

Pasadena, CA 91101

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2023 Received: 02/19/07

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

	11012 00 21	ISE/ITEC			`	,	ъ.	.	D. 4
A I 4 -	M - 41 J	D-4-b	MDL	Reporting		Dilution	Date	Date	Data Qualifiers
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQB2023-01 (Outfall 006 - W	ater)								
Reporting Units: ug/l									
Acenaphthene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Acenaphthylene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Aniline	EPA 625	7B21110	2.5	9.9	ND	0.99	02/21/07	02/25/07	
Anthracene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Benzidine	EPA 625	7B21110	8.4	20	ND	0.99	02/21/07	02/25/07	L
Benzoic acid	EPA 625	7B21110	8.4	20	ND	0.99	02/21/07	02/25/07	
Benzo(a)anthracene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Benzo(b)fluoranthene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Benzo(k)fluoranthene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Benzo(g,h,i)perylene	EPA 625	7B21110	3.0	9.9	ND	0.99	02/21/07	02/25/07	L
Benzo(a)pyrene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Benzyl alcohol	EPA 625	7B21110	2.5	20	ND	0.99	02/21/07	02/25/07	
Bis(2-chloroethoxy)methane	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Bis(2-chloroethyl)ether	EPA 625	7B21110	2.5	9.9	ND	0.99	02/21/07	02/25/07	
Bis(2-chloroisopropyl)ether	EPA 625	7B21110	2.5	9.9	ND	0.99	02/21/07	02/25/07	
Bis(2-ethylhexyl)phthalate	EPA 625	7B21110	4.0	50	ND	0.99	02/21/07	02/25/07	
4-Bromophenyl phenyl ether	EPA 625	7B21110	2.5	9.9	ND	0.99	02/21/07	02/25/07	
Butyl benzyl phthalate	EPA 625	7B21110	4.0	20	ND	0.99	02/21/07	02/25/07	
4-Chloroaniline	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
2-Chloronaphthalene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
4-Chloro-3-methylphenol	EPA 625	7B21110	2.0	20	ND	0.99	02/21/07	02/25/07	
2-Chlorophenol	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
4-Chlorophenyl phenyl ether	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Chrysene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Dibenz(a,h)anthracene	EPA 625	7B21110	3.0	20	ND	0.99	02/21/07	02/25/07	
Dibenzofuran	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Di-n-butyl phthalate	EPA 625	7B21110	2.0	20	ND	0.99	02/21/07	02/25/07	
1,3-Dichlorobenzene	EPA 625	7B21110	3.0	9.9	ND	0.99	02/21/07	02/25/07	
1,4-Dichlorobenzene	EPA 625	7B21110	2.5	9.9	ND	0.99	02/21/07	02/25/07	
1,2-Dichlorobenzene	EPA 625	7B21110	3.0	9.9	ND	0.99	02/21/07	02/25/07	
3,3-Dichlorobenzidine	EPA 625	7B21110	3.0	20	ND	0.99	02/21/07	02/25/07	
2,4-Dichlorophenol	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Diethyl phthalate	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
2,4-Dimethylphenol	EPA 625	7B21110	3.5	20	ND	0.99	02/21/07	02/25/07	
Dimethyl phthalate	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
4,6-Dinitro-2-methylphenol	EPA 625	7B21110	4.0	20	ND	0.99	02/21/07	02/25/07	
2,4-Dinitrophenol	EPA 625	7B21110	4.5	20	ND	0.99	02/21/07	02/25/07	
2,4-Dinitrotoluene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
2,6-Dinitrotoluene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Di-n-octyl phthalate	EPA 625	7B21110	2.0	20	ND	0.99	02/21/07	02/25/07	
Fluoranthene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Total Access to the CA	2111 020	,221110	0	· · · ·	. 12	0.77	Q=,=1,Q1	32,23,07	

