HAND DELIVERED

February 15, 2006

Regional Water Quality Control Board
Los Angeles Region
320 West $4^{\text {th }}$ Street, Suite 200
Los Angeles, CA 90013

Attention: Information Technology Unit
Reference: Compliance File CI-6027 and NPDES No. CA0001309
Subject: 4th Quarter 2005 NPDES Discharge Monitoring Report SubmittalSanta Susana Field Laboratory

Dear Sir/Madam,

The Boeing Company hereby submits the discharge monitoring report (DMR) for the Santa Susana Field Laboratory (SSFL) for the 4th Quarter of 2005. This DMR provides the results of the sampling that occurred for the SSFL outfalls (see Appendix A of this report) for the period of October $1^{\text {st }}$ through December $31^{\text {st }}$ of 2005 as required by National Pollutant Discharge Elimination System (NPDES) Permit No. CA0001309. This quarterly DMR provides all information and data, including summary tables of surface water sample analytical results, rainfall summaries, liquid waste shipment summaries, and surface water sample laboratory analytical reports.

$4^{\text {TH }}$ QUARTER REPORT CONTENTS AND SUMMARY

Appendix A is a site location map indicating the locations of the Outfalls. The 4th Quarter 2005 precipitation at SSFL is presented in Appendix B. All sanitary wastes were shipped off-site and appropriately managed (summarized in Appendix C); therefore, there were no discharges associated with the domestic sewage treatment plants (Outfalls 015, 016, and 017).

Surface water samples were collected from Outfalls 003 through 010, and 018. Surface water samples were not collected from outfall locations 001,002 , or 011 due to the limited amount of rain and the lack of flow at these locations. Additionally, samples were not collected at Outfalls 012, 013, and 014 (engine test stands) as testing activities were not conducted during this quarter. Samples collected were analyzed at a California-certified laboratory. Appendices D and E contain summary tables of analytical results for surface water samples collected during the $4^{\text {th }}$ Quarter 2005. These tables identify the Outfall, the constituents evaluated (analytes), the date of sampling, the analytical result, and data validation qualifiers. Appendix F provides a summary table of permit limit exceedances, and Appendix G contains copies of the analytical reports, chain of custody, and validation reports. As a supplement included with the summary tables in Appendices D, E, and F, the

February 15, 2006
Page 2
SHEA-103169
Quarterly Summary Notes are a compilation of notes, abbreviations, and data validation codes that are used in the analytical data summary tables.

As part of the Los Angeles Regional Water Quality Control Board (RWQCB) Section 13267 request (dated May 20, 2004) and in accordance with the August 31, 2004 Workplan (Submission of Technical Workplan Pursuant to Section 13267 of the California Water Code), and the corresponding RWQCB responses (dated January 12 and March 22, 2005) to the workplan, a surface water sample was collected during the $2^{\text {nd }}$ Quarter 2005 from Outfall 003 and analyzed for Strontium- 90 . This sample result exceeded the permit limit of 8.0 picocurries per liter ($\mathrm{pCi} / \mathrm{L}$). Therefore, as indicated in the 2004 NPDES Permit, follow-up samples were collected during the next flow events (there was no flow at Outfall 003 in the $3^{\text {rd }}$ Quarter, so samples were collected and analyzed during the $4^{\text {th }}$ Quarter). Appendix F includes the results of the sample analysis. Results from the $4^{\text {th }}$ Quarter sampling events did not exceed permit limits. Additional samples will be collected in subsequent sampling events to meet the requirements of the 2004 NPDES Permit for four consecutive sample results. Results of the 13267 Study will be provided in a separate technical report.

Data validation was performed on the analytical results and quality control elements were found to be within acceptable limits for all analytical methods reported, except as noted on the analytical summary tables. Laboratory analytical reports, including validation reports and notes, are included in Appendix G.

In addition, this DMR discusses the steps taken in the aftermath of the September 2005 Topanga Wildfire. This wildfire resulted in substantial loss of vegetation at SSFL and the destruction of many previously installed best management practices (BMPs). Before the fire, naturally occurring vegetation and BMPs aided in controlling sediment and constituent migration into and within surface water. Their loss in the fire had an impact on controlling sediment and constituent migration in the $4^{\text {th }}$ Quarter 2005. Therefore, steps were taken as soon as feasible following the fire to control sediment and constituent run-off and re-deploy BMPs.

BMP AND VEGETATION RESTORATION ACTIVITIES

As a result of the Topanga Wildfire in late September 2005, over 70\% of the SSFL property burned, and a majority of vegetation and many installed BMPs at SSFL were destroyed. The ground surface of the SSFL was impacted with ash and/or charred material, which are known to contain naturally occurring constituents such as dioxins (TCDD) and metals (USEPA, 2000; Aronsson and Ekelund, 2004). In addition, wild fires have been shown to increase soil pH , and to cause an increase in nitrate, ammonia, and other plant-nutrientrelated compounds (Higgins, et. al., 1989; Earl and Blinn, 2003). To reduce the impact of the ash and charred material on surface water, numerous activities were implemented as soon as feasible and completed to help restore the natural, engineered and/or institutional controls that aid in minimizing the erosion of surface materials and the migration of sediment in surface water.

Boeing replaced and upgraded the BMPs that were destroyed, and installed additional BMPs across the site to reduce sediment and constituent runoff. During the process, early season rains on October 17-18 $8^{\text {th }}$ and November $9^{\text {th }}$ occurred prior to the completion of some of the BMPs (as a result, surface water samples collected during the quarter exhibited greater quantities of suspended sediment and other constituents).

February 15, 2006
Page 3
SHEA-103169

The following table lists the Outfall location and respective BMP activities completed during the $4^{\text {th }}$ Quarter 2005:

OUTFALL	BMP ACTIVITIES DURING 4 ${ }^{\text {th }}$ QUARTER 2005*
001 (South Slope below Perimeter Pond)	Upstream erosion controls installed -straw bales and fiber rolls
R-2 (South Slope below R- Pond	Upstream erosion controls installed - straw bales and fiber rolls
003 (RMHF)	Straw bales, fiber rolls, silt fence, media filter installed
004 (SRE)	Fiber mats/plastic tarp, silt fencing, sandbag barrier; dual media filtration under drain filtration system installed
005 (FSDF-1)	Fiber rolls, dual media filter installed
006 (FSDF-2)	Straw bales, fiber rolls, dual media filter installed
007 (Building 100)	Straw bales, fiber rolls, silt fencing, media filter installed
008 (Happy Valley)	Upstream erosion controls - straw bales, fiber rolls, rip rap, silt fence installed
009 (WS-13 Drainage)	Upstream erosion controls --hydroseeding, straw bales, fiber rolls installed
010 (Building 203)	Fiber rolls, silt fencing, media filtration installed, sediment basin cleaned
011 (Perimeter Pond)	Silt fencing installed, initiated construction of filtration system
012 (ALFA Test Stand)	No activity
013 (BRAVO Test Stand)	No activity
014 (APTF Test Stand)	No activity
015 (STP I)	No activity
016 (STP II)	No activity
017 (STP III)	No activity
018 (R-2 Spillway)	No activity

*Other BMPs exist at these Outfalls that did not require upgrades or replacements.
Boeing is monitoring the effectiveness of the BMP program, and is currently reviewing the installation and evaluating the effectiveness of the newly deployed or upgraded BMPs as documented in the Response to Requirements to Submit a Technical Report Pursuant to Section 13267 of the California Water Code. This technical report was submitted to the RWQCB on December 16, 2005.

February 15, 2006
Page 4
SHEA-103169
Additional to those BMPs implemented during the $4^{\text {th }}$ Quarter 2005 (listed above), as part of our ongoing efforts to remove accumulated ash, Boeing removed accumulated ash to the extent practicable in the upstream drainage from Outfall 008 . Hydromulch was also placed over approximately 800 acres of the undeveloped land at the SSFL. Hydromulch is a semiliquid organic binder blended with hydromulch paper or wood fiber/pulp that is dispersed onto and adheres to the ground surface and soil surface to protect from further soil erosion, aid in minimizing sediment transport, and decrease the potential for landslides. Hydromulch application occurred between December 23, 2005 and January 13, 2006. The hydromulch was applied by a helicopter or by a truck where access was available. In addition, hydroseeding (mulch material with a native seed mix) was completed at other selected upgradient areas at the SSFL during the $4^{\text {th }}$ Quarter in late October 2005.

SUMMARY OF NON-COMPLIANCE AND CORRECTIVE ACTIONS TAKEN

The following analytes exceeded permit limits during the $4^{\text {th }}$ Quarter 2005 monitoring period, as noted in Appendix G: pH , copper, mercury, nitrate + nitrite as nitrogen, antimony, and TCDD TEQ. These permit limit exceedences are summarized below.

pH Non-compliance, Discussion of Occurrence, and Potential Sources

At Outfalls 009 (sample collected on October 17, 2005) and 003 (sample collected on November 9,2005), pH levels were measured at 8.8 and 9.4 , respectively, above the daily maximum permit limit range of 6.5 to 8.5 .

The elevated pH value for Outfall 003 was likely a result of activated carbon bags at the surface-water sampling station. The activated carbon delivered was the type used for vaporphase applications, and was not acid-washed as part of the manufacturing process. Activated carbon when not pre-washed can be high in pH . Upon contact with water, the carbons' high pH could cause a higher pH in the contacted water. Upon becoming aware of the supplier's mistake, the carbon bags were immediately removed and replaced with granular activated carbon for liquid phase applications. The liquid-phase carbon underwent the standard acid wash and rinse by the manufacturer prior to delivery and installation and is not expected to cause a future exceedance.

The elevated pH value at Outfall 009 in October could also be attributed to the presence of excessive ash material in the drainage due to the recent fires. Studies by the United States Fish and Wildlife and South Dakota State University report increased pH values in soils after wildfires have burned forest and/or grasslands (Higgins, et. al., 1989; Earl and Blinn, 2003). The increased pH is typically related to the alkalinity of the ash; because mineral substances are released as oxides or carbonates that usually have an alkaline reaction. This is also supported by studies that have found that ash is dominated by carbonates of alkaline and alkaline earth metals. The subsequent November sample result was within compliance. The pH exceedence occurred during the first storm event of the season. In the subsequent storm event in November, $2005, \mathrm{pH}$ was below the permit limit and in compliance. This further supports the hypothesis that the pH exceedence was due to naturally occurring alkalinity in ash resulting from the Topanga Fire. The first rain event would be expected to wash ash from the watershed leaving less ash remaining, which would have a less severe impact on water pH during subsequent rain events.

February 15, 2006
Page 5
SHEA-103169

Antimony Non-Compliance, Discussion of Occurrence, and Potential Sources

Antimony was detected at Outfall 007 (sampled on October 18, 2005) and Outfall 003 (sampled on November 9, 2005) at a concentration of 6.2 and 35 micrograms per liter ($\mu \mathrm{g} / \mathrm{L}$), respectively. The daily maximum permit limit for Antimony is $6.0 \mu \mathrm{~g} / \mathrm{L}$.

A comparison of these results against historic antimony concentrations for Outfalls 003 and 007 indicates these concentrations exceed previous concentrations of antimony during the 2004-2005 rainy season. The only change that occurred between conditions during the 2004-05 winter season and the 2005-06 winter season at the SSFL was the Topanga Fire burning of vegetation and the resulting destabilization of soils. Because of this, these exceedances may be the result of increased sediment loads following the Topanga Fire which transport a greater amount of native soil and ash, both of which contain antimony.

Boeing will continue to evaluate antimony values across the site to better understand its occurrence and whether its occurrence diminishes as native vegetation returns.

Copper Non-Compliance, Discussion of Occurrence, and Potential Sources

Copper was detected at Outfalls 003, 005, 006, and 007 (in samples collected on October 18, 2005) and at Outfalls 005 and 006 (samples collected on November 9, 2005), exceeding the daily maximum permit limit for copper of $14 \mu \mathrm{~g} / \mathrm{L}$. Copper was detected at concentrations of $17,30,16$, and $19 \mu \mathrm{~g} / \mathrm{L}$ at Outfalls $003,005,006$, and 007 on October 18, respectively, and at concentrations of 20 and $34 \mu \mathrm{~g} / \mathrm{L}$ at Outfalls 005 and 006 on November 9 , respectively.

A comparison of these results against historic copper concentrations for Outfalls 003-007 indicates that these concentrations generally exceed pre-fire concentrations by 3 to $20 \mu \mathrm{~g} / \mathrm{l}$. Copper is naturally occurring and has been frequently detected in agency-approved background site soils (MWH, 2005). The only change that occurred between conditions during the 2004-05 winter season and the 2005-06 winter season at the SSFL was the Topanga Fire burning of vegetation and the resulting destabilization of soils. We have seen significant increases in TSS and turbidity in runoff since the Topanga Fire. The increase in copper could be a direct result of increased transport of background levels of copper in sediments and ash eroded from the Topanga Fire destabilized hillsides.

Boeing will continue to evaluate all data, improve BMPs, and implement measures to minimize sediment and resulting metals migration to and within surface water.

Mercury Non-Compliance, Discussion of Occurrence, and Potential Sources

Mercury was detected at Outfalls 004 and 005 (in samples collected on October 18, 2005) and Outfall 006 (in a sample collected on November 9,2005), exceeding the daily maximum permit limit for mercury of $0.13 \mu \mathrm{~g} / \mathrm{L}$. Mercury concentrations were $0.22,0.41$, and 0.89 $\mu \mathrm{g} / \mathrm{L}$, respectively.

At Outfall 004, an area with mercury impacted soils has been covered with plastic sheeting to prevent contact between rainfall and site soils. However, the plastic sheeting was destroyed by the Topanga Fire, thus enabling rainfall to contact potentially impacted soils. Surface water transport of these potentially impacted soils could have resulted in the exceedance. This area has been retarped and the filtration system upgraded.

February 15, 2006
Page 6
SHEA-103169
At Outfalls 005 and 006 , soil removal has occurred to mitigate impacts in surface soils for mercury and other constituents under DTSC direction. Thus, the potential causes of these exceedences are unclear and are being further evaluated.

Boeing will continue to evaluate mercury data, improve on BMPs, and implement measures to minimize sediment migration to and within surface water as necessary.

Nitrate and Nitrite as Nitrogen Non-Compliance, Discussion of Occurrence, and Potential Sources

The daily maximum permit limit of nitrate and nitrite as nitrogen (10 milligrams per liter [$\mathrm{mg} / \mathrm{L}]$) was exceeded at Outfall 005 (in a sample collected on October 18, 2005) at a concentration of $16 \mathrm{mg} / \mathrm{L}$. As referenced above, many studies of post wildfire studies indicate excess water-soluble nutrients (they are in excess because the plants that would have bound the nutrients within their plant tissue, were burned in the fires) may drain into nearby streams and bodies of water (Higgins, et. al., 1989). Nitrate-nitrogen is very soluble and is a nutrient particularly prone to leaching from soil. Based on this, it is possible that the nitrate/nitrite increases are naturally occurring and a result of the Topanga Fire.

Boeing will continue to evaluate nitrate and nitrite as nitrogen values at this and all Outfall locations across the site to better understand its occurrence and whether its occurrence diminishes as native vegetation returns.

TCDD TEQ Non-Compliance, Discussion of Occurrence, and Potential Sources

To enable a single total concentration (commonly called a Toxicity Equivalence [TEQ]) to be calculated from the sum of the 17 dioxin and furan congeners, $2,3,7,8-\mathrm{TCDD}$ 'equivalent' concentrations are calculated for each congener by multiplying that individual congener's concentration by its toxic equivalency factor (TEF). The TEF is based on the toxicity of the congener compared to the toxicity of $2,3,7,8-\mathrm{TCDD}$. The dioxin summary tables in Appendix D show the TEFs for the various congeners. The common term for the sum of the factored concentration is TEQ. When subsequently used in this letter report, the term TCDD refers to the total equivalence of the seventeen $2,3,7,8$-substituted dioxin and furan congeners (commonly called the TCDD TEQ).

During the $4^{\text {th }}$ Quarter 2005, surface water samples were collected from Outfalls 003 through 010 , and 018 and analyzed for TCDD TEQ, in accordance with the NPDES permit. Of these, permit limits for TCDD TEQ are established for Outfalls 003 through 007. Outfalls 008 through 010 are monitored for TCDD TEQ; however, permit limits were not established for these Outfalls in the 2004 NPDES Permit.

For the purposes of evaluating compliance with permit limits for Outfalls 003 through 007 (as stated in the NPDES permit on Page 40, Section II, C. 3), TCDD TEQ is based on detected congeners and does not include those congeners reported as ND (not detected) or detected, but not quantified (DNQ). A DNQ is a value less than the laboratory reporting limit, but greater than the laboratory level of detection [LOD]. Therefore, when evaluating whether a permit limit exceedence occurred, ND or DNQ data (the resulting estimated value) were considered zero in the calculation. Outfalls 003 through 007 have a compliance limit for TCDD TEQ, which is shown as the TCDD TEQ permit limit of $2.8 \times 10^{-8} \mu \mathrm{~g} / \mathrm{L}$ or 28 parts per quintillion.

February 15, 2006
Page 7
SHEA-103169
Limits for TCDD TEQ have not been established for Outfalls 008 through 011 , and 018 in the 2004 Permit. For these Outfalls, TCDD TEQ is based on detected congeners and DNQ congeners. Congener values that are ND are considered to have concentrations equal to zero and are not included in the TCDD TEQ calculation for these Outfalls without permit limits. TCDD TEQ analytical results are included in Appendices D, E, and F.

During $4^{\text {th }}$ Quarter 2005, TCDD TEQ concentrations at Outfalls 004, 005, 006, and 007 ($5.86 \times 10^{-6}, 1.36 \times 10^{-6}, 3.40 \times 10^{-8}, 3.17 \times 10^{-7} \mu \mathrm{~g} / \mathrm{L}$, respectively) exceeded the daily maximum permit limit of $2.8 \times 10^{-8} \mu \mathrm{~g} / \mathrm{L}$ in the samples collected on October 18, 2005. TCDD TEQ concentrations at Outfalls 004, 005, and $006\left(3.43 \times 10^{-6}, 1.76 \times 10^{-6}\right.$, and $1.89 \times$ $10^{-6} \mu \mathrm{~g} / \mathrm{L}$, respectively) exceeded the daily maximum permit limit of $2.80 \times 10^{-8} \mu \mathrm{~g} / \mathrm{L}$ in the samples collected on November 9, 2005.

TCDD have been frequently detected in agency approved non-impacted background soils (MWH 2005). In some areas, operations onsite have utilized combustion processes, but when investigating these potentially impacted areas, the TCDD TEQ values in soils have been found either not to be elevated above background levels, or if elevated, they have been shown to decrease to near background levels within a short distance from the suspected source area.

Boeing has extended its TCDD sampling program to areas far offsite (some locations are about 20 miles away), where site-related impacts are virtually impossible. At these locations, similar concentrations of TCDD TEQ are found in stormwater runoff. The attached figure (Attachment 1) shows recent offsite surface water sampling locations and the onsite and offsite surface water TCDD concentrations from the October 2005 sampling event (Attachment 2). Based on this, it appears that TCDD TEQ found at the SSFL are largely due to atmospheric deposition of TCDD TEQ from various regional combustion activities.

Additionally, wildfires are known sources of TCDD TEQ (USEPA, 2000), and Boeing has documented the presence of dioxins in burn areas within the region. The 2005 Topanga Fire swept through SSFL and denuded approximately 70% of the site, which resulted in an increased amount of soil erosion and runoff in storm water.

Boeing will continue to investigate sources of TCDD onsite. However, the presence of TCDD in both background soils and fire-related materials, is well documented in the scientific literature (USEPA, 2000) and substantiated by our on- and offsite studies (MWH, 2005; Attachments 1 and 2). These suggest that the TCDD TEQ being measured in surface water is coming from naturally occurring sources over which Boeing has no reasonable control. Continued monitoring of surface water will provide a more thorough dataset with which to further evaluate the occurrence of TCDD.

February 15, 2006
Page 8
SHEA-103169

DATA VALIDATION DISCUSSION

All analyses of sample discharges were conducted at a California-state certified laboratory for such analysis in accordance with current EPA guidelines, procedures, or as specified in the monitoring program. Data validation was performed on the analytical results and quality control elements were found to be within acceptable limits for all analytical methods reported, except as noted on the analytical summary tables. Laboratory analytical reports, including validation reports and notes, are included in Appendix G. Attachment T-A of the NPDES permit issued to the SSFL presents the State Water Resources Control Board (SWRCB) minimum levels (MLs) for use in reporting and determining compliance with NPDES permit limits. The analytical laboratory achieved these MLs for this reporting period. However, some constituents' daily maximum discharge limits in the NPDES permit are less than their respective MLs, and less than the laboratory reporting limit (RL). In cases where the permit limit is less than the $R L$ and $M L$, the $R L$ was used to determine compliance. The specific constituents that have permit limits that are less than the RL and ML are mercury (daily maximum permit limit of $0.10 \mathrm{ug} / \mathrm{L}$ and $0.13 \mathrm{ug} / \mathrm{L}$, monthly average limit of $0.05 \mathrm{ug} / \mathrm{L}, \mathrm{RL}$ of $0.2 \mathrm{ug} / \mathrm{L}$), cyanide (monthly average limit of $4.3 \mathrm{ug} / \mathrm{L}$), RL of 5.0 ug / L, and Bis- (2-ethylhexyl) phthalate (daily maximum permit limit of $4.0, \mathrm{RL}$ of $5.0 \mathrm{ug} / \mathrm{L}$). Of these compounds, during the $4^{\text {th }}$ Quarter 2005, none were detected at concentrations equal to or greater than its RL.

FACILITY CONTACT

If there are any questions regarding this report or it enclosures, you may contact Mr. Paul Costa at (818) 466-8778.

CERTIFICATION

I certify under penalty of law that this document and all appendices were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for a knowing violation.

Executed on the $15^{\text {th }}$ of February 2006 at The Boeing Company, SSFL.
Sincerely,

Director, Remediation Programs and
Safety, Health and Environmental Affairs
Laser \& Electro-Optical Systems

February 15, 2006
Page 9
SHEA-103169
SL:po

Attachments: 1 - Onsite and Offsite Surface Water Sampling Locations
2 - TCDD TEQ Concentrations in Surface Water from Onsite and Offsite Locations

Appendices: A Figure 1 Storm Water Drainage System and Outfall Locations B $4^{\text {th }}$ Quarter 2005 Rainfall Data Summary
C $4^{\text {th }}$ Quarter 2005 Liquid Waste Shipment Summary Tables
D $4^{\text {th }}$ Quarter 2005 Summary Tables, Discharge Monitoring Data, Outfall 003 through 010 and 018
E $4^{\text {th }}$ Quarter 200513267 Sampling Results
F $4^{\text {th }}$ Quarter 2005 Summary of Permit Limit Exceedances
G $4^{\text {th }}$ Quarter 2005 Analytical Laboratory Reports and Chain-ofCustody
cc: Jim Pappas, Department of Toxic Substances Control
Robert Marshall, California State University - Northridge, Library
Dale Redfield, Simi Valley Library
Lynn Light, Platt Branch, Los Angeles Library
Stephen Baxter, Department of Toxic Substances Control
SHEA- 103169

References Cited:

Aronsson and Ekelund. 2004. Biological Effects of Woods Ash Application to Forest and Aquatic Ecosystems. Journal of Environmental Quality; 33: 1595-1605.

Earl, Stevan R. and Blinn, DeanW., 2003. Effects of wildfire as on water chemistry and biota in South-Western U.S.A. streams. Freshwater Biology; 28: 1015-1030.

Higgins, Kenneth F., Arnold D. Kruse, and James L. Piehl. 1989. Effects of fire in the Northern Great Plains. U.S. Fish and Wildlife Service and Cooperative Extension Service, South Dakota State University, Brookings, South Dakota. Extension Circular 761. Jamestown, ND: Northern Prairie Wildlife Research Center Online. http://www.npwrc.usgs.gov/resource/2000/fire/fire.htm (Version 16 May 2000).

MWH. 2005 Standardized Risk Assessment Methodology (SRAM) Work Plan - Revision 2 Final, Santa Susana Field Laboratory, Ventura County, California. September.

USEPA. 2000. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-pDioxin (TCDD) -and Related Compounds. Part I: Estimating Exposure to Dioxin-Like Compounds. Volume 3: Properties, Environmental Levels, and Background Exposures. Draft. EPA/600/P-00/001Ac. Office of Research and Development, Washington, DC. March.

APPENDIX A

FIGURE 1

APPENDIX B

 $4^{\text {th }}$ QUARTER 2005 RAINFALL DATA SUMMARYTHE BOEING COMPANY-ROCKETDYNE

Station: AREA4
Month/Year: November 2005

Station: AREA4
Month/Year: December 2005

APPENDIX C

$4^{\text {th }}$ QUARTER 2005 LIQUID WASTE SHIPMENTS SUMMARY TABLES

THE BOEING COMPANY - ROCKETDYNE NPDES PERMIT CA0001309
UQUID WASTE SHIPMENTS October 2005
 LACSD Carson
LACSD Saugus
LACSD Saugus
LACSD Saugus
LACSD Saugus
LACSD Carson
LACSD Saugus

DATE SHMED		grx.	Unrs	twesportes	cesmanton
+1/28/2005	WASTE WATEA FROM AREA $\#$ SEWAGE TREATMENT PLANT	5000	gal.	SOUTHWEST PROCESSORS INC.	UACSD Carso
				4120 BANDINI BLVD. LOS ANGELES, CA.	促

TABLE C-3 NPDES PERMIT CA0001309
LUQUID WASTE SHIPMENTS
December 2005

DHE SV	THE of Lige	ora.	urrs	TMMSPGMER	Desmymen
12/520005	WASTE WATER FROM AREA II SEWAGE TREATMENT PLANT	5000	GAL.	SOUTHWEST PROCESSORS INC.	LAC
				4120 BANDINI BLVD. LOS ANGELES, CA.	
12/522005	WASTE WATER FROM AREAT SEWAGE TREATMENT PLANT	5000	GAL.	SOUTHWEST PROCESSORS INC.	LACSO Carson
				4120 BANDINI BLVO. LOS ANGELES, CA.	
12/122005	Alfa Kerosene Oil, Water Bulk	800	Grams	Ecology Control Industries (ECl)	ONYX ENVIFONMENTAL SERVICES INC.
				204486 Normadie Ave, Torrance, CA 90502	1704 W. FIRST ST. AZUSA, CA. 91702
12/13/2005	WASTE WATEA FROM AREA I SEWAGE TREATMENT PLANT	5000	GAL.	SOUTHWEST PROCESSOAS INC.	LACSD Carson
				4120 BANDINI BIVD. LOS ANGELES, CA.	
1213/2005	WASTE WATEA HROM AREA II SEWAGE TREATMENT PLANT	5000	GAL.	SOUTHWEST PROCESSORS INC.	LACSD Saugus
				4120 BANDINI BLVD. LOS ANGELES, CA.	LCS Saugus
12/13/2005	WASTE WATER FROM AREAI SEWAGE TREATMENT PLANT	5000	GAL.	SOUTHWEST PROCESSORS INC.	LACSD Carson
				4120 BANDINI BLVD. LOS ANGELES, CA.	
12/19/2005	WASTE WATE FMOM AREAIISEWAGE TREATMENT PLANT	5000	GAL.	SOUTHWEST PROCESSORS INC.	LACSD Saugus
				4120 BANDINI BLVD. LOS ANGELES, CA,	
12/9/2005	WASTE WATER FROM AREAISEWAGE TREATMENT PLANT	5000	GAL.	SOUTHWEST PROCESSORS INC.	LACSD Carson
				4120 BANDINI BLVD. LOS ANGELES, CA.	
12/22/2005	Waste Water $/$ Oii (N / R)	24	LBS.	ONYX ENVIRONMENTAL SERVICES INC.	ONYX ENVIRONMENTAL SERVICES INC.
	Waste Labpac N/A loosepac liquic	6	LBS.	1704 W. FITRST ST. AZUSA, CA. 91702	1704 W. FIRST ST, AZUSA, CA. 91702
	Waste Labpac N/ loosepac liquid	32	LBS.		
	Waste Methanol Solution	296	LBS.		
	Waste Mixed Solvents	178	LBS.		
	Waste Mixed Acids - no metals	265	LBS.		
	Waste 301 Aikaline Cleaning Soln, $\mathrm{KOH}, \mathrm{NaOH}$	40	LBS.		
	Waste 301 Alkaline Cleariing Soln, $\mathrm{KOH}, \mathrm{NaOH}$	573	LBS.		
	Waste Oil/ Water (N/R)	799	LBS.		
	Waste Oil/ Water (N/R)	491	LES.		
	Waste Water / Oil (N / R)	499	Les.		
	Non ACAA Hazardous Liq wilh studge	245	LBS.		
	Transformer with ol < 9 ppm PCB	1475	LiSS.	ONY ENVIRONMENTAL SERVICES INC.	ONYX ENVIRONMENTAL SERVICES INC./ PHOENIX
	Non-PCB Transformer	11053	LBS.	1704 W. FIRAST ST. AZUSA, CA. 91702	
	Oll with 7 Ppm PCB	2948	LBS.		

APPENDIX D

$4^{\text {th }}$ QUARTER 2005 SUMMARY TABLES, DISCHARGE MONITORING DATA, OUTFALLS 003 THROUGH 010, AND 018

4th QUARTER 2005 REPORTING SUMMARY NOTES
 THE BOEING COMPANY - ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY
 NPDES PERMIT CA0001309

Notes:

1. For Dioxins and Furans, laboratory results may have been reported in picograms/liter (pg / L). However, the permit limit is stated in micrograms/liter ($\mu \mathrm{g} / \mathrm{L}$). To evaluate permit compliance, the laboratory results have been converted to $\mu \mathrm{g} / \mathrm{L}$, as necessary, to calculate the TCDD TEQ.
2. TCDD TEQs for the purpose of determining permit compliance are the sum of the products of the detected dioxin congener concentration multiplied by that congener's TEF. The resulting compliance TCDD TEQ does not include those congener concentrations that are reported as DNQ, as specified on Page 40 of the NPDES permit.
3. For some sample dates, pH was determined with a field instrument and was noted as such. These results were not validated. Since pH does not have an RL, the possible pH range is shown in the RL column.
4. The NPDES permit limits for mercury of $0.10 \mu \mathrm{~g} / \mathrm{L}$ (Outfalls 1-2) and $0.13 \mu \mathrm{~g} / \mathrm{L}$ (Outfalls 3-7) are not achievable by the laboratory; therefore, the laboratory reporting limit of $0.20 \mu \mathrm{~g} / \mathrm{L}$ was used to determine compliance.
5. The volume discharged at the Alfa Test Stand (Outfall 012) is estimated based on the run time of the test.
6. All of the following abbreviations and/or notes may not occur on every table.
$-92.9+/-200 \quad$ A negative radiochemical analytical result indicates the count rate of the sample was less than the background condition
\$ reported result or other information was incorrectly reported by the laboratory; result was corrected by the data validator
-- based on validation of the data, a qualifier was not required
/- no permit limit established for daily maximum or monthly average
<(value) analyte not detected at a concentration greater than or equal to the DL, MDL, or RL (see laboratory report for specific detail)

* result not validated
*1
*2 improper preservation of sample the ICP/MS ppb check standard was recovered above the control limit; therefore, the constituent detected was qualified as estimated (J)
*3 initial and or continuing calibration recoveries were outside acceptable control limits

4th QUARTER 2005 REPORTING SUMMARY NOTES THE BOEING COMPANY - ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

*5	blank spike/blank spike duplicate relative percent difference was outside the control limit
*10	value was estimated detect or estimated non detect (J,UJ) due to deficiencies in quantitation of the constituent including constituents reported by the laboratory as Estimated Maximum Possible Concentration (EMPC) values
	no calibration was performed for this compound; result is reported as a tentatively identified compound (TIC)
analysis not required; e.g., constituent or outfall was not required by the	
and	
permit to be sampled and analyzed (annual, semi-annual, etc.)	

4th QUARTER 2005 REPORTING SUMMARY NOTES
 THE BOEING COMPANY - ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

\(\left.$$
\begin{array}{ll}\mathrm{R} & \begin{array}{l}\text { as a validation qualifier, results are rejected; the presence or absence of } \\
\text { analyte cannot be verified }\end{array} \\
\mathrm{R} & \begin{array}{l}\text { (reason code in parentheses) }\end{array}
$$

\mathrm{RL} \& laboratory reporting limit calibration not within control limits\end{array}\right]\)| reporting limit raised due to sample matrix effects | |
| :--- | :--- |
| RL-1 | percent relative standard deviation |

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

				18/2005
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloride	mg / L	150/-	100	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	$\mathrm{ND}<0.072$	U
Oil \& Grease	mg / L	15/-	1.1	J (DNQ)
Perchlorate	ug/L	6.0/-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	6.82	*
Sulfate	mg/L	250/-	80	--
Temperature	deg. F	86/-	61.5	*
Total Cyanide	ug/L	-	ANR	ANR
Total Dissolved Solids	mg / L	850/-	850	--
Total Suspended Solids	mg / L	-	480	\cdots
Volume Discharged	MGD	$\%$	ANR	ANR
METALS				
Aluminum	ug / L	\%	ANR	ANR
Antimony	ug/L	6.0/-	$\mathrm{ND}<0.36$	U
Antimony, dissolved	ug/L	\ldots	0.73	* (DNQ)
Arsenic	ug/L	-/	ANR	ANR
Beryllium	ug/L	-1-	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug/L	4.0/-	0.34	J (DNQ)
Cadmium, dissolved	ug/L	-	0.14	* (DNQ)
Chromium	ug/L	-	ANR	ANR
Copper	ug / L	14.0/-	17	--
Copper, dissolved	ug/L	\%	7.5	*
Lead	ug/L	-	11	--
Lead, dissolved	ug/L	-1-	1.1	*
Mercury	ug/L	0.13/-	$\mathrm{ND}<0.063$	U
Mercury, dissolved	ug/L	\%/	$\mathrm{ND}<0.050$	*
Nickel	ugh	\%	ANR	ANR
Selenium	ug/L	/-	ANR	ANR
Silver	ug/L	-	ANR	ANR
Thallium	ug/L	2.0/-	ANR	ANR
Vanadium	ug/L	-	ANR	ANR
Zinc	ug/L	-1	ANR	ANR
ORGANICS				
Benzene	ug/L	-	ANR	ANR
Carbon Tetrachloride	ug/L	-	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY
 NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloroform	ug/L	-/-	ANR	ANR
1,1-Dichloroethane	ug/L	-1-	ANR	ANR
1,2-Dichloroethane	ug/L	-	ANR	ANR
1,1-Dichloroethene	ug/L	$\%$	ANR	ANR
Ethylbenzene	ug/L	-1-	ANR	ANR
Tetrachloroethene	ug/L	-1-	ANR	ANR
Toluene	ug/L	-	ANR	ANR
Xylenes (Total)	ug/L	\%	ANR	ANR
1,1,1-Trichloroethane	ug/L	\%	ANR	ANR
1,1,2-Trichloroethane	ug/L	-	ANR	ANR
Trichloroethene	ug/L	-	ANR	ANR
Trichlorofluoromethane	ug/L	-1.	ANR	ANR
Vinyl chloride	ug/L	\%	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-1-	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-/-	ANR	ANR
1,2-Dichlorobenzene	ug/L	-/-	ANR	ANR
1,2-Dichloropropane	ug/L	-/-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-	ANR	ANR
1,3-Dichlorobenzene	ug/L	-1-	ANR	ANR
1,4-Dichlorobenzene	ug/L	-	ANR	ANR
2,4,6-Trichlorophenol	ug/L	-1-	ANR	ANR
2,4-Dichlorophenol	ug/L	-	ANR	ANR
2,4-Dimethylphenol	ug/L	-	ANR	ANR
2,4-Dinitrophenol	ug/L	1	ANR	ANR
2,4-Dinitrotoluene	ug/L	-1-	ANR	ANR
2,6-Dinitrotoluene	ug/L	-1-	ANR	ANR
2-Chloroethylvinylether	ug/L	-1	ANR	ANR
2-Chloronaphthalene	ug/L	-1-	ANR	ANR
2-Chlorophenol	ug/L	-1-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	-1-	ANR	ANR
2-Nitrophenol	ug/L	-1-	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	-1-	ANR	ANR
4,4'-DDD	ug/L	-1-	ANR	ANR
4,4'-DDE	ug/L	-	ANR	ANR
4,4'-DDT	ug/L	$\%$	ANR	ANR
4-Bromophenylphenylether	ug/L	$\%$	ANR	ANR
4-Chloro-3-methylphenol	ug/L	\%	ANR	ANR

OUTFALL 003 (RMHF)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

ANALYTE	UNITS	\qquad	10/18/2005	
			RESULT	VALIDATION QUALIFIER
4-Chlorophenylphenylether	ug/L	--	ANR	ANR
4-Nitrophenol	ugh	-1-	ANR	ANR
Acenaphthene	ug / L	--	ANR	ANR
Acrolein	ug/	-	ANR	ANR
Acrylonitrile	ug/L	-1.	ANR	ANR
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	--	ANR	ANR
alpha-BHC	ug/	-	ANR	ANR
Anthracene	ug/L	-	ANR	ANR
Aroclor-1016	ug/L	-	ANR	ANR
Aroclor-1221	ug/L	-	ANR	ANR
Aroclor-1232	ug/L	--	ANR	ANR
Aroclor-1242	ug/L	--	ANR	ANR
Aroclor-1248	ug/L	\%	ANR	ANR
Aroclor-1254	ug/L	--1-	ANR	ANR
Aroclor-1260	ug/L	\%	ANR	ANR
Benzidine	ugh	-1-	ANR	ANR
Benzo(a)anthracene	ug/	-	ANR	ANR
Benzo(a)pyrene	ug/	-	ANR	ANR
Benzo(b) fluoranthene	ug/L	-	ANR	ANR
Benzo(g,h,I)perylene	ug/	-	ANR	ANR
Benzo(k) fluoranthene	ug/L	-	ANR	ANR
beta-BHC	ug/L	--	ANR	ANR
bis (2-Chloroethyl) ether	ugh	-	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	--	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	-	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	-	ANR	ANR
Bromodichloromethane	ug/L	-1-	ANR	ANR
Bromoform	ugh	-	ANR	ANR
Bromomethane	ugh	1	ANR	ANR
Butylbenzylphthalate	ugh	-1-	ANR	ANR
Chlordane	ugh	-	ANR	ANR
Chlorobenzene	ugh	-1-	ANR	ANR
Chloroethane	ug / L	-	ANR	ANR
Chloromethane	ug/L	-1-	ANR	ANR
Chrysene	ugh	-	ANR	ANR
cis-1,3-Dichloropropene	ug / L	-	ANR	ANR
delta-BHC	ug/L	\%	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

ANALYTE	UNITS	Permit LimitDailyMax/MonthlyAvg	10/18/2005	
			RESULT	VALIDATION QUALIFIER
Dibenzo(a,h)anthracene	ug/L	-1-	ANR	ANR
Dibromochloromethane	ug/	-1-	ANR	ANR
Dieldrin	ug/L	-	ANR	ANR
Diethylphthalate	ug/L	-	ANR	ANR
Dimethylphthalate	ug / L	-	ANR	ANR
Di-n-butylphthalate	ug/L	-	ANR	ANR
Di-n-octylphthalate	ug/L	-	ANR	ANR
Endosulfan I	ug / L	--	ANR	ANR
Endosulfan II	ug/L	-1-	ANR	ANR
Endosulfan sulfate	ug/L	--	ANR	ANR
Endrin	ug/L	-	ANR	ANR
Endrin aldehyde	ug/L	-	ANR	ANR
Fluoranthene	ug/L	-	ANR	ANR
Fluorene	ug/L	-	ANR	ANR
Heptachlor	ug / L	-	ANR	ANR
Heptachlor epoxide	ug/	-	ANR	ANR
Hexachlorobenzene	ug/L	-	ANR	ANR
Hexachlorobutadiene	ug/L	-	ANR	ANR
Hexachlorocyclopentadiene	ug/L	-	ANR	ANR
Hexachloroethane	ug/	-1-	ANR	ANR
Indeno(1,2,3-cd)pyrene	ug/L	-1-	ANR	ANR
Isophorone	ug/L	-	ANR	ANR
Lindane (gamma-BHC)	ug/L	--	ANR	ANR
Methylene Chloride	ug/L	--	ANR	ANR
Naphthalene	ug/L	--	ANR	ANR
Nitrobenzene	ug/	--	ANR	ANR
n-Nitrosodimethylamine	ug/L	-/-	ANR	ANR
n-Nitroso-di-n-propylamine	ug/L	--	ANR	ANR
n-Nitrosodiphenylamine	ug/L	-/-	ANR	ANR
Pentachlorophenol	ug/L	--	ANR	ANR
Phenanthrene	ug/	--	ANR	ANR
Phenol	ug/L	-1-	ANR	ANR
Pyrene	ug/L	-	ANR	ANR
Toxaphene	ug/L	--	ANR	ANR
trans-1,2-Dichloroethene	ug/L	-1-	ANR	ANR
trans-1,3-Dichloropropene	ug/L	-	ANR	ANR

OUTFALL 003 (RMHF)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATOR
Sample Date October 18, 2005

CCDD TEQ W/ DNQ Values	$6.20 \mathrm{E}-09$	
PCDD TEQ w/out DNQ Values		ND

TCDD TEQ PERMIT LIMIT $=2.80 \mathrm{E}-\mathbf{0 8}$
Dioxin TCDD TEQ compliance limit established for this outfall?
See attached notes for abbreviations, definitions, and other explanations for the data presented in this table.

OUTFALL 004 (SRE)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloride	mg/L	150/-	6.8	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	1.3	\cdots
Oil \& Grease	mg / L	15/-	ND < 0.90	U
Perchlorate	ug/L	6.0/-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	7.33	*
Sulfate	mg / L	250/-	5.5	--
Temperature	deg. F	86/-	60.1	*
Total Cyanide	ug/L	-	ANR	ANR
Total Dissolved Solids	mg / L	850/-	110	--
Total Suspended Solids	mg / L	-1/	75	-
Volume Discharged	MGD	-/	ANR	ANR
METALS				
Aluminum	ug/L	-/-	ANR	ANR
Antimony	ug/L	6.0/-	0.99	J (DNQ)
Antimony, dissolved	ug/L	-	1.2	* (DNQ)
Arsenic	ug / L	-/-	ANR	ANR
Beryllium	ug/L	--	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug/L	4.0/-	0.20	U (B)
Cadmium, dissolved	ug/L	-	0.041	* (DNQ)
Chromium	ug/L	-	ANR	ANR
Copper	ug/L	14.0/-	7.0	--
Copper, dissolved	ug/L	-	2.0	*
Lead	ug/L	-/-	2.8	--
Lead, dissolved	ug/L	-1-	0.070	* (DNQ)
Mercury	ug/L	0.13/-	0.22	\cdots
Mercury, dissolved	ug/L	-1	$\mathrm{ND}<0.050$	*
Nickel	ug/L	-	ANR	ANR
Selenium	ug/L	-1-	ANR	ANR
Silver	ug/L	-1.	ANR	ANR
Thallium	ug / L	2.01-	ANR	ANR
Vanadium	ug/L	-/-	ANR	ANR
Zinc	ug/L	$\%$	ANR	ANR
ORGANICS				
Benzene	ug/L	-	ANR	ANR
Carbon Tetrachloride	ug/L	/-	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	10/18/2005	
			RESULT	VALIDATION QUALIFIER
Chloroform	ug/L	--	ANR	ANR
1,1-Dichloroethane	ug/L	-	ANR	ANR
1,2-Dichloroethane	ug/	-1-	ANR	ANR
1,1-Dichloroethene	ug/L	--	ANR	ANR
Ethylbenzene	ug/	-	ANR	ANR
Tetrachloroethene	ug/L	-1-	ANR	ANR
Toluene	ug/L	--	ANR	ANR
Xylenes (Total)	ug/L	--	ANR	ANR
1,1,1-Trichloroethane	ug/L	-/-	ANR	ANR
1,1,2-Trichloroethane	ug/	-	ANR	ANR
Trichloroethene	ug/L	-1-	ANR	ANR
Trichlorofluoromethane	ug/L	-1-	ANR	ANR
Vinyl chloride	ug/L	-	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	--	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-/-	ANR	ANR
1,2-Dichlorobenzene	ugh	-/-	ANR	ANR
1,2-Dichloropropane	$\underline{u g / L}$	-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-	ANR	ANR
1,3-Dichlorobenzene	ug/	-	ANR	ANR
1,4-Dichlorobenzene	ug/	--	ANR	ANR
2,4,6-Trichlorophenol	$\underline{u g / L}$	-1-	ANR	ANR
2,4-Dichlorophenol	ug/L	-1-	ANR	ANR
2,4-Dimethylphenol	ug/L	-	ANR	ANR
2,4-Dinitrophenol	ug/L	-	ANR	ANR
2,4-Dinitrotoluene	ug/L	-	ANR	ANR
2,6-Dinitrotoluene	ug/L	-	ANR	ANR
2-Chloroethylvinylether	ug/L	-/-	ANR	ANR
2-Chloronaphthalene	ug / L	-	ANR	ANR
2-Chlorophenol	ug / L	-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ugh	-/	ANR	ANR
2-Nitrophenol	ug/L	-	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	-	ANR	ANR
4,4'-DDD	ug/L	-	ANR	ANR
4,4'-DDE	ug/	--	ANR	ANR
4,4'-DDT	ug/L	--	ANR	ANR
4-Bromophenylphenylether	ug/L	-/-	ANR	ANR
4-Chloro-3-methylphenol	ugh	1	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

FOURTH QUARTER 2005 REPORTING SUMMARY

THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

ANALYTE	UNITS		10/18/2005	
		Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
4-Chlorophenylphenylether	ug/L	\%	ANR	ANR
4-Nitrophenol	ug/L	-	ANR	ANR
Acenaphthene	ug/L	-	ANR	ANR
Acrolein	ug/L	-/	ANR	ANR
Acrylonitrile	ug/L	-	ANR	ANR
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	-	ANR	ANR
alpha-BHC	ug/L	-1-	ANR	ANR
Anthracene	ug/L	-1-	ANR	ANR
Aroclor-1016	ug/L	-1-	ANR	ANR
Aroclor-1221	ug/L	-1-	ANR	ANR
Aroclor-1232	ug/L	-	ANR	ANR
Aroclor-1242	ug/L	-	ANR	ANR
Aroclor-1248	ug/L	-/	ANR	ANR
Aroclor-1254	ug/L	-/	ANR	ANR
Aroclor-1260	ug/L	\ldots	ANR	ANR
Benzidine	ug/L	\ldots	ANR	ANR
Benzo(a)anthracene	ug/L	-1	ANR	ANR
Benzo(a)pyrene	ug/L	-/-	ANR	ANR
Benzo(b)fluoranthene	ug/L	-1.	ANR	ANR
Benzo(g,h,I)perylene	ug/L	-	ANR	ANR
Benzo(k)fluoranthene	ug/L	\%	ANR	ANR
beta-BHC	ug/L	-	ANR	ANR
bis (2.Chloroethyl) ether	ug/L	--	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	-/-	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	-	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	-1-	ANR	ANR
Bromodichloromethane	ug/L	-	ANR	ANR
Bromoform	ug/L	\ldots	ANR	ANR
Bromomethane	ug/L	-1-	ANR	ANR
Butylbenzylphthalate	ug/L	\ldots	ANR	ANR
Chlordane	ug/L	1	ANR	ANR
Chlorobenzene	ug/L	$\%$	ANR	ANR
Chloroethane	ug/L	-	ANR	ANR
Chloromethane	ug/L	-	ANR	ANR
Chrysene	ug/L	-1-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	-	ANR	ANR
delta-BHC	ug/L	-	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY
 NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Dibenzo(a,h)anthracene	ug/L	-/-	ANR	ANR
Dibromochloromethane	ug/L	-1-	ANR	ANR
Dieldrin	ug/L	-1	ANR	ANR
Diethylphthalate	ug/L	-1	ANR	ANR
Dimethylphthalate	ug/L	-/	ANR	ANR
Di-n-butylphthalate	ug/L	-	ANR	ANR
Di-n-octylphthalate	ug/L	-1-	ANR	ANR
Endosulfan I	ug/L	-1-	ANR	ANR
Endosulfan II	ug/L	-1-	ANR	ANR
Endosulfan sulfate	ug/L	-	ANR	ANR
Endrin	ug/L	-1-	ANR	ANR
Endrin aldehyde	ug/L	-	ANR	ANR
Fluoranthene	ug/L	-	ANR	ANR
Fluorene	ug/L	\%	ANR	ANR
Heptachlor	ug/L	\%	ANR	ANR
Heptachlor epoxide	ug/L	\%	ANR	ANR
Hexachlorobenzene	ug/L	1	ANR	ANR
Hexachlorobutadiene	ug/L	\%	ANR	ANR
Hexachlorocyclopentadiene	ug/L	-	ANR	ANR
Hexachloroethane	ug/L	-	ANR	ANR
Indeno(1,2,3-cd)pyrene	ug/L	-1-	ANR	ANR
Isophorone	ug/L	-1-	ANR	ANR
Lindane (gamma-BHC)	ug/L	-	ANR	ANR
Methylene Chloride	ug/L	/-	ANR	ANR
Naphthalene	ug/L	-/-	ANR	ANR
Nitrobenzene	ug/L	-	ANR	ANR
n-Nitrosodimethylamine	ug/L	-/	ANR	ANR
n-Nitroso-di-n-propylamine	ug/L	-/	ANR	ANR
n -Nitrosodiphenylamine	ug/L	-/	ANR	ANR
Pentachlorophenol	ug/L	-	ANR	ANR
Phenanthrene	ug/L	/	ANR	ANR
Phenol	ug/L	-/-	ANR	ANR
Pyrene	ug/L	\ldots	ANR	ANR
Toxaphene	ug/L	-	ANR	ANR
trans-1,2-Dichloroethene	ug/L	-	ANR	ANR
trans-1,3-Dichloropropene	ug/L	-	ANR	ANR

OUTFALL 004 (SRE)
FOURTH QUARTER 2005 REPORTING SUMMARY SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
Sample Date October 18, 200

ANALMKE	LAB LOD (ugfL)	LAB RI (ag/L)	$\begin{gathered} \text { LAB } \\ \text { RESULT } \\ \text { (ug/L) } \end{gathered}$	VALIDATION QUALIFIER	WHO TEF	TCDD Equivalent (wIDNQ Values) (og/L)	TCDD Equivalent (w/out DNO Values) (ugh)
1,2,3,4,6,7,8-HpCDD	3.40E-06	$5.00 \mathrm{E}-05$	$4.90 \mathrm{E}-04$	--	0.01	$4.90 \mathrm{E}-06$	$4.90 \mathrm{E}-06$
1,2,3,4,6,7,8-HpCDF	$2.70 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	$5.80 \mathrm{E}-05$	--	0.01	$5.80 \mathrm{E}-07$	5.80E-07
1,2,3,4,7,8,9-HpCDF	$2.90 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.01	ND	ND
1,2,3,4,7,8-HxCDD	$3.80 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,4,7,8-HxCDF	$2.10 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	$6.70 \mathrm{E}-06$	J (DNQ)	0.1	6.70E-07	ND
1,2,3,6,7,8-HxCDD	$2.50 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	$2.90 \mathrm{E}-05$	J (DNQ)	0.1	$2.90 \mathrm{E}-06$	ND
1,2,3,6,7,8-HxCDF	$2.30 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDD	$2.00 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDF	$2.20 \mathrm{E}-06$	$3.50 \mathrm{E}-06$	ND	UJ (*10)	0.1	ND	ND
1,2,3,7,8-PeCDD	1.30E-06	$5.00 \mathrm{E}-05$	ND	U	1	ND	ND
1,2,3,7,8-PeCDF	$3.90 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.05	ND	ND
2,3,4,6,7,8-HxCDF	$2.10 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
2,3,4,7,8-PeCDF	$7.70 \mathrm{E}-07$	$5.70 \mathrm{E}-06$	ND	UJ (*10)	0.5	ND	ND
2,3,7,8-TCDD	$2.70 \mathrm{E}-06$	$1.00 \mathrm{E}-05$	ND	U	1	ND	ND
2,3,7,8-TCDF	$1.80 \mathrm{E}-06$	$1.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
OCDD	$6.40 \mathrm{E}-06$	1.00E-04	$3.60 \mathrm{E}-03$	--	0.0001	3.60E-07	3.60E-07
OCDF	$2.70 \mathrm{E}-06$	$1.00 \mathrm{E}-04$	$1.50 \mathrm{E}-04$	--	0.0001	$1.50 \mathrm{E}-08$	$1.50 \mathrm{E}-08$

[^0]Dioxin TCDD TEQ compliance limit established for this outfall?
See attached notes for abbreviations, definitions, and other explanations for the data presented in this table.

OUTFALL 005 (FSDF-1)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

				18/2005
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Chloride	mg / L	150/-	27	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	16	-*
Oil \& Grease	mg / L	15/-	$\mathrm{ND}<0.90$	U
Perchlorate	ug/L	6.0/-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	7.40	*
Sulfate	mg / L	250/-	18	--
Temperature	deg. F	86/-	57.0	*
Total Cyanide	ug/L	-1-	ANR	ANR
Total Dissolved Solids	mg / L	850/-	540	--
Total Suspended Solids	mg / L	-/	3000	--
Volume Discharged	MGD	-1-	ANR	ANR
METALS				
Aluminum	ug/L	-/-	ANR	ANR
Antimony	ug/L	6.0/-	ND < 0.36	U
Antimony, dissolved	ug/L	-/-	1.0	* (DNQ)
Arsenic	ug/L	-	ANR	ANR
Beryllium	ug/L	\ldots	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug/L	4.0/-	1.6	J (DNQ)
Cadmium, dissolved	ug/L	-1-	0.049	* (DNQ)
Chromium	ug/L	-1-	ANR	ANR
Copper	ug/L	14.0/-	30	--
Copper, dissolved	ug/L	-	4.2	*
Lead	ug / L	-1	34	--
Lead, dissolved	ug/L	1	0.063	* (DNQ)
Mercury	ug/L	0.13/-	0.41	\cdots
Mercury, dissolved	ug/L	-1-	$\mathrm{ND}<0.050$	*
Nickel	ug/L	-1	ANR	ANR
Selenium	ug/L	-1-	ANR	ANR
Silver	ug/L	H-	ANR	ANR
Thallium	ug/L	2.0/-	ANR	ANR
Vanadium	ug/L	-	ANR	ANR
Zinc	ug/L	-1-	ANR	ANR
ORGANICS				
Benzene	ug/L	-1/	ANR	ANR
Carbon Tetrachloride	ug/L	\ldots	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloroform	ug/L	-	ANR	ANR
1,1-Dichloroethane	ug / L	-1-	ANR	ANR
1,2-Dichloroethane	ug/L	-	ANR	ANR
1,1-Dichloroethene	ug/L	-1-	ANR	ANR
Ethylbenzene	ug / L	-1-	ANR	ANR
Tetrachloroethene	ug/L	-1-	ANR	ANR
Toluene	$u g / L$	-1-	ANR	ANR
Xylenes (Total)	ug/L	-1-	ANR	ANR
1,1,1-Trichloroethane	ug / L	-/-	ANR	ANR
1,1,2-Trichloroethane	ug/L	-1-	ANR	ANR
Trichloroethene	ug / L	--	ANR	ANR
Trichlorofluoromethane	ug / L	-/	ANR	ANR
Vinyl chloride	ug/L	\%-	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-1/	ANR	ANR
1,2-Dichlorobenzene	ug/L	-	ANR	ANR
1,2-Dichloropropane	ug / L	-1/	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug / L	-1/	ANR	ANR
1,3-Dichlorobenzene	ug/L	-	ANR	ANR
1,4-Dichlorobenzene	ug/L	-1-	ANR	ANR
2,4,6-Trichlorophenol	ug/L	-1-	ANR	ANR
2,4-Dichlorophenol	ug/L	-	ANR	ANR
2,4-Dimethylphenol	ug/L	-/-	ANR	ANR
2,4-Dinitrophenol	ug/L	-/-	ANR	ANR
2,4-Dinitrotoluene	ug/L	-	ANR	ANR
2,6-Dinitrotoluene	ug/L	-1-	ANR	ANR
2-Chloroethylvinylether	ug/L	-1-	ANR	ANR
2-Chloronaphthalene	ug / L	-	ANR	ANR
2-Chlorophenol	ug / L	-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug / L	\ldots	ANR	ANR
2-Nitrophenol	ug/L	-/-	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	-/	ANR	ANR
4,4'-DDD	ug/L	-	ANR	ANR
4,4'-DDE	ug/L	-1-	ANR	ANR
4,4'-DDT	ug/L	-	ANR	ANR
4-Bromophenylphenylether	ug/L	-1-	ANR	ANR
4-Chioro-3-methylphenol	ug / L	-1-	ANR	ANR

OUTFALL 005 (FSDF-1)
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
4-Chlorophenylphenylether	ug/L	-1	ANR	ANR
4-Nitrophenol	ug/L	-1-	ANR	ANR
Acenaphthene	ug/L	\%	ANR	ANR
Acrolein	ug/L	-	ANR	ANR
Acrylonitrile	ug/L	-1-	ANR	ANR
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	-1-	ANR	ANR
alpha-BHC	ug/L	-1/	ANR	ANR
Anthracene	ug/L	-	ANR	ANR
Aroclor-1016	ug / L	-	ANR	ANR
Aroclor-1221	ug / L	\%	ANR	ANR
Aroclor-1232	ug/L	-	ANR	ANR
Aroclor-1242	ug/L	/-	ANR	ANR
Aroclor-1248	ug/L	-	ANR	ANR
Aroclor-1254	ug/L	-1-	ANR	ANR
Aroclor-1260	ug / L	-/-	ANR	ANR
Benzidine	ug / L	-/-	ANR	ANR
Benzo(a)anthracene	ug/L	-	ANR	ANR
Benzo(a)pyrene	ug/L	-1-	ANR	ANR
Benzo(b)fluoranthene	ug/L	-	ANR	ANR
Benzo(g,h,I)perylene	ug/L	-	ANR	ANR
Benzo(k)fluoranthene	ug / L	-1	ANR	ANR
beta-BHC	ug/L	-	ANR	ANR
bis (2-Chloroethyl) ether	ug / L	-/-	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	\ldots	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	\ldots	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	$\%$	ANR	ANR
Bromodichloromethane	ug/L	-1-	ANR	ANR
Bromoform	ug/L	\ldots	ANR	ANR
Bromomethane	ug/L	$\%$	ANR	ANR
Butylbenzylphthalate	ug/L	-	ANR	ANR
Chlordane	u / L	-1.	ANR	ANR
Chlorobenzene	ug / L	-1.	ANR	ANR
Chloroethane	ug/L	-1.	ANR	ANR
Chloromethane	ug / L	-	ANR	ANR
Chrysene	ug/L	\%-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	-1-	ANR	ANR
delta-BHC	ug/L	-/	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Dibenzo(a, h) anthracene	ug/L	-/	ANR	ANR
Dibromochloromethane	ug/L	-/-	ANR	ANR
Dieldrin	ug/L	-1-	ANR	ANR
Diethylphthalate	ug/L	-	ANR	ANR
Dimethylphthalate	ug / L	-/-	ANR	ANR
Di-n-butylphthalate	ug/L	-/	ANR	ANR
Di-n-octylphthalate	ug/L	-1/	ANR	ANR
Endosulfan I	ug/L	-/-	ANR	ANR
Endosulfan II	ug/L	-1-	ANR	ANR
Endosulfan sulfate	ug/L	-/-	ANR	ANR
Endrin	ug/L	-/	ANR	ANR
Endrin aldehyde	ug/L	-	ANR	ANR
Fluoranthene	ug/L	-/	ANR	ANR
Fluorene	ug/L	-1-	ANR	ANR
Heptachlor	ug / L	-/-	ANR	ANR
Heptachlor epoxide	ug/L	-1-	ANR	ANR
Hexachlorobenzene	ug / L	-/-	ANR	ANR
Hexachlorobutadiene	ug/L	-	ANR	ANR
Hexachlorocyclopentadiene	ug/L	\ldots	ANR	ANR
Hexachloroethane	ug/L	-	ANR	ANR
Indeno(1,2,3-cd)pyrene	ug / L	-1-	ANR	ANR
Isophorone	ug/L	-	ANR	ANR
Lindane (gamma-BHC)	ug/L	-1-	ANR	ANR
Methylene Chloride	ug/L	-1-	ANR	ANR
Naphthalene	ug/L	-1-	ANR	ANR
Nitrobenzene	ug/L	-1	ANR	ANR
n-Nitrosodimethylamine	ug/L	-/-	ANR	ANR
n-Nitroso-di-n-propylamine	ug/L	-1-	ANR	ANR
n-Nitrosodiphenylamine	ug/L	4	ANR	ANR
Pentachlorophenol	ug/L	-/	ANR	ANR
Phenanthrene	ug/L	-1-	ANR	ANR
Phenol	ug/L	-/	ANR	ANR
Pyrene	ug/L	-1.	ANR	ANR
Toxaphene	ug/L	-	ANR	ANR
trans-1,2-Dichloroethene	ug/L	-/	ANR	ANR
trans-1,3-Dichloropropene	ug/L	-	ANR	ANR

OUTFALL 005 (FSDF-1)

FOURTH QUARTER 2005 REPORTING SUMMARY SANTA SUSANA FIELD LABORATORY
Sample Date October 18, 2005

ANABYTE	$\begin{aligned} & \text { LAB } \\ & \text { LOD } \\ & \text { (ug/L) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{LAB} \\ \mathrm{ML} \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$	LAB RESULT (ugh)	VALDDATION OUALIFIER	WHO TEF	TCDD Equivalent (wIDNQ Values) (ug/L)	TCDD Equivalent (w/out DNQ Values) (ug/L)
1,2,3,4,6,7,8-HpCDD	3.80E-06	$5.00 \mathrm{E}-05$	$1.10 \mathrm{E}-04$	---	0.01	$1.10 \mathrm{E}-06$	$1.10 \mathrm{E}-06$
1,2,3,4,6,7,8-HpCDF	$3.40 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	$1.10 \mathrm{E}-05$	J (DNQ)	0.01	$1.10 \mathrm{E}-07$	ND
1,2,3,4,7,8,9-HpCDF	3.40E-06	$5.00 \mathrm{E}-05$	ND	U	0.01	ND	ND
1,2,3,4,7,8-HxCDD	$2.90 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,4,7,8-HxCDF	1.80E-06	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,6,7,8-HxCDD	$2.80 \mathrm{E}-06$	$2.80 \mathrm{E}-06$	ND	UJ (*10)	0.1	ND	ND
1,2,3,6,7,8-HxCDF	$2.90 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDD	$2.80 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDF	$3.60 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8-PeCDD	$1.90 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	1	ND	ND
1,2,3,7,8-PeCDF	$3.50 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.05	ND	ND
2,3,4,6,7,8-HxCDF	$2.60 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
2,3,4,7,8-PeCDF	$1.70 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.5	ND	ND
2,3,7,8-TCDD	$3.10 \mathrm{E}-06$	$1.00 \mathrm{E}-05$	ND	U	1	ND	ND
2,3,7,8-TCDF	$2.60 \mathrm{E}-06$	$1.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
OCDD	$6.90 \mathrm{E}-06$	$1.00 \mathrm{E}-04$	$2.60 \mathrm{E}-03$	--	0.0001	2.60E-07	$2.60 \mathrm{E}-07$
OCDF	$3.50 \mathrm{E}-06$	$1.00 \mathrm{E}-04$	ND	UJ (B)	0.0001	ND	ND

[^1]See attached notes for abbreviations, definitions, and other explanations for the data presented in this table.

