٤	W	W	¥	1	Sampia Matrix	(X) (X) (X)	ger, Nand		Contact	A 92109-5	oad Sulte	ddress:		Ca vardo	,
outro	e rex	15		_	12 4/2				1				125ml Poly	1 Gal Cubo	125 ml. Poly	125 ml Poly	500 mL Poly	VOAs	VOAs	VOAs	VOAs	1L Ambor	Contamer Type	14/00 21 16	y Gardine		Debby W	098	20			n 7/15/2010	΄,
Titoon	ise		1	Cate Line	į	Date/Tene,	_/	Data/Time:	ese Sa				4	1	1	1	١ ر	ن د	C	j.	3	No.	toni,			_	son	<u></u>					
Outfalloog_20140aa8_6nrab	Please revise sample ID's				1	ر ر	1/2		These Samples are the Grab Portion of Outfail 009 for this storm event. Composite samples will follow as				Outal 009_2014	Outful! 009_2014	OUNTER 009_2014	Outfall 009_2014	Outlast 009_2014	TB-2014	7B-2014	Ougal 009_2014	Outfall 009_2014	Oulfall 009_2014	Sample i.D.	69	on.				_	:			
अवस्	H. GO	·			78/ / St. 1	211	LEUI Loverie	71 11/2	e Grab P				Gab	Grab	പോ	Gtab	Grab	-	1	Grab	egg.	Gab	Þ	Field Manager: Jeff Bannon 818,350,7340, 818,414,5608(cell)	Phone Number; 619.285.7132, 858.337,4061(cell)			Stor	Annual and Routine Outfall 909	808			
_Gara			***************************************		P.	4	10	*	ortion of				Q.			,						2090	Samping Dala/Time	Field Manager: Jeff Bannon 8.350.7340, 818,414,5608(c	Phone Number: 7132, 858,337,4			Stormwater et SW-13	nd Routin	Project Boeing-SSFL NPDES			
O	ġ.				ا - د	ン	7	2	Outtail	_			***						•	-		5	1	/eff Bann 414,560	mber: 337,406			ะ รพ-เว	ne Outfa 3	. NPDES			
	17. 4. 17.	١				ر ا			009 for t				None	None	Na2S2O3	Nag5203	None	Nono	₽	None	Ю	된	Prozovaliva	on (cell)	(oell)				600 11			돥	
	Explained!		(Race National Rev	Received By		Received by Outine, IA = Annual Oute/	ils storm				13	6	ça	7	σı	5A, 58, 50	#A, 4B, ★C	5A, 3E, 3C	2A, 28, 2C	1A, 16	Bordo #									CHAIN OF CUSTODY FORM	*
				<u>`</u>	-		Ŋ	- K	event					=					=			×ī	Oil 8	Grease	(1654	I-HE	M)—					, C	
			-	? 	~ ~ -		Z-	ine, p	S	_	 				_	_	-		×	-	×			s 624,)						_}_	D D		
		(1.	Σ, ,			3	(E. 24)	aliso		_						×	×	-	×	-	-	 	s 624 + /1) (218.		ZCVI	E .			-{-	- >>	— ğ	
				70.50	Date/Time:	Date/Nhae;	02	Date/Time:	dunes	<u> </u>	-				-	×	+	 -	T	-	-	-	+	ıj colifat		1922	1)			7	Þ	FOF	
		ر در در دن		د ع ۲			3		S WIJ)						×								E. 0	ok (SM9	221)						>	Š	
		10 0 X					F/200	다.한	follow	_	-	-		×	-	-	-	\vdash	-	-	-	-	┼	e Toxica						_	A		
				19. Pare 1	April 1	Signal Signal	24 Hatur 48 Hour				<u> </u>	_	×	_	-	_		-	-	-			AJIG.	Bacter	Utialit:	3, 13,	169631		·	\dashv			
•	-		ı	Data Requirements, (Chock)	-	Sample Integrity: (Check) 7, (5 4	um-around time. (Cheek)	d are to be added to this work order.		_					-	-	-	-			_	-	· .						ANALYSIS REQUIRED			an age and the state that the
		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ł	(Chock)	ζ	ک و در		Check	peppi						440-															REQU			
		Λ) 2		All Land IV	0n 00 (0)	10 (S)	# Day		o this						440-71418 Chain of Custody							-											
		,		₹ 	1	نزز			work o	-	-	_	-		Chain					\vdash	-	-	┼-							-	1		
			and the same of th	{	,	`	,		rder.	-	_		-		of Cu					-	_		-							_	4		
			atronomic pagements	y								<u> </u>		-	stody		Z						_								Ö		
			·	시 하시하기 S필입스처			Normal,						Def	-											1 1	readings_	Include units) Time of	(Log in I	Fleid readings:				
-				<u>के</u> द (Deliver to lab ASAP			=			3				Comments		150	8	- जा <i>(</i> ड)	(Log in and include in	adings:		14	ற	
and desired the second desired.				}				-	-				ASAP										nts	Ì		3, 2	005	je in		}	440-71418 re	Page 1 of 2	
and the second s			į.					i_		<u></u>	1	<u>L</u>	L	L	<u></u>	<u> </u>	1	ــــــــــــــــــــــــــــــــــــــ		<u> </u>	<u> </u>	<u>L.</u>	Т.		, 1	2	St					약 2	
																															5		

Test America version missens

CHAIN OF CUSTODY FORM

		DO PANATIC	ofice .		R R P R R R R R R R R R R R R R R R R R
Client Name/Address:	Pr	yect			ANALYSIS REQUIRED
Háley & Altrich 9040 Fnars Hoad Suite 220 Sán Diego, CA 92108-5860	Annual and Ro	Boeing-SSFL NPDES Arthust and Hourstine Outfall 009 COMPOSITE Stormwater at SW-13		, Cd, Cu, Pb,	eta(908.0), eta(908.0), Total 1 or 903.1) & n (908.0), K-n (908.0), K-
Test America Contract: Debby Wrison				eners)	i, Gross Be i), Sr90 (9 228 (903 c)), Uranium or 901.11) Melats: Sh .+ PP, Ha Hais: Sh, C .+ PP, Ha
Project Manager: Namey Gardiner	Phone 513	Phone Number:		Cong	900.0), (906.0) dium 2 (904.0) 0 d (904.0) 0 d rity rable N Fe, Al, ee Mai
Sampler: H. (701RENZEZ)	619:285,7132, 1 Field Marrag 818:350,7340, 1	619,285,7132, 958,637,4061(csi)) Fiold Manager, Jeff Barrion 818,350,7340, 818,414,5608(cell)			S Alpha(9) s Alpha(9) m (H-3) (1) closed Hackim 228 (1) S-107 (9) the Toxici ide Recover, B, Y, TI, F Dissolve S, Y, TI, F OB crchiorate
Sample Sample Container 3 as	Sample I.D.	Sampling Proservitive	antha Botto #	Hg, T TCDI	Hg, T Gross Tritum Coml Radie 40, C Chros Cyan Total Hg, E GaC F, Pest PP
W 1L Poy	Comp	ONH 6120	\$ \$	×	X X In a supplemental plants of the supplemental suppleme
Guttall COS W 1L Amber 2	Outfall 009, 2014 Comp	, Nona		×	
×	Outal coll 2014 Comp	Hone	47.48	×	×
County Cold	- 1	None	\dashv		X Filter wile 24h X Rand A mal
2.5 Gz/ Cv)bp 1	Outali 009_2014 Comp	None	7.6		Unitianso and unprosonous
Outfall 009 W Stornt Amber 1	ł	Neno	75		nnayara
Ordall 009 W 1 Gal Pely 1	Финал 009_2014 Сотр	Nona	na B		X x years of the year
Outfall 009 IV 500 mL Paly 1	Origati 009 2014 Comp	NaOH	me 14A, 14B	1	X
W 1L Amber	Į	Мота	{		×
\$	Outtail 009_2014 Comp	None	+		
Outral 009 VV 1L POIN 1	Cedan da 201+ Consp	The state of the s		1	
		COC Page	2 of 2 list the	Composite Sa	
1 4 1	Th	ase must be added	to the same	work order to	These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. 440-7 (548 Chair) or Custical
Resinquestrips By Oatherime.	31:119	(000)	Angular L	Legend: H = R	Legend: H = ROUKine, A = Annual Describer Describer A = Annual Inn zicker w 72 Hour 72 Hour 10 hay Nomed Nomed
Date/Times	S S S	811		S. S	During DCS 11 & Milest 15 on less 1 1.0/2.80C
Figinguished By	Time.		Ярсої май Ву	ΒV	Date/Terror:
Dun	8/1/14	4:30PM		Many of the second	Section Adjustments (Oracle Allender National Na
	_			-	<i>C</i> .
Please revise sample IDs to:	ie IDs to:				
htts://outpub/188804108/1600/18440	1 daso 8880 h	11- F- 72		·····	•
		1			· · · · · · · · · · · · · · · · · · ·