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Report Number: IQB2023 Sampled: 02/19/07
Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result		Extracted	Analyzed	Qualifiers
								•	
Sample ID: IQB2023-01 (Outfall 006 - Water Reporting Units: ug/l	er) - cont.								
Fluorene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Hexachlorobenzene	EPA 625	7B21110	2.5	9.9	ND	0.99	02/21/07	02/25/07	
Hexachlorobutadiene	EPA 625	7B21110	3.5	9.9	ND	0.99	02/21/07	02/25/07	
Hexachlorocyclopentadiene	EPA 625	7B21110	5.0	20	ND	0.99	02/21/07	02/25/07	
Hexachloroethane	EPA 625	7B21110	3.0	9.9	ND	0.99	02/21/07	02/25/07	
Indeno(1,2,3-cd)pyrene	EPA 625	7B21110	3.0	20	ND	0.99	02/21/07	02/25/07	
Isophorone	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
2-Methylnaphthalene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
2-Methylphenol	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
4-Methylphenol	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Naphthalene	EPA 625	7B21110	2.5	9.9	ND	0.99	02/21/07	02/25/07	
2-Nitroaniline	EPA 625	7B21110	2.0	20	ND	0.99	02/21/07	02/25/07	
3-Nitroaniline	EPA 625	7B21110	2.0	20	ND	0.99	02/21/07	02/25/07	
4-Nitroaniline	EPA 625	7B21110	2.5	20	ND	0.99	02/21/07	02/25/07	
Nitrobenzene	EPA 625	7B21110	2.5	20	ND	0.99	02/21/07	02/25/07	
2-Nitrophenol	EPA 625	7B21110	3.5	9.9	ND	0.99	02/21/07	02/25/07	
4-Nitrophenol	EPA 625	7B21110	5.4	20	ND	0.99	02/21/07	02/25/07	
N-Nitrosodiphenylamine	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
N-Nitroso-di-n-propylamine	EPA 625	7B21110	2.5	9.9	ND	0.99	02/21/07	02/25/07	
Pentachlorophenol	EPA 625	7B21110	3.5	20	ND	0.99	02/21/07	02/25/07	
Phenanthrene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Phenol	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
Pyrene	EPA 625	7B21110	2.0	9.9	ND	0.99	02/21/07	02/25/07	
1,2,4-Trichlorobenzene	EPA 625	7B21110	2.5	9.9	ND	0.99	02/21/07	02/25/07	
2,4,5-Trichlorophenol	EPA 625	7B21110	3.0	20	ND	0.99	02/21/07	02/25/07	
2,4,6-Trichlorophenol	EPA 625	7B21110	3.0	20	ND	0.99	02/21/07	02/25/07	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	7B21110	2.0	20	ND	0.99	02/21/07	02/25/07	
N-Nitrosodimethylamine	EPA 625	7B21110	2.5	20	ND	0.99	02/21/07	02/25/07	
Surrogate: 2-Fluorophenol (30-120%)					64 %				
Surrogate: Phenol-d6 (35-120%)					66 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					80 %				
Surrogate: Nitrobenzene-d5 (40-120%)					72 %				
Surrogate: 2-Fluorobiphenyl (45-120%)					78 %				
Surrogate: Terphenyl-d14 (45-120%)					85 %				

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2023 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

ORGANOCHLORINE PESTICIDES (EPA 608)

	0 0 1				- (
			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQB2023-01 (Outfall 006 - Wat	er) - cont.								
Reporting Units: ug/l									
Aldrin	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	C-7
alpha-BHC	EPA 608	7B22132	0.020	0.098	ND	0.98	02/22/07	02/25/07	
beta-BHC	EPA 608	7B22132	0.039	0.098	ND	0.98	02/22/07	02/25/07	
delta-BHC	EPA 608	7B22132	0.020	0.20	ND	0.98	02/22/07	02/25/07	
gamma-BHC (Lindane)	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	
Chlordane	EPA 608	7B22132	0.20	0.98	ND	0.98	02/22/07	02/25/07	
4,4'-DDD	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	
4,4'-DDE	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	
4,4'-DDT	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	C-7
Dieldrin	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	
Endosulfan I	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	
Endosulfan II	EPA 608	7B22132	0.039	0.098	ND	0.98	02/22/07	02/25/07	
Endosulfan sulfate	EPA 608	7B22132	0.049	0.20	ND	0.98	02/22/07	02/25/07	
Endrin	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	
Endrin aldehyde	EPA 608	7B22132	0.049	0.098	ND	0.98	02/22/07	02/25/07	
Endrin ketone	EPA 608	7B22132	0.039	0.098	ND	0.98	02/22/07	02/25/07	
Heptachlor	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	
Heptachlor epoxide	EPA 608	7B22132	0.029	0.098	ND	0.98	02/22/07	02/25/07	
Methoxychlor	EPA 608	7B22132	0.039	0.098	ND	0.98	02/22/07	02/25/07	C-7
Toxaphene	EPA 608	7B22132	1.5	4.9	ND	0.98	02/22/07	02/25/07	
Surrogate: Tetrachloro-m-xylene (35-115%)					80 %				
Surrogate: Decachlorobiphenyl (45-120%)					75 %				