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Chloride	mg / L	150/-	41	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	7.9	--
Oil \& Grease	mg / L	15/-	ND < 0.94	U
Perchlorate	ug/L	6.0/-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	7.30	*
Sulfate	mg / L	250/-	23	--
Temperature	deg. F	86/-	59.2	*
Total Cyanide	ug/L	--	ANR	ANR
Total Dissolved Solids	mg/L	850/-	480	--
Total Suspended Solids	mg / L	--	520	--
Volume Discharged	MGD	-	ANR	ANR
METALS				
Aluminum	ug/L	-/-	ANR	ANR
Antimony	ug/L	6.0/-	0.42	J (DNQ)
Antimony, dissolved	ug/L	-	0.53	* (DNQ)
Arsenic	ug/L	-	ANR	ANR
Beryllium	ug/L	-	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug/	4.0/-	ND <1.0	U (B)
Cadmium, dissolved	ug/L	--	0.11	* (DNQ)
Chromium	ug/L	--	ANR	ANR
Copper	ug/	14.0/-	16	\cdots
Copper, dissolved	ug / L	-	6.2	*
Lead	ug/L	-	12	\cdots
Lead, dissolved	ug/L	-1.	0.76	* (DNQ)
Mercury	ug/	0.13/-	0.13	J (DNQ)
Mercury, dissolved	ug/L	-	ND < 0.050	,
Nickel	ug/L	-	ANR	ANR
Selenium	ug/	-	ANR	ANR
Silver	ug/L	-1-	ANR	ANR
Thallium	ug/L	2.0/-	ANR	ANR
Vanadium	ug/L	-	ANR	ANR
Zinc	ug/L	\%	ANR	ANR
ORGANICS				
Benzene	ug/L	--	ANR	ANR
Carbon Tetrachloride	ug/L	--	ANR	ANR

OUTFALL 006 (FSDF-2)

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloroform	ug/L	-/	ANR	ANR
1,1-Dichloroethane	ug/L	-	ANR	ANR
1,2-Dichloroethane	ug/L	-	ANR	ANR
1,1-Dichloroethene	ug/L	-	ANR	ANR
Ethylbenzene	ug/L	-	ANR	ANR
Tetrachloroethene	ug/L	-	ANR	ANR
Toluene	ug/L	\%	ANR	ANR
Xylenes (Total)	ug/L	-	ANR	ANR
1,1,1-Trichloroethane	ug/L	-	ANR	ANR
1,1,2-Trichloroethane	ug/L	-	ANR	ANR
Trichloroethene	ug/L	$\%$	ANR	ANR
Trichlorofluoromethane	ug/L	\ldots	ANR	ANR
Vinyl chloride	ug / L	-	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-1-	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-	ANR	ANR
1,2-Dichlorobenzene	ug/L	-1	ANR	ANR
1,2-Dichloropropane	ug/L	-/-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-	ANR	ANR
1,3-Dichlorobenzene	ug/L	-	ANR	ANR
1,4-Dichlorobenzene	ug/L	--	ANR	ANR
2,4,6-Trichlorophenol	ug/L	-	ANR	ANR
2,4-Dichlorophenol	ug/L	$\%$	ANR	ANR
2,4-Dimethylphenol	ug/L	\ldots	ANR	ANR
2,4-Dinitrophenol	ug/L	-	ANR	ANR
2,4-Dinitrotoluene	ug/L	-	ANR	ANR
2,6-Dinitrotoluene	ug/L	-	ANR	ANR
2-Chloroethylvinylether	ug/L	-1-	ANR	ANR
2-Chloronaphthalene	ug/L	\ldots	ANR	ANR
2-Chlorophenol	ug/L	-/	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	\ldots	ANR	ANR
2-Nitrophenol	ug/L	-	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	/-	ANR	ANR
4,4'-DDD	ug/L	$\%$	ANR	ANR
4,4'-DDE	ug/L	\%	ANR	ANR
4,4'-DDT	ug/L	\%	ANR	ANR
4-Bromophenylphenylether	ug / L	-	ANR	ANR
4-Chloro-3-methylphenol	ug/L	$\%$	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
4-Chlorophenylphenylether	ug/L	\%	ANR	ANR
4-Nitrophenol	ug/L	\%	ANR	ANR
Acenaphthene	ug/L	1	ANR	ANR
Acrolein	ug/L	\ldots	ANR	ANR
Acrylonitrile	ug/L	\%-	ANR	ANR
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin.	ug/L	$\%$	ANR	ANR
alpha-BHC	ug / L	-/-	ANR	ANR
Anthracene	ug/L	-	ANR	ANR
Aroclor-1016	ug/L	-1-	ANR	ANR
Aroclor-1221	ug/L	-1-	ANR	ANR
Aroclor-1232	ug/L	-	ANR	ANR
Aroclor-1242	ug/L	-1	ANR	ANR
Aroclor-1248	ug/L	-1-	ANR	ANR
Aroclor-1254	ug/L	-	ANR	ANR
Aroclor-1260	ug/L	--	ANR	ANR
Benzidine	ug/L	-/-	ANR	ANR
Benzo(a)anthracene	ug/L	-	ANR	ANR
Benzo(a)pyrene	ug/L	1	ANR	ANR
Benzo(b)fluoranthene	ug/L	-1-	ANR	ANR
Benzo(g,h,I)perylene	ug/L	-	ANR	ANR
Benzo(k)fluoranthene	ug/L	-1-	ANR	ANR
beta-BHC	ug/L	-1/	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	-1-	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	-1	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	H-	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	\ldots	ANR	ANR
Bromodichloromethane	ug / L	-	ANR	ANR
Bromoform	ug/L	-1	ANR	ANR
Bromomethane	ug/L	-	ANR	ANR
Butylbenzylphthalate	ug/L	-/	ANR	ANR
Chlordane	ug/L	-1-	ANR	ANR
Chlorobenzene	ug/L	-	ANR	ANR
Chloroethane	ug/L	-1-	ANR	ANR
Chloromethane	ug/L	-1-	ANR	ANR
Chrysene	ug/L	-1-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	-1	ANR	ANR
delta-BHC	ug/L	\%	ANR	ANR

OUTFALL 006 (FSDF-2)

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY
 NPDES PERMIT CA0001309

October 1 through October 31, 2005

| ANALYTE | | UNITS | $\begin{array}{c}\text { Permit Limit } \\ \text { Daily } \\ \text { Max/Monthly Avg }\end{array}$ | RESULT |
| :--- | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}VALIDATION

QUALIFIER\end{array}\right]\)
OUTFALL 006 (FSDF-2)
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
Sample Date October 18, 2005

TCDD TEQ w/ DNQ Values	$4.41 \mathrm{Em7}$	
TCDD TEQ w/out DNQ Values		3.40 Em 08

Dioxin TCDD TEQ compliance limit established for this outfall? Yes TCDD TEQ PERMIT LIMIT = 2.80E-08

OUTFALL 007 (Building 100)
FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloride	mg / L	150/-	51	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	7.4	--
Oil \& Grease	mg / L	15/-	ND < 0.89	U
Perchlorate	ug/L	6.0/-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	6.93	*
Sulfate	mg/L	250/-	33	--
Temperature	deg. F	86/-	62.1	*
Total Cyanide	ug/L	-/-	ANR	ANR
Total Dissolved Solids	mg / L	850/-	430	--
Total Suspended Solids	mg / L	-	670	--
Volume Discharged	MGD	-	ANR	ANR
METALS				
Aluminum	ug/L	-/	ANR	ANR
Antimony	ug/L	6.0/-	6.2	--
Antimony, dissolved	ug/L	-	9.8	*
Arsenic	ug/L	-	ANR	ANR
Beryllium	ug / L	-	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug/L	4.0/-	0.80	J (DNQ)
Cadmium, dissolved	ug/L	-/-	0.12	* (DNQ)
Chromium	ug / L	-	ANR	ANR
Copper	ug/L	14.0/-	19	--
Copper, dissolved	ug/L	-/-	6.1	*
Lead	ug/L	-/	20	--
Lead, dissolved	ug / L	-1-	1.8	*
Mercury	ug/L	0.13/-	0.10	J (DNQ)
Mercury, dissolved	ug/L	/-	ND < 0.050	*
Nickel	ug/L	-1/	ANR	ANR
Selenium	ug / L	\%	ANR	ANR
Silver	ug/L	-/-	ANR	ANR
Thallium	ug/L	2.0/-	ANR	ANR
Vanadium	ug/L	-1.	ANR	ANR
Zinc	ug/L	$\%$	ANR	ANR
ORGANICS				
Benzene	ug/L	-	ANR	ANR
Carbon Tetrachloride	ug/L	--	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

OUTFALL 007 (Building 100)

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE

SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

ANALYTE	UNITS	Permit LimitDailyMax/MonthlyAvg	10/18/2005	
			RESULT	VALIDATION QUALIFIER
Chloroform	ug/L	-/-	ANR	ANR
1,1-Dichloroethane	ug/L	--	ANR	ANR
1,2-Dichloroethane	ug/L	--	ANR	ANR
1,I-Dichloroethene	ug/	-	ANR	ANR
Ethylbenzene	ug/	-	ANR	ANR
Tetrachloroethene	ug/L	-	ANR	ANR
Toluene	ug/	-	ANR	ANR
Xylenes (Total)	ug/L	-	ANR	ANR
1,1,1-Trichloroethane	ug/L	-1-	ANR	ANR
1,1,2-Trichloroethane	ug/L	-1-	ANR	ANR
Trichloroethene	ug/L	--	ANR	ANR
Trichlorofluoromethane	ug/L	-	ANR	ANR
Vinyl chloride	ug/L	-	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-/-	ANR	ANR
1,2,4-Trichlorobenzene	ug/	-	ANR	ANR
1,2-Dichlorobenzene	ug/	-1-	ANR	ANR
1,2-Dichloropropane	ug/L	-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-/-	ANR	ANR
1,3-Dichlorobenzene	ug/	--	ANR	ANR
1,4-Dichlorobenzene	ug/L	-1-	ANR	ANR
2,4,6-Trichlorophenol	ug/L	--	ANR	ANR
2,4-Dichlorophenol	ug/L	\%	ANR	ANR
2,4-Dimethylphenol	ug/L	-1.	ANR	ANR
2,4-Dinitrophenol	ug/L	-	ANR	ANR
2,4-Dinitrotoluene	$\underline{u g / L}$	-1-	ANR	ANR
2,6-Dinitrotoluene	ug/L	-	ANR	ANR
2-Chloroethylvinylether	ug/L	-1.	ANR	ANR
2-Chloronaphthalene	ug/	-	ANR	ANR
2-Chlorophenol	ugh	-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	-	ANR	ANR
2-Nitrophenol	ug/	-	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	--	ANR	ANR
4,4'-DDD	ug/L	--	ANR	ANR
4,4'-DDE	ug/L	-	ANR	ANR
4,4'-DDT	ug/L	-	ANR	ANR
4-Bromophenylphenylether	ugh	--	ANR	ANR
4-Chloro-3-methylphenol	ug/	-	ANR	ANR

OUTFALL 007 (Building 100)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
4-Chlorophenylphenylether	ug/L	\%	ANR	ANR
4-Nitrophenol	ug/L	\%	ANR	ANR
Acenaphthene	ug / L	-	ANR	ANR
Acrolein	ug/L	-/-	ANR	ANR
Acrylonitrile	ug/L	-/-	ANR	ANR
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	-1.	ANR	ANR
alpha-BHC	ug/L	\ldots	ANR	ANR
Anthracene	ug/L	$\%$	ANR	ANR
Aroclor-1016	ug/L	$\%$	ANR	ANR
Aroclor-1221	ug/L	-1/	ANR	ANR
Aroclor-1232	ug/L	\%	ANR	ANR
Aroclor-1242	ug/L	-	ANR	ANR
Aroclor-1248	ug / L	-	ANR	ANR
Aroclor-1254	ug/L	-/-	ANR	ANR
Aroclor-1260	ug/L	-/-	ANR	ANR
Benzidine	ug / L	-1-	ANR	ANR
Benzo(a)anthracene	ug / L	-/-	ANR	ANR
Benzo(a)pyrene	ug/L	\ldots	ANR	ANR
Benzo(b)fluoranthene	ug/L	$\%$	ANR	ANR
Benzo(g,h,l)perylene	ug / L	-	ANR	ANR
Benzo(k)fluoranthene	ug/L	-	ANR	ANR
beta-BHC	ug / L	\%	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	-	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug / L	-1-	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	-	ANR	ANR
bis(2-Chloroisopropyl) ether	ug / L	\ldots	ANR	ANR
Bromodichloromethane	ug/L	-1-	ANR	ANR
Bromoform	ug/L	/-	ANR	ANR
Bromomethane	ug/L	\%	ANR	ANR
Butylbenzylphthalate	ug/L	/-	ANR	ANR
Chlordane	ug/L	-	ANR	ANR
Chlorobenzene	ug/L	-	ANR	ANR
Chloroethane	ug / L	-	ANR	ANR
Chloromethane	ug/L	-/	ANR	ANR
Chrysene	ug/L	-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	-	ANR	ANR
delta-BHC	ug/L	-	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

OUTFALL 007 (Building 100)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Dibenzo(a,h)anthracene	ug/L	-/	ANR	ANR
Dibromochloromethane	ug/L	-	ANR	ANR
Dieldrin	ugh	-	ANR	ANR
Diethylphthalate	ug/L	-/-	ANR	ANR
Dimethylphthalate	ug/L	--	ANR	ANR
Di-n-butylphthalate	ug/L	-	ANR	ANR
Di-n-octylphthalate	ug/L	-/-	ANR	ANR
Endosulfan I	ug/L	-	ANR	ANR
Endosulfan II	ug / L	-	ANR	ANR
Endosulfan sulfate	ug/L	-1-	ANR	ANR
Endrin	ug/L	-	ANR	ANR
Endrin aldehyde	ug/L	--	ANR	ANR
Fluoranthene	ug/L	-1-	ANR	ANR
Fluorene	ugh	-	ANR	ANR
Heptachlor	ug/	-1-	ANR	ANR
Heptachlor epoxide	ug/L	-1-	ANR	ANR
Hexachlorobenzene	ug/	-1-	ANR	ANR
Hexachlorobutadiene	ug/L	--	ANR	ANR
Hexachlorocyclopentadiene	ug/	-	ANR	ANR
Hexachloroethane	ug/L	-	ANR	ANR
Indeno((1,2,3-cd) pyrene	ug/L	--	ANR	ANR
Isophorone	ug/L	-	ANR	ANR
Lindane (gamma-BHC)	ug/L	--	ANR	ANR
Methylene Chloride	ug/L	-/-	ANR	ANR
Naphthalene	ug/	-	ANR	ANR
Nitrobenzene	ug/L	-1-	ANR	ANR
n -Nitrosodimethylamine	ug/	\%	ANR	ANR
n-Nitroso-di-n-propylamine	ug/	-	ANR	ANR
n-Nitrosodiphenylamine	ug/L	-1-	ANR	ANR
Pentachlorophenol	ug/L	-	ANR	ANR
Phenanthrene	ug / L	-1-	ANR	ANR
Phenol	ug/L	-	ANR	ANR
Pyrene	ug L	-1-	ANR	ANR
Toxaphene	ugh	-	ANR	ANR
trans-1,2-Dichloroethene	ug/L	-/-	ANR	ANR
trans-1,3-Dichloropropene	ug/L	-	ANR	ANR

OUTFALL 007 (Building 100)
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
Sample Date October 18, 2005

ANAETTE	LAB LOD (ug/L)	LAB RL (mg / L)	$\begin{aligned} & \text { LAB } \\ & \text { RESULT } \\ & \text { (ugh) } \end{aligned}$	VAUDDATION OUALTHIER	$\begin{aligned} & \text { WHO } \\ & \text { TEF } \end{aligned}$	TCDD Equivalent (w/DNQ Values) (ugh)	TCDD Equivalent (w/out DNOC Values) (ag/t)
1,2,3,4,6,7,8-HpCDD	$9.20 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	$2.80 \mathrm{E}-05$	---	0.01	$2.80 \mathrm{E}-07$	2.80E-07
1,2,3,4,6,7,8-HpCDF	$3.60 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	6.90E-06	J (DNQ)	0.01	$6.90 \mathrm{E}-08$	ND
1,2,3,4,7,8,9-HpCDF	$4.50 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.01	ND	ND
1,2,3,4,7,8-HxCDD	$3.90 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,4,7,8-HxCDF	$2.80 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,6,7,8-HxCDD	$4.20 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,6,7,8-HxCDF	$3.50 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDD	$3.00 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDF	$4.00 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8-PeCDD	$2.80 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	1	ND	ND
1,2,3,7,8-PeCDF	$4.10 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.05	ND	ND
2,3,4,6,7,8-HxCDF	$2.40 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
2,3,4,7,8-PeCDF	1.50E-06	$5.00 \mathrm{E}-05$	ND	U	0.5	ND	ND
2,3,7,8-TCDD	$2.30 \mathrm{E}-06$	$1.00 \mathrm{E}-05$	ND	U	1	ND	ND
2,3,7,8-TCDF	$2.00 \mathrm{E}-06$	$1.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
OCDD	$1.10 \mathrm{E}-05$	$1.00 \mathrm{E}-04$	3.70E-04	-"'	0.0001	$3.70 \mathrm{E}-08$	3.70E-08
OCDF	$7.70 \mathrm{E}-06$	$1.00 \mathrm{E}-04$	ND	UJ (B)	0.0001	ND	ND

TCDD TEQ w/DNQ Values	$3.86 \mathrm{E}-07$	
TCDD TEQ w/out DNQ Values		3.17E-07

TCDD TEQ PERMIT LIMIT $=2.80 \mathrm{E}-\mathbf{- 0 8}$

OUTFALL 008 (Happy Valley Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloride	mg / L	150/-	4.6	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	8.0/-	0.95	--
Oil \& Grease	mg / L	15/-	ND < 0.89	U
Perchlorate	ug/L	6.0/-	$\mathrm{ND}<0.80$	U
pH (Field)	pH units	6.5-8.5/-	7.75	*
Sulfate	mg / L	300/-	14	--
Temperature	deg. F	86/-	59.9	*
Total Cyanide	ug/L	-/-	ANR	ANR
Total Dissolved Solids	mg / L	950/-	270	--
Total Suspended Solids	mg / L	-	1300	\cdots
Volume Discharged	MGD	-/-	ANR	ANR
METALS				
Aluminum	ug/L	-	ANR	ANR
Antimony	ug / L	-1-	0.54	J (DNQ)
Antimony, dissolved	ug/L	-/-	1.0	* (DNQ)
Arsenic	ug/L	-/-	ANR	ANR
Beryllium	ug/L	-/-	ANR	ANR
Boron	mg / L	-	ANR	ANR
Cadmium	$u \mathrm{~g} / \mathrm{L}$	\ldots	1.5	\cdots
Cadmium, dissolved	ug/L	-1-	0.030	* (DNQ)
Chromium	ug / L	-1-	ANR	ANR
Copper	ug / L	-1-	14	--
Copper, dissolved	ug/L	-	1.5	* (DNQ)
Lead	ug / L	-	120	---
Lead, dissolved	ug / L	1	0.76	* (DNQ)
Mercury	ug/L	-	0.14	J (DNQ)
Mercury, dissolved	ug/L	-	ND < 0.050	-
Nickel	ug/L	-1	ANR	ANR
Selenium	ug/L	\%	ANR	ANR
Silver	ug/L	-1-	ANR	ANR
Thallium	ug/L	-1-	ANR	ANR
Vanadium	ug/L	-1-	ANR	ANR
Zinc	ug / L	-	ANR	ANR
ORGANICS				
Benzene	ug / L	\ldots	ANR	ANR
Carbon Tetrachloride	ug/L	\ldots	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

OUTFALL 008 (Happy Valley Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY

THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Chloroform	ug/L	/-	ANR	ANR
1,1-Dichloroethane	ug/L	-1-	ANR	ANR
1,2-Dichloroethane	ug/L	-	ANR	ANR
1,1-Dichloroethene	ug/L	-/	ANR	ANR
Ethylbenzene	ug/L	\%-	ANR	ANR
Tetrachloroethene	ug/L	-/-	ANR	ANR
Toluene	ug/L	-/-	ANR	ANR
Xylenes (Total)	ug/L	-/	ANR	ANR
1,1,1-Trichloroethane	ug/L	--	ANR	ANR
1,1,2-Trichloroethane	ug / L	-	ANR	ANR
Trichloroethene	ug/L	-	ANR	ANR
Trichlorofluoromethane	ug/L	-	ANR	ANR
Vinyl chloride	ug/L	-	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-1/	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-/	ANR	ANR
1,2-Dichlorobenzene	ug / L	-/-	ANR	ANR
1,2-Dichloropropane	ug / L	-/	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug / L	-	ANR	ANR
1,3-Dichlorobenzene	ug/L	\%-	ANR	ANR
1,4-Dichlorobenzene	ug / L	-1-	ANR	ANR
2,4,6-Trichlorophenol	ug / L	\%	ANR	ANR
2,4-Dichlorophenol	ug/L	\ldots	ANR	ANR
2,4-Dimethylphenol	ug/L	-1-	ANR	ANR
2,4-Dinitrophenol	ug/L	-	ANR	ANR
2,4-Dinitrotoluene	ug/L	-	ANR	ANR
2,6-Dinitrotoluene	ug / L	-	ANR	ANR
2-Chloroethylvinylether	ug/L	-	ANR	ANR
2-Chloronaphthalene	ug/L	-1/	ANR	ANR
2-Chlorophenol	ug/L	-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	-1/	ANR	ANR
2-Nitrophenol	ug/L	-	ANR	ANR
3,3-Dichlorobenzidine	ug/L	-1/	ANR	ANR
4,4*-DDD	ug / L	-1-	ANR	ANR
4,4'-DDE	ug/L	-	ANR	ANR
4,4'-DDT	ug/L	\ldots	ANR	ANR
4-Bromophenylphenylether	ug/L	\ldots	ANR	ANR
4-Chloro-3-methylphenol	ug/L	\ldots	ANR	ANR

OUTFALL 008 (Happy Valley Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY

 THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY

 NPDES PERMIT CA0001309October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
4-Chlorophenylphenylether	ug / L	-	ANR	ANR
4-Nitrophenol	ug/L	\%	ANR	ANR
Acenaphthene	ug/L	-	ANR	ANR
Acrolein	ug/L	-	ANR	ANR
Acrylonitrile	ug/L	-	ANR	ANR
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	\%	ANR	ANR
alpha-BHC	ug/L	-	ANR	ANR
Anthracene	ug / L	-1-	ANR	ANR
Aroclor-1016	ug/L	-1-	ANR	ANR
Aroclor-1221	ug / L	\%	ANR	ANR
Aroclor-1232	ug/L	-/	ANR	ANR
Aroclor-1242	ug/L	-/-	ANR	ANR
Aroclor-1248	ug/L	\%	ANR	ANR
Aroclor-1254	ug/L	\%	ANR	ANR
Aroclor-1260	ug / L	\ldots	ANR	ANR
Benzidine	ug/L	\%	ANR	ANR
Benzo(a)anthracene	ug/L	-1.	ANR	ANR
Benzo(a)pyrene	ug/L	-	ANR	ANR
Benzo(b)fluoranthene	ug/L	-	ANR	ANR
Benzo(g, h, 1) perylene	ug/L	-	ANR	ANR
Benzo(k)fluoranthene	ug/L	-	ANR	ANR
beta-BHC	ug/L	\ldots	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	-	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	-1-	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	-	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	-	ANR	ANR
Bromodichloromethane	ug/L	.-	ANR	ANR
Bromoform	ug/L	1	ANR	ANR
Bromomethane	ugh	/-	ANR	ANR
Butylbenzylphthalate	$u g / L$	1	ANR	ANR
Chlordane	ug/L	$\%$	ANR	ANR
Chlorobenzene	ug/L	-/-	ANR	ANR
Chloroethane	ug / L	\%	ANR	ANR
Chloromethane	ug/L	-	ANR	ANR
Chrysene	ug/L	-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	-	ANR	ANR
delta-BHC	ug/L	-	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

OUTFALL 008 (Happy Valley Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	10/18/2005	
			RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Dibenzo(a,h)anthracene	ug/L	-	ANR	ANR
Dibromochloromethane	ug/L	-	ANR	ANR
Dieldrin	ug/L	-	ANR	ANR
Diethylphthalate	ug/L	-	ANR	ANR
Dimethylphthalate	ug/L	-1-	ANR	ANR
Di-n-butylphthalate	ug/	-	ANR	ANR
Di-n-octylphthalate	ugh	--	ANR	ANR
Endosulfan I	ug/	-1-	ANR	ANR
Endosulfan II	ug/L	-	ANR	ANR
Endosulfan sulfate	ug/	\ldots	ANR	ANR
Endrin	ug/L	--	ANR	ANR
Endrin aldehyde	ug/L	-	ANR	ANR
Fluoranthene	ug / L	-1-	ANR	ANR
Fluorene	ug/L	--	ANR	ANR
Heptachlor	ug/L	-	ANR	ANR
Heptachlor epoxide	ug/L	-1-	ANR	ANR
Hexachlorobenzene	ug/L	-1.	ANR	ANR
Hexachlorobutadiene	ug/L	--	ANR	ANR
Hexachlorocyclopentadiene	ug/L	-1-	ANR	ANR
Hexachloroethane	ug/L	-/-	ANR	ANR
Indeno(1,2,3-cd)pyrene	ug/	-/-	ANR	ANR
Isophorone	ug/L	--	ANR	ANR
Lindane (gamma-BHC)	ug/L	-1-	ANR	ANR
Methylene Chloride	ug/	-	ANR	ANR
Naphthalene	ug/L	-1-	ANR	ANR
Nitrobenzene	ug/	-	ANR	ANR
n -Nitrosodimethylamine	ug / L	-1-	ANR	ANR
n-Nitroso-di-n-propylamine	ug/	-	ANR	ANR
n-Nitrosodiphenylamine	ug/L	-1.	ANR	ANR
Pentachlorophenol	ugh	-1-	ANR	ANR
Phenanthrene	ug/	-	ANR	ANR
Phenol	ug / L	-	ANR	ANR
Pyrene	ug/L	-1-	ANR	ANR
Toxaphene	ug/L	-f.	ANR	ANR
trans-1,2-Dichloroethene	ug/L	--	ANR	ANR
trans-1,3-Dichloropropene	ug / L	-	ANR	ANR

OUTFALL 008 (Happy Valley Drainage)

[^2]Sample Date October 18, 2005

Dioxin TCDD TEQ compliance limit established for this outfall? No TCDD TEQ PERMIT LIMIT = NA
Page 1 of 1

OUTFALL 009 (WS-13 Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

| ANALYTE | | UNITS | $\begin{array}{c}\text { Permit Limit } \\ \text { Daily } \\ \text { Max/Monthly } \\ \text { Avg }\end{array}$ | RESULT |
| :--- | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}VALIDATION

QUALIFIER\end{array}\right]\)

OUTFALL 009 (WS-13 Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/17/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloroform	ug/L	-	ANR	ANR
1,1-Dichloroethane	ug/L	-	ANR	ANR
1,2-Dichloroethane	ug/L	-1	ANR	ANR
1,1-Dichloroethene	ug/L	-	ANR	ANR
Ethylbenzene	ug/L	-1-	ANR	ANR
Tetrachloroethene	ug/L	-	ANR	ANR
Toluene	ug/L	-	ANR	ANR
Xylenes (Total)	ug/L	-1-	ANR	ANR
1,1,1-Trichloroethane	ug/L	-/-	ANR	ANR
1,1,2-Trichloroethane	ug/L	-1-	ANR	ANR
Trichloroethene	ug / L	-/	ANR	ANR
Trichlorofluoromethane	ug/L	-	ANR	ANR
Vinyl chloride	ug/L	-1-	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug / L	\%/	ANR	ANR
1,2,4-Trichlorobenzene	ug / L	-	ANR	ANR
1,2-Dichlorobenzene	ug/L	-	ANR	ANR
1,2-Dichloropropane	ug / L	-1-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-1/	ANR	ANR
1,3-Dichlorobenzene	ug/L	-	ANR	ANR
1,4-Dichlorobenzene	ug/L	-	ANR	ANR
2,4,6-Trichlorophenol	ug/L	-1-	ANR	ANR
2,4-Dichlorophenol	ug/L	-	ANR	ANR
2,4-Dimethylphenol	ug/L	-/-	ANR	ANR
2,4-Dinitrophenol	ug/L	-	ANR	ANR
2,4-Dinitrotoluene	ug/L	-/-	ANR	ANR
2,6-Dinitrotoluene	ug / L	/-	ANR	ANR
2-Chloroethylvinylether	ug / L	-	ANR	ANR
2-Chloronaphthalene	ug / L	-	ANR	ANR
2-Chiorophenol	ug/L	-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	-	ANR	ANR
2-Nitrophenol	ug / L	\ldots	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	-	ANR	ANR
4,4'-DDD	ug/L	-	ANR	ANR
4,4'-DDE	ug/L	-1-	ANR	ANR
4,4'-DDT	ug/L	\%	ANR	ANR
4-Bromophenylphenylether	ug/L	-	ANR	ANR
4-Chloro-3-methylphenol	ug/L	\%	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

OUTFALL 009 (WS-13 Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

ANALYTE	UNITS	\qquad	10/17/2005	
			RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
4-Chlorophenylphenylether	ug/L	-1-	ANR	ANR
4-Nitrophenol	ug/L	-	ANR	ANR
Acenaphthene	ug/L	-	ANR	ANR
Acrolein	ug/L	--	ANR	ANR
Acrylonitrile	ug/L	-	ANR	ANR
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug / L	-	ANR	ANR
alpha-BHC	ug/L	-1.	ANR	ANR
Anthracene	ug/L	-	ANR	ANR
Aroclor-1016	ug/L	-	ANR	ANR
Aroclor-1221	ug/	-	ANR	ANR
Aroclor-1232	ug/L	--	ANR	ANR
Aroclor-1242	ug/L	-/-	ANR	ANR
Aroclor-1248	ug/	-	ANR	ANR
Aroclor-1254	ug/L	-	ANR	ANR
Aroclor-1260	ug/L	-	ANR	ANR
Benzidine	ug/L	-	ANR	ANR
Benzo(a)anthracene	ug/L	-	ANR	ANR
Benzo(a)pyrene	ug/L	-	ANR	ANR
Benzo(b)fluoranthene	ug/L	--	ANR	ANR
Benzo(g,h,I)perylene	ug/L	-1-	ANR	ANR
Benzo(k)fluoranthene	ug/L	-	ANR	ANR
beta-BHC	ug/	-	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	--1-	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/	--	ANR	ANR
bis(2-Chloroethoxy) methane	ug/	--	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	--	ANR	ANR
Bromodichloromethane	ug/	--	ANR	ANR
Bromoform	ugh	-	ANR	ANR
Bromomethane	ug/	-	ANR	ANR
Butylbenzylphthalate	ugh	-1-	ANR	ANR
Chlordane	ug/L	--	ANR	ANR
Chlorobenzene	ug/	-/-	ANR	ANR
Chloroethane	ug/	-/-	ANR	ANR
Chloromethane	ug/	-	ANR	ANR
Chrysene	ug/	--	ANR	ANR
cis-1,3-Dichloropropene	ug/L	-	ANR	ANR
delta-BHC	ug/L	--	ANR	ANR

OUTFALL 009 (WS-13 Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/17/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Dibenzo(a,h)anthracene	ug/L	-	ANR	ANR
Dibromochloromethane	ug/L	--	ANR	ANR
Dieldrin	ug/L	-1-	ANR	ANR
Diethylphthalate	ug/	-	ANR	ANR
Dimethylphthalate	ugL	-1-	ANR	ANR
Di-n-butylphthalate	ug/L	-	ANR	ANR
Di-n-octylphthalate	ug / L	-1-	ANR	ANR
Endosulfan I	ug/L	-	ANR	ANR
Endosulfan II	ug/L	-/-	ANR	ANR
Endosulfan sulfate	ug/L	--	ANR	ANR
Endrin	ug/	--	ANR	ANR
Endrin aldehyde	ug/L	--	ANR	ANR
Fluoranthene	ug/L	-1/	ANR	ANR
Fluorene	ug/L	-	ANR	ANR
Heptachlor	ug/L	-	ANR	ANR
Heptachlor epoxide	ug / L	-	ANR	ANR
Hexachlorobenzene	ug/	-	ANR	ANR
Hexachlorobutadiene	ug/L	-	ANR	ANR
Hexachlorocyclopentadiene	ug/	-1-	ANR	ANR
Hexachloroethane	ug/L	-	ANR	ANR
Indeno(1,2,3-cd)pyrene	ug/L	-	ANR	ANR
Isophorone	ug/L	--	ANR	ANR
Lindane (gamma-BHC)	ug/L	-/-	ANR	ANR
Methylene Chloride	ug/L	-	ANR	ANR
Naphthalene	ug/	-	ANR	ANR
Nitrobenzene	ug/L	-/-	ANR	ANR
n -Nitrosodimethylamine	ug/	-	ANR	ANR
n-Nitroso-di-n-propylamine	ug/	-1-	ANR	ANR
n -Nitrosodiphenylamine	ug/L	--	ANR	ANR
Pentachlorophenol	ug/L	-	ANR	ANR
Phenanthrene	ugh	-	ANR	ANR
Phenol	ug/L	-	ANR	ANR
Pyrene	ug/L	-	ANR	ANR
Toxaphene	ug/L	--	ANR	ANR
trans-1,2-Dichloroethene	ug/	-	ANR	ANR
trans-1,3-Dichloropropene	ug/L	-	ANR	ANR

OUTFALL 009 (WS-13 Drainage)
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
Sample Date October 17, 2005

ANALYRE	LAB LOD (ug/L)	$\begin{gathered} \text { LAB } \\ \text { RL } \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { LAB } \\ & \text { RESULT } \\ & (u g / L) \end{aligned}$	VALIDATION QUALIFIER	$\begin{gathered} \text { WHO } \\ \text { TEF } \end{gathered}$	TCDD Equivatent (w/DNQ Values) (ug/L)	TCDD Equivalent (w/out DNQ Values) (uph)
1,2,3,4,6,7,8-HpCDD	$0.00 \mathrm{E}+00$	2.50E-05	$1.62 \mathrm{E}-02$	---	0.01	$1.62 \mathrm{E}-04$	$1.62 \mathrm{E}-04$
1,2,3,4,6,7,8-HpCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$2.12 \mathrm{E}-03$	--	0.01	$2.12 \mathrm{E}-05$	$2.12 \mathrm{E}-05$
1,2,3,4,7,8,9-HpCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$1.50 \mathrm{E}-04$	--	0.01	$1.50 \mathrm{E}-06$	$1.50 \mathrm{E}-06$
$1,2,3,4,7,8-\mathrm{HxCDD}$	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$2.66 \mathrm{E}-04$	--	0.1	$2.66 \mathrm{E}-05$	$2.66 \mathrm{E}-05$
1,2,3,4,7,8-HxCDF	$0.00 \mathrm{E}+00$	2.50E-05	$3.30 \mathrm{E}-04$	--	0.1	$3.30 \mathrm{E}-05$	3.30E-05
1,2,3,6,7,8-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$7.56 \mathrm{E}-04$	--	0.1	$7.56 \mathrm{E}-05$	$7.56 \mathrm{E}-05$
1,2,3,6,7,8-HxCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$3.20 \mathrm{E}-04$	J ${ }^{*} 10$)	0.1	$3.20 \mathrm{E}-05$	$3.20 \mathrm{E}-05$
1,2,3,7,8,9-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$5.67 \mathrm{E}-04$	--	0.1	$5.67 \mathrm{E}-05$	$5.67 \mathrm{E}-05$
1,2,3,7,8,9-HxCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	5.47E-05	--	0.1	$5.47 \mathrm{E}-06$	$5.47 \mathrm{E}-06$
1,2,3,7,8-PeCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$1.62 \mathrm{E}-04$	--	1	$1.62 \mathrm{E}-04$	$1.62 \mathrm{E}-04$
1,2,3,7,8-PeCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$5.71 \mathrm{E}-04$	--	0.05	$2.86 \mathrm{E}-05$	$2.86 \mathrm{E}-05$
2,3,4,6,7,8-HxCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	1.78E-04	--	0.1	$1.78 \mathrm{E}-05$	$1.78 \mathrm{E}-05$
2,3,4,7,8-PeCDF	$0.00 \mathrm{E}+00$	2.50E-05	3.69E-04	--	0.5	$1.85 \mathrm{E}-04$	$1.85 \mathrm{E}-04$
2,3,7,8-TCDD	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-06$	$3.43 \mathrm{E}-05$	--	1	$3.43 \mathrm{E}-05$	$3.43 \mathrm{E}-05$
2,3,7,8-TCDF	$0.00 \mathrm{E}+00$	5.00E-06	4.19E-04	--	0.1	$4.19 \mathrm{E}-05$	$4.19 \mathrm{E}-05$
OCDD	$0.00 \mathrm{E}+00$	5.00E-05	$2.51 \mathrm{E}-01$	--	0.0001	$2.51 \mathrm{E}-05$	$2.51 \mathrm{E}-05$
OCDF	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	9.15E-03	--	0.0001	$9.15 \mathrm{E}-07$	$9.15 \mathrm{E}-07$

[^3]See attached notes for abbreviations, definitions, and other explanations for the data presented in this table.

OUTFALL 010 (Building 203)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	$\begin{gathered} \hline \text { Permit Limit } \\ \text { Daily } \\ \text { Max/Monthly } \\ \text { Avg } \\ \hline \end{gathered}$	RESULT	$\begin{aligned} & \hline \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Chloride	mg / L	150/-	45	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	2.5	--
Oil \& Grease	mg / L	15/-	ND < 0.94	U
Perchlorate	ug/L	6.01-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	7.14	*
Sulfate	mg / L	250/-	50	--
Temperature	deg. F	86/-	60.3	*
Total Cyanide	ug/L	--	ANR	ANR
Total Dissolved Solids	mg / L	850/-	320	--
Total Suspended Solids	mg / L	-	86	--
Volume Discharged	MGD	--	ANR	ANR
METALS				
Aluminum	ug/L	-	ANR	ANR
Antimony	ug/	-	20	--
Antimony, dissolved	ug/L	-1-	26	*
Arsenic	ug/L	-	ANR	ANR
Beryllium	ug/L	-	ANR	ANR
Boron	mg/L	1.0/-	ANR	ANR
Cadmium	ug/	\%	0.35	J (DNQ)
Cadmium, dissolved	ug/L	--	0.16	*(DNQ)
Chromium	ug/	-	ANR	ANR
Copper	ug/L	-	13	--
Copper, dissolved	ug/	--	6.2	*
Lead	ug/L	--	79	--
Lead, dissolved	ug/L	--	2.4	*
Mercury	ug/L	--	0.097	J (DNQ)
Mercury, dissolved	ug/L	-	ND <0.050	*
Nickel	ug/L	-	ANR	ANR
Selenium	ug/L	-	ANR	ANR
Silver	ug/L	-1-	ANR	ANR
Thallium	ugh	-1.	ANR	ANR
Vanadium	ug/L	\%	ANR	ANR
Zinc	ug/L	-	ANR	ANR
ORGANICS				
Benzene	ug/L	--	ANR	ANR
Carbon Tetrachloride	ug/L	-1-	ANR	ANR

OUTFALL 010 (Building 203)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Chloroform	ug/L	-	ANR	ANR
1,1-Dichloroethane	ug/L	--	ANR	ANR
1,2-Dichloroethane	ug/L	-	ANR	ANR
1,1-Dichloroethene	ug/	-1-	ANR	ANR
Ethylbenzene	ug/L	-	ANR	ANR
Tetrachloroethene	ug / L	-	ANR	ANR
Toluene	ug/L	-	ANR	ANR
Xylenes (Total)	ug/L	-	ANR	ANR
1,1,1-Trichloroethane	ug/L	-	ANR	ANR
1,1,2-Trichloroethane	ug/L	--	ANR	ANR
Trichloroethene	ug/	--	ANR	ANR
Trichlorofluoromethane	ug/L	-/-	ANR	ANR
Vinyl chloride	ug / L	$\%$	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-1-	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-	ANR	ANR
1,2-Dichlorobenzene	ug/L	-1-	ANR	ANR
1,2-Dichloropropane	ug/	-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-	ANR	ANR
1,3-Dichlorobenzene	ug/	-	ANR	ANR
1,4-Dichlorobenzene	ug/	-/-	ANR	ANR
2,4,6-Trichlorophenol	ug/L	--	ANR	ANR
2,4-Dichlorophenol	ug/L	--	ANR	ANR
2,4-Dimethylphenol	ug/L	-	ANR	ANR
2,4-Dinitrophenol	ug / L	-	ANR	ANR
2,4-Dinitrotoluene	ug/	$\underline{-}$	ANR	ANR
2,6-Dinitrotoluene	ug / L	\%	ANR	ANR
2-Chloroethylvinylether	ug/L	-1-	ANR	ANR
2-Chloronaphthalene	ug/L	-1.	ANR	ANR
2-Chlorophenol	ug / L	-1-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	-1-	ANR	ANR
2-Nitrophenol	ug/	-1-	ANR	ANR
3,3'-Dichlorobenzidine	ug/	\ldots	ANR	ANR
4,4'-DDD	ug/L	-	ANR	ANR
4,4'-DDE	ug/L	--	ANR	ANR
4,4'-DDT	ug/L	-1-	ANR	ANR
4-Bromophenylphenylether	ug/L	-	ANR	ANR
4-Chloro-3-methylphenol	ug/	-	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

OUTFALL 010 (Building 203)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
4-Chlorophenylphenylether	ug/L	-	ANR	ANR
4-Nitrophenol	ug/L	--	ANR	ANR
Acenaphthene	ug/L	-	ANR	ANR
Acrolein	ug/L	-1-	ANR	ANR
Acrylonitrile	ug / L	-/-	ANR	ANR
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug / L	--	ANR	ANR
alpha-BHC	ug/L	-	ANR	ANR
Anthracene	ug/L	--	ANR	ANR
Aroclor-1016	ug/L	--	ANR	ANR
Aroclor-1221	ug/L	-	ANR	ANR
Aroclor-1232	ug/L	-1-	ANR	ANR
Aroclor-1242	ug/L	-1-	ANR	ANR
Aroclor-1248	ugh	-1-	ANR	ANR
Aroclor-1254	ug/L	--	ANR	ANR
Aroclor-1260	ug/	-	ANR	ANR
Benzidine	ug/L	--	ANR	ANR
Benzo(a)anthracene	ug/L	--	ANR	ANR
Benzo(a)pyrene	ug/L	-	ANR	ANR
Benzo(b)fluoranthene	ug/	-	ANR	ANR
Benzo(g,h,l)perylene	ug/L	-	ANR	ANR
Benzo(k)fluoranthene	ug/L	-	ANR	ANR
beta-BHC	ug/L	-	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	-	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	--	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	-	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	-1-	ANR	ANR
Bromodichloromethane	ug / L	--	ANR	ANR
Bromoform	ug/L	-	ANR	ANR
Bromomethane	ug/L	-1-	ANR	ANR
Butylbenzylphthalate	ugh	-	ANR	ANR
Chlordane	ug/	-	ANR	ANR
Chlorobenzene	ug/L	-	ANR	ANR
Chloroethane	ug/L	-	ANR	ANR
Chloromethane	ug/L	-	ANR	ANR
Chrysene	ug/L	-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	--	ANR	ANR
delta-BHC	ug/	-1-	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE

SANTA SUSANA FIELD LABORATORY

 NPDES PERMIT CA0001309October 1 through October 31, 2005

			10/18/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Dibenzo(a,h)anthracene	ug/L	--	ANR	ANR
Dibromochloromethane	ug/L	-1-	ANR	ANR
Dieldrin	ug/	-	ANR	ANR
Diethylphthalate	ug/L	-	ANR	ANR
Dimethylphthalate	ug/L	--	ANR	ANR
Di-n-butylphthalate	ug/L	-	ANR	ANR
Di-n-octylphthalate	ug/L	-	ANR	ANR
Endosulfan I	ug/L	-1-	ANR	ANR
Endosulfan II	ug/L	-	ANR	ANR
Endosulfan sulfate	ug/L	-1-	ANR	ANR
Endrin	ug/L	-	ANR	ANR
Endrin aldehyde	ug/L	--	ANR	ANR
Fluoranthene	ug/L	-	ANR	ANR
Fluorene	ug/	-	ANR	ANR
Heptachlor	ug/	-	ANR	ANR
Heptachlor epoxide	ug/	-1-	ANR	ANR
Hexachlorobenzene	ug/L	-1.	ANR	ANR
Hexachlorobutadiene	ug/	-/-	ANR	ANR
Hexachlorocyclopentadiene	ug/L	--	ANR	ANR
Hexachloroethane	ug/	-/-	ANR	ANR
Indeno($1,2,3-\mathrm{cd}$) pyrene	ug/L	-	ANR	ANR
Isophorone	ug/	-	ANR	ANR
Lindane (gamma-BHC)	ugh	--	ANR	ANR
Methylene Chloride	ug/L	-	ANR	ANR
Naphthalene	ug/L	-	ANR	ANR
Nitrobenzene	ug/L	--	ANR	ANR
n -Nitrosodimethylamine	ug/L	--	ANR	ANR
n-Nitroso-di-n-propylamine	ug/L	\%	ANR	ANR
n-Nitrosodiphenylamine	ug/L	\%	ANR	ANR
Pentachlorophenol	ug / L	-1-	ANR	ANR
Phenanthrene	ug/L	-	ANR	ANR
Phenol	ug/	-	ANR	ANR
Pyrene	ug/L	-	ANR	ANR
Toxaphene	ug/L	-	ANR	ANR
trans-1,2-Dichloroethene	ug/L	-	ANR	ANR
trans-1,3-Dichloropropene	ug/L	--	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.
OUTFALL 010 (Building 203)
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY
Sample Date October 18, 2005

ANACYTE	$\begin{aligned} & \text { LAB } \\ & \text { LOD } \\ & \text { (ugh) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{LAB} \\ \mathrm{RL} \\ (\mathrm{ugh}) \\ \hline \end{gathered}$	LAB RESULT (ug/L)	VALDDATION OUALIFIER	$\begin{aligned} & \text { who } \\ & \text { TEF } \end{aligned}$	TCDD Equivalent (w/DNQ Values) (ug/L)	TCDO Equivalent (wfout DNQ Vahues) (ug/4)
1,2,3,4,6,7,8-HpCDD	$0.00 \mathrm{E}+00$	2.50E-05	5.95E-05	--	0.01	5.95E-07	5.95E-07
1,2,3,4,6,7,8-HpCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$3.11 \mathrm{E}-05$	--	0.01	$3.11 \mathrm{E}-07$	$3.11 \mathrm{E}-07$
1,2,3,4,7,8,9-HpCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$5.76 \mathrm{E}-06$	J (DNQ)	0.01	$5.76 \mathrm{E}-08$	ND
1,2,3,4,7,8-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$5.44 \mathrm{E}-06$	J (DNQ)	0.1	$5.44 \mathrm{E}-07$	ND
1,2,3,4,7,8-HxCDF	$0.00 \mathrm{E}+00$	2.50E-05	$2.27 \mathrm{E}-05$	J (DNQ)	0.1	2.27E-06	ND
1,2,3,6,7,8-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$9.06 \mathrm{E}-06$	J (DNQ)	0.1	$9.06 \mathrm{E}-07$	ND
1,2,3,6,7,8-HxCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$1.80 \mathrm{E}-05$	J (DNQ)	0.1	1.80E-06	ND
1,2,3,7,8,9-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	7.74E-06	J (DNQ)	0.1	7.74E-07	ND
1,2,3,7,8,9-HxCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$5.84 \mathrm{E}-06$	J (DNQ)	0.1	$5.84 \mathrm{E}-07$	ND
1,2,3,7,8-PeCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	8.11E-06	J (DNQ)	1	$8.11 \mathrm{E}-06$	ND
1,2,3,7,8-PeCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$2.52 \mathrm{E}-05$	---	0.05	$1.26 \mathrm{E}-06$	1.26E-06
2,3,4,6,7,8-HxCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$1.31 \mathrm{E}-05$	J (DNQ)	0.1	$1.31 \mathrm{E}-06$	ND
2,3,4,7,8-PeCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$2.59 \mathrm{E}-05$	J	0.5	1.30E-05	$1.30 \mathrm{E}-05$
2,3,7,8-TCDD	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-06$	$2.94 \mathrm{E}-06$	J (DNQ)	1	2.94E-06	ND
2,3,7,8-TCDF	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-06$	$2.30 \mathrm{E}-05$	-	0.1	$2.30 \mathrm{E}-06$	$2.30 \mathrm{E}-06$
OCDD	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	3.37E-04	\cdots	0.0001	$3.37 \mathrm{E}-08$	$3.37 \mathrm{E}-08$
OCDF	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	$5.02 \mathrm{E}-05$	--	0.0001	$5.02 \mathrm{E}-09$	$5.02 \mathrm{E}-09$

TCDD TEQ w/ DNO Values	3.68E-05	
TCDD TEQ w/out DNQ Values		1.75世-05

Dioxin TCDD TEQ compliance limit established for this outfall? No TCDD TEQ PERMIT LIMIT = NA

OUTFALL 003 (RMHF)

FOURTH QUARTER 2005 REPORTING SUMMARY

THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloride	mg / L	150/-	98	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg/L	10/-	2.9	--
Oil \& Grease	mg/L	15/-	1.1	J (DNQ)
Perchlorate	ug/L	6.0/.	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	9.40	*
Sulfate	mg/L	250\%-	99	-*
Temperature	deg. F	86/-	59.7	*
Total Cyanide	ug/L	-1-	ANR	ANR
Total Dissolved Solids	mg / L	850/-	590	--
Total Suspended Solids	mg / L	\%	19	--
Volume Discharged	MGD	\%	ANR	ANR
METALS				
Aluminum	ug/L	\%	ANR	ANR
Antimony	ug/L	6.0/-	35	--
Arsenic	ug/L	-	ANR	ANR
Beryllium	ug/L	\%	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug/L	4.0/-	0.22	J (DNQ)
Chromium	ug/L	\ldots	ANR	ANR
Copper	ug / L	14.0/-	7.1	--
Lead	ug / L	-	1.4	-
Mercury	ug/L	0.13/-	$\mathrm{ND}<0.20$	UJ (B)
Nickel	ug/L	\%	ANR	ANR
Selenium	ug/	-	ANR	ANR
Silver	ug/L	-1-	ANR	ANR
Thallium	ug/L	2.0/-	ANR	ANR
Vanadium	ug/L	-	ANR	ANR
Zinc	ug/L	-	ANR	ANR
ORGANICS				
Benzene	ug/L	-1-	ANR	ANR
Carbon Tetrachloride	ug/L	-1-	ANR	ANR
Chloroform	ug/L	-/-	ANR	ANR
1,I-Dichloroethane	ug / L	-/	ANR	ANR
1,2-Dichloroethane	ug/L	-1.	ANR	ANR
1,1-Dichloroethene	ug/L	1	ANR	ANR
Ethylbenzene	$u g / L$	\%	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY

THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Tetrachloroethene	ug/L	-/	ANR	ANR
Toluene	ug/L	-1-	ANR	ANR
Xylenes (Total)	ug/L	-/-	ANR	ANR
1,1,1-Trichloroethane	ug/L	-1-	ANR	ANR
1,1,2-Trichloroethane	ug/L	-	ANR	ANR
Trichloroethene	ug/L	1	ANR	ANR
Trichlorofluoromethane	ug/L	\%	ANR	ANR
Vinyl chloride	ug/L	-	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-1-	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-1-	ANR	ANR
1,2-Dichlorobenzene	ug/L	\ldots	ANR	ANR
1,2-Dichloropropane	ug/L	-1.	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-1	ANR	ANR
1,3-Dichlorobenzene	ug/L	-1-	ANR	ANR
1,4-Dichlorobenzene	ug/L	-1-	ANR	ANR
2,4,6-Trichlorophenol	ug/L	-1-	ANR	ANR
2,4-Dichlorophenol	ug/L	-	ANR	ANR
2,4-Dimethylphenol	ug/L	-/-	ANR	ANR
2,4-Dinitrophenol	ug/L	-/-	ANR	ANR
2,4-Dinitrotoluene	ug/L	-	ANR	ANR
2,6-Dinitrotoluene	ug/L	\%	ANR	ANR
2-Chloroethylvinylether	ug/L	\%	ANR	ANR
2-Chloronaphthalene	ug/L	\%	ANR	ANR
2-Chlorophenol	ug/L	\%	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	$\%$	ANR	ANR
2-Nitrophenol	ug/L	\%	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	-1	ANR	ANR
4,4'-DDD	ug/L	\%	ANR	ANR
4,4-DDE	ug/L	1	ANR	ANR
4,4-DDT	ug/L	-	ANR	ANR
4-Bromophenylphenylether	ugh	-1-	ANR	ANR
4-Chloro-3-methylphenol	ug/L	-1-	ANR	ANR
4-Chlorophenylphenylether	ug/L	H	ANR	ANR
4-Nitrophenol	ug/L	$\%$	ANR	ANR
Acenaphthene	ug/L	\ldots	ANR	ANR
Acrolein	ug/L	$\%$	ANR	ANR
Acrylonitrile	ug/L	\%	ANR	ANR

OUTFALL 003 (RMHF)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	11/9/2005	
			RESULT	$\begin{array}{\|l\|} \hline \text { VALIDATION } \\ \text { QUALIFIER } \end{array}$
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	--	ANR	ANR
alpha-BHC	ug/L	-1-	ANR	ANR
Anthracene	ug/L	-1-	ANR	ANR
Aroclor-1016	ug/L	-	ANR	ANR
Aroclor-1221	ug/	-/	ANR	ANR
Aroclor-1232	ug/	--	ANR	ANR
Aroclor-1242	ug/L	-1-	ANR	ANR
Aroclor-1248	ug/L	-/-	ANR	ANR
Aroclor-1254	ug/L	-	ANR	ANR
Aroclor-1260	ug/L	--	ANR	ANR
Benzidine	ug/L	--	ANR	ANR
Benzo(a)anthracene	ug/	--	ANR	ANR
Benzo(a)pyrene	ug/L	-/-	ANR	ANR
Benzo(b)fluoranthene	ug/L	-	ANR	ANR
Benzo(g,h,I)perylene	ug / L	-/-	ANR	ANR
Benzo(k)fluoranthene	ug/L	-	ANR	ANR
beta-BHC	ug/L	-	ANR	ANR
bis (2-Chloroethyl) ether	ugl	--	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	-	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	-1-	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	--	ANR	ANR
Bromodichloromethane	ug/L	--	ANR	ANR
Bromoform	ug/	-1-	ANR	ANR
Bromomethane	ug/	-1-	ANR	ANR
Butylbenzylphthalate	ug/	-/-	ANR	ANR
Chlordane	ug/	-/-	ANR	ANR
Chlorobenzene	ug/L	-	ANR	ANR
Chloroethane	ugh	-	ANR	ANR
Chloromethane	ug/L	-/-	ANR	ANR
Chrysene	ugh	-	ANR	ANR
cis-1,3-Dichloropropene	ug/	-	ANR	ANR
delta-BHC	ug/	-	ANR	ANR
Dibenzo(a,h)anthracene	ug/	-	ANR	ANR
Dibromochloromethane	ug/L	-/-	ANR	ANR
Dieldrin	ugh	-/	ANR	ANR
Diethylphthalate	ug/L	-/-	ANR	ANR
Dimethylphthalate	ug/	--	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY

THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Di-n-butylphthalate	ug/L	-	ANR	ANR
Di-n-octylphthalate	ug/L	-1-	ANR	ANR
Endosulfan I	ug/L	-/	ANR	ANR
Endosulfan II	ug / L	-	ANR	ANR
Endosulfan sulfate	ug/L	\%	ANR	ANR
Endrin	ug/L	-	ANR	ANR
Endrin aldehyde	ug/L	-	ANR	ANR
Fluoranthene	ug/L	-/-	ANR	ANR
Fluorene	ug/L	-1-	ANR	ANR
Heptachlor	ug/L	-1-	ANR	ANR
Heptachlor epoxide	ug/L	-	ANR	ANR
Hexachlorobenzene	ug / L	-1-	ANR	ANR
Hexachlorobutadiene	ug/L	-	ANR	ANR
Hexachlorocyclopentadiene	ug / L	\%	ANR	ANR
Hexachloroethane	ug/L	\ldots	ANR	ANR
Indeno(1,2,3-cd)pyrene	ug/L	-	ANR	ANR
Isophorone	ug/L	\ldots	ANR	ANR
Lindane (gamma-BHC)	ug/L	-	ANR	ANR
Methylene Chloride	ug/L	\ldots	ANR	ANR
Naphthalene	ug/L	1	ANR	ANR
Nitrobenzene	ug/L	-	ANR	ANR
n -Nitrosodimethylamine	ug/L	\%	ANR	ANR
n-Nitroso-di-n-propylamine	ug/L	-	ANR	ANR
n-Nitrosodiphenylamine	ug/L	-1/	ANR	ANR
Pentachlorophenol	ug/L	-1-	ANR	ANR
Phenanthrene	ug / L	-1-	ANR	ANR
Phenol	ug/L	-1-	ANR	ANR
Pyrene	ug/L	-1-	ANR	ANR
Toxaphene	ug/L	-/-	ANR	ANR
trans-1,2-Dichloroethene	ug/L	- $/$	ANR	ANR
trans-1,3-Dichloropropene	ug/L	\ldots	ANR	ANR

OUTFALL 003 (RMHF)
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
Sample Date November 9, 2005

ANALVTE							TCDD Equivilent (whout DNO values) (ug/)
1,2,3,4,6,7,8-HpCDD	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	1.73E-05	J (DNQ)	0.01	1.73E-07	ND
1,2,3,4,6,7,8-HpCDF	$0.00 \mathrm{E}+00$	$2.71 \mathrm{E}-06$	ND	UJ (*10)	0.01	ND	ND
1,2,3,4,7,8,9-HpCDF	$1.88 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.01	ND	ND
1,2,3,4,7,8-HxCDD	$2.32 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,4,7,8-HxCDF	$9.51 \mathrm{E}-07$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,6,7,8 HxCDD	$2.26 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,6,7,8-HxCDF	$9.08 \mathrm{E}-07$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDD	$2.29 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDF	$1.63 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8-PeCDD	$1.00 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	1	ND	ND
1,2,3,7,8-PeCDF	$2.23 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.05	ND	ND
2,3,4,6,7,8-HxCDF	$1.05 \mathrm{E}-06$	$5.00 \mathrm{E}-05$	ND	U	0.1	ND	ND
2,3,4,7,8-PeCDF	$0.00 \mathrm{E}+00$	1.81E-06	ND	UJ (*10)	0.5	ND	ND
2,3,7,8-TCDD	$1.01 \mathrm{E}-06$	$1.00 \mathrm{E}-05$	ND	U	1	ND	ND
2,3,7,8-TCDF	$0.00 \mathrm{E}+00$	$1.72 \mathrm{E}-06$	ND	UJ (*10)	0.1	ND	ND
OCDD	$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}-04$	$1.45 \mathrm{E}-04$	--	0.0001	1.45E-08	$1.45 \mathrm{E}-08$
OCDF	$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}-04$	5.10E-06	J (DNQ)	0.0001	5.10E-10	ND

TCDD TEQ w/DNQ Values	$1.88 \mathrm{E}-07$	
TCDD TEQ w/ont DNQ Values		

Dioxin TCDD TEQ compliance limit established for this outfall?

OUTFALL 004 (SRE)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloride	mg / L	150/-	14	-..
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	2.4	--
Oil \& Grease	mg / L	15/-	1.7	J (DNQ)
Perchlorate	ug/L	6.0/-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	7.50	*
Sulfate	mg / L	250/-	11	\cdots
Temperature	deg. F	86/-	61.0	*
Total Cyanide	ug/L	-1-	ANR	ANR
Total Dissolved Solids	mg / L	850/-	190	--
Total Suspended Solids	mg / L	-1-	64	--
Volume Discharged	MGD	\%	ANR	ANR
METALS				
Aluminum	ug/L	-	ANR	ANR
Antimony	ug/L	6.0/-	4.0	\cdots
Arsenic	ug/L	-1-	ANR	ANR
Beryllium	ug/L	-	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug / L	4.0/-	0.21	J (DNQ)
Chromium	ug/L	-	ANR	ANR
Copper	ug/L	14.0/-	11	--
Lead	ug/L	-/-	2.7	\cdots
Mercury	ug/L	0.13/-	0.065	J (B, DNQ)
Nickel	ug/L	-	ANR	ANR
Selenium	ug/L	-1-	ANR	ANR
Silver	ugh	-	ANR	ANR
Thallium	ug/L	2.0/-	ANR	ANR
Vanadium	ug/L	-	ANR	ANR
Zinc	ug/L	-/-	ANR	ANR
ORGANICS				
Benzene	ug/L	-/	ANR	ANR
Carbon Tetrachloride	ug/L	\ldots	ANR	ANR
Chloroform	ug/L	-1/	ANR	ANR
1,1-Dichloroethane	ug/L	-	ANR	ANR
1,2-Dichloroethane	ug / L	-1-	ANR	ANR
1,1-Dichloroethene	ug/L	-1-	ANR	ANR
Ethylbenzene	ug/L	-	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Tetrachloroethene	ug/L	-	ANR	ANR
Toluene	ug/L	-/	ANR	ANR
Xylenes (Total)	ug / L	\ldots	ANR	ANR
1,1,1-Trichloroethane	ug/L	--	ANR	ANR
1,1,2-Trichloroethane	ug/L	-/-	ANR	ANR
Trichloroethene	ug/L	-1-	ANR	ANR
Trichlorofluoromethane	ug/L	-1-	ANR	ANR
Vinyl chloride	ug/L	$1-$	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-/-	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-/-	ANR	ANR
1,2-Dichlorobenzene	ug/L	-1-	ANR	ANR
1,2-Dichloropropane	ug/L	-1-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-1-	ANR	ANR
1,3-Dichlorobenzene	ug/L	-/	ANR	ANR
1,4-Dichlorobenzene	ug/L	-	ANR	ANR
2,4,6-Trichlorophenol	ug/L	-	ANR	ANR
2,4-Dichlorophenol	ug/L	\ldots	ANR	ANR
2,4-Dimethylphenol	ug/L	-	ANR	ANR
2,4-Dinitrophenol	ug/L	-1-	ANR	ANR
2,4-Dinitrotoluene	ug/L	-	ANR	ANR
2,6-Dinitrotoluene	ug/L	\%	ANR	ANR
2-Chloroethylvinylether	ug/L	1	ANR	ANR
2-Chloronaphthalene	ug/L	-	ANR	ANR
2-Chlorophenol	ug/L	-1-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	-/-	ANR	ANR
2-Nitrophenol	ug/L	-1-	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	-/-	ANR	ANR
4,4'-DDD	ug/L	$\%$	ANR	ANR
4,4'-DDE	ug/L	-1-	ANR	ANR
4,4'-DDT	ug / L	\ldots	ANR	ANR
4-Bromophenylphenylether	ug/L	-	ANR	ANR
4-Chloro-3-methylphenol	ug / L	-1-	ANR	ANR
4-Chlorophenylphenylether	ug/L	-1-	ANR	ANR
4-Nitrophenol	ug/L	-/-	ANR	ANR
Acenaphthene	u / L	-/	ANR	ANR
Acrolein	ug/L	-1-	ANR	ANR
Acrylonitrile	ug/L	-	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

ANALYTE			11/9/2005	
	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	-1-	ANR	ANR
alpha-BHC	ug/L	$\%$	ANR	ANR
Anthracene	ug/L	\%	ANR	ANR
Aroclor-1016	ug/L	-	ANR	ANR
Aroclor-1221	ug/L	-1-	ANR	ANR
Aroclor-1232	ug/L	-1-	ANR	ANR
Aroclor-1242	ug / L	-1-	ANR	ANR
Aroclor-1248	ug/L	-/	ANR	ANR
Aroclor-1254	ug/L	-1-	ANR	ANR
Aroclor-1260	ug/L	-/-	ANR	ANR
Benzidine	ug/L	-/-	ANR	ANR
Benzo(a)anthracene	ug/L	-1-	ANR	ANR
Benzo(a)pyrene	ug/L	-	ANR	ANR
Benzo(b)fluoranthene	ug/L	\%	ANR	ANR
Benzo(g,h,I)perylene	ug/L	\%	ANR	ANR
Benzo(k)fluoranthene	ug/L	-1	ANR	ANR
beta-BHC	ug/L	\%	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	-	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	\%	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	\ldots	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	-1-	ANR	ANR
Bromodichloromethane	ug/L	-1-	ANR	ANR
Bromoform	ug/L	--	ANR	ANR
Bromomethane	ug/L	--	ANR	ANR
Butylbenzylphthalate	ug/L	-1-	ANR	ANR
Chlordane	ug/L	-/-	ANR	ANR
Chlorobenzene	ug/L	-1-	ANR	ANR
Chloroethane	ug/L	-1-	ANR	ANR
Chloromethane	ug/L	-1-	ANR	ANR
Chrysene	ug/L	-1-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	$\%$	ANR	ANR
delta-BHC	ug/L	4	ANR	ANR
Dibenzo(a,h)anthracene	ug/L	4	ANR	ANR
Dibromochloromethane	ug / L	-	ANR	ANR
Dieldrin	ug/L	-1-	ANR	ANR
Diethylphthalate	ug/L	-	ANR	ANR
Dimethylphthalate	ug/L	-/-	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY
 NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Di-n-butylphthalate	ug/L	\%	ANR	ANR
Di-n-octylphthalate	ug/L	-1-	ANR	ANR
Endosulfan I	ug/L	-1-	ANR	ANR
Endosulfan II	ugh	-	ANR	ANR
Endosulfan sulfate	ug/L	-1-	ANR	ANR
Endrin	ug/	--	ANR	ANR
Endrin aldehyde	ug/	-	ANR	ANR
Fluoranthene	ugh	-/-	ANR	ANR
Fluorene	ugh	-	ANR	ANR
Heptachlor	ug/L	-	ANR	ANR
Heptachlor epoxide	ug/L	-	ANR	ANR
Hexachlorobenzene	ug / L	-1-	ANR	ANR
Hexachlorobutadiene	ug/L	-/-	ANR	ANR
Hexachlorocyclopentadiene	ug/L	-	ANR	ANR
Hexachloroethane	ug/L	-1-	ANR	ANR
Indeno(1,2,3-cd) pyrene	ugl	-	ANR	ANR
Isophorone	ug/L	--	ANR	ANR
Lindane (gamma-BHC)	ug/L	-	ANR	ANR
Methylene Chloride	ug/L	-	ANR	ANR
Naphthalene	ugh	-1-	ANR	ANR
Nitrobenzene	ug/L	--	ANR	ANR
n -Nitrosodimethylamine	ug/	--	ANR	ANR
n -Nitroso-di-n-propylamine	ug/L	-1-	ANR	ANR
n-Nitrosodiphenylamine	ug/	\ldots	ANR	ANR
Pentachlorophenol	ug/L	-1-	ANR	ANR
Phenanthrene	ug/L	-1-	ANR	ANR
Phenol	ug/	-	ANR	ANR
Pyrene	ug / L	\ldots	ANR	ANR
Toxaphene	ugh	\%	ANR	ANR
trans-1,2-Dichloroethene	ug/L	-	ANR	ANR
trans-1,3-Dichloropropene	ug/	--	ANR	ANR

OUTFALL 004 (SRE)
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE NPDES PERMIT CA0001309
Sample Date November 9, 2005

ANAEXIE				VASIDA110N OUA MILIR			TCDN EqMivalent (w/out DNO vilues) (ug)
1,2,3,4,6,7,8-HpCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$2.09 \mathrm{E}-04$	- --	0.01	$2.09 \mathrm{E}-06$	$2.09 \mathrm{E}-06$
1,2,3,4,6,7,8-HpCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$2.76 \mathrm{E}-05$	-"'	0.01	$2.76 \mathrm{E}-07$	2.76E-07
1,2,3,4,7,8,9-HpCDF	$2.99 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U	0.01	ND	ND
1,2,3,4,7,8-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$2.48 \mathrm{E}-06$	J (DNQ)	0.1	$2.48 \mathrm{E}-07$	ND
1,2,3,4,7,8-HxCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	5.10E-06	J (DNQ)	0.1	5.10E-07	ND
1,2,3,6,7,8-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	6.93E-06	J (DNQ)	0.1	$6.93 \mathrm{E}-07$	ND
1,2,3,6,7,8-HxCDF	$0.00 \mathrm{E}+00$	$4.74 \mathrm{E}-06$	ND	UJ (*10)	0.1	ND	ND
1,2,3,7,8,9-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$3.24 \mathrm{E}-06$	J (DNQ)	0.1	$3.24 \mathrm{E}-07$	ND
1,2,3,7,8,9-HxCDF	$1.65 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8-PeCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$1.68 \mathrm{E}-06$	J (DNQ)	1	$1.68 \mathrm{E}-06$	ND
1,2,3,7,8-PeCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$7.24 \mathrm{E}-06$	J (DNQ)	0.05	3.62E-07	ND
2,3,4,6,7,8-HxCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$4.81 \mathrm{E}-06$	J (DNQ)	0.1	$4.81 \mathrm{E}-07$	ND
2,3,4,7,8-PeCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$9.57 \mathrm{E}-06$	J (DNQ)	0.5	$4.79 \mathrm{E}-06$	ND
2,3,7,8-TCDD	1.19E-06	$5.00 \mathrm{E}-06$	ND	U	1	ND	ND
2,3,7,8-TCDF	$0,00 \mathrm{E}+00$	$5.00 \mathrm{E}-06$	7.42E-06	--	0.1	7.42E-07	7.42E-07
OCDD	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	$3.18 \mathrm{E}-03$	--	0.0001	3.18E-07	3.18E-07
OCDF	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	7.64E-05	\cdots	0.0001	7.64E-09	$7.64 \mathrm{E}-09$

Dioxin TCDD TEQ compliance limit established for this outfall?

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Chloride	mg/L	150/-	62	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	6.6	--
Oil \& Grease	mg / L	15/-	0.96	J (DNQ)
Perchlorate	ug/L	6.0/-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	7.70	*
Sulfate	mg / L	250/-	25	--
Temperature	deg. F	86/-	60.8	*
Total Cyanide	ug/L	-1-	ANR	ANR
Total Dissolved Solids	mg / L	850/-	370	--
Total Suspended Solids	mg / L	./-	540	--
Volume Discharged	MGD	\%	ANR	ANR
METALS				
Aluminum	ug/L	./-	ANR	ANR
Antimony	ug / L	6.0/-	3.4	J (DNQ)
Arsenic	ug/L	-/-	ANR	ANR
Beryllium	ug/L	-1-	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug/L	4.0/-	0.51	J (DNQ)
Chromium	ug/L	-/	ANR	ANR
Copper	ug/L	14.0/-	20	--
Lead	ug/L	-/-	10	-
Mercury	ug/L	0.13/-	ND < 0.20	UJ (B)
Nickel	ug/L	-1/	ANR	ANR
Selenium	ug/L	-/	ANR	ANR
Silver	ug/L	-1-	ANR	ANR
Thallium	ug/L	2.01-	ANR	ANR
Vanadium	ug/L	-	ANR	ANR
Zinc	ug/L	4	ANR	ANR
ORGANICS				
Benzene	ug/L	-	ANR	ANR
Carbon Tetrachloride	ughL	-1-	ANR	ANR
Chloroform	ug/L	-1	ANR	ANR
1,1-Dichloroethane	ug / L	-/-	ANR	ANR
1,2-Dichloroethane	ug/L	-	ANR	ANR
1,1-Dichloroethene	ug/L	-1	ANR	ANR
Ethylbenzene	ug/L	\ldots	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Tetrachloroethene	ug/L	-1-	ANR	ANR
Toluene	ug/L	-1-	ANR	ANR
Xylenes (Total)	ug/L	\cdots	ANR	ANR
1,1,1-Trichloroethane	ug/L	-	ANR	ANR
1,1,2-Trichloroethane	ug / L	-1-	ANR	ANR
Trichloroethene	ug/L	-1-	ANR	ANR
Trichlorofluoromethane	ug/L	-1-	ANR	ANR
Vinyl chloride	ug/L	-1-	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-1-	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-1-	ANR	ANR
1,2-Dichlorobenzene	ug/L	-1-	ANR	ANR
1,2-Dichloropropane	ug/L	-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-1.	ANR	ANR
1,3-Dichlorobenzene	ug/L	-1-	ANR	ANR
1,4-Dichlorobenzene	ug/L	\ldots	ANR	ANR
2,4,6-Trichlorophenol	ug/L	\%	ANR	ANR
2,4-Dichlorophenol	ug / L	-	ANR	ANR
2,4-Dimethylphenol	ug/L	+	ANR	ANR
2,4-Dinitrophenol	ug/L	-	ANR	ANR
2,4-Dinitrotoluene	ug/L	1	ANR	ANR
2,6-Dinitrotoluene	ug/L	$\%$	ANR	ANR
2-Chloroethylvinylether	ug/L	\%-	ANR	ANR
2-Chloronaphthalene	ug/L	-	ANR	ANR
2-Chlorophenol	ug/L	-1-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	-1	ANR	ANR
2-Nitrophenol	ug/L	-1-	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	-/-	ANR	ANR
4,4'-DDD	ug/L	-1	ANR	ANR
4,4'-DDE	ug/L	\%	ANR	ANR
4,4'-DDT	ug/L	\%	ANR	ANR
4-Bromophenylphenylether	ug/L	$\%$	ANR	ANR
4-Chloro-3-methylphenol	ug/L	-1	ANR	ANR
4-Chlorophenylphenylether	ug/L	$\%$	ANR	ANR
4-Nitrophenol	ug/L	-1-	ANR	ANR
Acenaphthene	ug/L	-1-	ANR	ANR
Acrolein	ug/L	-1-	ANR	ANR
Acrylonitrile	ug/L	-/	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
November 1 through November 30, 2005

ANALYTE	UNITS		11/9/2005	
		Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	-/-	ANR	ANR
alpha-BHC	ug/L	-1-	ANR	ANR
Anthracene	ug/L	-/-	ANR	ANR
Aroclor-1016	ug/L	-/	ANR	ANR
Aroclor-1221	ug/L	-1-	ANR	ANR
Aroclor-1232	ug/L	-1	ANR	ANR
Aroclor-1242	ug/L	-/-	ANR	ANR
Aroclor-1248	ug/L	-1	ANR	ANR
Aroclor-1254	ug/L	\ldots	ANR	ANR
Aroclor-1260	ug/L	\ldots	ANR	ANR
Benzidine	ug/L	-1-	ANR	ANR
Benzo(a)anthracene	ug/L	-/-	ANR	ANR
Benzo(a)pyrene	ug/L	-/-	ANR	ANR
Benzo(b)fluoranthene	ug / L	-/-	ANR	ANR
Benzo(g,h,I)perylene	ug/L	-/-	ANR	ANR
Benzo(k)fluoranthene	ug/L	-/-	ANR	ANR
beta-BHC	ug/L	-/-	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	-/-	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	-/-	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	-/-	ANR	ANR
bis(2-Chloroisopropyl) ether	$u g / L$	-/	ANR	ANR
Bromodichloromethane	ug/L	-/-	ANR	ANR
Bromoform	ug/L	-/	ANR	ANR
Bromomethane	ug/L	-1-	ANR	ANR
Butylbenzylphthalate	ug/L	-1.	ANR	ANR
Chlordane	ug/L	-/	ANR	ANR
Chlorobenzene	ug/L	1	ANR	ANR
Chloroethane	ug/L	-	ANR	ANR
Chloromethane	ug / L	-/-	ANR	ANR
Chrysene	ug/L	-1-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	-	ANR	ANR
delta-BHC	ug/L	1	ANR	ANR
Dibenzo(a,h)anthracene	ug/L	-	ANR	ANR
Dibromochloromethane	ug/L	./-	ANR	ANR
Dieldrin	ug/L	-1	ANR	ANR
Diethylphthalate	ug/L	-/-	ANR	ANR
Dimethylphthalate	ug/L	-/	ANR	ANR

OUTFALL 005 (FSDF-1)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	11/9/2005	
			RESULT	VALIDATION QUALIFIER
Di-n-butylphthalate	ug/L	-	ANR	ANR
Di-n-octylphthalate	ug/L	-1-	ANR	ANR
Endosulfan I	ug/	-	ANR	ANR
Endosulfan II	ug/L	-	ANR	ANR
Endosulfan sulfate	ug/L	--	ANR	ANR
Endrin	ug/L	-	ANR	ANR
Endrin aldehyde	ugh	-	ANR	ANR
Fluoranthene	ug / L	--	ANR	ANR
Fluorene	ug/L	-/-	ANR	ANR
Heptachlor	ug/L	-	ANR	ANR
Heptachlor epoxide	ught	-	ANR	ANR
Hexachlorobenzene	ugh	\%	ANR	ANR
Hexachlorobutadiene	ug / L	-/	ANR	ANR
Hexachlorocyclopentadiene	ug/L	-	ANR	ANR
Hexachloroethane	ug/L	--	ANR	ANR
Indeno($1,2,3-\mathrm{cd}$)pyrene	ug/L	--	ANR	ANR
Isophorone	ug/L	--	ANR	ANR
Lindane (gamma-BHC)	ug/L	-/-	ANR	ANR
Methylene Chloride	ug / L	-1-	ANR	ANR
Naphthalene	ug/L	-1-	ANR	ANR
Nitrobenzene	ug/	-	ANR	ANR
n-Nitrosodimethylamine	ug / L	-1.	ANR	ANR
n-Nitroso-di-n-propylamine	ug/	-1-	ANR	ANR
n -Nitrosodiphenylamine	ug/L	-	ANR	ANR
Pentachlorophenol	ug/L	-	ANR	ANR
Phenanthrene	ug/L	\%	ANR	ANR
Phenol	ug/L	-	ANR	ANR
Pyrene	ug/L	\%	ANR	ANR
Toxaphene	ug/	-	ANR	ANR
trans-1,2-Dichloroethene	ug/L	--	ANR	ANR
trans-1,3-Dichloropropene	ug/L	-1.	ANR	ANR

OUTFALL 005 (FSDF-1)

FOURTH QUARTER 2005 REPORTING SUMMARY
NPDES PERMIT CA0001309
Sample Date November 9, 2005

ANADKIE				VALIDATION 0UALILLES				TEDD Equivalent (wout DNQ vaines) (ug)
1,2,3,4,6,7,8-HpCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	1.37E-04	-*-		0.01	1.37E-06	1.37E-06
1,2,3,4,6,7,8-HpCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	6.11E-06	J (DNQ)		0.01	$6.11 \mathrm{E}-08$	ND
1,2,3,4,7,8,9-HpCDF	$1.44 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U		0.01	ND	ND
1,2,3,4,7,8-HxCDD	$2.43 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U (t)		0.1	ND	ND
1,2,3,4,7,8-HxCDF	$1.19 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U		0.1	ND	ND
1,2,3,6,7,8-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$2.24 \mathrm{E}-06$	J (DNQ)		0.1	$2.24 \mathrm{E}-07$	ND
1,2,3,6,7,8-HxCDF	$1.19 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U		0.1	ND	ND
1,2,3,7,8,9-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	1.68E-06	J (DNQ)		0.1	$1.68 \mathrm{E}-07$	ND
1,2,3,7,8,9-HxCDF	$2.13 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U		0.1	ND	ND
1,2,3,7,8-PeCDD	$9.86 \mathrm{E}-07$	$2.50 \mathrm{E}-05$	ND	U		1	ND	ND
1,2,3,7,8-PeCDF	$0.00 \mathrm{E}+00$	$1.05 \mathrm{E}-06$	ND	UJ (*10)		0.05	ND	ND
2,3,4,6,7,8-HxCDF	$1.34 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U		0.1	ND	ND
2,3,4,7,8-PeCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$1.81 \mathrm{E}-06$	J (DNQ)		0.5	$9.05 \mathrm{E}-07$	ND
2,3,7,8-TCDD	$1.28 \mathrm{E}-06$	$5.00 \mathrm{E}-06$	ND	U		1	ND	ND
2,3,7,8-TCDF	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-06$	$1.48 \mathrm{E}-06$	J (DNQ)		0.1	$1.48 \mathrm{E}-07$	ND
OCDD	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	$3.92 \mathrm{E}-03$	--		0.0001	$3.92 \mathrm{E}-07$	3.92E-07
OCDF	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	$1.59 \mathrm{E}-05$	J (DNQ)		0.0001	$1.59 \mathrm{E}-09$	ND

TCDD TEQ w/DNQ Vaimes TCDD TEQ w/out DNQValu

Dioxin TCDD TEQ compliance limit established for this outfall?
TCDD TEQ PERMIT LIMIT $=2.80 \mathrm{E}-08$
See attached notes for abbreviations, definitions, and other explanations for the data presented in this table.

OUTFALL 006 (FSDF-2)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE

SANTA SUSANA FIELD LABORATORY
 NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloride	mg / L	150/-	49	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	4.9	--
Oil \& Grease	mg / L	15/-	ND < 0.99	U
Perchlorate	ug/L	6.0/-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	7.90	*
Sulfate	mg/L	250/-	31	--
Temperature	deg. F	86/-	62.2	*
Total Cyanide	ug/L	\%	ANR	ANR
Total Dissolved Solids	mg / L	850/-	550	--
Total Suspended Solids	mg / L	-/	710	--
Volume Discharged	MGD	-1	ANR	ANR
METALS				
Aluminum	ug/L	-/-	ANR	ANR
Antimony	ug/L	6.0/-	1.3	J (DNQ)
Arsenic	ug/L	-/	ANR	ANR
Beryllium	ug/L	-	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug/L	4.0/-	0.91	J (DNQ)
Chromium	ug/L	-/	ANR	ANR
Copper	ug / L	14.0/-	34	--
Lead	ug/L	-/	29	--
Mercury	ug/L	0.13/-	0.89	--
Nickel	ug/L	/-	ANR	ANR
Selenium	ug/L	-1-	ANR	ANR
Silver	ug/L	$\%$	ANR	ANR
Thallium	ug/L	2.0/-	ANR	ANR
Vanadium	ug/L	-	ANR	ANR
Zinc	ug/L	-	ANR	ANR
ORGANICS				
Benzene	ug/L	-	ANR	ANR
Carbon Tetrachloride	ug/L	-1-	ANR	ANR
Chloroform	ug/L	-1-	ANR	ANR
1,1-Dichloroethane	ug/L	-	ANR	ANR
1,2-Dichloroethane	ug/L	-	ANR	ANR
1,1-Dichloroethene	ug/L	$\%$	ANR	ANR
Ethylbenzene	ug/L	\%-	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Tetrachloroethene	ug/L	-1/	ANR	ANR
Toluene	ug/L	-/-	ANR	ANR
Xylenes (Total)	ug/L	-1-	ANR	ANR
1,1,1-Trichloroethane	ug/L	-	ANR	ANR
1,1,2-Trichloroethane	ug/L	-1	ANR	ANR
Trichloroethene	ug/L	./-	ANR	ANR
Trichlorofluoromethane	ug/L	\ldots	ANR	ANR
Vinyl chloride	ug/L	\%	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	\%	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	\ldots	ANR	ANR
1,2-Dichlorobenzene	ug/L	-	ANR	ANR
1,2-Dichloropropane	ug/L	/	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-1-	ANR	ANR
1,3-Dichlorobenzene	ug/L	-/-	ANR	ANR
1,4-Dichlorobenzene	ug/L	-	ANR	ANR
2,4,6-Trichlorophenol	ug/L	-	ANR	ANR
2,4-Dichlorophenol	ug/L	-1-	ANR	ANR
2,4-Dimethylphenol	ug/L	-1-	ANR	ANR
2,4-Dinitrophenol	ug/L	-/-	ANR	ANR
2,4-Dinitrotoluene	ug/L	-/-	ANR	ANR
2,6-Dinitrotoluene	ug/L	\ldots	ANR	ANR
2-Chloroethylvinylether	ug/L	-	ANR	ANR
2-Chloronaphthalene	ug/L	-1	ANR	ANR
2-Chlorophenol	ug / L	-1	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	\%	ANR	ANR
2-Nitrophenol	ug/L	$1 /$	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	\%	ANR	ANR
4,4 ${ }^{4}$-DDD	ug/L	\%	ANR	ANR
4,4'-DDE	ug/L	-	ANR	ANR
4,4 - DDT	ug/L	-1-	ANR	ANR
4-Bromophenylphenylether	ug/L	-	ANR	ANR
4-Chloro-3-methylphenol	ug/L	-/-	ANR	ANR
4-Chlorophenylphenylether	ug/L	-	ANR	ANR
4-Nitrophenol	ug / L	-	ANR	ANR
Acenaphthene	ug/L	\%-	ANR	ANR
Acrolein	ug/L	-1-	ANR	ANR
Acrylonitrile	ug/L	\ldots	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
November 1 through November 30, 2005

ANALYTE	UNITS		11/9/2005	
		Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	-/-	ANR	ANR
alpha-BHC	ug/L	/	ANR	ANR
Anthracene	ug/L	-	ANR	ANR
Aroclor-1016	ug/L	-	ANR	ANR
Aroclor-1221	ug/L	-	ANR	ANR
Aroclor-1232	ug/L	-	ANR	ANR
Aroclor-1242	ug/L	-	ANR	ANR
Aroclor-1248	ug/L	-/-	ANR	ANR
Aroclor-1254	ug/L	-	ANR	ANR
Aroclor-1260	ug / L	-	ANR	ANR
Benzidine	ug/L	-1-	ANR	ANR
Benzo(a)anthracene	ug/L	/-	ANR	ANR
Benzo(a)pyrene	ug/L	\%	ANR	ANR
Benzo(b)fluoranthene	ug/L	/-	ANR	ANR
Benzo(g,h,1)perylene	ug/L	/	ANR	ANR
Benzo(k)fluoranthene	ug/L	\ldots	ANR	ANR
beta-BHC	ug/L	/-	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	\%	ANR	ANR
bis (2-ethylhexyl) Phthalate	ug/L	4	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	\ldots	ANR	ANR
bis(2-Chloroisopropyl) ether	ugh	\%	ANR	ANR
Bromodichloromethane	ug/L	/-	ANR	ANR
Bromoform	ug/L	-1-	ANR	ANR
Bromomethane	ug/L	-/	ANR	ANR
Butylbenzylphthalate	ug/L	-1-	ANR	ANR
Chlordane	ug / L	-	ANR	ANR
Chlorobenzene	ug/L	-1-	ANR	ANR
Chloroethane	ug/L	-1-	ANR	ANR
Chloromethane	ug/L	-1	ANR	ANR
Chrysene	ug/L	$\%$	ANR	ANR
cis-1,3-Dichloropropene	ugh	/	ANR	ANR
delta-BHC	ug/L	-1-	ANR	ANR
Dibenzo(a,h)anthracene	ug / L	-1-	ANR	ANR
Dibromochloromethane	ug/L	-/-	ANR	ANR
Dieldrin	ug/L	-1-	ANR	ANR
Diethylphthalate	ug/L	-1/	ANR	ANR
Dimethylphthalate	ug / L	-	ANR	ANR

FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Di-n-butylphthalate	ug/L	\%	ANR	ANR
Di-n-octylphthalate	ug/L	\%	ANR	ANR
Endosulfan I	ug/L	-1-	ANR	ANR
Endosulfan II	ug / L	-1-	ANR	ANR
Endosulfan sulfate	ug/L	-1-	ANR	ANR
Endrin	ug/L	-/	ANR	ANR
Endrin aldehyde	ug/L	-/-	ANR	ANR
Fluoranthene	ug/L	-	ANR	ANR
Fluorene	ug/L	-1-	ANR	ANR
Heptachlor	ug/L	-	ANR	ANR
Heptachlor epoxide	ug / L	-1-	ANR	ANR
Hexachlorobenzene	ug/L	-/-	ANR	ANR
Hexachlorobutadiene	ug/L	-/-	ANR	ANR
Hexachlorocyclopentadiene	ug / L	-/-	ANR	ANR
Hexachloroethane	ug / L	-1-	ANR	ANR
Indeno(1,2,3-cd)pyrene	ug / L	-	ANR	ANR
Isophorone	ug / L	-/-	ANR	ANR
Lindane (gamma-BHC)	ug/L	$1-$	ANR	ANR
Methylene Chloride	ug/L	-1-	ANR	ANR
Naphthalene	ug/L	-/-	ANR	ANR
Nitrobenzene	ug/L	-/	ANR	ANR
n -Nitrosodimethylamine	ug/L	-/-	ANR	ANR
n-Nitroso-di-n-propylamine	ug/L	-1-	ANR	ANR
n-Nitrosodiphenylamine	ug/L	-/-	ANR	ANR
Pentachlorophenol	ug/L	-1-	ANR	ANR
Phenanthrene	ug / L	-/-	ANR	ANR
Phenol	ug/L	-1-	ANR	ANR
Pyrene	ug / L	$\%$	ANR	ANR
Toxaphene	ug/L	-/-	ANR	ANR
trans-1,2-Dichloroethene	ug/L	-/-	ANR	ANR
trans-1,3-Dichloropropene	ug/L	-/-	ANR	ANR

OUTFALL 006 (FSDF-2)
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE NPDES PERMIT CA0001309
Sample Date November 9, 2005

TCDD TEQ w/DNQ Values TCDD TEQ w/out DNQ Values

Dioxin TCDD TEQ compliance limit established for this outfall?