Page 2 of 2

Page 116 of 122

5/8/2014

Page 2 of 2	8H91L-0H				Comments			If R and A metals overlap, analyze				Filter with 24hrs of receipt at lab, If R and A metals overlap, analyze once	Unfiltered and unpreserved	analysis	Only test if first or second rain events of the year					T			1	1	10 Day'	285 #63	1.3°C	
	1					(S 001) sol	səqsV					<u> </u>			-			-					Custody		¥ ž	0/2	7.2/	
	\$ 	4				dd + (9Z9) s	OOAS							1			_	×					ວິ ່ຽ ⊑		\ \	<u>J</u>		
	_	` 	,	∙ noniz¢iO ,eo	lhyqrold;	o cas/PCBs , C	Pestic								-		×	_					440-71648 Chain of		72 Hour 5 Day		All Level 174.	
		1	3			chlorate				×													0-716			£ 6		
		REQUIRED				Dissolved Met. V, Tt, Fe, At. 3						× ,					ļ		=				- 1-	13) ₁₁	<u>*</u>	ments: (O	}
		ANALYSIS B	100	ardness as	H 'dd +		Нд, В, СаСО	×												T			dded to the same work order for COC Page 1 of 2 for Outfall 009 for the same event.	Turn expund W	24 Hour	Sample Integrity	Data Requirements' (Check) No Level IV	
			Ž -				Cyani	├ -			4			_		×		\neg	\exists	1		yent	The San		8	\$	83	
	ć	<u>-</u>	F		(1.106%	5-137 (901 0 o	#0° C2		-	Н	\dashv		Η	-{	<u>*</u>		+	\dashv	1	+	+	storm	109 to		22	, ,		1
Σ				905.0), Tolal 8 (1.509 to 0), Sr-90 (226 (903	(6-9) 2 muibs Heari 3 muibs Heari	ոսվիT IdmoO				Í		\ 	: }								or this	Outtall		7	005	1	[
FOR		¥	}				ц '6н	T	H		\dashv			\dashv		-	+	\dashv	\dashv	+	+	all 009	, 12 to	3	B	ا 'ر ح	100	}
70		בׁ ב		<u> </u>	45.516	Jessolved Mel	881	┢			7	_				-	+	-	7	×		Ž.	96 1	de/Time	(2-	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Баве/Тіте:	,
_ <mark>S</mark> T	\$	<u>-</u>	_[SQT	├			×			_		\Box	\downarrow	\Box	_	\downarrow		aples f		ا الالات	B	- Serial O	1° 6	
FCU	<u>.</u>	<u>-</u>	\mid			(and all cong.		-	×	×	-			-			7		7		+	ite Sar	Jer for	2 - 	T) ——	1	1
<u> </u>		<u>د</u> اح	\ \ \ '\	p' Cq' Cn' bp			Щ '6Н		-		-	_			-		7	_	7	+	1	Sompos	ork or	Date/Time	Ź		Tat.	
CHAIN OF CUSTODY FORM	^						Bottle #	ส	3A, 3B	4A, 4B	2	9	47	£	8	6	14A, 14B	16A, 16B	₽	2		list the C	e same v	ecowed By	X	va pewed by	Received By	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	3			o O			Varibe Series	SN I	None	None	None	- eue	None	None	None	NaOH	None	1	None	None	+	age 2 of 2 list the Composite Samples for Outfall 009 for this storm event.	led to the	1		<u> </u>	2	-
	A 4		S	riffall 009		Phone Number: 619.285.7132, 858.337.4061(cell) Field Manager: Jeff Bannon 818.350.7340, 818.414.5608(cell)	- E	├—			_				_	-	7	$\overline{+}$	\dashv	$\overline{+}$	╁	COC Pa	be add		ن سره)	8	1.30	
	90	i;	Boeing-SSFL NPDES	Annual and Routine Outfall COMPOSITE Stormwater at SW-13		Phone Number: 9.285.7132, 858.337.4061(cc Field Manager: Jeff Bannon 9.350.7340, 818.414.5608(cc	Sampling Date/Tim	6120	-	H	-		-	\dashv	_		+	-	-	$\left\{ \right\}$			These must be a			1 [2	خــ ال	
	_ (Pro	SS-buile	Ind Rou COMP		Phone P 732, 85 Manage 7340, 81	-		1							a				`	╀		Ĕ)	#	-		
			Bo	nnual a		9.285.7 Field N	٥	Comp	Сощр	Comp	Сощр	Comp	Сотр	Comp	Сощо	Comp	Comp	Comp	Comp	Comp				+3	4	i	7.	
				∢		15 16	Sample I.D.	Outfall 009_2014	Outfall 009_2014	Outail 009_2014	Outfall 009_2014	Outall 009_2014	Outfall 009_2014	Outall 009_2014	Outtall 009_2014	99_2014	Outfall 009_2014	Outfall 009_2014	Outfall 009_2014	Outfall 009_2014		} }		4	345		11/8	_
							"	Outfall 0	Outfall 0	Outfall 0	Outtall 0	Outall 0	Outall 0	Outfall 0	Outtall 0	Outfall 009_2014	Outtall	Outfall 0	Outfall 0	Outfall 0						3	; (A)	}
		}	_		- ros	Ž	a §		2	2	-	·-	-	-	-	1	2	2	-	>	+	[\ 	1	Date/Time.		Oate/Time	Date/Time	}
719/2010				S 0	abby Wil	Sardine 27 20	Container	1L Poly	1L Amber	500 mL Poly	500 ml. Poly	1L Poly	2 5 Gal Cube	500 mL Amber	1 Gal Poly	500 mL Poly	1L Amber	1L Amber	1L Poly	1L Poly	1		+	T	1	19	\$ /\\	
Version 7		less:	_	Surte 22 2106-586	ntact: De	Nancy (Sample Co Matrix		W 1L		w 500		25		*	w 500	W.	₩	{	-	+		1	#	12	75	De	
erica		ne/Addr	Aldrict	rs Road	rica Cor	anager:			\vdash	Н	-{		-	4		Н	-{	\dashv	-{	+	+-	$\left\{ \ \right\}$	1	// //	£		luished By	
Test America version 7/19/2010		Chent Name/Address	Halev & Aldrich	9040 Fnars Road Surte 220 San Diego, CA 92108-5860	Test America Contact: Debby Wilson	Project Manager: Nancy Gardiner Sampler: 1, 00 (100 n.co)	Sample	Outfall 009	Onttall 009	Outfall 00	Outfall 009	Outfall 009	o de la company		Outfall 009	Outtall 009	Outlall 009	Outfall 009	Outfall 009	Outfall 009		$\left\{ \ \right\}$		Refinguished	B	SE DAMACHINE	All nquished	
H _e		<u>u</u>	<u> </u>	<u> </u>		<u>, v</u>	<u></u>		لــا	ليا	اــا	_		لــــ				_				 L		10.	1.3		1	J

Login Sample Receipt Checklist

Client: Haley & Aldrich, Inc. Job Number: 440-71418-1

Login Number: 71418 List Source: TestAmerica Irvine

List Number: 1

Creator: Wilson, Debby S

Question Answer Comment

Radioactivity wasn't checked or is </= background as measured by a survey

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time.