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Report Number: IQB2023 Sampled: 02/19/07
Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2023-01 (Outfall 006 - Wat	er) - cont.								
Reporting Units: ug/l									
Aroclor 1016	EPA 608	7B22132	0.34	0.98	ND	0.98	02/22/07	02/23/07	
Aroclor 1221	EPA 608	7B22132	0.098	0.98	ND	0.98	02/22/07	02/23/07	
Aroclor 1232	EPA 608	7B22132	0.25	0.98	ND	0.98	02/22/07	02/23/07	
Aroclor 1242	EPA 608	7B22132	0.25	0.98	ND	0.98	02/22/07	02/23/07	
Aroclor 1248	EPA 608	7B22132	0.25	0.98	ND	0.98	02/22/07	02/23/07	
Aroclor 1254	EPA 608	7B22132	0.25	0.98	ND	0.98	02/22/07	02/23/07	
Aroclor 1260	EPA 608	7B22132	0.29	0.98	ND	0.98	02/22/07	02/23/07	
Surrogate: Decachlorobiphenyl (45-120%)					98 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IQB2023

Received: 02/19/07

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2023-01 (Outfall 006 - Reporting Units: mg/l	Water) - cont.								
Boron	EPA 200.7	7B21063	0.020	0.050	0.020	1	02/21/07	02/21/07	J, B
Iron	EPA 200.7	7B21063	0.015	0.040	0.86	1	02/21/07	02/21/07	

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IQB2023

Received: 02/19/07

METALS

WETALS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IQB2023-01 (Outfall 006	6 - Water) - cont.									
Reporting Units: ug/l										
Aluminum	EPA 200.7	7B21063	40	50	870	1	02/21/07	02/21/07		
Antimony	EPA 200.8	7B21137	0.050	2.0	0.65	1	02/21/07	02/21/07	J	
Arsenic	EPA 200.7	7B21063	7.0	10	10	1	02/21/07	02/21/07		
Beryllium	EPA 200.7	7B21063	0.90	2.0	ND	1	02/21/07	02/21/07		
Cadmium	EPA 200.8	7B21137	0.025	1.0	0.10	1	02/21/07	02/21/07	J, B	
Chromium	EPA 200.7	7B21063	2.0	5.0	ND	1	02/21/07	02/21/07		
Copper	EPA 200.8	7B21137	0.25	2.0	3.5	1	02/21/07	02/21/07		
Lead	EPA 200.8	7B21137	0.040	1.0	1.0	1	02/21/07	02/21/07		
Nickel	EPA 200.7	7B21063	2.0	10	ND	1	02/21/07	02/21/07		
Selenium	EPA 200.7	7B21063	8.0	10	ND	1	02/21/07	02/21/07		
Silver	EPA 200.7	7B21063	3.0	10	ND	1	02/21/07	02/21/07		
Thallium	EPA 200.8	7B21137	0.15	1.0	ND	1	02/21/07	02/21/07		
Vanadium	EPA 200.7	7B21063	3.0	10	4.0	1	02/21/07	02/21/07	J	
Zinc	EPA 200.7	7B21063	15	20	ND	1	02/21/07	02/21/07		