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Chloride	mg / L	150/-	11	--
Fluoride	mg / L	1.6/-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	10/-	0.90	--
Oil \& Grease	mg / L	15/~	1.1	J (DNQ)
Perchlorate	ug/L	6.0/-	ANR	ANR
pH (Field)	pH units	6.5-8.5/-	7.25	*
Sulfate	mg / L	250/-	38	--
Temperature	deg. F	86/-	61.2	*
Total Cyanide	ug/L	\ldots	ANR	ANR
Total Dissolved Solids	mg / L	850/-	200	--
Total Suspended Solids	mg / L	\%	19	--
Volume Discharged	MGD	$\%$	ANR	ANR
METALS				
Aluminum	ug/L	-1-	ANR	ANR
Antimony	ug/L	-	0.74	J (DNQ)
Arsenic	ug/L	-1-	ANR	ANR
Beryllium	ug/L	-	ANR	ANR
Boron	mg / L	1.0/-	ANR	ANR
Cadmium	ug/L	-/-	0.071	J (DNQ)
Chromium	ug/L	-1	ANR	ANR
Copper	ug/L	\ldots	6.4	-
Lead	ug/L	\%	3.3	\cdots
Mercury	ug/L	-	$\mathrm{ND}<0.20$	US (B)
Nickel	ug/L	-	ANR	ANR
Selenium	ug/L	\%	ANR	ANR
Silver	ug / L	\ldots	ANR	ANR
Thallium	ug/L	\ldots	ANR	ANR
Vanadium	ug/L	-	ANR	ANR
Zinc	ug/L	1	ANR	ANR
ORGANICS				
Benzene	ug/L	-	ANR	ANR
Carbon Tetrachloride	ug/L	-/-	ANR	ANR
Chloroform	ug/L	-/-	ANR	ANR
1,1-Dichloroethane	ugh	\ldots	ANR	ANR
1,2-Dichloroethane	ug/L	/-	ANR	ANR
1,1-Dichloroethene	ug/L	$\%$	ANR	ANR
Ethylbenzene	ug/L	-	ANR	ANR

OUTFALL 009 (WS-13 Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Tetrachloroethene	ug/L	-/-	ANR	ANR
Toluene	ug/L	-	ANR	ANR
Xylenes (Total)	ug/L	\%	ANR	ANR
1,1,1-Trichloroethane	ug/L	-	ANR	ANR
1,1,2-Trichloroethane	ug/L	-/	ANR	ANR
Trichloroethene	ug/L	-1-	ANR	ANR
Trichlorofluoromethane	ug/L	-1-	ANR	ANR
Vinyl chloride	ug/L	-1-	ANR	ANR
ADDITIONAL ANALYTES				
1,1,2,2-Tetrachloroethane	ug/L	-1-	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	-1-	ANR	ANR
1,2-Dichlorobenzene	ug/L	-1-	ANR	ANR
1,2-Dichloropropane	ug/L	-/-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug / L	-1-	ANR	ANR
1,3-Dichlorobenzene	ug/L	-1-	ANR	ANR
1,4-Dichlorobenzene	ug/L	-	ANR	ANR
2,4,6-Trichlorophenol	ug / L	-/	ANR	ANR
2,4-Dichlorophenol	ug/L	-	ANR	ANR
2,4-Dimethylphenol	ug/L	-/	ANR	ANR
2,4-Dinitrophenol	ug/L	\ldots	ANR	ANR
2,4-Dinitrotoluene	ug/L	\ldots	ANR	ANR
2,6-Dinitrotoluene	ug/L	-/-	ANR	ANR
2-Chloroethylvinylether	ug / L	-1-	ANR	ANR
2-Chloronaphthalene	ug/L	-1-	ANR	ANR
2-Chlorophenol	ug/L	-1-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	-1-	ANR	ANR
2-Nitrophenol	ug/L	-1-	ANR	ANR
3,3'-Dichlorobenzidine	ug / L	-1-	ANR	ANR
4,4'-DDD	ug/L	-1-	ANR	ANR
4,4'-DDE	ug/L	-/-	ANR	ANR
4,4'-DDT	ug/L	\ldots	ANR	ANR
4-Bromophenylphenylether	ug/L	1	ANR	ANR
4-Chloro-3-methylphenol	ugh	-1	ANR	ANR
4-Chlorophenylphenylether	ug/L	-1-	ANR	ANR
4-Nitrophenol	ug/L	-/.	ANR	ANR
Acenaphthene	ug/L	-1-	ANR	ANR
Acrolein	ug / L	-1-	ANR	ANR
Acrylonitrile	ug/L	-	ANR	ANR

OUTFALL 009 (WS-13 Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY

THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309

November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	\%	ANR	ANR
alpha-BHC	ug/L	-1-	ANR	ANR
Anthracene	ug/L	-	ANR	ANR
Aroclor-1016	ug/L	-	ANR	ANR
Aroclor-1221	ug/L	-1	ANR	ANR
Aroclor-1232	ug/L	-	ANR	ANR
Aroclor-1242	ug/L	-1-	ANR	ANR
Aroclor-1248	ug / L	-1-	ANR	ANR
Aroclor-1254	ug/L	-	ANR	ANR
Aroclor-1260	ug/L	-1-	ANR	ANR
Benzidine	ug / L	-	ANR	ANR
Benzo(a)anthracene	ug/L	\%	ANR	ANR
Benzo(a)pyrene	ug/L	-1	ANR	ANR
Benzo(b)fluoranthene	ug/L	-1	ANR	ANR
Benzo(g,h,1)perylene	ug/L	-1/	ANR	ANR
Benzo(k)fluoranthene	ug/L	-1-	ANR	ANR
beta-BHC	ug / L	-1-	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	-1-	ANR	ANR
bis (2-ethylhexy) Phthalate	ug/L	-/-	ANR	ANR
bis(2-Chloroethoxy) methane	ug/L	/-	ANR	ANR
bis(2-Chloroisopropyl) ether	ug / L	-	ANR	ANR
Bromodichloromethane	ug/L	-1-	ANR	ANR
Bromoform	ug / L	1	ANR	ANR
Bromomethane	ug/L	-1-	ANR	ANR
Butylbenzylphthalate	ug/L	\ldots	ANR	ANR
Chlordane	ug/L	-1-	ANR	ANR
Chlorobenzene	ug/L	-1-	ANR	ANR
Chloroethane	ug/L	-	ANR	ANR
Chloromethane	ug/L	-1	ANR	ANR
Chrysene	ug/L	-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	-	ANR	ANR
delta-BHC	ug/L	-1-	ANR	ANR
Dibenzo(a,h)anthracene	ug/L	-/-	ANR	ANR
Dibromochloromethane	ug / L	-	ANR	ANR
Dieldrin	ug/L	-	ANR	ANR
Diethylphthalate	ug/L	$\%$	ANR	ANR
Dimethylphthalate	ug/L	$\%$	ANR	ANR

OUTFALL 009 (WS-13 Drainage)

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	11/9/2005	
			RESULT	VALIDATION QUALIFIER
Di-n-butylphthalate	ug/	-	ANR	ANR
Di-n-octylphthalate	ug/L	-1-	ANR	ANR
Endosulfan I	ug/L	-	ANR	ANR
Endosulfan II	ug/L	-1-	ANR	ANR
Endosulfan sulfate	ugL	-	ANR	ANR
Endrin	ug/	-	ANR	ANR
Endrin aldehyde	ug/	-	ANR	ANR
Fluoranthene	ug/L	-1-	ANR	ANR
Fluorene	ugL	-/	ANR	ANR
Heptachlor	ug/L	-1-	ANR	ANR
Heptachlor epoxide	ug/	--	ANR	ANR
Hexachlorobenzene	ug/L	-/-	ANR	ANR
Hexachlorobutadiene	ug/	--	ANR	ANR
Hexachlorocyclopentadiene	ug/L	--	ANR	ANR
Hexachloroethane	ug/	-	ANR	ANR
Indeno(1,2,3-cd)pyrene	ug/L	-	ANR	ANR
Isophorone	ug/L	-	ANR	ANR
Lindane (gamma-BHC)	ug/L	-	ANR	ANR
Methylene Chloride	ug/L	-	ANR	ANR
Naphthalene	ug/L	-	ANR	ANR
Nitrobenzene	ug/L	-	ANR	ANR
n -Nitrosodimethylamine	ug/	-	ANR	ANR
n-Nitroso-di-n-propylamine	ug/	-	ANR	ANR
n -Nitrosodiphenylamine	ugh	-	ANR	ANR
Pentachlorophenol	ug/	-	ANR	ANR
Phenanthrene	ug/	-/-	ANR	ANR
Phenol	ug/L	-	ANR	ANR
Pyrene	ug/L	-	ANR	ANR
Toxaphene	ug/L	-/-	ANR	ANR
trans-1,2-Dichloroethene	ug/L	--	ANR	ANR
trans-1,3-Dichloropropene	ug/L	-	ANR	ANR

OUTFALL 009 (WS-13 Drainage)
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
NPDES PERMIT CA0001309
Sample Date November 9, 2005

ANAIITE			1AB RESULI (ugh)	VALIDATION OUALIELER			TCDD Equivilent (w/out DNO filues) (4) 44
1,2,3,4,6,7,8-HpCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	5.37E-05	---	0.01	$5.37 \mathrm{E}-07$	5.37E-07
1,2,3,4,6,7,8-HpCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$1.74 \mathrm{E}-05$	J (DNQ)	0.01	$1.74 \mathrm{E}-07$	ND
1,2,3,4,7,8,9-HpCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	1.95E-06	J (DNQ)	0.01	$1.95 \mathrm{E}-08$	ND
1,2,3,4,7,8-HxCDD	$1.15 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,4,7,8-HxCDF	$5.89 \mathrm{E}-07$	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,6,7,8-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$3.02 \mathrm{E}-06$	J (DNQ)	0.1	3.02E-07	ND
1,2,3,6,7,8-HxCDF	$5.59 \mathrm{E}-07$	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	2.70E-06	J (DNQ)	0.1	2.70E-07	ND
1,2,3,7,8,9-HxCDF	$1.09 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8-PeCDD	$6.56 \mathrm{E}-07$	$2.50 \mathrm{E}-05$	ND	U	1	ND	ND
1,2,3,7,8-PeCDF	1.11E-06	$2.50 \mathrm{E}-05$	ND	U	0.05	ND	ND
2,3,4,6,7,8-HxCDF	$6.67 \mathrm{E}-07$	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
2,3,4,7,8-PeCDF	$9.86 \mathrm{E}-07$	$2.50 \mathrm{E}-05$	ND	U	0.5	ND	ND
2,3,7,8-TCDD	$7.03 \mathrm{E}-07$	5.00E-06	ND	U	1	ND	ND
2,3,7,8-TCDF	$7.79 \mathrm{E}-07$	$5.00 \mathrm{E}-06$	ND	U	0.1	ND	ND
OCDD	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	$6.88 \mathrm{E}-04$	--	0.0001	$6.88 \mathrm{E}-08$	6.88E-08
OCDF	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	$8.55 \mathrm{E}-05$	\cdots	0.0001	$8.55 \mathrm{E}-09$	$8.55 \mathrm{E}-09$

[^4] Dioxin TCDD TEQ compliance limit established for this outfall?

OUTFALL 018 (R-2 Spillway)

FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Ammonia as Nitrogen (N)	mg / L	-/-	ND < 0.30	U
Biochemical Oxygen Demand (BOD 5 day)	mg / L	-	2.4	--
Chloride	mg / L	\%-	36	--
Specific Conductivity (Lab)	umhos/cm	-	640	--
Surfactants (MBAS)	mg / L	\%	0.089	J (DNQ, *10)
Fluoride	mg / L	-1-	ANR	ANR
Nitrate + Nitrite as Nitrogen (N)	mg / L	-1-	$\mathrm{ND}<0.080$	U
Oil \& Grease	mg / L	-1-	$\mathrm{ND}<0.90$	U
Perchlorate	ug/L	-/-	ND < 0.80	U
pH (Field)	pH units	6.5-8.5/-	7.22	*
Total Settleable Solids	ml / L	-1-	ND <0.10	U
Sulfate	mg / L	\%	89	--
Temperature	deg. F	86/-	60.8	*
Total Cyanide	ug/L	$\%$	ND <2.2	U
Total Dissolved Solids	mg / L	1	420	\cdots
Total Organic Carbon	mg / L	-1/	ANR	ANR
Total Residual Chlorine	mg / L	-f-	ANR	ANR
Total Suspended Solids	mg/L	1	ND < 10	U
Turbidity	NTU	\%	3.6	- -
Volume Discharged	MGD	$\%$	ANR	ANR
METALS				
Antimony	ug / L	-	ANR	ANR
Arsenic	ug/L	\%	ANR	ANR
Barium	mg / L	-/-	ANR	ANR
Beryllium	ug / L	-1-	ANR	ANR
Boron	mg / L	-/-	ANR	ANR
Cadmium	ug/L	-	ANR	ANR
Chromium	ug/L	-/-	ANR	ANR
Chromium VI	ug/L	1	ANR	ANR
Cobalt	ug/L	$\%$	ANR	ANR
Copper	ug/L	1	ND <2.0	U (B)
Iron	mg/L	-1	ANR	ANR
Lead	ug/L	-/	$\mathrm{ND}<1.0$	U (B)
Manganese	ug/L	-1-	ANR	ANR
Mercury	ug/L	-1-	$\mathrm{ND}<0.063$	U
Nickel	ug / L	-1-	ANR	ANR
Selenium	ug/L	-1-	ANR	ANR

OUTFALL 018 (R-2 Spillway)

FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
November 1 through November 30, 2005

			11/9/2005	
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	VALIDATION QUALIFIER
Silver	ug/L	-/-	ANR	ANR
Thallium	ug/L	-1-	ANR	ANR
Vanadium	ug/L	-/-	ANR	ANR
Zinc	ug/L	-1-	ANR	ANR
ORGANICS				
Benzene	ug/L	-	ND < 0.28	U
Carbon Tetrachloride	ug/L	\%	ND < 0.28	U
Chloroform	ug/L	-	ND < 0.33	U
1,1-Dichloroethane	ug/L	-	ND < 0.27	U
1,2-Dichloroethane	ug / L	-	$\mathrm{ND}<0.28$	U
1,1-Dichloroethene	ug/L	-1	$\mathrm{ND}<0.42$	U
1,4-Dioxane	ug/L	$\%$	ANR	ANR
Ethylbenzene	ug/L	-/-	ND < 0.25	U
Tetrachloroethene	ug/L	-/-	ND <0.32	U
Toluene	ug/L	-/-	ND < 0.36	U
Xylenes (Total)	ug/L	-/-	ND < 0.52	U
1,1,1-Trichloroethane	ug/L	-1-	$\mathrm{ND}<0.30$	U
1,1,2-Trichloroethane	ug/L	-/-	ND < 0.30	U
Trichloroethene	ug/L	-/-	ND < 0.26	U
Trichlorofluoromethane	ug/L	-	$\mathrm{ND}<0.34$	U
Trichlorotrifluoroethane (Freon 113)	ug/L	-/-	$\mathrm{ND}<1.2$	U
Vinyl Chloride	ug/L	-/-	ND < 0.26	U
TPH				
EFH (C13-C22)	ug/L	4	ANR	ANR
GRO (C4-C12)	ug/L	H-	ANR	ANR
TRPH	ug/L	-	ANR	ANR
ADDITIONAL ANALYTES				
1,2-Dichloro-1,1,2-trifluoroethane	ug/L	\%	ANR	ANR
1,1,2,2-Tetrachloroethane	ugh	-1.	ANR	ANR
1,2,4-Trichlorobenzene	ug/L	\%	ANR	ANR
1,2-Dichlorobenzene	ug/L	-1-	ANR	ANR
1,2-Dichloropropane	ug/L	-/-	ANR	ANR
1,2-Diphenylhydrazine/Azobenzene	ug/L	-1-	ANR	ANR
1,3-Dichlorobenzene	ug/L	\ldots	ANR	ANR
1,4-Dichlorobenzene	ug/L	\ldots	ANR	ANR
2,4,6-Trichlorophenol	ug/L	\ldots	ND < 0.096	U
2,4-Dichlorophenol	ug/L	\ldots	ANR	ANR
2,4-Dimethylphenol	ug / L	-	ANR	ANR

OUTFALL 018 (R-2 Spillway)

FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE

SANTA SUSANA FIELD LABORATORY
 NPDES PERMIT CA0001309

November 1 through November 30, 2005

ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	11/9/2005	
			RESULT	VALIDATION QUALIFIER
2,4-Dinitrophenol	ug/L	-I-	ANR	ANR
2,4-Dinitrotoluene	ug/L	-1-	$\mathrm{ND}<0.22$	U
2,6-Dinitrotoluene	ug/L	-1-	ANR	ANR
2-Chloroethylvinylether	ug/L	-	ANR	ANR
2-Chloronaphthalene	ug/L	/-	ANR	ANR
2-Chlorophenol	ug/L	-	ANR	ANR
2-Methyl-4,6-dinitrophenol	ug/L	-	ANR	ANR
2-Nitrophenol	ug/L	-	ANR	ANR
3,3'-Dichlorobenzidine	ug/L	--	ANR	ANR
4,4'-DDD	ug/L	-1-	ANR	ANR
4,4'-DDE	ug/L	-/-	ANR	ANR
4,4'-DDT	ug/L	$1-$	ANR	ANR
4-Bromophenylphenylether	ug/L	\ldots	ANR	ANR
4-Chloro-3-methylphenol	ug / L	./-	ANR	ANR
4-Chlorophenylphenylether	ug/L	-1.	ANR	ANR
4-Nitrophenol	ug/L	-/-	ANR	ANR
Acenaphthene	ug / L	\%	ANR	ANR
Acrolein	ug/L	-1-	ANR	ANR
Acrylonitrile	ug/L	-/-	ANR	ANR
Acute Toxicity	\% SURVIVAL	70-100/-	ANR	ANR
Aldrin	ug/L	-/	ANR	ANR
alpha-BHC	ug/L	-1	$\mathrm{ND}<0.00096$	U
Anthracene	ug/L	\ldots	ANR	ANR
Aroclor-1016	ug/L	\%-	ANR	ANR
Aroclor-1221	ug/L	-	ANR	ANR
Aroclor-1232	ug/L	\%-	ANR	ANR
Aroclor-1242	ug/L	1	ANR	ANR
Aroclor-1248	ug/L	/-	ANR	ANR
Aroclor-1254	ug/L	-	ANR	ANR
Aroclor-1260	ug/L	1	ANR	ANR
Benzidine	ug/L	-	ANR	ANR
Benzo(a)anthracene	ug/L	-1-	ANR	ANR
Benzo(a)pyrene	ug/L	-/-	ANR	ANR
Benzo(b)fluoranthene	ug/L	$\%$	ANR	ANR
Benzo(g,h,l)perylene	ug / L	\ldots	ANR	ANR
Benzo(k)fluoranthene	ug/L	\%	ANR	ANR
beta-BHC	ug/L	\ldots	ANR	ANR
bis (2-Chloroethyl) ether	ug/L	\%	ANR	ANR

OUTFALL 018 (R-2 Spillway)

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

November 1 through November 30, 2005

ANALYTE	UNITS	$\begin{array}{\|c} \hline \text { Permit Limit } \\ \text { Daily } \\ \text { Max/Monthly } \\ \text { Avg } \\ \hline \end{array}$	11/9/2005	
			RESULT	$\begin{aligned} & \hline \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
bis (2-ethylhexyl) Phthalate	ug/L	\%	ND <4.8	U (B)
bis(2-Chloroethoxy) methane	ug/L	-/-	ANR	ANR
bis(2-Chloroisopropyl) ether	ug/L	-	ANR	ANR
Bromodichloromethane	ug/L	-	ANR	ANR
Bromoform	ug/L	-1-	ANR	ANR
Bromomethane	ug/L	-1-	ANR	ANR
Butylbenzylphthalate	ug / L	-1/	ANR	ANR
Chlordane	ug/L	-1-	ANR	ANR
Chlorobenzene	ug/L	-	ANR	ANR
Chloroethane	ug/L	-/-	ANR	ANR
Chloromethane	ug/L	-	ANR	ANR
Chronic Toxicity	TUC	1.0/-	ANR	ANR
Chrysene	ug/L	-1-	ANR	ANR
cis-1,3-Dichloropropene	ug/L	-/-	ANR	ANR
Cyclohexane	ug/l	-1-	ANR	ANR
delta-BHC	ug/L	-1-	ANR	ANR
Dibenzo(a,h)anthracene	ug/L	-1-	ANR	ANR
Dibromochloromethane	ug/L	-	ANR	ANR
Dieldrin	ug/L	-1-	ANR	ANR
Diethylphthalate	ug/L	-1-	ANR	ANR
Dimethylphthalate	ug/L	$1 /$	ANR	ANR
Di-n-butylphthalate	ug / L	-1/	ANR	ANR
Di-n-octylphthalate	ug/L	-1-	ANR	ANR
Endosulfan I	ug/L	-/-	ANR	ANR
Endosulfan II	ug / L	-1/	ANR	ANR
Endosulfan sulfate	ug/L	-/-	ANR	ANR
Endrin	ug/L	-1	ANR	ANR
Endrin aldehyde	ughL	-1-	ANR	ANR
Fluoranthene	ug/L	-/-	ANR	ANR
Fluorene	ug/L	-	ANR	ANR
Heptachlor	ug/L	-1-	ANR	ANR
Heptachlor epoxide	ug/L	H	ANR	ANR
Hexachlorobenzene	ug/L	-	ANR	ANR
Hexachlorobutadiene	ug/L	-	ANR	ANR
Hexachlorocyclopentadiene	ug/L	4	ANR	ANR
Hexachloroethane	ug/L	-	ANR	ANR
Indeno(1,2,3-cd)pyrene	ug/L	1	ANR	ANR
Isophorone	ug/L	\ldots	ANR	ANR

See attached notes for abbreviations, definitions and other explanations for the data presented.

OUTFALL 018 (R-2 Spillway)

FOURTH QUARTER 2005 REPORTING SUMMARY
 THE BOEING COMPANY-ROCKETDYNE
 SANTA SUSANA FIELD LABORATORY
 NPDES PERMIT CA0001309

November 1 through November 30, 2005

ANALYTE	UNITS		11/9/2005	
		Permit Limit Daily Max/Monthly Avg	RESULT	$\begin{aligned} & \text { VALIDATION } \\ & \text { QUALIFIER } \end{aligned}$
Lindane (gamma-BHC)	ug/L	-1-	ANR	ANR
Methylene Chloride	ug/L	\ldots	ANR	ANR
Monomethyl Hydrazine	ug/L	-1	ANR	ANR
Naphthalene	ug/L	-1-	ANR	ANR
Nitrobenzene	ug/L	-/-	ANR	ANR
n-Nitrosodimethylamine	ug/L	-1/	$\mathrm{ND}<0.21$	U
n-Nitroso-di-n-propylamine	ug / L	-/-	ANR	ANR
n -Nitrosodiphenylamine	ug/L	-1-	ANR	ANR
Pentachlorophenol	ug/L	-1-	ND < 0.75	U
Phenanthrene	ug/L	-1-	ANR	ANR
Phenol	ug/L	-/-	ANR	ANR
Pyrene	ug/L	-1-	ANR	ANR
Toxaphene	ug/L	-1-	ANR	ANR
trans-1,2-Dichloroethene	ug/L	-I-	ANR	ANR
trans-1,3-Dichloropropene	ug/L	\ldots	ANR	ANR

OUTFALL 018 (R-2 Spillway)
FOURTH QUARTER 2005 REPORTING SUMMARY
THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY

MNANTE	LAB LOD (ugh)	LAB NL (ugh)	$\begin{aligned} & \text { LAB } \\ & \text { RESULT } \\ & \text { (ugh) } \end{aligned}$	VALIDATION QUALIFIER	$\begin{aligned} & \text { WHO } \\ & \text { TEF } \end{aligned}$	TCDB Equivalent (wIDNO Values) (ug/L)	TCDD Equivalent (whout bNO Values) (ugh)
1,2,3,4,6,7,8-HpCDD	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$1.43 \mathrm{E}-05$	J (DNQ)	0.01	$1.43 \mathrm{E}-07$	ND
1,2,3,4,6,7,8-HpCDF	$0.00 \mathrm{E}+00$	$2.50 \mathrm{E}-05$	$1.87 \mathrm{E}-06$	J (DNQ)	0.01	$1.87 \mathrm{E}-08$	ND
1,2,3,4,7,8,9-HpCDF	1.25E-06	$2.50 \mathrm{E}-05$	ND	U	0.01	ND	ND
1,2,3,4,7,8-HxCDD	3.29E-06	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,4,7,8-HxCDF	$8.09 \mathrm{E}-07$	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,6,7,8-HxCDD	3.62E-06	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,6,7,8-HxCDF	1.12E-06	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDD	3.47E-06	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8,9-HxCDF	$1.29 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
1,2,3,7,8-PeCDD	1.33E-06	$2.50 \mathrm{E}-05$	ND	U	1	ND	ND
1,2,3,7,8-PeCDF	$2.10 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U	0.05	ND	ND
2,3,4,6,7,8-HxCDF	$8.41 \mathrm{E}-07$	$2.50 \mathrm{E}-05$	ND	U	0.1	ND	ND
2,3,4,7,8-PeCDF	$2.00 \mathrm{E}-06$	$2.50 \mathrm{E}-05$	ND	U	0.5	ND	ND
2,3,7,8-TCDD	$7.63 \mathrm{E}-07$	$5.00 \mathrm{E}-06$	ND	U	1	ND	ND
2,3,7,8-TCDF	$1.15 \mathrm{E}-06$	$5,00 \mathrm{E}-06$	ND	U	0.1	ND	ND
OCDD	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	$1.64 \mathrm{E}-04$	\cdots	0.0001	$1.64 \mathrm{E}-08$	$1.64 \mathrm{E}-08$
OCDF	$0.00 \mathrm{E}+00$	$5.00 \mathrm{E}-05$	6.42E-06	J (DNQ)	0.0001	$6.42 \mathrm{E}-10$	ND
TCDD TEQ w/DNQ Values						1.79E-07	
TCDD TEQ w/out DNQ Values							$1.64 \mathrm{E}-08$

Dioxin TCDD TEQ compliance limit established for this outfall?
Page 1 of 1

APPENDIX E

$4^{\text {th }}$ QUARTER 2005 SECTION 13267 SUMMARY TABLES, DISCHARGE MONITORING DATA, OUTFALL 003

4th QUARTER 2005 REPORTING SUMMARY NOTES
 THE BOEING COMPANY - ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

Notes:

1. For Dioxins and Furans, laboratory results may have been reported in picograms/liter (pg / L). However, the permit limit is stated in micrograms/liter ($\mu \mathrm{g} / \mathrm{L}$). To evaluate permit compliance, the laboratory results have been converted to $\mu \mathrm{g} / \mathrm{L}$, as necessary, to calculate the TCDD TEQ.
2. TCDD TEQs for the purpose of determining permit compliance are the sum of the products of the detected dioxin congener concentration multiplied by that congener's TEF. The resulting compliance TCDD TEQ does not include those congener concentrations that are reported as DNQ, as specified on Page 40 of the NPDES permit.
3. For some sample dates, pH was determined with a field instrument and was noted as such. These results were not validated. Since pH does not have an RL, the possible pH range is shown in the RL column.
4. The NPDES permit limits for mercury of $0.10 \mu \mathrm{~g} / \mathrm{L}$ (Outfalls 1-2) and $0.13 \mu \mathrm{~g} / \mathrm{L}$ (Outfalls 3-7) are not achievable by the laboratory; therefore, the laboratory reporting limit of $0.20 \mu \mathrm{~g} / \mathrm{L}$ was used to determine compliance.
5. The volume discharged at the Alfa Test Stand (Outfall 012) is estimated based on the run time of the test.
6. All of the following abbreviations and/or notes may not occur on every table. or RL (see laboratory report for specific detail) result not validated

${ }^{*} 1$

*2

*3

A negative radiochemical analytical result indicates the count rate of the sample was less than the background condition
improper preservation of sample

the ICP/MS ppb check standard was recovered above the control limit; therefore, the constituent detected was qualified as estimated (J) initial and or continuing calibration recoveries were outside acceptable control
limits

4th QUARTER 2005 REPORTING SUMMARY NOTES
 THE BOEING COMPANY - ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

*5	blank spike/blank spike duplicate relative percent difference was outside the control limit
*10	value was estimated detect or estimated non detect (J,UJ) due to deficiencies in quantitation of the constituent including constituents reported by the
*11	laboratory as Estimated Maximum Possible Concentration (EMPC) values no calibration was performed for this compound; result is reported as a
ANR	analysis not required; e.g., constituent or outfall was not required by the permit to be sampled and analyzed (annual, semi-annual, etc.)
B	laboratory method blank contamination
C	calibration \%RSD or \%D were noncompliant
C5	Calibration verification \%R was outside method control limits
\%D	percent difference between the initial and continuing calibration relative response factors
$\operatorname{deg} \mathrm{F}$	degrees Fahrenheit
DL	detection limit
DNQ	detected but not quantified (constituent value greater than or equal to the
E	duplicates show poor agreement
H	holding time was exceeded
I	ICP interference check solution results were unsatisfactory
J	estimated value
K	The sample dilution's set-up did not meet the oxygen depletion criteria of at least $2 \mathrm{mg} / \mathrm{l}$. Therefore, the reported result is an estimated value only
L2	the laboratory control sample \%R was below the method control limits
L	laboratory control sample \%R was outside control limits
LOD	limit of detection
M1	matrix spike (MS) and/or MS duplicate were above the acceptance limits due to sample matrix interference
M2	the MS and/or MS duplicate were below the acceptance limits due to sample matrix interference
MDA	minimum detectable activity
MDL	method detection limit
MGD	million gallons per day
mg / L	milligrams per liter
$\mathrm{ml} / \mathrm{L} / \mathrm{hr}$	milliliters per liter per hour
NA	not applicable; no permit limit established for
ND	analyte value less than the LOD or MDL
NM	not measured or determined
NTU	nephelometric turbidity unit
$\mathrm{pCi} / \mathrm{L}$	picocurries per liter
pg/L	picograms per liter
	matrix spike recovery outside of control limits

4th QUARTER 2005 REPORTING SUMMARY NOTES THE BOEING COMPANY - ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

R	as a validation qualifier, results are rejected; the presence or absence of analyte cannot be verified
R	(reason code in parentheses) \%R for calibration not within control limits
RL	laboratory reporting limit
RL-1	reporting limit raised due to sample matrix effects
\%RSD	percent relative standard deviation
S	surrogate recovery was outside control limits
TEQ	toxic equivalent
T	presumed contamination, as indicated by a detect in the trip blank
TU	toxicity units (chronic)
U	result not detected
$\mu \mathrm{g} / \mathrm{L}$	micrograms per liter
UJ	result not detected at the estimated reporting limit
umhos/cm	micromhos per centimeter
WHO TEF	World Health Organization toxic equivalency factor
\wedge	analysis not completed due to hold time exceedence or insufficient sample volume
+	False positive - reported compound was not present. Not applicable.

OUTFALL 003 (RMHF) FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYN SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309
October 1 through December 31, 2005

			10/18/2005			11/9/2005		
ANALYTE	UNITS	Permit Limit Daily Max/Monthly Avg	RESULT	MDA	VALIDATION QUALIFIER	RESULT	MDA	VALIDATION QUALIFIER
RADIOACTIVITY				0.992	J(H)	0.517 ± 0.26	0.414	J (H)
Strontium-90 (unfiltered)	$\mathrm{pCi} / \mathrm{L}$	8.0/-	8.44 ± 1.3	0.992	J(H)	0.517 ± 0.26		

APPENDIX F

$4^{\text {th }}$ QUARTER 2005 SUMMARY OF PERMIT LIMIT EXCEEDENCES

4th QUARTER 2005 REPORTING SUMMARY NOTES THE BOEING COMPANY - ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

Notes:

1. For Dioxins and Furans, laboratory results may have been reported in picograms/liter (pg / L). However, the permit limit is stated in micrograms/liter ($\mu \mathrm{g} / \mathrm{L}$). To evaluate permit compliance, the laboratory results have been converted to $\mu \mathrm{g} / \mathrm{L}$, as necessary, to calculate the TCDD TEQ.
2. TCDD TEQs for the purpose of determining permit compliance are the sum of the products of the detected dioxin congener concentration multiplied by that congener's TEF. The resulting compliance TCDD TEQ does not include those congener concentrations that are reported as DNQ, as specified on Page 40 of the NPDES permit.
3. For some sample dates, pH was determined with a field instrument and was noted as such. These results were not validated. Since pH does not have an RL, the possible pH range is shown in the RL column.
4. The NPDES permit limits for mercury of $0.10 \mu \mathrm{~g} / \mathrm{L}$ (Outfalls 1-2) and $0.13 \mu \mathrm{~g} / \mathrm{L}$ (Outfalls 3-7) are not achievable by the laboratory; therefore, the laboratory reporting limit of $0.20 \mu \mathrm{~g} / \mathrm{L}$ was used to determine compliance.
5. The volume discharged at the Alfa Test Stand (Outfall 012) is estimated based on the run time of the test.
6. All of the following abbreviations and/or notes may not occur on every table.
$-92.9+/-200 \quad$ A negative radiochemical analytical result indicates the count rate of the sample was less than the background condition
\$ reported result or other information was incorrectly reported by the laboratory; result was corrected by the data validator
-- based on validation of the data, a qualifier was not required
$\%$ no permit limit established for daily maximum or monthly average
<(value) analyte not detected at a concentration greater than or equal to the DL, MDL, or RL (see laboratory report for specific detail)

* result not validated
*1 improper preservation of sample
*2 the ICP/MS ppb check standard was recovered above the control limit; therefore, the constituent detected was qualified as estimated (J)
*3 initial and or continuing calibration recoveries were outside acceptable control limits

4th QUARTER 2005 REPORTING SUMMARY NOTES THE BOEING COMPANY - ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

*5	blank spike/blank spike duplicate relative percent difference was outside the control limit
*10	value was estimated detect or estimated non detect (J,UJ) due to deficiencies in quantitation of the constituent including constituents reported by the laboratory as Estimated Maximum Possible Concentration (EMPC) values
*11	no calibration was performed for this compound; result is reported as a tentatively identified compound (TIC)
ANR	analysis not required; e.g., constituent or outfall was not required by the permit to be sampled and analyzed (annual, semi-annual, etc.)
B	laboratory method blank contamination
C	calibration \%RSD or \%D were noncompliant
C5	Calibration verification \%R was outside method control limits
\%D	percent difference between the initial and continuing calibration relative response factors
$\operatorname{deg} F$	degrees Fahrenheit
DL	detection limit
DNQ	detected but not quantified (constituent value greater than or equal to the laboratory method detection limit and less then the laboratory reporting limit)
E	duplicates show poor agreement
H	holding time was exceeded
I	ICP interference check solution results were unsatisfactory
J	estimated value
K	The sample dilution's set-up did not meet the oxygen depletion criteria of at least $2 \mathrm{mg} / \mathrm{l}$. Therefore, the reported result is an estimated value only.
L2	the laboratory control sample \%R was below the method control limits
L	laboratory control sample \%R was outside control limits
LOD	limit of detection
M1	matrix spike (MS) and/or MS duplicate were above the acceptance limits due to sample matrix interference
M2	the MS and/or MS duplicate were below the acceptance limits due to sample matrix interference
MDA	minimum detectable activity
MDL	method detection limit
MGD	million gallons per day
mg / L	milligrams per liter
$\mathrm{ml} / \mathrm{L} / \mathrm{hr}$	milliliters per liter per hour
NA	not applicable; no permit limit established for the constituent and/or outfall
ND	analyte value less than the LOD or MDL
NM	not measured or determined
NTU	nephelometric turbidity unit
$\mathrm{pCi} / \mathrm{L}$	picocurries per liter
pg / L	picograms per liter
Q	matrix spike recovery outside of control limits

4th QUARTER 2005 REPORTING SUMMARY NOTES
 THE BOEING COMPANY - ROCKETDYNE SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

SUMMARY OF PERMIT LIMIT EXCEEDANCES
FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE
SANTA SUSANA FIELD LABORATORY

OUTFALL	LOCATION	$\begin{gathered} \text { SAMPLE } \\ \text { DATE } \end{gathered}$	ANALYTE	PERMIT LIMIT DAILY MAX/ MONTHLY AVERAGE	DAILY MAX/MONTHLY AVERAGE	UNITS	VALIDATION QUALIFIER
Outfall 009	(WS-13 Drainage)	17.Oct-05	pH (Field)	6.5-8.5	8.80/--	pH Units	*
Outfall 003	(RMHF)	18-Oct-05	Copper	14.0/	17/--	ug/L	-m
Outfall 004	(SRE)	18-Oct-05	Mercury	0.13/-	0.22/--	ug/L	-
Outfall 004	(SRE)	18-Oct-05	TCDD TEQ_NoDNQ	2.80E-08/-	5.86E-06/--	ug/L	-
Outfall 005	(FSDF-1)	18 -Oct-05	Copper	14.0/--	30/-	ug/L	--
Outfall 005	(FSDF-1)	18 -Oct-05	Mercury	0.13/--	0.41/-	ug/L	--
Outfall 005	(FSDF-1)	18-Oct-05	Nitrate + Nitrite as Nitrogen (N)	10/-	16\%	mg/L	--
Outfall 005	(FSDF-1)	18-Oct-05	TCDD TEQ_NoDNQ	$2.80 \mathrm{E}-08 /-$	1.36E-06/	ug/L	--
Outfall 006	(FSDF-2)	18-Oct-05	Copper	14.0\%-	16/ m-	ugh	\cdots
Outfall 006	(FSDF+2)	18-Oct-05	TCDD TEQ NoDNQ	2.80E-08/--	3.40E-08/	ug/L	-
Outall 007	(Building 100)	18-Oct-05	Antimony	6.0/-	6.2/-	ug/L	-
Outfall 007	(Building 100)	18-Oct-05	Copper	14.0/	19/-	ug/L	\cdots
$\frac{\text { Outfall } 007}{\text { Outall } 003}$	(Building 100)	18-Oct-05	TCDD TEQ NoDNQ	2.80E-08/-	3.17E-07/-	ug / L	m
Outfall 003	(RMHF)	09 Nov-05	Antimony	6.0/--	35/-	ug/L	-"
Outfall 003	(RMHF)	$09 \mathrm{Nov}-05$	pH (field)	6.5-8.5/--	9.4/-	pH Units	*
Outfall 004	(SRE)	09-Nov-05	TCDD TEQ_NoDNQ	2.80E-08/-	3.43E-06/--	ug/L	--
Outfall 005	(FSDF-1)	09-Nov-05	Copper	14.0/--	20/--	ug/L	-
Outfall 005	(FSDF-1)	09-Nov-05	TCDD TEQ_NoDNQ	2.80E-08/--	$1.76 \mathrm{E}-06 / \mathrm{m}$	ug/L	-*
$\frac{\text { Outfall } 006}{\text { Outfall } 006}$	(FSDF-2)	$09 . \mathrm{Nov}-05$	Copper	14.0/--	34/ -	ug/L	--
$\frac{\text { Outfall } 006}{\text { Outfall } 006}$	(FSDF-2)	09-Nov-05	Mercury	0.13/m	0.89/	ug/L	--
Ontall 000	(FSDF-2)	09 Nov-05	TCDD TEQ NoDNQ	$2.80 \mathrm{E}-08 / \cdots$	1.89E-06/	ug/L	\cdots

APPENDIX G

TABLE OF CONTENTS

Volume 2 - Appendix G

APPENDIX G - VOLUME 2

TABLE OF CONTENTS

Section No.

Outfall 003, October 18, 2005 - Del Mar Analytical Laboratory Report Outfall 003, October 18, 2005 - AMEC Data Validation Reports Outfall 003, November 09, 2005 - Del Mar Analytical Laboratory Report Outfall 003, November 09, 2005 - AMEC Data Validation Reports Outfall 004, October 18, 2005 - Del Mar Analytical Laboratory Report Outfall 004, October 18, 2005 - AMEC Data Validation Reports Outfall 004, November 09, 2005 - Del Mar Analytical Laboratory Report Outfall 004, November 09, 2005 - AMEC Data Validation Reports Outfall 005, October 18, 2005 - Del Mar Analytical Laboratory Report Outfall 005, October 18, 2005 - AMEC Data Validation Reports Outfall 005, November 09, 2005 - Del Mar Analytical Laboratory Report Outfall 005, November 09, 2005 - AMEC Data Validation Reports Outfall 006, October 18, 2005 - Del Mar Analytical Laboratory Report Outfall 006, October 18, 2005 - AMEC Data Validation Reports Outfall 006, November 09, 2005 - Del Mar Analytical Laboratory Report Outfall 006, November 09, 2005 - AMEC Data Validation Reports Outfall 007, October 18, 2005 - Del Mar Analytical Laboratory Report Outfall 007, October 18, 2005 - AMEC Data Validation Reports Outfall 008, October 18, 2005 - Del Mar Analytical Laboratory Report Outfall 008, October 18, 2005 - AMEC Data Validation Reports Outfall 009, October 17, 2005 - Del Mar Analytical Laboratory Report Outfall 009, October 17, 2005 - AMEC Data Validation Reports Outfall 009, November 09, 2005 - Del Mar Analytical Laboratory Report Outfall 009, November 09, 2005 - AMEC Data Validation Reports Outfall 010, October 18, 2005 - Del Mar Analytical Laboratory Report Outfall 010, October 18, 2005 - AMEC Data Validation Reports Outfall 018, November 09, 2005 - Del Mar Analytical Laboratory Report Outfall 018, November 09, 2005 - AMEC Data Validation Reports

APPENDIX G

Section 1

Outfall 003, October 18, 2005

Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
Project: Routine Outfall 003
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Sampled: 10/18/05
Received: 10/18/05
Issued: 01/20/06 16:28
\section*{NELAP \#01108CA California ELAP\#197 CSDLAC \#10117}
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its clint. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID	CLIENT ID	MATRIX
OJ $1231-01$	Outfall 003	Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

$$
\begin{aligned}
& \text { T746: Derian Ave, Suite f(0), frine, CA } 92614 \text { (9949) 261-1022 FAX } 9491260-3297
\end{aligned}
$$

2520 E. Sunset Ru. \#3, Las Vegas, NV $89 ; 20$ (702) $798-3620$ kAX (702) 798-2621

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200	Report Number: 1011231	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOJ1231-01 (Outfall 003 - Water) - cont.									
Reparting Units: mga									
Chloride	EPA 300.0	5118042	2.6	5.0	100	10	10/18/05	101805	
Nitrate/Nitrite- N	EPA 300.0	5118042	0.072	0.26	ND	1	$10 / 1805$	10/18/05	
Oil \& Grease	EPA 413.1	5124050	0.90	4.8	1.1	1	10/24/05	10/24/05	J
Sulfate	EPA 300.0	5118042	1.8	5.0	80	10	$10118 / 05$	$1018 / 05$	
Total Dissolved Solids	SM2540C	5124100	10	10	850	1	10/24/05	10/24/05	
Total Suspended Solids	EPA 160.2	521114	10	10	480	1	10/21/05	10/21/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avemue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 003
Report Number: IOH231 Received: 10/18/05

SHORT HOLD TIME DETAIL REPORT

| | Hold Time
 (in days) | Date/Time
 Sampled | Date/Time
 Received | Date/Time
 Extracted | Date/Time
 Analyzed |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample 1D: Outfall 003 (IOJ1231-01) - Water
 EPA 300.0 | 2 | $10 / 18 / 200510: 48$ | $10 / 18 / 200518: 00$ | $10 / 18 / 200521: 30$ | $10 / 18 / 200522: 12$ |

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

Del Mar		7/46t Derian Ave., Sutite 100, trine, CA 92674 9949 261-1022 1014 E. Cooley Dr., Suite A, Cotho CA 92324 (0001 $370-4667$ 9484 Chesapeake Dr.s Sute b0S, San Diegs, CA 92123 (858; 505-8596 	FAX 1946926853297 FAX 19091370.3046 FAX
MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Routine Report Number: 1011231	$\begin{array}{ll} \text { Sampled: } & 10 / 1805 \\ \text { Received: } & 10 / 8 / 05 \end{array}$	

METHOD BLANKIQC DATA

METALS

Batch: 5J19098 Extracted: 10119/05

Blank Analyzed: 10/20/2005 (5J19098-BLK1)

Antimony	ND	2.0	0.18	$\mathrm{ug} / 1$
Cadmium	0.109	1.0	0.015	$\mathrm{ug} / 1$
Copper	ND	2.0	0.49	$\mathrm{ug} / 1$
Lead	0.0450	1.0	0.040	$\mathrm{ug} / 1$

LCS Analyzed: 10/20/2005 (5J19098-BS1)

Antimony	77.4	2.0	0.18	ug/	80.0		97	85-115
Cadmiam	81.9	1.0	0.015	ug/1	80.0		102	85-115
Copper	77.7	2.0	0.49	ug/l	80.0		97	85-115
Lead	81.2	1.0	0.13	ugt	80.0		102	85-115
Matrix Spike Analyzed: 10/20/2005 (5119098-MS1)					Source: IOJ1156-01			
Antimony	84.7	2.0	0.18	ugh	80.0	0.18	106	70-130
Cadmium	84.1	1.0	0.015	ug/	80.0	0.14	105	$70-130$
Copper	83.0	2,0	0.49	4 gl	80.0	3.9	99	$70-130$
Lead	79.1	1.0	0.940	ugh	80.6	0.32	98	70-130

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Derian Ave., Sune 10

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003
300 North Lake Avenue, Suite 1200	Report Number: 10n1231

METHOD BLANKQC DATA

METALS										
Analyte	Result	Reportin Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit
Batch: 5J19098 Extracted: 10/19/05										
Matrix Spike Analyzed: 10/20/2005 (5J19098-MS2)			Source: 10J1159-01							
Antimony	86.6	2.0	0.18	ug/	80.0	0.29	108	$70-130$		
Cadmium	84.6	1.0	0.015	ugl	80.0	0.072	106	70-130		
Copper	84.8	2.0	0.49	ugl	80.0	4.8	100	70-130		
Lead	80.8	1.0	0.040	ug/	80.0	0.53	100	70-130		
Matrix Spike Dup Analyzed: 10/20/2005 (5J19098-MSD1)			Source: 1OJ1156-01							
Antimony	85.5	2.0	0.18	ug/1	80.0	0.18	107	70-130	1	20
Cadmium	84.4	1.0	0.015	ugh	80.0	0.14	105	$70 \cdot 130$	0	20
Copper	83.1	2.0	0.49	ug 1	80.0	3.9	99	70-130	0	20
Lead	79.9	1.0	0.040	ugl	80.0	0.32	99	$70-130$	1	20

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200	Report Number: IOH1231	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Batch: 5524050 Extracted: 10/24/05

Blank Analyzed: $10 / 24 / 2005$ (5.524050-BLK1)

Oli \& Grease	ND	5.0	0.94	mgl

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

$$
\begin{aligned}
& \text { 17461 Derian Ave, Suite 100, trinte, CA } 92614 \text { 19459 261-1022 FAx } 94932606379
\end{aligned}
$$

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200	Report Number: 10I1231	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Analyte

Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5J24050 Extracted: 10/24/05.

LCS Analyzed: 10/24/2005 (5J24050-BS1)									M-NR1
Oil \& Grease 16.1	5.0	0.94	mgl	20.0	80	65-120			
LCS Dup Analyzed: 10/24/2005 (5J24050-BSD1)									
Oil \& Grease 16.1	5.0	0.94	$\mathrm{mg} / 1$	20.0	80	65-120	0	20	

Batch: 5J24100 Extracted: 10/24/05

Blank Analyzed: 10/24/2005 (5J24100-BLK1)
Total Dissolved Solids ND
$10 \quad 10 \quad \mathrm{mg} / 1$

LCS Analyzed: 10/24/2005 (5J24100-BS1)
Total Dissolved Solids 998
10
mg/ 1000
$100 \quad 90-110$
Duplicate Analyzed: 10/24/2005 (5J24100-DUP1)
Total Dissolved Solids 440

10 m
Source: 1OJ0222-03
440
$0 \quad 10$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Routine Outfall 003

Sampled: 101805
Received: 10/18/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
1011231-01	413.1 Oil and Grease	Oil \& Grease	$\mathrm{mg} /$	1.10	4.8	15
IOI231-01	Antimony-200.8	Antimony	ug/	0.31	4.0	6.00
101231-01	Cadmium-200.8	Cadmium	ug/	0.34	2.0	4.00
IOJ1231-01	Chloride-300.0	Chloride	$\mathrm{mg} /$	100	5.0	150
1OJ1231-01	Copper-200.8	Copper	ugh	17	8.0	14
1On1231-01	Mercury - 245.1	Mercury	ug/	0.059	0.20	0.20
IOJ1231-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite- N	mgl	0	0.26	10.00
IOJ1231-01	Sulfate-300.0	Sulfate	mg / l	80	5.0	250
[OJ1231-01	TDS - SM 2540C	Total Dissolved Solids	mg / l	850	10	850
1OJ1231-01RE1	Copper-200.8	Copper	ug/	17	8.0	14

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly Report Number: 10.11231

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MSMSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
RL-1 Reporting limit raised due to sample matrix effects.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 003

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Calfornia
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
EPA 905.0	Water		
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Eberline Services

2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: 10.1231-01
Analysis Performed: Strontium 90
Samples: IOn1231-01

Pace Analytical, MN- SUB

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR Samples: 1O11231-01

ADDITIONAL ANALYSIS REQUEST FORM

Today's Date: \qquad $10 / 20$

Del Mar Analytical Project Manager: \qquad MO

Request via: \qquad chain of custody form \qquad fax transmission \qquad Email \qquad other

Client: \qquad Mout-pas/3x Contact: \qquad
Project: \qquad Routine sutfoul 00^{3}

Date Sampled:
Date Received: \qquad
Status: \qquad in progress \qquad completed \qquad received today \qquad received yesterday
 on hold \qquad other

SAMPLE
NUMBER

SAMPLE DESCRIPTION

ANALYSIS REQUESTED

SPECIAL REQUIREMENTS
10.1231-01 aufacl003 Strontium-90, Level 4 tron
\qquad
Add in to orig workerder, normal TAT
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TURNAROUND STATUS: \qquad Same Day \qquad 24 hr \qquad 48 hr \qquad 3days
\qquad 5days Standard \qquad No Rush Charge

EBERLINE

November 21. 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Reference: Del Ma: Analytical Project No. IOJ1231
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R510124-8615
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on October 21, 2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analysis was strontium-90 (Sr-90, EPA905.0). The QC L.CS. blank analysis, sample duplicate, and matrix spike results for the analysis were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an anslytical tracer or carrier, such as $\mathrm{Sr}-90$, do not require a matrix spike analysis to be performed.

Please call me if you have any questions concerning this report.

Regards.
Mec.2 1970 -

Melissa Mannion
Senior Program Manager

MCNMW
Batusure: Report
Subcomtant Form
Reccipt checklist
invorce

Eberline Services
ANALYSIS RESOLTS

Eberline Services

QC RESULTS

Samplemp Nuchide Regults Units Amount Added MoA Evaluation

$8618-004$	9590	11.2 ± 0.93	$\mathrm{pci} / \mathrm{SmpI}$	20.9	0.427

gLANK
$8618-005 \quad 0.221 \pm 0.24 \mathrm{pCi} / \mathrm{SmpL} \quad \mathrm{NA} \quad 0.509 \quad \operatorname{~MDA}$

f7461 Derian Ave. Suite 100 , ITvine, CA 92674 1014 E, Cocloy Or., Suthe A. Coltor, C C (22324 3481 Chesapeake Orive. Sute 805. San Diego، CA 92123

SUBCONTRACT ORDER - PROJECT \# IOJ1231

| SENDING LABORATORY: |
| :--- | :--- |
| Del Mar Analytical, Irvine |
| 17461 Derian Avenue. Suite 100 |
| Irvine, CA 92614 |
| Phone: (949) 261-1022 |
| Fax: (949) 261-1228 |
| Project Manager: Michele Harper |\quad| RECEIVING LABORATORY: |
| :--- |
| Eberline Services |
| 2030 Wright Avenue |
| Richmond, CA 94804 |
| Phone :(510) 235-2633 |
| Fax: (510) 235-0438 |

Standard TAT is requested unless specific due date is requested \Rightarrow Duc Date: \qquad Initials: \qquad
Analysis Expiration Comments

Sample ID: 1OJ1231-01	Water	
EDD + Level 4	$11 / 15 / 0510: 48$	
Strontium 90 -O	$10 / 18 / 0610: 48$	Excel EDD email to pm, Inclade Std logs for Lvil IV

Containers Supplied:

1 gal Poly (1On1231-01K)
1 gal Poly (1OI1231-01L)

Tri, Chamber Ser. Nc.	
Alpha Meter Ser. No.	Calibration date
Eeta/Gamma Meter Ser. Vo.	Calibration date

The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Project: Chemical Analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services Inc.
nelac:
www pacelass.com REPORT OF: CHEMICAL ANALYSES

PROJECT: PCDD/PCDF ANALYSES
ISSUED TO: Del Mar Analytical, Invine
Attn: Michele Harper
17461 Derian Avenue, Suite 100
Irvine, CA 92614

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761. 1021763 1021765, 1021766, 1021907. 1021908, 1021910, 1021911. 1021912, 1021959

INTRODUCTION

This report presents the results from the analyses performed on twelve samples submitted by a representative of Del Mar Analytical, Irvine. The samples were analyzed for the presence or absence of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) using a modified version of USEPA Method 16138

SAMPLE IDENTIFICATION

Client ID	Sample Type	Date Received	PACEID
1OJ1181-01	Water	10/19/05	1021758001
10J1176-01	Water	10/19/05	1021760001
10J1186-01	Water	10/19/05	1021761001
10J1180-01	Water	10/19/05	1021763001
10J1184-01	Water	10/19/05	1021765001
1OJ1177-01	Water	10/19/05	1021766001
1OJ1234-01	Water	10/20/05	1021907001
IOJ1232-01	Water	10/20/05	1021908001
10J1231-01	Water	10/20/05	1021910001
IOJ1235-01	Water	10/20/05	1021911001
1OJ1236-01	Water	10/20/05	1021912001
10J1337-01	Water	10/21/05	1021959001

RESULTS

The results are included in the following:

> Appendix A - Documentation Appendix B - Sample Analysis Results Appendix C-QC and Calibration Results Appendix D-Sample Chromatograms and Raw Data Appendix E-Calibration Chromatograms and Raw Data Appendix F-QC Chromatograms and Raw Data $$
\text { REPORT OF LABORATORY ANALYSIS }
$$

This report shall not be reproduced, except in ful, without the written consent of Pace Analyical Services, fic.

REPORT OF: CHEMICAL ANALYSES

PROJECT: PCDD/PCDF ANALYSES
PAGE: 2

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766. 1021907, 1021908, 1021910, 1021911, 1021912, 1021959

DISCUSSION

Two sets of results were provided, at the request of Del Mar Analytical, for sample 1OJ1337-01. In the initial (11/03/2005) extraction batch for this sample, elevated recoveries were obtained for selected native congeners in the associated lab spike samples, most likely due to contamination. The second (11/08/2005) extraction batch showed good recoveries for the native congeners in the lab spikes. However, the results obtained from the analyses of the two extracts of the field sample were dissimilar. The initial sample results, associated with the contaminated lab spikes, were significantly lower than the repeat sample results, those associated with the compliant lab spikes samples.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from $34-108 \%$. All of the labeled standard recoveries obtained for these projects were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, the presence of interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged " l " where incorrect isotope ratios were obtianed, or " E " where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results, found at the beginning of Appendix C, show the blanks to contain trace levels of selected PCDD and PCDF congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged " B " and may be, at least partially, attributed to the background. In general, levels less than ten times the background are not considered to be statistically different from the background.

Laboratory spike samples were also prepared with the sample batches using clean water that had been fortified with native standard materials. The results show the spiked native compounds in LCS8224 and LCSD-8225 were recovered at $88-109 \%$, with relative percent differences of 0.0-12.2\%. These results indicate high degrees of accuracy and precision for these determinations. Four native recovery values LCS-8209 and LCSD-8210 were above the target ranges; the affected values were flagged " P " on the results tables and may indicate high biases for these congeners in the associated sample (the initial extract of IOJ1337-01).

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, inc.

Pace Analytical Services. lIne. 1700 Em Street

PROJECT: PCDDIPCDF ANALYSES
PAGE: 3

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907, 1021908, 1021910, 1021911, 1021912, 1021959

REMARKS

The sample extracts will be retained for a period of 15 days from the date of this report and then discarded unless other arrangements are made. The raw mass spectral data will be archived on magnetic tape for a period of not less than one year. Questions regarding the data contained in this report may be directed to the author at the number provided below.

Pace Analytical Services, Inc.

Project Manager, HRMS
(612) 607-6383

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, inc.

Conc $=$ Concentration (Toas inciude 2,3,7,8-substuted isomers)
EMPC = Estimated Naximum Possible Concentration
LOO $=$ Limit of Detection. Totais are averages of individual isomer LODS.
0 = Resut obtaned from analysis of diuted sample
$8=$ Less than 10 limes figher than method blark level
$P=$ Recovery outside of method 1613 control limits
$j=$ Concentration detected is beiow the calloration range
$\mathrm{N} n=$ Value obtained from additional analysis

- Interference $\Sigma=$ PCDE Interterence ND = Not Detected NA $=$ Not Applicable $\mathrm{NC}=\mathrm{Not}$ Calculated
* $=$ See Uiscussion

Report No.... 1021910

REPORT OF LABORATORY ANALYSIS

This report shaul not be reproduced, except in ful, whout the witten consent of Pace Analytical Sevices, inc.

Method 1613B Blank Analysis Results

Client - Del Mar Analytical

Lab Sample ID	BLANK-8223
Filename	F51109C_06
Total Amount Extracied	1030 mL
ICAL Date	$10 / 2 / 2005$
CCal Filename(s)	F51109C_02

Matrix	Water	
Dilution	NA	
Extracted	$11 / 08 / 2005$	
Analyzed	$11 / 10 / 2005$	$02: 58$
Injected By	BAL	

Native Isomers	Conc ugh	$\begin{array}{cc} \text { EMPC } & \text { LOD } \\ u g / L & u g / L \\ \hline \end{array}$	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND	-0.0000023	2,3,7,8-TCDF-13C	2.00	60
Total TCDF	ND	-	2,3,7,8-TCDD-13C	2.00	67
			1,2,3,7,8-PeCDF-13C	2.00	66
2,3,7,8-TCDD	ND	----0.0000021	2,3,4,7,8-PeCDF-13C	2.00	71
Total TCDD	ND	--- ----	1,2,3,7,8-PeCDD-13C	2.00	87
			1,2,3,4,7,8-HxCDF-13C	2.00	69
1,2,3,7,8-PeCDF	ND	-0.0000031	1,2,3,6,7,8-HxCDF-13C	2.00	69
2,3,4,7,8-PeCDF	ND	$\cdots-0.0000013$	2,3,4,6,7,8-HxCDF-13C	2.00	67
Total PeCDF	ND	---- ---	1,2,3,7,8,9-HxCDF-13C	2.00	68
			1,2,3,4,7,8-HxCDD-13C	2.00	68
1,2,3,7,8-PeCDD	ND	-0.0000018	1,2,3,6,7,8-HxCDD-13C	2.00	73
Total PeCDD	ND	---. ---	1,2,3,4,6,7,8-HpCDF-13C	2.00	66
			1,2,3,4,7,8,9-HpCDF-13C	2.00	60
1,2,3,4,7,8-HxCDF	ND	-2.0000016	1,2,3,4,6,7,8-HpCDD-13C	2.00	78
1,2,3,6,7,8-HxCDF	ND	--0.0000016	OCDD-13C	4.00	62
2,3,4,6,7,8-HxCDF	ND	--0.0000015			
1,2,3,7,8,9-HxCDF	ND	--0.0000024	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	ND	$\cdots-$	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	ND	--0.0000030	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,6,7,8-HxCDD	ND	----0.0000031			
1,2,3,7,8,9-HxCDD	ND	----0.0000025			
Total HxCDD	ND	-- ---			
1,2,3,4,6,7,8-HpCDF	ND	--0.0000018			
1,2,3,4,7,8,9-HpCDF	ND	---0.0000023			
Total HpCDF	ND	--w- --			
1,2,3,4,6,7,8-HpCDD	0.0000041	--0.0000026			
Total HpCDD	0.0000041	---- - -			
OCDF	0.0000068	--0.0000027			
OCDD	--0	000190.0000025			
Conc $=$ Concentration (Totals include 2,3,7,8-substituted isomers).				$1=$ Interierence	
EMPC = Estimated Maximum Possibie Concentration \quad E				$E=P C D E$ Interference	
$1 O D=$ Limit oi Detection. Totals are averages of individual isomer LODs. ND				ND $=$ Not Detected	
$A=$ Limit of Detection based on signal to noise \quad NA				NA $=$ Not Applicable	
$P=$ Recovery outside of method 1613 control imits \quad N				NC = Not Calculated	
$\mathrm{No}=$ Value obtained from additional analysis				* $=$ See Discussion	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, inc. 1700 Eim Street ~ Suite 200 Minneapolis. MN 55414

Tel: 612-607-1700

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

LCS-8224			
F5 1109 C -03	Matrix	Water	
1050 mL	Dilution	NA	
$10 / 22 / 2005$	Extracted	$11 / 08 / 2005$	
F5 1109 C 02	Analyzed	$11 / 10 / 200500: 34$	
BLANK-8223	Injected By	BAL	

Compound	Cs	Cr	Lower Limit	Upper Limit	\% Rec.
2,3,7,8-TCDF	10	9.5	7.5	15.8	95
2,3,7,8-TCDD	10	9.5	6.7	15.8	95
1,2,3,7,8-PeCDF	50	50.6	40.0	67.0	101
2,3,4,7,8-PeCDF	50	45.9	34.0	80.0	92
1,2,3,7,8-PeCDD	50	43.9	35.0	71.0	88
1,2,3,4,7,8-HxCDF	50	47.2	36.0	67.0	94
1,2,3,6,7,8-HxCDF	50	47.2	42.0	65.0	94
2,3,4,6,7,8-HxCDF	50	48.1	35.0	78.0	96
1,2,3,7,8,9-HxCDF	50	48.2	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	48.5	35.0	82.0	97
1,2,3,6,7,8-HxCDD	50	48.3	38.0	67.0	97
1,2,3,7,8,9-HxCDD	50	46.2	32.0	81.0	92
1,2,3,4,6,7,8-HpCDF	50	50.2	41.0	61.0	100
1,2,3,4,7,8,9-HpCDF	50	52.6	39.0	69.0	105
1,2,3,4,6,7,8-HpCDC	50	44.9	35.0	70.0	90
OCDF	100	92.1	63.0	170.0	92
OCDD	100	93.3	78.0	144.0	93
2,3,7,8-TCDD-37C14	10	7.1	3.1	19.1	71
2,3,7,8-TCDF-13C	100	60.6	22.0	152.0	61
2,3,7,8-TCDD-13C	100	68.3	20.0	175.0	68
1,2,3,7,8-PeCDF-13C	100	64.1	21.0	192.0	64
2,3,4,7,8-PeCDF-13C	100	62.8	13.0	328.0	63
1,2,3,7,8-PeCDD-13C	100	81.7	21.0	227.0	82
1,2,3,4,7,8-HxCDF-13C	100	63.6	19.0	202.0	64
1,2,3,6,7,8-HxCDF-13C	100	63.7	21.0	159.0	64
2,3,4,6,7,8-HxCDF-13C	100	60.8	22.0	176.0	61
1,2,3,7,8,9-HxCDF-13C	100	60.7	17.0	205.0	61
1,2,3,4,7,8-HxCDD-13C	100	65.7	21.0	193.0	66
1,2,3,6,7,8-H×CDD-13C	100	67.5	25.0	163.0	68
1,2,3,4,6,7,8 HpCDF-13C	100	68.4	21.0	158.0	68
1,2,3,4,7,8,9-HpCDF-13C	100	62.9	20.0	186.0	63
1,2,3,4,6,7,8-HpCDD-13C	100	76.3	26.0	166.0	76
OCOD-13C	200	117.9	26.0	397.0	59

$\mathrm{Cs}=$ Concentration Spiked (ng/mL)
$\mathrm{Cr}=$ Concentration Recovered (ng/mL)
Rec. = Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
$X=$ Background subtracted value
$p=$ Recovery outside of control limits
$\mathrm{Nn}=$ Value obtained from additional analysis Report No..... 1021758

- = See Discussion

REPORT OF LABORATORY ANALYSIS

[^5]

Pace Analytical Services, Inc. 1700 Em Street - Suite 200 Minneapolis, MN 55414

Method 1613 B Laboratory Control Spike Results

Clent - Del Mar Analytical
Lab Sampie ID
Flename
Total Amount Extracied
ICAL Date
CCal Filename
Method Blank ID

LCSD-8225
F51109C_04
1040 mL
10/22/2005
F51109C 02
BLANK-8223

Matrix	Water
Dilution	NA
Extracted	$11 / 08 / 2005$
Analyzed	$11 / 10 / 2005 \quad 01: 21$
Injected By	BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	$\begin{gathered} \% \\ \text { Rec. } \end{gathered}$
2,3,7,8-TCDF	10	9.1	7.5	15.8	91
2,3,7,8-TCDD	10	10.1	6.7	15.8	101
1,2,3,7,8-PeCDF	50	51.1	40.0	67.0	102
2,3,4,7,8-PeCDF	50	51.8	34.0	80.0	104
1,2,3,7,8-PeCDD	50	46.1	35.0	71.0	92
1,2,3,4,7,8-HxCDF	50	49.5	36.0	67.0	99
1,2,3,6,7,8-HxCDF	50	49.5	42.0	65.0	99
2,3,4,6,7,8-HxCDF	50	50.6	35.0	78.0	101
1,2,3,7,8,9-HxCDF	50	48.0	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	52.0	35.0	82.0	104
1,2,3,6,7,8-HxCDD	50	54.3	38.0	67.0	109
1,2,3,7,8,9-HxCDD	50	51.8	32.0	81.0	104
1,2,3,4,6,7,8-HpCDF	50	51.9	41.0	61.0	104
1, $2,3,4,7,8,9-\mathrm{HPCDF}$	50	54.5	39.0	69.0	109
1,2,3,4,6,7,8-HpCDD	50	47.3	35.0	70.0	95
OCDF	100	93.1	63.0	170.0	93
OCDD	100	97.2	78.0	144.0	97
2,3,7,8-TCDD-37C14	10	6.9	3.1	19.1	69
2,3,7,8-TCDF-13C	100	55.7	22.0	152.0	56
2,3,7,8-TCDD-13C	100	62.3	20.0	175.0	62
1,2,3,7,8-PeCDF-13C	100	57.8	21.0	192.0	58
2,3,4,7,8-PeCDF-13C	100	54.6	13.0	328.0	55
1,2,3,7,8-PeCDO-13C	100	68.6	21.0	227.0	69
1,2,3,4,7,8-HxCDF-13C	100	61.8	19.0	202.0	62
1,2,3,6,7,8-HxCDF-13C	100	63.8	21.0	159.0	64
2,3,4,6,7,8-HxCDF-13C	100	59.4	22.0	176.0	59
1,2,3,7,8,9-HxCDF-13C	100	61.4	17.0	205.0	61
1,2,3,4,7,8-HxCDD-13C	100	58.6	21.0	193.0	59
1,2,3,6,7,8-HxCDD-13C	100	67.0	25.0	163.0	67
1,2,3,4,6,7,8-HpCDF-13C	100	66.7	21.0	158.0	67
1,2,3,4,7,8,9-HpCDF-13C	100	62.2	20.0	186.0	62
1,2,3,4,6,7,8-HpCDD-13C	100	74.8	26.0	166.0	75
OCDD-13C	200	122.3	26.0	397.0	61

[^6]Report No..... 1021758

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in fult. withou the witten consent of Pace Analyucal Services, inc.

Client. \qquad Del Mar Analytical

SPIKE 1 ID................. LCS-8224			
SPIKE 1 Filename....................F51109C_03			
SPIKE 2 ID................. LCSD-8225			
SPIKE 2 Filename.......F51109C_04			
COMPOUND	SPIKE 1 REC. \%	SPIKE 2 REC, \%	RPD, \%
2378-TCDF	95	91	4.3
2378-TCDD	95	104	6.1
12378-PeCDF	101	102	1.0
23478-PeCDF	92	104	12.2
12378-PeCDD	88	92	4.4
123478 HxCDF	94	99	5.2
123678-HxCDF	94	99	5.2
234678-HxCDF	96	101	5.1
123789-HxCDF	96	96	0.0
123478-HxCDD	97	104	7.0
123678-HxCDD	97	109	11.7
123789-HxCDD	92	104	12.2
1234678 - HpCDF	100	104	3.9
1234789-HpCDF	105	109	3.7
1234678 -HpCDD	90	95	5.4
OCDF	92	93	1.1
OCDD	93	97	4.2

REC = Percent Recovered
$R P D=$ The difference between the two values divided by the average.
NA $=$ Not Applicable

This report shall not be reproduced, except in full, without the written consent of Pace Anathtical Services, inc.