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Login Sample Receipt Checklist

Client: Haley & Aldrich, Inc. Job Number: 440-71418-1

Login Number: 71648 List Source: TestAmerica Irvine

List Number: 1

Creator: Wilson, Debby S

Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td>	True
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

6

5

6

8

11

12

14

Login Sample Receipt Checklist

Client: Haley & Aldrich, Inc. Job Number: 440-71418-1

Login Number: 71648 List Source: TestAmerica Denver
List Number: 281 List Creation: 03/07/14 10:31 AM

Creator: O'Tormey, Stephanie R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
flultiphasic samples are not present.	N/A	
samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

__

5

_

9

11

40

14

Client: Haley & Aldrich, Inc.

Job Number: 440-71418-1

Login Number: 71648
List Source: TestAmerica St. Louis
List Number: 1
List Creation: 03/04/14 12:06 PM

Creator: Clarke, Jill C

Creator: Clarke, Jill C	_	_
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	3.1, 3.2
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6 mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Irvine

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-1

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(40-110)	
440-71553-A-3-J DU	Duplicate	105	
440-71648-1	Outfall 009_20140228_Comp	93.5	
LCS 160-108343/2-A	Lab Control Sample	106	
MB 160-108343/1-A	Method Blank	107	
Tracer/Carrier Legend			
Ba = Ba Carrier			

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
440-71553-A-3-K DU	Duplicate	105	89.2	
440-71648-1	Outfall 009_20140228_Comp	93.5	83.5	
LCS 160-108344/2-A	Lab Control Sample	106	86.3	
MB 160-108344/1-A	Method Blank	107	86.3	
Tracer/Carrier Legend				

Y = Y Carrier

Method: 905 - Strontium-90 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Sr (C)	Υ	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
440-71553-A-3-G DU	Duplicate	88.5	93.6	
440-71648-1	Outfall 009_20140228_Comp	81.9	96.0	
LCS 160-108916/2-A	Lab Control Sample	92.4	86.7	
MB 160-108916/1-A	Method Blank	91.1	90.4	

Sr (C) = Sr Carrier

Y = Y Carrier

Method: A-01-R - Isotopic Uranium (Alpha Spectrometry)

Matrix: Water Prep Type: Total/NA

			Percent Yield (A
		U-232	
Lab Sample ID	Client Sample ID	(30-110)	
440-71432-P-1-G DU	Duplicate	87.1	
LCS 160-109757/2-A	Lab Control Sample	80.6	
MB 160-109757/1-A	Method Blank	74.9	

TestAmerica Irvine

2

J

5

7

9

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-71418-3

Client Project/Site: Boeing SSFL Outfall 009 Annual

For:

Haley & Aldrich, Inc. 9040 Friars Rd. San Diego, California 92108

Attn: Nancy Gardiner

Delby Wilson

Authorized for release by: 4/28/2014 2:55:01 PM

Debby Wilson, Manager of Project Management (949)261-1022

debby.wilson@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

9

3

4

5

6

Q

9

4 4

19

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Debby Wilson

Manager of Project Management

4/28/2014 2:55:01 PM

Client: Haley & Aldrich, Inc. Project/Site: Boeing SSFL Outfall 009 Annual TestAmerica Job ID: 440-71418-3

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	6
Method Summary	7
Lab Chronicle	8
QC Sample Results	9
QC Association Summary	10
Definitions/Glossary	11
Certification Summary	12
Receint Checklists	

3

4

7

9

10

Sample Summary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-3

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-71418-1	Outfall009_20140228_Grab	Water	02/28/14 09:00	02/28/14 13:34

3

5

6

8

9

10

11

Case Narrative

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-3

Job ID: 440-71418-3

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-71418-3

Comments

Client requested additional analysis, alkalinity, on sample 440-71418-1.

Receipt

The samples were received on 2/28/2014 1:34 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.3° C.

General Chemistry

Method(s) SM 2320B: The following sample and sample duplicate were analyzed from 40ml unpreserved glass vials outside of analytical holding time. Alkalinity test was requested by client on 4/25/14. (440-71418-1 DU), Outfall009_20140228_Grab (440-71418-1).

No other analytical or quality issues were noted.

3

4

6

0

4.0

11

Client Sample Results

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Client Sample ID: Outfall009_20140228_Grab

TestAmerica Job ID: 440-71418-3

Lab Sample ID: 440-71418-1

Matrice Mater

Matrix: Water

Date Collected: 02/28/14 09:00
Date Received: 02/28/14 13:34

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity as CaCO3	16	BU	4.0	4.0	mg/L			04/28/14 08:40	1
Bicarbonate Alkalinity as CaCO3	16	BU	4.0	4.0	mg/L			04/28/14 08:40	1
Carbonate Alkalinity as CaCO3	ND	BU	4.0	4.0	mg/L			04/28/14 08:40	1
Hydroxide Alkalinity as CaCO3	ND	BU	4.0	4.0	mg/L			04/28/14 08:40	1

6

10

11

Method Summary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-3

Method	Method Description	Protocol	Laboratory
SM 2320B	Alkalinity	SM	TAL IRV

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

4

_

8

10

11

Lab Chronicle

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Client Sample ID: Outfall009_20140228_Grab

TestAmerica Job ID: 440-71418-3

Lab Sample ID: 440-71418-1

Matrix: Water

Date Collected: 02/28/14 09:00 Date Received: 02/28/14 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2320B		1			178624	04/28/14 08:40	YZ	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

QC Sample Results

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-3

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 440-178624/3

Matrix: Water

Analysis Batch: 178624

Client Sample ID: Method Blank

Prep Type: Total/NA

	111.0	WID							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity as CaCO3	ND		4.0	4.0	mg/L			04/28/14 08:12	1
Bicarbonate Alkalinity as CaCO3	ND		4.0	4.0	mg/L			04/28/14 08:12	1
Carbonate Alkalinity as CaCO3	ND		4.0	4.0	mg/L			04/28/14 08:12	1
Hydroxide Alkalinity as CaCO3	ND		4.0	4.0	mg/L			04/28/14 08:12	1
<u></u>									

Lab Sample ID: LCS 440-178624/2 **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA Analysis Batch: 178624

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits 86.3 101 90 - 110 Alkalinity as CaCO3 86.9 mg/L

MR MR

Lab Sample ID: 440-71418-1 DU Client Sample ID: Outfall009_20140228_Grab

Matrix: Water Prep Type: Total/NA Analysis Batch: 178624

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier RPD Limit Unit 16 BU 16.3 Alkalinity as CaCO3 20 mg/L 5 Bicarbonate Alkalinity as CaCO3 16 BU 16.3 mg/L 5 20 Carbonate Alkalinity as CaCO3 ND BU ND mg/L NC 20 Hydroxide Alkalinity as CaCO3 ND BU ND mg/L NC 20

4/28/2014

QC Association Summary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-3

General Chemistry

Analysis Batch: 178624

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-71418-1	Outfall009_20140228_Grab	Total/NA	Water	SM 2320B	
440-71418-1 DU	Outfall009_20140228_Grab	Total/NA	Water	SM 2320B	
LCS 440-178624/2	Lab Control Sample	Total/NA	Water	SM 2320B	
MB 440-178624/3	Method Blank	Total/NA	Water	SM 2320B	

-6

1

-

6

0

9

10

11

4.0

Definitions/Glossary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Relative error ratio

TestAmerica Job ID: 440-71418-3

Qualifiers

General Chemistry

Qualifier	Qualifier Description
BU	Analyzed out of holding time

Glossary

PQL

QC

RER

RPD

TEF

TEQ

RL

Abbreviation These commonly used abbreviations may or may not be present in this report.			
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CNF	Contains no Free Liquid		
DER	Duplicate error ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision level concentration		
MDA	Minimum detectable activity		
EDL	Estimated Detection Limit		
MDC	Minimum detectable concentration		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
NC	Not Calculated		
ND	Not detected at the reporting limit (or MDL or EDL if shown)		

TestAmerica Irvine

Certification Summary

Client: Haley & Aldrich, Inc.