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Report Number: IQB2023 Sampled: 02/19/07
Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2023-01 (Outfall 006 - V	Vater) - cont.								
Reporting Units: mg/l									
Aluminum	EPA 200.7-Diss	7B22143	0.040	0.050	ND	1	02/22/07	02/23/07	
Arsenic	EPA 200.7-Diss	7B22143	0.0070	0.010	ND	1	02/22/07	02/23/07	
Beryllium	EPA 200.7-Diss	7B22143	0.00090	0.0020	ND	1	02/22/07	02/23/07	
Boron	EPA 200.7-Diss	7B22143	0.020	0.050	ND	1	02/22/07	02/23/07	
Chromium	EPA 200.7-Diss	7B22143	0.0020	0.0050	ND	1	02/22/07	02/23/07	
Iron	EPA 200.7-Diss	7B22143	0.015	0.040	ND	1	02/22/07	02/23/07	
Nickel	EPA 200.7-Diss	7B22143	0.0020	0.010	ND	1	02/22/07	02/23/07	
Selenium	EPA 200.7-Diss	7B22143	0.0080	0.010	ND	1	02/22/07	02/23/07	
Hardness (as CaCO3)	SM2340B	7B22143	1.0	1.0	180	1	02/22/07	02/23/07	
Silver	EPA 200.7-Diss	7B22143	0.0060	0.010	ND	1	02/22/07	02/23/07	
Vanadium	EPA 200.7-Diss	7B22143	0.0030	0.010	ND	1	02/22/07	02/23/07	
Zinc	EPA 200.7-Diss	7B22143	0.0040	0.020	ND	1	02/22/07	02/23/07	

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2023 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2023-01 (Outfall 006 - Reporting Units: ug/l	Water) - cont.								
Antimony	EPA 200.8-Diss	7B23073	0.050	2.0	0.72	1	02/23/07	02/23/07	J
Cadmium	EPA 200.8-Diss	7B23073	0.050	1.0	ND	1	02/23/07	02/23/07	
Copper	EPA 200.8-Diss	7B23073	0.40	2.0	0.52	1	02/23/07	02/23/07	J
Lead	EPA 200.8-Diss	7B23073	0.10	1.0	ND	1	02/23/07	02/23/07	
Thallium	EPA 200.8-Diss	7B23073	0.15	1.0	ND	1	02/23/07	02/23/07	

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2023 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2023-01 (Outfall 006 - V	Vater) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	7B20044	1.5	5.0	130	10	02/20/07	02/20/07	
Fluoride	EPA 300.0	7B20044	0.15	0.50	0.46	1	02/20/07	02/20/07	J
Hardness (as CaCO3)	SM2340B	7B21063	1.0	1.0	210	1	02/21/07	02/21/07	
Nitrate/Nitrite-N	EPA 300.0	7B20044	0.080	0.15	0.45	1	02/20/07	02/20/07	
Oil & Grease	EPA 413.1	7B28085	0.92	4.9	ND	1	02/28/07	02/28/07	
Sulfate	EPA 300.0	7B20044	0.45	0.50	23	1	02/20/07	02/20/07	
Total Dissolved Solids	SM2540C	7B23078	10	10	550	1	02/23/07	02/23/07	
Total Suspended Solids	EPA 160.2	7B21150	10	10	16	1	02/21/07	02/22/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IQB2023

Received: 02/19/07

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2023-01 (Outfall 006 - Wa	ter) - cont.								
Reporting Units: ug/l									
Total Cyanide	EPA 335.2	7B23104	2.2	5.0	ND	1	02/23/07	02/23/07	
Perchlorate	EPA 314.0	7B27143	0.80	4.0	ND	1	02/27/07	02/28/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2023 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 006 (IQB2023-01) - Water	r				
EPA 300.0	2	02/19/2007 11:15	02/19/2007 18:55	02/20/2007 15:00	02/20/2007 15:45
EPA 624	3	02/19/2007 11:15	02/19/2007 18:55	02/21/2007 00:00	02/21/2007 13:42
Sample ID: Trip Blank (IQB2023-02) - Water	•				
EPA 624	3	02/19/2007 11:15	02/19/2007 18:55	02/21/2007 00:00	02/21/2007 10:38