Ph (949) 361-1022
Pr tack 3704687

mithras 798
(xxx (949) 264-1288
Fax (9009) 370-1045
Fan (699) 50.96
$\left.F_{\mathrm{mx}}(460) 725-565\right\}$

SUBCONTRACT ORDER - PROJECT \# IOJ1231

SENDING LABORATORY

Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

RECEIVING LABORATORY:

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200
Minneapolis, MN 55414
Phone :(612) 607-1700
Fax: (612) 607-6444

Standard TAT is requested unless specific due date is requested \Rightarrow D Due Date: \qquad Initials: \qquad

Containers Supplied:

fL Amber (1O1231-01C)
IL Amber (1011231-010)

APPENDIX G

Section 2

Outfall 003, October 18, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALDDATION REPORT

NPDES Monitoring Program

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUPS. IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 5
Reviewer: E. Wessling
Date of Review: December 12, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procectures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM2540C and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 003	IOI1231-01	Water	General Minerals
Outfall 010	IOI1232-01	Water	General Minerals
Outfall 006	1OI1180-01	Water	General Minerals
Outfall 007	IOI1184-01	Water	General Minerals
Outfall 009	IOJ1186-01	Water	General Minerals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and all analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times for all analyses were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

Target compounds were not detected in the associated method blanks. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for analyses without an MS/MSD. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as " J " values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No firther qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

MWE-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Fassiden, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Out fill 003
Report Number: IO11231

INORGANIC

Level IV Validated

Del Mar Analytical, Irvine Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Pace - Minneapolis
Reviewer E. Wessling
Analysis/Method Dioxins/Furans by Method 1613B

ACTION HEMS ${ }^{\circ}$

- Case Narrative

Package ID T711DF50
Task Order 313150010 SDG No. Multiple
No. of Analyses 8

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, cg.
Holding Times
GCMS Tume/Inst. Performance
Calibration
Method blanks
Surrogatea
Matrix Spike/Dup LCS
Field QC
Internal Standurd Performance
Compound Identification
Quantitation
System Peflomance
COMMMATS'

[^7]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: IOJ1181, IOJ1176, IOJ1186, IOJ1180, IOJ1184, IOJ1177, 1OJ1232, 1OJ1231

Prepared by

AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review. November 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATKON REPORT	Project: SDG Na: Anslyale:	NPDES Mulliple

Table 1. Sample Identification

Client ID	$\begin{gathered} \text { Laboratory ID } \\ \text { (DelMar) } \end{gathered}$	Laboratory ID (Pacc)	Matrix	COC Method
Outall 008	IOn1181-01	1021758001	water	1613
Outfall 005	10n1176-01	1021760001	water	1613
Outfall 009	1OI1186-01	1021761001	water	1613
Outfall 006	1OI1180-01	1021763001	water	1613
Outfall 007	1OJ1184-01	1021765001	water	1613
Outfall 004	1011177-01	1021766001	water	1613
Outfall 010	1011232-01	1021908001	water	1613
Outfall 003	1011231-01	1021910001	water	1613

DAZA VALIDITIONRBPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Pace for dioxin/furan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the case narrative and laboratory login sheet, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Pace had no custody seals present for samples IOJ1232-01 and 10I1231-01. All other samples had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

DATA VILIDATION REPORT	Project SDGNa: Amylyis:	

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 10/22/05 for instrument F. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (Blank 8223) was extracted and analyzed with the samples in this SDG. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDD}$ and OCDF were reported in method blank 8223 at concentrations of 0.0000041 and $0.0000068 \mathrm{ug} / \mathrm{L}$, respectively. An interference with OCDD was also reported in method blank 8223. Any detects for these target compounds \leq five times the concentration reported in the method blank were qualified as estimated, "UJ," in the site samples of this SDG. Detects for total dioxin and furan isomers at concentrations \leq five times the concentration reported in the method blank were qualified as estimated, " U_{3} " in the associated samples. In instances where the total concentration included peaks not present in the method blank as well as the method blank contamination, the total concentration was considered estimated, " J," as a portion of the total concentration was considered blank contamination. There were no other target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (LCS/LCSD 8224/8225) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. However, the laboratory was experiencing sporadic cross-contamination problems which they attributed to incomplete glassware cleaning procedures. Two samples, Outfall 009 and outfall 010, exhibited atypical target compound detects. These samples were rejected in favor of a reanalysis at another laboratory that was not experiencing contamination problems. This was done to ensure the target compound detects were representative of site conditions and not laboratory cross-contamination. No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reporterd compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, " J_{3} " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

This report shat not be reproducad, axcept in fill,
whout the whiten consent of Pace Analyteal Sarvices, inc.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

DATA VALDDATION REPORT

NPDES Monitoring Program

ANALYSIS: METALS

SAMPLE DELIVERY GROUPS IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

Prepared by
AMEC-Denver Operations
355. South Teller Street, Suite 300
Lakewood, Colorado 80226

	Project:	NPDES Monitoring
DATA VALIDATION REPORT	SDGNa: Multiple	

1. INTRODUCTION

Task Order Title: NPDES Monitoring Program
Contrat Task Order \#: 313150010
SDG\#: Multiple
Project Manager. P. Costa
Matrix: Water
Analysis: Metals
QC Level: Leved IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 3
Reviewer: E. Wessling
Date of Review: December 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 2), USEPA Methods 200.8 for ICPMS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: DATA VALDDATION RERORT Monitoring SDGNo.:
Multiple	

Table 1. Sample identification

	Laboratory ID	Matrix	COC Method
Clien ID	IOI1231-01	Water	$200.8 / 245.1$
Outfall 003	IOI1232-01	Water	$200.8 / 245.1$
Outfall 006	IOn1180-01	Water	$200.8 / 245.1$
Outfall 007	IOI1184-01	Water	$200.8 / 245.1$
Outfall 009	IOI1186-01	Water	$200.8 / 245.1$

DATA VALIMATION REPORT	Project: SDGNo.: Analyais:	NPDES Monitaring Multiple METALS

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 -days for mercury. No qualifications were required.

2.2 1CP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required for ICP-MS tuming.

2.3 CALIBRATION

The ICV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The laboratory analyzed reporting limit check standards in association with this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were significantly below the sample detects so as not to result in qualification of the data with the exception of cadmium in the method blank. Cadmium was qualified as a nondetect, "U," in the sample from Outfall 006. No further qualifications were required.

	Project:
DPDES Monitoring	
DATA VALDATION REPORT	SDGNo:
Multiple	

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP/MS analyses. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples and mercury LCS samples as reported on the LCS on the summary forms and in the raw data were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in these SDGs. No qualification was required.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed on samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for all analyses. No qualification was required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

	Project: NPDES Monitoring SATA VALMATION REPORT	SDGNo.:
Multiple		

of the original analysis. Results reported by the laboratory between the MDL and reporting limit were qualified as " J " values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

METALS

Level IV Validated
Del Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: RADIONUCLIDES

SAMPLE DELIVERY GROUP: IOJ1231

Prepared by
AMEC--Denver Operations 550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INIRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: 10J1231
Project Manager. P. Costa
Matrix: Water
Analysis: Radionuclides
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 15, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Method 905.0, and validation procedures outlined in the USEPA CLP National Fiunctional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALDATION REPORT	SDGNo.:	IOJI231

Table 1. Sample identification

Client ID	Del Mar ID	Eberline ID	Matrix	COC Method
Outfall 003	IOJ1231-01	$8615-001$	water	905.0

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOII231

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4 \pm 2^{\circ} \mathrm{C}$. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. The samples were noted to have been received intact and in good condition.

According to the Los Angeles Regional Water Quality Control Board's (LARWQCB) guidance letter dated $01 / 12 / 05$, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration. No qualifications were required.

2.1.2 Chain of Custody

The original COCs were signed and dated by field and laboratory personnel. The transfer COCs were signed by personnel from both laboratories. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these Ds. After all analyses were complete, Del Mar Analytical sent extra volume of Outfall 011 Grab for unfiltered reanalyses and cesium analysis of the substrate. No qualifications were required.

2.1.3 Holding Times

The Outfall 003 Unfiltered strontium-90-sample was analyzed beyond the five day holding time for uppreserved samples; therefore, these results were qualified as estimated, " j "

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

Strontium-90

The initial calibrations were performed in June 1995. All strontium chemical yields were at least 75% and were considered acceptable. The strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

2.3 BLANKS

No measurable activities were detected in the method blank, therefore, no qualifications were necessary.

	Project:	NPDES
DATA VALIDATION REPORT	SDGNo.:	IOJI231

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Aqueous blank spikes were analyzed in association with the samples in this SDG. The blank spike results were within the 3 -sigma limits. No qualifications were necessary.

2.5 LABORATORY DUPLICATES

The laboratory performed duplicate analyses on a sample other than from the site; therefore, no assessment was made for this criterion. No qualifications were necessary.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed for the strontium analysis. No qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the sample in this SDG. The sample result and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. No qualifications were necessary.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples in this SDG.

Eberiine, services

ANALYSIS RESUETS

APPENDIX G

Section 3

Outfall 003, November 09, 2005
Del Mar Analytical Laboratory Report

17461 Derian Ave, Suite 100, twine, CA 92614 (949) 26t-1022 faX (949) 260-3297 1014 E. Cooley Dr, Suite A, Cotton, CA 92324 (909) 370-4667 FAX (909) 370-1046

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 003

Sampled: 11/09/05
Received: 11/09/05
Issued: 01/20/06 17:27

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOK0900-01

CLIENT ID
Outfall 003

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine

Michele Chambertin
Project Manager
(961an Ave., Sutte 100, irvine, CA 92614 (949 261-1022 FAX (949) 260-3297 1014 E . Cookey Br., Suite A, Colkon, CA 92324 (909) $370-4667$ FAX (909) 3701046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) $785-9043$ FAX (480) 785-0851 2520 E. Sunset Rd. 3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200	Report Number: 10K0900	Sampled: 11/09/05
Pasadena, CA 91101	Received: $11 / 09 / 05$	
Attention: Bronwyn Kelly		

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OK0900-01 (Outfall 003 - Water) Reporting Units: ug/									
Antimony	EPA 200.8	5K16096	0.18	2.0	35	1	11/16/05	11/16/05	
Cadmium	EPA 200.8	5K16096	0.015	1.0	0.22	1	11/16/05	11/17/05	J
Copper	EPA 200.8	5K16096	0.49	2.0	7.1	1	11/16/05	11/16/05	B
Lead	EPA 200.8	5K16096	0.040	1.0	1.4	1	11/16/05	11/16/05	
Mercury	EPA 245.1	5K17098	0.050	0.20	ND	1	11/17/05	11/17/05	
Sample ID: IOK0900-01RE1 (Outfall 003 - Water)									
Repor									
Antimony	EPA 200.8	5K25104	0.18	2.0	37	1	11/25/05	11/27/05	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

9484 Chesapeake Dr., Surite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505.9689 9830 South 53t St., Suite B-120, Phoerix, AZ 85044 (480) 785-00433 FAX $4800785-0851$ 2520 E. Surset Rd. \#3, Las Vegas, NV 99120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200 Sampled: $11 / 09 / 05$ Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: 1OK0900 Received: $11 / 09 / 05$		

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OK0900-01 (Outfall 003 - Water) - cont.									
Reporting Units: mg/									
Chloride	EPA 300.0	5K09130	1.3	2.5	98	5	11/09/05	11/10/05	
Nitrate/Nitrite-N	EPA 300.0	5K09130	0.072	0.26	2.9	1	11/09/05	11/09/05	
Oil \& Grease	EPA 413.1	5K14056	0.96	5.1	1.1	1	11/14/05	11/14/05	J
Sulfate	EPA 300.0	5K09130	0.90	2.5	99	5	11/09/05	11/10/05	
Total Dissolved Solids	SM2540C	5K16116	10	10	590	1	11/16/05	11/16/05	
Total Suspended Solids	EPA 160.2	5K10088	10	10	19	1	11/10/05	11/10/05	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200		Sampled: 11/09/05
Pasadena, CA 91101 .	Report Number: 10 K 0900.	Received: 11/09/05
Attention: Bronwyn Kelly		

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 003 (IOK0900-01) - Water					
EPA 300.0	2	11/09/2005 13:38	11/09/2005 18:00	11/09/2005 23:30	11/09/2005 23:57

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

Project ID: Routine Outfall 003	
Report Number: 10 K 0900	Sampled: $11 / 09 / 05$
Received: $11 / 09 / 05$	

$\begin{array}{ll}\text { Sampled: } & 11 / 09 / 05 \\ \text { Received: } & 11 / 09 / 05\end{array}$
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Report Number: 10 K 0900
-

METHOD BLANKQC DATA

METALS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5K16096 Extracted: 11/16/05

Blank Analyzed: 11/16/2005-11/17/2005 (5K16096-BLK1)

Antimony	ND	2.0	0.050	ug/
Cadmium	ND	1.0	0.025	ug 1
Copper	1.20	2.0	0.25	ug $/$
Lead	0.129	1.0	0.040	ug/

LCS Analyzed: 11/16/2005-11/17/2005 (5K16096-BS1)

Antimony	75.0	2.0	0.050	ug / l	80.0	94	$85-115$
Cadmium	85.7	1.0	0.025	ug / l	80.0	$85-115$	
Copper	82.7	2.0	0.25	$\mathrm{ug} /$	80.0	107	$85-115$
Lead	82.4	1.0	0.040	ug / l	80.0	103	103
			$85-115$				

Matrix Spike Analyzed: 11/16/2005-11/17/2005 (5K16096-MS1)

Source: 1OK0918-02

Antimony	\therefore		76.3	2.0	0.050	ug $/$	80.0	0.060	95	$70-130$
Cadmium	\because	\therefore	86.0	1.0	0.025	ug 1	80.0	ND	108	$70-130$
Copper			79.4		2.0	0.25	ug 1	80.0	2.7	96
$70-130$										
Lead			79.8	1.0	0.040	ug $/ 1$	80.0	0.070	100	$70-130$

Matrix Spike Analyzed: $\mathbf{1 1 / 1 6 / 2 0 0 5 - 1 1 / 1 7 / 2 0 0 5 ~ (5 K 1 6 0 9 6 - M S 2) ~}$		Source: $\mathbf{I O K 0 9 2 2 - 0 3}$						
Antimony	75.0	2.0	0.050	$\mathrm{ug} /$	80.0	0.096	94	$70-130$
Cadmium	86.5	1.0	0.025	$\mathrm{ug} / 1$	80.0	0.11	108	$70-130$
Copper	107	2.0	0.25	ug 1	80.0	34	91	$70-130$
Lead	77.7	1.0	0.040	ug 1	80.0	0.22	97	$70-130$

| Matrix Spike Dup Analyzed: | 11/16/2005-11/17/2005 | (5K16096-MSD1) | Source: IOK0918-02 | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Antimony | 75.6 | 2.0 | 0.050 | ug/l | 80.0 | 0.060 | 94 | $70-130$ | 1 | 20 |
| Cadmium | 86.4 | 1.0 | 0.025 | ugl | 80.0 | ND | 108 | $70-130$ | 1 | 20 |
| Copper | 78.0 | 2.0 | 0.25 | ugl | 80.0 | 2.7 | 94 | $70-130$ | 2 | 20 |
| Lead | 79.7 | 1.0 | 0.040 | ugl | 80.0 | 0.070 | 100 | $70-130$ | 0 | 20 |

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200	Report Number: $10 K 0900$	Sampled: 11/09/05
Pasadena, CA 91101		Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKQC DATA

METALS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5K17098 Extracted: 11/17/05
Blank Analyzed: 11/17/2005 (5K17098-BLK1)

Batch: 5K25104 Extracted: 11/25/05
Blank Analyzed: 11/27/2005 (5K25104-BLK1)
Antimony $\quad \therefore$ ND
$2.0 \quad 0.18 \quad$ ug/

LCS Analyzed: 11/27/2005 (5K25104-BS1)

Antimony	79.6	2.0	0.18	ug/	80.0		100	85-115		
Matrix Spike Analyzed: 11/27/2005 (5K25104-MS1)			Source: IOK2100-01							
Antimony	77.4	2.0	0.18	ug/l	80.0	0.29	96	70-130		
Matrix Spike Dup Analyzed: 11/27/2005 (5K25104-MSD1)			Source: 1OK2100-01							
Antimony	80.6	2.0	0.18	ug / l	80.0	0.29	100	70-130	4	20

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200		Sampled: 11/09/05
Pasadena, CA 91101	Report Number: 10 OK 0900	Received: 11/09/05
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Batch: 5K10088 Extracted: 11/10/05.

Blank Analyzed: 11/10/2005 (5K10088-BLK1)
Total Suspended Solids ND
$10 \quad 10 \quad \mathrm{mg} / \mathrm{I}$

LCS Analyzed: 11/10/2005 (5K10088-BS1)
Total Suspended Solids 970
Duplicate Analyzed: 11/10/2005 (5K10088-DUP1)
Total Suspended Solids 440

10	$\mathrm{mg} /$	
10	mg / l	

$1000 \quad 97 \quad 85-115$

Source: IOK0617-01

450	2	10

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

[^8]
Del Mar Analytical

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200	Report Number: IOK0900	Sampled: 11/09/05
Pasadena, CA 91101 Attention: Bronwyn Kelly		

METHOD BLANKGC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5K14056 Extracted: 11/14/05										
Blank Analyzed: 11/14/2005 (5K14056-BLK1)										
Oil \& Grease ND	5.0	0.94	mg / l							
LCS Analyzed: 11/14/2005 (5K14056-BS1)										M-NR1
Oil \& Grease 17.1	5.0	0.94	mg / l	20.0		86	65-120			
LCS Dup Analyzed: 11/14/2005 (5K14056-BSD1)										
Oil \& Grease 17.4	5.0	0.94	mg / l	20.0		87	65-120	2	20	

Batch: 5K16116 Extracted: 11/16/05
Blank Analyzed: 11/16/2005 (5K16116-BLK1)
Total Dissolved Solids ND
LCS Analyzed: 11/16/2005 (5K16116-BS1)
Total Dissolved Solids 98
Duplicate Analyzed: 11/16/2005 (5K16116-DUP1)
Total Dissolved Solids 196
10
mg / l

Tal

10 | | mg / l | |
| :--- | :--- | :--- |
| | 10 | mg / l |

Source: IOK0904-01 $200 \quad 2 \quad 10$

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager
17461 Derian Ave., Stite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-329
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
9484 Chesapeake Dr., Sulte 805, San Diego, CA 92123 (858) 505-8596 FAX (858) $505-9689$
9830 5outh S1st St, Sule 8-120, Phoenix, AZ 85044 (480) 785-6043 FAX (480) 785-0851
2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 003	
300 North Lake Avenue, Suite 1200		Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Report Number: 10 K 0900	Received:
Attention: Bronwyn Kelly		

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IOK0900-01	413.1 Oil and Grease	Oil \& Grease	mg/	1.10	5.1	15
10K0900-01	Antimony-200.8	Antimony	ug/	35	2.0	6.00
IOK0900-01	Cadmium-200.8	Cadmium	ug/	0.22	1.0	4.00
$10 \mathrm{~K} 0900-01$	Chloride - 300.0	Chloride	mg / l	98	2.5	150
IOK0900-01	Copper-200.8	Copper	ug/	7.10	2.0	14
IOK0900-01	Mercury - 245.1	Mercury	ug/l	0	0.20	0.20
IOK0900-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	mg / l	2.90	0.26	10.00
1OK0900-01	Sulfate-300.0	Sulfate	mg / l	99	2.5	250
IOK0900-01	TDS - SM 2540 C	Total Dissolved Solids	mg / l	590	10	850
IOK0900-01RE1	Antimony-200.8	Antimony	ugh	37	2.0	6.00

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 003

	Sampled: $11 / 09 / 05$
Report Number: $10 K 0900$	Received: $11 / 09 / 05$

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

[^9]| MWH-Pasadena/Boeing | Project ID: Routine Outfall 003 | |
| :--- | ---: | ---: |
| 300 North Lake Avenue, Suite 1200 Report Number: $10 K 0900$ Sampled: $11 / 09 / 05$
 Pasadena, CA 91101 Received: $11 / 09 / 05$
 Attention: Bronwyn Kelly | | |

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Callfornia
1613A1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
EPA 905.0	Water		
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert \#02102CA, California Cert \#1640, Nevada Cert \#CA-413
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: \quad 1613-Dioxin-HR
Samples: IOK0900-01
Analysis Performed: EDD + Level 4
Samples: $10 K 0900-01$

Eberline Services

2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: Level 4 + EDD
Samples: 1OK0900-01
Analysis Performed: Strontium 90
Samples: $10 \mathrm{~K} 0900-01$

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

December 10, 2005

Alta Project I.D.: 27026

Ms. Michele Chambertin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Chambertin,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on December 08, 2005 under your Project Name "IOK 0900° ". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maser
Director of HRMS Services

Section I: Sample Inventory Report
 Date Received: \quad 12/8/2005

Alta Lab. ID
Client Sample ID
27026-001
IOK0900-01

SECTION II

Project 27026

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B

D
*

Conc. Concentration

DL Sample-specific estimated Detection Limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit - concentrations that corresponds to low calibration point ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authorify	Certificit Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	$05-013-0$
State of Arkansas, DOH	Reciprocity through CA
State of California - NELAP Primary AA	02102 CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	$68-00490$
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8 MS-Q

SUBCONTRACT ORDER - PROJECT \# IOK0900

Standard TAT is requested unless specific due date is requetted m Due Date: \qquad Initials: \qquad

SAMPLEMTHGRIY:				
	SmportibuluCDC weres Smapien Premud Topery:	$\begin{array}{lll} \square & \square= & N_{0} \\ \square & \square \end{array}$	 	[\% W

SAMPLE LOG-IN CHECKLIST

Alta Project \#:
27026

Comments:

EBERLINE

December 8. 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Reference: Del Ma Analytical Project No. IOK0900
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R511134-8621
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on November 11, 2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analysis was strontium-90 (Sr-90, EPA 905.0). The QC LCS, blank analysis, and sample duplicate results for the analysis were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as $\mathrm{Sr}-90$, do not require a matrix spike analysis to be performed.

Please call me if you have any questions concerning this report.
Regards.
Melon Mann
Melissa Mannion
Senior Program Manager

B/Mnjv
Rindoware: Report
Subcontract Form
Receipt checklist Invoice

Eberline Services

ANALYSIS RESULTS

Client Sample ID	Lab Sanple ID Collected Analyzed Nuclide	Resules ± 20	Unitg	MDA	
IOK0900-01	$8621-001$	$11 / 09 / 0512 / 01 / 05$	$\mathrm{Sr}-90$	0.517 ± 0.26	$\mathrm{pCi} / \mathrm{L}$

[^10]
Eberline Services

QC RESULTS

Certified by 20 Date $12 / 08705$
Report Date
Page 2

17467 Derian Ave Suite 900 , Irvire CA 92614 9484 Chesspanke Drive, Sute 805. Sun Diego, CA 52120

Ph (949) 261-9022 Pn (909) 370-4667 Pn (619) 505-9596 Ph (480) 785-0043 Ph (702) 798-3820

SUBCONTRACT ORDER - PROJECT \# IOK0900

SENDING LABORATORY:	RECEIVING LABORATORY:
Del Mar Analytical, Irvine	Eberline Services
17461 Derian Avenue. Suite 100	2030 Wright Avenue
Irvine, CA 92614	Richmond, CA 94804
Phone: (949) 261-1022	Phone :(510) 235-2633 (562)
Fax: (949) 261-1228	Fax: (510) 235-0438
Project Manager: Michele Harper	

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \qquad lnitials: \qquad

Analysis		Expiration	Comments
Sample 1D: $10 \mathrm{K0900-01}$	Water	Sampled: 11/09/05 13:38	Instant Nofication
Level 4 + EDD-OUT		12/07/05 13:38	**LEVEL IV QC, ACCESS 7 EDD**
Strontium 90-O		11/09/06, 13:38	905.0, sub to Eberine

Containers Supplied:
1 gal Poly (IOK0900-01K)

SAMPLE INTEGRITY:					
$\begin{array}{llll} \text { All containers intact: } & \text { Yes } \\ \text { Custody Seals Present: } & \text { No } \\ \text { Cues } & \text { No } \end{array}$	Sampic fabels/COC agree: Samples Preserved Properiy:	$\begin{aligned} & \text { Yes } \square N_{0} \\ & \square \text { yes } \mathbb{N}_{0} \end{aligned}$	Samples Received On lee:: Samples Received at (temp):	- Yes	No

Released By

ion Chamber Ser. No.

Bera/Gamma Meter Ser. No

Callibration date \qquad
Calibration date \qquad
Calibration date \qquad

APPENDIX G

Section 4

Outfall 003, November 09, 2005
AMEC Data Validation Reports

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: IOJ1186, IOJ1232, IOK0899, IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#:
Project Manager:
Matrix:
Analysis:
QC Level:
Multiple
P. Costa
Water
Dioxins/Furans
Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDGNa:	NPDES Muttiple
DATA VALIDATIONREPPORT	Andyair	DF

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outall 009	IO11232-01	$26994-001$	water	1613
Outfall 010	1011186-01	$26993-001$	water	1613
Outfall 018	IOK0899-01	$27025-001$	water	1613
Outfall 003	IOK0900-01	$27026-001$	water	1613
Outall 004	IOK0901-01	$27027-001$	water	1613
Outfall 005	IOK0902-01	$27028-001$	water	1613
Outfall 006	IOK0903-01	$27029-001$	water	1613
Outfall 009	IOK0904-01	$27030-001$	water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ or slightiy below for some of the samples. As none of the samples was noted to be damaged or frozen, no qualifications were required. According to the case narratives and laboratory login sheets, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in these SDGs. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Alta had no custody seals. The EPA Ds were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last ehting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

	Project: SDG Na:	NPDES Mulipis
DATA GALIDATHONREPORT	Anelyir:	D/F

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 6/06/2005. The calibration consisted of six concentration level standards (CSI through CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by intemal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds. were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank ($0-7516$-MB001) was extracted and analyzed with the samples in this SDG. No target compounds were detected in the method blank and no qualifications were required. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (OPR 0-7516-OPR001) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project: SDC Na.	NPDES Multiple
DATA VILIDUTION REPORT	Analyis	DF

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxios/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted with the exception of a false positive in Outfall 005 for $1,2,3,4,7,8-\mathrm{HxCDD}$. The sample was a nondetect Conirmation for $2,3,7,8$-TCDF detected in samples Outfall 004, Outfall 005, and Outfall 006 was not performed; therefore, $2,3,7,8-\mathrm{TCDF}$ was qualified as estimated, "J." No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, " J, " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Eberline
Reviewer E. Wessling
Analysis/Method Sr-90 by 905.0

Package ID T711RA13
Task Order 313150010
SDG No. IOK0900
No. of Analyses 1
Date: December 15, 2005

ACTION ITEMS ${ }^{\text {a }}$

- | Case Narrative |
| :--- |
| Deficiencies |

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables

6. Deviations from Analysis	Qualifications were assigned for the following:
Protocol, e.g.,	--holding times missed
Holding Times	
GC/MS Tune/Inst. Performance	
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Internal Standard Performance	
Compound Identification	
Quantitation	
System Performance	
COMMENTS ${ }^{\text {b }}$	

[^11]${ }^{b}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {o }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: RADIONUCLIDES

SAMPLE DELIVERY GROUP: IOK0900

Lakewood. Colorado 80726

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOK0900
Project Manager: P. Costa
Matrix: Water
Analysis: Radionuclides
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 15, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Method 905.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	Del Mar ID	Eberline ID	Matrix	COC Method
Outfall 003	IOK0900-01	$8621-001$	water	905.0

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4 \pm 2^{\circ} \mathrm{C}$. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. The samples were noted to have been received intact and in good condition.

According to the Los Angeles Regional Water Quality Control Board's (LARWQCB) guidance letter dated $01 / 12 / 05$, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration. No qualifications were required.

2.1.2 Chain of Custody

The original COCs were signed and dated by field and laboratory personnel. The transfer COCs were signed by personnel from both laboratories. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. After all analyses were complete, Del Mar Analytical sent extra volume of Outfall 011 Grab for unfiltered reanalyses and cesium analysis of the substrate. No qualifications were required.

2.1.3 Holding Times

The Outfall 003 Unfiltered strontium- 90 -sample was analyzed beyond the five day holding time for unpreserved samples; therefore, these results were qualified as estimated, "J"

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

Strontium-90
The initial calibrations were performed in June 1995. All strontium chemical yields were at least 75% and were considered acceptable. The strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

2.3 BLANKS

No measurable activities were detected in the method blank, therefore, no qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Aqueous blank spikes were analyzed in association with the samples in this SDG. The blank spike results were within the 3 -sigma limits. No qualifications were necessary.

2.5 LABORATORY DUPLICATES

The laboratory performed duplicate analyses on a sample other than from the site; therefore, no assessment was made for this criterion. No qualifications were necessary.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed for the strontium analysis. No qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the sample in this SDG. The sample result and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. No qualifications were necessary.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples in this SDG.

Eberline Services

ANALYSIS RESULTS

[^12]CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

$a m e c^{\text {® }}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC - Denver Operations
355 South Teller Street
Lakewood, CO 80226

1. INTRODUCTION

Task Order Title: NPDES Sampling
MEC ${ }^{x}$ Project Number:
Sample Delivery Group:
Project Manager:
Matrix:
313150010
1OK0900, IOK0901, IOK0902, IOK0903, IOK0904
P. Costa
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 4
Reviewer: E. Wessling
Date of Review: December 20; 2005

The samples listed in Table 1 were validated based on the guidelines outined in the AMEC Data Validation Procedure for ICP Metals (DVP-5, Rev. 2), US EPA Method 200.8 for ICP-MS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2194). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required OC criteria or where special consideration by the data user is required. Data qualifiers were placed on form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	$\begin{aligned} & \text { Propect } \\ & \text { SDG: } \\ & \text { Annersis. } \end{aligned}$	npoes Ma tiple Metatis

Table 1. Sample Identification

Client ID	Laboratory ib	Matrix	COC Method
Outfall 003	10K0900-01	Water	200.8/245.1
Outfall 003RE1	IOK0900-01RE1	Water	200.8
Outfall 004	10K0901-01	Water	200.8/245.1
Outfall 005	10K0902-01	Water	200.81245.1
Outfall 005RE1	IOK0902-01RE1	Water	200.8
Outfall 006	10K0903-01	Water	200.82245.1
Outfall 006RE!	IOK0903-01RE1	Water	200.8/245.1
Outfall 006RE2	IOK0903-01RE2	Water	200.8
Outfall 009	10K0904-01	Water	200.8/245.1

	Prozect: NPDES
DATA YALOATION REPORT	SDO: Nutiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples in these SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs.

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 006 were reanalyzed to confirm the original results. The laboratory did not appended the client IDs with "RE" suffices; therefore, the reviewer added these to the Form Is. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP-MS metals and 80 120% for mercury. The laboratory analyzed reporting limit check standards in association with these SDGs and all recoveries were acceptable. No qualifications were required.

	Project:	PDES
	SDC:	Mutiple
DATA VALIOATHO REPORT	Anarysis:	Metals

2.4 BLANKS

Mercury was reported in method blank 5K17098-BLK1 at $-0.072 \mu \mathrm{~g} /$; therefore, mercury in Outfall 003, Outfall 004, and Outfall 005 was qualified as estimated, " J_{x} " for detects and, " $U J_{s}$ " for nondetects. The remaining method blank and CCB results associated with the retained analyses were nondetects at the reporting limit or were significantly below the sample detects so as not to result in data qualification. No qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS AAB)

ICSA and ICSAB analyses were performed in association with the Outfall 003 selenium analysis. The recoveries were within the control limits. No other ICSA or ICSAB analyses were included in the raw data for the ICP-MS analyses. No qualifications were required

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS sample results were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MSMSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore no assessment was made with respect to this criterion. No qualifications were required.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore no assessment was made with respect to this criterion. Evaluation of laboratory accuracy was based on LCS results. No qualifications were required.

2.9 ICP-MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs: therefore, no assessment was made with respect to this criterion.

	Prquect DATA VALIDATION REPORT

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICPMS, the ICPMS internal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Some target analytes were reported from dilution analyses due to matrix interference. Reporting limits and MDLs were adjusted accordingly. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, " 1 ," with the annotation of "DNQ, in accordance with the requirements of the NPDES permit.

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 008 were reanalyzed to confirm the original results. As the original results were all confirmed, the results for Outfall 003RE1, Outfall 005RE1, Outfall 006RE1, and Outfall 006RE2 were rejected, "R," in favor of the original results. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with these samples.

Level II

Del Mar Analytical Irvine
Michele Chambertin
Project Manager

CONTRACT COMPLIANCE SCREENING GORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: GENERAL MINERALS
SAMPLE DELIVERY GROUPS:
IOK0900, 1OK0901, IOK0902, IOK0903, IOK0904

1. INTRODUCTION

Task Order Titte:	NPDES Sampling
AMEC Project Number:	313150010
Sample Delivery Group:	$10 \mathrm{KO900}$, IOK0901, 1OK0902, 1OK0903, IOK0904
Project Manager:	P, Costa
Matrix:	Water
Analysis:	General Minerals
QC Level:	Level IV
No. Of Samples:	5
of Reanalyses/Dilutions:	0
Reviewer:	E Wessling
Date of Review:	December 20, 2005

The samples listed in Table 1 were validated based on the guidelines outined in the AMEC Data Validation Procedure for General Minerals (DVP-6, Rev, 2), USEPA Methods for Chemical Analysis of Water and Wastes Methods 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-CMOD, and validation guidelines outined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form is as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	coc Method
Outfall 003	10K0900-01	Water	General Minerals
Outfall 004	$10 K 0901-01$	Water	General Minerals
Outfall 005	$10 K 0902-01$	Water	General Minerals
Outfall 00s	$10 K 0903-01$	Water	General Minerals
Outfall 009	$10 K 0904-01$	Water	General Minerals

2．DATA VALIDATION FINDINGS

2．1 SAMPLE MANAGEMENT

Following are findings associated with sample management：

2．1．1 Sample Preservation，Handling，and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4 \circ \mathrm{C} \pm 2 \circ \mathrm{C}$ ．No sample preservation，handing，or transport problems were noted，and no qualifications were necessary．

2．1．2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs．No sample qualifications were required．

2．1．3 Holding Times

The holding times were assessed by companing the dates of collection with the dates of analysis．The analytical holding times were met and no qualifications were required．

2.2 CALIBRATION

For the applicable analyses，the intial calibration correlation coefficients were ≥ 0.995 ．Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$ ．No qualifications were required．

2．3 BLANKS

The blank results associated with the analyses were nondetects at the reporting limit or were significantly less than the sample detects so as not to result in data qualification．No qualifications were required．

24 DLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory－established control limits． Raw data was reviewed to verify the values reported for the LCS recoveries．No qualifications were required．

	ProjectNPDES Multiple
SOG:	
Anaksis:	Gen. Min.

2.5 LABORATORY DUPLICATES

A laboratory duplicate analysis was performed on Outfall 009 for TDS. The \%D was less than the laboratory-established control limit of 10%. No qualifications were required.

2.6 MATRIX SPIKES

No MSMSD analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level V review was perfomed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, "J." with the annotation of DNQ." in accordance with the requirements of the NPDES permit. No further qualfications were required.

28 FIED QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

Del Mar Analytical

LEVEL TV

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

APPENDIX G

Section 5

Outfall 004, October 18, 2005
Del Mar Analytical Laboratory Report

17461 Derian Ave., Suite 100, Imine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colon, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite E-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-085) 2520 E. Sunset Rc. \#3, Las Vegas, NV 89120 (702) 798-3620 fax (702) 798-3621

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Sampled: 10/18/05
Received: 10/18/05
Issued: 01/20/06 15:12

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OJ1177-01

CLIENT ID
Outfall 004

MATRIX

Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: $10 \mathrm{~J} 1177 \quad \begin{array}{r}\text { Sampled: } 10 / 18 / 05 \\ \text { Received: } 10 / 18 / 05\end{array}$

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOJ1177-01 (Outfall 004 - Water)									
Reperting Units: ug/									
Antimony	EPA 200.8	5 J 19098	0.18	2.0	0.99	1	10/19/05	10/20/05	J
Cadmium	EPA 200.8	5J19098	0.015	1.0	0.20	1	10/19/05	10/20/05	B, J
Copper	EPA 200.8	5119098	0.49	2.0	7.0	1	10/19/05	10/20/05	
Lead	EPA 200.8	5J19098	0.040	1.0	2.8	1	10/19/05	10/20/05	
Mercury	EPA 245.1	5119052	0.050	0.20	0.22	1	10/19/05	10/19/05	
Sample ID: IOJ1177-01RE1 (Outfall 004 - Water)									
Repor									
Mercury	EPA 245.1	5 S 21075	0.050	0.20	0.24	1	10/19/05	10/21/05	

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004	
300 North Lake Avenue, Suite 1200	Report Number: 1OJ1177	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOJ1177-01 (Outfall 004 - Water) - cont.									
Reporting Units: mg/									
Chloride	EPA 300.0	SJ18043	0.26	0.50	6.8	1	10/18/05	10/18/05	
Nitrate/Nitrite-N	EPA 300.0	5118043	0.072	0.26	1.3	1	10/18/05	10/18/05	
Oil \& Grease	EPA 413.1	$5 J 21043$	0.90	4.8	ND	1	10/21/05	10/21/05	
Sulfate	EPA 300.0	5118043	0.18	0.50	5.5	1	10/18/05	10/18/05	
Total Dissolved Solids	SM2540C	5 J 19123	10	10	110	1	10/19/05	10/19/05	
Total Suspended Solids	EPA 160.2	5 J 20118	10	10	75	1	10/20/05	10/20/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Deftan Ave., Soite 100, traine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr, Suite A, Cofton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dt., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-085) 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Routine Outfall 004

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 004 (IOJ1177-01)- Water EPA 300.0	2	$10 / 18 / 200508: 12$	$10 / 18 / 2005$	$14: 20$	$10 / 18 / 2005$	$16: 30$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004
300 North Lake Avenue, Suite 1200	
Pasadena, CA 91101	Sampled: $10 / 18 / 05$
Attention: Bronwyn Kelly	Received: $10 / 18 / 05$

METHOD BLANK/QC DATA

METALS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5J19052 Extracted: 10/19/05

Blank Analyzed: 10/19/2005 (5J19052-BLK1)

Mercury	ND	0.20	0.050	ug / l						
LCS Analyzed: 10/19/2005 (5J19052-BS1)										
Mercury	8.06	0.20	0.050	ugl	8.00		101	85-115		
Matrix Spike Analyzed: 10/19/2005 (5319052-MS1)			Source: 1OJ1182-01							
Mercury	7.99	0.20	0.050	$\mathrm{ug} / 1$	8.00	ND	100	70-130		
Matrix Spike Dup Analyzed: 10/19/2005 (5J19052-MSD1)			Source: 1OJ1182-01							
Mercury	8.09	0.20	0.050	$u \mathrm{~g} / \mathrm{l}$	8.00	ND	101	70-130	1	20

Batch: 5J19098 Extracted: 10/19/05

Blank Analyzed: 10/20/2005 (5J19098-BLK1)

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: IOJ1177 Received: 10/18/05

Sampled: 10/18/05

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5J19098 Extracted: 10/19/05

Batch: 5J21075 Extracted: 10/21/05

Blank Analyzed: 10/21/2005 (5J21075-BLK1)

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5J18043 Extracted: 10/18/05

Blank Analyzed: 10/18/2005 (5J18043-BLK1)

Chloride	ND	0.50	0.26	mg / l						
Nitrate/Nitrite-N	ND	0.26	0.072	mg / l						
Sulfate	ND	0.50	0.18	$\mathrm{mg} / 1$						
LCS Analyzed: 10/18/2005 (5J18043-BS1)										
Chloride	5.36	0.50	0.26	mg / l	5.00		107	90-110		
Sulfate	9.77	0.50	0.18	$\mathrm{mg} / 1$	10.0		98	90-110		
Matrix Spike Analyzed: 10/18/2005 (5J18043-MS1)			Source: 1OJ1136-01							
Chloride	7.31	0.50	0.26	mg / l	5.00	2.2	102	80-120		
Sulfate	14.5	0.50	0.18	mg / l	10.0	4.1	104	80-120		
Matrix Spike Dup Analyzed: 10/18/2005 (5J18043-MSD1)			Source: IOJ1136-01							
Chloride	7.12	0.50	0.26	mg / l	5.00	2.2	98	80-120	3	20
Sulfate	14.6	0.50	0.18	mg / l	10.0	4.1	105	80-120	1	20

Batch: 5J19123 Extracted: 10/19/05

Blank Analyzed: 10/19/2005 (5J19123-BLK1)
Total Dissolved Solids ND
LCS Analyzed: 10/19/2005 (5J19123-BS1)
Total Dissolved Solids 1000

Duplicate Analyzed: 10/19/2005 (5J19123-DUP1)
Total Dissolved Solids
289
$1010 \mathrm{mg} /$

10	10	mgl	1000	100	$90-110$
			Source: IOJ0932-01		
10	10	mg		280	

$3 \quad 10$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004	
300 North Lake Avenue, Suite 1200	Report Number: IOJ1177	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANK/QC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5J20118 Extracted: 10/20/05										
Blank Analyzed: 10/20/2005 (5J20118-BLK1)										
Total Suspended Solids ND	10	10	mg / l							
LCS Analyzed; 10/20/2005 (5J20118-BS1)										
Total Suspended Solids 993	10	10	mg/	1000		99	$85-115$			
Duplicate Analyzed: 10/20/2005 (5J20118-DUP1)				Sou	ce: IOJ1	175-01				
Total Suspended Solids 344	10	10	mg / l		340			1	10	
Batch: 5J21043 Extracted: 10/21/05										
Blank Analyzed: 11/08/2005 (5J21043-BLK1)										
Oil \& Grease ND	5.0	0.94	mg / l							
LCS Analyzed: 11/08/2005 (5J21043-BS1)										M-NR1
Oil \& Grease 14.5	5.0	0.94	mg / l	20.0		72	65-120			
LCS Dup Analyzed: 11/08/2005 (5J21043-BSD1)										
Oil \& Grease 14.1	5.0	0.94	mg / l	20.0		70	65-120	3	20	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
$\begin{array}{lr}\text { Report Number: } 10 \mathrm{JI} 1177 & \text { Sampled: } 10 / 18 / 05 \\ \text { Received: } 10 / 18 / 05\end{array}$

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
1O11177-01	413.1 Oil and Grease	Oil \& Grease	$\mathrm{mg} /$	0.095	4.8	15
1OJ1177.01	Antimony-200.8	Antimony	ug/1	0.99	2.0	6.00
IOJ1177-01	Cadmium-200.8	Cadmium	ug/	0.20	1.0	4.00
IOJ1177-01	Chloride - 300.0	Chloride	mg / l	6.80	0.50	150
10J1177-01	Copper-200.8	Copper	ug/	7.00	2.0	14
1OJ1177-01	Mercury - 245.1	Mercury	ug/	0.22	0.20	0.20
IOJ1177-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	mg / l	1.30	0.26	10.00
1011177-01	Sulfate-300.0	Sulfate	mg / l	5.50	0.50	250
IOJ1177-01	TDS - SM 2540 C	Total Dissolved Solids	mg / l	110	10	850
1OJ1177-01RE1	Mercury - 245.1	Mercury	ug/	0.24	0.20	0.20

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004	
300 North Lake Avenue, Suite 1200	Report Number: IOJ1177	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004
300 North Lake Avenue, Suite 1200	
Pasadena, CA 91101	Report Number: $10 J 1177$
Attention: Bronwyn Kelly	
Sampled: $10 / 18 / 05$	

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD+Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Pace Analytical, MN- SUB

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: $1011177-01$
Analysis Performed: EDD + Level 4
Samples: 1OJ1177-01

Pace Analytical Services, Inc.
1700 Em Street
Minneapolis, MN 55414
Phone: 612.607.1700

The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Project: Chemical Analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.

PROJECT: PCDD/PCDF ANALYSES

ISSUED TO: Del Mar Analytical, Irvine
Attn: Michele Harper
17461 Derian Avenue, Suite 100
Irvine, CA 92614

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763 1021765, 1021766, 1021907. 1021908, 1021910, 1021911, 1021912, 1021959

INTRODUCTION

This report presents the results from the analyses performed on twelve samples submitted by a representative of Del Mar Analytical, Ivine. The samples were analyzed for the presence or absence of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) using a modified version of USEPA Method 1613B

SAMPLE IDENTIFICATION

Client ID
IOJ1181-01
1OJ1176-01
IOJ1186-01
10J1180-01
1OJ1184-01
IOJ1177-01
IOJ1234-01
IOJ1232-01
1OJ1231-01
IOJ1235-01
1OJ1236-01
1OJ1337-01

Sample Type

Water	$10 / 19 / 05$	1021758001
Water	$10 / 19 / 05$	1021760001
Water	$10 / 19 / 05$	1021761001
Water	$10 / 19 / 05$	1021763001
Water	$10 / 19 / 05$	1021765001
Water	$10 / 19 / 05$	1021766001
Water	$10 / 20 / 05$	1021907001
Water	$10 / 20 / 05$	1021908001
Water	$10 / 20 / 05$	1021910001
Water	$10 / 20 / 05$	1021911001
Water	$10 / 20 / 05$	1021912001
Water	$10 / 21 / 05$	1021959001

RESULTS

The results are included in the following:
Appendix A - Documentation
Appendix B - Sample Analysis Results
Appendix $C-Q C$ and Calibration Results
Appendix D-Sample Chromatograms and Raw Data
Appendix E - Calibration Chromatograms and Raw Data
Appendix F - QC Chromatograms and Raw Data
REPORT OF LABORATORY ANALYSIS
This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.

PROJECT: PCDD/PCDF ANALYSES
PAGE: 2

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907, 1021908, 1021910, 1021911, 1021912, 1021959

DISCUSSION

Two sets of results were provided, at the request of Del Mar Analytical, for sample IOJ1337-01. In the initial (11/03/2005) extraction batch for this sample, elevated recoveries were obtained for selected native congeners in the associated lab spike samples, most likely due to contamination. The second (11/08/2005) extraction batch showed good recoveries for the native congeners in the lab spikes. However, the results obtained from the analyses of the two extracts of the field sample were dissimilar. The initial sample results, associated with the contaminated lab spikes, were significantly lower than the repeat sample results, those associated with the compliant lab spikes samples.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from $34-108 \%$. All of the labeled standard recoveries obtained for these projects were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, the presence of interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged " 1 " where incorrect isotope ratios were obtianed, or " E " where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results, found at the beginning of Appendix C, show the blanks to contain trace levels of selected PCDD and PCDF congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged " B " and may be, at least partially, attributed to the background. In general, levels less than ten times the background are not considered to be statistically different from the background.

Laboratory spike samples were also prepared with the sample batches using clean water that had been fortified with native standard materials. The results show the spiked native compounds in LCS8224 and LCSD-8225 were recovered at $88-109 \%$, with relative percent differences of $0.0-12.2 \%$. These results indicate high degrees of accuracy and precision for these determinations. Four native recovery values LCS-8209 and LCSD-8210 were above the target ranges; the affected values were flagged " P " on the results tables and may indicate high biases for these congeners in the associated sample (the initial extract of IOJ1337-01).

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

NPDES - 138

PROJECT: PCDD/PCDF ANALYSES
PAGE: 3

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907, 1021908, 1021910, 1021911, 1021912, 1021959

REMARKS

The sample extracts will be retained for a period of 15 days from the date of this report and then discarded unless other arrangements are made. The raw mass spectral data will be archived on magnetic tape for a period of not less than one year. Questions regarding the data contained in this report may be directed to the author at the number provided below.

Pace Analytical Services, Inc.

Project Manager, HRMS
(612) 607-6383

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full without the written consent of Pace Analytical Services, inc.

[^13]$1=$ interference
$E=$ PCDE interference
ND $=$ Not Detected NA = Not Applicable NC = Not Calculated * $=$ See Discussion

Report No..... 1021766

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in fult, without the writen consent of Pace Analytical Services, inc.

Pace Analytical Services, Inc.

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

```
LCS-8224
F51109C_03
1050 mL
10/22/2005
F51109C 02
BLANK-82223
```

Matrix	Water
Dilution	NA
Extracted	$11 / 08 / 2005$
Analyzed	$11 / 10 / 2005 \quad 00: 34$
Injected By	BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	\% Rec.
2,3,7,8-TCDF	10	9.5	7.5	15.8	95
2,3,7,8-TCDD	10	9.5	6.7	15.8	95
1,2,3,7,8-PeCDF	50	50.6	40.0	67.0	101
2,3,4,7,8-PeCDF	50	45.9	34.0	80.0	92
1,2,3,7,8-PeCDD	50	43.9	35.0	71.0	88
1,2,3,4,7,8-HxCDF	50	47.2	36.0	67.0	94
1,2,3,6,7,8-HxCDF	50	47.2	42.0	65.0	94
2,3,4,6,7,8-HxCDF	50	48.1	35.0	78.0	96
1,2,3,7,8,9-HxCDF	50	48.2	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	48.5	35.0	82.0	97
1,2,3,6,7,8-HxCDD	50	48.3	38.0	67.0	97
1,2,3,7,8,9-HxCDD	50	46.2	32.0	81.0	92
1,2,3,4,6,7,8-HpCDF	50	50.2	41.0	61.0	100
1,2,3,4,7,8,9-HpCDF	50	52.6	39.0	69.0	105
1,2,3,4,6,7,8-HpCDD	50	44.9	35.0	70.0	90
OCDF	100	92.1	63.0	170.0	92
OCDD	100	93.3	78.0	144.0	93
2,3,7,8-TCDD-37Cl4	10	7.1	3.1	19.1	71
2,3,7,8-TCDF-13C	100	60.6	22.0	152.0	61
2,3,7,8-TCDD-13C	100	68.3	20.0	175.0	68
1,2,3,7,8-PeCDF-13C	100	64.1	21.0	192.0	64
2,3,4,7,8-PeCDF-13C	100	62.8	13.0	328.0	63
1,2,3,7,8-PeCDD-13C	100	81.7	21.0	227.0	82
1,2,3,4,7,8-HxCDF-13C	100	63.6	19.0	202.0	64
1,2,3,6,7,8-HxCDF-13C	100	63.7	21.0	159.0	64
2,3,4,6,7,8-HxCDF-13C	100	60.8	22.0	176.0	61
1,2,3,7,8,9-HxCDF-13C	100	60.7	17.0	205.0	61
1,2,3,4,7,8-HxCDD-13C	100	65.7	21.0	193.0	66
1,2,3,6,7,8-HxCDD-13C	100	67.5	25.0	163.0	68
1,2,3,4,6,7,8-HpCDF-13C	100	68.4	21.0	158.0	68
1,2,3,4,7,8,9-HpCDF-13C	100	62.9	20.0	186.0	63
1,2,3,4,6,7,8-HpCDD-13C	100	76.3	26.0	166.0	76
OCDD-13C	200	117.9	26.0	397.0	59

$\mathrm{Cs}=$ Concentration Spiked (ng/mL)
$\mathrm{Cr}=$ Concentration Recovered ($\mathrm{ng} / \mathrm{mL}$)
Rec. $=$ Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
$X=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{Nn}=$ Value obtained from additional analysis
Report No..... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

Tel: 612-607-1700

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical
Lab Sampie ID
Filename
Total Amount Extracied
ICAL Date
CCal Filename
Method Blank ID
LCSD-8225
F51109C_04
1040 mL
$10 / 22 / 2005$
F51109C_02
BLANK-8223

Matrix	Water	
Dilution	NA	
Extracted	$11 / 08 / 2005$	
Analyzed	$11 / 10 / 2005$	$01: 21$
Injected By	BAL.	

Compound	Cs	Cr	Lower Limit	Upper Limit	$\begin{gathered} \% \\ \text { Rec. } \end{gathered}$
2,3,7,8-TCDF	10	9.1	7.5	15.8	91
2,3,7,8-TCDD	10	10.1	6.7	15.8	101
1,2,3,7,8-PeCDF	50	51.1	40.0	67.0	102
2,3,4,7,8-PeCDF	50	51.8	34.0	80.0	104
1,2,3,7,8-PeCDD	50	46.1	35.0	71.0	92
1,2,3,4,7,8-HxCDF	50	49.5	36.0	67.0	99
1,2,3,6,7,8-HxCDF	50	49.5	42.0	65.0	99
2,3,4,6,7,8-HxCDF	50	50.6	35.0	78.0	101
1,2,3,7,8,9-HxCDF	50	48.0	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	52.0	35.0	82.0	104
1,2,3,6,7,8-HxCDD	50	54.3	38.0	67.0	109
1,2,3,7,8,9-HxCDD	50	51.8	32.0	81.0	104
1,2,3,4,6,7,8-HpCDF	50	51.9	41.0	61.0	104
1,2,3,4,7,8,9-HpCDF	50	54.5	39.0	69.0	109
1,2,3,4,6,7,8-HpCDD	50	47.3	35.0	70.0	95
OCDF ${ }^{\text {O }}$	100	93.1	63.0	170.0	93
OCDD	100	97.2	78.0	144.0	97
2,3,7,8-TCDD-37C14	10	6.9	3.1	19.1	69
$2,3,7,8 \text {-TCDF-13C }$	100	55.7	22.0	152.0	56
2,3,7,8-TCDD-13C	100	62.3	20.0	175.0	62
1,2,3,7,8-PeCDF-13C	100	57.8	21.0	192.0	58
2,3,4,7,8-PeCDF-13C	100	54.6	13.0	328.0	55
1,2,3,7,8-PeCDD-13C	100	68.6	21.0	227.0	69
1, $2,3,4,7,8$ - $\mathrm{HxCDF}-13 \mathrm{C}$	100	61.8	19.0	202.0	62
1,2,3,6,7,8-HxCDF-13C	100	63.8 59.4	21.0	159.0	64 59
2,3,4,6,7,8-HxCDF-13C	100	59.4 61.4	22.0	176.0 205.0	59 61
1,2,3,7,8,9-HxCDF-13C $1,2,4,7,8-\mathrm{HxCDD}-13 \mathrm{C}$	100 100	61.4 58.6	17.0 21.0	205.0 193.0	61 59
1,2,3,6,7,8-HxCDD-13C	100	67.0	25.0	163.0	67
1,2,3,4,6,7,8-HPCDF-13C	100	66.7	21.0	158.0	67
1,2,3,4,7,8,9-HpCDF-13C	100	62.2	20.0	186.0	62
1,2,3,4,6,7,8-HpCDD-13C	100	74.8	26.0	166.0	75
OCDD-13C	200	122.3	26.0	397.0	61

$\mathrm{Cs}=$ Concentration Spiked (ng/mL)
$\mathrm{Cr}=$ Concentration Recovered ($\mathrm{ng} / \mathrm{mL}$)
Rec. $=$ Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, $10 / 94$ Revision
$x=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{Nn}=$ Value obtained from additional analysis Report No..... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

Client \qquad Del Mar Analytical

SPIKE 1 ID.	LCS-8224
SPIKE 1 Filename	F51109C_03
SPIKE 2 ID..	LCSD-8225
SPIKE 2 Filename	F51109C_04

COMPOUND	SPIKE 1 REC, \%	SPIKE 2 REC,\%	RPD,\%
2378-TCDF	95	91	4.3
2378-TCDD	95	101	6.1
12378-PeCDF	101	102	1.0
23478-PeCDF	92	104	12.2
12378-PeCDD	88	92	4.4
123478-HxCDF	94	99	5.2
123678-HxCDF	94	99	5.2
234678-HxCDF	96	101	5.1
123789-HxCDF	96	96	0.0
123478-HxCDD	97	104	7.0
123678-HxCDD	97	109	11.7
123789-HxCDD	92	104	12.2
1234678-HpCDF	100	104	3.9
1234789-HpCDF	105	109	3.7
1234678-HpCDD	90	95	5.4
OCDF	92	93	1.1
OCDD	93	97	4.2

REC $=$ Percent Recovered
RPD $=$ The difference between the two values divided by the average.
$\mathrm{NA}=$ Not Applicable

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, inc.

NPDES-144

7461 Drip Awe. Sum w 100, irvine, CA 3781 TO14 E. Coom Cr., Sum e A. Collin, CA

SUBCONTRACT ORDER - PROJECT \# IOJ1177
1021766

SENDING LABORATORY:
Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

RECEIVING LABORATORY:

Pace Analytical, MN. SUB
1700 Elm Street, Ste 200
Minneapolis, MN 55414
Phone :(612) 607-1700
Fax: (612) 607-6444

Standard TAT is requested mines specific due date is requested mo ne Date: \qquad Initials: \qquad

Containers Supplied:

1 L Amber (1OIl177-01C)
1 L. Amber (1011177-01D)

APPENDIX G

Section 6

Outfall 004, October 18, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviever E. Wessling
Analysis/Method Metals

ACTIONITEMS'

- Case Narrative
Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardicopy

Deliverables
6. Deviations from Analysin Qualifications were assigned for the following:

Protocol, eg,

- Blank contamination

Holding Times

- Sample results betiveen the MDL and RL were estimated

GCMS Twne/nst. Peformance -Reanalyses were rejected in favor of the original analyses
Calibration
Method blanks
Surrogates
Mitrix Spike/Dup LCS
Field QC
Internal Stundard Performance
Compound Identification
Qumatitution
System Performance
COMMENTS ${ }^{\text {b }}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: METALS

SAMPLE DELIVERY GROUPS IOJ1176, IOJ1177, IOJ1181

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring Program
Contrat Task Order\#. 313150010
SDG\#: Multiple
Project Manager: P. Costia
Matrix: Wator
Analysis: Metals
QC Level: Level IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 2
Reviewer: E. Wessling.
Date of Review: December 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 2), USEPA Methods 200.8 for 1CPMS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 005	IOI1176-01	Water	$200.8 / 245.1$
Outfall 004	IOI1177-01	Water	$200.8 / 245.1$
Ontfall 008	1On181-01	Water	$200.8 / 245.1$

	Project:	NPDES Monitoring
DATA VALDATION REPORT	SDG No::	Multiple
SELALS		

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 -days for mercury. No qualifications were required.

2.2 1CP-MS TUNING

The ICP-MS met the method specified tume criteria; therefore, no qualifications were required for ICP-MS taming.

2.3 CALIBRATION

The ICV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The laboratory analyzed reporting limit check standards in association with this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were significantly below the sample detects so as not to result in qualification of the data with the exception of cadmium in the method blank. Cadmium was qualified as a nondetect, "U," in the sample from Outfall 004. No further qualifications were required.

	Project:	NPDES Monitoring
DATA VALDATIONREPORT	SDG No::	Multiple

2.5 ICP INTERIERENCE CHECK SAMPLE (ICS AAB)

ICSA and ICSAB analyses were included in the raw data for the ICP/MS analyses. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples and mercury LCS samples as reported on the LCS on the summary forms and in the raw data were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in these SDGs. No qualification was required.

2.8 MATRXX SPIKE

No MS/MSD analyses were performed on samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for all analyses. No qualification was required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.101CP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PEREORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form is were verified against the raw data. No transcription errors or calculation errors were noted. Reanalyses were performed for copper and or mercury in some site samples. In all cases the reanalyses confirmed the original analysis. The reanalyses were rejected in favor

of the original analysis. Results reported by the laboratory between the MDL and reporting linit were qualified as " J " values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

Del Mar Analytical

Project ID: Routine Outfall 004
MWACPasadens/Boving
300 North Lake Avenue, Suite 1200
Pasadena, CA. 91101
Attention: Bronwyn Kelly

Sampled 1018105
Received: 10n8/05

Level IV Validated

Del Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Pace - Minneapolis
Reviewer E. Wessling
Analysis/Method Dioxins/Furans by Method 1613B

ACTION RHEMS:

Package ID T711DF50
Task Order 313150010 SDG No. Multiple
No. of Analyses 8
Date: November 21, 2005

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Devititons from Analysil Qualifications were assigned for the following

Protocol, cg.
-EMPCs qualified as estimated nondetects
Holding Times
GCMS TimeInst. Perfomance
-IOH186-01 and 1OM232-01 rejected for lab contamination
Calibration
Method blanks
Surrogntes
Matrix Spike/Dup LCS
Field QC
Internal Standard Perfarmance
Compound Identification
Quantitution
System Performance
COMMMATS ${ }^{7}$

- method blank contamination
\qquad
\qquad
\qquad
\square
-

[^14]
$a m e c^{\theta}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS IOJ1184, IOJ1177, IOJ1232, IOJ1231

Prepared by
AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

	Projest: SDCNO.	NPDES Mutliple
DATA VALIDITIONREPORT	Analyis:	DF

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: November 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R^{\prime} " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID (DelMart	Laboratory ID (Race)	Matrix	COC Method
Outrall 008	10n1181-01	1021758001	water	1613
Outall 005	$1011176-01$	1021760001	water	1613
Oitfall 009	1011186-01	1021761001	water	1613
Outfall 006	10I1180-01	1021763001	water	1613
Outfall 007	$10 \mathrm{S1184-01}$	1021765001	water	1613
Outfall 004	$1011177-01$	1021766001	water	1613
Outaill 010	$1011232-01$	1021908001	water	1613
Outall 003	$1011231-01$	1021910001	water	1613

	Project: SDCNa:	NrDES
DAEA VILIMATION REPORT	Analyiar	DF

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handing, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Pace for dioxin/firan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the case narrative and laboratory login sheet, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Pace had no custody seals present for samples IOJ1232-01 and 1OJ1231-01. All other samples had custody seals present and intact. The EPA Ds were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

		NPDEs Multiple
DITA VALIDATTON RAPORT	Anthyis:	DF

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $10 / 22 / 05$ for instrument F. The calibration consisted of five concentration leval standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (Blank 8223) was extracted and analyzed with the samples in this SDG. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDD}$ and OCDF were reported in method blank 8223 at concentrations of 0.0000041 and $0.0000068 \mathrm{ug} / \mathrm{L}$, respectively. An interference with OCDD was also reported in method blank 8223. Any detects for these target compounds \leq five times the concentration reported in the method blank were qualified as estimated; "UJ" in the site samples of this SDG. Detects for total dioxin and furan isomers at concentrations \leq five times the concentration reported in the method blank were qualified as estimated, "UJ, ${ }^{\text {n }}$ in the associated samples. In instances where the total concentration included peaks not present in the method blank as well as the method blank contamination, the total concentration was considered estimated, " J, " as a portion of the total concentration was considered blank contamination. There were no other target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (LCS/LCSD 8224/8225) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

	Project: SDGNa:	NPDES Makiple
DIEA DALIDATMONREPORT	Amlyis	D \mathbf{F}

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND DENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. Howvever, the laboratory was experiencing sporadic cross-contamination problerns which they attributed to incomplete glassware cleaning procedures. Two samples, Outfall 009 and outfall 010 , exhibited atypical target compound detects. These samples were rejected in favor of a reanalysis at another laboratory that was not experiencing contamination problems. This was done to ensure the target compound detects were representative of site conditions and not laboratory cross-contamination. No firther qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

EMPC $=$ Estimnted Midinum Potesbly Cancantralion

$\mathrm{B}=\mathrm{L}$ Leat then 10 tinnas higher then method, blank haval
$P=R$ ecovery outalda of inethod 1613 control Imph
$\mathrm{J}=$ Concentration deterted is below the calthralton range

I $=$ interferanca
$\mathrm{E}=\mathrm{PCDE}$ Intarterence
NO = Not Daberted
$\mathrm{NA}=\mathrm{Not}$ Appliciole
NC = Not Caloutated
${ }^{-}=$Sen Discussion
Report No..... 1021786

> Leve! IV Validated

REPORT OF LABORATORY ANALYSIS
This roport shall not be roproduced, excapt in full,

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewar E. Wessling
Analysis/Method General Minerals

Package ID T711WC179
Task Order 313150010
SDG No. Multiple
No. of Analyses 3
Date: December 12. 2005

ACTION ITEMS*

| Case Narrative |
| :--- | :--- | :--- |
| Deficienciea |

2. Out of Scope

Analyses
3. Analyses Not Condacted
4. Missing Hardcopy

Delliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analyuis

Qualifications were assigned for the following:
Protocol, eg.,

- Acceppable as reviewed

Holding Times
OC/MS Tune/inst Performance
Calibration
Method blanks
Surrogates
Matrix SpikelDap LCS
Field QC
Internal Standard Performance
Compound Jdentification
Quantitation
System Peftormance
COMMinNTS ${ }^{\text {b }}$

- Subcontrected analytical luboratory is not mecting eonatruct and/or method requirementr:

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUPS: IOJ 1176, IOJ1177, IOJ1181

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#. 313150010
Sample Delivery Group \#: Multiple
Project Manager. P. Costa
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 3
Reviewer: E. Wessling
Date of Review: December 12, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procechures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 160.2, 300.0, and 413.1. Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meot the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " $\mathrm{R}^{\prime \prime}$ data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may bave resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project NPDES Monitoring SDG No.: Multiple Analysis: General Minemals

Table 1. Sample identification

Client D	Laboratory D	Matrix	COC Method
Outfall 005	IOI176-01	Water	General Minerals
Outfall 004	IOI1177-01	Water	General Minerals
Outfall 008	IOI1181-01	Water	General Minerals

	Project NPDES Monitoring DATA VALIDATION REPORT Multiple
SDG No.:	Analysis: General Minerals

2. DATA VALDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and all analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times for all analyses were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

Target compounds were not detected in the associated method blanks. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-sstablished control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for analyses without an MS/MSD. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FEELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

INORGANIC

MDL Reporting Sample Dilution Date Date Data

Del Mar Analytical, Irvine
Michele Harper
Project Manager

APPENDIX G

Section 7

Outfall 004, November 09, 2005
Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 004

Sampled: 11/09/05
Received: 11/09/05
Issued: 01/20/06 17:30

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OK0901-01

CLIENT ID

Outfall 004

MATRIX

Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004		
300 North Lake Avenue, Suite 1200			Sampled: 11/09/05
Pasadena, CA 91101	Report Number:	1OK0901	Received: 11/09/05
Attention: Bronwyn Kelly			

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOK0901-01 (Outfall 004 - Water)									
Reporting Units: ugi									
Antimony	EPA 200.8	5K16096	0.18	2.0	4.0	1	11/16/05	11/16/05	
Cadmium	EPA 200.8	5K16096	0.015	1.0	0.21	1	11/16/05	11/17/05	J
Copper	EPA 200.8	5K16096	0.49	2.0	11	1	11/16/05	11/16/05	B
Lead	EPA 200.8	5K16096	0.040	1.0	2.7	1	11/16/05	11/16/05	
Mercury	EPA 245.1	5K17098	0.050	0.20	0.065	1	11/17/05	11/17/05	J

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: IOK0901 Received: 11/09/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOK0901-01 (Outfall 004 - Water)-cont.Reporting Units: mgl									
Reporting Units: mg/l									
Chloride	EPA 300.0	5K09130	0.26	0.50	14	1	11/09/05	11/10/05	
Nitrate/Nitrite-N	EPA 300.0	5K09130	0.072	0.26	2.4	1	11/09/05	11/10/05	
Oil \& Grease	EPA 413.1	5K14056	0.91	4.9	1.7	1	11/14/05	11/14/05	J
Sulfate	EPA 300.0	5K09130	0.18	0.50	11	1	11/09/05	11/10/05	
Total Dissolved Solids	SM2540C	5K16116	10	10	190	1	11/16/05	11/16/05	
Total Suspended Solids	EPA 160.2	5K10088	10	10	64	1	11/10/05	11/10/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: 1OK0901 Received: 11/09/05

Sampled: 11/09/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 004 (1OK0901-01) - Water EPA 300.0	2	$11 / 09 / 200513: 52$	$11 / 09 / 200518: 00$	$11 / 09 / 2005$	$23: 30$	$11 / 10 / 200500: 28$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

Project ID: Routine Outfall 004	
Report Number: 10 K 0901	Sampled: 11/09/05
Received: $11 / 09 / 05$	

METHOD BLANKIQC DATA

METALS

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5K16096 Extracted: 11/16/05

Blank Analyzed: 11/16/2005-11/17/2005 (5K16096-BLK1)

Antimony	ND	2.0	0.050	ug / l	
Cadmium	ND	1.0	0.025	ug / l	
Copper	1.20	2.0	0.25	ug / l	
Lead	0.129	1.0	0.040	ug / l	

LCS Analyzed: 11/16/2005-11/17/2005 (5K16096-BS1)

Antimony	75.0	2.0	0.050	ug / l	80.0	94	$85-115$
Cadmium	85.7	1.0	0.025	ug / l	80.0	$85-115$	
Copper	82.7	2.0	0.25	ug / l	80.0	107	103
Lead	82.4	1.0	0.040	ug / l	80.0	103	$85-115$

Matrix Spike Analyzed: $\mathbf{1 1 / 1 6 / 2 0 0 5 - 1 1 / 1 7 / 2 0 0 5 ~ (5 K 1 6 0 9 6 - M S 1) ~}$	Source: IOK0918-02							
Antimony	76.3	2.0	0.050	ug/	80.0	0.060	95	$70-130$
Cadmium	86.0	1.0	0.025	ug/l	80.0	ND	108	$70-130$
Copper	79.4	2.0	0.25	ugg	80.0	2.7	96	$70-130$
Lead	79.8	1.0	0.040	ugl	80.0	0.070	100	$70-130$

Matrix Spike Analyzed: $\mathbf{1 1 / 1 6 / 2 0 0 5 - 1 1 / 1 7 / 2 0 0 5 ~ (5 K 1 6 0 9 6 - M S 2) ~}$		Source: 1OK0922-03						
Antimony	75.0	2.0	0.050	ugh	80.0	0.096	94	$70-130$
Cadmuium	86.5	1.0	0.025	uggl	80.0	0.11	108	$70-130$
Copper	107	2.0	0.25	ugh	80.0	34	91	$70-130$
Lead	77.7	1.0	0.040	ug/l	80.0	0.22	97	$70-130$

Matrix Sp		09				e: 10 K	18-02			
Antimony	75.6	2.0	0.050	ug/	80.0	0.060	94	70-130	1	20
Cadmium	86.4	1.0	0.025	ug/	80.0	ND	108	70-130	1	20
Copper	78.0	2.0	0.25	ugh	80.0	2.7	94	70-130	2	20
Lead	79.7	1.0	0.040	ugh	80.0	0.070	100	70-130	0	20

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004	
300 North Lake Avenue, Suite 1200		Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Report Number: IOK0901	Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

METALS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5K17098 Extracted: 11/17/05

Blank Analyzed: 11/17/2005 (5K17098-BLK1)

Mercury	ND	0.20	0.050	ug/						
LCS Analyzed: 11/17/2005 (5K17098-BS1)										
Mercury	8.09	0.20	0.050	ug/	8.00		101	85-115		
Matrix Spike Analyzed: 11/17/2005 (5K17098-MS1)			Source: IOK0827-04							
Mercury	8.44	0.20	0.050	ug/	8.00	ND	106	70-130		
Matrix Spike Dup Analyzed: 11/17/2005 (5K17098-MSD1)			Source: IOK0827-04							
Mercury	8.29	0.20	0.050	ug/	8.00	ND	104	70-130	2	20

MWH-Pasadena/Boeing	Project ID:	Routine Outfall 004	
300 North Lake Avenue, Suite 1200			Sampled: 11/09/05
Pasadena, CA 91101	Report Number:	IOK0901	Received: 11/09/05
Attention: Bronwyn Kelly			

METHOD BLANKMQC DATA

INORGANICS

Batch: 5K10088 Extracted: 11/10/05

Blank Analyzed: 11/10/2005 (5K10088-BLK1)
Total Suspended Solids ND
10
mg / l
LCS Analyzed: 11/10/2005 (5K10088-BS1)

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004	
300 North Lake Avenue, Suite 1200	Report Number: $10 K 0901$	Sampled: 11/09/05
Pasadena, CA 91101		Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5K14056 Extracted: 11/14/05										
Blank Analyzed: 11/14/2005 (5K14056-BLK1)										
Oil \& Grease ND	5.0	0.94	$\mathrm{mg} /$							
LCS Analyzed: 11/14/2005 (5K14056-BS1)										M-NR1
Oil \& Grease 17.1	5.0	0.94	mg / l	20.0		86	65-120			
LCS Dup Analyzed: 11/14/2005 (5K14056-BSD1)										
Oil \& Grease 17.4	5.0	0.94	$\mathrm{mg} / 1$	20.0		87	65-120	2	20	

Batch: 5K16116 Extracted: 11/16/05

Blank Analyzed: 11/16/2005 (5K16116-BLK1)
Total Dissolved Solids

Total Dissolved Solids	ND	10	10	$m g / t$

LCS Analyzed: 11/16/2005 (5K16116-BS1)
— 988
Duplicate Analyzed: 11/16/2005 (5K16116-DUP1)
Total Dissolved Solids
196

Source: IOK0904-01
$200 \quad 2 \quad 10$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Sampled: 11/09/05
Report Number: IOK0901
Received: 11/09/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

| LabNumber | Analysis | Analyte | | Compliance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Limit | | | | |

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004	
300 North Lake Avenue, Suite 1200	Report Number: IOK0901	Sampled: $11 / 09 / 05$
Pasadena, CA 91101		Received: $11 / 09 / 05$

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Sampled: 11/09/05
Report Number: IOK0901 Received: 11/09/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Callfornia
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert \#02102CA, California Cert \#1640, Nevada Cert \#CA-413
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: 1OK0901-01
Analysis Performed EDD + Level 4
Samples: $10 \mathrm{~K} 0901-01$

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

December 10, 2005
Alta Project I.D.: 27027
Ms. Michele Chambertin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Chambertin,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on December 08, 2005 under your Project Name "IOK0901". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

An " A " qualifier indicates that the result is greater than the low point in the calibration curve, but lower than the EPA Method 1613 Minimum Level.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,
Marie Maser
Martha M. Maser
Director of HRMS Services

Section I: Sample Inventory Report

Date Received: $\quad 12 / 8 / 2005$

Alta Lab. ID

27027-001

Client Sample ID

IOK0901-01

SECTION II

EPA Method 1613

Method Blank
Analyst: WJL

EPA Method 1613
EPA Method 1613

\%R LCL-UCL ${ }^{\text {d }}$ Oualifiers
$\begin{array}{ll}80.8 & 25-164 \\ 76.8 & 25-181\end{array}$
$\begin{array}{ll}73.6 & 32-141\end{array}$
$\begin{array}{ll}74.2 & 28-130\end{array}$ $\begin{array}{ll}72.0 & 23-140\end{array}$
$\begin{array}{ll}56.3 & 17-157 \\ 78.5 & 24-169\end{array}$ $\begin{array}{ll}78.5 & 24-169 \\ 76.0 & 24-185\end{array}$ 73.5. $21-178$
 $\begin{array}{ll}70.2 & 26-123\end{array}$ 70.4 28 -136

∞
$\stackrel{\circ}{4}$

Sample 1D: IOK0901-01

Analyst: WJL

APPENDIX

DATA QUALIFIERS \& ABBREVLATIONS

B	This compound was also detected in the method blank.
D	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
E	The reported value exceeds the calibration range of the instrument.
H	The signal-to-noise ratio is greater than 10:1.
I	Chemical interference
J	The amount detected is below the Lower Calibration Limit of the instrument.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated Detection Limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit - concentrations that corresponds to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Aecrediting Tithority	Cerfincte Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California - NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	Cl 285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

	Fherammerax	FWermint mesme
		Fantueg rasomy
	matay 7	

SUBCONTRACT ORDER - PROJECT \# IOK0901

SENDING LABORATORY:	RECEIVING LABORATORY:
Dei Mar Analytical, Irvine	Alta Analytical - SUB 2707
17461 Derian Avenue. Suite 100	1104 Windfield Way
Irvine, CA 92614	El Doredo Hills, CA 95762
Phone: (949) 261-1022	Phone : (916) 933-1640
Fax: (949) 261-1228	Fax: (916) 673-0106
Project Manager: Michele Chanberlin	

Standard TAT is requested miless specific dute date is reguested \Rightarrow Due Date: \qquad Initials: \qquad

Alta Project \#: 27027

Samples Arrival:	$\begin{array}{ll} \begin{array}{l} \text { Date/Time } \\ 12 / 8 / 05 \end{array} & 0910 \\ \hline \end{array}$		Initials:$C A B$		Location: $W R-2$	
Logged In:	$\begin{array}{cc} \text { Date/Time } \\ 18 / 8 / 05 & 1059 \end{array}$		${ }^{\text {Intitalas }: ~} B A B$			
Delivered By:	redEx	UPS	Cal	DHL	Hand Delivered	Other
Preservation:	(lce)	Blue ice		Dry Ice	e \quad None	
Temp ${ }^{\circ} \mathrm{C}$	$7{ }^{\circ} \mathrm{C}$	Time: 9925			Thermometer ID: DT-20	

Comments:

APPENDIX G

Section 8

Outfall 004, November 09, 2005 AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer E Wessling
Analysis/Method Dioxins/Furans by 1613

ACTION ITMMSA

- Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, eg.,
Holding Times
GC/MS Tume/inst. Performance
Cailibration
Method blanks
Surrogates
Matrix Spike/Dup ICS
Field QC
Internal Stundard Performance
Compound Identification
Quantitation
Systen Performance

Qualifications were assigned for the following:
-false positive
-estimated values between the RL and MDL
-estimated maximum possible concentrations
-nonconfirmation of 2,3,7,8-TCDF \square
\square
\square
\square

* Subcontracted analytical laboratory is not meting contract and/or method requirementa,

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUPS: IOJ1186, IOJ1232, IOK0899, IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by

	Project: SDG Na:	nPDE Multiple
DATA VALIMATHON REPORT	Analysir	DF

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#. Multipie
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory D (Del Mar)	Laboratary ID (Alth)	Matrix	COC Method
Outall 009	IOI1232-01	$26994-001$	water	1613
Outfall 010	IOI1186-01	$26993-001$	water	1613
Outfall 018	IOK0899-01	$27025-001$	water	1613
Outfall 003	IOK0900-01	$27026-001$	water	1613
Outfal 004	IOK0901-01	$27027-001$	water	1613
Outfall 005	IOK0902-01	$27028-001$	water	1613
Outfall 006	IOK0903-01	$27029-001$	water	1613
Outaill 009	IOK0904-01	$27030-001$	water	1613

	Project: SDGNa: Anebyis	NPD Muhipl
DATX VILIDATIONREPORT		

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ}$ C. The samples were shipped to Alta for dioxin/furan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ or slightly below for some of the samples. As none of the samples was noted to be damaged or frozen, no qualifications were required. According to the case narratives and laboratory login sheets, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in these SDGs. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Alta had no custody seals. The EPA DD were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC columin performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project: SDG Na: Anturit	NPDES Multipite
DATA VALIDATKON REPORT		

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $6 / 06 / 2005$. The calibration consisted of six concontration level standards (CS1 through CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transeription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section $\mathbf{2 . 2}$.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-7516-MB001) was extracted and analyzed with the samples in this SDG. No target compounds were detected in the method blank and no qualifications were required. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (OPR 0-7516-OPR001) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project SDCNo: Andyatr:	NPDES Multiple
DATA VALTOUTTON REPORT		DF

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENIIFICATION

The laboratory analyzed for polychlorinated dioxins/firans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted with the exception of a false positive in Outfall 005 for $1,2,3,4,7,8 \mathrm{FHxCDD}$. The sample was a nondetect Confirmation for $2,3,7,8$-TCDF detected in samples Outfall 004, Outfall 005, and Outfall 006 was not performed; therefore, 2,3,7,8-TCDF was qualified as estimated, "J." No firther qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Auy detects below the laboratory lower calibration level were qualified as estimated, " J " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect. "UJ." No further qualifications were required.
,

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

$a m e c^{9}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS:
IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by

AMEC - Denver Operations
355 South Teller Street
Lakewood, CO 80226

	Propert	NPDES
	SDG:	Multiple
DATA VALIDATION REPORT	Analysis	Metals

1. INTRODUCTION

Task Order Titte: NPDES Sampling
MEC ${ }^{\text {x }}$ Project Number:
313150010
Sample Delivery Group:
Project Manager:
Matrix:
Analysis:
IOK0900, 1OK0901, IOK0902, 1OK0903, 1OK0904
P. Costa
Water
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions:
4
Reviewer:
Date of Review:
E Wessling
December 20, 2005

The samples listed in Table 1 were validated based on the guidelines outtined in the AMEC Data Validation Procedure for ICP Metals (DVP-5, Rev. 2), US EPA Method 200.8 for ICP-MS and 245.1 for Mercury, and validation guidelines outined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2194). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the form l as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

		npdes Multiple
DATA VALIDATION REPORT	Analysis:	Metats

Table 1. Sample Identification

Client ID	Laboratory ID	Matnix	COC Method
Outfall 003	IOK0900-01	Water	200.82245 .1
Outfall 003RE1	IOK0900-01RE1	Water	200.8
Outfall 004	IOK0901-01	Water	$200.8 / 245.1$
Outfall 005	IOK0902-01	Water	$200.8 / 245.1$
Outfall 005RE1	IOK0902-01RE1	Water	200.8
Outfall 006	IOK0903-01	Water	$200.8 / 245.1$
Outfall 006RE1	$10 K 0903-01 R E 1$	Water	$200.8 / 245.1$
Outfall 006RE2	IOK0903-01RE2	Water	200.8
Outfall 009	IOK0904-01	Water	$200.8 / 245.1$

NPDES	
DATA YALIDATION REPORT	Propect:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples in these SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handing, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs.