Project/Site: Boeing SSFL Outfall 009 Annual

TestAmerica Job ID: 440-71418-3

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-14
California	LA Cty Sanitation Districts	9	10256	01-31-15
California	State Program	9	2706	06-30-14
Hawaii	State Program	9	N/A	01-29-15 *
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-29-15
Northern Mariana Islands	State Program	9	MP0002	01-31-14 *
Oregon	NELAP	10	4005	01-29-15
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

1

4

5

8

9

11

11

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Irvine

Answer

Comment

Client: Haley & Aldrich, Inc.

Job Number: 440-71418-3

List Source: TestAmerica Irvine

Login Number: 71418

List Number: 1

Creator: Wilson, Debby S

Radioactivity wasn't checked or is </= background as measured by a

survey meter.

Question

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time.

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

TestAmerica Irvine

DATA VALIDATION REPORT

Haley & Aldrich Boeing SSFL Stormwater

SAMPLE DELIVERY GROUP: 440-71553-1

Prepared by

MEC^X
12269 East Vassar Drive
Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Haley & Aldrich Boeing SSFL Stormwater

Project:

Contract Task Order: 1272.003H.01 001 Sample Delivery Group: 440-71553-1

Project Manager: K. Miller

Matrix: Water QC Level: IV Samples: 2

No. of Samples: 2 No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica Irvine

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
Outfall010_2014 0228_Grab	440-71553-1	N/A	Water	2/28/2014 12:00:00 PM	E1613B, E1664, E200.7, E200.8, E218.6, E245.1, E300, E314.0, E525.2, E608, E624, E625, E900, E901.1, E903.0, E904.0, E905.0, E906.0, HASL-300 U Mod, SM2540C, SM2540D, SM4500-CN-E, SM4500F-C, SM9221E, SM9221F
TB3-20140228	440-71553-2	N/A	Water	2/28/2014 12:00:00 PM	E624

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at the laboratory on ice. The sample was transported directly from the field via courier and was received within the temperature limits of 4°C ±2°C. According to the laboratory sample receipt log for this SDG, the sample containers were received intact and properly preserved, as applicable. The COC was appropriately signed and dated by field and laboratory personnel. Custody seal were not utilized to transfer the sample to TestAmerica-St. Louis.

A revised COC was provided in the data package noting the sample IDs listed on pages 1 and 2 should be changed to Outfall010_20140228_Grab.

Data Qualifier Reference Table

Project:

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
М	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: April 2, 2014

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613B, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (2011).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613B control limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of the analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613B. The ion abundance ratios and relative retention times were within the method control limits.
- Blanks: The method blank had a detect below the reporting limit for OCDD at 0.0000072 µg/L; however, the concentration of OCDD in the associated sample significantly exceeded the method blank concentration and required no qualification. The method blank had no other detects above the estimated detection limit (EDL).

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613B.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613B. As 2,3,7,8-TCDF was not detected in the sample, confirmation analysis was unnecessary.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613B.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Any detects between the EDL and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

Totals HxCDD and HxCDF were flagged by the laboratory as containing one or more EMPC peaks. The results for both totals were qualified as estimated, "J."

B. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 1, 2014

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, 245.1, Standard Methods for the Examination of Water and Wastewater Method (2012) 2340B, and the National Functional Guidelines for Inorganic Data Review (2010).

 Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.

- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. The mercury CRA associated with the dissolved analysis was recovered at 67%; therefore, nondetected dissolved mercury in the sample was qualified as estimated, "UJ." The remaining CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Dissolved zinc was detected in the method blank at 16.4 µg/L; therefore, dissolved zinc in the sample was qualified as nondetected, "U," at the level of contamination. Dissolved hardness was also detected in the method blank, but not at sufficient concentration to qualify the site sample. Method blanks and CCBs had no other detects.
- Interference Check Samples: Recoveries were within 80-120%. There were negative results and detects for some unspiked analytes in the ICSAs; however, as the sample concentrations of the interferents were significantly lower than the interferent ICSA concentrations, the sample was not assessed for matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for all total analytes and the dissolved 200.8 analytes. Results were not assessed when the native concentration was more than 4x the spike amount. Recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 625 (Low Level)—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin

Date Reviewed: April 2, 2014

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (2008).

- Holding Times: Extraction and analytical holding times were met. The unpreserved water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP met the method ion abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Initial calibration average RRFs were ≥0.05. The initial calibration %RSDs were ≤35% or r² values ≥0.990. ICV and CCV RRFs were ≥0.05, and %Ds were ≤20%.
- Blanks: The method blank had a detect below the reporting limit for benzoic acid at 2.36(J) µg/L. Benzoic acid was detected in the sample at a concentration greater than five times the method blank concentration and required no qualification. The method blank had no other target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished control limits. The RPD for 3,3'-dichlorobenzidine exceeded the control limit of ≤25%, at 32%; however, as recoveries were acceptable and 3,3'-dichlorobenzidine was not detected in the associated sample, no qualification was necessary. Remaining RPDs were within the laboratory-established control limit.
- Surrogate Recovery: Surrogate recoveries were within laboratory-established control limits.

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy and precision was based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits of -50%/+100% for internal standard areas and ±30 seconds for retention times established by the continuing calibration standards.
- Compound Identification: Compound identification was verified. The laboratory analyzed semivolatile target compounds by Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit. Benzoic acid was reported from a 10x dilution in order to report the result within linear range of the calibration. Remaining results were reported from the undiluted analysis.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

D. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks Date Reviewed: April 4, 2014

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (2010).

Holding Times: The analytical holding time, 28 days, was met.

- Calibration: Calibration criteria were met. The initial calibration r² value was ≥0.995 and the ICV recovery was within 90-110%. The CCV recoveries were within the method control limits of 85-115%. The IPC recovery was within the method control limit of 80-120%. The ICCS recovery was within the method control limit of 75-125%
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The recovery was within the method control limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

E. EPA METHOD 608 (Low Level)—Pesticides and PCBs

Reviewed By: P. Meeks Date Reviewed: April 1, 2014

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 608, and the National Functional Guidelines for Organic Data Review (2008).

10 Revision 0

- Holding Times: Extraction and analytical holding times were met. The sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- Calibration: The initial calibrations had %RSDs of ≤10% or r² of ≥0.990 on both analytical columns.

The closing pesticide CCV had an individual chlordane peak with a %D of 15.6%; however, as this was associated with a high recovery, no qualification was applied. In the same CCV, a chlordane peak was reported as not found. The reviewer checked the chromatogram and noted the peak was present and approximately the same size as the acceptable opening CCV; therefore, no qualification was applied.

The PCB ICV had an individual Aroclor-1016 peak with a %D of 17.9% and the opening CCV had an individual Aroclor-1016 peak with a %D of 15.1%; however, as these were associated with high recoveries, no qualification was applied.

The ICVs and remaining CCVs had %Ds within the QC limit of ≤15%. As there were no primary column detects to confirm, secondary column CCVs were not assessed. The breakdown totals for endrin and 4,4'-DDT were ≤15%.

- Blanks: The method blanks had no confirmed target compounds detected.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within the laboratory-established QC limits. Chlordane and toxaphene were not spiked in the pesticide LCS/LCSD.
- Surrogate Recovery: Recoveries were within the laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy and precision was based on the LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Compound Identification: Compound identification was verified. Review of the sample chromatograms and retention times indicated no problems with target compound identification. The laboratory analyzed for select pesticides and PCB Aroclors by Method 608.

 Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Any reported nondetect is valid to the reporting limit.

F. EPA METHOD 525.2—Diazinon and Chlorpyrifos

Reviewed By: L. Calvin Date Reviewed: April 2, 2014

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (2008).

- Holding Times: The sample was extracted 27.5 hours after collection. As the sample was not extracted within 24 hours of collection, the nondetected result for diazinon was qualified as estimated, "UJ." Chlorpyrifos was extracted within 14 days of collection and both samples were analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs were ≥0.05 and %RSDs ≤30%. The continuing calibration RRFs were ≥0.05 and recoveries were within the method QC limits of 70-130%.
- Blanks: The method blank had no target compound detects.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs were within laboratory-established control limits.
- Surrogate Recovery: The surrogate triphenylphosphate was recovered above the control limits of 70-130% at 212%; however, as the sample had no target compound detects, no qualification was necessary. Remaining recoveries were within the control limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Method accuracy and precision were evaluated based on the LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: Area counts for phenanthrene-d10 and chrysene-d12 were below the control limits; therefore, the nondetected result for diazinon associated with phenanthrene-d10 was qualified as estimated, "UJ." As chlorpyrifos did not reference either of the IS outliers, no further qualification was necessary. The remaining internal standard area counts were within the method control limits established by the continuing calibration standards of ±30%. The retention times were within ±30 seconds.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this analysis.
- System Performance: Review of the raw data indicated no problems with system performance.

G. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 8, 2014

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, HASL-300 modified,* and the *National Functional Guidelines for Inorganic Data Review* (2010).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were preserved within the five-day holding time.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The radium-226 and gross alpha detector efficiencies were less than 20%; therefore, the results for these analytes were qualified as estimated, "UJ," for nondetected gross alpha and, "J," for radium-226. The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were within the laboratory control limits. The uranium initial and continuing calibration efficiency checks were within the laboratory established control limits. The gamma spectroscopy analytes were determined at the maximum photopeak energy and all daily and annual checks were within the laboratory control limits.

- Blanks: There were no analytes detected in the method blanks or CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for the radium isotopes and strontium-90. The results were within the analyte error margin.
- Matrix Spike/Matrix Spike Duplicate: A matrix spike analysis was performed on the sample in this SDG for tritium. The recovery was within the laboratory control limits.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDCs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Any
 detects between the MDC and the reporting limit were qualified as estimated, "J," and
 coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are
 valid to the MDC.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

H. EPA METHOD 624 (Low Level)—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin Date Reviewed: April 2, 2014

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 624, and the National Functional Guidelines for Organic Data Review (2008).

- Holding Times: Analytical holding times were met. The unpreserved aliquots of the water samples were analyzed within seven days of collection and the preserved aliquots were analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. The samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs and the ICV and continuing calibration RRFs were ≥0.05 for all applicable target compounds. The initial calibration %RSDs were ≤35%, or r² values ≥0.990. The second source ICV and all applicable CCV recoveries were within the method control limits.
- Blanks: The method blanks had no target compound detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the site sample of this SDG. Method accuracy was evaluated based on LCS results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Trip Blanks: Sample TB3-20140228 was the trip blank associated with the site sample in this SDG. The trip blank had no target compounds detected above the MDL.
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The internal standard retention times and area counts were within the control limits established by the continuing calibration standards: ±30 seconds for retention times and -50%/+100% for internal standard areas.
- Compound Identification: Compound identification was verified. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and

15 Revision 0

the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

I. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 2, 2014

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 218.6, 300.0, 1664, Standard Methods for the Examination of Water and Wastewater (2006) Methods 2540C, 2540D, 4500-CN+E, 4500F-C, 9221E, and 9221F, and the National Functional Guidelines for Inorganic Data Review (2010).

- Holding Times: The e. coli and fecal coliform analytical holding times are listed as immediate. As the sample was prepared within eight hours of collection, no qualifications were required. The remaining analytical holding times, as listed below, were met.
 - Oil and Grease 28 days
 - Hexavalent chromium 24 hours
 - Unpreserved nitrate/nitrite 48 hours
 - o Anions 28 days
 - TDS and TSS seven days
 - o Cyanide 14 days
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. The biological controls and balance calibration logs were acceptable.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries and the oil and grease RPD were within laboratory-established QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.

- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results. Oil and grease method accuracy and precision was evaluated based on LCS/LCSD results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms: 440715531

Analysis Method E1613B

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte	Fraction	CAS No	Result Value	RL MDI	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8,9- Octachlorodibenzofuran (OCE	N OF)	39001-02-0	0.0000435	0.00009530.0	ug/L	J	J	DNQ
1,2,3,4,6,7,8,9- Octachlorodibenzo-p-dioxin (OCDD)	N	3268-87-9	0.000764	0.00009530.0	ug/L	В		
1,2,3,4,6,7,8- Heptachlorodibenzofuran (HpCDF)	N	67562-39-4	0.0000147	0.00004770.0	ug/L	J	J	DNQ
1,2,3,4,6,7,8-Heptachlorodiber p-dioxin (HpCDD)	nzo-N	35822-46-9	0.0000719	0.00004770.0	ug/L			
1,2,3,4,7,8,9- Heptachlorodibenzofuran (HpCDF)	N	55673-89-7		0.00004770.0	ug/L	U	U	
1,2,3,4,7,8- Hexachlorodibenzofuran (HxCDF)	N	70648-26-9		0.00004770.0	ug/L	U	U	
1,2,3,4,7,8-Hexachlorodibenzo dioxin (HxCDD)	o-p- N	39227-28-6		0.00004770.0	ug/L	U	U	
1,2,3,6,7,8- Hexachlorodibenzofuran (HxCDF)	N	57117-44-9		0.00004770.0	ug/L	U	U	
1,2,3,6,7,8-Hexachlorodibenzo dioxin (HxCDD)	o-p- N	57653-85-7	0.00000386	0.00004770.0	ug/L	QJ	UJ	*III
1,2,3,7,8,9- Hexachlorodibenzofuran (HxCDF)	N	72918-21-9		0.00004770.0	ug/L	U	U	
1,2,3,7,8,9-Hexachlorodibenzo dioxin (HxCDD)	o-p- N	19408-74-3		0.00004770.0	ug/L	U	U	
1,2,3,7,8- Pentachlorodibenzofuran (PeC	N CDF)	57117-41-6		0.00004770.0	ug/L	U	U	
1,2,3,7,8-Pentachlorodibenzo- dioxin (PeCDD)	p- N	40321-76-4		0.00004770.0	ug/L	U	U	
2,3,4,6,7,8- Hexachlorodibenzofuran (HxCDF)	N	60851-34-5		0.00004770.0	ug/L	U	U	
2,3,4,7,8- Pentachlorodibenzofuran (PeC	N CDF)	57117-31-4		0.00004770.0	ug/L	U	U	
2,3,7,8-Tetrachlorodibenzofur (TCDF)	an N	51207-31-9		0.00000950.0	ug/L	U	U	
2,3,7,8-Tetrachlorodibenzo-p- dioxin (TCDD)	N	1746-01-6		0.00000950.0	ug/L	U	U	
Total Heptachlorodibenzofura (HpCDF)	n N	38998-75-3	0.0000325	0.00004770.0	ug/L	J	J	DNQ
Total Heptachlorodibenzo-p- dioxin (HpCDD)	N	37871-00-4	0.000168	0.00004770.0	ug/L			