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023 Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyta	Dogule	Reporting Limit	MDI	IIm:4a	Spike Level	Source	%REC	%REC	RPD	RPD	Data Qualifiers
Analyte	Result	Limit	MDL	Units	Levei	Result	%KEC	Limits	KPD	Limit	Quaimers
Batch: 7B21011 Extracted: 02/21/0	<u>7_</u>										
Blank Analyzed: 02/21/2007 (7B21011-1				_							
Benzene	ND	1.0	0.28	ug/l							
Bromodichloromethane	ND	2.0	0.30	ug/l							
Bromoform	ND	5.0	0.40	ug/l							
Bromomethane	ND	5.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	2.0	0.36	ug/l							
Chloroethane	ND	5.0	0.40	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
Chloromethane	ND	5.0	0.40	ug/l							
Dibromochloromethane	ND	2.0	0.28	ug/l							
1,2-Dichlorobenzene	ND	2.0	0.32	ug/l							
1,3-Dichlorobenzene	ND	2.0	0.35	ug/l							
1,4-Dichlorobenzene	ND	2.0	0.37	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	5.0	0.42	ug/l							
trans-1,2-Dichloroethene	ND	2.0	0.27	ug/l							
1,2-Dichloropropane	ND	2.0	0.35	ug/l							
cis-1,3-Dichloropropene	ND	2.0	0.22	ug/l							
trans-1,3-Dichloropropene	ND	2.0	0.32	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Methylene chloride	ND	5.0	0.95	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Toluene	ND	2.0	0.36	ug/l							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
Trichloroethene	ND	2.0	0.26	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	4.0	0.90	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.5	ug/l							
Surrogate: Dibromofluoromethane	22.2			ug/l	25.0		89	80-120			
Surrogate: Toluene-d8	25.0			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
G											

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 7B21011 Extracted: 02/21/0											
Daten. / B21011 Extracted. 02/21/0	<u> </u>										
LCS Analyzed: 02/21/2007 (7B21011-B	S1)										
Benzene	24.4	1.0	0.28	ug/l	25.0		98	70-120			
Bromodichloromethane	24.9	2.0	0.30	ug/l	25.0		100	70-135			
Bromoform	22.8	5.0	0.40	ug/l	25.0		91	55-130			
Bromomethane	25.5	5.0	0.42	ug/l	25.0		102	65-140			
Carbon tetrachloride	23.3	0.50	0.28	ug/l	25.0		93	65-140			
Chlorobenzene	24.8	2.0	0.36	ug/l	25.0		99	75-120			
Chloroethane	21.6	5.0	0.40	ug/l	25.0		86	60-140			
Chloroform	23.5	2.0	0.33	ug/l	25.0		94	70-130			
Chloromethane	30.5	5.0	0.40	ug/l	25.0		122	50-140			
Dibromochloromethane	26.8	2.0	0.28	ug/l	25.0		107	70-140			
1,2-Dichlorobenzene	25.3	2.0	0.32	ug/l	25.0		101	75-120			
1,3-Dichlorobenzene	25.3	2.0	0.35	ug/l	25.0		101	75-120			
1,4-Dichlorobenzene	24.8	2.0	0.37	ug/l	25.0		99	75-120			
1,1-Dichloroethane	23.5	2.0	0.27	ug/l	25.0		94	70-125			
1,2-Dichloroethane	25.0	0.50	0.28	ug/l	25.0		100	60-140			
1,1-Dichloroethene	23.3	5.0	0.42	ug/l	25.0		93	70-125			
trans-1,2-Dichloroethene	24.4	2.0	0.27	ug/l	25.0		98	70-125			
1,2-Dichloropropane	25.6	2.0	0.35	ug/l	25.0		102	70-125			
cis-1,3-Dichloropropene	24.1	2.0	0.22	ug/l	25.0		96	75-125			
trans-1,3-Dichloropropene	24.7	2.0	0.32	ug/l	25.0		99	70-125			
Ethylbenzene	25.8	2.0	0.25	ug/l	25.0		103	75-125			
Methylene chloride	21.4	5.0	0.95	ug/l	25.0		86	55-130			
1,1,2,2-Tetrachloroethane	27.4	2.0	0.24	ug/l	25.0		110	55-130			
Tetrachloroethene	22.4	2.0	0.32	ug/l	25.0		90	70-125			
Toluene	25.4	2.0	0.36	ug/l	25.0		102	70-120			
1,1,1-Trichloroethane	23.1	2.0	0.30	ug/l	25.0		92	65-135			
1,1,2-Trichloroethane	26.5	2.0	0.30	ug/l	25.0		106	70-125			
Trichloroethene	24.6	2.0	0.26	ug/l	25.0		98	70-125			
Trichlorofluoromethane	23.0	5.0	0.34	ug/l	25.0		92	65-145			
Vinyl chloride	26.6	0.50	0.30	ug/l	25.0		106	55-135			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.7			ug/l	25.0		107	80-120			