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 006 were reanalyzed to confirm the original results. The laboratory did not appended the client IDs with "RE" suffices; therefore; the reviewer added these to the Form Is. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28 -days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP-MS metals and $80-$ 120% for mercury. The laboratory analyzed reporting limit check standards in association with these SDGs and all recoveries were acceptable. No qualifications were required.

Profact:	NPDES
DATA VALDAHON REPORT	SDG: Multipte

2.4 BLANKS

Mercury was reported in method blank 5K17098-BLK1 at $-0.072 \mu \mathrm{~g} / \mathrm{L}$; therefore, mercury in Outfall 003, Outfall 004, and Outfall 005 was qualified as estimated, " J ," for detects and, " UJ ," for nondetects. The remaining method blank and CCB results associated with the retained analyses were nondetects at the reporting limit or were significantly below the sample detects so as not to result in data qualification. No qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS AAB)

ICSA and ICSAB analyses were performed in association with the Ouffall 003 selenium analysis. The recoveries were within the control limits. No other ICSA or ICSAB analyses were included in the raw data for the ICP-MS analyses. No qualifications were required

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS sample results were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MSMSD or laboratory duplicate analyses were performed in association with the samples in these SDGs, therefore no assessment was made with respect to this criterion. No qualifications were required.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore no assessment was made with respect to this criterion. Evaluation of laboratory accuracy was based on LCS results. No qualifications were required.

2.9 ICP-MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

NPDES	
DATA VALDATHON REPORY	Prolect:
SOG: Muliple	

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS intemal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form is were verified against the raw data. No transcription errors or calculation errors were noted. Some target analytes were reported from dilution analyses due to matrix interference. Reporting limits and MDLs were adjusted accordingly. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, " J ," with the annotation of "DNQ", in accordance with the requirements of the NPDES permit.

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 006 were reanalyzed to confirm the original results. As the original results were all confirmed, the results for Outfall 003RE1, Outfall 005RE1, Outfall 006RE1, and Outfall 006RE2 were rejected, "R," in favor of the original results. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2,12.2 Field Duplicates

There were no field duplicate analyses performed in association with these samples.

1 MWH Prasean Boeing	Froject ID. Routine Outinll oot	
1300 North Lake Avenur, Sute 2200		Smmpled L10900s
Pasadena CA 91101 Atention: Bronwya Kelly	Report Number: 10K0901	Received: 110905

Metals

Analyte	Methed	Sutch	MDL Limit	Reportiog Linnt	Smupple 	DMution Tretar	Date Euxutted	Date Anslyayd	Data Qumifiexs		
Sample By: 1OK0901-01 (Outivil 004 Reportiog Eintas un	-Water)										$\begin{aligned} & C:+ \\ & C= \end{aligned}$
Antimony	ERA 200.8	5K16096	6.18	2.0	40	1	1HCOS	11460s			
Cuduxixu	EPA 20.8	\$K16096	0.015	1.0	12	1	111605	11/1705		i	B6an
Copper	EPA200.8	5×16096	0.49	20	11	1	114605	111605	P		
Lemat	EPA 200:	5316096	0.040	1.6	27	1	117605	11106			
Mercury	EPA 2451	Sx17098	0.063	020	0.06s	1	Inn705	Lu7nos	1	3	8

Levec IV

Del Mar Analyticnt Irviae
Michele Cumbertin
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\boldsymbol{\theta}}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: GENERAL MINERALS
SAMPLE DELIVERY GROUPS:
IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC - Denver Operations
355 South Teller Street
Lakewood, CO 80226

	Project:	NPOES
	SOG:	Multiple
DATA VALIDATION REPORF	Analyeis:	Gen Min

1. INTRODUCTION

Task Order Titie:	NPDES Sampling
AMEC Project Number:	313150010
Sample Delivery Group:	1OK0900, 1OK0901, 1OK0902, 1OK0903, IOK0904
Project Manager:	P. Costa
Matrix:	Water
Analysis:	General Minerals
QC Level:	Level IV
No of Samples:	5
of Reanalyses/Dilutions:	0
Reviewer:	E. Wessling
Date of Review:	December 20, 2005

The samples listed in Table 1 were validated based on the guidelines outtined in the AMEC Data Validation Procedure for General Minerals (DVP-6, Rev. 2), USEPA Methods for Chemical Analysis of Water and Wastes Methods $160.2,300.0$, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-CMOD, and validation guidelines outined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form is as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outtall 003	10K0900-01	Water	General Minerals
Outfall 004	10K0901-01	Water	General Minerals
Outfall 005	10K0902-01	Water	General Minerals
Outfall 008	10K0903-01	Water	General Minerals
Outfall 009	10K090401	Water	General Minerals

DATA VALIDATION REPORT \begin{tabular}{l}

Project: | NPDES |
| :---: |
| Mutiple |

SDG:

\hline
\end{tabular}

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times were met and no qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

The blank results associated with the analyses were nondetects at the reporting limit or were significantly less than the sample detects so as not to result in data qualification. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

NPDES	
DATA VALIDATION REPORT	Prolect
SDG: Muliplia	

2.5 LABORATORY DUPLICATES

A laboratory duplicate analysis was performed on Outfall 009 for TDS. The \%D was less than the laboratory-established control limit of 10%. No qualifications were required.

2.6 MATRIX SPIKES

No MSMSD analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results. No qualifications were required.

2.7. SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MOL and reporting limit were qualified as estimated; "J," with the annotation of "DNQ," in accordance with the requirements of the NPDES permit. No further qualifications were required.

2.8 FIELD OC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.


```
MWH-rasmbenabocing
300 North Lake Avenue, Suige 1200
Masadeas, CA91101
Attention: Bronwyy Kelly
```

Project ID: Routipe Ontall 004
Repont Number, IOX0901
Sampled 11/0\%05
Received 11/0\%05

NORGANICS

NDL Reperting Saraple Dilutime Date Date Date

Level IV

Del Mar Analytical, Trrine
Michele Chamberin
Project Manager

APPENDIX G

Section 9

Outfall 005, October 18, 2005

Del Mar Analytical Laboratory Report

17467 Derian Ave., SuLfite 100, irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr_{2}, Suite $\mathrm{A}_{\text {, Cotton, CA } 92324 \text { (909) 370-4667 FAX (909) 370-1046 }}$ 9484 Chesapeake Dr., Suite B05, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51 st St, Suite B-120, Phoenix, AZ B5044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 790-3621

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 005

Sampled: 10/18/05
Received: 10/18/05
Issued: 01/20/06 15:09

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

1OJ1176-01

CLIENT ID
Outfall 005

MATRIX

Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200 Report Number: IOJ1176	Sampled: $10 / 18 / 05$	
Pasadena, CA 91101		
Attention: Bronwyn Kelly		

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOJ1176-01 (Outfall 005 - Water)									
Reporting Units: ugh									
Antimony	EPA 200.8	5J19098	0.36	4.0	ND	2	10/19/05	10/20/05	
Cadmium	EPA 200.8	5 J 19098	0.030	2.0	1.6	2	10/19/05	10/20/05	J
Copper	EPA 200.8	5 J 19098	0.98	4.0	30	2	10/19/05	10/20/05	
Lead	EPA 200.8	5 J 19098	0.080	2.0	34	2	10/19/05	10/20/05	
Mercury	EPA 245.1	5 J 19052	0.050	0.20	0.41	1	10/19/05	10/19/05	
Sample ID: IOJ1176-01RE1 (Outfall 005 - Water)									
Reporting Units: ug/									
Copper	EPA 200.8	5J19098	0.98	4.0	31	2	10/19/05	10/24/05	
Mercury	EPA 245.1	5J21075	0.050	0.20	0.46	1	10/19/05	10/21/05	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: 10 Jll 176
Sampled: 10/18/05
Received: 10/18/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOJ1176-01 (Outfall 005 - Water) - cont. Reporting Units: mg/l									
Chloride	EPA 300.0	5 J 18042	1.3	2.5	27	5	10/18/05	10/18/05	
Nitrate/Nitrite-N	EPA 300.0	5 J 18042	0.072	0.26	16	1	10/18/05	10/18/05	
Oil \& Grease	EPA 413.1	5 J 21043	0.90	4.8	ND	1	10/21/05	10/21/05	
Sulfate	EPA 300.0	5 J 18042	0.18	0.50	18	1	10/18/05	10/18/05	
Total Dissolved Solids	SM2540C	5J19123	10	10	540	1	10/19/05	10/19/05	
Total Suspended Solids	EPA 160.2	5 J 20118	10	10	3000	1	10/20/05	10/20/0S	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005

SHORT HOLD TIME DETAIL REPORT

| | Hold Time
 (in days) | Date/Time
 Sampled | Date/Time
 Received | Date/Time
 Extracted | Date/Time
 Analyzed |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: Outfall 005 (IOJ1176-01) - Water
 EPA 300.0 | 2 | $10 / 18 / 200508: 45$ | $10 / 18 / 200514: 20$ | $10 / 18 / 200516: 00$ | $10 / 18 / 200517: 37$ |

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200		Sampled: $10 / 18 / 05$
Pasadena, CA 91101	Report Number: $10 J 1176$	Received: 10/18/05
Attention: Bronwyn Kelly		

METHOD BLANKIOC DATA

METALS

Batch: 5J19098 Extracted: 10/19/05

Blank Analyzed: 10/20/2005 (5J19098-BLK1)

Antimony	ND	2.0	0.18	ug/l
Cadmium	0.109	1.0	0.015	ug/l
Copper	ND	2.0	0.49	ug/
Lead	0.0450	1.0	0.040	ug/

LCS Analyzed: 10/20/2005 (5J19098-BS1)

Antimony	77.4	2.0	0.18	ug/l	80.0		97	85-115
Cadmium	81.9	1.0	0.015	ug/l	80.0		102	85-115
Copper	77.7	2.0	0.49	ugl	80.0		97	85-115
Lead	81.2	1.0	0.13	ug/	80.0		102	85-115
Matrix Spike Analyzed: 10/20/2005 (5J19098-MS1)					Source: 10J1156-01			
Antimony	84.7	2.0	0.18	ug/1	80.0	0.18	106	70-130
Cadmium	84.1	1.0	0.015	ug/	80.0	0.14	105	70-130
Copper	83.0	2.0	0.49	ughl	80.0	3.9	99	70-130
Lead	79.1	1.0	0.040	ugl	80.0	0.32	98	70-130

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

17461 Derian Ave, Suite 100, trvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX $\{909$) 370-1046

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA. 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005

METHOD BLANKIOC DATA

METALS

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5J19098 Extracted: 10/19/05

Matrix Spike Analyzed: 10/20/2005 (5J19098-MS2)			Source: IOJ1159-01							
Antimony	86.6	2.0	0.18	ug/1	80.0	0.29	108	70-130		
Cadmium	84.6	1.0	0.015	ug/1	80.0	0.072	106	70-130		
Copper	84.8	2.0	0.49	ug/l	80.0	4.8	100	70-130		
Lead	80.8	1.0	0.040	ug/l	80.0	0.53	100	70-130		
Matrix Spike Dup Analyzed: 10/20/2005 (5J19098-MSD1)			Source: IOJ1156-01							
Antimony	85.5	2.0	0.18	ug/l	80.0	0.18	107	70-130	1	20
Cadmium	84.4	1.0	0.015	ug/	80.0	0.14	105	70-130	0	20
Copper	83.1	2.0	0.49	ugh	80.0	3.9	99	70-130	0	20
Lead	79.9	1.0	0.040	ug/	80.0	0.32	99	70-130	1	20

Batch: 5J21075 Extracted: 10/21/05

Blank Analyzed $10 / 21 / 2005$ (5J21075-BLK1)

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200		Sampled: $10 / 18 / 05$
Pasadena, CA 91101	Report Number: IOJ1176	Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKGC DATA

INORGANICS

[^15]| MWH-Pasadena/Boeing | Project ID: Routine Outfall 005 | |
| :--- | ---: | ---: |
| 300 North Lake Avenue, Suite 1200 | Report Number: 10J1176 | Sampled: $10 / 18 / 05$
 Pasadena, CA 91101 |
| Received: $10 / 18 / 05$ | | |

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5320118 Extracted: 10/20/05										
LCS Analyzed: 10/20/2005 (5J20118-BS1)										
Total Suspended Solids 993	10	10	mg / l	1000		99	85-115			
Duplicate Analyzed: 10/20/2005 (5J20118-DUP1)					ce: 10 Jl	175-01				
Total Suspended Solids 344	10	10	mg / l		340			1	10	
Batch: 5J21043 Extracted: 10/21/05										
Blank Analyzed: 11/08/2005 (5121043-BLK1)										
Oil \& Grease ND	5.0	0.94	mg / l							
LCS Analyzed: 11/08/2005 (5J21043-BS1) M-NR1										
Oil \& Grease 14.5	5.0	0.94	mg / l	20.0		72	65-120			
LCS Dup Analyzed: 11/08/2005 (5521043-BSD1)										
Oil \& Grease 14.1	5.0	0.94	$\mathrm{mg} /$	20.0		70	65-120	3	20	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: IOII176 Received: $10 / 18 / 05$

Sampled: 10/18/05
Received: 10/18/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

| LabNumber | Analysis | Analyte | | | Compliance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Limit | | | | | |

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: 1011176 Received: 10/18/05

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: 1011176 . . Received: 10/18/05

Sampled: 10/18/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Calfornia
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: IOJ1176-01
Analysis Performed: EDD + Level 4
Samples: ION176-01

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

Pace Anafytical Servitas, ime.
1700 Em Straet
Minneapolis, MN 55414
Phone: 612.607.1700
Fax: 612.607.6444

The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Project: Chemical Analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, inc.

PROJECT: PCDD/PCDF ANALYSES
ISSUED TO: Del Mar Analytical, Irvine
Attn: Michele Harper
17461 Derian Avenue, Suite 100
Irvine, CA 92614

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763 1021765, 1021766, 1021907. 1021908, 1021910, 1021911, 1021912, 1021959

INTRODUCTION

This report presents the results from the analyses performed on twelve samples submitted by a representative of Del Mar Analytical, Irvine. The samples were analyzed for the presence or absence of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) using a modified version of USEPA Method 1613B

SAMPLEIDENTIFICATION

Client ID	Sample Type	Date Recelved	PACE ID
1OJ1181-01	Water	10/19/05	1021758001
IOJ1176-01	Water	10/19/05	1021760001
IOJ1186-01	Water	10/19/05	1021761001
10J1180-01	Water	10/19/05	1021763001
1031184-01	Water	10/19/05	1021765001
10J1177-01	Water	10/19/05	1021766001
1OJ1234-01	Water	10/20/05	1021907001
1OJ1232-01	Water	10/20/05	1021908001
1OJ1231-01	Water	10/20/05	1021910001
1OJ1235-01	Water	10/20/05	1021911001
10J1236-01	Water	10/20/05	1021912001
10J1337-01	Water	10/21/05	1021959001

RESULTS

The results are included in the following:

$$
\begin{aligned}
& \text { Appendix A - Documentation } \\
& \text { Appendix B - Sample Analysis Results } \\
& \text { Appendix C - QC and Calibration Results } \\
& \text { Appendix D - Sample Chromatograms and Raw Data } \\
& \text { Appendix E - Calibration Chromatograms and Raw Data } \\
& \text { Appendix F - QC Chromatograms and Raw Data } \\
& \text { REPORT OF LABORATORY ANALYSIS }
\end{aligned}
$$

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, inc.

NPDES - 232

PCDD/PCDF ANALYSES
PAGE: 2

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907, 1021908, 1021910, 1021911, 1021912, 1021959

DISCUSSION

Two sets of results were provided, at the request of Del Mar Analytical, for sample 1OJ1337-01. In the initial (11/03/2005) extraction batch for this sample, elevated recoveries were obtained for selected native congeners in the associated lab spike samples, most likely due to contamination. The second (11/08/2005) extraction batch showed good recoveries for the native congeners in the lab spikes. However, the results obtained from the analyses of the two extracts of the field sample were dissimilar. The initial sample results, associated with the contaminated lab spikes, were significantly lower than the repeat sample results, those associated with the compliant lab spikes samples.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from $34-108 \%$. All of the labeled standard recoveries obtained for these projects were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, the presence of interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged " 1 " where incorrect isotope ratios were obtianed, or " E " where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results, found at the beginning of Appendix C, show the blanks to contain trace levels of selected PCDD and PCDF congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged " B " and may be, at least partially, attributed to the background. In general, levels less than ten times the background are not considered to be statistically different from the background.

Laboratory spike samples were also prepared with the sample batches using clean water that had been fortified with native standard materials. The results show the spiked native compounds in LCS8224 and LCSD-8225 were recovered at $88-109 \%$, with relative percent differences of 0.0-12.2\%. These results indicate high degrees of accuracy and precision for these determinations. Four native recovery values LCS-8209 and LCSD-8210 were above the target ranges; the affected values were flagged " P " on the results tables and may indicate high biases for these congeners in the associated sample (the initial extract of IOJ1337-01).

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

PAGE: 3

Pace Anatical Services, Inc.

1700 Em Street

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907. 1021908, 1021910, 1021911, 1021912, 1021959

REMARKS

The sample extracts will be retained for a period of 15 days from the date of this report and then discarded unless other arrangements are made. The raw mass spectral data will be archived on magnetic tape for a period of not less than one year. Questions regarding the data contained in this report may be directed to the author at the number provided below.

Pace Analytical Services, Inc.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, inc.

Method 1613B Analysis Results
 Client - Del Mar Analytical

Client's Sample ID
Lab Sample ID Filename
Injected By
Total Amount Extracted Total Amoun Dry Weight Extracted
ICAL Date
CCal Filename(s)
Method Blank ID

Native Isomers
2,3,7,8-TCDF
Total TCDF
2,3,7,8-TCDD
Total TCDD
1,2,3,7,8-PeCDF
2,3,4,7,-PeCDF
Total PeCDF

1,2,3,7,8-PeCDD
Total PeCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
$2,3,4,6,7,8-H \times C D F$
1,2,3,7,8,9-HxCDF
Total HxCDF
$1,2,3,4,7,8-H \times C D D$
$1,2,3,6,7,8-H \times C D D$
$1,2,3,7,8,9-H \times C D D$
$1,2,3,7,8,9-\mathrm{Hx}$
Total HxCDD
$1,2,3,4,6,7,8-\mathrm{HpCDF}$
$1,2,3,4,7,8,9-\mathrm{HpCDF}$
Total HpCDF
1,2,3,4,6,7,8-HpCDD
Total HPCDD

OCDF	0.000052	-0.0000035 BJ
OCDD	0.002600	-0.0000069

Conc $=$ Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maxdmum Possible Concentration
LOO $=$ Limit of Datection. Totals are averages of indivatual isomer LODS.
$D=$ Result obtained from anolysis of diluted sample
$\mathrm{B}=$ Less than 10 times higher than method blank level $P=$ Recovery outside of method 1613 control limits $J=$ Concentration detected is below the calibration range $\mathrm{Nn}=$ Value obtained from additional analysis

I = interference
$E=$ PCDE interference
ND $=$ Not Detected
$\mathrm{NA}=$ Not Applicable
NC = Not Caiculated

* $=$ Ses Discussion

Report No..... 1021760

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,
without the writien consent of Pace Analytical Services, Inc.

REPORT OF LABORATORY ANALYSIS

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extraced
ICAL Date
CCal Filename
Method Blank ID
LCS-8224
F51109C_03
1050 mL
$10 / 22 / 2005$
F51109C 02
BLANK-8223

Matrix	Water
Diution	NA
Extracted	$11 / 08 / 2005$
Analyzed	$11 / 10 / 2005 \quad 00: 34$
Injected By	BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	$\begin{gathered} \% \\ \text { Rec. } \end{gathered}$
2,3,7,8-TCDF	10	9.5	7.5	15.8	95
2,3,7,8-TCDD	10	9.5	6.7	15.8	95
1,2,3,7,8-PeCDF	50	50.6	40.0	67.0	101
2,3,4,7,8-PeCDF	50	45.9	34.0	80.0	92
1,2,3,7,8-PeCDD	50	43.9	35.0	71.0	88
1,2,3,4,7,8-HxCDF	50	47.2	36.0	67.0	94
1,2,3,6,7,8-HxCDF	50	47.2	42.0	65.0	94
2,3,4,6,7,8-HxCDF	50	48.1	35.0	78.0	96
1,2,3,7,8,9-HxCDF	50	48.2	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	48.5	35.0	82.0	97
1,2,3,6,7,8-HxCDD	50	48.3	38.0	67.0	97
1,2,3,7,8,9-HxCDD	50	46.2	32.0	81.0	92
1,2,3,4,6,7,8-HpCDF	50	50.2	41.0	61.0	100
1,2,3,4,7,8,9-HpCDF	50	52.6	39.0	69.0	105
1,2,3,4,6,7,8-HpCDD	50	44.9	35.0	70.0	90
OCDF	100	92.1	63.0	170.0	92
OCDD	100	93.3	78.0	144.0	93
2,3,7,8-TCDD-37C14	10	7.1	3.1	19.1	71
2,3,7,8-TCDF-13C	100	60.6	22.0	152.0	61
2,3,7,8-TCDD-13C	100	68.3	20.0	$175: 0$	68
1,2,3,7,8-PeCDF-13C	100	64.1	21.0	192.0	64
2,3,4,7,8-PeCDF-13C	100	62.8	13.0	328.0	63
1,2,3,7,8-PeCDD-13C	100	81.7	21.0	227.0	82
1,2,3,4,7,8-HxCDF-13C	100	63.6	19.0	202.0	64
1,2,3,6,7,8-HxCDF-13C	100	63.7	21.0	159.0	64
2,3,4,6,7,8-HxCDF-13C	100	60.8	22.0	176.0	61
1,2,3,7,8,9-HxCDF-13C	100	60.7	17.0	205.0	61
1,2,3,4,7,8-HxCDD-13C	100	65.7	21.0	193.0	66
1,2,3,6,7,8-HxCDD-13C	100	67.5	25.0	163.0	68
1,2,3,4,6,7,8-HPCDF-13C	100	68.4	21.0	158.0	68
1,2,3,4,7,8,9-HPCDF-13C	100	62.9	20.0	186.0	63
1,2,3,4,6,7,8-HpCDD-13C	100	76.3	26.0	166.0	76
OCDD-13C	200	117.9	26.0	397.0	59

$\mathrm{Cs}=$ Concentration Spiked ($\mathrm{ng} / \mathrm{mL}$)
$\mathrm{Cr}=$ Concentration Recovered ($\mathrm{ng} / \mathrm{mL}$)
Rec. $=$ Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, $10 / 94$ Revision
$X=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{Nn}=$ Value obtained from additional analysis
Report No..... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in fult,
without the wiften consent of Pace Analytical Services, inc.

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

LCSD-8225			
F51109C_04	Matrix	Water	
1040 mL	Dilution	NA	
$10 / 22 / 2005$	Extracted	$11 / 08 / 2005$	
F51109C 02	Analyzed	$11 / 10 / 2005$	
BLANK-8223	Injected By	BAL	

$\left.\begin{array}{lrrrrr} & & & \text { Lower } & \text { Upper } \\ \text { Compound } & \text { Cs } & \text { Cr } & \text { Limit } & \text { Limit }\end{array}\right]$
$\mathrm{Cs}=$ Concentration Spiked ($\mathrm{ng} / \mathrm{mL}$)
$\mathrm{Cr}=$ Concentration Recovered (ng/mL)
Rec. $=$ Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, $10 / 94$ Revision
$X=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{N} n=$ Value obtained from additional analysis
Report No..... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full ${ }_{t}$
without the witten consent of Pace Analytical Services, Inc.
ace Anplytical Services, inc.

Client. \qquad Del Mar Analytical

SPIKE 1 ID............................ LCS-8224			
SPIKE 1 Filename....................F51109C_03			
SPIKE 2 ID............................. LCSD-8225			
SPIKE 2 Filename.................... F51109C_04			
COMPOUND	SPIKE 1 REC.\%	SPIKE 2 REC,\%	RPD,\%
2378-TCDF	95	91	4.3
2378-TCDD	95	101	6.1
12378-PeCDF	101	102	1.0
23478-PeCDF	92	104	12.2
12378-PeCDD	88	92	4.4
123478-HxCDF	94	99	5.2
123678-HxCDF	94	99	5.2
234678-HxCDF	96	101	$5: 1$
123789-HxCDF	96	96	0.0
123478-HxCDD	97	104	7.0
$123678-\mathrm{HxCDD}$	97	109	11.7
123789-HxCDD	92	104	12.2
1234678-HpCDF	100	104	3.9
1234789-HpCDF	105	109	3.7
1234678-HpCDD	90	95	5.4
OCDF	92	93	1.1
OCDD	93	97	4.2

REC $=$ Percent Recovered
RPD $=$ The difference between the two values divided by the average.
NA $=$ Not Applicable
Report No. 1021758

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, inc.

Fnefac

1014 E Cocoon Dr., Stat A. Comorin CA 92824

 25zo

Ph fil9n251-1022
Ph (509) $370-4667$

P (4 (400) 7as-004

Fax $\{948\}$ 294- 1228
Fax 7909) 370 - 1048

Fan (400) pesos

SUBCONTRACT ORDER - PROJECT \# IOJ1176

SENDING LABORATORY:
Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261 -1022
Fax: (949) 261-1228
Project Manager: Michele Harper

RECEIVING LABORATORY:

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200
Minneapolis, MN 55414
Phone :(612) 607-1700
Fax: (612) 607-6444

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \qquad Initials: \qquad

APPENDIX G

Section 10

Outfall 005, October 18, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewer E. Wessling
Analysis/Method Metals

Package ID T711MT94
Task Order 313150010

SDG No. Multiple

No. of Analyses 3

Date: December 18. 2005
Reviengef Signture lesy

ACTION ITEMS ${ }^{\circ}$

- Case Narrative

2. Out of Scope

Analyses
3. Analyses Not Conducted

4. Missing Hardcopy Deliverables	
5. Incorrect Hardcopy Deliverables	
6. Deviations from Analysis Protocol, e.g., Holding Times GC/MS Tune/Inst. Performance Calibration Method blanks Surrogates Matrix Spike/Dup LCS Field QC Internal Standard Performance Compound Identification Quantitation System Performance	Qualifications were assigned for the following:
	- Blank conlamination
	- Sample resulis betiveen the MDL and RL were estimated
	- Reanalyses were rejected in favor of the original analyses
COMMENTS ${ }^{\text {b }}$	
* Subeontracted anmylyical laboratory is not ${ }^{-}$Differences in protocol have been adopited	eeting contrach andor method requirements. the laborator but no action against the laboratorv is requirad

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: METALS

SAMPLE DELIVERY GROUPS IOJ1176, IOJ1177, IOJ1181

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

	Project:	NPDES Monitoring
	SDG No.:	Multiple
DATA VALIDATION REPORT	Analysis:	METALS

1. INTRODUCTION

Task Order Title: NPDES Monitoring Program
Contrat Task Order \#: 313150010
SDG\#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 2
Reviewer: E. Wessling
Date of Review: December 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 2), USEPA Methods 200.8 for 1CPMS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	Laboratory D	Matrix	COC Method
Outall 005	IOJ1176-01	Water	$200.8 / 245.1$
Outfall 004	IOJ1177-01	Water	$200.8 / 245.1$
Outfall 008	IOJ1181-01	Water	$200.8 / 245.1$

	Project:	NPDES Monitoring
DATA VAL.DATION REPORT	SDG No.:	Multiple
SETALS		

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required for ICP-MS tuning.

2.3 CALIBRATION

The ICV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The laboratory analyzed reporting limit check standards in association with this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were significantly below the sample detects so as not to result in qualification of the data with the exception of cadmium in the method blank. Cadmium was qualified as a nondetect, "U," in the sample from Outfall 004. No further qualifications were required.

	Project:	NPDES Monitoring
DATA VALDATION REPORT	SDG No.: Multiple	
	Annivsis:	

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP/MS analyses. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples and mercury LCS samples as reported on the LCS on the summary forms and in the raw data were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in these SDGs. No qualification was required.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed on samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for all analyses. No qualification was required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.101CP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Reanalyses were performed for copper and or mercury in some site samples. In all cases the reanalyses confirmed the original analysis. The reanalyses were rejected in favor

	Project:	NPDES Monitoring
DATA VALDATHON REPORT	SDG No.:	Multiple

of the original analysis. Results reported by the laboratory between the MDL and reporting limit were qualified as " J " values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

 2520 E. Sunset Rd. *i, Las Vegas, NV 89120 (702) 798-3630 FAX (702) 798-3621

MWE-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadean, CA 91101
Attention: Bronzy Kelly

Project D: Routine Outfall 005
Report Number: IOIl176
Sampled: 10/18/05
Received: 10/18/05

METALS

MDL Reporting Sample Dilution Date Date Data Analyze

Method
Sample ID: 1OJ1176-01 (Outfall 005 -Water)
Reporting Units: ugh

Antimony	EPA 200.8
Cadmium	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 245.1

Sample ID: IOJ1176-01RE1 (Outfall 005 -Water) Reporting Units: ag h
Copper
Mercury

EPA 200.8	5519098	0.98	4.0	31	2	$10 / 19 / 05$	$10 / 24 / 05$
EPA 245.1	$5 J 21075$	0.063	0.20	0.46	1	$10 / 19 / 05$	$10 / 21 / 05$

Level TV Validated

Del Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Enviro
550 South Wadsworth
Suite 500
Lakewood, CO 80226
Laboratory Pace - Minneapolis
Reviewer E. Wessling
Analysis/Method Dioxins/Furans by Method 1613B

ACTION THEMS:

- Case Narrative
 Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g,
Holding Times
GC/MS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Perfommance
Compound Identification
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

[^16]
amec ${ }^{\text {© }}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: IOJ1181, IOJ1176, IOJ1186, IOJ1180, IOJ1184, IOJ1177, IOJ1232, IOJ1231

Prepared by

AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

	Project: SDC Na.:	NPDES Mutiple
DATA VALIDATION REPORT	Analyitr	DF

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: November 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R^{n} data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID (DelMar)	Laboratory ID (Pace)	Matrix	COC Method
Outfall 008	1OI1181-01	1021758001	water	1613
Outfall 005	1011176-01	1021760001	water	1613
Outfall 009	$1011186-01$	1021761001	water	1613
Outfall 006	1011180-01	1021763001	water	1613
Outfall 007	1OS1184-01	1021765001	water	1613
Outfall 004	IOJ1177-01	1021766001	water	1613
Outfall 010	$1011232-01$	1021908001	water	1613
Outfall 003	1031231-01	1021910001	water	1613

	Project: SDG Na:	NPDES Multipit
DATA VALIDATION REPORT	Analyie:	DF

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Pace for dioxin/furan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the case narrative and laboratory login sheet, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Pace had no custody seals present for samples IOJ1232-01 and 1OJ1231-01. All other samples had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

DATA VILIOATTON REPORT	Project: SDC No.	NPDES Multiple
Den khinaronk.fora	Anslymix	DF

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $10 / 22 / 05$ for instrument F. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (Blank 8223) was extracted and analyzed with the samples in this SDG. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDD}$ and OCDF were reported in method blank 8223 at concentrations of 0.0000041 and $0.0000068 \mathrm{ug} / \mathrm{L}$, respectively. An interference with OCDD was also reported in method blank 8223. Any detects for these target compounds \leq five times the concentration reported in the method blank were qualified as estimated, "UJ," in the site samples of this SDG. Detects for total dioxin and furan isomers at concentrations \leq five times the concentration reported in the method blank were qualified as estimated, "UJ," in the associated samples. In instances where the total concentration included peaks not present in the method blank as well as the method blank contamination, the total concentration was considered estimated, "J," as a portion of the total concentration was considered blank contamination. There were no other target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (LCS/LCSD 8224/8225) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

	Project: SDGNo:	NPDES Matiple
DATA VALDATIONREPORT	Analyix:	DF

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND DENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. However, the laboratory was experiencing sporadic cross-contamination problems which they attributed to incomplete glassware cleaning procedures. Two samples, Outfall 009 and outfall 010, exhibited atypical target compound detects. These samples were rejected in favor of a reanalysis at another laboratory that was not experiencing contamination problems. This was done to ensure the target compound detects were representative of site conditions and not laboratory cross-contamination. No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, " J_{3} " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

This raport shell not ba reproduced, excapt in fitl,
whota the writun consant of Pace Analytical Sanvicas, Inc.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID T711WC179
550 South Wadsworth Boulevard	Task Order 313150010
Suite 500	SDG No. Multiple
Lakewood, CO 80226	No. of Analyses 3
Laboratory Del Mar - Irvine	Date: December 12. 2005
Reviewer E. Wessling	Reviefyer's Signature
Analysis/Method General Minerals	4 Easetar wher

ACTION ITEMS ${ }^{\text {a }}$

Case Narrative	\square
Deficiencies	

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, eg.,
Qualifications were assigned for the following:
Holding Times
GC/MS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

[^17]
amec ${ }^{\text {® }}$

DATA VALDDATION REPORT

NPDES Monitoring Program

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUPS: IOJ 1176, IOJ1177, IOJ1181

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 3
Reviewer: E. Wessling
Date of Review: December 12, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client D	Laboratory D	Matrix	COC Method
Outfall 005	10J1176-01	Water	General Minerals
Outfall 004	10J1177-01	Water	General Minerals
Outfall 008	IOI1181-01	Water	General Minerals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and all analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times for all analyses were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

Target compounds were not detected in the associated method blanks. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for analyses without an MS/MSD. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

17461 Durian Ave, Suite 100, imine, CA 92614 (5499 261-1022 FAX 1249) 260-3297 1014 E Conley Dr., Suite A, Cotton, CA 92324 (909; 370-4667 FAX f9091 370-7046

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005	
	Sampled: $10 / 18 / 05$ Received: $10 / 18 / 05$

INORGANIC

Del Mar Analytical, Irvine
Michele Harper
Project Manager

APPENDIX G

Section 11

Outfall 005, November 09, 2005
Del Mar Analytical Laboratory Report

17461 Durian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Or., Suite A, Colon, CA 92324 (909) 370-4667 FAX (909) 370-1046

Del Mar Analytical

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 005

Sampled: 11/09/05
Received: 11/09/05
Issued: 01/20/06 17:34

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is
included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOK0902-01

CLIENT ID

Outfall 005

MATRIX

Water

Reviewed By:

Del Mar Analytical, Irvine

Michele Chambertin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200		Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Report Number: 10 K0902	Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OK0902-01 (Outfall 005 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5K16096	0.36	4.0	3.4	2	11/16/05	11/16/05	RL-1, J
Cadmium	EPA 200.8	5K16096	0.030	2.0	0.51	2	11/16/05	11/17/05	RL-1, J
Copper	EPA 200.8	SK16096	0.98	4.0	20	2	11/16/05	11/16/05	
Lead	EPA 200.8	5K16096	0.080	2.0	10	2	11/16/05	11/16/05	
Mercury	EPA 245.1	5K17098	0.050	0.20	ND	1	11/17/05	11/17/05	
Sample ID: IOK0902-01RE1 (Outfall 005 - Water)									
Repor									
Copper	EPA 200.8	5K19049	0.49	2.0	18	1	11/16/05	11/21/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200		Sampled: 11/09/05
Pasadena, CA 91101	Report Number: IOK0902	Received: 11/09/05
Attention: Bronwyn Kelly		

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OK0902-01 (Outfall 005-Water) - cont.									
Reporting Units: mg/									
Chloride	EPA 300.0	5K09130	1.3	2.5	62	5	11/09/05	11/10/05	
Nitrate/Nitrite-N	EPA 300.0	5K09130	0.072	0.26	6.6	1	11/09/05	11/10/05	
Oil \& Grease	EPA 413.1	5K14056	0.90	4.8	0.96	1	11/14/05	11/14/05	J
Sulfate	EPA 300.0	5K09130	0.18	0.50	25	1	11/09/05	11/10/05	
Total Dissolved Solids	SM2540C	5K16116	10	10	370	1	11/16/05	11/16/05	
Total Suspended Solids	EPA 160.2	5K10088	10	10	540	1	11/10/05	11/10/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Derian Ave., Suite 100, ivine, CA 92674 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr.s Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) $370-1046$ 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858 ; 505-8596 FAX (858) 505-9689 9830 South 51 st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. 意3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200	Report Number: IOK0902	Sampled: 11/09/05
Pasadena, CA 91101		
Attention: Bronwyn Kelly		

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 005 (IOK0902-01) - Water					
EPA 300.0	2	11/09/2005 12:40	11/09/2005 18:00	11/09/2005 23:30	11/10/2005 00:59

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

[^18]

VETHOD BLANKIOC DATA

METALS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualfiers |

Batch: 5K16096 Extracted: 11/16/05

Blank Analyzed: 11/16/2005-11/17/2005 (5K16096-BLK1)

Antimony	ND	2.0	0.050	$\mathrm{ug} / 1$	
Cadmium	ND	1.0	0.025	ug / l	
Copper	1.20	2.0	0.25	ug / l	
Lead	0.129	1.0	0.040	ug / l	

LCS Analyzed: 11/16/2005-11/17/2005 (5K16096-BS1)

Antimony	75.0	2.0	0.050	ug / l	80.0	94	$85-115$
Cadmium	85.7	1.0	0.025	ug / l	80.0	107	$85-115$
Copper	82.7	2.0	0.25	ug / l	80.0	103	$85-115$
Lead	82.4	1.0	0.040	ug / l	80.0	103	$85-115$

Matrix	005	M				e: 10K	18-02	
Antimony	76.3	2.0	0.050	ug/	80.0	0.060	95	70-130
Cadmium	86.0	1.0	0.025	ug/	80.0	ND	108	$70-130$
Copper	79.4	2.0	0.25	ug 1	80.0	2.7	96	70-130
Lead	79.8	1.0	0.040	ugh	80.0	0.070	100	70-130

Matrix Sp	005	M				e: 10 K	22-03	
Antimony	75.0	2.0	0.050	ug/l	80.0	0.096	94	70-130
Cadmium	86.5	1.0	0.025	ugh	80.0	0.11	108	70-130
Copper	107	2.0	0.25	ug/1	80.0	34	91	70-130
Lead	77.7	1.0	0.040	ug/	80.0	0.22	97	70-130

Matrix S	17/2	609				C: 10K	18-02			
Antimony	75.6	2.0	0.050	ugh	80.0	0.060	94	70-130	1	20
Cadmium	86.4	1.0	0.025	ugl	80.0	ND	108	70-130	1	20
Copper	78.0	2.0	0.25	ugl	80.0	2.7	94	70-130	2	20
Lead	79.7	1.0	0.040	ugh	80.0	0.070	100	70-130	0	20

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200		Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Report Number: 10 K0902	
Attention: Bronwyn Kelly	Received: $11 / 09 / 05$	

METHOD BLANKIQC DATA

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200	Report Number: 1OK0902	Sampled: 11/09/05
Pasadena, CA 91101 Received: 11/09/05		
Attention: Bronwyn Kelly		

METHOD BLANKQC DATA

METALS

		Reporting Limit			Spike Level	Source Result		\%REC Limits		RPD Limit	Data Qualifiers
Analyte	Result		MDL	Units			\%REC		RPD		

Batch: 5K28055 Extracted: 11/28/05
LCS Analyzed: 11/28/2005 (5K28055-BS1)

Copper	77.6	2.0	0.49	ug/l	80.0		97	85-115		
Matrix Spike Analyzed: 11/28/2005 (5K28055-MS1)			Source: IOK2020-01							
Copper	84.7	2.0	0.49	ug/1	80.0	4.7	100	70-130		
Matrix Spike Dup Analyzed: 11/28/2005 (5K28055-MSD1)			Source: 1OK2020-01							
Copper	82.9	2.0	0.49	ugh	80.0	4.7	98	70-130	2	20

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

METHOD BLANKVC DATA

INORGANICS

Batch: 5K10088 Extracted: 11/10/05

Blank Analyzed: 11/10/2005 (5K10088-BLK1)
Total Suspended Solids ND
$10 \mathrm{mg} / \mathrm{l}$

LCS Analyzed: 11/10/2005 (5K10088-BS1)
Total Suspended Solids 970
$10 \quad 10$
$\begin{array}{llll}\mathrm{mg} / \mathrm{l} & 1000 & 97 & 85-115\end{array}$
Source: 1OK0617-01
Duplicate Analyzed: 11/10/2005 (5K10088-DUP1)
Total Suspended Solids 440
$10 \quad 10 \mathrm{mg} / \mathrm{l}$
450
210

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005		
300 North Lake Avenue, Suite 1200			Sampled: 11/09/05
Pasadena, CA 91101	Report Number:	IOK0902	Received: 11/09/05
Attention: Bronwyn Kelly			

NIETHOD BIA NKIOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5K14056 Extracted: 11/14/05										
Blank Analyzed: 11/14/2005 (5K14056-BLK1)										
Oil \& Grease ND	5.0	0.94	mg / l							
LCS Analyzed: 11/14/2005 (5K14056-BS1)										M-NR1
Oil \&t Grease 17.1	5.0	0.94	mg / l	20.0		86	$65-120$			
LCS Dup Analyzed: 11/14/2005 (5K14056-BSD1)										
Oil \& Grease 17.4	5.0	0.94	mg / l	20.0		87	65-120	2	20	
Batch: 5K16116 Extracted: 11/16/05										
Blank Analyzed: 11/16/2005 (5K16116-BLK1)										
Total Dissolved Solids ND	10	10	mg / l							
LCS Analyzed: 11/16/2005 (5K16116-BS1)										
Total Dissolved Solids 988	10	10	mg/	1000		99	$90-110$			
Duplicate Analyzed: 11/16/2005 (5K16116-DUP1)					ce: IOK	904-01				
Total Dissolved Solids 196	10	10	mg / l		200			2	10	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: IOK0902 . . . Received: 11/09/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

| LabNumber | Analysis | Analyte | | | Compliance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Limit | | | | | |

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

Project ID: Routine Outfall 005
Report Number: IOK0902 Received: 11/09/05

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
RL-1 Reporting limit raised due to sample matrix effects.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Derian Ave., Sưte 100, Ivine, CA 92614 (949) 251-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Calton, CA 92324 (909) 370-4667 FAX 9099) $370-1046$ 9484 Chesapeake Dr., Suite 805, \$an Diego, CA 92123 (858) 505-8596 FAX (858) 505.9689 9830 South 51st St, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunsel Rd. *3, Las Vegas, NV B9120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200	Report Number: 1OK0902	Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Received: $11 / 09 / 05$	
Attention: Bronwyn Kelly		

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

```
Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413
    1104 Windfield Way - El Dorado Hills, CA }9576
        Analysis Performed: 1613-Dioxin-HR
        Samples: IOK0902-01
    Analysis Performed: EDD + Level 4
        Samples: FK0902-01
```


Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

December 12, 2005
Alta Project I.D.: 27028
Ms. Michele Chambertin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Chambertin,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on December 08, 2005 under your Project Name "1OK0902". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maser
Director of HRMS Services

Section I: Sample Inventory Report
 Date Received: 12/8/2005

Alta Lab. ID
27028-001

Client Sample 1D
IOK0902-01

SECTION II

OPR Results								EPA Method 1613				
Matrix:	Aqueous		QC Batch No.:	7516	Lab Sample: 0 -OPR001 Date Analyzed DB-5: 9-Dec-05			Date Analyzed DB-225:				
Sample Size	1.000 L		Date Exiracted:	$8-\mathrm{Dec}-05$				NA				
Analyte		Spike Conc.	Conc. ($\mathrm{ng} / \mathrm{mL}$)	OPR Limits	Labeled Standard					\%R	LCL-UCL	
2,3,7,8-TC		10.0	10.0	6.7-15.8	15	$13 \mathrm{C}-2,3,7,8$-TCDD		81.6	25-164			
1,2,3,7,8-P		50.0	45.0	35-71		13C-1,2,3,7,8-PeCDD		74.5	25-181			
1,2,3,4,7,8	CDD	50.0	48.5	+ $35-82$		$13 \mathrm{C}-1,2,3,4,7,8-\mathrm{HxCDD}$		68.8	32-141			
1,2,3,6,7,8	CDD	50.0	49.9	38-67		13C-1,2,3,6,7,8-HxCDD		69.2	28-130			
1,2,3,7,8,9	CDD	rim 50.0	49.9	\% 32-81		13C-1,2,3,4,6,7,8-HpCDD		65.1	23.140			
1,2,3,4,6,7	PCDD	50.0	50.6	35-70		13C-OCDD		51.0	17-157			
OCDD		100	99.8	-78-144		13C-2,3,7,8-TCDF		85.7	24-169			
2,3,7,8-TC		10.0	9.96	$\therefore 7.5-15.8$		13C-1,2,3,7,8-PeCDF		74.5	24-185			
1,2,3,7,8-P		\% 50.0	52.7	40-67		13C-2,3,4, 7,8-PeCDF		72.8	21-178			
2,3,4,7,8-P		50.0	53.8	34-80		13C-1,2,3,4,7,8-HxCDF		63.4	26-152			
1,2,3,4,7,8	CDF	50.0	50.9	[36.67		: 13C-1,2,3,6,7,8-HxCDF		60.1	26-123			
1,2,3,6,7,8	CDF	50.0	51.5	42-65		13C-2,3,4,6,7,8-HxCDF		68.0	28-136			
2,3,4,6,7,8	DF	50.0	50.7 ,	35-78		13C-1,2,3,7,8,9-HxCDF		69.4	29-147			
1,2,3,7,8,9	CDF	50.0	49.6	39-65		13C-1,2,3,4,6,7,8-HpCDF		60.4	28-143			
1,2,3,4,6;7	pCDF	50.0	50.1	41-61		13C-	HpCDF	65.4	26-138			
1,2,3,4,7,8	pCDF	50.0	51.4	39-69		13C-OCDF		53.9	17-157			
OCDF	家	100	-98.6	\% 63-170	CRS	S 37Cl-2,3,7,8-TCDD		99.0	35-197			

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H

I Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Cerfificate Namber ,
State of Alaska, DEC	CA413-02
State of Arizons	AZ0639
State of Arkansas, DEQ	05-013-0
Statc of Arkansas, DOH	Reciprocity through CA
Stat ${ }^{\text {c }}$ of California - NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
Stat of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

 Whamen 3Fo-way

 Mnanay

SUBCONTRACT ORDER - PROJECT \# IOK0902

SENDING LABORATORY:	RECEIVING LABORATORY:
Del Mar Analytical, Irvine	Alta Analytical - SUB 7078
17461 Derian Avenue: Suite 100	1104 Windfield Way
Irvine, CA 92614	El Dorado Hilis, CA. 95762
Phone: (949) 261-1022	Phone : 916) 933-1640
Fax: (949) 261-1228	Fax: (916) 673-0106
Project Manager: Michele Chamberiin	

Standard TAT is requested unless specific due date is requested m Due Dates \qquad Initials: \qquad

Annlysis		Expiration	Comments
Sample D: 10k0902-01	Water	Sampled: 11/09/15 12:40	Instant Noficatiom
1613-Dioxin-HR		11/1605 12:40	J flage, 17 congeners, no TEQ ,ugh,subuPace-MN
EDD + Level 4		120705 12:40	Excel EnD email to pminclude Sta logs for Lvi IV
Contriners Supplied:			
1 L Amber (10K0902-01C)			
1 L Amber (10\%0902-01D)			

$=-1$ \qquad
\square

SAMPLE LOGIN CHECKLIST

Alta Project \#:

27028

Comments:

APPENDIX G

Section 12

Outfall 005, November 09, 2005

AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUPS: IOJ1186, IOJ1232, IOK0899, IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

DATA VALIDATION REPORT	Project: SDO Na: Amalymis:	NPDE Multipl

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#. Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDG Na: Axnlyair:	NPDES Multiple DF
DATA VALIDATIONREPORT		

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 009	IOJ1232-01	$26994-001$	water	1613
Outfall 010	IOI1186-01	$26993-001$	water	1613
Outfall 018	IOK0899-01	$27025-001$	water	1613
Outfall 003	IOK0900-01	$27026-001$	water	1613
Outfall 004	IOK0901-01	$27027-001$	water	1613
Outfall 005	IOK0902-01	$27028-001$	water	1613
Outfall 006	IOK0903-01	$27029-001$	water	1613
Outfall 009	$10 K 0904-01$	$27030-001$	water	1613

	Project: SDG No.:	npdes Multiple
DATA VNLDATION REPORT	Analyis:	DF

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ}$ C. The samples were shipped to Alta for dioxin/furan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ or slightly below for some of the samples. As none of the samples was noted to be damaged or frozen, no qualifications were required. According to the case narratives and laboratory login sheets, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in these SDGs. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Alta had no custody seals. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project: SDG No: Anslyaire	npdes Multiple
DATA VALMATHON REPORT		

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $6 / 06 / 2005$. The calibration consisted of six concentration level standards (CSI through CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank ($0-7516-\mathrm{MB} 001$) was extracted and analyzed with the samples in this SDG. No target compounds were detected in the method blank and no qualifications were required. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (OPR 0-7516-OPR001) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted with the exception of a false positive in Outfall 005 for $1,2,3,4,7,8-\mathrm{HxCDD}$. The sample was a nondetect Confirmation for $2,3,7,8$-TCDF detected in samples Outfall 004, Outfall 005, and Outfall 006 was not performed; therefore, 2,3,7,8-TCDF was qualified as estimated, "J." No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

13C－OCDF
CRS $37 \mathrm{Cl}-2,3,7,8-\mathrm{TCDD}$

\％R	LCL－UCL	Oualifiers
83.8	$25-164$	
84.8	$25-181$	

$\begin{array}{ll}83.8 & 25-164 \\ 84.8 & 25-181 \\ 78.7 & 32-141\end{array}$ ज
윢
웅 운
ヘ

ヘ $\begin{array}{ll}57.4 & 17-157\end{array}$ | 8 |
| :---: |
| 各 |
| 咅 |

 N N
N
N
天
天

9

a
a

$13 \mathrm{C}-1,2,2,3,4,7,8-\mathrm{HxCDD}$
13C－1 $2,3,7,8 \mathrm{C}$ 13 C
$13 \mathrm{C}-1,2,7,3,7,8-\mathrm{PeCDD}$
Labeled Standard
Leblaratore Dinta
27028－001 $27028-001$
7516
10－Dec－05

$$
\begin{aligned}
& 13 \mathrm{C}-1,2,3,4,6,7,8-\mathrm{HpCDD} \\
& 13 \mathrm{C}-0 \mathrm{CDD} \\
& 13 \mathrm{C}-2,3,7,8-\mathrm{TCDF} \\
& 13 \mathrm{C}-1,2,3,7,8-\mathrm{PeCDF} \\
& 13 \mathrm{C}-2,3,4,7,8-\mathrm{PeCDF}
\end{aligned}
$$

Fontnotes

Footnote

$$
4.3 \quad 35-197
$$

-197
Footnoter

$$
\begin{aligned}
& 13 C-2,3,7,8-T C D F \\
& 13 C-1,2,3,7,8-P e C D F \\
& 13 C-2,3,4,7,8-P e C D F \\
& 13 C-1,2,3,4,7,8-H x C D F \\
& 13 C-1,2,3,6,7,8-\mathrm{H} \times C D F \\
& 13 C-2,3,4,6,7,8-\mathrm{HxCDF} \\
& 13 C-1,2,3,7,8,9-\mathrm{Fx} C D F \\
& 13 \mathrm{C}-1,2,3,4,6,7,8-\mathrm{HpCDF} \\
& 13 \mathrm{C}-1,2,3,4,7,8,9-\mathrm{HpCDF}
\end{aligned}
$$

Project 27028

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar -Irvine
Reviewer E. Wessling
Analysis/Method Metals by 200.8/245.1

Package ID T711MT95
Task Order 313150010
SDG No Multiple
No of Analyses 5

ACTION ITEMS*

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS:
IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by

AMEC - Denver Operations
355 South Teller Street
Lakewood, CO 80226

	Project:	NPDES
	SDG:	Multiple
DATA VALIDATION REPORT	Analysis:	Metais

1. INTRODUCTION

Task Order Titte:	NPDES Sampling
MEC ${ }^{\text {a }}$ Project Number:	313150010
Sample Delivery Group:	IOK0900, IOK0901, IOK0902, IOK0903, IOK0904
Project Manager:	P. Costa
Matrix:	Water
Analysis:	Metals
QC Level:	Level IV
No. of Samples:	5
of Reanalyses/Dilutions:	4
Reviewer:	E. Wessling
Date of Review:	December 20,2005

The samples listed in Table 1 were validated based on the guidelines outined in the AMEC Data Validation Procedure for ICP Metals (DVP-5, Rev. 2), US EPA Method 200.8 for ICP-MS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Propect NPDES
OATA VALIOATION REPORT	SOG: Muliphe

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 003	IOK0900-01	Water	$200.8 / 245.1$
Outfall 003RE1	IOK0900-01RE1	Water	200.8
Outfall 004	10K0901-01	Water	$200.8 / 245.1$
Outfall 005	1OK0902-01	Water	$200.8 / 245.1$
Outfall 005RE1	IOK0902-01RE1	Water	200.8
Outfall 006	IOK0903-01	Water	$200.8 / 245.1$
Outfall 006REI	IOK0903-01RE1	Water	$200.8 / 245.1$
Outfall 006RE2	IOK0903-01RE2	Water	200.8
Outfall 009	IOK0904-01	Water	$200.8 / 245.1$

	Proiect: NPDES
OATA VALDATION REPORT	SDG:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples in these SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs.

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 006 were reanalyzed to confirm the original results. The laboratory did not appended the client IDs with "RE" suffices; therefore, the reviewer added these to the Form Is. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28 -days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP-MS metals and 80 120% for mercury. The laboratory analyzed reporting limit check standards in association with these SDGs and all recoveries were acceptable. No qualifications were required.

	Propect: NPDES
DATA VALIDATION REPORT	SOG:

2.4 BLANKS

Mercury was reported in method blank 5K17098-BLK1 at $-0.072 \mu \mathrm{~g} / \mathrm{L}$; therefore, mercury in Outfall 003, Outfall 004, and Outfall 005 was qualified as estimated, "J," for detects and, "UJ," for nondetects. The remaining method blank and CCB results associated with the retained analyses were nondetects at the reporting limit or were significantly below the sample detects so as not to result in data qualification. No qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS AAB)

ICSA and ICSAB analyses were performed in association with the Outfall 003 selenium analysis. The recoveries were within the control limits. No other ICSA or ICSAB analyses were included in the raw data for the ICP-MS analyses. No qualifications were required

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS sample results were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MSMSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore no assessment was made with respect to this criterion. No qualifications were required.

2.8 MATRIX SPIKES

No MSIMSD analyses were performed in association with the samples in these SDGs; therefore no assessment was made with respect to this criterion. Evaluation of laboratory accuracy was based on LCS results. No qualifications were required.

2.9 ICP-MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

	Project:	NPDES
	SOG:	Multiple
DATA VALIDATION REPORT	Analysis:	Metals

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS intemal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form is were verified against the raw data. No transcription errors or calculation errors were noted. Some target analytes were reported from dilution analyses due to matrix interference. Reporting limits and MDLs were adjusted accordingly. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, " J ," with the annotation of " ONQ ," in accordance with the requirements of the NPDES permit.

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 006 were reanalyzed to confirm the original results. As the original results were all confirmed, the results for Outfall 003RE1, Outfall 005RE1, Outfall 006RE1, and Outfall 006RE2 were rejected, "R," in favor of the original results. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with these samples.

METALS

Asalyte Method Batch Limit Limit Result Factor Extracted Aanlyzed Qualifiers

$$
\dot{L} v E \text { LU }
$$

Del Mar Analytical, Irvine
Michele Clumberlian
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: GENERAL MINERALS
SAMPLE DELIVERY GROUPS: IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC - Denver Operations
355 South Teller Street
Lakewood, CO 80226

DATA VALIOATION REPORT \begin{tabular}{l}
Project

SDG:

NPDES

Multiple
\end{tabular}

1. INTRODUCTION

Task Order Title:	NPDES Sampling
AMEC Project Number:	313150010
Sample Delivery Group:	IOK0900, IOK0901, IOK0902, IOK0903, IOK0904
Project Manager:	P. Costa
Matrix:	Water
Analysis:	General Minerals
QC Level:	Level IV
No. of Samples:	5
of Reanalyses/Dilutions:	0
Reviewer:	E. Wessling
Date of Review:	December 20,2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for General Minerals (DVP-6, Rev. 2), USEPA Methods for Chemical Analysis of Water and Wastes Methods 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-CMOD, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form is as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project
DATA VALIDATION REPORT	SOG:
NPDES	
Multple	

Table 1. Sample Identification

Clien ID	Laboratory 10	Matrix	Coc Method
Outfall 003	$10 K 0900-01$	Water	General Minerals
Outfall 004	$10 K 0901-01$	Water	General Minerals
Outfall 005	$10 K 0902-01$	Water	General Minerals
Outfall 006	$10 K 0903-01$	Water	General Minerals
Outfall 009	$10 K 0904-01$	Water	General Minerals

DATA VALIDATION REPORT \begin{tabular}{r}

Project: | NPDES |
| ---: |
| Muniple |

\hline
\end{tabular}

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handing, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handing, or transport problems were noted; and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times were met and no qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

The blank results associated with the analyses were nondetects at the reporting limit or were significantly less than the sample detects so as not to result in data qualification. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

	Project: DPDES Multiple
SDALIDATION REPORT	Analysis: Gen Min.

2.5 LABORATORY DUPLICATES

A laboratory duplicate analysis was performed on Outfall 009 for TDS. The \%D was less than the laboratory-established control limit of 10%. No qualifications were required.

2.6 MATRIX SPIKES

No MS/MSD analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, " J," with the annotation of "DNQ." in accordance with the requirements of the NPDES permit. No further qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

INORGANICS

Metued Batch MDL Reporting Sampie Dintion Date Date Dath

Level IV

Del Mar Analytical, Irvise

Michele Chamberlin
Project Manager

APPENDIX G

Section 13

Outfall 006, October 18, 2005
Del Mar Analytical Laboratory Report 94B4 Chesapeake Dr., Suite B05, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 57 st St, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Vegas, NV 69120 (702) 798-3620 FAX $77021798-3621$

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 006

Sampled: 10/18/05
Received: 10/18/05
Issued: 01/20/06 15:13

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOJ1180-01

CLIENT ID
Outfall 006

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Routine Outfall 006								
							Sampled	10/18/05	
	Report Number:		10.1180				Received:	10/18/05	
METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OJ1180-01 (Outfall 006 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5J19098	0.18	2.0	0.42	1	10/19/05	10/20/05	J
Cadmium	EPA 200.8	5 J 19098	0.015	1.0	0.47	1	10/19/05	10/20/05	B, J
Copper	EPA 200.8	5 J 19098	0.49	2.0	16	1	10/19/05	10/20/05	
Lead	EPA 200.8	5119098	0.040	1.0	12	1	10/19/05	10/20/05	
Mercury	EPA 245.1	5 J 19052	0.050	0.20	0.13	1	10/19/05	10/19/05	J
Sample ID: 1OJ1180-01RE1 (Outfall 006 - Water)									
Reporting Units: ug/l									
Copper	EPA 200.8	5J19098	0.49	2.0	16	1	10/19/05	10/24/05	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200	Report Number: 1OJ1180	Sampled: $10 / 18 / 05$
Pasadena, CA 91101	Received: $10 / 18 / 05$	
Attention: Bronwyn Kelly		

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OJ1180-01 (Outfall 006 - Water) - cont.									
Reporting Units: mg/									
Chloride	EPA 300.0	5J18042	0.52	1.0	41	2	10/18/05	10/18/05	
Nitrate/Nitrite-N	EPA 300.0	5J18042	0.14	0.52	7.9	2	10/18/05	10/18/05	
Oil \& Grease	EPA 413.1	5 J 24050	0.90	4.8	ND	1	10/24/05	10/24/05	
Sulfate	EPA 300.0	5 J 18042	0.36	1.0	23	2	10/18/05	10/18/05	
Total Dissolved Solids	SM2540C	5 J 19123	10	10	480	1	10/19/05	10/19/05	
Total Suspended Solids	EPA 160.2	5 J 20118	10	10	520	1	10/20/05	10/20/05	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

17461 Derian Ave, Suite 100, Irvine, CA 92614 (949) 261-7022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200	Report Number: 1OI1180	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		
Attention: Bronwyn Kelly		

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 006 (IOJ1180-01)-Water EPA 300.0	2	$10 / 18 / 200509: 19$	$10 / 18 / 200514: 20$	$10 / 18 / 2005$	$16: 30$	$10 / 18 / 200517: 52$

[^19]| MWH-Pasadena/Boeing | Project ID: Routine Outfall 006 | |
| :--- | :--- | :--- |
| 300 North Lake Avenue, Suite 1200 | Report Number: 10J1180 | Sampled: $10 / 18 / 05$
 Pasadena, CA 91101
 Attention: Bronwyn Kelly |

METHOD BLANKIQC DATA

METALS

Batch: 5J19098 Extracted: 10/19/05

Blank Analyzed: 10/20/2005 (5J19098-BLK1)

Antimony	ND	2.0	0.18	ug / l
Cadmium	0.109	1.0	0.015	ug / l
Copper	ND	2.0	0.49	ug / l
Lead	0.0450	1.0	0.040	ug / l

LCS Analyzed: 10/20/2005 (5J19098-BS1)

Antimony	77.4	2.0	0.18	ug/	80.0		97	85-115
Cadmium	81.9	1.0	0.015	ug/	80.0		102	85-115
Copper	77.7	2.0	0.49	ug/l	80.0		97	85-115
Lead	81.2	1.0	0.13	ug / l	80.0		102	85-115
Matrix Spike Analyzed: 10/20/2005 (5119098-MS1)					Source: 10J1156-01			
Antimony	84.7	2.0	0.18	ugl	80.0	0.18	106	70-130
Cadmium	84.1	1.0	0.015	ug/l	80.0	0.14	105	70-130
Copper	83.0	2.0	0.49	ug/1	80.0	3.9	99	70-130
Lead	79.1	1.0	0.040	ug/	80.0	0.32	98	70-130

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

17461 Derian Ave., Sute 100, Iwine, CA 92674 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) $370-1046$ 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) $505-8596$ FAX (858) 505-9689 9830 South 51 st St. Suite B-120, Phoenix, AZ 85044 (480) 785-6043 FAX (480) 785-0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Report Number: 1011180	Sampled: $10 / 18 / 05$ Received: $10 / 18 / 05$

METHOD BLANKIQC DATA

METALS

		Reporting	MDL	Units	Spike	Source	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Analyte	Result		MDL	Units			\%REC				

Batch: 5J19098 Extracted: 10/19/05

Matrix Spike Analyzed: 10/20/2005 (5J19098-MS2)			59.01							
Antimony	86.6	2.0	0.18	ug/	80.0	0.29	108	70-130		
Cadmium	84.6	1.0	0.015	ug/	80.0	0.072	106	70-130		
Copper	84.8	2.0	0.49	ug/1	80.0	4.8	100	70-130		
Lead	80.8	1.0	0.040	ug/	80.0	0.53	100	70-130		
Matrix Spike Dup Analyzed: 10/20/2005 (5J19098-MSD1)			Source: 1OJ1156-01							
Antimony	85.5	2.0	0.18	ug/	80.0	0.18	107	70-130	1	20
Cadmium	84.4	1.0	0.015	ug/	80.0	0.14	105	70-130	0	20
Copper	83.1	2.0	0.49	ug/	80.0	3.9	99	70-130	0	20
Lead	79.9	1.0	0.040	ug/	80.0	0.32	99	70-130	1	20

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200	Report Number: IOJ1180	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200	Report Number: 1011180	Sampled: $10 / 18 / 05$
Pasadena, CA 91101 Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5J20118 Extracted: 10/20/05										
LCS Analyzed: 10/20/2005 (5J20118-BS1)										
Total Suspended Solids 993	10	10	mg / l	1000		99	85-115			
Duplicate Analyzed: 10/20/2005 (5J20118-DUP1)					ce: $10 J 1$	175-01				
Total Suspended Solids 344	10	10	mg / l		340			1	10	
Batch: 5J24050 Extracted: 10/24/05										
Blank Analyzed: 10/24/2005 (5J24050-BLK1)										
Oil \& Grease ND	5.0	0.94	mg / l							
LCS Analyzed: 10/24/2005 (5J24050-BS1)										M-NR1
Oil \& Grease 16.1	5.0	0.94	mg l	20.0		80	$65-120$			
LCS Dup Analyzed: 10/24/2005 (5J24050-BSD1)										
Oil \& Grease 16.1	5.0	0.94	mg / l	20.0		80	65-120	0	20	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager
17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297
1014 E. Cooley Dt., Sute A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689
9830 South 51st St, Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Sunset Rd. \#3, Las Vegas, NV 99120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200	Report Number: $10 \mathrm{Jl180}$	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IOI1180-01	413.1 Oil and Grease	Oil \& Grease	mg/l	0.29	4.8	15
1OII180-01	Antimony-200.8	Antimony	ug/	0.42	2.0	6.00
IOJ1180-01	Cadmium-200.8	Cadmium	ug/	0.47	1.0	4.00
IOJ1180-01	Chloride - 300.0	Chloride	$\mathrm{mg} /$	41	1.0	150
1OJ1180-01	Copper-200.8	Copper	ug/	16	2.0	14
IOJ1180-01	Mercury - 245.1	Mercury	ug/l	0.13	0.20	0.20
1OJ1180-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	mg / l	7.90	0.52	10.00
IOJ1180-01	Sulfate-300.0	Sulfate	mg / l	23	1.0	250
1O11180-01	TDS - SM 2540C	Total Dissolved Solids	$\mathrm{mg} /$	480	10	850
IOJ1180-01RE1	Copper-200.8	Copper	ug/l	16	2.0	14

[^20]| MWH-Pasadena/Boeing | Project ID: Routine Outfall 006 | |
| :--- | ---: | ---: |
| 300 North Lake Avenue, Suite 1200 | | Sampled: $10 / 18 / 05$ |
| Pasadena, CA 91101
 Attention: Bronwyn Kelly | Report Number: 1011180 | Received: $10 / 18 / 05$ |

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: 1011180

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: IOJ1180-01
Analysis Performed: EDD + Level 4
Samples: 1OI1180-01

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager
199

1700 Elm Street
Minneapolis, MN 55414
Phone: 612.607.1700 Fax: 612.607.6444

The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Project: Chemical Analysis

PROJECT: PCDD/PCDF ANALYSES
ISSUED TO: Del Mar Analytical, Irvine
Attn: Michele Harper
17461 Derian Avenue, Suite 100
Irvine, CA 92614

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763 1021765, 1021766, 1021907. 1021908, 1021910, 1021911. 1021912, 1021959

INTRODUCTION

This report presents the results from the analyses performed on twelve samples submitted by a representative of Del Mar Analytical, Irvine. The samples were analyzed for the presence or absence of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) using a modified version of USEPA Method 1613B

SAMPLEIDENTIFICATION

Client ID	Sample Type	Date Received	PACE ID
1OJ1181-01	Water	10/19/05	1021758001
10J1176-01	Water	10/19/05	1021760001
1OJ1186-01	Water	10/19/05	1021761001
10J1180-01	Water	10/19/05	1021763001
10J1184-01	Water	10/19/05	1021765001
IOJ1177-01	Water	10/19/05	1021766001
1OJ1234-01	Water	10/20/05	1021907001
1OJ1232-01	Water	10/20/05	1021908001
1OJ1231-01	Water	10/20/05	1021910001
1OJ1235-01	Water	10/20/05	1021911001
1OJ1236-01	Water	10/20/05	1021912001
10J1337-01	Water	10/21/05	1021959001

RESULTS

The results are included in the following:

> Appendix A - Documentation Appendix B - Sample Analysis Results Appendix C - QC and Calibration Results Appendix D - Sample Chromatograms and Raw Data Appendix E - Calibration Chromatograms and Raw Data Appendix F - QC Chromatograms and Raw Data $$
\begin{array}{r}\text { REPORT OF LABORATORY ANALYSIS }\end{array}
$$

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, inc.

PROJECT: PCDD/PCDF ANALYSES
PAGE: 2

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907, 1021908, 1021910, 1021911, 1021912, 1021959

DISCUSSION

Two sets of results were provided, at the request of Del Mar Analytical, for sample 1OJ1337-01. In the initial (11/03/2005) extraction batch for this sample, elevated recoveries were obtained for selected native congeners in the associated lab spike samples, most likely due to contamination. The second (11/08/2005) extraction batch showed good recoveries for the native congeners in the lab spikes. However, the results obtained from the analyses of the two extracts of the field sample were dissimilar. The initial sample results, associated with the contaminated lab spikes, were significantly lower than the repeat sample results, those associated with the compliant lab spikes samples.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from $34-108 \%$. All of the labeled standard recoveries obtained for these projects were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, the presence of interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "l" where incorrect isotope ratios were obtianed, or " E " where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results, found at the beginning of Appendix C , show the blanks to contain trace levels of selected PCDD and PCDF congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged " B " and may be, at least partially, attributed to the background. In general, levels less than ten times the background are not considered to be statistically different from the background.