Tuesday, April 29, 2014

Analysis Method	E_{\cdot}	1613B						
Total Hexachlorodibenzofuran (HxCDF)	N	55684-94-1	0.00000993	0.00004770.0	ug/L	JQ	J	DNQ, *III
Total Hexachlorodibenzo-p- dioxin (HxCDD)	N	34465-46-8	0.0000160	0.00004770.0	ug/L	JQ	J	DNQ, *III
Total Pentachlorodibenzofuran (PeCDF)	N	30402-15-4		0.00004770.0	ug/L	U	U	
Total Pentachlorodibenzo-p- dioxin (PeCDD)	N	36088-22-9		0.00004770.0	ug/L	U	U	
Total Tetrachlorodibenzofuran (TCDF)	N	55722-27-5		0.00000950.0	ug/L	U	U	
Total Tetrachlorodibenzo-p- dioxin (TCDD)	N	41903-57-5		0.00000950.0	ug/L	U	U	

Analysis Method E1664

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM **Validation Level:** 3

Lab Sample Name: 440-71553-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Oil and Grease	N	OILGREASE		4.7	1.3	mg/L	U	U	
Analysis Method	d = E2	00.7							

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Aluminum	T	7429-90-5	6100	50	25	ug/L			
Aluminum	D	7429-90-5	150	50	25	ug/L	QP		
Arsenic	D	7440-38-2		10	7.0	ug/L	UQP	U	
Arsenic	T	7440-38-2		10	7.0	ug/L	U	U	
Beryllium	D	7440-41-7		2.0	0.90	ug/L	UQP	U	
Beryllium	T	7440-41-7	1.2	2.0	0.90	ug/L	J,DX	J	DNQ
Boron	D	7440-42-8	0.10	0.050	0.025	mg/L	QP		
Boron	T	7440-42-8	0.097	0.050	0.025	mg/L			
Chromium	T	7440-47-3	9.7	5.0	2.0	ug/L			
Chromium	D	7440-47-3		5.0	2.0	ug/L	UQP	U	
Hardness as CaCO3	D	HARDNESSCA CO3	31	0.33	0.17	mg/L	MBQP		
Hardness as CaCO3	Т	HARDNESSCA CO3	56	0.33	0.17	mg/L			
Iron	T	7439-89-6	7.8	0.040	0.020	mg/L			
Iron	D	7439-89-6	0.11	0.040	0.020	mg/L	QP		
Nickel	T	7440-02-0	7.9	10	2.0	ug/L	J,DX	J	DNQ
Nickel	D	7440-02-0	2.2	10	2.0	ug/L	J,DXQP	J	DNQ

Tuesday, April 29, 2014 Page 2 of 11

Analysis Method	E	200.7								
Vanadium	T	7440-62-2	17	10	3.0	ug/L				
Vanadium	D	7440-62-2		10	3.0	ug/L	UQP	U		
Zinc	T	7440-66-6	62	20	9.0	ug/L				
Zinc	D	7440-66-6	12	20	9.0	ug/L	J,DXMBQ	U	В	
Analysis Method	E	200.8								

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Antimony	T	7440-36-0	0.70	2.0	0.50	ug/L	J,DX	J	DNQ
Antimony	D	7440-36-0		2.0	0.50	ug/L	UQP	U	
Cadmium	T	7440-43-9		1.0	0.25	ug/L	U	U	
Cadmium	D	7440-43-9		1.0	0.25	ug/L	UQP	U	
Copper	T	7440-50-8	12	2.0	0.50	ug/L			
Copper	D	7440-50-8	3.6	2.0	0.50	ug/L	QP		
Lead	T	7439-92-1	5.6	1.0	0.50	ug/L			
Lead	D	7439-92-1		1.0	0.50	ug/L	UQP	U	
Selenium	T	7782-49-2		2.0	0.50	ug/L	U	U	
Selenium	D	7782-49-2		2.0	0.50	ug/L	UQP	U	
Silver	D	7440-22-4		1.0	0.50	ug/L	UQP	U	
Silver	T	7440-22-4		1.0	0.50	ug/L	U	U	
Thallium	D	7440-28-0		1.0	0.50	ug/L	UQP	U	
Thallium	T	7440-28-0		1.0	0.50	ug/L	U	U	

Analysis Method E218.6

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Fraction CAS No Analyte Result RLMDL Result Lab Validation Validation Notes Value Units Qualifier Qualifier Chromium VI (Hexavalent) N 18540-29-9 ug/L 0.47 1.0 0.25 J,DX DNQ

Analysis Method E245.1

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units Qualifier Qualifier Mercury Т 7439-97-6 0.20 0.10 ug/L U Mercury D 0.20 UQP UJ 7439-97-6 0.10 ug/L

Tuesday, April 29, 2014 Page 3 of 11

Analysis Method E300

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value **Qualifier** Units **Qualifier** Nitrite/Nitrate NO2NO3 2.0 0.15 0.070 mg/L

Analysis Method E300-28DAY

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units **Oualifier Oualifier** Chloride 16887-00-6 6.3 0.50 0.25 mg/L Sulfate 14808-79-8 15 0.50 0.25 mg/L

Analysis Method E314.0

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Result Analyte Fraction CAS No Result RL MDL Lab Validation Validation Notes Value Units Qualifier **Qualifier** Perchlorate 14797-73-0 4.0 0.95 ug/L

Analysis Method E525.2

Sample Name Outfall010 20140228 Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Fraction CAS No Result RLMDL Result Analyte Lab Validation Validation Notes Value Units **Oualifier** Qualifier UGR Chlorpyrifos Ν 2921-88-2 0.96 0.077 U ug/L Diazinon 333-41-5 0.24 0.096 ug/L UGR H. I

Analysis Method E608

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RL MDL Result Lab Validation Validation Notes Value Units Qualifier Qualifier 4.4'-DDD Ν 72-54-8 0.0047 0.0038 ug/L U U 4,4'-DDE N 72-55-9 0.0047 0.0028 ug/L U

Tuesday, April 29, 2014 Page 4 of 11

1,4'-DDT	N	50-29-3	0.0094	0.0038	ug/L	U	U	
Aldrin	N	309-00-2	0.0047	0.0014	ug/L	U	U	
alpha-BHC	N	319-84-6	0.0047	0.0024	ug/L	U	U	
Aroclor-1016 (PCB-1016)	N	12674-11-2	0.47	0.24	ug/L	U	U	
Aroclor-1221 (PCB-1221)	N	11104-28-2	0.47	0.24	ug/L	U	U	
Aroclor-1232 (PCB-1232)	N	11141-16-5	0.47	0.24	ug/L	U	U	
Aroclor-1242 (PCB-1242)	N	53469-21-9	0.47	0.24	ug/L	U	U	
Aroclor-1248 (PCB-1248)	N	12672-29-6	0.47	0.24	ug/L	U	U	
Aroclor-1254 (PCB-1254)	N	11097-69-1	0.47	0.24	ug/L	U	U	
Aroclor-1260 (PCB-1260)	N	11096-82-5	0.47	0.24	ug/L	U	U	
oeta-BHC	N	319-85-7	0.0094	0.0038	ug/L	U	U	
Chlordane	N	57-74-9	0.094	0.075	ug/L	U	U	
lelta-BHC	N	319-86-8	0.0047	0.0033	ug/L	U	U	
Dieldrin	N	60-57-1	0.0047	0.0019	ug/L	U	U	
Endosulfan I	N	959-98-8	0.0047	0.0028	ug/L	U	U	
Endosulfan II	N	33213-65-9	0.0047	0.0019	ug/L	U	U	
Endosulfan sulfate	N	1031-07-8	0.0094	0.0028	ug/L	U	U	
Endrin	N	72-20-8	0.0047	0.0019	ug/L	U	U	
Endrin aldehyde	N	7421-93-4	0.0094	0.0019	ug/L	U	U	
gamma-BHC (Lindane)	N	58-89-9	0.0094	0.0028	ug/L	U	U	
Heptachlor	N	76-44-8	0.0094	0.0028	ug/L	U	U	
Heptachlor epoxide	N	1024-57-3	0.0047	0.0024	ug/L	U	U	
Гохарһепе	N	8001-35-2	0.47	0.24	ug/L	U	U	