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

RPD

Data

Report Number: IQB2023

Reporting

Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Spike

Source

		reporting			Spike	Source		/UILL		IXI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21011 Extracted: 02/2	1/07										
Matrix Spike Analyzed: 02/21/2007 ((7B21011-MS1)				Sou	rce: IQB	2021-01				
Benzene	33.0	1.0	0.28	ug/l	25.0	ND	132	65-125			M1
Bromodichloromethane	34.1	2.0	0.30	ug/l	25.0	ND	136	70-135			M1
Bromoform	28.1	5.0	0.40	ug/l	25.0	ND	112	55-135			
Bromomethane	38.2	5.0	0.42	ug/l	25.0	ND	153	55-145			MI
Carbon tetrachloride	34.0	0.50	0.28	ug/l	25.0	ND	136	65-140			
Chlorobenzene	33.2	2.0	0.36	ug/l	25.0	ND	133	75-125			M1
Chloroethane	32.6	5.0	0.40	ug/l	25.0	ND	130	55-140			
Chloroform	33.4	2.0	0.33	ug/l	25.0	ND	134	65-135			
Chloromethane	43.7	5.0	0.40	ug/l	25.0	ND	175	45-145			M1
Dibromochloromethane	35.3	2.0	0.28	ug/l	25.0	ND	141	65-140			M1
1,2-Dichlorobenzene	32.8	2.0	0.32	ug/l	25.0	ND	131	75-125			M1
1,3-Dichlorobenzene	33.2	2.0	0.35	ug/l	25.0	ND	133	75-125			M1
1,4-Dichlorobenzene	32.2	2.0	0.37	ug/l	25.0	ND	129	75-125			M1
1,1-Dichloroethane	33.3	2.0	0.27	ug/l	25.0	ND	133	65-130			M1
1,2-Dichloroethane	32.9	0.50	0.28	ug/l	25.0	ND	132	60-140			
1,1-Dichloroethene	31.0	5.0	0.42	ug/l	25.0	ND	124	60-130			
trans-1,2-Dichloroethene	33.8	2.0	0.27	ug/l	25.0	ND	135	65-130			M1
1,2-Dichloropropane	34.0	2.0	0.35	ug/l	25.0	ND	136	65-130			<i>M1</i>
cis-1,3-Dichloropropene	31.4	2.0	0.22	ug/l	25.0	ND	126	70-130			
trans-1,3-Dichloropropene	31.2	2.0	0.32	ug/l	25.0	ND	125	65-135			
Ethylbenzene	34.9	2.0	0.25	ug/l	25.0	ND	140	65-130			M1
Methylene chloride	30.2	5.0	0.95	ug/l	25.0	ND	121	50-135			
1,1,2,2-Tetrachloroethane	31.6	2.0	0.24	ug/l	25.0	ND	126	55-135			
Tetrachloroethene	30.2	2.0	0.32	ug/l	25.0	ND	121	65-130			
Toluene	34.1	2.0	0.36	ug/l	25.0	ND	136	70-125			M1
1,1,1-Trichloroethane	33.9	2.0	0.30	ug/l	25.0	ND	136	65-140			
1,1,2-Trichloroethane	32.8	2.0	0.30	ug/l	25.0	ND	131	65-130			M1
Trichloroethene	33.6	2.0	0.26	ug/l	25.0	ND	134	65-125			<i>M1</i>
Trichlorofluoromethane	34.6	5.0	0.34	ug/l	25.0	ND	138	60-145			
Vinyl chloride	40.4	0.50	0.30	ug/l	25.0	ND	162	45-140			<i>M1</i>
Surrogate: Dibromofluoromethane	26.6			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	27.1			ug/l	25.0		108	80-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07 Received: 02/19/07