Laboratory spike samples were also prepared with the sample batches using clean water that had been fortified with native standard materials. The results show the spiked native compounds in LCS8224 and LCSD-8225 were recovered at $88-109 \%$, with relative percent differences of $0.0-12.2 \%$. These results indicate high degrees of accuracy and precision for these determinations. Four native recovery values LCS-8209 and LCSD-8210 were above the target ranges; the affected values were flagged " P " on the results tables and may indicate high biases for these congeners in the associated sample (the initial extract of IOJ1337-01).

REPORT OF LABORATORY ANALYSIS

This repont shall not be reproduced, except in full, without the written consent of Pace Anatytical Services, Inc.

NPDES - 329

PROJECT: PCDD/PCDF ANALYSES
PAGE: 3

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907. 1021908, 1021910, 1021911, 1021912, 1021959

REMARKS

The sample extracts will be retained for a period of 15 days from the date of this report and then discarded unless other arrangements are made. The raw mass spectral data will be archived on magnetic tape for a period of not less than one year. Questions regarding the data contained in this report may be directed to the author at the number provided below.

Pace Analytical Services, Inc.

(612) 607-6383

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, inc.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,
without the written consent of Pace Analytical Services, inc.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc.
1700 Elm Street - Suite 200 Minneapolis, MN 55414

Method 1613B Laboratory Control Spike Results
 Client - Del Mar Analytical

Lab Sample ID
Filename
Total Amount Extracred
ICAL Date
CCal Filename
Method Blank ID
LCS-8224
F51109C_03
1050 mL
$10 / 22 / 2005$
F51109C 02
BLANK-8223

Matrix	Water
Dilution	NA
Extracted	$11 / 08 / 2005$
Analyzed	$11 / 10 / 2005 \quad 00: 34$
injected By	BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	$\begin{gathered} \% \\ \text { Rec. } \end{gathered}$
2,3,7,8-TCDF	10	9.5	7.5	15.8	95
2,3,7,8-TCDD	10	9.5	6.7	15.8	95
1,2,3,7,8-PeCDF	50	50.6	40.0	67.0	101
2,3,4,7,8-PeCDF	50	45.9	34.0	80.0	92
1,2,3,7,8-PeCDD	50	43.9	35.0	71.0	88
1,2,3,4,7,8-HxCDF	50	47.2	36.0	67.0	94
1,2,3,6,7,8-HxCDF	50	47.2	42.0	65.0	94
2,3,4,6,7,8-HxCDF	50	48.1	35.0	78.0	96
1,2,3,7,8,9-HxCDF	50	48.2	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	48.5	35.0	82.0	97
1,2,3,6,7,8-HxCDD	50	48.3	38.0	67.0	97
1,2,3,7,8,9-HxCDD	50	46.2	32.0	81.0	92
1,2,3,4,6,7,8-HpCDF	50	50.2	41.0	61.0	100
1,2,3,4,7,8,9-HpCDF	50	52.6	39.0	69.0	105
1,2,3,4,6,7,8-HpCDD	50	44.9	35.0	70.0	90
OCDF	100	92.1	63.0	170.0	92
OCDD	100	93.3	78.0	144.0	93
2,3,7,8-TCDD-37Cl4	10	7.1	3.1	19.1	71
2,3,7,8-TCDF-13C	100	60.6	22.0	152.0	61
2,3,7,8-TCDD-13C	100	68.3	20.0	175.0	68
1,2,3,7,8-PeCDF-13C	100	64.1	21.0	192.0	64
2,3,4,7,8-PeCDF-13C	100	62.8	13.0	328.0	63
1,2,3,7,8-PeCDD-13C	100	81.7	21.0	227.0	82
1,2,3,4,7,8-HxCDF-13C	100	63.6	19.0	202.0	64
1,2,3,6,7,8-HxCDF-13C	100	63.7	21.0	159.0	64
2,3,4,6,7,8-HxCDF-13C	100	60.8	22.0	176.0	61
1,2,3,7,8,9-HxCDF-13C	100	60.7	17.0	205.0	61
1,2,3,4,7,8-HxCDD-13C	100	65.7	21.0	193.0	66
1,2,3,6,7,8-HxCDD-13C	100	67.5	25.0	163.0	68
1,2,3,4,6,7,8-HpCDF-13C	100	68.4	21.0	158.0	68
1,2,3,4,7,8,9-HpCDF-13C	100	62.9	20.0	186.0	63
1,2,3,4,6,7,8-HpCDD-13C	100	76.3	26.0	166.0	76
OCDD-13C	200	117.9	26.0	397.0	59

$\mathrm{Cs}=$ Concentration Spiked (ng/mL)
$\mathrm{Cr}=$ Concentration Recovered ($\mathrm{ng} / \mathrm{mL}$.)
Rec. $=$ Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
$\mathrm{X}=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{Nn}=$ Value obtained from additional analysis Report No..... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1700 Em Street - Suite 200 Minneapolis. MN 55414

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical

Lab Sample ID	LCSD-8225
Filename	F51109C_04
Total Amount Extracted	1040 mL
ICAL Date	$10 / 22 / 2005$
CCal Filename	F51109C 02
Method Blank ID	BLANK-8223

Matrix	Water
Dilution	NA
Extracted	$11 / 08 / 2005$
Analyzed	$11 / 10 / 2005 \quad 01: 21$
Injected By	BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	$\begin{gathered} \% \\ \text { Rec. } \end{gathered}$
2,3,7,8-TCDF	10	9.1	7.5	15.8	91
2,3,7,8-TCDD	10	10.1	6.7	15.8	101
1,2,3,7,8-PeCDF	50	51.1	40.0	67.0	102
2,3,4,7,8-PeCDF	50	51.8	34.0	80.0	104
1,2,3,7,8-PeCDD	50	46.1	35.0	71.0	92
1,2,3,4,7,8-HxCDF	50	49.5	36.0	67.0	99
1,2,3,6,7,8-HxCDF	50	49.5	42.0	65.0	99
2,3,4,6,7,8-HxCDF	50	50.6	35.0	78.0	101
1,2,3,7,8,9-HxCDF	50	48.0	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	52.0	35.0	82.0	104
1,2,3,6,7,8-HxCDD	50	54.3	38.0	67.0	109
1,2,3,7,8,9-HxCDD	50	51.8	32.0	81.0	104
1,2,3,4,6,7,8-HpCDF	50	51.9	41.0	61.0	104
1,2,3,4,7,8,9-HpCDF	50	54.5	39.0	69.0	109
1,2,3,4,6,7,8-HpCDD	50	47.3	35.0	70.0	95
OCDF	100	93.1	63.0	170.0	93
OCDD	100	97.2	78.0	144.0	97
2,3,7,8-TCDD-37C14	10	6.9	3.1	19.1	69
2,3,7,8-TCDF-13C	100	55.7	22.0	152.0	56
2,3,7,8-TCDD-13C	100	62.3	20.0	175.0	62
1,2,3,7,8-PeCDF-13C	100	57.8	21.0	192.0	58
2,3,4,7,8-PeCDF-13C	100	54.6	13.0	328.0	55
1,2,3,7,8-PeCDD-13C	100	68.6	21.0	227.0	69
1,2,3,4,7,8-HxCDF-13C	100	61.8	19.0	202.0	62
1,2,3,6,7,8-HxCDF-13C	100	63.8	21.0	159.0	64
2,3,4,6,7,8-HxCDF-13C	100	59.4	22.0	176.0	59
1,2,3,7,8,9-HxCDF-13C	100	61.4	17.0	205.0	61
1,2,3,4,7,8-HxCDD-13C	100	58.6	21.0	193.0	59
1,2,3,6,7,8-HxCDD-13C	100	67.0	25.0	163.0	67
1,2,3,4,6,7,8-HpCDF-13C	100	66.7	21.0	158.0	67
1,2,3,4,7,8,9-HpCDF-13C	100	62.2	20.0	186.0	62
1,2,3,4,6,7,8-HpCDD-13C	100	74.8	26.0	166.0	75
OCDD-13C	200	122.3	26.0	397.0	61

$\mathrm{Cs}=$ Concentration Spiked ($\mathrm{ng} / \mathrm{mL}$)
$\mathrm{Cr}=$ Concentration Recovered ($\mathrm{ng} / \mathrm{mL}$)
Rec. $=$ Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, $10 / 94$ Revision
$X=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{Nn}=$ Value obtained from additional analysis Report No..... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in fult,
without the written consent of Pace Analytical Services, Inc.

Client. \qquad Del Mar Analytical

SPIKE 1 ID................. LCS-8224			
SPIKE 1 Filename.......................F51109C_03SPIKE 2 ID............................. LCSD-8225SPIKE 2 Filename..................F51109C_04			
$\begin{array}{lccc} & \text { SPIKE 1 } & \text { SPIKE 2 } \\ \text { COMPOUND } & \text { REC,\% } & \\ & \text { REC,\% }\end{array}$			
2378-TCDF	95	91	4.3
2378-TCDD	95	101	6.1
12378-PeCDF	101	102	1.0
23478-PeCDF	92	104	12.2
12378-PeCDD	88	92	4.4
123478-HxCDF	94	99	5.2
123678-HxCDF	94	99	5.2
234678-HxCDF	96	101	5.1
123789-HxCDF	96	96	0.0
123478-HxCDD	97	104	7.0
123678-HxCDD	97	109	11.7
123789-HxCDD	92	104	12.2
1234678-HpCDF	100	104	3.9
1234789-HipCDF	105	109	3.7
1234678-HpCDD	90	95	5.4
OCDF	92	93	1.1
OCDD	93	97	4.2

REC $=$ Percent Recovered
$R P D=$ The difference between the two values divided by the average.
NA $=$ Not Applicable

NPDES - 335
 to14 E. Cooley Dr., Sulte A cotion, CA sp3si4 9484 Chenapazke Drive, Suite 2es, San Diega, CA 92123

Pr. (949) 251-1022
Ph (909) $370-4657$
 Pn (480) 785-004 Pn(Tas) reas seo

Fax (949) 265-122t
F $\times(909) 370-1046$ F펴 (619) 505-960 Fax (480) res-62si

SUBCONTRACT ORDER - PROJECT \# IOJ1180

SENDING LABORATORY:
Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager. Michele Harper

RECEIVING LABORATORY:

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200
Minneapolis, MN 55414
Phone :(612) 607-1700
Fax: (612) 607-6444

Standard TAT is requested unless specific due date is requested $=>$ Due Date: \qquad Initials: \qquad

Analysis	Expiration	Comments
Sample ID: IOJ1180-01	Water	Sampled: 10/18/05 09:19
1613-Dioxin-HR	10/25/0509:19	Instant Nofication
EDD + Level 4	$11 / 15 / 0509: 19$	J flags, 17 congeners,no TEQ,ugh, sub=Pace-MN

Containers Supplied:

1 L Amber (1011180-01C)
IL Amber (JOII 180-01D)

APPENDIX G

Section 14

Outfall 006, October 18, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewer E. Wessling
Analysis/Method General Minerals

Package ID T711WCI78
Task Order 313150010 SDG No. Multiple
No. of Analvses 5

ACTION ITEMS*
Case Narrative
Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

${ }^{4}$ Subcoukracted analytical laborutory ir not mesting contruct and/or method recpuinements.

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUPS: IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 5
Reviewer: E. Wessling
Date of Review: December 12, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method $S M 2540 C$, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procediures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R^{\prime} data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: NPDES Monitoring SDG No.: Multiple Anniysis: General Minerals

Table 1. Sample identification

Client ID	Laboratory DD	Matrix	COC Method
Outfall 003	IOI1231-01	Water	General Minerals
Outfall 010	IOI1232-01	Water	General Minerals
Outfall 006	IOI1180-01	Water	General Minerals
Outfall 007	IOI1184-01	Water	General Minerals
Ouffall 009	IOI1186-01	Water	General Minerals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory persomel and accounted for the samples and all analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Tinses

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times for all analyses were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

Target compounds were not detected in the associated method blanks. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for analyses without an MS/MSD. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as " J " values and amnotated with the qualification code of "BNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

MWAPRasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bromyry Kelly

Project ID: Routine Outfall 006
Report Number: 1011180

Sampled: 10/18/0s
Received: 10/18/05

INORGANIC

Level IV Validated
Del Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA AMEC Earth \& Enviroumental

550 South Wadsworth Boulevard

Suite 500
Lakewood, CO 80226
Laboratory Pace - Minneapolis
Reviewer E. Wessling
Analysis/Method Dioxins/Furans by Method 1613B

Package ID T711DF50
Task Order 313150010
SDG No. Multiple
No. of Analyses 8

ACTION ITEMS:

. Case Narrative
Deficiencies
2. Out of Scope

Analysen
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverablest
6. Deviations from Analysty Qualifications were assigned for the following:

Protacol, cg.,
Holding Times
GCMS Tume/hist. Performance
-EMPCS qualified as estimated nondetects

Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standurd Performance
Compound Identification
Quntitation
Systen Peffornance
COMMENTS'

[^21]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: IOJ1181, IOJ1176, IOJ1186, IOJ1180, IOJ1184, IOJ1177, IOJ1232, IOJ1231

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review. November 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Valdation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R^{\prime} " data quatifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (${ }^{\text {ace }}$)	Matrix	COC Method
Outfall 008	IOIL181-01	1021758001	water	1613
Outall 005	$1011176-01$	1021760001	water	1613
Outfall 009	IOII186-01	1021761001	water	1613
Outfall 006	IOII180-01	1021763001	water	1613
Outfall 007	$10 \mathrm{Il184-01}$	1021765001	water	1613
Outfall 004	$1011177-01$	1021766001	water	1613
Outfall 010	$1011232-01$	1021908001	water	1613
Outfall 003	1011231-01	1021910001	water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Pace for dioxin/firan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the case narrative and laboratory login sheet, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Pace had no custody seals present for samples IOJ1232-01 and 10I1231-01. All other samples had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 ENSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Cohumn Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

DUEA VILIRATKON RAPORE	Project: SDG Na: Anmyinis	NPDES Muluple

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $10 / 22 / 05$ for instrument F. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (Blank 8223) was extracted and analyzed with the samples in this SDG. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDD}$ and OCDF were reported in method blank 8223 at concentrations of 0.0000041 and $0.0000068 \mathrm{ug} / \mathrm{L}$, respectively. An interference with OCDD was also reported in method blank 8223. Any detects for these target compounds \leq five times the concentration reported in the method blank were qualified as estimated, "UI," in the site samples of this SDG. Detects for total dioxin and furan isomers at concentrations \leq five times the concentration reported in the method blank were qualified as estimated, "U,", in the associated samples. In instances where the total concentration included peaks not present in the method blank as well as the method blank contamination, the total concentration was considered estimated, " J_{2} " as a portion of the total concentration was considered blank contamination. There were no other target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (LCS/LCSD 8224/8225) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

DIEA WELDITHONREPORT	Pruject: SDONE: Amalyits:	

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND DENTIIICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. However, the laboratory was experiencing sporadic cross-contamination problems which they attributed to incomplete glassware cleaning procedures. Two samples, Outfall 009 and outfall 010, exhibited atypical target compound detects. These samples were rejected in favor of a reanalysis at another laboratory that was not experiencing contamination problems. This was done to ensure the target compound detects were representative of site conditions and not laboratory cross-contamination. No further qualifications were required.

2.10 COMPOUND QUANTHFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J ${ }_{3}$ " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

This repert shali nct be roprocuced, exeapi in full,
Whout the wiftun consont of Pace Analyicel Sarvices, inc.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewer E. Wessling
Analysis/Method Metals.

Package ID T711MT93
Task Order 313150010 SDG No. Multiple
No. of Anrilyses 5
Date: December 18, 2005

ACTION ITEMS"

DATA VALDDATION REPORT

NPDES Monitoring Program

ANALYSIS: METALS

SAMPLE DELIVERY GROUPS IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT Monitoring	
DAT	SDG No: Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring Program Contrat Task Order \#: 313150010
SDG\#: Multiple
Project Manager. P. Costa
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 3
Reviewer: E. Wessling
Date of Review: December 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procechure for Levels III and IV ICP Metals (DVP-5, Rev. 2), USEPA Methods 200.8 for ICP. MS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Projerct	NPDES Monitoring
DATA VALDATION REPORT	SDG No: Analysis:	Multiple METALS

Table 1. Sample identification

Clien ID	Laboratory D	Matrix	COC Method
Outfall 003	IOn1231-01	Water	$200.8 / 245.1$
Outfall 010	ION1232-01	Water	$200.8 / 245.1$
Outfall 006	IOn1180-01	Water	$200.8 / 245.1$
Outfall 007	ION1184-01	Water	$200.8 / 245.1$
Outfall 009	10N1186-01	Water	$200.8 / 245.1$

DATA VALIDATION REPORT	Project: SDG No.: Analysis:	NPDES Moaitoring Multiple MEIALS

2. DATA VALDATION FINDINGS

2.1 SAMPLEMANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required for ICP-MS tuming.

2.3 CALIBRATION

The ICV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The laboratory analyzed reporting limit check standards in association with this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting linit or were significantly below the sample detects so as not to result in qualification of the data with the exception of cadmium in the method blank. Cadmium was qualified as a nondetect, "U," in the sample from Outfall 006. No firther qualifications were required.

	Project:	NPDES Monitoring
DATA VALIDATION REPORT	SDG Na.: Analysis:	Multiple METALS

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP/MS analyses. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples and mercury LCS samples as reported on the LCS on the summary forms and in the raw data were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in these SDGs. No qualification was required.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed on samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for all analyses. No qualification was required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

	Project
DATA VALDDATION REPORT	NPDES Monitoring SDGNo:
Multiple	

of the original analysis. Resalts reported by the laboratory between the MDL and reporting limit were qualified as "J" values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

Del Mar Analytical, Irvine
Michele Harper
Project Manager

APPENDIX G

Section 15

Outfall 006, November 09, 2005
Del Mar Analytical Laboratory Report 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (859) 505-9596 fAX (858) 505-9689 9830 South 51st St, Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. 43, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 006

Sampled: 11/09/05
Received: 11/09/05
Issued: 01/20/06 17:37

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID	CLIENT ID	MATRIX
IOK0903-01	Outfall 006	Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

7461 Derian Ave, Suite 100, INine, CA 92614 (949) 267-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX $\{909) 370$-1046
 9830 South Sist St., Sulte B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-6857 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled:
Pasadena, CA 91101	Report Number: 10 IOK0903	Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OK0903-01 (Outfall 006 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5K16096	0.36	4.0	1.3	2	11/16/05	11/16/05	RL-1, J
Cadmium	EPA 200.8	5K16096	0.030	2.0	0.91	2	11/16/05	11/17/05	RL-1, J
Copper	EPA 200.8	5K16096	0.98	4.0	34	2	11/16/05	11/16/05	
Lead	EPA 200.8	5K16096	0.080	2.0	29	2	11/16/05	11/16/05	
Mercury	EPA 245.1	5K17098	0.050	0.20	0.89	1	11/17/05	11/17/05	
Sample ID: 1OK0903-01RE1 (Outfall 006 - Water)									
Reporting Units: ug/									
Copper	EPA 200.8	5K19049	0.49	2.0	28	1	11/16/05	11/21/05	
Mercury	EPA 245.1	5K22081	0.050	0.20	0.90	1	11/17/05	11/22/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Report Number: $10 K 0903$	Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed
Sample ID: IOK0903-01 (Outfall 006 - Water) - cont. Reporting Units: mg/								
Chloride	EPA 300.0	5K09130	1.3	2.5	49	5	11/09/05	11/10/05
Nitrate/Nitrite- \mathbf{N}	EPA 300.0	5K09130	0.072	0.26	4.9	1	11/09/05	11/10/05
Oil \& Grease	EPA 413.1	5K14056	0.99	5.3	ND	1	11/14/05	11/14/05
Sulfate	EPA 300.0	5K09130	0.18	0.50	31	1	11/09/05	11/10/05
Total Dissolved Solids	SM2540C	5K16116	10	10	550	1	11/16/05	11/16/05
Total Suspended Solids	EPA 160.2	5K10088	10	10	710	1	11/10/05	11/10/05

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Report Number: 10 K 0903

Sampled: 11/09/05
Received: 11/09/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: EPA 300.0	2	$11 / 09 / 200513: 06$	$11 / 09 / 2005$	$18: 00$	$11 / 09 / 2005$	$23: 30$

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: IOK0903 Received: 11/09/05

Sampled: 11/09/05

METHOD BLANKOCDATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5K16096 Extracted: 11/16/05											
Blank Analyzed: 11/16/2005-11/17/2005 (5K16096-BLK1)											
Antimony	ND	2.0	0.050	ug/							
Cadmium	ND	1.0	0.025	ug/							
Copper	1.20	2.0	0.25	ug/							J
Lead	0.129	1.0	0.040	ug/							J

LCS Analyzed: 11/16/2005-11/17/2005 (5K16096-BS1)

Antimony	75.0	2.0	0.050	ugh	80.0	94	$85-115$
Cadmium	85.7	1.0	0.025	ugh	80.0	107	$85-115$
Copper	82.7	2.0	0.25	ugd	80.0	103	$85-115$
Lead	82.4	1.0	0.040	ug/1	80.0	103	$85-115$

Matrix Sp		MS				e: IOK	18-0	
Antimony	76.3	2.0	0.050	ug/	80.0	0.060	95	70-130
Cadmiam	86.0	1.0	0.025	ugd	80.0	ND	108	70-130
Copper	79.4	2.0	0.25	ug/	80.0	2.7	96	70.130
Lead	79.8	1.0	0.040	ug/	80.0	0.070	100	70-130

Matrix S	005	S				: 10K	2-03	
Antimony	75.0	2.0	0.050	ug/	80.0	0.096	94	70-130
Cadmium	86.5	1.0	0.025	ug/	80.0	0.11	108	70-130
Copper	107	2.0	0.25	ug/	80.0	34	91	70-130
Lead	77.7	1.0	0.040	ug/	80,0	0.22	97	70-130

Matrix Spike Dup Analyzed: 11/16/2005-1 1/17/2005 (5K16096-MSD1)

Antimony	75.6	2.0	0.050	$\mathrm{ug} / 1$	80.0	0.060	94	$70-130$	1	20
Cadmium	86.4	1.0	0.025	ug / l	80.0	ND	108	$70-130$	1	20
Copper	78.0	2.0	0.25	$\mathrm{ug} /$	80.0	2.7	94	$70-130$	2	20
Lead	79.7	1.0	0.040	ug / l	80.0	0.070	100	$70-130$	0	20

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200 Sampled: 11/09/05 Pasadena, CA 91101 Report Number: IOK0903 Received: 11/09/05 Attention: Bronwyn Kelly		

METHOD BLANKIQCDATA

METALS

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Routine Outfall 006	Sampled: 11/09/05 Received: $11 / 09 / 05$

METHOD BLANKQC DATA

METALS

						Reporting			Spike	Source	\%REC	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Data	Qualifiers

Batch: 5K22081 Extracted: 11/22/05

LCS Analyzed: 11/22/2005 (5K22081-BS1)

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

17461 Derian Ave, Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cootey Dr, Sutue A, Cotor, CA 92324 (909) 370-4667 FAX (909) $370-1046$

Del Mar Analytical

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Report Number: $10 K 0903$	Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

MEIHOD BLANKIOC BATA

INORGANICS

[^22]| MWH-Pasadena/Boeing | Project ID: Routine Outfall 006 | |
| :--- | :--- | :--- |
| 300 North Lake Avenue, Suite 1200 | Report Number: IOK0903 | Sampled: $11 / 09 / 05$ |
| Pasadena, CA 91101 | | Received: $11 / 09 / 05$ |
| Attention: Bronwyn Kelly | | |

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\mathbf{R P D}$ Limit	Data Qualifiers
Batch: 5K14056 Extracted: 11/14/05										
Blank Analyzed: 11/14/2005 (5K14056-BLK1)										
Oil \& Grease ND	5.0	0.94	mg / l							
LCS Analyzed: 11/14/2005 (5K14056-BS1)										M-NR1
Oil \& Grease 17.1	5.0	0.94	mg / l	20.0		86	65-120			
LCS Dup Analyzed: 11/14/2005 (5K14056-BSD1)										
Oil \& Grease 17.4	5.0	0.94	mg / l	20.0		87	65-120	2	20	

Batch: 5K16116 Extracted: 11/16/05

Blank Analyzed: 11/16/2005 (5K16116-BLK1)

Total Dissolved Solids	ND	10	10	mg / l

LCS Analyzed: 11/16/2005 (5K16116-BS1)

Total Dissolved Solids	988	10	10	mg / l	1000	99	$90-110$
Duplicate Analyzed: $\mathbf{1 1 / 1 6 / 2 0 0 5}$	(5K16116-DUP1)				Source: $\mathbf{1 0 K 0 9 0 4 - 0 1}$		
Total Dissolved Solids	196	10	10	mg / l	200	10	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: $10 K 0903$ Received: 11/09/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

| LabNumber | Analysis | Analyte | | | Compliance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Limit | | | | | |

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: $10 K 0903$ Received: 11/09/05

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
RL-1 Reporting limit raised due to sample matrix effects.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

[^23]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006	
Report Number: 10 K 0903	Sampled: $11 / 09 / 05$
Received: $11 / 09 / 05$	

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A1613B	Water		
EDD+Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

```
Alta Analytical NELAC Cert \#02102CA, California Cert \#1640, Nevada Cert \#CA-413
    1104 Windfield Way - El Dorado Hills, CA 95762
        Analysis Performed: 1613-Dioxin-HR
        Samples: 1OK0903-01
    Analysis Performed: EDD + Level 4
        Samples: FOK0903-01
```


Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager
Del Mar Analytical varionorytros CHAIN OF CUSTODY FORM

ALTA

December 11, 2005

Alta Project I.D.: 27029

Ms. Michele Chamberlin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Chamberlin,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on December 08, 2005 under your Project Name "IOK0903". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section I) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Martha M. Maier
 Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report Date Received: $\quad 12 / 8 / 2005$

Alta Lab, ID

27029-001

Client Sample ID
IOK0903-01

SECTION II

Method Blank
EPA Method 1613

Matrix: Aqueous Sample Size: 1.000 L		QC Batch No.: Date Extracted:				ample: Analyzed DB-5:	$\begin{aligned} & 0 \text {-MB001 } \\ & \text { 9-Dec-05 } \end{aligned}$	Date	alyzed DB-225:	: NA
Analyte Con	g/L)	DL ${ }^{\text {a }}$		Quali		Labeled Standa		\%R	LCLUCL ${ }^{\text {d }}$	Oualifiers
2,3,7,8-TCDD	ND	0.00000105				13C-2,3,7,8-TC		79.8	25-164	
1,2,3,7,8-PeCDD	ND	0.000000893				13C-1,2,3,7,8-	DD	81.3	25-181	
1,2,3,4,7,8-HxCDD	ND	0.00000158				13C-1,2,3,4,7,8	$\times C D D$	75.1	32-141	
1,2,3,6,7,8-HxCDD	ND	0.00000149				13C-1,2,3,6,7,8	xCDD	77.1	28-130	
1,2,3,7,8,9-HxCDD	ND	0.00000154				13C-1,2,3,4,6,7	HpCDD	70.9	23-140	
1,2,3,4,6,7,8-HpCDD	ND	0.00000172				13C-OCDD		56.0	17-157	
OCDD	ND	0.00000585				13C-2,3,7,8-TC	,	79.9	24-169	
2,3,7,8-TCDF	ND	0.000000899				13C-1,2,3,7,8-	CDF	73.7	24-185	
1,2,3,7,8-PeCDF	ND	0.00000135		\%		$13 \mathrm{C}-2,3,4,7,8-\mathrm{P}$	CD	76.2	21-178	
2,3,4,7,8-PeCDF	ND	0.00000117				13C-1,2,3,4,7,8	xCDF	70.8	26-152	
1,2,3,4,7,8-HxCDF	ND	0.000000723				13C-1,2,3,6,7,8	$\times \mathrm{CDF}$	74.2	26.123	
1,2,3,6,7,8-HxCDF	ND	0.000000682				13C-2,3,4,6,7,8	xCDF	73.5	28-136	
2,3,4,6,7,8-HxCDF	ND	0.000000824				13C-1,2,3,7,8,9	xCDF	76.6	29-147	
1,2,3,7,8,9-HxCDF	ND	0.00000132				13C-1,2,3,4,6,	HpCDF	68.4	28-143	
1,2,3,4,6,7,8-HpCDF	ND	0.000000743				13C-1, 2,3,4,7,8	HpCDF	72.8	26-138	\% \%
1,2,3,4,7,8,9-HpCDF	ND	0.000000947				13C-OCDF		59.0	17-157	
OCDF	ND	0.00000230			CRS	37C1-2,3,7,8-TC	${ }^{4}$	97.0	35-197	
Totals					Footnotes					
Total TCDD	ND	0.00000105			a. Sample specific estimated detection limit. b. Estimated maximum possible corcentration. c. Method detection limit. d. Lower control limit - upper control limit.					
Total PeCDD *	ND	0.000000893		\%						
Total HxCDD	ND	0.00000154								
Total HpCDD	ND	0.00000172								
Total TCDF	ND	0.000000899	54\%							
Total PeCDF	ND	0.000000593								
Total HxCDF	ND	0.000000861								
Total HpCDF	ND	0.000000833								

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.
H The signal-to-noise ratio is greater than 10:1.

I
Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	$05-013-0$
State of Arkansas, DOH	Reciprocity through CA
State of California - NELAP Primary AA	02102 CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	$68-00490$
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	Commonwealth of Virginia
State of Washington	00013
State of Wisconsin	C1285
State of Wyoming	898036160
	8 MS

 *

SUBCONTRACT ORDER - PROJECT \# IOK0903

SENDING LABORATORY:	RECEIVINGLABORATORY:
Del Mar Analytical, Irvine	Aita Analytical - SUB
17461 Derian Avenue. Suite 100	1104 Windield Way
Irvine, CA 92614	E1 Dorado Fills, CA 95762
Phone: (949) 261-1022	Phone: :(916) 933-1640
Fax: (949) 261-1228	Fax: (916) 673-0106
Project Manager: Michele Chambertin	

Standard TAT is requested unless specific due date is requested m Dae Date: \qquad Initiale:

Analysis		1 xpiration	Comments
Sample m: 10K0903-01	Water	Sampled: 1109/05 13:06	Instant Nofication
1613-Dioxin-HR		11/1605 13.06	I flage, 17 congeners,no TEQug/L,subwPace-MN
$\mathrm{EDD}+$ Level 4		12/07\%05 13:06	Excel EDD email to ym, include Std logs for Lvi IV
Containers Supplied:			
11. Amber (10K0903-01D)			

Alta Project \#:

Comments:

APPENDIX G

Section 16
Outfall 006, November 09, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 Sourth Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer E. Wessling
Analysis/Method Dioxins/Furans by 1613

Package ID T711DE51
Task Order 313150010
SDG No. Mulitple
No. of Analyses 8
Date: December 22, 2005

ACTION ITMMS"

| Case Narrative |
| :--- | :--- |
| Deficiencies |

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables \qquad

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUPS: IOJ1186, IOJ1232, IOK0899, IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by

	Project: SDO Na:	NPDES Multiple
DUTA VALIDITIONREPOR	Analyair	DF

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project SDONa: Anslysiar	NPDES Multiple DF
DALA VILIDATIONREPORT		

Table 1. Sample Identification

Client ID	Lahoratory ID (Del Mar)	Laboratory 1 D (Alta)	Matrix	COC Method
Ontfall 009	1011232-01	26994-001	water	1613
Outall 010	10n186-01	26993-001	water	1613
Outfall 018	10K0899-01	27025-001	water	1613
Outall 003	10K0900-01	27026-001	water	1613
Outfall 004	10K0901-01	27027-001	water	1613
Outall 005	IOK0902-01	27028-001	water	1613
Outall 006	10K0903-01	27029-001	water	1613
Outfall 009	10K0904-01	27030-001	water	1613

		NPDES Mulliple
DUTA VALIMATION REPORT	Anmyeis	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ}$ C. The samples were shipped to Alta for dioxin/firan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ or slightly below for some of the samples. As none of the samples was noted to be damaged or frozen, no qualifications were required. According to the case narratives and laboratory login sheets, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in these SDGs. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Alta had no custody seals. The EPA Ds were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $6 / 06 / 2005$. The calibration consisted of six concentration level standards (CS1 through CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank ($0-7516-\mathrm{MB} 001$) was extracted and analyzed with the samples in this SDG. No target compounds were detected in the method blank and no qualifications were required. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (OPR 0-7516-OPR001) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project: SDGNa:	$\begin{aligned} & \text { NPDES } \\ & \text { Multiople } \end{aligned}$
DATI VALIDATTONREPORT	Anlyitr	DF

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted with the exception of a false positive in Outfall 005 for $1,2,3,4,7,8-\mathrm{HxCDD}$. The sample was a nondetect Conifrmation for $2,3,7,8$-TCDF detected in samples Outfall 004, Outfall 005, and Outfall 006 was not performed; therefore, $2,3,7,8-\mathrm{TCDF}$ was qualified as estimated, "J." No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, " J, " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "U." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS:
IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC - Denver Operations
355 South Teller Street
Lakewood, CO 80226

	Project: OATA VALIOATIONREPORT
SDG:	Mulfiple

1. INTRODUCTION

Task Order Titte: NPDES Sampling
MEC ${ }^{\text {X }}$ Project Number: 313150010
Sample Delivery Group: IOK0900, IOK0901, IOK0902, IOK0903, IOK0904
Project Manager: P. Costa
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 4
Reviewer: E. Wessling
Date of Review: December 20, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for ICP Metals (DVP-5, Rev. 2), US EPA Method 200.8 for ICP-MS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Propect DATA VALDATION REPORT SDOES Mutliple

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 003	lOK0900-01	Water	200.8245 .1
Outfall 003RE1	IOK0900-01RE1	Water	200.8
Outfall 004	IOK0901-01	Water	$200.8 / 245.1$
Outfall 005	loK0902-01	Water	$200.8 / 245.1$
Outfall 005RE1	IOK0902-01RE1	Water	200.8
Outfall 008	IOK0903-01	Water	$200.8 / 245.1$
Outfall 000RE	1 OK0903-01RE1	Water	$200.8 / 245.1$
Outfall 006RE2	IOK0903-01RE2	Water	200.8
Outfall 009	IOK0904-01	Water	$200.8 / 245.1$

NPDES	
DATA VAIDATHON REPORI	Propect:
SDG:	Nuliple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples in these SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs.

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 006 were reanalyzed to confirm the original results. The laboratory did not appended the client IDs with "RE" suffices; therefore, the reviewer added these to the Form is. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28 -days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP-MS metals and 80 120\% for mercury The laboratory analyzed reporting limit check standards in association with these SDGs and all recoveries were acceptable. No qualifications were required.

	Propec:	NPDES
DATA VALDATION REPORT	SOG: Nulighe	

2.4 BLANKS

Mercury was reported in method blank 5K17098-BLK1 at $-0.072 \mu \mathrm{~g} /$; therefore, mercury in Outfall 003, Outfall 004, and Outfall 005 was qualified as estimated, "J," for detects and, "UJ," for nondetects. The remaining method blank and CCB results associated with the retained analyses were nondetects at the reporting limit or were significantly below the sample detects so as not to result in data qualification. No qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS AAB)

ICSA and ICSAB analyses were performed in association with the Outfall 003 selenium analysis. The recoveries were within the control limits. No other ICSA or ICSAB analyses were included in the raw data for the ICP-MS analyses. No qualifications were required

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS sample results were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MSMSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore no assessment was made with respect to this criterion. No qualifications were required.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore no assessment was made with respect to this criterion. Evaluation of laboratory accuracy was based on LCS results. No qualifications were required.

2.9 ICPMS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

NPDES	
DATA V/AIDATION REPORT	Project:
SDG: Muliple	

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICPMS, the ICP/MS intemal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form is were verified against the raw data. No transcription errors or calculation errors were noted. Some target analytes were reported from dilution analyses due to matrix interference. Reporting limits and MDLs were adjusted accordingly. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, "J," with the annotation of "DNQ," in accordance with the requirements of the NPDES permit.

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 006 were reanalyzed to confirm the original results. As the original results were all confirmed, the results for Outfall 003RE1, Outfall 005RE1, Outfall 006RE1, and Outfall 006RE2 were rejected, "R," in favor of the original results. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with these samples.

Levec IV

Del Mar Anslyticit Irvine.
Michole Chamberin
Preject Managr

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar-Irvine
Reviewer E Wessling
Analysis/Method General Minerals

ACTION ITEMS*

Case Narratíi
Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Mixing Hardcopy

Detiverables
5. Incorrect Hardcopy

Deliverables

6 Deviationt from Analysis
Qualifications were assigned for the following:
Protocol, es.

- estimations between the MDL and RL.

Holding Times
GCMS Tmolnct Perfomance
Callbration
Method blanks
Surrogates
Matrix SpikelDup LCS
Field ©
Internal Standard Performance
Compound Identification
Quantitation
Systen Sofformance
comments'

* Subontrated analyticallaboratory is no moting contract andor mefod requikencrte.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: GENERAL MINERALS
SAMPLE DELIVERY GROUPS:
IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC-Denver Operations
355 South Teller Street
Lakewood, CO 80226

DATA VALIDATON REPORT \begin{tabular}{l}

Project | NPDES |
| :---: |
| NuLliple |

\hline
\end{tabular}

1. INTRODUCTION

Task Order Title: NPDES Sampling
AMEC Project Number:
Sample Delivery Group:
Project Manager:
Matrix:
Analysis:
QC Level:
313150010
IOK0900, IOK0901, IOK0902, IOK0903, IOK0904
P. Costa
Water
General Minerals
Level IV
No of Samples: 5
No. of Reanalyses/Dilutions:
0
Reviewer:
Date of Review:
E. Wessling
December 20, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for General Minerals (DVP-6, Rev. 2), USEPA Methods for Chemical Analysis of Water and Wastes Methods 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-CMOD, and validation guidelines outined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form is as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Clien ID	Laboratory ID	Matrix	CoC Method
Outfall 003	IOK0900-01	Water	General Minerals
Outfall 004	$10 K 0901-01$	Water	General Minerals
Outfall 005	$10 K 0902-01$	Water	General Minerals
Outfall 006	$10 k 0903-01$	Water	General Minerals
Outfall 009	IOK0904-01	Water	General Minerals

DATA VALDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ No sample preservation, handing, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times were met and no qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

The blank results associated with the analyses were nondetects at the reporting limit or were significantly less than the sample detects so as not to result in data qualification. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

	Project:NPDES DATA VALIDATION REPORT

2.5 LABORATORY DUPLICATES

A laboratory duplicate analysis was performed on Outfall 009 for TDS. The \%D was less than the laboratory-established control limit of 10%. No qualifications were required.

2.6 MATRIX SPIKES

No MS/MSD analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, " J_{2} " with the annotation of "DNQ." in accordance with the requirements of the NPDES permit .No further qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

Del Mar Analytical

Lever IV

Del Mar Analytical Irvine
Michele Chambertin
Project Manager

APPENDIX G

Section 17

Outfall 007, October 18, 2005
Del Mar Analytical Laboratory Report

17467 Durian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr, Suite A, Cotton, CA 92324 (90913 370-4667 FAX (909) 370-1046

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 007

Sampled: 10/18/05
Received: 10/18/05
Issued: 01/20/06 15:33

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOJ1184-01

CLIENT ID
Outfall 007

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager
17467 Derian Ave, Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297
1014 E . Cooley Dr., Suree A, Colton, CA $92324\{909) 370-4667$ fAX $\{909\}$ 370-1046
9484 Chesapeake Dr., Stite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689
9830 South 51st St, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Project ID: Routine Outfall 007
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Report Number: 1011184

Sampled: 10/18/05
Received: 10/18/05

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OJ1184-01 (Outfall 007 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5J19098	0.050	2.0	6.2	1	10/19/05	10/20/05	
Cadmium	EPA 200.8	$5 J 19098$	0.025	1.0	0.80	1	10/19/05	10/20/05	B, J
Copper	EPA 200.8	5 J 19098	0.25	2.0	19	1	10/19/05	10/20/05	
Lead	EPA 200.8	5J19098	0.040	1.0	20	1	10/19/05	10/20/05	
Mercury	EPA 245.1	5 J 9052	0.050	0.20	0.10	1	10/19/05	10/19/05	J
Sample ID: 1OJ1184-01RE1 (Outfall 007 - Water)									
Repor									
Antimony	EPA 200.8	5J19098	0.050	2.0	6.2	1	10/19/05	11/07/05	
Copper	EPA 200.8	5J19098	0.25	2.0	20	1	10/19/05	11/07/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007	
	Sampled: $10 / 18 / 05$
Report Number: IOJ1184	Received: $10 / 18 / 05$

Report Number: IOII184

INORGANICS

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers

Sample ID: IOJ1184-01 (Outfall 007 - Water) - cont. Reporting Units: mg/l

Chloride	EPA 300.0	$5 J 18043$	0.75	2.5	$\mathbf{5 1}$	5	$10 / 18 / 05$	$10 / 18 / 05$
Nitrate/Nitrite-N	EPA 300.0	$5 J 18043$	0.080	0.15	$\mathbf{7 . 4}$	1	$10 / 18 / 05$	$10 / 18 / 05$
Oil \& Grease	EPA 413.1	5 J 24050	0.89	4.7	ND	1	$10 / 24 / 05$	$10 / 24 / 05$
Sulfate	EPA 300.0	$5 J 18043$	0.45	0.50	$\mathbf{3 3}$	1	$10 / 18 / 05$	$10 / 18 / 05$
Total Dissolved Solids	SM2540C	5 J 19123	10	10	$\mathbf{4 3 0}$	1	$10 / 19 / 05$	$10 / 19 / 05$
Total Suspended Solids	EPA 160.2	$5 J 20118$	10	10	$\mathbf{6 7 0}$	1	$10 / 20 / 05$	$10 / 20 / 05$

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Cotron, CA 92324 (909) 370-4667 FAX (909) $370-1046$ 9484 Chesapeake Dr., Sutte 805, San Diego, CA 92123 (858) 505-8596 fAX (858i 505-9689 9830 South 51se St, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 fAX (480) 785 -0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798. 3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 007	
300 North Lake Avenue, Suite 1200	Report Number: IOJ1184	Sampled: $10 / 18 / 05$
Pasadena, CA 91101 Attention: Bronwyn Kelly		

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 007 (IOJ1184-01) - Water EPA 300.0	2	$10 / 18 / 200508: 56$	$10 / 18 / 200514: 20$	$10 / 18 / 2005$	$16: 30$	$10 / 18 / 2005$

MWH-Pasadena/Boeing	Project ID: Routine Outfall 007	
300 North Lake Avenue, Suite 1200	Report Number: 10J1184	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKQC DATA

METALS

Batch: 5J19098 Extracted: 10/19/05

Blank Analyzed: 10/20/2005 (5J19098-BLK1)

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261 -1022 FAX (949) 260.3297 1014 E. Cooley Dr., Suute A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (258) 505-8596 FAX $\{8589$ 505-9689 9830 South 57 st St, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Surset Rd. *3, Las Vegas, NV 99120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 007	
300 North Lake Avenue, Suite 1200	Report Number: 1OJ1184	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

METALS

		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5J19098 Extracted: 10/19/05

Matrix Spike Analyzed: 10/20/2005 (5J19098-MS2)			Source: 1OJ1159-01							
Antimony	86.6	2.0	0.18	ug/	80.0	0.29	108	70-130		
Cadmium	84.6	1.0	0.015	ug/	80.0	0.072	106	70-130		
Copper	84.8	2.0	0.49	$\mathrm{ug} /$	80.0	4.8	100	$70-130$		
Lead	80.8	1.0	0.040	ug/	80.0	0.53	100	70-130		
Matrix Spike Dup Analyzed: 10/20/2005 (5J19098-MSD1)			Source: 10J1156-01							
Antimony	85.5	2.0	0.18	ug/	80.0	0.18	107	70-130	1	20
Cadmium	84.4	1.0	0.015	ug/	80.0	0.14	105	70-130	0	20
Copper	83.1	2.0	0.49	ug/1	80.0	3.9	99	70-130	0	20
Lead	79.9	1.0	0.040	ug/	80.0	0.32	99	70-130	1	20

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 007
300 North Lake Avenue, Suite 1200	
Pasadena, CA 91101 Report Number: $10 J 1184$	Sampled: $10 / 18 / 05$
Attention: Bronwyn Kelly	

METHOD BLANKIQC DATA

INORGANICS

Batch: 5J19123 Extracted: 10/19/05

Blank Analyzed: 10/19/2005 (5J19123-BLK1)

| Total Dissolved Solids | ND | 10 | 10 | mg / l |
| :--- | :--- | :--- | :--- | :--- | :--- |

LCS Analyzed: 10/19/2005 (5J19123-BS1)
Total Dissolved Solids 1000

Duplicate Analyzed: 10/19/200S (5J19123-DUP1)
Total Dissolved Solids
289
$10 \quad 10 \mathrm{mg} / \mathrm{l}$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager
17461 Derian Ave., Suite 100, ifvine, CA 92614 (949) 261-1022 FAX 9949 260-3297
1014 E. Cooley Dr., Suite A, Cotton, CA 92324 (909) 370-4667 FAX $\{909$) $370-1046$
9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 \&AX (858) 505-9689
9830 South 51st St, Suite B-720, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Sunset (9. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 007	
300 North Lake Avenue, Suite 1200 Sampled: Pasadena, CA 91101 Report Number: IOJ1184 Received: Attention: Bronwyn Kelly		

MEIHOD BLANKICC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	$\% \text { REC }$	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5, 20118 Extracted: 10/20/05										
Blank Analyzed: 10/20/2005 (5J20118-BLK1)										
Total Suspended Solids ND	10	10	mg / l							
LCS Analyzed: 10/20/2005 (5J20118-BS1)										
Total Suspended Solids 993	10	10	mg / l	1000		99	85-115			
Duplicate Analyzed: 10/20/2005 (5J20118-DUP1)					ce: $10 J$	175-01				
Total Suspended Solids 344	10	10	mg/		340			1	10	
Batch: 5J24050 Extracted: 10/24/05										
Blank Analyzed: 10/24/2005 (5324050-BLK1)										
Oil \& Grease ND	5.0	0.94	mg/							
LCS Analyzed: 10/24/2005 (5J24050-BS1)										M-NR1
Oil \& Grease $\quad 16.1$	5.0	0.94	$\mathrm{mg} /$	20.0		80	65-120			
LCS Dup Analyzed: 10/24/2005 (5J24050-BSD1)										
Oil \& Grease 16.1	5.0	0.94	$\mathrm{mg} /$	20.0		80	65-120	0	20	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager
17461 Derian Ave., Suite 100, Ivine, CA 92614 (949) 261-1022 FAX (949) 260-3297
1014 E Cooley Dr., Suite A, Colton, CA 92324 (909\} 370-4667 FAX (909) 370-1046
9484 Chesapeake Dr., Suite 80S, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689
9830 South 51s St, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-085
2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX ${ }^{(702)} 798-3621$

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Report Number: IOJ1184
Sampled: 10/18/05
Received: 10/18/05
Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
1O1184-01	413.1 Oil and Grease	Oil \& Grease	$\mathrm{mg} / 1$	0.38	4.7	15
10J1184-01	Antimony-200.8	Antimony	ug/	6.20	2.0	6.00
IOJ1184-01	Cadmium-200.8	Cadmium	ug/	0.80	1.0	4.00
1OJ1184-01	Chloride - 300.0	Chloride	mg / l	51	2.5	150
10J1184-01	Copper-200.8	Copper	ug/	19	2.0	14
IOII184-01	Mercury -245.1	Mercury	ug/	0.100	0.20	0.20
IOI1184-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	mg / l	7.40	0.15	10.00
[OI1184-01	Sulfate-300.0	Sulfate	mg / l	33	0.50	250
IOJ1184-01	TDS - SM 2540 C	Total Dissolved Solids	mg / l	430	10	850
IOJ1184-01RE1	Antimony-200.8	Antimony	ug/	6.20	2.0	6.00
1OJ1184-01RE1	Copper-200.8	Copper	ug/	20	2.0	14

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: $10 \mathrm{Ill84} \quad$ Received: 10/18/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

17461 Derian Ave., Suite 100, Invine, CA 92614 (9497) 251-1022 FAX (949) 260-3297 1014 E. Cooley Dr., 5ute A, Colkon, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite B05, San Diego, CA 92123 (858) 505-8596 FAX (850) 505 m 968 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0951 2520 E. Sunset Rd. \%3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007

Sampled: 10/18/05
Report Number: IOJ1184 Received: 10/18/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: 1OII184-01
Analysis Performed: EDD + Level 4
Samples: $10 \mathrm{I} 1184-01$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

Pace Antilytiv/ Sarvicas, inc.
1700 Em Streat
Minneapolis, MN 55414
Phone: 612.607.1700
Fax: 612.607.6444

The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Project: Chemical Analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, inc.

PROJECT: PCDDIPCDF ANALYSES
ISSUED TO: Del Mar Analytical, Invine
Attn: Michele Harper
17461 Derian Avenue, Suite 100
Irvine, CA 92614

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763 1021765, 1021766, 1021907, 1021908, 1021910, 1021911, 1021912, 1021959

INTRODUCTION

This report presents the results from the analyses performed on twelve samples submitted by a representative of Del Mar Analytical, Irvine. The samples were analyzed for the presence or absence of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) using a modified version of USEPA Method 1613B

SAMPLEIDENTIFICATION

Client ID

1OJ1181-01
1OJ1176-01
IOJ1186-01
1OJ1180-01
1OJ1184-01
1OJ1177-01
IOJ1234-01
IOJ1232-01
IOJ1231-01
IOJ1235-01
1OJ1236-01
1OJ1337-01

Sample Type
Water

Date Received
10/19/05
10/19/05
10/19/05
10/19/05
10/19/05
10/19/05
10/20/05
10/20/05
10/20/05
10/20/05
10/20/05
10/21/05

PACE ID
1021758001
1021760001
1021761001
1021763001
1021765001
1021766001
1021907001
1021908001
1021910001
1021911001
1021912001
1021959001

RESULTS

The results are included in the following:

> Appendix A - Documentation Appendix B - Sample Analysis Results Appendix C - QC and Calibration Results Appendix D - Sample Chromatograms and Raw Data Appendix E - Calibration Chromatograms and Raw Data Appendix F - QC Chromatograms and Raw Data $$
\quad \text { REPORT OF LABORATORY ANALYSIS }
$$

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.

REPORT OF: CHEMICAL ANALYSES

PROJECT: PCDDIPCDF ANALYSES
PAGE: 2

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907, 1021908, 1021910, 1021911, 1021912, 1021959

DISCUSSION

Two sets of results were provided, at the request of Del Mar Analytical, for sample 1OJ1337-01. In the initial (11/03/2005) extraction batch for this sample, elevated recoveries were obtained for selected native congeners in the associated lab spike samples, most likely due to contamination. The second (11/08/2005) extraction batch showed good recoveries for the native congeners in the lab spikes. However, the results obtained from the analyses of the two extracts of the field sample were dissimilar. The initial sample results, associated with the contaminated lab spikes, were significantly lower than the repeat sample results, those associated with the compliant lab spikes samples.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from $34-108 \%$. All of the labeled standard recoveries obtained for these projects were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, the presence of interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtianed, or "E" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results, found at the beginning of Appendix C, show the blanks to contain trace levels of selected PCDD and PCDF congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged " B " and may be, at least partially, attributed to the background. In general, levels less than ten times the background are not considered to be statistically different from the background.

Laboratory spike samples were also prepared with the sample batches using clean water that had been fortified with native standard materials. The results show the spiked native compounds in LCS8224 and LCSD-8225 were recovered at $88-109 \%$, with relative percent differences of $0.0-12.2 \%$. These results indicate high degrees of accuracy and precision for these determinations. Four native recovery values LCS-8209 and LCSD-8210 were above the target ranges; the affected values were flagged " P " on the results tables and may indicate high biases for these congeners in the associated sample (the initial extract of IOJ1337-01).

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

PROJECT: PCDDPCDF ANALYSES
PAGE: 3

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907. 1021908, 1021910, 1021911, 1021912, 1021959

REMARKS

The sample extracts will be retained for a period of 15 days from the date of this report and then discarded unless other arrangements are made. The raw mass spectral data will be archived on magnetic tape for a period of not less than one year. Questions regarding the data contained in this report may be directed to the author at the number provided below.

Pace Analytical Services, Inc.
Scott 0. Unze

Project Manager, HRMS (612) 607-6383

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, the.

Conc $=$ Concontration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOO = Limit of Detection. Totals are averages of individual tsomer LODs.
$\mathrm{D}=$ Result obtained from analysis of ciluted sample
$\mathrm{B}=$ Less than 10 times higner than method blank level
$P=$ Recovery outside of method 1813 control limits
$J=$ Concentration detected is below the callbration range
$\mathrm{Nn}=$ Value obtained from additional analysis

I = interference $E=P C D E$ Interference ND $=$ Not Detected NA = Not Applicable NC = Not Calculated - $=$ See Discussion

Report No..... 1021765

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in fill, without the wrtten consent of Pace Analytical Services, inc.
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename(s)
BLANK-8223
F51109C_06
1030 mL
$10 / 22 / 2005$
F51109C_02

Matrix	Water
Dilution	NA
Extracted	$11 / 08 / 2005$
Analyzed	$11 / 10 / 2005 \quad 02: 58$
Injected By	BAL

Native Isomers	Cone $u g / L$	$\begin{array}{ll} \text { EMPC } & \text { LOD } \\ u g h & u g h \\ \hline \end{array}$	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND	-0.0000023	2,3,7,8-TCDF-13C	2.00	60
Total TCDF	ND	- - -	2,3,7,8-TCDD-13C	2.00	67
			1,2,3,7,8-PeCDF-13C	2.00	66
2,3,7,8-TCDD	ND	--0.0000021	2,3,4,7,8-PeCDF-13C	2.00	71
Total TCDD	ND	--- --.	1,2,3,7,8-PeCDD-13C	2.00	87
			1,2,3,4,7,8-HxCDF-13C	2.00	69
1,2,3,7,8-PeCDF	ND	-0.0000031	1,2,3,6,7,8-HxCDF-13C	2.00	69
2,3,4,7,8 PeCDF	ND	- 0.0000013	2,3,4,6,7,8-HxCDF-13C	2.00	67
Total PeCDF	ND	-- --	1,2,3,7,8,9-HxCDF-13C	2.00	68
			1,2,3,4,7,8-HxCDD-13C	2.00	68
1,2,3,7,8-PeCDD	ND	-0.0000018	1,2,3,6,7,8-HxCDD-13C	2.00	73
Total PeCDD	ND	- - -	1,2,3,4,6,7,8-HpCDF-13C	2.00	66
			1,2,3,4,7,8,9-HpCDF-13C	2.00	60
1,2,3,4,7,8-HxCDF	ND	-0.0000016	1,2,3,4,6,7,8-HpCDD-13C	2.00	78
1,2,3,6,7,8-HxCDF	ND	- 0.0000016	OCDD-13C	4.00	62
2,3,4,6,7,8-HxCDF	ND	--0.0000015			
1,2,3,7,8,9-HxCDF	ND	--0.0000024	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	ND	- - -	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	ND	-0.0000030	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,6,7,8-HxCDD	ND	--0.0000031			
1,2,3,7,8,9-HxCDD	ND	-0.0000025			
Total HxCDD	ND	-- -			
1,2,3,4,6,7,8-HpCDF	ND	- 0.0000018			
1,2,3,4,7,8,9-HpCDF	ND	-0.0000023			
Total HpCDF	ND	- -			
1,2,3,4,6,7,8-HpCDD	0.0000041	-0.0000026			
Total HpCDD	0.0000041	- - -			
OCDF	0.0000068	-0.0000027			
OCDD	-	00190.0000025			
Conc $=$ Concentration (Totals include 2,3,7,8-substituted isomers).				I = Interference	
EMPC = Estimated Maximum Possible Concentration				$\mathrm{E}=\mathrm{PCDE}$ Interference	
LOD = Limit of Detection. Totals are averages of individual isomer LODs. NA				ND $=$ Not Delected	
$A=$ Limit of Detection based on signal to noise				$N A=$ Not Applicable	
$P=$ Recovery outside of method 1613 control limits				NC = Not Calculated	
$\mathrm{N}=$ = Value obtained from additional analysis **				* $=$ See Discussion	

REPORT OF LABORATORY ANALYSIS

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

LCS-8224
F51109C_03 1050 mL 10/22/2005 F51109C 02 BLANK-8223

Matrix	Water
Dilution	NA
Extracted	$11 / 08 / 2005$
Analyzed	$11 / 10 / 200500: 34$
Injected By	BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	\% Rec.
2,3,7,8-TCDF	10	9.5	7.5	15.8	95
2,3,7,8-TCDD	10	9.5	6.7	15.8	95
1,2,3,7,8-PeCDF	50	50.6	40.0	67.0	101
2,3,4,7,8-PeCDF	50	45.9	34.0	80.0	92
1,2,3,7,8-PeCDD	50	43.9	35.0	71.0	88
1,2,3,4,7,8-HxCDF	50	47.2	36.0	67.0	94
1,2,3,6,7,8-HxCDF	50	47.2	42.0	65.0	94
2,3,4,6,7,8-HxCDF	50	48.1	35.0	78.0	96
1,2,3,7,8,9-HxCDF	50	48.2	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	48.5	35.0	82.0	97
1,2,3,6,7,8-HxCDD	50	48.3	38.0	67.0	97
1,2,3,7,8,9-HxCDD	50	46.2	32.0	81.0	92
1,2,3,4,6,7,8-HpCDF	50	50.2	41.0	61.0	100
1,2,3,4,7,8,9-HpCDF	50	52.6	39.0	69.0	105
1,2,3,4,6,7,8-HpCDD	50	44.9	35.0	70.0	90
OCDF	100	92.1	63.0	170.0	92
OCDD	100	93.3	78.0	144.0	93
2,3,7,8-TCDD-37C14	10	7.1	3.1	19.1	71
$2,3,7,8-T C D F-13 C$	100	60.6	22.0	152.0	61
2,3,7,8-TCDD-13C	100	68.3	20.0	175.0	68
1,2,3,7,8-PeCDF-13C	100	64.1	21.0	192.0	64
2,3,4,7,8-PeCDF-13C	100	62.8	13.0	328.0	63
1,2,3,7,8-PeCDD-13C	100	81.7	21.0	227.0	82
1,2,3,4,7,8-HxCDF-13C	100	63.6	19.0	202.0	64
1,2,3,6,7,8-HxCDF-13C	100	63.7	21.0	159.0	64
2,3,4,6,7,8-HxCDF-13C	100	60.8	22.0	176.0	61
1,2,3,7,8,9-HxCDF-13C	100	60.7	17.0	205.0	61
1,2,3,4,7,8-HxCDD-13C	100	65.7	21.0	193.0	66
1,2,3,6,7,8-HxCDD-13C	100	67.5	25.0	163.0	68
1,2,3,4,6,7,8-HpCDF-13C	100	68.4	21.0	158.0	68
1,2,3,4,7,8,9-HpCDF-13C	100	62.9	20.0	186.0	63
1,2,3,4,6,7,8-HpCDD-13C	100	76.3	26.0	166.0	76
OCDD-13C	200	117.9	26.0	397.0	59

$\mathrm{Cs}=$ Concentration Spiked (ng/mL)
$\mathrm{Cr}=$ Concentration Recovered ($\mathrm{ng} / \mathrm{mL}$)
Rec. $=$ Recovery (Exprissed as Percent)
Control Limit Reference: Method 1613, Table 6, $10 / 94$ Revision
$X=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{N} \mathrm{n}=$ Value obtained from additional analysis Report No..... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, exsept in fulli.
without the written consent of Pace Analytical Services, Inc.

PaceAnaly					tytical m Stre neapo Tel: Fax: 6
Method 16138 Laboratory Control Spike Results					
Client - Del Mar Analytical					
Lab Sample ID Filename Total Amount Extrac:ed ICAL Date CCal Filename Method Blank ID	LCSD-82 F51109C 1040 mL 10/22/20 F51109C BLANK-8		Matri Dilutio Extra Analy Injec	Wat NA 11/0 11/1 BAL	
Compound	Cs	Cr	Lower Limit	Upper Limit	$\begin{gathered} \% \\ \text { Rec. } \end{gathered}$
2,3,7,8-TCDF	10	9.1	7.5	15.8	91
2,3,7,8-TCDD	10	10.1	6.7	15.8	101
1,2,3,7,8-PeCDF	50	51.1	40.0	67.0	102
2,3,4,7,8-PeCDF	50	51.8	34.0	80.0	104
1,2,3,7,8-PeCDD	50	46.1	35.0	71.0	92
1,2,3,4,7,8-HxCDF	50	49.5	36.0	67.0	99
1,2,3,6,7,8-HXCDF	50	49.5	42.0	65.0	99
2,3,4,6,7,8-HxCDF	50	50.6	35.0	78.0	101
1,2,3,7,8,9-HxCDF	50	48.0	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	52.0	35.0	82.0	104
1,2,3,6,7,8-HxCDD	50	54.3	38.0	67.0	109
1,2,3,7,8,9-HxCDD	50	51.8	32.0	81.0	104
1,2,3,4,6,7,8-HpCDF	50	51.9	41.0	61.0	104
1,2,3,4,7,8,9-4pCDF	50	54.5	39.0	69.0	109
1,2,3,4,6,7,8-HpCDD	50	47.3	35.0	70.0	95
OCDF	100	93.1	63.0	170.0	93
OCDD	100	97.2	78.0	144.0	97
2,3,7,8TCDD-37C14	10	6.9	3.1	19.1	69
$2,3,7,8-T C D F-13 C$	100	55.7	220	152.0	56
$2,3,7,8-T C D D-13 C$	100	62.3	20.0	175.0	62
$1,2,3,7,8-\mathrm{PeCDF}-13 \mathrm{C}$	100	57.8	21.0	192.0	58
$2,3,4,7,8-\mathrm{PeCDF}-13 \mathrm{C}$	100	54.6	13.0	328.0	55
1,2,3,7,8-PeCDD-13C	100	68.6	21.0	227.0	69
$1,2,3,4,7,8-\mathrm{H} \times \mathrm{CDF}-13 \mathrm{C}$	100	61.8	19.0	202.0	62
$1,2,3,6,7,8-H \times C D F-13 C$	100	63.8	21.0	159.0	64
2,3,4,6,7,8-HxCDF-13C	100	59.4 61.4	22.0	176.0	59
$1,2,3,4,7,8-H \times C D D-13 C$	100	61.4 58.6	21.0	193.0	51
1,2,3,6,7,8-HxCDO-13C	100	67.0	25.0	163.0	67
1,2,3,4,6,7,8-HpCDF-13C	100	66.7	21.0	158.0	67
1,2,3,4,7,8,9-HpCDF-13C	100	62.2	20.0	186.0	62
1,2,3,4,6,7,8-HpCDD-13C	100	74.8	26.0	166.0	75
OCDD-13C	200	122.3	26.0	397.0	61

$\mathrm{Cs}=$ Concentration Spiked (ng/mL)
$\mathrm{Cr}=$ Concentration Recovered (ng/mL)
Rec. $=$ Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6. $10 / 94$ Revision
$X=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{Nn}=$ Value obtained frem additional analysis
Report No.... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS
This report shall not be reproduced, except in full, without the witten consent of Pace Analytical Services, inc.

Client \qquad Del Mar Analytical

SPIKE 1 ID............................. LCS-8224			
SPIKE 1 Filename....................F51109C_03			
SPIKE 2 ID............................. LCSD-8225			
SPIKE 2 Filename....................F51109C_04			
COMPOUND	$\begin{aligned} & \text { SPIKE } 1 \\ & \text { REC,\% } \end{aligned}$	SPIKE 2 REC. \%	RPD,\%
2378-TCDF	95	91	4.3
2378-TCDD	95	101	6.1
12378-PeCDF	101	102	1.0
23478-PeCDF	92	104	12.2
12378-PeCDD	88	92	4.4
123478-HxCDF	94	99	5.2
123678 -HxCDF	94	99	5.2
234678-HxCDF	96	101	5.1
123789-HxCDF	96	96	0.0
123478-HxCDD	97	104	7.0
123678-HxCDD	97	109	11.7
123789-HxCDD	92	104	12.2
1234678-HpCDF	100	104	3.9
1234789-HpCDF	105	109	3.7
1234678 -HpCDD	90	95	5.4
OCDF	92	93	1.1
OCDD	93	97	4.2

REC $=$ Percent Recovered
RPD $=$ The difference between the two values divided by the average.
$N A=\operatorname{Not}$ Applicable

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.

NPDES - 431

17461 Derfan Ave. Sulm ICG, Hvina, CA 92614

(4. (949) 201-4002 P牛 (900) 370-4607 (7n (619) $505-959$ P\% (480) 705-0003

SENDING LAKORATORY:

Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

RECEIVING LABORATORY:

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200
Minneapolis, MN 55414
Phone :(612) 607-1700
Fax: (612) 607-6444

Standard TAT is requested unless specific due date is requested \Rightarrow Dae Date: \qquad Initials: \qquad

Contuiners Supplied:

1 L Amber (IOII184-01C)
1 L Amber (1OII184-01D)

APPENDIX G

Section 18

Outfall 007, October 18, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUPS: IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 5
Reviewer: E. Wessling
Date of Review: December 12, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorgantc Data Review (2/94). Any deviations from these procediures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	Laboratory DD	Matrix	COCMethod
Outfall 003	IOI1231-01	Water	General Minerals
Outfall 010	IOI1232-01	Water	General Minerals
Outfall 006	IOI1180-01	Water	General Minerals
Outfall 007	IOI1184-01	Water	General Minerals
Outfall 009	IOI1186-01	Water	General Minerals

	Project: NPDES Monitoring	
DATA VALDATION REPORT	SDG No	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handing, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and all analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times for all analyses were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

Target compounds were not detected in the associated method blanks. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for analyses without an MS/MSD. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as "J" values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No firther qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Bianks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

Project D: Routine Outfall 007
Report Number: IOII184

Sampled: 10/18/05
Received: 10/18/05

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronzy Kelly

INORGANIC

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Pace-Minneapolis
ReviewerE. Wessling
Package ID T711DF50
Task Order 313150010
SDG No. Multiple
No. of Analyses 8

ACTION HELMS:

- Case Narrative

	Defficiencies
2.	Out of Scope
	Analyses

3. Analyses Not Conducted
4. Missing Hardicopy

Deliverables
5. Incorrect Hardcopy

Deliverablea
6. Deviations from Analysis

Protocol, cg,
Holding Times
GCMS Tune/hist. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC.
Intermal Standard Performance
Compound Identification
Quntitation
System Performance
COMMDANTS ${ }^{\text {b }}$

[^24]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: IOJ1181, IOJ1176, IOJ1186, IOJ1180, IOJ1184, IOJ1177, IOJ1232, IOJ1231

Prepared by
AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

	Projex: SDONa.:	NPDES Mukiple
DATA VALMATTONREPORT	Anatyis:	DF

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: Novernber 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DITA VALTMITON REPORT	Project: SDCNa: Analyali:	NPDES Multiple DF

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Pace)	Matrix	COC Method
Outfall 008	1011181-01	1021758001	water	1613
Outall 005	10n1176-01	1021760001	water	1613
Outfall 009	1011186-01	1021761001	water	1613
Outfall 006	$101180-01$	1021763001	water	1613
Outfall 007	1011184-01	1021765001	water	1613
Outfall 004	1011177-01	1021766001	water	1613
Outfill 010	10n1232-01	1021908001	water	1613
Outfall 003	1011231-01	1021910001	water	1613

	Project: SDGNa:	npdes Mulitiple
DATA WALIDITIONREPORT	Anclyit	DF

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handing, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Pace for dioxinffuran analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the case narrative and laboratory login sheet, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Pace had no custody seals present for samples IOI1232-01 and 1OI1231-01. All other samples had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

DITK VALIDATYON REPORE	Project: SDCNo: Analyis:	npdes Mulitple \qquad

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $10 / 22 / 05$ for instrument F. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (Blank 8223) was extracted and analyzed with the samples in this SDG. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDD}$ and OCDF were reported in method blank 8223 at concentrations of 0.0000041 and $0.0000068 \mathrm{ug} / \mathrm{L}$, raspectively. An interference with OCDD was also reported in method blank 8223. Any detects for these target compounds \leq five times the concentration reported in the method blank were qualified as estimated, "UJ," in the site samples of this SDG. Detects for total dioxin and furan isomers at concentrations \leq five times the concentration reported in the method blank were qualified as estimated, "UU," in the associated samples. In instances where the total concentration included peaks not present in the method blank as well as the method blank contamination, the total concentration was considered estimated, " J ," as a portion of the total concentration was considered blank contamination. There were no other target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (LCS/LCSD 8224/8225) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MSMSD analyses were not performed in this. SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND DENTIFICATION

The laboratory analyzed for polychlorinated dioxins/firans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. However, the laboratory was experiencing sporadic cross-contamination problems which they attributed to incomplete glassware cleaning procedures. Two samples, Outfall 009 and outfall 010, exhibited atypical target compound detects. These samples were rejected in favor of a reanalysis at another laboratory that was not experiencing contamination problems. This was done to ensure the target compound detects were representative of site conditions and not laboratory cross-contamination. No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, " J_{3} " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

This raport strall not be reproduced, axcept in full, without the wittien consent of Pace Analyiticas Smucas, Ince.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALDDATION REPORT

NPDES Monitoring Program

ANALYSIS: METALS

SAMPLE DELIVERY GROUPS IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

Prepared by

AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

	Project:	NPDES Moniloring
DATA VALIDATION REPORT	SDO No.: Analysis:	Multiple METALS

1. INTRODUCTION

Task Order Title: NPDES Monitoring Program Contrat Task Order \#: 313150010
SDG\#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dịutions: 3
Reviewer: E. Wessling
Date of Review: December 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procechure for Levels III and IV ICP Metals (DVP-5, Rev. 2), USEPA Methods 200.8 for ICPMS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP Nattonal Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Projest. NPDES Monitoring SDGNo.: Multiple Analysis: METALS

Table 1. Sample identification

Clientid	Laboratory D	Matrix	COC Method
Outfall 003	1011231-01	Water	200.8/245.1
Outfall 010	IOII232-01	Water	200.8/245.1
Outfall 006	IOII $180-01$	Water	200.8/245.1
Outail 007	ronl184-01	Water	200.8/245.1
Outfall 009	$10 \mathrm{In} 186-01$	Water	200.8/245.1

DATA YALIDATION REPORT	Project: SDG No.: Analyeis:	NPDES Monitoring Multiple METALS

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 -days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required for ICP-MS tuming.

2.3 CALIBRATION

The ICV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The laboratory analyzed reporting limit check standards in association with this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were significantly below the sample detects so as not to result in qualification of the data with the exception of cadmium in the method blank. Cadmium was qualified as a nondetect, "U," in the sample from Outfall 006. No further qualifications were required.