Analysis Method E624

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,1,1-Trichloroethane	N	71-55-6		0.50	0.25	ug/L	U	U	
1,1,2,2-Tetrachloroethane	N	79-34-5		0.50	0.25	ug/L	U	U	
1,1,2-Trichloroethane	N	79-00-5		0.50	0.25	ug/L	U	U	
1,1-Dichloroethane	N	75-34-3		0.50	0.25	ug/L	U	U	
1,1-Dichloroethene	N	75-35-4		0.50	0.25	ug/L	U	U	
1,2-Dichlorobenzene	N	95-50-1		0.50	0.50	ug/L	U	U	
1,2-Dichloroethane	N	107-06-2		0.50	0.25	ug/L	U	U	
1,2-Dichloropropane	N	78-87-5		0.50	0.25	ug/L	U	U	
1,3-Dichlorobenzene	N	541-73-1		0.50	0.25	ug/L	U	U	
1,4-Dichlorobenzene	N	106-46-7		0.50	0.25	ug/L	U	U	
2-Chloroethyl vinyl ether	N	110-75-8		2.0	1.0	ug/L	U	U	
Acrolein	N	107-02-8		5.0	2.5	ug/L	U	U	

Tuesday, April 29, 2014 Page 5 of 11

Analysis Method	E62	24					
Acrylonitrile	N	107-13-1	2.0	1.0	ug/L	U	U
Benzene	N	71-43-2	0.50	0.25	ug/L	U	U
Bromodichloromethane	N	75-27-4	0.50	0.25	ug/L	U	U
Bromoform	N	75-25-2	1.0	0.25	ug/L	U	U
Bromomethane (Methyl Bromide	e) N	74-83-9	0.50	0.25	ug/L	U	U
Carbon tetrachloride	N	56-23-5	0.50	0.25	ug/L	U	U
Chlorobenzene	N	108-90-7	0.50	0.25	ug/L	U	U
Chloroethane	N	75-00-3	0.50	0.25	ug/L	U	U
Chloroform (Trichloromethane)	N	67-66-3	0.50	0.25	ug/L	U	U
Chloromethane (Methyl Chloride	e) N	74-87-3	0.50	0.25	ug/L	ULQ	U
cis-1,3-Dichloropropene	N	10061-01-5	0.50	0.25	ug/L	U	U
Dibromochloromethane	N	124-48-1	0.50	0.25	ug/L	U	U
Ethylbenzene	N	100-41-4	0.50	0.25	ug/L	U	U
Methylene chloride	N	75-09-2	1.0	0.88	ug/L	U	U
Tetrachloroethene	N	127-18-4	0.50	0.25	ug/L	U	U
Toluene	N	108-88-3	0.50	0.25	ug/L	U	U
trans-1,2-Dichloroethene	N	156-60-5	0.50	0.25	ug/L	U	U
trans-1,3-Dichloropropene	N	10061-02-6	0.50	0.25	ug/L	U	U
Trichloroethene	N	79-01-6	0.50	0.25	ug/L	U	U
Trichlorofluoromethane (CFC-11	l)N	75-69-4	0.50	0.25	ug/L	U	U
Vinyl chloride	N	75-01-4	0.50	0.25	ug/L	U	U
Xylene (total)	N	1330-20-7	1.0	0.50	ug/L	U	U

Sample Name TB3-20140228 Matrix Type: WQ Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-2

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,1,1-Trichloroethane	N	71-55-6		0.50	0.25	ug/L	U	U	
1,1,2,2-Tetrachloroethane	N	79-34-5		0.50	0.25	ug/L	U	U	
1,1,2-Trichloroethane	N	79-00-5		0.50	0.25	ug/L	U	U	
1,1-Dichloroethane	N	75-34-3		0.50	0.25	ug/L	U	U	
1,1-Dichloroethene	N	75-35-4		0.50	0.25	ug/L	U	U	
1,2-Dichloro-1,1,2-trifluoro	oethane N	354-23-4		2.0	1.0	ug/L	U	U	
1,2-Dichlorobenzene	N	95-50-1		0.50	0.50	ug/L	U	U	
1,2-Dichloroethane	N	107-06-2		0.50	0.25	ug/L	U	U	
1,2-Dichloropropane	N	78-87-5		0.50	0.25	ug/L	U	U	
1,3-Dichlorobenzene	N	541-73-1		0.50	0.25	ug/L	U	U	
1,4-Dichlorobenzene	N	106-46-7		0.50	0.25	ug/L	U	U	
2-Chloroethyl vinyl ether	N	110-75-8		2.0	1.0	ug/L	U	U	
Acrolein	N	107-02-8		5.0	2.5	ug/L	U	U	
Acrylonitrile	N	107-13-1		2.0	1.0	ug/L	U	U	
Benzene	N	71-43-2		0.50	0.25	ug/L	U	U	

Tuesday, April 29, 2014 Page 6 of 11

Analysis Method	E6	24					
Bromodichloromethane	N	75-27-4	0.50	0.25	ug/L	U	U
Bromoform	N	75-25-2	1.0	0.25	ug/L	U	U
Bromomethane (Methyl Bromide	e) N	74-83-9	0.50	0.25	ug/L	U	U
Carbon tetrachloride	N	56-23-5	0.50	0.25	ug/L	U	U
Chlorobenzene	N	108-90-7	0.50	0.25	ug/L	U	U
Chloroethane	N	75-00-3	0.50	0.25	ug/L	U	U
Chloroform (Trichloromethane)	N	67-66-3	0.50	0.25	ug/L	U	U
Chloromethane (Methyl Chloride	e) N	74-87-3	0.50	0.25	ug/L	ULQ	U
cis-1,2-Dichloroethene	N	156-59-2	0.50	0.25	ug/L	U	U
cis-1,3-Dichloropropene	N	10061-01-5	0.50	0.25	ug/L	U	U
Cyclohexane	N	110-82-7	2.0	1.0	ug/L	U	U
Dibromochloromethane	N	124-48-1	0.50	0.25	ug/L	U	U
Ethylbenzene	N	100-41-4	0.50	0.25	ug/L	U	U
Methylene chloride	N	75-09-2	1.0	0.88	ug/L	U	U
Tetrachloroethene	N	127-18-4	0.50	0.25	ug/L	U	U
Toluene	N	108-88-3	0.50	0.25	ug/L	U	U
trans-1,2-Dichloroethene	N	156-60-5	0.50	0.25	ug/L	U	U
trans-1,3-Dichloropropene	N	10061-02-6	0.50	0.25	ug/L	U	U
Trichloroethene	N	79-01-6	0.50	0.25	ug/L	U	U
Trichlorofluoromethane (CFC-11	.)N	75-69-4	0.50	0.25	ug/L	U	U
Trifluorotrichloroethane (Freon 113)	N	76-13-1	2.0	0.50	ug/L	U	U
Vinyl chloride	N	75-01-4	0.50	0.25	ug/L	U	U
Xylene (total)	N	1330-20-7	1.0	0.50	ug/L	U	U

Analysis Method

Outfall010_20140228_Gra Matrix Type: WM

Result Type: TRG

Sample Name **Sample Date:** 2/28/2014 12:00:00 PM

Validation Level: 3

Lab Sample Name:

440-71553-1

E625

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,4-Trichlorobenzene	N	120-82-1		0.948	0.474	ug/L	U	U	
1,2-Dichlorobenzene	N	95-50-1		0.474	0.190	ug/L	U	U	
1,2-Diphenylhydrazine	N	122-66-7		0.948	0.474	ug/L	U	U	
1,3-Dichlorobenzene	N	541-73-1		0.474	0.190	ug/L	U	U	
1,4-Dichlorobenzene	N	106-46-7		0.474	0.190	ug/L	U	U	
2,2'-oxybis(1-Chloropropane) N	108-60-1		0.474	0.190	ug/L	U	U	
2,4,6-Trichlorophenol	N	88-06-2		0.948	0.474	ug/L	U	U	
2,4-Dichlorophenol	N	120-83-2		1.90	0.948	ug/L	U	U	
2,4-Dimethylphenol	N	105-67-9		1.90	0.948	ug/L	U	U	
2,4-Dinitrophenol	N	51-28-5		4.74	1.90	ug/L	U	U	
2,4-Dinitrotoluene	N	121-14-2		4.74	1.90	ug/L	U	U	
2,6-Dinitrotoluene	N	606-20-2		4.74	1.90	ug/L	U	U	