Report Number: IQB2023

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21011 Extracted: 02/21/0'	7										
	<u> </u>										
Matrix Spike Dup Analyzed: 02/21/2007	7 (7B21011-N	ASD1)			Sou	rce: IQB	2021-01				
Benzene	28.9	1.0	0.28	ug/l	25.0	ND	116	65-125	13	20	
Bromodichloromethane	29.9	2.0	0.30	ug/l	25.0	ND	120	70-135	13	20	
Bromoform	25.6	5.0	0.40	ug/l	25.0	ND	102	55-135	9	25	
Bromomethane	33.5	5.0	0.42	ug/l	25.0	ND	134	55-145	13	25	
Carbon tetrachloride	29.7	0.50	0.28	ug/l	25.0	ND	119	65-140	14	25	
Chlorobenzene	29.5	2.0	0.36	ug/l	25.0	ND	118	75-125	12	20	
Chloroethane	28.8	5.0	0.40	ug/l	25.0	ND	115	55-140	12	25	
Chloroform	29.4	2.0	0.33	ug/l	25.0	ND	118	65-135	13	20	
Chloromethane	39.2	5.0	0.40	ug/l	25.0	ND	157	45-145	11	25	M1
Dibromochloromethane	31.8	2.0	0.28	ug/l	25.0	ND	127	65-140	10	25	
1,2-Dichlorobenzene	30.5	2.0	0.32	ug/l	25.0	ND	122	75-125	7	20	
1,3-Dichlorobenzene	30.1	2.0	0.35	ug/l	25.0	ND	120	75-125	10	20	
1,4-Dichlorobenzene	29.4	2.0	0.37	ug/l	25.0	ND	118	75-125	9	20	
1,1-Dichloroethane	29.5	2.0	0.27	ug/l	25.0	ND	118	65-130	12	20	
1,2-Dichloroethane	29.3	0.50	0.28	ug/l	25.0	ND	117	60-140	12	20	
1,1-Dichloroethene	28.0	5.0	0.42	ug/l	25.0	ND	112	60-130	10	20	
trans-1,2-Dichloroethene	29.8	2.0	0.27	ug/l	25.0	ND	119	65-130	13	20	
1,2-Dichloropropane	30.2	2.0	0.35	ug/l	25.0	ND	121	65-130	12	20	
cis-1,3-Dichloropropene	27.7	2.0	0.22	ug/l	25.0	ND	111	70-130	13	20	
trans-1,3-Dichloropropene	27.8	2.0	0.32	ug/l	25.0	ND	111	65-135	12	25	
Ethylbenzene	30.7	2.0	0.25	ug/l	25.0	ND	123	65-130	13	20	
Methylene chloride	26.6	5.0	0.95	ug/l	25.0	ND	106	50-135	13	20	
1,1,2,2-Tetrachloroethane	30.7	2.0	0.24	ug/l	25.0	ND	123	55-135	3	30	
Tetrachloroethene	26.6	2.0	0.32	ug/l	25.0	ND	106	65-130	13	20	
Toluene	29.8	2.0	0.36	ug/l	25.0	ND	119	70-125	13	20	
1,1,1-Trichloroethane	30.0	2.0	0.30	ug/l	25.0	ND	120	65-140	12	20	
1,1,2-Trichloroethane	29.4	2.0	0.30	ug/l	25.0	ND	118	65-130	11	25	
Trichloroethene	29.1	2.0	0.26	ug/l	25.0	ND	116	65-125	14	20	
Trichlorofluoromethane	30.4	5.0	0.34	ug/l	25.0	ND	122	60-145	13	25	
Vinyl chloride	35.3	0.50	0.30	ug/l	25.0	ND	141	45-140	13	30	M1
Surrogate: Dibromofluoromethane	26.4			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023 Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21011 Extracted: 02/21/07	-										
Blank Analyzed: 02/21/2007 (7B21011-B	LK1)										
Acrolein	ND	50	4.6	ug/l							
Acrylonitrile	ND	50	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: Dibromofluoromethane	22.2			ug/l	25.0		89	80-120			
Surrogate: Toluene-d8	25.0			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
LCS Analyzed: 02/21/2007 (7B21011-BS	1)										
2-Chloroethyl vinyl ether	24.0	5.0	1.8	ug/l	25.0		96	25-170			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.7			ug/l	25.0		107	80-120			
Matrix Spike Analyzed: 02/21/2007 (7B2	1011-MS1)				Sou	rce: IQB	2021-01				
2-Chloroethyl vinyl ether	27.2	5.0	1.8	ug/l	25.0	ND	109	25-170			
Surrogate: Dibromofluoromethane	26.6			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	27.1			ug/l	25.0		108	80-120			
Matrix Spike Dup Analyzed: 02/21/2007	(7B21011-M	(SD1)			Sou	rce: IQB	2021-01				
2-Chloroethyl vinyl ether	24.8	5.0	1.8	ug/l	25.0	ND	99	25-170	9	25	
Surrogate: Dibromofluoromethane	26.4			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			