	Project: NPDES Monitoring
DATA VALDATIONREPORT	SDGNo:
Multiple	

2.5 ICP INTERFERENCE CEECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP/MS analyses. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples and mercury LCS samples as reported on the LCS on the summary forms and in the raw data were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in these SDGs. No qualification was required.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed on samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for all analyses. No qualification was required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

	Project:
DPDES Monitaring	
DATA VALIDATION REPORT	SDGNo.:
Maltiple	

of the original analysis. Results reported by the laboratory between the MDL and reporting limit were qualified as "J" values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

Del Mar Analytical

MWE-Pasadena/Bocing 300 North Lake Avemue, Suite 1200
Passudem, CA 91101
Atrention: Bronwyn Kelly

Project D: Routine Oufall 007
Repport Number: 1011184

METALS

Del Mar Analytical, Irvine
Michele Elarper
Project Manager

APPENDIX G

Section 19

Outfall 008, October 18, 2005

Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 008

Sampled: 10/18/05
Received: 10/18/05
Issued: 01/20/06 15:17

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OJ1181-01

CLIENT ID
Outfall 008

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing	Project ID: Routine Outfall 008	
300 North Lake Avenue, Suite 1200		Sampled: $10 / 18 / 05$
Pasadena, CA 91101	Report Number: $10 J 1181$	Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OJ1181-01 (Outfall 008 - Water) - cont.									
Reporting Units: mg/									
Chloride	EPA 300.0	5118042	0.15	0.50	4.6	1	10/18/05	10/18/05	
Nitrate/Nitrite-N	EPA 300.0	5118042	0.072	0.26	0.95	1	10/18/05	10/18/05	
Oil \& Grease	EPA 413.1	$5 J 21043$	0.89	4.7	ND	1	10/21/05	10/21/05	
Sulfate	EPA 300.0	5 J 18042	0.45	0.50	14	1	10/18/05	10/18/05	
Total Dissolved Solids	SM2540C	5119123	10	10	270	1	10/19/05	10/19/05	
Total Suspended Solids	EPA 160.2	5 J 20118	10	10	1300	1	10/20/05	10/20/05	
Sample ID: IOJ1181-01 (Outfall 008-Water)									
Reporting Units: ug/									
Perchlorate	EPA 314.0	5 S 19053	0.80	4.0	ND	1	10/19/05	10/19/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number. $10 \mathrm{Jll181}$. Received: 10/18/05

Sampled: 10/18/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 008 (IOJ1181-01) - Water EPA 300.0	2	$10 / 18 / 2005$	$09: 41$	$10 / 18 / 2005$	$14: 20$

17461 Derian Ave., Suite 100, invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX 8858) 505-4589 9830 South 51st St, Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E . Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) $798-3621$

MWH-Pasadena/Boeing	Project ID: Routine Outfall 008	
300 North Lake Avenue, Suite 1200		
Pasadena, CA 91101	Report Number: IOJ1181	Received: 10/18/05
Attention: Bronwyn Kelly		

MIETHOD BLANKIOC DATA

METALS

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Derian Ave, Sutte 100, invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset fd. F3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 008
300 North Lake Avenue, Suite 1200	Report Number: IOJ1181

METHOD BLANKGC DATA

METALS

		Reporting			Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Oualifiers
Analyte	Result		MDL	Units			\%REC		RPD		

Batch: 5J19098 Extracted: 10/19/05

Matrix Spike Analyzed: 10/20/2005 (5.119098-MS2)			9-01							
Antimony	86.6	2.0	0.18	ug/	80.0	0.29	108	70-130		
Cadmium	84.6	1.0	0.015	ug/	80.0	0.072	106	70-130		
Copper	84.8	2.0	0.49	ug/	80.0	4.8	100	70-130		
Lead	80.8	1.0	0.040	ug/l	80.0	0.53	100	70-130		
Matrix Spike Dup Analyzed: 10/20/2005 (5J19098-MSD1)			Source: 1OJ1156-01							
Antimony	85.5	2.0	0.18	ug/	80.0	0.18	107	70-130	1	20
Cadmium	84.4	1.0	0.015	ug/	80.0	0.14	105	70-130	0	20
Copper	83.1	2.0	0.49	ug/l	80.0	3.9	99	70-130	0	20
Lead	79.9	1.0	0.040	ugh	80.0	0.32	99	70-130	1	20

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

METHOD BLANKIOC DATA

INORGANICS

Batch: 5J18042 Extracted: 10/18/05
Blank Analyzed: 10/18/2005 (5J18042-BLK1)

Batch: 5J19053. Extracted: 10/19/05
Blank Analyzed: 10/19/2005 (5J19053-BLK1)

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Derian Ave., Suite 100, Ifvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX 9099) $370-1046$

Del Mar Analytical

MWH-Pasadena/Boeing	Project ID: Routine Outfall 008	
300 North Lake Avenue, Suite 1200	Report Number: IOJ1181	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIOC DATA

INORGANICS

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Batch: 5J19123 Extracted: 10/19/05
Blank Analyzed: 10/19/2005 (5J19123-BLK1)
Total Dissolved Solids ND

LCS Analyzed: 10/19/2005 (5J19123-BS1)
Total Dissolved Solids 1000

Duplicate Analyzed: 10/19/2005 (5J19123-DUP1)
Total Dissolved Solids 289
Batch: 5J20118 Extracted: 10/20/05
Blank Analyzed: 10/20/2005 (5J20118-BLK1)
Total Suspended Solids ND

LCS Analyzed: 10/20/2005 (5J20118-BS1)
Total Susperided Solids 993

Duplicate Analyzed: 10/20/2005 (5J20118-DUP1)
Total Suspended Solids 344
$10 \quad 10$
mg/
$10 \quad 10$

mg / l	1000	100	$90-110$
	Source: $\mathbf{\text { IOJ0932-01 }}$		
mg / l	280		

3
10

Batch: 5J21043 Extracted: 10/21/05

Blank Analyzed: 11/08/2005 (5J21043-BLK1)
Oil \& Grease ND

LCS Analyzed: 11/08/2005 (5J21043-BS1)
Oil \& Grease 14.5
$5.0 \quad 0.94 \mathrm{mg} / \mathrm{l}$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

484

MWH-Pasadena/Boeing	Project ID: Routine Outfall 008	
300 North Lake Avenue, Suite 1200	Report Number: 1011181	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKOC DATA

INORGANICS

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5.J21043 Extracted: 10/21/05

LCS Dup Analyzed: 11/08/2005 (5J21043-BSD1)

Oil \& Grease	14.1	5.0	0.94	mg / l	20.0	70	$65-120$	3	20

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 008	
300 North Lake Avenue, Suite 1200 Report Number: 1OJ1181 Sampled: $10 / 18 / 05$ Pasadena, CA 91101 Received: $10 / 18 / 05$		

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

			Compliance			
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IOI1181-01	413.1 Oil and Grease	Oil \& Grease	mg / l	0.47	4.7	15
IOI1181-01	Chloride - 300.0	Chloride	mg / l	4.60	0.50	150
IOI1181-01	Nitrogen, NO3+NO2-N	Nitrate/Nitrite-N	mg / l	0.95	0.26	8.00
IOI1181-01	Perchlorate 314.0	Perchlorate	$\mathrm{ug} /$	0	4.0	6.00
IOJ1181-01	Sulfate-300.0	Sulfate	mg / l	14	0.50	300
IOJ181-01	TDS - SM 2540C	Total Dissolved Solids	mg / l	270	10	950

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: 10 Jl 181

Sampled: 10/18/05
Received: 10/18/05

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

	Sampled: $10 / 18 / 05$
Report Number: 1011181	Received: $10 / 18 / 05$

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	N/A	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Pace Analytical, MN- SUB

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: $101181-01$
Analysis Performed: EDD + Level 4
Samples: $10 \mathrm{In} 181-01$
1

$$
\begin{array}{c|}
\hline \text { Bottic * } \\
\hline 1 \\
\hline 1 \mathrm{~A} \\
\hline 1 \mathrm{~B} \\
\hline
\end{array}
$$

$$
\begin{array}{|c|}
\hline 3 A, 3 B \\
\hline 4 A, 4 B \\
\hline
\end{array}
$$

$$
\begin{array}{|l|}
\hline 4 A, 4 B \\
\hline 5 A, 5 B \\
\hline
\end{array}
$$

$$
5 A, 5 B
$$

199

$\begin{array}{c}\text { Sample } \\ \text { Description }\end{array}$	$\begin{array}{l}\text { Sample } \\ \text { Matrix }\end{array}$	$\begin{array}{l}\text { Container } \\ \text { Type }\end{array}$	$\begin{array}{l}\text { Eof } \\ \text { Cont. }\end{array}$
Outaill 008	W	Poly-1L	1
$\begin{array}{l}\text { Ouffal } \\ \text { Dup }\end{array}$	W	Poly-1L	1
Outfall 008	W	$\begin{array}{l}\text { Glass- } \\ \text { Amber }\end{array}$	2
Outfall 008	W	$\begin{array}{l}\text { Poly-500 } \\ \text { ml }\end{array}$	2
Outfall 008	W	$\begin{array}{l}\text { Poly-500 } \\ \text { ml }\end{array}$	2
Outfall 008	W	$\begin{array}{l}\text { Class- } \\ \text { Amber }\end{array}$	2

$+$

Pace Anatylical Services, me. 1700 Em Street Minneapolis, MN 55414

The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Project: Chemical Analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.

PROJECT:

ISSUED TO: Del Mar Analytical, Irvine
Attn: Michele Harper
17461 Derian Avenue, Suite 100 Irvine, CA 92614

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763 1021765, 1021766, 1021907. 1021908, 1021910, 1021911. 1021912, 1021959

INTRODUCTION

This report presents the results from the analyses performed on twelve samples submitted by a representative of Del Mar Analytical, Ivine. The samples were analyzed for the presence or absence of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) using a modified version of USEPA Method 1613B

SAMPLE IDENTIFICATION

Client ID
Sample Type
Date Received
PACE ID

Water	$10 / 19 / 05$	1021758001
Water	$10 / 19 / 05$	1021760001
Water	$10 / 19 / 05$	1021761001
Water	$10 / 19 / 05$	1021763001
Water	$10 / 19 / 05$	1021765001
Water	$10 / 19 / 05$	1021766001
Water	$10 / 20 / 05$	1021907001
Water	$10 / 20 / 05$	1021908001
Water	$10 / 20 / 05$	1021910001
Water	$10 / 20 / 05$	1021911001
Water	$10 / 20 / / 05$	1021912001
Water	$10 / 21 / 05$	1021959001

RESULTS

The results are included in the following:

```
Appendix A - Documentation
Appendix B - Sample Analysis Results
Appendix \(\mathrm{C}-\mathrm{QC}\) and Calibration Results
Appendix D - Sample Chromatograms and Raw Data
Appendix E - Calibration Chromatograms and Raw Data
Appendix F-QC Chromatograms and Raw Data
REPORT OF LABORATORY ANALYSIS
```

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, inc.

PROJECT:
PAGE: 2

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907. 1021908, 1021910, 1021911, 1021912, 1021959

DISCUSSION

Two sets of results were provided, at the request of Del Mar Analytical, for sample IOJ1337-01. In the initial (11/03/2005) extraction batch for this sample, elevated recoveries were obtained for selected native congeners in the associated lab spike samples, most likely due to contamination. The second (11/08/2005) extraction batch showed good recoveries for the native congeners in the lab spikes. However, the results obtained from the analyses of the two extracts of the field sample were dissimilar. The initial sample results, associated with the contaminated lab spikes, were significantly lower than the repeat sample results, those associated with the compliant lab spikes samples.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from $34-108 \%$. All of the labeled standard recoveries obtained for these projects were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, the presence of interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "l" where incorrect isotope ratios were obtianed, or " E " where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results, found at the beginning of Appendix C, show the blanks to contain trace levels of selected PCDD and PCDF congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged " B " and may be, at least partially, attributed to the background. In general, levels less than ten times the background are not considered to be statistically different from the background.

Laboratory spike samples were also prepared with the sample batches using clean water that had been fortified with native standard materials. The results show the spiked native compounds in LCS8224 and LCSD-8225 were recovered at 88-109\%, with relative percent differences of 0.0-12.2\%. These results indicate high degrees of accuracy and precision for these determinations. Four native recovery values LCS-8209 and LCSD-8210 were above the target ranges; the affected values were flagged " P " on the results tables and may indicate high biases for these congeners in the associated sample (the initial extract of IOJ1337-01).

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the writeen consent of Pace Analytical Services, Inc.

Pace Analytical Services, the
1700 Em Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

PROJECT: PCDD/PCDF ANALYSES
PAGE: 3

DATE: November 17, 2005
REPORT NO: 05-1021758, 1021760, 1021761, 1021763, 1021765, 1021766, 1021907, 1021908, 1021910, 1021911, 1021912, 1021959

REMARKS

The sample extracts will be retained for a period of 15 days from the date of this report and then discarded unless other arrangements are made. The raw mass spectral data will be archived on magnetic tape for a period of not less than one year. Questions regarding the data contained in this report may be directed to the author at the number provided below.

Pace Analytical Services, Inc.

Project Manager, HRMS
(612) 607-6383

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full without the written consent of Pace Analytical Services, inc.

Conc $=$ Concentration (Totals incuxde 2,3,7,8-substiuted isomers).
EMPC = Estimated Maximum Possible Concentration
$L O D=$ Limft of Detection. Totals are averages of individual isomer LODs.
$D=$ Result obtained from analysis of diluted sample
$\mathrm{B}=$ Less than 10 times higher than method blank level
$P=$ Recovery outside of mathod 1613 control limits $J=$ Concentration detectec is below the calibration range $\mathrm{N} n=$ Value obtained from additional analysis
$1=$ interference
$E=P C D E$ interference
ND $=$ Not Detected
NA = Not Applicable
NC = Not Calculated

* = See Discussion

Report No..... 1021758

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, inc.

Method 1613B Blank Analysis Results

Client - Del Mar Analytical

Lab Sample ID
Filename
Total Amount Extracied
ICAL Date
CCal Filename(s)
BLANK-8223
F51109C_06
1030 mL
$10 / 22 / 2005$
F51109C_02

Matrix	Water	
Dilution	NA	
Extracted	$11 / 08 / 2005$	
Analyzed	$11 / 10 / 2005$	$02: 58$
Injected By	BAL	

Native Isomers	Conc ugh	$\begin{array}{cc} \text { EMPC } & \text { LOD } \\ u g h & u g / L \end{array}$	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND	-0.0000023	2,3,7,8-TCDF-13C	2.00	60
Total TCDF	ND	--- - - -	2,3,7,8-TCDD-13C	2.00	67
			1,2,3,7,8-PeCDF-13C	2.00	66
2,3,7,8-TCDD	ND	-0.0000021	2,3,4,7,8-PeCDF-13C	2.00	71
Total TCDD	ND	--. --	1,2,3,7,8-PeCDD-13C	2.00	87
			1,2,3,4,7,8-HxCDF-13C	2.00	69
1,2,3,7,8-PeCDF	ND	-0.0000031	1,2,3,6,7,8-HxCDF-13C	2.00	69
2,3,4,7,8-PeCDF	ND	----0.0000013	2,3,4,6,7,8-HxCDF-13C	2.00	67
Total PeCDF	ND	-- --	1,2,3,7,8,9-HxCDF-13C	2.00	68
			1,2,3,4,7,8-HxCDD-13C	2.00	68
1,2,3,7,8-PeCDD	ND	-0.0000018	1,2,3,6,7,8-HxCDD-13C	2.00	73
Total PeCDD	ND	- - -	1,2,3,4,6,7,8-HpCDF-13C	2.00	68
			1,2,3,4,7,8,9-HpCDF-13C	2.00	60
1,2,3,4,7,8-HxCDF	ND	-0.0000016	1,2,3,4,6,7,8-HpCDD-13C	2.00	78
1,2,3,6,7,8-HxCDF	ND	--0.0000016	OCDD-13C	4.00	62
2,3,4,6,7,8-HxCDF	ND	--0.0000015			
1,2,3,7,8,9-HxCDF	ND	-0.0000024	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	ND	- --	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	ND	-0.0000030	2,3,7,8-TCDD-37C14	0.20	67
1,2,3,67,8-HxCDD	ND	- 0.0000031			
1,2,3,7,8,9-HxCDD	ND	-0.0000025			
Total HxCDD	ND	- -			
1,2,3,4,6,7,8-HpCDF	ND	-0.0000018			
1,2,3,4,7,8,9-HpCDF	ND	-0.0000023			
Total HpCDF	ND	- - -			
1,2,3,4,6,7,8-HpCDD	0.0000041	- 0.0000026			
Total HpCDD	0.0000041	- --			
$\begin{aligned} & \text { OCDF } \\ & \text { OCDD } \end{aligned}$	0.0000068	$\begin{array}{r} 0.0000027 \\ 000190.0000025 \end{array}$			
Conc $=$ Concentration (Totals include 2,3,7,8-substituted isomers). $\quad 1=$				I = Interference E = PCDE Interference	
EMPC = Estimated Maximum Possible Concentration					
$L O D=$ Limit of Detection. Totals are averages of individual isomer LODs. ND				ND $=$ Not Detected	
$A=$ Limit of Detection based on signal to noise NA				NA = Not Applicable	
$P=$ Recovery outside of method 1613 control limits$\mathrm{Nn}=$ Value obtained from additional analysis				NC = Not Calculated	
				$\mathrm{Nn}=$ Value obtained from additional analysis $\quad *=$ See Discussion	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,
without the witten consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc.
1700 Em Street - Suite 200 Minneapolis, MN 55414

Tel: 612-607-1700
Eax: 612-607-6444

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracied
ICAL Date
CCal Filename
Method Blank ID

LCS-8224
F51109C_03 1050 mL . 10/22/2005 F51109C 02 BLANK-8223

Matrix	Water
Diution	NA
Extracted	$11 / 08 / 2005$
Analyzed	$11 / 10 / 200500: 34$
Injected By	BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	$\begin{gathered} \text { \% } \\ \text { Rec. } \end{gathered}$
2,3,7,8-TCDF	10	9.5	7.5	15.8	95
2,3,7,8-TCDD	10	9.5	6.7	15.8	95
1,2,3,7,8-PeCDF	50	50.6	40.0	67.0	101
2,3,4,7,8-PeCDF	50	45.9	34.0	80.0	92
1,2,3,7,8-PeCDD	50	43.9	35.0	71.0	88
1,2,3,4,7,8-HxCDF	50	47.2	36.0	67.0	94
1,2,3,6,7,8-HxCDF	50	47.2	42.0	65.0	94
2,3,4,6,7,8-HxCDF	50	48.1	35.0	78.0	96
1,2,3,7,8,9-HxCDF	50	48.2	39.0	65.0	96
1,2,3,4,7,8-HxCDD	50	48.5	35.0	82.0	97
1,2,3,6,7,8-HxCDD	50	48.3	38.0	87.0	97
1,2,3,7,8,9-HxCDD	50	46.2	32.0	81.0	${ }_{100}^{92}$
1,2,3,4,6,7,8-HpCDF	50	50.2	41.0	61.0 690	105
1,2,3,4,7,8,9-HpCDF	50	52.6	39.0 35.0	69.0 70.0	90
1,2,3,4,6,7,8-HPCDD	50 100	44.9 92.1	35.0 63.0	170.0	92
OCDF	100 100	92.1 93.3	78.0	144.0	93
2,3,7,8-TCDD-37C14	10	7.1	3.1	19.1	71
2,3,7,8-TCDF-13C.	100	60.6	22.0	152.0	61.
2,3,7,8-TCDD-13C	100	68.3	20.0	175.0	68.
1,2,3,7,8-PeCDF-13C	100	64.1	21.0	192.0	64
2,3,4,7,8-PeCDF-13C	100	62.8	13.0	328.0	63
1,2,3,7,8-PeCDD-13C	100	81.7	21.0	227.0	82
1,2,3,4,7,8-HxCDF-13C	100	63.6	19.0	202.0	64
1,2,3,6,7,8-HxCDF-13C	100	63.7	21.0	159.0	64
2,3,4,6,7,8-HXCDF-13C	100	60.8	22.0	176.0	61
1,2,3,7,8,9-HxCDF-13C	100	60.7	17.0	205.0	61
1,2,3,4,7,8-HxCDD-13C	100	65.7	21.0	193.0	66
1,2,3,6,7,8-HxCDO-13C	100	67.5	25.0	163.0	68
$1,2,3,4,6,7,8-\mathrm{HpCDF}-13 \mathrm{C}$	100	68.4	21.0	158.0	68
1,2,3,4,7,8,9-HpCDF-13C	100	62.9	20.0	186.0	63
1,2,3,4,6,7,8-HpCDD-13C	100	76.3 1179	26.0	166.0 397.0	76 59
OCDD-13C	200	117.9	26.0	397.0	5

$\mathrm{Cs}=$ Concentration Spiked (ng/mL)
$\mathrm{Cr}=$ Concentration Recovered (n / mL)
Rec. = Recovery (Expressed as Percent)
Control Limit References: Method 1613, Table 6, $10 / 94$ Revision
$x=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{N} n=$ Value obtained from additional analysis Report No..... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the witten consent of Pace Analytical Services, Inc

$\mathrm{Cs}=$ Concentration Spiked ($\mathrm{ng} / \mathrm{mL}$)
$\mathrm{Cr}=$ Concentration Recovered ($\mathrm{ng} / \mathrm{mL}$)
Rec. $=$ Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
$X=$ Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{Nn}=$ Value obtained from additional analysis Report No..... 1021758

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the witten consent of Pace Analytical Services, inc.

Client. \qquad Del Mar Analytical

Client............ Del Mar Analytical			
SPIKE 1 ID............................ LCS-8224			
SPIKE 1 Filename.........F51109C_03			
SPIKE 2 ID............................. LCSD-8225			
SPIKE 2 Filename........F51109C_04			
COMPOUND	SPIKE 1 REC.\%	SPIKE 2 REC, \%	RPD,\%
2378-TCDF	95	91	4.3
2378-TCDD	95	101	6.1
12378-PeCDF	101	102	1.0
23478-PeCDF	92	104	12.2
12378-PeCDD	88	92	4.4
123478-HxCDF	94	99	5.2
123678-HxCDF	94	99	5.2
234678-HxCDF	96	101	5.1
123789-HxCDF	96	96	0.0
123478-HxCDD	97	104	7.0
123678-HxCDD	97	109	11.7
123789-HxCDD	92	104	12.2
1234678-HpCDF	100	104	3.9
1234789-HpCDF	105	109	3.7
1234678-HpCDD	90	95	5.4
OCDF	92	93	1.1
OCDD	93	97	4.2

REC = Percent Recovered
RPD $=$ The difference between the two values divided by the average.
$N A=$ Not Applicable

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in tull, wifhout the written consent of Pace Analytical Services, inc.

47451 Define Ave Sulla 100，in vine，CA 92844

Ph（949）264－植22 Fax（949）26t－522 Pt（9009）370－466？Fax（900） $370-10 \mathrm{~m}$

SUBCONTRACT ORDER－PROJECT \＃IOJ1181

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date： \qquad Initials： \qquad

Containers Supplied：

1 L Amber（IOJ1181－01C）
IL Amber（1011181－01D）

APPENDIX G

Section 20

Outfall 008, October 18, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewer E. Wessling
Analysis/Method Metals

Package ID T711MT94
Task Order 313150010
SDG No. Multiple
No. of Analyses 3
Date: December 18. 2005

ACTIONITEMS ${ }^{-}$

- Case Narrative
Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Qualifications were assigned for the following:

Protocol, eg.,

- Blank contamination

Holding Times
GC/MS Tune/hast. Performance

- Sample resulls betiween the MDL and RL were estimated

Calibration
Method blanks
Surrognter
Matrix Spike/Dup LCS
Field QC
Internal Stmodard Performance
Compound Identification
Quantiation
System Performance
COMMENTS ${ }^{6}$

[^25]
amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: METALS

SAMPLE DELIVERY GROUPS IOJ1176, IOJ1177, IOJ1181

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

	Project: NPDES Monitaring	
		Multiple
DATA VALDATION REPORT	SDGNO:	Analysis:

1. INTRODUCTION

Task Order Titte: NPDES Monitoring Program
Coutrat Task Order \#: 313150010
SDG\#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Metals
QC Level: Leval IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 2
Reviewer: E. Wessling
Date of Review. December 18, 2005

Thie samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procechure for Levels III and IV ICP Metals (DVP-5, Rev. 2), USEPA Methods 200.8 for ICPMS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA YALIDATION REPORT	Project: NPDES Monitoring SDG No:

Table 1. Sample identification

Client ID	Laboratory DD	Matrix	COC Method
Outfall 005	IOI1176-01	Water	$200.8 / 245.1$
Outfall 004	IOI1177-01	Water	$200.8 / 245.1$
Outfall 008	IOI1181-01	Water	$200.8 / 245.1$

	Project: DATA VALIDATION REPORT
SDG No.: Monitoring	
Multiple	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28-days for mercury. No qualifications were required.

2.2 1CPMS TUNIING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required for ICP-MS tuning.

2.3 CALIBRATION

The ICV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The laboratory analyzed reporting limit check standards in association with this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were significantly below the sample detects so as not to result in qualification of the data with the exception of cadmium in the method blank. Cadmium was qualified as a nondetect, "U," in the sample from Outfall 004. No further qualifications were required.

	Project:
DATA YALDATHON REPORT Monitaing	
SDG No:	Multiple

2.5 ICP INTERKERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP/MS analyses. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICPMS LCS samples and mercury LCS samples as reported on the LCS on the summary forms and in the raw data were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in these SDGs. No qualification was required.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed on samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for all analyses. No qualification was required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, fiumace atomic absorption QC is not applicable.

2.10ICPMMS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Reanalyses were performed for copper and or mercury in some site samples. In all cases the reanalyses confirmed the original analysis. The reanalyses were rejected in favor

Project NPDES Monitoring SDG No: \quad Multiple Annlysis: METALS
of the original analysis. Results reported by the laboratory between the MDL and reporting limit were qualified as "J" values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

Del Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Enviroumental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewer E. Wessling
Analysis/Method Perchlorate
ACTION ITEMS ${ }^{\text {a }}$

Package ID T711WC180
Task Order 313150010 SDG No. 1011181
No. of Analyses 1
Date: December 12, 2005

Case Narrative
Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, eg,
Holding Times
GCMS Tune/inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification
Quantitation
System Performance

- Subcontracted analytical laboratiory is not meeting contract and/or method requiramemits.
- Differences in protocol have been ndopted by the laberatory bur no action appinat the tabortory is recuirad

amec ${ }^{\circ}$

DATA VALDDATION REPORT

NPDES Monitoring Program

ANALYSIS: PERCHLORATE

SAMPLE DELIVERY GROUP: IOJ1181

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: IOJ1181
Project Manager: P. Costa
Matrix: Water
Analysis: Perchlorate
QC Level: Level IV
No. of Samples: 3
Reviewer: E. Wessling
Date of Review: December 12, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 008	IOJ1181-01	Water	Perchlorate

	Project: NPDES Monitoring
D.TTA VALIDATION REPORT	SDG No.:
	IOIII8le
Analysis:	Perchlornte

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the sample and analysis presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The 28 -day analytical holding time was met for the perchlorate analysis. No qualifications were required.

2.2 CALIBRATION

The initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were
required.

2.3 BLANKS

 blank data. No qualifications were required.
2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in this SDG.
DATA VALIDATIONREPORT
SDG No.:
IOIL181e
Perchlorate

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on the sample in association with this SDG; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on the sample in association with this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results since there was no MS/MSD analyses. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample result reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: 1011181

Sampled: 1018/05
Received: 10/18/05

INORGANIC

MDL Reporting Sample Dilution Date Date Data Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: 1OJI181-01 (Outfall 008 - Water) - cont. Reporting Units: mg h
Chloride
Nitrate/Nitrite-N
Oil \& Grease
Sulfate
Total Dissolved Solids
Total Suspended Solids

EPA 300.0	$5 J 18042$	0.15	0.50	4.6	1	$10 / 18 / 05$	$10 / 18 / 05$
EPA 300.0	$5 J 18042$	0.072	0.26	0.95	1	$10 / 18 / 105$	$10 / 18 / 05$
EPA 413.1	$5 J 21043$	0.89	4.7	ND	1	$10 / 21 / 05$	$10 / 21 / 05$
EPA 300.0	5118042	0.45	0.50	14	1	$10 / 18 / 05$	$10 / 18 / 05$
SM2540C	$5 J 19123$	10	10	270	1	$10 / 19 / 05$	$10 / 19 / 05$
EPA 160.2	$5 J 20118$	10	10	1300	1	$10 / 20 / 05$	$10 / 20 / 05$

Sample D: 1OJ1181-01 (Outfall 008 - Water)
Reporting Units: ugh
Perchlorate
EPA 314.0
5119053
0.80
4.0

ND
$10 / 19 / 05 \quad 10 / 19 / 05$

* analysis not ralidoter.

Del Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: IOJ1181, IOJ1176, IOJ1186, IOJ1180, IOJ1184, IOJ1177, IOJ1232, IOJ1231

Prepared by
AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

DAEA VALIDITION REPORT	Project: SDG Na: Analytur:	NPDEs DF

1. INTRODUCIION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: November 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the Nattonal Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R^{\prime} " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Pace)	Matrix	COC Method
Outfall 008	IOI1181-01	1021758001	water	1613
Outfall 005	IOI1176-01	1021760001	water	1613
Outfall 009	IOI1186-01	1021761001	water	1613
Outtall 006	IOI1180-01	1021763001	water	1613
Outfall 007	IOn1184-01	1021765001	water	1613
Outall 004	IOI1177-01	1021766001	water	1613
Outfall 010	$1011232-01$	1021908001	water	1613
Outfall 003	IOJ1231-01	1021910001	water	1613

DATA VALIDITIONREPORT	Project: SDCNa: Anabyis:	NPDES Multiple DF

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Pace for dioxin/furan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the case narrative and laboratory login sheet, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Pace had no custody seals present for samples IOJ1232-01 and 10I1231-01. All other samples had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Cohumn Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 10/22/05 for instrument F. The calibration consisted of five concentration level standards (CSI through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequenco. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times ware within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (Blank 8223) was extracted and analyzed with the samples in this SDG. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDD}$ and OCDF were reported in method blank 8223 at concentrations of 0.0000041 and $0.0000068 \mathrm{ug} / \mathrm{L}$, respectively. An interference with OCDD was also reported in method blank 8223. Any detects for these target compounds \leq five times the concentration reported in the method blank were qualified as estimated, "UJ," in the site samples of this SDG. Detects for total dioxin and furan isomers at concentrations \leq five times the concentration reported in the method blank were qualified as estimated, "UJ," in the associated samples. In instances where the total concentration included peaks not present in the method blank as well as the method blank contamination, the total concentration was considered estimated, "J ${ }_{n}$ " as a portion of the total concentration was considered blank contamination. There were no other target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were
required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (LCS/LCSD 8224/8225) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND DENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. However, the laboratory was experiencing sporadic cross-contamination problems which they attributed to incomplete glassware cleaning procedures. Two samples, Outfall 009 and outfall 010, exhibited atypical target compound detects. Thase samples were rejected in favor of a reanalysis at another laboratory that was not experiencing contamination problems. This was done to ensure the target compound detects were representative of site conditions and not laboratory cross-contamination. No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, " J " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

Conc $=$ Concuntralion (Totats inctude 2,3,7,8-schasithtad lisomars).
$E M P C=$ Estifntad Maximum Posulte Concentration

$\mathrm{MD}=\mathrm{F}$ Not Doilectad NA $=$ No A Applitable
 NC = Nat Criteulatiad

Lavel IV Validated REPORT OF LABORATORY ANALYSIS

This raport shatl not be raproduced, excapt in ant
without the writien consent of Pace Andytical Sturvicss, inc.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewer E. Wessling
Analysis/Method General Minerals

Package ID T711WC179
Task Order 313150010
SDG No. Multiple
No. of Analyses 3
Date: December 12. 2005

ACTION TTEMS ${ }^{-}$

- Case Narrative
 Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Qualifications were assigned for the following:

Protocol, eg, \quad - Acceptable as reviewed
Hoiding Times
OCMS Tune//ist. Performance
Calibration
Method blanks
Surrogates
Matrix Spiempup LCs
Fied QC
Internn Standard Performance
Compound Identification
Quantitation
System Performance
COMMENTS'

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUPS: IOJ 1176, IOJ1177, IOJ1181

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

	Project: NPDES Monitoring	
DATA VALIDATION REPORT	SDG No.: Analysis:	Multiple General Minernis

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#\#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 3
Reviewer: E. Wessling
Date of Review: December 12, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: NPDES Monitoring

Table 1. Sample identification

Client ID	Laboratory DD	Matrix	COCMethod
Outfall 005	IOI1176-01	Water	General Minerals
Outfall 004	IOI1177-01	Water	General Minerals
Outfal 008	IOI1181-01	Water	General Minerals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and all analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times for all analyses were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

Target compounds were not detected in the associated method blanks. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

	Project: NPDES Monitoring
DATA VALIDATION REPORT	SDGNo.:
Multiple	
Analy	

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for analyses without an MS/MSD: No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

analysis not validated
Level IV Valiclaters

Del Mar Analytical, Irvine
Michele Harper
Project Manager

APPENDIX G

Section 21

Outfall 009, October 17, 2005
Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 009

Sampled: 10/18/05
Received: 10/18/05
Issued: 01/20/06 15:53

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OI1186-01

CLIENT ID
Outfall 009

MATRIX

Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: IOJ1186 Received: 10/18/05

Sampled: 10/18/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOJ1186-01 (Outfall 009 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	$5 J 19098$	0.050	2.0	4.2	1	10/19/05	10/20/05	
Cadmium	EPA 200.8	5J19098	0.025	1.0	9.2	1	10/19/05	10/20/05	
Copper	EPA 200.8	5119098	0.25	2.0	39	1	10/19/05	10/20/05	
Lead	EPA 200.8	5119098	0.040	1.0	260	1	10/19/05	10/20/05	
Mercury	EPA 245.1	5119052	0.050	0.20	0.21	1	10/19/05	10/19/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200		Sampled: $10 / 18 / 05$
Pasadena, CA 91101	Report Number: 1011186	Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OJ1186-01 (Outfall 009 - Water) - cont.									
Reporting Units: mg/tR									
Chloride	EPA 300.0	5118042	0.15	0.50	7.5		$10 / 8$	10/805	
Nitrate/Nitrite-N	EPA 300.0	5118042	0.080	0.15	1.1	1	10/18/05	10/18/05	
Oil \& Grease	EPA 413.1	5 J 24050	0.89	4.7	ND	1	10/24/05	10/24/05	
Sulfate	EPA 300.0	5 J 18042	0.45	0.50	41	1	10/18/05	10/18/05	
Total Dissolved Solids	SM2540C	5119123	10	10	260	1	10/19/05	10/19/05	
Total Suspended Solids	EPA 160.2	$5 J 20118$	10	10	4000	1	10/20/05	10/20/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: IOJ1186
Sampled: 10/18/05
Received: 10/18/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 009 (IOJ1186-01) -Water EPA 300.0	2	$10 / 8 / 200513: 17$	$10 / 18 / 200514: 20$	$10 / 18 / 2005$	$16: 30$	$10 / 18 / 2005$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200		Sampled: 10/18/05
Pasadena, CA 91101	Report Number: 1011186	Received: 10/18/05
Attention: Bronwyn Kelly		

METHOD BLANKIOC DATA

METALS

Batch: 5J19098 Extracted; 10/19/05

Blank Analyzed: 10/20/2005 (5119098-BLK1)

Antimony	$\therefore \mathrm{ND}$	2.0	0.18	ugh	
Cadmium		0.109	1.0	0.015	$\mathrm{ug} /$
Copper		ND	2.0	0.49	ug / l
Lead		0.0450	1.0	0.040	ug / l

LCS Analyzed: 10/20/2005 (5J19098-BS1)

Antimony	77.4	2.0	0.18	$\mathrm{ug} /$	80.0		97	85-115
Cadmium	81.9	1.0	0.015	ug/l	80.0		102	85-115
Copper	77.7	2.0	0.49	ug/l	80.0		97	85-115
Lead	81.2	1.0	0.13	ug / l	80.0		102	85-115
Matrix Spike Analyzed: 10/20/2005 (5J19098-MS1)					Source: IOJ1156-01			
Antimony	84.7	2.0	0.18	ug/l	80.0	0.18	106	70-130
Cadmium	84.1	1.0	0.015	ug/	80.0	0.14	105	70-130
Copper	83.0	2.0	0.49	ug/	80.0	3.9	99	70-130
Lead	79.1	1.0	0.040	ug/	80.0	0.32	98	70-130

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200	Report Number: 10 II186.	Sampled: $10 / 18 / 05$ Pasadena, CA 91101
Received: $10 / 18 / 05$		

METHOD BLANKQC DATA

METALS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5J19098 Extracted: 10/19/05

Matrix Spike Analyzed: 10/20/2005 (5J19098-MS2)			Source: 10J1159-01							
Antimony	86.6	2.0	0.18	ug/l	80.0	0.29	108	70-130		
Cadmium	84.6	1.0	0.015	ug/	80.0	0.072	106	70-130		
Copper	84.8	2.0	0.49	ug/	80.0	4.8	100	70-130		
Lead	80.8	1.0	0.040	ug/	80.0	0.53	100	70-130		
Matrix Spike Dup Analyzed: 10/20/2005 (5J19098-MSD1)			Source: 10.11156-01							
Antimony	85.5	2.0	0.18	ug/	80.0	0.18	107	70-130	1	20
Cadmium	84.4	1.0	0.015	ug/	80.0	0.14	105	70-130	0	20
Copper	83.1	2.0	0.49	ug/1	80.0	3.9	99	70-130	0	20
Lead	79.9	1.0	0.040	ugl	80.0	0.32	99	70-130	1	20

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009		
300 North Lake Avenue, Suite 1200	Report Number: 1011186	Sampled: $10 / 18 / 05$	
Pasadena, CA 91101			
Attention: Bronwyn Kelly			

METHOD BLAVKIOC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project LD: Routine Outfall 009	
300 North Lake Avenue, Suite 1200	Report Number: $1011186 \ldots$	Sampled: 10/18/05
Pasadena, CA 91101 Attention: Bronwyn Kelly		

METHOD BLANK/QC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5320118 Extracted: 10/20/05										
LCS Analyzed: 10/20/2005 (5J20118-BS1)										
Total Suspended Solids 993	10	10	mg / l	1000		99	85-115			
Duplicate Analyzed: 10/20/2005 (5320118-DUP1)					ce: IOJ1	175-01				
Total Suspended Solids 344	10	10	mg / l		340			1	10	
Batch: 5324050 Extracted: 10/24/05										
Blank Analyzed: 10/24/2005 (5J24050-BLK1)										
Oil \& Grease ND	5.0	0.94	mg / l							
LCS Analyzed: 10/24/2005 (5J24050-BS1)										M-NR1
Oil \& Grease 16.1	5.0	0.94	mg / l	20.0		80	65-120			
LCS Dup Analyzed: 10/24/2005 (5J24050-BSD1)										
Oil \& Grease 16.1	5.0	0.94	mg / l	20.0		80	65-120	0	20	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200		Sampled: $10 / 18 / 05$
Pasadena, CA 91101.	Report Number: IOJ1186	Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

				Compliance		
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IOI1186-01	413.1 Oil and Grease	Oil \& Grease	mg / l	0.38	4.7	15
IOI1186-01	Chloride - 300.0	Chloride	mg / l	7.50	0.50	150
IOI186-01	Nitrogen, NO3+NO2-N	Nitrate/Nitrite-N	mg / l	1.10	0.15	10.00
IOJ1186-01	Sulfate-300.0	Sulfate	mg / l	41	0.50	250
IOJ1186-01	TDS - SM 2540 C	Total Dissolved Solids	mg / l	260	10	850

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: 1011186

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

17461 Derian Ave, Sute 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX $\{909) 370-1046$ 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 98.30 South 51st St., Suite B-120, Phoenix, AZ, 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200		Sampled: $10 / 18 / 05$
Pasadena, CA 91101	Report Number: 1OII 186	Received:
Attention: Bronwyn Kelly		

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

```
Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413
    1104 Windfield Way - El Dorado Hills, CA }9576
    Analysis Performed: 1613-Dioxin-HR-Alta
    Samples: 1ON186-01
    Analysis Performed: Level 4 + EDD
    Samples: FOJ186-01
```

ADDITIONAL ANALYSIS REQUEST FORM

Today's Date: \qquad $11 / 29$ Del Mar Analytical Project Manager: \qquad MC

Request via: \qquad telephone: \qquad chain of custody form \qquad fax transmission \qquad Email \qquad other

Client: Mwh-pasadena/Boeing_Contact:Bronwunklly Project: Routine outfall 009
Date Sampled: \qquad $10 / 18.105$

Date Received: \qquad
Status: \qquad in progress \qquad completed \qquad received today \qquad received yesterday \qquad on hold \qquad other

SAMPLE
NUMBER

SAMPLE DESCRIPTION

ANALYSIS REQUESTED

SPECIAL REQUIREMENTS
$1031186-01$ Outfulloo9 $1613-H R$ to Alta
\qquad

- ubcentract 11 comber presenied w/tc1, sund"1zalos
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TURNAROUND STATUS: \qquad Same Day \qquad 24 hr \qquad 48 hr \qquad 3days
\qquad 5days \qquad Standard \qquad No Rush Charge
CHAIN OF CUSTODY FORM
Page 1 of 1

December 12, 2005
Alta Project I.D.: 26994
Ms. Michele Chambertin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Chambertin,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on November 30, 2005 under your Project Name "1011186". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was requested on December 06, 2005.

The results flagged with an asterisk were taken from a 1:10 dilution of the extract.
The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Mayer
Director of HRMS Services

Section I: Sample Inventory Report Date Received: $\quad 11 / 30 / 2005$

Alta Lab. ID
26994-001

Client Sample 1D

1OJ1186-01

SECTION II

Analys: WJL

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

I Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

	Certificte Numtry
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California - NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers.	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

 t014 E Coomay De, Sum A, Cumen, CA ReSR4

SUBCONTRACT ORDER - PROJECT \# IOJ1186

SAMPLE LOGIN CHECKLIST

Alta Project \#:
26994

Preservation Info	(cos $)$	Sample Container	None	
Shipping Container	Alta	Client	Retain	Return

Comments:

Section 22

Outfall 009, October 17, 2005 AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: IOJ1181, IOJ1176, IOJ1186, IOJ1180, IOJ1184, IOJ1177, IOJ1232, IOJ1231

Prepared by
AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

1. INTRODUCIION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: November 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Finnctional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALILMTON REPORT	Praject: SDG No: Analysis:	NPDES Muliple D/F

Table 1. Sample Identification

Client D	Laboratory ID (Del Mar)	Laboratory ID (Pace)	Matrix	COC Method
Outfall 008	IOI1181-01	1021758001	water	1613
Outfall 005	$1011176-01$	1021760001	water	1613
Outfall 009	$101186-01$	1021761001	water	1613
Outfall 006	IOI1180-01	1021763001	water	1613
Outfall 007	IOI1184-01	1021765001	water	1613
Outfall 004	$101177-01$	1021766001	water	1613
Outfall 010	$1011232-01$	1021908001	water	1613
Outfall 003	IOI1231-01	1021910001	water	1613

Project:	NPDES
SDONo.:	Mulitiole
Analysir:	D/F

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Pace for dioxin/furan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the case narrative and laboratory login sheet, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Pace had no custody seals present for samples IOJ1232-01 and IOI1231-01. All other samples had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project: SDCT No.:	NPDES Multipie
DATA VALIDATTONREPORT	Analysis;	DFF

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $10 / 22 / 05$ for instrument F. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (Blank 8223) was extracted and analyzed with the samples in this SDG. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDD}$ and OCDF were reported in method blank 8223 at concentrations of 0.0000041 and $0.0000068 \mathrm{ug} / \mathrm{L}$, respectively. An interference with OCDD was also reported in method blank 8223. Any detects for these target compounds \leq five times the concentration reported in the method blank were qualified as estimated, "UJ," in the site samples of this SDG. Detects for total dioxin and furan isomers at concentrations sfive times the concentration reported in the method blank were qualified as estimated, "U,, ${ }^{\text {" }}$ in the associated samples. In instances where the total concentration included peaks not present in the method blank as well as the method blank contamination, the total concentration was considered estimated "JJ" as a portion of the total concentration was considered blank contamination. There were no other target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (LCS/LCSD 8224/8225) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2:8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND DENIIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. However, the laboratory was experiencing sporadic cross-contamination problems which they attributed to incomplete glassware cleaning procedures. Two samples, Outfall 009 and outfall 010, exhibited atypical target compound detects. These samples were rejected in favor of a reanalysis at another laboratory that was not experiencing contamination problems. This was done to ensure the target compound detects were representative of site conditions and not laboratory cross-contamination. No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "JJ" by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

This report shall nol be reproducad, excapt in fill, without the written consent of Prece Analylical Services, fnc.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUPS: IOJ1186, IOJ1232, IOK0899; IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by

AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client D	Laboratory D (Del Mar)	Laboratory D (Alta)	Matrix	COC Method
Outfall 009	1OI1232-01	$26994-001$	water	1613
Outfall 010	$101186-01$	$26993-001$	water	1613
Outfall 018	10K0899-01	$27025-001$	water	1613
Outfall 003	IOK0900-01	$27026-001$	water	1613
Outfall 004	1OK0901-01	$27027-001$	water	1613
Outfall 005	IOK0902-01	$27028-001$	water	1613
Outfall 006	1OK0903-01	$27029-001$	water	1613
Outfall 009	IOK0904-01	$27030-001$	water	1613

Project:	NPDES
SDGNo.:	Multiple
Analysis:	DFF

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ}$ C. The samples were shipped to Alta for dioxin/furan analysis and were received within the temperature limits of $4{ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ or slightly below for some of the samples. As none of the samples was noted to be damaged or frozen, no qualifications were required. According to the case narratives and laboratory login sheets, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in these SDGs. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Alta had no custody seals. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project: SDG No.:	NPDES Multiple
DATA WALIDATHON REPORT	Andyuir:	D/F

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 6/06/2005. The calibration consisted of six concentration level standards (CS1 tbrough CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds. were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-7516-MB001) was extracted and analyzed with the samples in this SDG. No target compounds were detected in the method blank and no qualifications were required. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (OPR 0-7516-OPR001) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project: SDG No. Analyis:	NPDES Multiple D/F
DATA VALIDATTON REPORT		

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted with the exception of a false positive in Outfall 005 for $1,2,3,4,7,8-\mathrm{HxCDD}$. The sample was a nondetect Confirmation for 2,3,7,8-TCDF detected in samples Outfall 004, Outfall 005, and Outfall 006 was not performed; therefore, 2,3,7,8-TCDF was qualified as estimated, "J." No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

$a m e c^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: METALS

SAMPLE DELIVERY GROUPS IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring Program
Contrat Task Order \# 313150010
SDG\#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 3
Reviewer: E. Wessling
Date of Review: December 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 2), USEPA Methods 200.8 for ICPMS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for horganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES Monitoring
	SDG No.:	Multiple
DATA VALIDATION REPORT	Analysis:	METALS

Table 1. Sample identification

Client ID	Laboratory D	Matrix	COC Method
Outfall 003	IOI1231-01	Water	$200.8 / 245.1$
Outfall 010	IOI1232-01	Water	$200.8 / 245.1$
Outfall 006	IOI1180-01	Water	$200.8 / 245.1$
Outfall 007	IOI1184-01	Water	$200.8 / 245.1$
Outfall 009	1OI1186-01	Water	$200.8 / 245.1$

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 -days for mercury. No qualifications were required.

2.2 1CP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required for ICP-MS tuning.

2.3 CALIBRATION

The ICV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The laboratory analyzed reporting limit check standards in association with this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were significantly below the sample detects so as not to result in qualification of the data with the exception of cadmuium in the method blank. Cadmium was qualified as a nondetect, " U ," in the sample from Outfall 006. No firther qualifications were required.

	Project: DATA VALIDATION REPORT	NPDES Monitoring SDGNo.:
Multiple		

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP/MS analyses. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples and mercury LCS samples as reported on the LCS on the summary forms and in the raw data were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in these SDGs. No qualification was required.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed on samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for all analyses. No qualification was required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furmace atomic absorption QC is not applicable.

2.10ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS; the ICP/MS internal standards were within established control limits. No qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

	Project	NPDES Monitoring
	SDG No.:	Multiple
DATA VALIDATION REPORT	Anulysis:	METALS

of the original analysis. Results reported by the laboratory between the MDL and reporting limit were qualified as "J" values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

MWH-Pasadena/Bocing	Praject ID: Routive Ouffall 009	
300 North Lake Averue, Suite 1200		Sampled: 10/1810S Received: 10/18/05
Pasadena, CA. 91101	Report Number: IOII186	Received: 10/18,
Atuention: Bronwyn Kelly		

METALS
Analyte Method

Sample ID: IOIL186-01 (Outfall 009 - Water) Reparting Units: gg / I
Antimony
Cedminm
EPA 200.8

Copper
Leai
EPA 200.8
EPA 200.8
EPA 200.8
Mercury
EPA. 245.1
METALS
Sampled: 10/18105

MDL Reporting Sample Dilution Date
Batch

Date Data Analyzed Quallifiers

5119098	0.050	2.0	4.2	1	$10 / 19 / 05$	$10 / 20 / 05$	
5119098	0.025	1.0	9.2	1	$10 / 19 / 05$	$10 / 20 / 05$	
5119098	0.25	2.0	39	1	$10 / 19 / 05$	$10 / 20 / 05$	
5119098	0.040	1.0	260	1	$10 / 19 / 05$	$10 / 20 / 05$	
5119052	0.050	0.20	0.21	1	$10 / 19 / 05$	$10 / 19 / 05$	

Lexel IV Valiclatad

Del Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUPS: IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

[^26]
1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 5
Reviewer: E. Wessling
Date of Review: December 12, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 003	IOI1231-01	Water	General Minerals
Outfall 010	IOI1232-01	Water	General Minerals
Outfall 006	IOI1180-01	Water	General Minerals
Outfall 007	IOI1184-01	Water	General Minerals
Outall 009	IOJ1186-01	Water	General Minerals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and all analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times for all analyses were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

Target compounds were not detected in the associated method blanks. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in association with these SDG; therefore, no. assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for analyses without an MS/MSD. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as " J " values and amnotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

17401 Dean Ave, Suite 100, Imine, CA 22614 (949: 261-t022 FAX 1949; 260-329,

MWh-Pasadens/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: 1011186

Sampled: 10/18/05
Received: 10/18/05

Del Mar Analytical, Irvine
Michele Harper
Project Manager

APPENDIX G

Section 23

Outfall 009, November 09, 2005
Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 009

Sampled: 11/09/05
Received: 11/09/05
Issued: 12/07/05 20:03

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOK0904-01

CLIENT ID
Outfall 009

MATRIX

Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

17461 Derian Ave., Suite 100, truine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 fAX 909$) 370$-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51 st St, Suite 8-120, Phoenix, AZ 85044 (480) 785-9043 FAX (480) 785-8851 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200	Report Number: $10 K 0904$	Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Received: $11 / 09 / 05$	

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample 1D: IOK0904-01 (Outfall 009 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5K16096	0.050	2.0	0.74	1	11/16/05	11/16/05	J
Cadmium	EPA 200.8	SK16096	0.025	1.0	0.071	1	11/16/05	11/17/05	J
Copper	EPA 200.8	5K16096	0.25	2.0	6.4	1	11/16/05	11/16/05	B
Lead	EPA 200.8	5K16096	0.040	1.0	3.3	1	11/16/05	11/16/05	
Mercury	EPA 245.1	5K17098	0.050	0.20	ND	1	11/17/05	11/17/05	

Del Mar Analytical, Irvine
Michele Chamberlin

484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St, Sufte E-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Surset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 790-3621

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

	Sampled: $11 / 09 / 05$
Report Number: $10 K 0904$	Received:
$11 / 09 / 05$	

Received: 11/09/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OK0904-01 (Ontfall 009 - Water) - cont.Reporting Units: mg/									
Chloride	EPA 300.0	5K09130	0.15	0.50	11	1	11/09/05	11/10/05	
Nitrate/Nitrite-N	EPA 300.0	5K09130	0.080	0.15	0.90	1	11/09/05	11/10/05	
Oil \& Grease	EPA 413.1	5K14056	0.89	4.7	1.1	1	11/14/05	11/14/05	J
Sulfate	EPA 300.0	5K09130	0.45	0.50	38	1	11/09/05	11/10/05	
Total Dissolved Solids	SM2540C	5K16116	10	10	200	1	11/16/05	11/16/05	
Total Suspended Solids	EPA 160.2	5K10088	10	10	19	1	11/10/05	11/10/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\qquad Project ID: Routine Outfall 009	
Report Number: 10 K 0904	Sampled: $11 / 09 / 05$
Received:	$11 / 09 / 05$

Sampled: 11/09/05
Res.

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 009 (IOK0904-01)- Water EPA 300.0	2	$11 / 09 / 200513: 46$	$11 / 09 / 200518: 00$	$11 / 09 / 2005$	$23: 30$	11/10/2005 02:00

17461 Derian Ave, Suite 100, Inine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (999) 370-1046

MEYLOD BLANHKOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5K16096 Extracted: 11/16/05											
Blank Analyzed: 11/16/2005-11/17/2005 (5K16096-BLK1)											
Antimony	ND	2.0	0.050	ug/							
Cadmium	ND	1.0	0.025	ug/							
Copper	1.20	2.0	0.25	ugl							J
Lead	0.129	1.0	0.040	ug/l							J

LCS Analyzed: 11/16/2005-11/17/2005 (5K16096-BS1)

	75.0	2.0	0.050	ug / l	80.0	94	$85-115$
Antimony	85.7	1.0	0.025	ug / l	80.0	$85-115$	
Cadmium	82.7	2.0	0.25	ug / l	80.0	107	103
Copper	82.4	1.0	0.040	ug / l	80.0	$85-115$	
Lead						$85-115$	

Matrix S		M				: 10 K	18-0	
Antimony	76.3	2.0	0.050	ug/l	80.0	0.060	95	70-130
Cadmium	86.0	1.0	0.025	ug/1	80.0	ND	108	70-130
Copper	79.4	2.0	0.25	ug/	80.0	2.7	96	70-130
Lead	79.8	1.0	0.040	ugh	80.0	0.070	100	70-130

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200		Sampled: 11/09/05
Pasadena, CA 91101	Report Number 10 K 0904	Received: 11/09/05
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200	Report Number: 10K0904	Sampled: 11/09/05
Pasadena, CA 91101.		Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Batch: 5K10088 Extracted: 11/10/05

Blank Analyzed: 11/10/2005 (5K10088-BLK1)

Total Suspended Solids	ND	10	10	mg / l					
LCS Analyzed: 11/10/2005 (5K10088-BS1)									
Total Suspended Solids	970	10	10	$\mathrm{mg} / 1$	1000	97	85-115		
Duplicate Analyzed: 11/10/2005 (5K10088-DUP1)					Source: IOK0617~01				
Total Suspended Solids	440	10	10	$\mathrm{mg} / 1$				2	10

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200		Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Report Number: 10 KO 0904	Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METHOD BLIANKIOCDATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5K14056 Extracted: 11/14/05										
Blank Analyzed: 11/14/2005 (5K14056-BLK1)										
Oil \& Grease ND	5.0	0.94	mg / l							
LCS Analyzed: 11/14/2005 (5K14056-BS1)										M-NR1
Oil \& Grease 17.1	5.0	0.94	$\mathrm{mg} / 1$	20.0		86	65-120			
LCS Dup Analyzed: 11/14/2005 (5K14056-BSD1)										
Oil \& Grease 17.4	5.0	0.94	mg / l	20.0		87	65-120	2	20	
Batch: 5K16116 Extracted: 11/16/05										
Blank Analyzed: 11/16/2005 (5K16116-BLK1)										
Total Dissolved Solids ND	10	10	mg / l							
LCS Analyzed: 11/16/2005 (5K16116-BS1)										
Total Dissolved Solids : 988	10	10	mg / l	1000		99	90-110			
Duplicate Analyzed: 11/16/2005 (5K16116-DUP1)					ce: IOK0	904-01				
Total Dissolved Solids 196	10	10	mg / l		200			2	10	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Derian Ave. Suite 100, trine, CA 92614 (949) 261-1022 fAX (949) 260-3297 1014 E. Cooley Dr., Sute A, Cotton, CA 92324 \{909) 370-4667 FAX 9009 370-1046 9484 Chesapeake Dr., Suite B05, San Diego, CA 92123 (858) 505-8596 FAX $\{858\}$ 505-9689 9830 South 51st SL, Suite 8-120, Phoenix, AZ 85044 (480) 795-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200		Sampled: $11 / 09 / 05$
Pasadena, CA 91101	Report Number: IOK0904	Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

			Compliance			
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IOK0904-01	413.1 Oil and Grease	Oil \& Grease	mg / l	1.10	4.7	15
IOK0904-01	Chloride - 300.0	Chloride	$\mathrm{mg} / 1$	11	0.50	150
IOK0904-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg / l	0.90	0.15	10.00
IOK0904-01	Sulfate-300.0	Sulfate	mg / l	38	0.50	250
IOK0904-01	TDS - SM 2540 C	Total Dissolved Solids	mg / l	200	10	850

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: IOK0904 Received: 11/09/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

Del Mar Analytical, Irvine
 Michele Chamberlin
 Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

	Sampled: $11 / 09 / 05$
Report Number: 10 KO 004	Received:
	$11 / 09 / 05$

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Califernia
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert \#02102CA, California Cert \#1640, Nevada Cert \#CA-413
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOK0904-01
Analysis Performed: EDD + Level 4
Samples: 1OK0904-01

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

December 11, 2005
Alta Project I.D.: 27030
Ms. Michele Chambertin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Chamberlin,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on December 08, 2005 under your Project Name "IOK0904". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

An " A " qualifier indicates that the result is greater than the low point in the calibration curve, but lower than the EPA Method 1613 Minimum Level.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maser
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report

 Date Received: 12/8/2005Alta Lab. ID

Client Sample ID
IOK0904-01

SECTION II

OPR Results							EPA Method 1613				
Matrix	Aqueous		QC Batch No.:	7516	Lah Sample: 0 -OPR001 Date Analyzed DB-5: 9-Dec-05		Date Analyzed DB-225:				
Sample Size:	1.000 L		Date Extracted:	8-Dec-05			NA				
Analyte		Spike Conc.	Conc. ($\mathrm{ng} / \mathrm{mL}$)	OPR Limits	Labeled Standard				\%R	LCLUCL	
2,3,7,8-TCDD		$\therefore 10.0$. 10.0	6.7-15.8	IS	13C-2,3,7,8-TCDD	81.6	25-164			
1,2,3,7,8-P		50.0	45.0	35-71		13C-1,2,3,7,8-PeCDD	74.5	25-181			
1,2,3,4,7,8	DD	50.0	\% 48.5	4\% $35-82$, is.	13C-1,2,3,4,7,8-HxCDD	68.8	32-141			
1,2,3,6,7,8-	DD	50.0	49.9	38-67		13C-1,2,3,6,7,8-HxCDD	69.2	28-130			
1,2,3,7,8,9	DD	50.0	+ 49.9	32-81	13C-1,2,3,4,6,7,8-HpCDD		- 65.1	23-140			
1,2,3,4,6,7,	CDD	50.0	50.6	35-70	$13 \mathrm{C}-\mathrm{OCDD}$		51.0	17-157			
OCDD		100	99.8	78-144	13C-2,3,7,8-TCDF		85.7	24-169			
2,3,7,8-TCD		10.0	9.96	7.5-15.8	13C-1,2,3,7,8-PeCDF		74.5	24-185			
1,2,3,7,8-P	的爯	50.0	52.7	40-67	13C-2,3,4,7,8-PeCDF		72.8	21-178			
2,3,4,7,8-P		50.0	53.8	34-80	13C-1,2,3,4,7,8-HxCDF		63.4	26-152			
1,2,3,4,7,8	F	50.0	50.9	, 36.67	13C-1, 2, 3,6,7,8-HxCDF		60.1	26-123			
1,2,3,6,7,8	CDF	50.0	51.5	42-65	13C-2,3,4,6,7,8-HxCDF		68.0	28-136			
2,3,4,6,7,8	DF	- 50.0	- 50.7	- $35-78$	$13 \mathrm{C}-1,2,3,7,8,9-\mathrm{HxCDF}$.		69.4	29.147			
1,2,3,7,8,9	CDF	50.0	49.6	39-65	$13 \mathrm{C}-1,2,3,4,6,7,8-\mathrm{HpCDF}$		60.4	28-143			
1,2,3,4,6,7,	CDF ${ }^{\text {a }}$	- 50.0	- 50.1	41-61	13C-1,2,3,4,7,8,9-HpCDF		65.4	26-138			
1,2,3,4,7,8,	PCDF	50.0	51.4	39-69	13C-OCDF		53.9	17-157			
OCDF	,	\% 100	-98.6	63.170	CRS $37 \mathrm{Cl}-2,3,7,8-\mathrm{TCDD}$		99.0	35-197			

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.
H The signal-to-noise ratio is greater than 10:1.
1 Chemical interference
J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration
DL Sample-specific estimated Detection Limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authorty	Certicate Namber
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	$05-013-0$
State of Arkansas, DOH	Reciprocity through CA
State of California - NELAP Primary AA	02102 CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	$68-00490$
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	Commonwealth of Virginia
State of Washington	00013
State of Wisconsin	C1285
State of Wyoming	898036160

SUBCONTRACT ORDER - PROJECT \# IOK0904

SAMPLE WTEGRIX:

Alta Project \#:
20030

Comments:

APPENDIX G

Section 24

Outfall 009, November 09, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \% Envirommental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer E. Wessling
Analysis/Method Dioxins/Furans by 1613

ACTIONITCMMS

Package ID T711DF51

Task Order 313150010 SDG No. Mulitple
No. of Analyses 8

Case Narrative
Deffictencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Dellverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Qualifications were assigned for the following:

Protocol, eg., -false positive
Holding Times -estimated values between the RL and MDL
OC/MS Tune/fist. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification
Quantitation
System Performance
COMMEAYS'

* Subcontracted analytical laboratory is not meeting conatract and/or method requirrenentic

amec ${ }^{\text {© }}$

DATA VALDDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUPS: IOJ1186, IOJ1232, IOK0899, IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by

AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

DATA VILIDITION REPORT	Projat: SDG Na: Analyuin:	

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Fiunctional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented hercin. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID (Del Man	Laboratory ID (Alta)	Matrix	COC Method
Outfall 009	1O11232-01	$26994-001$	water	1613
Outfall 010	$101186-01$	$26993-001$	water	1613
Outfall 018	10K0899-01	$27025-001$	water	1613
Outfall 003	10K0900-01	$27026-001$	water	1613
Outfall 004	$10 K 0901-01$	$27027-001$	water	1613
Outfall 003	10K0902-01	$27028-001$	water	1613
Outfall 006	1OK0903-01	$27029-001$	water	1613
Outfall 009	1OK0904-01	$27030-001$	water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ}$ C. The samples were shipped to Alta for dioxin/furan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ or slightly below for some of the samples. As none of the samples was noted to be damaged or frozen, no qualifications were required. According to the case narratives and laboratory login sheets, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in these SDGs. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Alta had no custody seals. The EPA Ds were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the begining of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC colunn performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project: SDGNa:	NPDES Mulliple
DATA VALIDATHON RAPORT		DF

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $6 / 06 / 2005$. The calibration consisted of six concentration level standards (CS1 through CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by intemal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds. were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank ($0-7516$-MB001) was extracted and analyzed with the samples in this SDG. No target compounds were detected in the method blank and no qualifications were required. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (OPR 0-7516-OPR001) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted with the exception of a false positive in Outfall 005 for $1,2,3,4,7,8-\mathrm{HxCDD}$. The sample was a nondetect Confirmation for $2,3,7,8$-TCDF detected in samples Outfall 004, Outfall 005, and Outfall 006 was not performed; therefore, $2,3,7,8-\mathrm{TCDF}$ was qualified as estimated, "J." No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, " J, " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar-Irvine
Reviewer E Wessling
Analysis/Method Metals by $200.8 / 245.1$

Package ID T711MT9s
Task Order 313150010
SDG No Multiple
No of Analyses 5
Date Docenber 22, 2005

ACTION ITEMS

Case Narrative
Deficiencies
2. Out of Scope

Analyses
3. Analysen Nol Conducted
4. Misting Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

6 Deviations from Analysis
Protocol, eg,
Holding Times
GCMS Tunelmst Performance
callixation
Method Danks
Surrogates
Matrix SpikeDup LCS
Field OC
Intemal Standard Performance
Compound ldenitifation
Quantitation
sytem ferformance
comments',

$a m e c^{\theta}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS:
IOK0900, ІOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC - Denver Operations
355 South Teller Street
Lakewood. CO 80226

DATA VALIDATION REPORT	Project: SOG:

1. INTRODUCTION

Task Order Title:	NPDES Sampling
MEC ${ }^{\text {K }}$ Project Number:	313150010
Sample Delivery Group:	1OK0900, IOK0901, 1OK0902, 1OK0903, 1OK0904
Project Manager:	P. Costa
Matrix:	Water
Analysis:	Metals
QC Level:	Level IV
No. of Samples:	5
of Reanalyses/Dilutions:	4
Reviewer:	E. Wessling
Date of Review:	December 20, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for ICP Metals (DVP-5, Rev. 2), US EPA Method 200.8 for ICP-MS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form las having only the " $R^{\text {" }}$ data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client id	Laboratory io	Matrix	COC Method
Outfall 003	IOK0900-01	Water	200.8/245. 1
Outfall O03RE1	IOK0900-01RE1	Water	200.8
Outfall 004	10K0901-01	Water	200.81245.1
Outtall 005	10k0902-01	Water	200.8/245.1
Outfall O05RE1	1OK0902-01RE1	Water	200.8
Outfall 006	10\%0903-01	Water	200.81245.
Outfall 006REI	IOK0903-01RE1	Water	200.8/245.1
Outfall 006RE2	IOK0903-01RE2	Water	200.8
Outfall 009	10K0904-01	water	200.8/245.1

	Project: NPDES
DATA VAIDATTON REPORT	SDG: Muliple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples in these SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs.

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 006 were reanalyzed to confirm the original results. The laboratory did not appended the client IDs with "RE" suffices; therefore, the reviewer added these to the Form Is. No sample qualifications were required.

2.13 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28 -days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP-MS metals and 80 120% for mercury. The laboratory analyzed reporting limit check standards in association with these SDGs and all recoveries were acceptable. No qualifications were required.

DATA VALIOAMON REPORT: \begin{tabular}{l}
Project:

SDG:

NPDES

Mulligie
\end{tabular}

2.4 BLANKS

Mercury was reported in method blank 5K17098-BLK1 at $-0.072 \mu \mathrm{~g} / \mathrm{L}$; therefore, mercury in Outfall 003, Outfall 004, and Outfall 005 was qualified as estimated, "J," for detects and, "UJ," for nondetects. The remaining method blank and CCB results associated with the retained analyses were nondetects at the reporting limit or were significantly below the sample detects so as not to result in data qualification. No qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS AAB)

ICSA and ICSAB analyses were performed in association with the Outfall 003 selenium analysis. The recoveries were within the control limits. No other ICSA or ICSAB analyses were included in the raw data for the ICP-MS analyses. No qualifications were required

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS sample results were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MSMSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore no assessment was made with respect to this criterion. No qualifications were required.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore no assessment was made with respect to this criterion. Evaluation of laboratory accuracy was based on LCS results. No qualifications were required.

2.9 ICP-MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

	Profect:	npoes
	SOG:	Multiple
DATA VALDATION REPORT	Analysis	Metals

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICPMS; the ICP/MS internal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form is were verified against the raw data. No transcription errors or calculation errors were noted. Some target analytes were reported from dilution analyses due to matrix interference. Reporting limits and MDLs were adjusted accordingly. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, "J," with the annotation of "DNQ, in accordance with the requirements of the NPDES permit:

Antimony in Outfall 003, copper in Outfall 005, and antimony and mercury in Outfall 006 were reanalyzed to confirm the original results. As the original results were all confirmed, the results for Outfall 003RE1, Outfall 005RE1, Outfall 006RE1, and Outfall 006RE2 were rejected, "R," in favor of the original results. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with these samples.

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

$a m e c^{9}$

DATA VALIDATION REPORT

NPDES Sampling

ANALYSIS: GENERAL MINERALS
SAMPLE DELIVERY GROUPS:
IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC - Denver Operations 355 South Teller Street
Lakewood, CO 80226

1. INTRODUCTION

Task Order Titte:
AMEC Project Number.
Sample Delivery Group:
Project Manager: Matrix:
Analysis:
QC Level:
No. of Samples:
No. of Reanalyses/Dilutions:
Reviewer:
Date of Review.

NPDES Sampling
313150010
1OK0900, IOK0901, IOK0902, IOK0903, IOK0904
P. Costa

Water
General Minerals
Level IV
5
0
E Wessling
December 20, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for General Minerals (DVP-6, Rev. 2), USEPA. Methods for Chemical Analysis of Water and Wastes Methods 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-CMOD, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form is as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	Coc Method
Outfall 003	$10 K 0900-01$	Water	General Minerals
Outfall 004	$10 K 0901-01$	Water	General Minerals
Outfall 005	$10 K 0902-01$	Water	General Minerals
Outfall 006	$10 K 0903-01$	Water	General Minerals
Outfall 009	$10 K 0904-01$	Water	General Minerals

	Project:	NPDES
DATA VALIDATION REPORT	SDC:	Mutiple
DAIA VALDATON REPORI	Analysis:	Gen. Min.

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times were met and no qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

The blank results associated with the analyses were nondetects at the reporting limit or were significantly less than the sample detects so as not to result in data qualification. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

	Project DATA VALIOATION REPORT
MPDES	
Mutiple	

2.5 LABORATORY DUPLICATES

A laboratory duplicate analysis was performed on Outfall 009 for TDS. The \%D was less than the laboratory-established control limit of 10%. No qualifications were required.

2.6 MATRIX SPIKES

No MS/MSD analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results. No qualifications were required:

2.7 SAMPLE RESULT VERIFICATION

A Level V review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, " J_{3} " with the annotation of "DNQ." in accordance with the requirements of the NPDES permit. No further qualifications were required.

2.8 FIELD OC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

INORGANICS

Del Mar Anilytical, lrvine
Michele Chanberlia
Project Manage

APPENDIX G

Section 25

Outfall 010, October 18, 2005

Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 010

Sampled: 10/18/05
Received: 10/18/05
Issued: 01/20/06 15:57

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chains) of Custody, 2 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
[OJ1232-01

CLIENT ID

Outfall 010

MATRIX

Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 010	
300 North Lake Avenue, Suite 1200	Report Number: IOI1232	Sampled: $10 / 18 / 05$
Pasadena, CA 91101		Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOJ1232-01 (Outfall 010 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5 J 19098	0.050	2.0	20	1	10/19/05	10/20/05	
Cadmium	EPA 200.8	5119098	0.025	1.0	0.35	1	10/19/05	10/20/05	I
Copper	EPA 200.8	5119098	0.25	2.0	13	1	10/19/05	10/20/05	J
Lead	EPA 200.8	5119098	0.040	1.0	79	1	10/19/05	10/20/05	
Mercury	EPA 245.1	5119052	0.050	0.20	0.097	1	10/19/05	10/19/05	J

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17467 Denan Ave., Sulte 100, Inaine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Sule A, Colton, CA 92324 (909) 370-4667 FAX (909) $370-1046$

MWH-Pasadena/Boeing	Project ID: Routine Outfall 010			
300 North Lake Avenue, Suite 1200			Sampled	10/18/05
Pasadena, CA 91101	Report Number:	IOIL232	Received	10/18/05
Attention: Bronwyn Kelly				

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOJ1232-01 (Outfall 010 - Water) - cont.Reporting Units: mg									
Chloride	EPA 300.0	5118042	1.5	5.0	45	10	10/18/05	10/18/05	
Nitrate/Nitrite-N	EPA 300.0	5 J 18042	0.080	0.15	2.5	1	10/18/05	10/18/05	
Oil \& Grease	EPA 413.1	5 J 24050	0.89	4.7	ND	1	10/24/05	10/24/05	
Sulfate	EPA 300.0	5118042	0.45	0.50	50	1	10/18/05	10/18/05	
Total Dissolved Solids	SM2540C	5524100	10	10	320	1	10/24/05	10/24/05	
Total Suspended Solids	EPA 160.2	5 J 21114	10	10	86	1	10/21/05	10/21/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 010	
300 North Lake Avenue, Suite 1200		Sampled: $10 / 18 / 05$
Pasadena, CA 91101	Report Number: 1OJ1232	Received: $10 / 18 / 05$
Attention: Bronwyn Kelly		

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 010 (IOJ1232-01) - Water EPA 300.0	2	$10 / 18 / 200512: 21$	$10 / 18 / 200518: 00$	$10 / 18 / 200521: 30$	$10 / 18 / 2005$	$22: 43$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: IOH 232

Sampled: 10/18/05
Received: 10/18/05

METHOD BL ATIKICC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers

Batch: 5J19052 Extracted: 10/19/05

Blank Analyzed: 10/19/2005 (5J19052-BLK1)

Batch: 5J19098 Extracted: 10/19/05

Blank Analyzed: 10/20/2005 (5J19098-BLK1)

Antimony	ND	2.0	0.18	ug/l
Cadmium	0.109	1.0	0.015	ug/l
Copper	ND	2.0	0.49	ug/
Lead	0.0450	1.0	0.040	ug $/ 1$

LCS Analyzed: 10/20/2005 (5J19098-BS1)

Antimony	77.4	2.0	0.18	$\mathrm{ug} / 1$	80.0	87	$85-115$
Cadmium	81.9	1.0	0.015	$\mathrm{ug} / 1$	80.0	$85-115$	
Copper	77.7	2.0	0.49	$\mathrm{ug} / 1$	80.0	102	97
Lead	81.2	1.0	0.13	$\mathrm{ug} / 1$	80.0	$85-115$	
					$85-115$		

Matrix Spike Analyzed: 10/20/2005 (5J19098-MS1)

Antimony	84.7	2.0	0.18	ug / l	80.0	0.18	106	$70-130$
Cadmium	84.1	1.0	0.015	ug / l	80.0	0.14	105	$70-130$
Copper	83.0	2.0	0.49	ug / l	80.0	3.9	99	$70-130$
Lead	79.1	1.0	0.040	ug / l	80.0	0.32	98	$70-130$

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 010	
300 North Lake Avenue, Suite 1200 Report Number: LOJ1232 Sampled: $10 / 18 / 05$ Pasadena, CA 91101 Received: $10 / 18 / 05$		
Attention: Bronwyn Kelly		

METHOD BLANKOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		\%REC		RPD	Data
Analyte	Resalt		MDL	Units			\%REC		RPD		Qualifiers

Batch: 5J19098 Extracted: 10/19/05

Matrix Spike Analyzed: 10/20/2005 (5J19098-MS2)

Antimony	86.6	2.0	0.18	ug/l	80.0	0.29	108	70-130		
Cadmium	84.6	1.0	0.015	ug/l	80.0	0.072	106	70-130		
Copper	84.8	2.0	0.49	ug/l	80.0	4.8	100	70-130		
Lead	80.8	1.0	0.040	ug/l	80.0	0.53	100	70-130		
Matrix Spike Dup Analyzed: 10/20/2005 (5.19098-MSD1)					Source: 10.J1156-01					
Antimony	85.5	2.0	0.18	ug/l	80.0	0.18	107	70-130	1	20
Cadmium	84.4	1.0	0.015	ug/l	80.0	0.14	105	70-130	0	20
Copper	83.1	2.0	0.49	ug/	80.0	3.9	99	70-130	0	20
Lead	79.9	1.0	0.040	ug/l	80.0	0.32	99	70-130	1	20

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager
MWH-Pasadena/Boeing Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: IOI1232 Received: 10/18/05

MELHOLBLAMKOCDAMA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Oualifiers

Batch: 5J18042 Extracted: 10/18/05

Blank Analyzed: 10/18/2005 (5J18042-BLK1)

Chloride	ND	0.50	0.26	$\mathrm{mg} /$
Nitrate/Nitrite-N	ND	0.26	0.072	$\mathrm{mg} /$
Sulfate	ND	0.50	0.18	$\mathrm{mg} /$

LCS Analyzed: 10/18/2005 (5J18042-BS1)

Batch: 5J24050 Extracted: 10/24/05

Blank Analyzed: 10/24/2005 (5J24050-BLK1)
$\begin{array}{llllll}\text { Oil \& Grease } & \text { ND } & 5.0 & 0.94 & \mathrm{mg} / \mathrm{l}\end{array}$

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 010	
300 North Lake Avenue, Suite 1200	Report Number: IOI1232	Sampled: $10 / 18 / 05$
Pasadena, CA 91101: Attention: Bronwyn Kelly	Received: $10 / 18 / 05$	

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5J24050 Extracted: 10/24/05										
LCS Analyzed: 10/24/2005 (5J24050-BS1)										M-NR1
Oil \& Grease 16.1	5.0	0.94	mg / l	20.0		80	65-120			
LCS Dup Analyzed: 10/24/2005 (5J24050-BSD1)										
Oil \& Grease 16.1	5.0	0.94	$\mathrm{mg} / 1$	20.0		80	65-120	0	20	
Batch: 5J24100 Extracted: 10/24/05										
Blank Analyzed: 10/24/2005 (5J24100-BLK1)										
Total Dissolved Solids ND	10	10	mg / l							
LCS Analyzed: 10/24/2005 (5J24100-BS1)										
Total Dissolved Solids 998	10	10	$\mathrm{mg} / 1$	1000		100	90-110			
Duplicate Analyzed: 10/24/2005 (5J24100-DUP1)				Sour	C: IOJ02					
Total Dissolved Solids 440	10	10	mgh		440			0	10	

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 010	
300 North Lake Avenue, Suite 1200		Sampled: 10/18/05
Pasadena, CA 91101	Report Number: 10 JI 232	Received: 10/18/05
Attention: Bronwyn Kelly		

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte		Compliance		
IOI1232-01	413.1 Oil and Grease	Oil \& Grease	Units	Result	MRL	Limit
IOJ1232-01	Chloride -300.0	Chloride	mg / l	0.19	4.7	15
IOI1232-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg / l	45	5.0	150
IOI1232-01	Sulfate-300.0	Sulfate	mg / l	2.50	0.15	10.00
IOI1232-01	TDS - SM 2540 C	Total Dissolved Solids	mg / l	50	0.50	250
			$\mathrm{mg} / 1$	320	10	850

Del Mar Analytical, Irvine
Michele Chamberin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Report Number: IOI1232 Received: 10/18/05

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M-3

 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
Project ID: Routine Outfall 010
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Report Number: $1011232 \quad \begin{array}{r}\text { Sampled: } \\ \text { Received: } \\ \text { 10/18/05 }\end{array}$
R

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD+Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert \#02102CA, California Cert \#1640, Nevada Cert \#CA-413
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613 -Dioxin-HR-Alta
Samples: IOI1232-01
Analysis Performed: Level 4 + EDD
Samples: IOn232-01

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

ADDITIONAL ANALYSIS REQUEST FORM

Today's Date: \qquad 1129 Del Mar Analytical Project Manager: \qquad
Request via: \qquad telephone \qquad chain of custody form \qquad fax transmission \qquad Email \qquad other

Client: Mu it - Pasadena /Boring Contact: \qquad Boronweinvelly
Project: Fcutine cuifaldolo
Date Sampled: \qquad 10118105 Date Received: \qquad
Status: \qquad in progress X- completed \qquad received today \qquad received yesterday \qquad on hold \qquad other

SAMPLE NUMBER

SAMPLE DESCRIPTION

ANALYSIS REQUESTED

SPECIAL REQUIREMENTS
10) $1232-01$ Outfall $010 \quad 1613-+r^{+0} 414 a$

- subequtraet camber preserved w/ HAl, sind "halos normal TAT
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TURNAROUND STATUS: \qquad Same Day \qquad 24 hr \qquad 48 hr \qquad 3days
\qquad 5days \qquad Standard \qquad No Rush Charge

December 11, 2005
Alta Project I.D.: 26993
Ms. Michele Chambertin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Chambertin,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on November 30, 2005 under your Project Name "IOJ1232". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

An " A " qualifier indicates that the result is greater than the low point in the calibration curve, but lower than the EPA Method 1613 Minimum Level.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maser Director of HRMS Services

Section I: Sample Inventory Report

Date Received: $\quad 11 / 30 / 2005$

Alta Lab. ID
26993-001

Client Sample 1D
1OJ1232-01

SECTION II

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.
$\mathrm{H} \quad$ The signal-to-noise ratio is greater than 10:1.