Tuesday, April 29, 2014 Page 7 of 11

2-Chloronaphthalene	N	91-58-7		0.474	0.190	ug/L	U	U		
2-Chlorophenol	N	95-57-8		0.948	0.474	ug/L	U	U		
2-Nitrophenol	N	88-75-5		1.90	0.948	ug/L	U	U		
3,3'-Dichlorobenzidine	N	91-94-1		4.74	1.90	ug/L	UBA	U		
4,6-Dinitro-2-methylphenol	N	534-52-1		4.74	1.90	ug/L	U	U		
4-Bromophenyl phenyl ether	N	101-55-3		0.948	0.474	ug/L	U	U		
4-Chloro-3-methylphenol	N	59-50-7		1.90	0.190	ug/L	U	U		
4-Chlorophenyl phenyl ether	N	7005-72-3		0.474	0.190	ug/L	U	U		
4-Nitrophenol	N	100-02-7		4.74	1.90	ug/L	U	U		
Acenaphthene	N	83-32-9		0.474	0.190	ug/L	U	U		
Acenaphthylene	N	208-96-8		0.474	0.190	ug/L	U	U		
Anthracene	N	120-12-7		0.474	0.190	ug/L	U	U		
Benzidine	N	92-87-5		9.48	4.74	ug/L	U	U		
Benzo(a)anthracene	N	56-55-3		4.74	1.90	ug/L	U	U		
Benzo(a)pyrene	N	50-32-8		1.90	0.474	ug/L	U	U		
Benzo(b)fluoranthene	N	205-99-2		1.90	0.948	ug/L	U	U		
Benzo(g,h,i)perylene	N	191-24-2		4.74	1.90	ug/L	U	U		
Benzo(k)fluoranthene	N	207-08-9		0.474	0.237	ug/L	U	U		
ois(2-Chloroethoxy)methane	N	111-91-1		0.474	0.190	ug/L	U	U		
ois(2-Chloroethyl)ether	N	111-44-4		0.474	0.190	ug/L	U	U		
pis(2-Ethylhexyl)phthalate	N	117-81-7	6.71	4.74	1.90	ug/L				
Butyl benzylphthalate	N	85-68-7		4.74	1.90	ug/L	U	U		
Chrysene	N	218-01-9		0.474	0.190	ug/L	U	U		
Dibenz(a,h)anthracene	N	53-70-3		0.474	0.237	ug/L	U	U		
Diethyl phthalate	N	84-66-2	0.887	0.948	0.474	ug/L	J,DX	J	DNQ	
Dimethyl phthalate	N	131-11-3	0.501	0.474	0.237	ug/L				
Di-n-butylphthalate	N	84-74-2		1.90	0.948	ug/L	U	U		
Di-n-octyl phthalate	N	117-84-0		4.74	1.90	ug/L	U	U		
Fluoranthene	N	206-44-0		0.474	0.190	ug/L	U	U		
Fluorene	N	86-73-7		0.474	0.190	ug/L	U	U		
Hexachlorobenzene	N	118-74-1		0.948	0.474	ug/L	U	U		
Hexachlorobutadiene	N	87-68-3		1.90	0.474	ug/L	U	U		
Hexachlorocyclopentadiene	N	77-47-4		4.74	1.90	ug/L	U	U		
Hexachloroethane	N	67-72-1		2.84	0.474	ug/L	U	U		
ndeno(1,2,3-cd)pyrene	N	193-39-5		1.90	0.948	ug/L	U	U		
sophorone	N	78-59-1		0.948	0.474	ug/L	U	U		
Naphthalene	N	91-20-3		0.948	0.474	ug/L	U	U		
Vitrobenzene	N	98-95-3		0.948	0.474	ug/L	U	U		
N-Nitrosodimethylamine	N	62-75-9		1.90	0.948	ug/L	U	U		
N-Nitrosodi-n-propylamine	N	621-64-7		1.90	0.948	ug/L	U	U		
N-Nitrosodiphenylamine	N	86-30-6		0.948	0.474	ug/L	U	U		
Pentachlorophenol	N	87-86-5		1.90	0.948	ug/L	U	U		

Tuesday, April 29, 2014 Page 8 of 11

Analysis Method	E6	525							
Phenol	N	108-95-2	5.80	0.948	0.474	ug/L			
Pyrene	N	129-00-0		0.474	0.190	ug/L	U	U	
Analysis Method	E9	000							

Result Type: TRG

Sample Name Outfall010_20140228_Gra Matrix Type: WM

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha Analytes	N	GROSSALPHA	1.38	1.79	0	pCi/L	U	UJ	С
Gross Beta Analytes	N	GROSSBETA	5.02	1.02	0	pCi/L			

Analysis Method E901.1

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	N	10045-97-3	0.827	12.2	0	pCi/L	U	U	
Potassium-40	N	13966-00-2	-6.27	188	0	pCi/L	U	U	

Analysis Method E903.0

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	N	13982-63-3	0.0775	0.0611	0	pCi/L		J	С

Analysis Method E904.0

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte	Fraction	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-228	N	15262-20-1	0.388	0.416	0	pCi/L	U	U	

Tuesday, April 29, 2014 Page 9 of 11

Analysis Method E905.0

Sample Name Outfall010 20140228 Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Qualifier Units **Qualifier** Strontium-90 10098-97-2 0.237 0.349 pCi/L

Analysis Method E906.0

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units **Oualifier Oualifier** Tritium 10028-17-8 6.31 273 pCi/L

Analysis Method HASL-300 U Mod

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Fraction CAS No RLMDL Result Analyte Result Lab Validation Validation Notes Value Units **Oualifier** Qualifier Uranium, Total URANIUM 0.372 0.164 pCi/L

Analysis Method RADIUM

Sample Name Outfall010 20140228 Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Fraction CAS No Result RLMDL Result Analyte Lab Validation Validation Notes Value **Oualifier** Units Qualifier Radium-226 & 228 RADIUM226228 0.465 0.0611 pCi/L

Analysis Method SM2540C

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RL**MDL** Result Lab Validation Validation Notes Value Units Qualifier **Oualifier** 120 Total Dissolved Solids (TDS) TDS 10 5.0 mg/L

Tuesday, April 29, 2014 Page 10 of 11

Analysis Method SM2540D

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units Qualifier **Qualifier** Total Suspended Solids (TSS) TSS 160 6.7 3.3 mg/L

Analysis Method SM4500-CN-E

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RLMDL Result Lab Validation Validation Notes Value Units **Oualifier Oualifier** Cyanide 57-12-5 5.0 3.0 ug/L

Analysis Method SM4500F-C

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Fraction CAS No RL MDL Result Analyte Result Lab Validation Validation Notes Value Units **Oualifier** Qualifier Fluoride 16984-48-8 0.10 0.12 0.020 mg/L

Analysis Method SM9221E

Sample Name Outfall010 20140228 Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Fraction CAS No Result RLMDL Result Analyte Lab Validation Validation Notes Value **Oualifier** Units Qualifier 350 Fecal Coliform Bacteria N COLIFORMFEC mpn/100 1.8

Analysis Method SM9221F

Sample Name Outfall010_20140228_Gra Matrix Type: WM Result Type: TRG

Sample Date: 2/28/2014 12:00:00 PM Validation Level: 3

Lab Sample Name: 440-71553-1

Analyte Fraction CAS No Result RL MDL Result Lab Validation Validation Notes Value Units Qualifier **Oualifier** Escherichia coli **ECOLI** 350 1.8 0 mpn/100

Tuesday, April 29, 2014 Page 11 of 11