1 Chemical interference

J
The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Acerediting Authority	Certificate Nuphber
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	$05-013-0$
State of Arkansas, DOH	Reciprocity through CA
State of California - NELAP Primary AA	02102 CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
Statc of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of PennsyIvania	$68-00490$
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	9169330940
State of Utah	00013
Commonwealth of Virginia	Washington

SUBCONTRACT ORDER - PROJECT \# IOJ1232

SENDING LAHORATORY: Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Harper	RECEIVING LABORATORY: Alta Analytical - SUB 1104 Windfield Way El Dorado Hills, CA 95762 Phone: (916) 933-1640 Fax: (916) 673-0106
Standard TAT is requested unless specific due date is requested \Rightarrow Due Date:_______ Initials:	
Analysis Expiration	Comments
Sample T: 10J1232-01 Water - Sampled: 10/18/05 12:21	Instant Nofication
1613-Dioxin-HR-Alta 10/25/05 12:21	Ifiags, 17 congeners, no TEQ,ugh, sub=Alta
Level 4 + EDD-OUT 11/15/05 12:21	Excel EDD email to pm, laclude Std logs for Lvi IV
Containars Supplied:	
1 L Amber w/HCl (10J1232-01F)	

SAMPLE NTIEGRIX:

SAMPLE LOG-IN CHECKLIST

Alta Project \#: 26993

Preservation Info		COL	Sample Container	None
Shipping Container	Alta	Client	Retain	Return
Dispose				

APPENDIX G

Section 26

Outfall 010, October 18, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALDDATION REPORT

NPDES Monitoring Program

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUPS: IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager. P. Costa
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 5
Reviewer: E. Wessling
Date of Review: December 12, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 160.2, 300.0, and 413.1, Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorgantc Data Review (2194). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " R " data qualifior and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: NPDES Monitoring SDGNa.: Multiple

Table 1. Sample identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 003	IOI1231-01	Water	General Minerals
Outfall 010	IOI1232-01	Water	General Minerals
Outfall 006	IOI1180-01	Water	General Minerals
Outfall 007	IOI1184-01	Water	General Minerals
Outfall 009	IOJ1186-01	Water	General Minerals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and all analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times for all analyses were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

Target compounds were not detected in the associated method blanks. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on samples in association with these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for analyses without an MS/MSD. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furmace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIEICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as "J" values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No fiurther qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

MWIH-Pasadean/Bocing 300 North Lake Avenue, Sure 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: 1011232

Sampled: 10/18/05
Received: 10118/05

INORGANIC

Del Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Pace - Minneapolis
Reviewer E. Wessling
Analysis/Method Dioxins/Furans by Method 1613B

ACTION THEMS:

Package ID T711DF50
Task Order 313150010 SDG No. Multiple
No. of Analyses 8

Case Narrative
Deficiencies
2. Out of Seope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysia

Protocol, cg,
Holding Times
GCMS Tume/nst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance.
Compound Identification
Quantitation
System Peffarmance COMMENIS'

[^27]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: IOJ1181, IOJ1176, IOJ1186, IOJ1180, IOJ1184, IOJ1177, IOJ1232, 1OJ1231

Prepared by
AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: November 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R^{\prime} data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DITA VALIDATYONREPORT	Project: SDG No: Analyme:	nfies Mulkipla DF

Table 1. Sample Identification

Client ID	Laboratory \mathbf{D} (DelMar)	Laboratory ID (Pace)	Matrix	COC Method
Outfall 008	$1011181-01$	1021758001	water	1613
Outfall 005	$101176-01$	1021760001	water	1613
Outfall 009	IOI1186-01	1021761001	water	1613
Outfall 006	1011180-01	1021763001	water	1613
Outfall 007	IOS1184-01	1021765001	water	1613
Outfall 004	$1011177-01$	1021766001	water	1613
Outfill 010	$1011232-01$	1021908001	water	1613
Outfall 003	1011231-01	1021910001	water	1613

	Project: SDC Na:	NPDES Mulliphe
DATA VALIDITIONREPORT	Analyiar	DF

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handing, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Pace for dioxin/firan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the case narrative and laboratory login sheet, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Pace had no custody seals present for samples IOI1232-01 and 10I1231-01. All other samples had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Folding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Cohumn Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last efuting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC colurm performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $10 / 22 / 05$ for instrument F. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (Blank 8223) was extracted and analyzed with the samples in this SDG. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDD}$ and OCDF were reported in method blank 8223 at concentrations of 0.0000041 and $0.0000068 \mathrm{ug} / \mathrm{L}$, respectively. An interference with OCDD was also reported in method blank 8223. Any detects for these target compounds \leq five times the concentration reported in the method blank were qualified as estimated, "UJ," in the site samples of this SDG. Detects for total dioxin and furan isomers at concentrations \leq five timess the concentration reported in the method blank were qualified as estimated, "UJ," in the associated saruples. In instances where the total concentration included peaks not present in the method blank as well as the method blank contamination, the total concentration was considered estimated, " $\mathrm{J}_{2}{ }^{n}$ as a portion of the total concentration was considered blank contamination. There were no other target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (LCS/LCSD 8224/8225) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

	Project: SDGMa.:	NPDES Multaiple
DATA DILIDATHONREPORT	Amalysis	DF

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND DENIIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications wero verified from the raw data and no false negatives or positives were noted. However, the laboratory was experiencing sporadic cross-contamination problems which they attributed to incomplete glassware cleaning procedures. Two samples, Outfall 009 and outfall 010, exhibited atypical target compound detects. These samples were rejected in favor of a reanalysis at another laboratory that was not experiencing contamination problems. This was done to ensure the target compound detects were representative of site conditions and not laboratory cross-contamination. No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

This repart shall not be raprocurad, axcapt in futi whoul the witan consent of Pace Aralytical Sarvices, inc.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: METALS

SAMPLE DELIVERY GROUPS IOJ1231, IOJ1232, IOJ1180, IOJ1184, IOJ1186

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

	Project:
DATA VALDES Monitoring	
DATION REPORT	SDGNo:
Multiple	

1. INTRODUCTION

Task Order Title: NPDES Monitoring Program Contrat Task Order \#: 313150010
SDG\#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 3
Reviewer: E. Wessling
Date of Review. December 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 2), USEPA Methods 200.8 for ICPMS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R"data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES Monitoring
	SDG No.:	Multiple
DATA VALDATION REPORT	Analysis:	METALS

Table 1. Sample identification

Clienilm	Laboratory D	Matrix	COC Method
Outfall 003	IOI1231-01	Water	$200.8 / 245.1$
Outfall 010	IOI1232-01	Water	$200.8 / 245.1$
Outfall 006	IOI1180-01	Water	$200.8 / 245.1$
Outfall 007	IOI1184-01	Water	$200.8 / 245.1$
Outfall 009	10I1186-01	Water	$200.8 / 245.1$

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 -days for mercury. No qualifications were required.

2.2 1CP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required for ICP-MS tuning.

2.3 CALIBRATION

The ICV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The laboratory analyzed reporting limit check standards in association with this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were significantly below the sample detects so as not to result in qualification of the data with the exception of cadmium in the method blank. Cadmium was qualified as a nondetect, "U," in the sample from Outfall 006. No further qualifications were required.

	Project:	NPDES Monitaring
	SDGNo.:	Multiple
DATA VALIDATION REPORT	Aralyeis:	METALS

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP/MS analyses. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples and mercury LCS samples as reported on the LCS on the summary forms and in the raw data were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed on samples in these SDGs. No qualification was required.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed on samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for all analyses. No qualification was required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS intermal standards were within established control limits. No qualifications were required.

	Project: DPDES Monitoring DATA VALMAATION REPORT
SDGNo.:	Multiple

of the original analysis. Results reported by the laboratory between the MDL and reporting limit were qualified as. "J" values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No firther qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

MWHE-Pusadena/Boeing
300 North Lake Avenue, Suite 1200
Pessadens, CA 91101
Attention: Bronwyn Kelly

Project D: Routine Outfall 010

Project D: Routine Cutin 010	
Report Number: 10 n1233	Sampled: $10 / 18 / 05$

METALS
MDL Reporting Sample Dilution Date Data Data

Level IV Validated
Deal Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUPS: IOJ1186, IOJ1232, IOK0899, IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by

AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Titte: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#. Multiple
Project Manager: P. Costa
Matrix Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDG Na:	NPDES Mulitiple
DITA VALMdTYONREPORT	Analy	DF

Table 1. Sample Identification

Client ID	Laboratory ID (Det Man)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 009	$1011232-01$	26994-001	water	1613
Outall 010	10n1186-01	26993-001	water	1613
Outfall 018	10K0899-01	27025-001	water	1613
Outall 003	10K0900-01	27026-001	water	1613
Outall 004	1OK0901-01	27027-001	water	1613
Outfall 005	IOK0902-01	27028-001	water	1613
Outfall 006	10K0903-01	27029-001	water	1613
Outfall 009	10K0904-01	27030-001	water	1613

	Projeat: SDONa:	NPDES Multiple
DATA VALIDATHONREPORT		

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ}$ C. The samples were shipped to Alta for dioxin/furan analysis and were recaived within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ or slightly below for some of the samples. As none of the samples was noted to be damaged or frozen, no qualifications were required. According to the case narratives and laboratory login sheets, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in these SDGs. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Afta had no custody seals. The EPA Ds were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last cluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project: SDGNa:	NPDES Muliiple
DAXA VALLDATRONREPORT	Analyits	DF

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed $6 / 06 / 2005$. The calibration consisted of six concentration level standards (CS1 through CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by intermal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds. were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-7516-MB001) was extracted and analyzed with the samples in this SDG. No target compounds were detected in the method blank and no qualifications were required. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (OPR 0-7516-OPR001) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MSMSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

		NPDES Multiple
DATA VALIDATTON REPORT	Anlyit:	DF

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted with the exception of a false positive in Outfall 005 for $1,2,3,4,7,8-\mathrm{HxCDD}$. The sample was a nondetect Confirmation for $2,3,7,8-T C D F$ detected in samples Outfall 004, Outfall 005, and Outfall 006 was not performed; therefore, $2,3,7,8$-TCDF was qualified as estimated, "J." No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, " J ," by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No farther qualifications were required.

APPENDIX G

Section 27

Outfall 018, November 09, 2005
Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Quarterly Outfall 018

Sampled: 11/09/05
Received: 11/09/05
Issued: 01/20/06 17:22

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOK0899-01
IOK0899-02

CLIENT ID

Outfall 018
Trip Blank

MATRIX
Water
Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Chambertin
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018
Sampled: 11/09/05
Report Number: IOK0899 Received: 11/09/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed
Sample ID: 1OK0899-01 (Outfall 018 - Water)								
Reporting Units: ug/								
Benzene	EPA 624	5K18005	0.28	2.0	ND	1	11/18/05	11/18/05
Trichlorotrifluoroethane (Freon 113)	EPA 624	5K18005	1.2	5.0	ND	1	11/18/05	11/18/05
Carbon tetrachloride	EPA 624	5K18005	0.28	5.0	ND	1	11/18/05	11/18/05
Chloroform	EPA 624	5K18005	0.33	2.0	ND	1	11/18/05	11/18/05
1,1-Dichloroethane	EPA 624	5K18005	0.27	2.0	ND	1	11/18/05	11/18/05
1,2-Dichloroethane	EPA 624	5K18005	0.28	2.0	ND	1	11/18/05	11/18/05
1,1-Dichloroethene	EPA 624	5K18005	0.42	3.0	ND	1	11/18/05	11/18/05
Ethylbenzene	EPA 624	5K18005	0.25	2.0	ND	1	11/18/05	11/18/05
Tetrachloroethene	EPA 624	5K18005	0.32	2.0	ND	1	11/18/05	11/18/05
Toluene	EPA 624	5K18005	0.36	2.0	ND	1	11/18/05	11/18/05
1,1,1-Trichloroethane	EPA 624	5K18005	0.30	2.0	ND	1	11/18/05	11/18/05
1,1,2-Trichloroethane	EPA 624	5K18005	0.30	2.0	ND	1	11/18/05	11/18/05
Trichloroethene	EPA 624	5K18005	0.26	5.0	ND	1	11/18/05	11/18/05
Trichlorofluoromethane	EPA 624	5K18005	0.34	5.0	ND	1	11/18/05	11/18/05
Vinyl chloride	EPA 624	5K18005	0.26	5.0	ND	1	11/18/05	11/18/05
Xylenes, Total	EPA 624	5K18005	0.52	4.0	ND	1	11/18/05	11/18/05
Surrogate: Dibromofluoromethane (80-120\%)					107%			
Surrogate: Toluene-d8 (80-120\%)					106%			
Surrogate, 4-Bromofluorobenzene ($80-120 \%$).					98\%			
Sample ID: IOK0899-02 (Trip Blank - Water)								
Reporting Units: ug/								
Benzene	EPA 624	5K22008	0.28	2.0	ND	1	11/22/05	11/22/05
Trichlorotrifluoroethane (Freon 113)	EPA 624	5K22008	1.2	5.0	ND	1	11/22/05	11/22/05
Carbon tetrachloride	EPA 624	5K22008	0.28	5.0	ND	1	11/22/05	11/22/05
Chloroform	EPA 624	5K22008	0.33	2.0	ND	1	11/22/05	11/22/05
1,1-Dichloroethane	EPA 624	5K22008	0.27	2.0	ND	1	11/22/05	11/22/05
1,2-Dichloroethane	EPA 624	5K22008	0.28	2.0	ND	1	11/22/05	11/22/05
1,1-Dichloroethene	EPA 624	5K22008	0.42	3.0	ND	1	11/22/05	11/22/05
Ethylbenzene	EPA 624	5K22008	0.25	2.0	ND	1	11/22/05	11/22/05
Tetrachloroethene	EPA 624	5K22008	0.32	2.0	ND	1	11/22/05	11/22/05
Toluene	EPA 624	5K22008	0.36	2.0	ND	1	11/22/05	11/22/05
1,1,1-Trichloroethane	EPA 624	5K22008	0.30	2.0	ND	1	11/22/05	11/22/05
1,1,2-Trichloroethane	EPA 624	5K22008	0.30	2.0	ND	1	11/22/05	11/22/05
Trichloroethene	EPA 624	5K22008	0.26	5.0	ND	1	11/22/05	11/22/05
Trichlorofluoromethane	EPA 624	5K22008	0.34	5.0	ND	1	11/22/05	11/22/05
Vinyl chloride	EPA 624	5K22008	0.26	5.0	ND	1	11/22/05	11/22/05
Xylenes, Total	EPA 624	5K22008	0.52	4.0	ND	1	11/22/05	11/22/05
Surrogate: Dibromofluoromethane (80-120\%)					102\%			
Surrogate: Toluene-d8 (80-120\%)					104\%			
Surrogate: 4-Bromofluorobenzene (80-120\%)					95%			

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018
300 North Lake Avenue, Suite 1200	
Pasadena, CA 91101	Report Number: 10 K0899

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10K0899-01 (Outfall 018 - Water)									
Reporting Units: ugh									
Bis(2-ethylhexyl)phthalate	EPA 625	5K11061	1.1	4.8	1.8	0.962	11/11/05	11/15/05	B, J
2,4-Dinitrotoluene	EPA 625	5K11061	0.22	8.7	ND	0.962	11/11/05	11/15/05	
N -Nitrosodimethylamine	EPA 625	5K11061	0.21	7.7	ND	0.962	11/11/05	11/15/05	
Pentachlorophenol	EPA 625	5K11061	0.75	7.7	ND	0.962	11/11/05	11/15/05	
2,4,6-Trichlorophenol	EPA 625	5K11061	0.096	5.8	ND	0.962	11/11/05	11/15/05	
Surrogate: 2-Fluorophenol (30-120\%)					55%				
Surrogate: Phenol-d6 (35-120\%)					67\%				
Surrogate: 2,4,6-Tribromophenol (45-120\%)					65\%				
Surrogate: Nitrobenzene-d5 (45-120\%)					73%				
Surrogate: 2-Fluorobiphenyl (45-120\%)					87%				
Surrogate: Terphenyl-d14 (45-120\%)					87\%				

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

9484 Chespeake Dr., Stute 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505.96.89 9830 South 51 st St, Sutite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0857 2520 E. Sunset Rd. : $\mathbf{= 1}$, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200 Report Number: $10 K 0899$ Sampled: 11/09/05 Pasadena, CA 91101 Received: $11 / 09 / 05$ Attention: Bronwyn Kelly		

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOK0899-01 (Outfall 018 - Water) - cont.									
Reporting Units: ug 1 alpha-BHC	EPA 608	5K11059	0.00096	0.0096	ND	0.962	11/11/05	11/12/05	
Surrogate: Decachlorobiphenyl (45-120\%)					69\%				
Surrogate: Tetrachloro-m-xylene (35-115\%)					75%				

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200	Report Number: $10 K 0899$	Sampled: $11 / 09 / 05$
Pasadena, CA 91101		Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOK0899-01 (Outfall 018 - Water) - cont.									
Reporting Units: ugh									
Copper	EPA 200.8	5K16096	0.49	2.0	1.5	1	11/16/05	11/16/05	B, J
Lead	EPA 200.8	5K16096	0.13	1.0	0.21	1	11/16/05	11/16/05	B, J
Mercury	EPA 245.1	5K17098	0.050	0.20	ND	1	11/17/05	11/17/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: Quarterly Outfall 018

Report Number: $10 K 0899$ | Sampled: $11 / 09 / 05$ |
| ---: |
| Received: 11/09/05 |

Received: 11/09/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OK0899-01 (Outfall 018 - Water) - cont.									
Reporting Units: mg/									
Ammonia-N (Distilled)	EPA 350.2	5K11084	0.30	0.50	ND	1	11/11/05	11/11/05	
Biochemical Oxygen Demand	EPA 405.1	5K10068	0.59	2.0	2.4	1	11/10/05	11/15/05	
Chloride	EPA 300.0	5K09130	1.3	2.5	36	5	11/09/05	11/10/05	
Nitrate/Nitrite-N	EPA 300.0	5K09130	0.080	0.15	ND	1	11/09/05	11/10/05	
Oil \& Grease	EPA 413.1	5K14056	0.90	4.8	ND	1	11/14/05	11/14/05	
Sulfate	EPA 300.0	5K09130	0.90	2.5	89	5	11/09/05	11/10/05	
Surfactants (MBAS)	EPA 425.1	5K10122	0.044	0.10	0.089	1	11/10/05	11/10/05	J
Total Dissolved Solids	EPA 160.1	5K16116	10	10	420	1	11/16/05	11/16/05	
Total Suspended Solids	EPA 160.2	5K10088	10	10	ND	1	11/10/05	11/10/05	
Sample ID: 1OK0899-01 (Outfall 018 - Water)									
Reporting Units: m//hr									
Total Settleable Solids	EPA 160.5	5K10069	0.10	0.10	ND	1	11/10/05	11/10/05	
Sample ID: IOK0899-01 (Outfall 018 - Water)									
Reporting Units: NTU									
Turbidity	EPA 180.1	5K10086	0.040	1.0	3.6	1	11/10/05	11/10/05	
Sample 1D: 1OK0899-01 (Outfall 018 - Water)									
Reporting Units: ug/									
Total Cyanide	EPA 335.2	5K11094	2.2	5.0	ND	1	11/11/05	11/11/05	
Perchlorate	EPA 314.0	5K10063	0.80	4.0	ND	1	11/10/05	11/10/05	
Sample ID: IOK0899-01 (Outfall 018 - Water)									
Reporting Units: umhos/cm									
Specific Conductance	EPA 120.1	5K30112	1.0	1.0	640	1	11/30/05	11/30/05	

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Derian Ave, Suite 100, Ivine, CA 92614 \{949) 261-1022 FAX (949) 260-329) 1014 E . Cooley Dr., Suite A, Cofton, CA 92324 (909) 370-4667 FAX 909) 3701046 9484 Chesapeake Dr., Suite 805, San Diego، CA 92123 (858) 505 -8596 FAX (858) 505 -9689

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018

Report Number. $10 K 0899 \ldots$| Sampled: 11/09/05 |
| ---: |
| Received. $11 / 09 / 05$ |

Received: 11/09/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 018 (IOK0899-01)- Water			$11 / 09 / 200511: 46$	$11 / 09 / 200518: 00$	$11 / 10 / 200509: 18$
EPA 160.5	2	2	$11 / 09 / 200511: 46$	$11 / 09 / 200518: 00$	$11 / 10 / 200511: 00$
EPA 180.1	2	$11 / 09 / 200511: 46$	$11 / 09 / 200518: 00$	$11 / 09 / 200523: 30$	$11 / 10 / 200511: 20$
EPA 300.0	2	$11 / 09 / 200511: 46$	$11 / 09 / 200518: 00$	$11 / 10 / 200511: 00$	$11 / 15 / 200511: 30$
EPA 405.1	2	$11 / 09 / 200511: 46$	$11 / 09 / 200518: 00$	$11 / 10 / 200517: 00$	$11 / 10 / 200519: 06$
EPA 425.1					

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018
Report Number: $10 K 0899$ Received: 11/09/05

METHOD BLANKIOCDATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Result

Batch: 5K18005 Extracted: 11/18/05

Blank Analyzed: 11/18/2005 (5K18005-BLK1)

Benzene	ND
Trichlorotrifluoroethane (Freon 113)	ND
Carbon tetrachloride	ND
Chloroform	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane	ND
1,1-Dichloroethene	ND
Ethylbenzene	ND
Tetrachloroethene	ND
Toluene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl chloride	ND
Xylenes, Total	ND
Surrogate: Dibromofluoromethane	25.7
Surrogate: Toluene-d8	25.9
Surrogate: 4 -Bromofluorobenzene	24.1

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

LCS Analyzed: 11/18/2005 (5K18005-BS1)

Benzene	22.4
Carbon tetrachloride	26.3
Chloroform	23.5
1,1-Dichloroethane	21.0
1,2-Dichloroethane	24.0
1,1-Dichloroethene	23.3
Ethylbenzene	23.9
Tetrachloroethene	24.1
Toluene	22.6
1,1,1-Trichloroethane	23.6
1,1,2-Trichloroethane	24.2
Trichloroethene	23.0
Trichlorofluoromethane	24.5
Vinyl chloride	21.3
Surrogate: Dibromofluoromethane	25.6

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018

Report Number: IOK0899

Received: 11/09/05

METHOD BLANKOC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5K18005 Extracted: 11/18/05
LCS Analyzed: 11/18/2005 (5K18005-BS1)

Surrogate: Toluene-d8	26.3
Surrogate: 4 -Bromofluorobenzene	27.0

Matrix Spike Analyzed: 11/18/2005 (5K18005-MS1)

Benzene	22.3
Carbon tetrachloride	26.5
Chloroform	23.4
1,1-Dichloroethane	20.8
1,2-Dichloroethane	23.3
1,1-Dichloroethene	21.9
Ethylbenzene	23.0
Tetrachloroethene	22.8
Toluene	22.7
1,1,1-Trichloroethane	23.9
1,1,2-Trichloroethane	21.9
Trichloroethene	22.7
Trichlorafluoromethane	24.6
Vinyl chloride	21.1
Surrogate: Dibromofluoromethane	25.5
Surrogate: Toluene-d8	26.4
Surrogate: 4-Bromofluorobenzene	26.2

Matrix Spike Dup Analyzed: 11/18/2005 (5K18005-MSD1)

Benzene	22.0	2.0	0.28	ugl	25.0	ND	88	60-125	1	20
Carbon tetrachloride	26.0	5.0	0.28	ug/	25.0	ND	104	65-140	2	25
Chloroform	23.5	2.0	0.33	ugh	25.0	ND	94	65-135	0	20
1,1-Dichloroethane	20.8	2.0	0.27	ug/	25.0	ND	83	60-130	0	20
1,2-Dichloroethane	24.7	2.0	0.28	$\mathrm{ug} /$	25.0	ND	99	60-140	6	20
1,1-Dichloroethene	22.9	3.0	0.42	$\mathrm{ug} / 1$	25.0	ND	92	60-135	4	20
Ethylbenzene	23.3	2.0	0.25	ug/l	25.0	ND	93	$65+130$	1	20
Tetrachloroethene	24.0	2.0	0.32	ugl	25.0	ND	96	60-130	5	20
Toluene	22.5	2.0	0.36	ug/l	25.0	ND	90	65-125	1	20
1,1,1-Trichloroethane	23.4	2.0	0.30	ug/l	25.0	ND	94	65-140	2	20
1,1,2-Trichloroethane	24.8	2.0	0.30	ug/l	25.0	ND	99	60-130	12	25
Trichloroethene	22.6	5.0	0.26	ug/l	25.0	ND	90	60-125	0	20
Trichlorofluoromethane	24.1	5.0	0.34	ug/	25.0	ND	96	55-145	2	25

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

Project ID: Quarterly Outfall 018	
Report Number: $10 \mathrm{K0899}$	Sampled: Received:

METHOD BLANKIC DATA

PURGEABLES BY GC/MS (EPA 624)

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Quarterly Outfall 018
Report Number: IOK0899	
METMOD BLANKIOC BATA:	

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5K18005 Extracted: 11/18/05

Matrix Spike Dup Analyzed: 11/18/2005 (5K18005-MSD1)			Source: 10K1167-10							
Vinyl chloride	20.9	5.0	0.26	ugl	25.0	ND	84	40-135	1	30
Surrogate: Dibromofluoromethane	26.3			ug/l	25.0		105	80-120		
Surrogate: Toluene-d8	26.7			ug/t	25.0		107	80-120		
Surrogate: 4-Bromofluorobenzene	27.3			ug/l	25.0		109	80-120		

Batch: 5K22008 Extracted: 11/22/05
Blank Analyzed: 11/22/2005 (5K22008-BLK1)

Benzene	ND
Trichlorotrifluoroethane (Freon 113)	ND
Carbon tetrachloride	ND
Chloroform	ND
1,1 -Dichloroethane	ND
1,2 -Dichloroethane	ND
1,1 -Dichloroethene	ND
Ethylbenzene	ND
Tetrachloroethene	ND
Toluene	ND
$1,1,1-T \mathrm{Tichloroethane}$	ND
$1,1,2$-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl chloride	ND
Xylenes, Total	ND
Surrogate: Dibromofluoromethane	26.0
Surrogate: Toluene-d8	24.0
Surrogate: 4 -Bromofluorobenzene	23.2

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager 9484 Chesapeake Dr., Sutte 805, San Diego, CA 92123 (858) 505-8596 FAX (858) $505-9689$ 9830 South 51st St., Suite 8-120, Pkoenix, AZ 85044 (480] 795-0043 fAX (480) 785-0851 2520 E. Sunset Rd. \#3, tas Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Project ID: Quarterly Outfall 018
Report Number: IOK0899
Sampled: 11/09/05
Received: 11/09/05

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200		Sampled: 11/09/05
Pasadena, CA 91101	Report Number: 10 K 0899	Received: 11/09/05
Attention: Bronwyn Kelly		

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5K22008 Extracted: 11/22/05
LCS Analyzed: 11/22/2005 (5K22008-BS1)

Benzene	24.5
Carbon tetrachloride	28.3
Chloroform	25.5
1,1-Dichloroethane	22.8
1,2-Dichloroethane	26.0
1,1-Dichloroethene	25.5
Ethylbenzene	26.2
Tetrachloroethene	26.6
Toluene	25.0
1,1,1-Trichloroethane	25.4
1,1,2-Trichloroethane	26.7
Trichloroethene	25.9
Trichlorofluoromethane	26.2
Vinyl chloride	22.7
Surrogate: Dibromofluoromethane	24.9
Surrogate: Toluene-d8	26.6
Surrogate: 4 -Bromafluorobenzene	26.4

Matrix Spike Analyzed: 11/22/2005 (5K22008-MS1)

2.0	0.28	ug/	25.0	98	65-120	
5.0	0.28	ug/	25.0	113	65-140	
2.0	0.33	ug/l	25.0	102	65-130	M-3
2.0	0.27	ug/l	25.0	91	65-130	
2.0	0.28	ug/l	25.0	104	60-140	
3.0	0.42	ug/	25.0	102	70-130	
2.0	0.25	ug/	25.0	105	70-125	M-3
2.0	0.32	ug/	25.0	106	65-125	
2.0	0.36	ugh	25.0	100	70-125	
2.0	0.30	ug/l	25.0	102	65-135	
2.0	0.30	ug/	25.0	107	65-125	
5.0	0.26	ug/l	25.0	104	70-125	M-3
5.0	0.34	ug/l	25.0	105	60-140	
5.0	0.26	ug/	25.0	91	50-130	
		$u g / l$	25.0	100	80-120	
		$u g / 1$	25.0	106	$80-120$	
		$u g / l$	25.0	106	80-120	

Benzene	30.8
Carbon tetrachloride	33.1
1,1-Dichloroethane	24.6
1,2-Dichloroethane	28.7
1,1-Dichloroethene	28.1
Tetrachloroethene	30.6
Toluene	27.7
1,1,1-Trichloroethane	26.7
1,1,2-Trichloroethane	30.0
Trichlorofluoromethane	130
Vinyl chloride	24.9
Surrogate: Dibromofluoromethane	25.1
Surrogate: Toluene-d8	26.5
Surrogate: 4 -Bromofluorobenzene	27.9

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

3461 Derian Ave., Suite 100, trine, CA 92614 (949) 20141022 FAX (949) 260-3207 1014 € Cooley Dr., Sutute A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200		Sampled: $11 / 09 / 05$
Pasadena, CA.91101	Report Number: $10 K 0899$	Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METIOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

| | | Reporting | | | Spike | Seurce | \%REC | | RPD | Data | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5K22008 Extracted: 11/22/05

Matrix Spike Dup Analyzed: 1	220					: 10	25-02				
Benzene	28.8	2.0	0.28	ugl	25.0	3.4	102	60-125	7	20	
Carbon tetrachloride	30.2	5.0	0.28	ug/	25.0	2.0	113	65-140	9	25	
1,1-Dichloroethane	23.5	2.0	0.27	ugl	25.0	ND	94	60-130	5	20	
1,2-Dichloroethane	26.2	2.0	0.28	ugl	25.0	0.55	103	60-140	9	20	
1,1-Dichloroethene	26.8	3.0	0.42	ugh	25.0	0.55	105	60-135	5	20	
Tetrachloroethene	28.6	2.0	0.32	ug/	25.0	1.0	110	60-130	7	20	
Toluene	26.3	2.0	0.36	ugl	25.0	0.57	103	65-125	5	20	
1,1,1-Trichloroethane	24.6	2.0	0.30	$\mathrm{ug} / 1$	25.0	ND	98	65-140	8	20	
1,1,2-Trichloroethane	28.2	2.0	0.30	ug/l	25.0	ND	113	60-130	6	25	
Trichlorofluoromethane	119	5.0	0.34	ug/l	25.0	110	36	55-145	9	25	M-HA
Vinyl chloride	23.4	5.0	0.26	ug/	25.0	ND	94	40-135	6	30	
Surrogate: Dibromofluoromethane	24.9			wg/l	25.0		100	80-120			
Surrogate Toluene-d8	26.2			ug/t	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	27.0			ug/	25.0		108	80-120			

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200		Sampled: 11/09/05
Pasadena, CA 91101	Report Number: IOK0899	Received: 11/09/05
Attention: Bronwyn Kelly		

METHOD BLAANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5K11061 Extracted: 11/11/05											
Blank Analyzed: 11/14/2005 (5K11061-BLK1)											
Bis(2-ethylhexyl)phthalate	1.82	5.0	1.1	ug/l							J
2,4-Dinitrotoluene	ND	9.0	0.23	ug/l							
N -Nitrosodimethylamine	ND	8.0	0.22	ug/1							
Pentachlorophenol	ND	8.0	0.78	ug/							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug / l							
Surrogate: 2-Fhuorophenol	12.7			$u g / l$	20.0		64	30-120			
Surrogate: Phenol-d6	14.4			$u g / l$	20.0		72	35-120			
Surrogate: 2,4,6-Tribromophenol	12.7			$u g / l$	20.0		64	$45-120$			
Surrogate: Nitrobenzene-d5	7.86			ug/l	10.0		79	45-120			
Surrogate: 2-Fluorobiphenyl	9.62			$u g / l$	10.0		96	45-120			
Surrogate: Terphenyl-d14	9.18			$u g / l$	10.0		92	45-120			
LCS Analyzed: 11/14/2005 (5)											M-NR1
Bis(2-ethylhexyl)phthalate	11.1	5.0	1.1	ug/l	10.0		111	60-130			
2,4-Dinitrotoluene	8.60	9.0	0.23	ug/l	10.0		86	60-120			J
N -Nitrosodimethylamine	7.48	8.0	0.22	ug/l	10.0		75	40-120			J
Pentachlorophenol	9.22	8.0	0.78	ug/l	10.0		92	50-120			
2,4,6-Trichlorophenol	8.32	6.0	0.10	ug/l	10.0		83	60-120			
Surrogate: 2-Fluorophenol	13.9			$u g / 1$	20.0		70	30-120			
Surrogate: Phenol-d6	15.1			$u g / 1$	20.0		76	35-120			
Surrogate: 2,4,6-Tribromophenol	15.8			$u g / l$	20.0		79	45-120			
Surrogate: Nitrobenzene-d5	7.42			ug/	10.0		74	45-120			
Surrogate: 2-Fluorobiphenyl	7.64			ug/	10.0		76	45-120			
Surrogate: Terphenyl-dl4	9.26			$u g / 2$	10.0		93	45-120			
LCS Dup Analyzed: 11/14/2005 (5K11061-BSD1)											
Bis(2-ethylhexyl)phthalate	9.74	5.0	1.1	ug/	10.0		97	60-130	13	20	
2,4-Dinitrotoluene	7.72	9.0	0.23	ugl	10.0		77	60-120	11	20	J
N-Nitrosodimethylamine	6.92	8.0	0.22	ug/	10.0		69	40-120	8	20	J
Pentachlorophenol	8.28	8.0	0.78	ug/	10.0		83	50-120	11	25	
2,4,6-Trichlorophenol	8.24	6.0	0.10	ug/	10.0		82	60-120	1	20	
Surrogate: 2-Fluorophenol	13.7			ug/l	20.0		68	30-120			
Surrogate: Phenol-d6	14.0			$u \mathrm{~g} / 1$	20.0		70	35-120			
Surrogate: 2,4,6-Tribromophenol	14.9			ug/	20.0		74	45-120			
Surrogate: Nitrobenzene-d5	6.74			ug/l	10.0		67	45-120			
Surrogate: 2-Fhuorobiphenyl	7.44			$u \mathrm{~g} / \mathrm{l}$	10.0		74	45-120			

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200		Sampled: 11/09/05
Pasadena, CA 91101	Report Number: IOK0899	Received: 11/09/05
Attention: Bronwyn Kelly		

METIIOD BLANKIOC DAIA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Result

| Reporting | | | Spike | Source | \%REC | | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Limit | MDL | Units | Level Result \%REC Limits RPD Limit | Qualifiers | | | | |

Batch: 5K11061 Extracted: 11/11/05

LCS Dup Analyzed: 11/14/2005 (5K11061-BSD1)
Surrogate: Terphenyl-d14 8.00
$\begin{array}{llll}u g / 1 & 10.0 & 80 & 45-120\end{array}$

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92674 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Cotton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 Souh 51st St, Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200	Report Number: $10 K 0899$	Sampled: $11 / 09 / 05$
Pasadena, CA 91101		
Attention: Bronwyn Kelly		

METHOD BLANKIOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5K11059 Extracted: 11/11/05											
Blank Analyzed: 11/11/2005 (5K11059-BLK1)											
alpha-BHC	ND	0.010	0.0010	ug/							
Surrogate: Decachlorobiphenyl	0.376			$u g /$	0.500		75	45-120			
Surrogate: Tetrachloro-m-xylene	0.251			ug/l	0.500		50	35-115			
LCS Analyzed; 11/11/2005 (5)											M-NR1
alpha-BHC	0.447	0.010	0.0010	ug/l	0.500		89	45-120			
Surrogate: Decachlorobiphenyl	0.403			$u g / l$	0.500		81	45-120			
Surrogate: Tetrachloro-m-xylene	0.400			$u \mathrm{~g} / \mathrm{l}$	0.500		80	35-115			
LCS Dup Analyzed: 11/11/2005 (5K11059-BSD1)											
alpha-BHC	0.438	0.010	0.0010	ug / l	0.500		88	45-120	2	30	
Surrogate: Decachlorobiphenyl	0.352			ug/	0.500		70	45-120			
Surrogate. Tetrachloro-m-xylene	0.392			$u g / 1$	0.500		78	35-115			

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

17461 Detian Ave., Sutite 100, frine, CA 92614 (949) 261-1022 FAX 1949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX 9009$) 370-1046$ 9484 Chesapeake Dr_{r}, Suite 805, San Diega, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51 st St., Suite E-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 7022 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018
300 North Lake Avenue, Suite 1200	
Pasadena, CA 91101	Report Number: 10 K0899

METHOD BIANKIOC DATA

Batch: 5K17098 Extracted: 11/17/05

Blank Analyzed: 11/17/2005 (5K17098-BLK1)

Mercury	ND	0.20	0.050	ug / l

LCS Analyzed: 11/17/2005 (5K17098-BS1)

| Mercury | 8.09 | 0.20 | 0.050 | ugl | 8.00 | 101 | $85-115$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager
17461 Derian Ave., Suite 100 trine, CA 92614 (949) 261-1022 FAX (949) 260-3297
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
9484 Chesapeake Dr., Suite 805, San Dieso, CA 92123 (B58) 505-8596 FAX (858) 50S-9689
9830 South 51 st St, Sulte B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Surset led. *3, Las Vegas, NV 89120 (702) 798-3620 FAX 4702) 798-3621

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200	Report Number: $10 K 0899$	Sampled: 11/09/05
Pasadena, CA 91101.		Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKGC DATA

METALS

		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5K17098 Extracted: 11/17/05

Matrix Spike Analyzed: 11/17/2005 (5K17098-MS1)			Source: IOK0827-04							
Mercury	8.44	0.20	0.050	ug/l	8.00	ND	106	70-130		
Matrix Spike Dup Analyzed: 11/17/2005 (5K17098-MSD1)			Source: IOK0827-04							
Mercury	8.29	0.20	0.050	ug/l	8.00	ND	104	70-130	2	20

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Report Number: $10 K 0899$ Sampled: 11/09/05 Attention: Bronwyn Kelly Received: 11/09/05		

METHODBLANKIOC DATA

INORGANICS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5K09130 Extracted: 11/09/05

Blank Analyzed: 11/09/2005 (5K09130-BLK1)

Batch: 5K10063 Extracted: 11/10/05

Blank Analyzed:	$11 / 10 / 2005$	$(5 K 10063-$ BLK1)			
Perchlorate	ND	4.0	0.80	$\mathrm{ug} /$	

LCS Analyzed: 11/10/2005 (5K10063-BS1)

Perchlorate	54.8	4.0	0.80	ugl	50.0	110	$85-115$	
Matrix Spike Analyzed:	11/10/2005 (5K10063-MS1)					Source: $\mathbf{1 O K 0 7 0 1 - 0 4}$		
Perchlorate	63.2	4.0	0.80	ugll	50.0	11	104	$80-120$

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

| MWH-Pasadena/Boeing | Project ID: Quarterly Outfall 018 | |
| :--- | :--- | ---: | :--- |
| 300 North Lake Avenue, Suite 1200 | Report Number: 10 K0899 | Sampled: $11 / 09 / 05$ |
| Pasadena, CA 91101 | | Received: $11 / 09 / 05$ |
| Attention: Bronwy Kelly | | |

METHOD BLANKIQC DATA

INORGANICS

| | | Reporting | | | Spike | Source | | \%REC | | RPD | Data |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5K10063 Extracted: 11/10/05

Batch: 5K10068 Extracted: 11/10/05
Blank Analyzed: 11/15/2005 (5K10068-BLK1)
Biochemical Oxygen Demand ND

LCS Analyzed: 11/15/2005 (5K10068-BS1)

Biochemical Oxygen Demand	206	100	30	mg / l	198	104	85-115		
LCS Dup Analyzed: 11/15/2005 (5K10068-BSD1)									
Biochemical Oxygen Demand	204	100	30	mg / l	198	103	85-115	1	20

Batch: 5K10086. Extracted: 11/10/05

Blank Analyzed: 11/10/2005 (5K10086-BLK1)

Turbidity	ND	1.0	0.040	NTU
Duplicate Analyzed: $\mathbf{1 1 / 1 0 / 2 0 0 5}(\mathbf{5 K 1 0 0 8 6}-$ DUP1)				
Turbidity	0.650	1.0	0.040	NTU

Source: IOK0921-01		
0.62	5	20

Batch: 5K10088 Extracted: 11/10/05

Blank Analyzed: 11/10/2005 (5K10088-BLK1)

Total Suspended Solids
ND
$10 \quad 10 \mathrm{mg} / \mathrm{l}$

Del Mar Analytical, Irvine
Michele Chamberlin
Project Manager

7461 Derian Ave, Suite 100, Ivine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Sute A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200	Report Number: $10 K 0899$	Sampled: $11 / 09 / 05$
Pasadena, CA 91101		Received: $11 / 09 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 018	
300 North Lake Avenue, Suite 1200		Sampled: 11/09/05
Pasadena, CA 91101	Report Number: 10 K 0899	Received: 11/09/05
Attention: Bronwyn Kelly		

METHOD BLANKICC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

Del Mar		17461 Derian Ave., Suite 100, trine, CA 92614 (949) 261-1022 1014 E. Cooley Dr., Suite A, Colion, CA 92324 (909) 370-4667 9484 Chesapeake Di., Suite 805, San Diego, CA 92123 (858) 505 -8596 9830 South 51 st S., Swite 8-120, Phoenix, AZ 85044 (480) 785-0043 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620		FAX (949) 260-3297 FAX (909) 370.1046 FAX (858) $505-9689$ FAX (480) 785-0851 FAX (702) 798-3621
MWH-Pasadena/Boeing	Project ID:			
300 North Lake Avenue, Suite 1200		Sampled:	11/09/05	
Pasadena, CA 91101	Report Number:	Received:	11/09/05	
Attention: Bronwyn Kelly				

MLIHOD BLANKIQCDATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$
Batch: 5K14056 Extracted: 11/14/05										
LCS Dup Analyzed: 11/14/2005 (5K14056-BSD1)										
Oil \& Grease	17.4	5.0	0.94	$\mathrm{mg} / 1$	20.0		87	65-120	2	20

Batch: 5K16116 Extracted: 11/16/05

Blank Analyzed: 11/16/2005 (5K16116-BLK1)
Total Dissolved Solids ND

LCS Analyzed: 11/16/2005 (5K16116-BS1)
Total Dissolved Solids 988

Duplicate Analyzed: 11/16/2005 (5K16116-DUP1)
Total Dissolved Solids 196
Batch: $5 K 21086$ Extracted: $11 / 19 / 05$

Blank Analyzed: 11/19/2005 (5K21086-BLK1)
Total Dissolved Solids ND
LCS Analyzed: 11/19/2005 (5K21086-BS1)
Total Dissolved Solids 1010
$10 \quad 10$
Duplicate Analyzed: 11/19/2005 (5K21086-DUP1)
Total Dissolved Solids 380
80
$10 \quad 10 \quad \mathrm{mg} /$
Source: 1OK0899-01

Batch: 5K30112 Extracted: 11/30/05

Duplicate Analyzed: 11/30/2005 (5K30112-DUP1)
Specific Conductance
641
1.0
1.0 umhos/cm

Source: IOK0899-01
640
5

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018
Report Number: $10 \mathrm{~K} 0899 \quad$ Received: $11 / 09 / 05$

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-HA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

[^28]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018
Report Number: IOK0899 . . Received: 11/09/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 120.1	Water	X	X
EPA 160.1	Water	X	X
EPA 160.2	Water	X	X
EPA 160.5	Water	X	X
EPA 180.1	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	N / A	X
EPA 335.2	Water	X	X
EPA 350.2	Water		X
EPA 405.1	Water	X	X
EPA 413.1	Water	X	X
EPA 425.1	Water	X	X
EPA 608	Water	X	X
EPA 624.	Water	X	X
EPA 625	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert \#02IO2CA, California Cert \#1640, Nevada Cert \#CA-413
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOK0899-01
Analysis Performed: EDD + Level 4
Samples: 1OK0899-01

Del Mar Analytical, Irvine

Michele Chamberlin
Project Manager

December 10, 2005

Alta Project I.D.: 27025

Ms. Michele Chambertin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Chambertin,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on December 08, 2005 under your Project Name "IOK0899". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maser

Director of HRMS Services

Section I: Sample Inventory Report

Date Received: 12/8/2005

Alta Lab. ID
27025-001

Client Sample 1D
IOK0899-01

SECTION II

[^29]

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.
1 Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Uniess otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority ${ }^{\text {V }}$,	Certifgte Vimber
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California - NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER - PROJECT \# IOK0899

	WC Mel'd via email Bettrond-Beneakit $101 / 15$					
Released By	Date	Time	Received By	Date	Time	
$\overline{\text { Released By }}$	Date	Time	Received By	Date	Time	

SAMPLE LOG-IN CHECKLIST
Alta Project \#: 27025

Comments:

$$
\begin{array}{cccc}
10 K 0899-01 & \text { Outfall 018 } & 11 / 8165 & 00: 00 \\
10 K 0900-01 & \text { Outfall } 003 & 11 / 4 / 05 & 13: 38 \\
10 K 0901-01 & \text { outfall } 004 & 1 / 4 / 05 & 13: 52 \\
10 K 0902-01 & \text { ouffall } 005 & 11 / 9105 & 12: 40 \\
10 K 0903-01 & \text { Ouffall } 006 & 119 / 105 & 13: 66 \\
10 K 0904-01 & \text { Outfall } 009 & 1 / 9 / 65 & 13: 46
\end{array}
$$

APPENDIX G

Section 28
Outfall 018, November 09, 2005
AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: IOJ1186, IOJ1232, IOK0899, IOK0900, IOK0901, IOK0902, IOK0903, IOK0904

Prepared by
AMEC-Denver Operations
355 South Teller Street Suite 300
Lakewood, Colorado 80226

		NPDEs Multiple
DITA VALIDITION REPORT	Analysix:	DF

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#. 313150010
Sample Delivery Group \#: Multiple
Project Manager: P. Costa
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review. December 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project DATA VALIDATIONREPORT
SDG No:	NPDSS Multiple
DFF	

Table 1. Sample Identification

Client ID	Laboratory D Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 009	IOI1232-01	$26994-001$	water	1613
Outfall 010	IOI1186-01	$26993-001$	water	1613
Outfall 018	IOK0899-01	$27025-001$	water	1613
Outfall 003	IOK0900-01	$27026-001$	water	1613
Outfall 004	IOK0901-01	$27027-001$	water	1613
Outfall 005	IOK0902-01	$27028-001$	water	1613
Outfall 006	IOK0903-01	$27029-001$	water	1613
Outfall 009	IOK0904-01	$27030-001$	water	1613

	Project: SDG Na:	NPDES Muhtiple
DATA VALIDATION REPORT	Anulyair	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Fandling, and Transport

The samples in this SDG were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analysis and were received within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ or slightly below for some of the samples. As none of the samples was noted to be damaged or frozen, no qualifications were required. According to the case narratives and laboratory login sheets, the samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in these SDGs. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. The cooler received by Alta had no custody seals. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Praject: SDGNa:	NPDES Multiple
DATA VALIDATION REPORT	Analyis	D/F

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 6/06/2005. The calibration consisted of six concentration level standards (CS1 through CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by intemal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of $\%$ RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank ($0-7516$-MB001) was extracted and analyzed with the samples in this SDG. No target compounds were detected in the method blank and no qualifications were required. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (OPR 0-7516-OPR001) was extracted and analyzed with the samples in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project: SDONa:	NPDES Multiple
DATA VALIDATTONREPORT	Analyin:	D/

2.7.1 Field Blanks and Equipment Rinsates

The samples in this SDG had no identified field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted with the exception of a false positive in Outfall 005 for $1,2,3,4,7,8-\mathrm{HxCDD}$. The sample was a nondetect Confirmation for $2,3,7,8$-TCDF detected in samples Outfall 004, Outfall 005, and Outfall 006 was not performed; therefore, $2,3,7,8-\mathrm{TCDF}$ was qualified as estimated, "J." No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, " J " by the laboratory. These " J " values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

Project 27025

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewer E. Wessling
Analysis/Method General Minerals

Package ID T711WC182
Task Order 313150010
SDG No. $10 K 0899$
No. of Analyses 1
Date: December 22. 2005

ACTION ITEMS ${ }^{\boldsymbol{n}}$

Case Narrative
Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

6. Deviations from Analysis	Qualifications were assigned for the following:
Protocol, eg.,	-estimated data between the RL and MDL
Holding Times	-- actual sample weights not being used for MBAS analysis
GCMS Tune/Inst Performance	
Calibration	
Method blarks	
Surrogates	
Matrix Spike/Dap LCS	
Field QC	
Internal Stundard Performance	
Compound Identification	
Quantitation	
System Performance	
COMMENTS ${ }^{\text {b }}$	

*Subconfructed annlytieal laboratory is not meeting contract and/or method requirements.
${ }^{*}$ Differences in protocol have beern adopled by the laboratory but no nction against the taboratory is recuired

amec ${ }^{\text {® }}$

DATA VALDDATION REPORT

NPDES Monitoring Program

ANALYSIS: GENERAL MINERALS And PERCHLORATE

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#:
Project Manager:
Matrix:
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 1
Reviewer: E. Wessling
Date of Review: December 22, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 160.1, 160.2, 160.5, 180.1, 300.0, 335.2, 350.2, 405.1, 425.1, 314.0, and 413.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	Laboratory DD	Matrix	COC Method
Outfall O18	IOK0899-01	Water	General Minerals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the sample and all analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The analytical holding times for all analyses were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

Target compounds were not detected in the associated method blanks. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. Raw data was reviewed to verify the values reported for the LCS recoveries. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in this SDG.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed on the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed on the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for analyses without an MS/MSD. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. . Results reported by the laboratory between the MDL and reporting limit were qualified as " J " values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
\quad Laboratory Del Mar - Irvine
\quad Reviewer E. Wessling
Analysis/Method Metals by 200.8 and 245.1

Package ID T711MT96
Task Order 313150010 SDG No. IOK0899
No. of Analyses 1
Date: December 22.2005
ACTION TTEMS ${ }^{\text {a }}$

- Case Narrative

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

	Deviations from Analysis	Qualifications were assi
	Protocol, e.g.,	-blank contamination
	Holding Times	
	GC/MS Tume/nst. Performence	
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS	
	Field QC	
	Internal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
COMMENTS ${ }^{\text {b }}$		
(Subcontracted annlytical labortary is not mecting contract and/or method requirements		

$a m e c^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IOK0899

Prepared by
AMEC-Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

	Project:	NPDES Monitoring
DATA VALIMATION REPORT	SDG No.:	IOK0899

1. INTRODUCTION

Task Order Title: NPDES Monitoring Program
Contrat Task Order \#: 313150010
SDG\#: IOK0899
Project Manager: P. Costa
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: I
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 22, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 2), USEPA Methods 200.8 for ICPMS and 245.1 for Mercury, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES Monitoring
DATA VALIDATION REPORT	SDG No.:	IOKO899
METALS		

Table 1. Sample identification

Client D	Laboratory D	Matrix	COC Method
Outfall 018	IOK0899-01	Water	$200.8 / 245.1$

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COC and the dates of analyses recorded in the raw data, docurnented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 -days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The ICP-MS met the method specified tune criteria; therefore, no qualifications were required for ICP-MS tuming.

2.3 CALIBRATION

The ICV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The laboratory analyzed reporting limit check standards in association with this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were significantly below the sample detects so as not to result in qualification of the data with the exception of copper and lead in the method blank. Copper and lead were qualified as a nondetect, " U ," in the sample from Outfall 018. No further qualifications were required.

	Project:	NPDES Monitoring
DATA VALIDATION REPORT	SDG No.:	IOKO899
MEIALS		

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP/MS analyses. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples and mercury LCS samples as reported on the LCS on the summary forms and in the raw data were within the laboratory-established control limits. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed on the sample in this SDG. No qualification was required.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed on the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results for all analyses. No qualification was required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP/MS, the ICP/MS internal standards were within established control limits. No qualifications were required.

2.12 SAMPLE RESULT VERIIICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.
D. Del Mar Analytical

MWH-Pasadena/Bocing
300 North Lake Avemue, Suite 1200 Pasadea, CA 91101 Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018
Report Number: IOK0899

Sampled: 11/09/05
Received: 11/09/05

Method
Sample ID: 1OK0899-61 (Outfall 018 - Water) - cont.

Reporting Units: ugh					0.49	2.0	ND 1.5	1	11/16/05	11/16/05	
Copper	U	B	EPA 200.8	5K16096							$\mathrm{B}_{3} \mathrm{~J}$
Lead	u	B	EPA 200.8	5K16096	0.13	1.0	NO- 0.21	1	11/16/05	11/16/05	B, J
Mercury	u	O	EPA 245.1	5K17098	0.063	0.20	ND	1	11/17/05	11/17/05	

Del Mar Analytical, Irvine Michele Chamberlin

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewer E. Wessling
Analysis/Method Semivolatiles by 625
ACTION TTEMS ${ }^{\text {a }}$

Package ID T711SV68
Task Order 313150010 SDG No. $10 K 0899$
No. of Analvses 1

Case Narrative
Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables \qquad

6. Deviations from Analysis	Qualifications were assigned for the following:
Protacol, e.g.s,	-blank contamination
Holding Times	
GCMS Tune/Inst. Performance	
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Internal Standard Performance	
Compound Identification	
Quantitation	
System Performance	
COMMENTS ${ }^{\text {b }}$	

[^30]- Differences in protocol have been adopted by the laboratory but no action agninst the laboralory is recuired

amec $^{\boldsymbol{\theta}}$

DATA VALIDATION REPORT

NPDES Monitoring Program

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP: IOK0899

Prepared by
AMEC Denver Operations
355 South Teller Street, Suite 300
Lakewood, Colorado 80226

DATA VALIDATION REPORT \quad| Project: |
| ---: |
| SDG: |
| Topanga Fire |
| TOR0899 |
| SVOC |

1. INTRODUCTION

Task Order Title: NPDES Monitoring Program Contract Task Order \#: 313150010
SDG\#: IOK0899
Project Manager: P. Costa
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 22, 2005

The samples listed in Table I were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDG:	Topangn Fite 10K0899
DATA VALIDATION REPORT	Analyais:	svoc

Table 1. Sample identification

Client ID	Lab No.	Matrix	Method
Outfall 018	IOK0899-01	water	625

DATA VALIDATION REPORT	Project: SDG:	Topange Fire 10K0899
	Analysis:	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection times. No qualifications were required.

2.3 CALIBRATION

There was one initial calibration associated with this SDG dated 11/14/2005. The average RRFs were ≥ 0.05 in both initial calibrations. The $\%$ RSDs were $\leq 35 \%$ or r^{2} values were ≥ 0.995 for the target compounds listed on the sample summary forms. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted.

The continuing calibrations associated with the sample analysis was analyzed 11/15/05. The RRFs for the target compounds were ≥ 0.05, and the $\%$ Ds were $\leq 20 \%$. A representative number of average RRFs and \%RSDs in the initial calibrations and RRFs and \%Ds in the continuing calibrations were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (SK11061-BLK1) was extracted and analyzed with these SDGs. Target compound butyl benzyl phthalate was reported at a concentration of $1.82 \mu \mathrm{~g} / \mathrm{L}$ in the method blank. The target compound was also reported at concentrations between the MDL and the reporting limit in the samples of these SDGs. The results for butyl benzyl phthalate were qualified as nondetects " U_{3} " and raised to the reporting limits for the sample in this SDG. Review of the raw data indicated no false negatives or false positives. No further qualifications were required.

	Praject: Topanga Fire	
DATA VALIDATION REPORT	SDC:	IOK0899
SVOC		

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5 K 11061 -BSI/BSDI) was extracted and analyzed with this SDG. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratoryestablished QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "U" for nondetects and "J" for detects, in the associated samples. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogate recoveries reported on the sample result summaries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples identified for this SDG.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

	Project: SDG:	Topanga Fire IOK0899
DATA VALIDATION REPORT	Annlvsis:	SVOC

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for five semivolatile compounds by EPA Method 625. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low point of the initial calibration and the laboratory MDL. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018
Report Number: IOK0899

Sampled: 11/09/05
Received: 11/09/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Del Mar Analytical, Irvine Michele Chamberlin
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar-Irvine
Reviewer E. Wessling
Analysis/Method Pesticides by 608

Package ID T711PP37)X
Task Order 313150010
SDG No. IOK0899
No. of Analyses 1
Date: December 22, 2005
Reviener's Signatur \square

ACTION ITEMS*
 Case Narrative
 Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from Analysis
Qualifications were assigned for the following:

Protocol, e.g.
-acceptable as reviewed

GC/MS TuneInst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field CC
Internal Standard Pefformance Compound Identification Quantitation
System Performance
COMMENTS"
*Subcoutracted analytical laboratory is now mestrag enotract andior nethod requirements.

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PESTICIDES/PCBs

SAMPLE DELIVERY GROUP: IOK0899

Prepared by
AMEC Denver Operations
355 Soath Teller Street, Suite 300
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOK0899
Project Manager: P. Costa
Matrix: Water
Analysis: Pesticides/PCBs
QC Level: Level IV
No. of Samples: I
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review, December 22, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev. 2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outall 018	Outall 018	IOK0899-01	water	608

	Project: SDC:	$\begin{aligned} & \text { NPDES } \\ & \text { OKO899 } \end{aligned}$
DATA YALIDATONREPORT	Anulysix	PexpCB

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the sample was received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of $\leq 20 \%$ for individual components (4,4-DDT and endrin) and $\leq 30 \%$ for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608 . No qualifications were required.

	Froject: SDC:	NPDES 10K0899
DATA HALHATMONREPORT	Analysis:	Pextfct

2.3.2 Initial Calibration

There was one initial calibration dated 11/11/05 associated with the pesticide analyses of the samples, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of $\leq 10 \%$ or the r^{2} values were ≥ 0.995 on both analytical columns. An ICV was analyzed immediately following the initial calibration. The \%Ds for all target compounds were within the QC limits of 15% on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no calculation or transcription errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

In the continuing calibrations bracketing the pesticide analyses of the sample, all \%Ds were $\leq 15 \%$. A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2,4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (5K11059-BLK1) was extracted and analyzed with this SDG. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5K11059-BS1/BSD1) was extracted and analyzed with this SDG. The recoveries for all spiked pesticide target compounds were within the laboratory-established QC limits and the RPDs were $\leq 30 \%$. A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide were below withinQC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

	Projec: SDO:	NPDES 10K0899
DATA LALIDATOU RELDOET	Andysix:	Penteb

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with this SDG. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on this water sample. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the sample in this SDG. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the sample in this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for pesticide target compound alpha-BHC by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating a representative number of blank spike and surrogate recoveries since there were no target compounds detected in the site sample. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. The water reporting limits were not adjusted for sample amounts on the result summanies; however, the dilution factors listed on the summaries reflected the sample volume extracted. Results were reported in ugl (ppb). No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018
Report Number: IOK0899

Sampled: 11/0905
Received: 11/09105

ORGANOCHLORINE PESTICIDES (EPA 608)

Del Mar Analytical, Irvine Michele Chamberlin
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar - Irvine
Reviewer E. Wessling
Analysis/Method Volatiles by 624
Package ID T711VO129
Task Order 313150010
SDG No. 10K0899
No. of Analyses 2

ACTION ITEMS*
$\begin{array}{c}\text { Case Narrativ } \\ \text { Deficiencies }\end{array}$
2. Out of Scope

	Analyses
3.	Analyses Not Cond
4.	$\begin{array}{l}\text { Missing Hardcopy } \\ \text { Deliverables }\end{array}$

5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.
Hokling Times
GCMS Tunelast. Performance
Calibration
Method blanks
Surrogates
Matrix SpikeTDup LCS
Field $9 C$
Internal Standard Performance
Compound Identification
Quantitation
System Performance

COMMENTS ${ }^{\text {b }}$

* Subcoutracted analytical latoratory y one mexting contract andor methow requirements.

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES SAMPLE DELIVERY GROUP: IOK0899

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

Data Vam	Analysis:	voc

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOK0899
Project Manager: P. Costa
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: E. Wessling
Date of Review: December 22, 2005

The samples listed in Table I were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, 5W846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDO:	
DATA FLIDATONREPORT	Andysis:	Yoc

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 018	Outall 018	$10 K 0899-01$	water	624
Trip Blank	Trip Blank	$10 K 0899-02$	water	624

	Projert: SDG:	$\begin{aligned} & \text { NPDES } \\ & \text { roxese9 } \end{aligned}$
E4TA HUTDATHY REPORT	Analysis	VOC

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were properly preserved. The COC noted that the samples were received intact, however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation reports were consistent with those specified in EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection time. The BFB summary report was verified from the raw data and no discrepancies between the summary report and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

One initial calibration dated $10 / 05 / 05$ was associated with this SDG. The average RRFs were 20.05 for the target compounds listed on the sample result summaries. The \%RSDs were $\leq 35 \%$ for all applicable target compounds. Two continuing calibrations dated 11/18/05 and 11/22/05were associated with the sample analyses in this SDG. The \%Ds were less than 20% in the continuing calibrations dated $11 / 18 / 05$ and $11 / 22 / 05$; therefore, no qualifications were required. The RRFs were ≥ 0.05 for the target compounds listed on the sample result summaries. A representative number of \%RSDs and average RRFs from the initial calibration, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

2.4 BLANKS

Two water method blanks (5 K 18007 -BLK1 and 5 K 22008 -BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two water blank spikes (5K18005-BS1 and 5K22008-BS1) were associated with the sample analyses. All recoveries were within the laboratory established $Q C$ limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKEMATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed for this SDG. Evaluation of method accuracy was based on blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank was the trip blank associated with this SDG. There were no target compounds detected above the MDLs in the trip blank. No qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples associated with this SDG. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples associated with this SDG.

	Project: SDO:	NPDES ORKOX99
DLT YMLDATOV PERORT	Anatyis	voc

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in this SDG were within the control limits established by the continuing calibration standards: $+100 \%-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed the volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standard and by the MDL study. As there were no sample detects in this SDG, compound quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in $\mu g /$ (ppb). No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory did not provide TICs for this SDG. No qualifications were required

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing	Project 1D: Quarterly Outfall 018	
300 North Lake Averuc, Suite 1200		Sampled 11/0905
Pasadena, CA 91101	Repon Number: 10K0899	Recrived 110905
Attention: Eronwyn Kelly		

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Smaple Result	Dilution Factor	Date Extracted	Date Analyze	Data Qualifiers	
Sample ID: 1OK0899-nt (Outfa Reporting Livis: wy	Water)									∞
Benzene	EPA 624	5K18005	0.28	2.0	ND	1	111805	11/1805	4	
Trichlorotrituorechane (Frem 113)	EPA 624	5K1800S	1.2	5.0	ND	,	11/1805	$11 / 1805$	4	
Carbon tetrachloride	EPA 624	5K18005	0.28	5.0	No	1	11/1805	111805		
Chloroform	EPA 624	5K18005	0.33	2.0	ND	1	111805	11/18/05		
1,1-Dichlorcethane	EPA 624	SK18005	0.27	20	ND	1	111805	11/1805		
1,2-Dichloroethane	EPA 624	5K18005	0.28	2.0	ND	.	1111805	117805	,	
1,1-Dichlormethene	EPA 624	5K18005	0.42	3.0	ND	1	11/18/05	11/1805		
Ethylbenzese	EPA 624	5K18005	0.25	2.0	ND	1	11/8105	11/8005		
Tetrachtorechene	EPA 624	5K18005	0.32	2.0	ND	1	$11 / 1805$	11/1805		
Toluene	EPA 624	5K18005	0.36	2.0	ND	1	11/8805	11/805		
1,1,1-Trichlorwethane	EPA 624	SK18005	0.30	2.0	ND	1	Hases	11/1805		
1,1,2-Trichlorothane	EPA 624	5K18005	0.30	2.0	ND	1	111805	11/805		
Trichloroethene	EPA 624	5K18005	0.26	5.0	ND	1	H/1805	11/1805		
Trichlorofuromethane	EPA 624	5K18005	0.34	5.0	ND	1	11/1805	11/1805		
Vinyl chloride	EPA 624	5K18005	0.26	50	ND	1	11/1805	11/1805		
Xylenes, Total	EPA 624	5K18005	0.52	4.0	ND	1	1118805	1118005	,	
Surrogate; Dibrowolturomethan	20\%)				107\%					
Sorrogate: Toluene-ds (80-120\%)					106%					
Surrogate: 4-Bromofuorobensen	20\%				98\%					
Sample ID: IOK0899-02 (Trip Reporting Uitits ugl	Water)								,	Cade
Benzene	EPA 624	5 K 22008	0.28	2.0	ND	1	11/2205	11/2205	4	
Trictlororifuorothane (Frem 113)	EPA 624	SK22008	1.2	5.0	ND	1	11/2205	11/2205		
Carbon terrachloride	EPA 624	SK22008	0.28	5.0	ND	1	11/2205	11/22005		
Chlorofom	EPA 624	5K22008	0.33	2.0	ND	,	11/2205	11/2205		
1,1-Dichloroedane	EPA 624	5K22008	0.27	2.0	ND	,	11/2205	112205		
1,2-Dichloroethane	EPA 624	5K22008	0.28	20	ND	1	1/2205	112205		
1,1-Dichloroethene	EPA 624	5K22008	0.42	3.0	ND	1	11/2205	11/2205		
Ethylbenzene	EPA 624	5 K 22008	0.25	2.0	ND	1	11/2205	11/2205		
Tetrachloroethene	EPA 624	5K22008	0.32	2.0	ND	1	11/2205	11/2205		
Tohaene	EPA 624	5K22008	0.36	2.0	ND	1	11/2205	11/2205		
1,1,1.-Trichloroethane	EPA 624	5 K 22008	0.30	2.0	ND	1	11/2205	11/2205		
1,1,2-Trichtoroethane	EPA 624	5K22008	0.30	2.0	ND	,	11/2205	11/2205		
Trichloroethene	EPA 624	5R22008	0.26	5.0	ND	1	11/2205	11/220s		
Trichorofluoromethanc	EPA 624	5K22008	0.34	5.0	ND	1	11/2205	11/2205		
Vinyl chloride	EPA 624	5 K 22008	0.26	5.0	ND	1	112205	112205		
Xylenes, Total	EPA 624	5 K 22008	0.52	4.0	ND	1	11/2205	11/2205	V	
Surrogate: Dibromofworomethan	2054				102 \%					
Sturrogate Tolume-d8 (80.120\%)					104\%					
Surogate: 4-Bromoluorobentene	20\%\%				95\%					
Del Mar Analytical, Irvine Michele Chamberlin Project Manager										

Project Manager

[^0]: TCDD TEQ w/DNQ Values
 TCDD TEQ w/out DNQ Value

[^1]:
 Dioxin TCDD TEQ compliance limit established for this outfall?

[^2]: FOURTH QUARTER 2005 REPORTING SUMMARY THE BOEING COMPANY-ROCKETDYNE SANTA SUSANA FIELD LABORATORY
 NPDES PERMIT CA0001309

[^3]: TCDD TEQ w/DNQ Values TCDD TEQ w/out DNQ Values

 Dioxin TCDD TEQ compliance limit established for this outfall?

[^4]: TCDD TEQ w/DNQ Values TCDD TEQ w/outDNQ Values

[^5]: This report shall not be reproduced, except in fult, without the witten consent of Pace Analytical Services, inc.

[^6]: $\mathrm{Cs}=$ Concentration Spiked (ng/nL)
 $\mathrm{C} t=$ Concentration Recovered ($\mathrm{ng} / \mathrm{mL}$)
 Rec. $=$ Recovery (Expressed as Percent)
 Control Limit Reference: Method 1613, Table 6, 10194 Revision
 $X=$ Background subtracted value
 $P=$ Recovery outside of control limits
 $\mathrm{N}=\mathrm{V}=$ Value obtained from additional analysis

 * $=$ See Discussion

[^7]: - Subcoatracted analytizal laboratory is not meoting contruct and/or method requirementis.

[^8]: 17461 Derian Ave., Suite 100, invine, CA 92614 \{949) 251-1022 FAX 9499 260-3297 1014 E. Cooley Dr., Sute A, Coton, CA 92324 (909) 370-4667 FAX (909) 370-1046

[^9]: Del Mar Analytical, Irvine
 Michele Chamberlin
 Project Manager

[^10]: certified by
 Report Date 12108705
 Page 1

[^11]: ${ }^{\text {a }}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.

[^12]: Certified by
 Report Date 12/08105
 Page 1

[^13]: Conc $=$ Concentration (Totals include 2,3,7,8-substituted isomers).
 EMPC $=$ Estimated Maximum Possible Concentration
 $L O D=$ Limit of Detection. Totals are averages of individual isomer LODs.
 $D=$ Result obtained from analysis of diluted sample
 $B=$ Less than 10 times higher than method blank level
 $P=$ Recovery outside of method 1813 contral limits
 $\mathrm{J}=$ Concentration detected is below the calibration range
 $\mathrm{N} n=$ Value obtained from additional analysis

[^14]:

 * Diffrencening protocol have been adopted by the labortory but no action againat he faboratory is rexuired.

[^15]: Del Mar Analytical, Irvine
 Michele Chamberlin
 Project Manager

[^16]: * Subcontracted anslytieal laboratory is not meeling coniract and/or melhod requirementis,
 - Diffrencen in prolocol have been adopted by the laboratory hut no action agningt the laboratory is required.

[^17]: * Subcontracted andytical luboratory is not mecting contract andifor method requirements.
 ${ }^{6}$ Differences in protocol hnve been adopled by the laboratory but no action neninst the laboratory is required.

[^18]: 7461 Derian Ave., Suite 100, ivine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooky Dr, Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370 1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (658) 505-9649 9830 South 57st St, Suite B-120, Phoenix, AZ 85044 (480) 785-6043 FAX (480) 785-0851 2520 E. Sunset Rd. *3, tas Vegas, NV 89120 (702) 798-3620 FAX (702) 799-3621

[^19]: Del Mar Analytical, Irvine
 Michele Chamberlin
 Project Manager

[^20]: Del Mar Analytical, Irvine
 Michele Chamberlin
 Project Manager

[^21]: - Subcontracted analytical inboratory is not meating coritract and/or melhod requirsmentis.

[^22]: Del Mar Analytical, Irvine
 Michele Chamberlin
 Project Manager

[^23]: Del Mar Analytical, Irvine
 Michele Chamberlin
 Project Manager

[^24]: *Subcontracted analytical laboratory in not meeting cooutract and/or method requirennents.

[^25]: - Subcontracted analylical laborntory in not moctinge contract and/or method requiramemata

[^26]: Prepared by
 AMEC-Denver Operations
 355 South Teller Street, Suite 300
 Lakewood, Colorado 80226

[^27]: * Subcondructed analytical laboratory is not meoling condract and/or method raquiruments.

[^28]: Del Mar Analytical, Irvine
 Michele Chamberlin
 Project Manager

[^29]: Analyst: WJL

[^30]: - Subcontracted anmlytical laboratory is not meating coniract and/or method requirements.