Result %REC Limits

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

RPD

RPD

Limit

Data

Qualifiers

Report Number: IQB2023 Received: 02/19/07

Spike

Source

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Reporting

		Keporung			Spike
Analyte	Result	Limit	MDL	Units	Level
Batch: 7B21110 Extracted: 02/2	21/07				
Blank Analyzed: 02/23/2007 (7B211	10-BLK1)				
Acenaphthene	ND	10	2.0	ug/l	
Acenaphthylene	ND	10	2.0	ug/l	
Aniline	ND	10	2.5	ug/l	
Anthracene	ND	10	2.0	ug/l	
Benzidine	ND	20	8.5	ug/l	
Benzoic acid	ND	20	8.5	ug/l	
Benzo(a)anthracene	ND	10	2.0	ug/l	
Benzo(b)fluoranthene	ND	10	2.0	ug/l	
Benzo(k)fluoranthene	ND	10	2.0	ug/l	
Benzo(g,h,i)perylene	ND	10	3.0	ug/l	
Benzo(a)pyrene	ND	10	2.0	ug/l	
Benzyl alcohol	ND	20	2.5	ug/l	
Bis(2-chloroethoxy)methane	ND	10	2.0	ug/l	
Bis(2-chloroethyl)ether	ND	10	2.5	ug/l	
Bis(2-chloroisopropyl)ether	ND	10	2.5	ug/l	
Bis(2-ethylhexyl)phthalate	ND	50	4.0	ug/l	
4-Bromophenyl phenyl ether	ND	10	2.5	ug/l	
Butyl benzyl phthalate	ND	20	4.0	ug/l	
4-Chloroaniline	ND	10	2.0	ug/l	
2-Chloronaphthalene	ND	10	2.0	ug/l	
4-Chloro-3-methylphenol	ND	20	2.0	ug/l	
2-Chlorophenol	ND	10	2.0	ug/l	
4-Chlorophenyl phenyl ether	ND	10	2.0	ug/l	
Chrysene	ND	10	2.0	ug/l	
Dibenz(a,h)anthracene	ND	20	3.0	ug/l	
Dibenzofuran	ND	10	2.0	ug/l	
Di-n-butyl phthalate	ND	20	2.0	ug/l	
1,3-Dichlorobenzene	ND	10	3.0	ug/l	
1,4-Dichlorobenzene	ND	10	2.5	ug/l	
1,2-Dichlorobenzene	ND	10	3.0	ug/l	
3,3-Dichlorobenzidine	ND	20	3.0	ug/l	
2,4-Dichlorophenol	ND	10	2.0	ug/l	
Diethyl phthalate	ND	10	2.0	ug/l	
2,4-Dimethylphenol	ND	20	3.5	ug/l	
Dimethyl phthalate	ND	10	2.0	ug/l	

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

RPD

Data

Report Number: IQB2023 Received: 02/19/07

Source

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Spike

Reporting

		reporting			Брис			- in the			Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21110 Extracted: 02/21	1/07										
Blank Analyzed: 02/23/2007 (7B2111	0-BLK1)										
4,6-Dinitro-2-methylphenol	ND	20	4.0	ug/l							
2,4-Dinitrophenol	ND	20	4.5	ug/l							
2,4-Dinitrotoluene	ND	10	2.0	ug/l							
2,6-Dinitrotoluene	ND	10	2.0	ug/l							
Di-n-octyl phthalate	ND	20	2.0	ug/l							
Fluoranthene	ND	10	2.0	ug/l							
Fluorene	ND	10	2.0	ug/l							
Hexachlorobenzene	ND	10	2.5	ug/l							
Hexachlorobutadiene	ND	10	3.5	ug/l							
Hexachlorocyclopentadiene	ND	20	5.0	ug/l							
Hexachloroethane	ND	10	3.0	ug/l							
Indeno(1,2,3-cd)pyrene	ND	20	3.0	ug/l							
Isophorone	ND	10	2.0	ug/l							
2-Methylnaphthalene	ND	10	2.0	ug/l							
2-Methylphenol	ND	10	2.0	ug/l							
4-Methylphenol	ND	10	2.0	ug/l							
Naphthalene	ND	10	2.5	ug/l							
2-Nitroaniline	ND	20	2.0	ug/l							
3-Nitroaniline	ND	20	2.0	ug/l							
4-Nitroaniline	ND	20	2.5	ug/l							
Nitrobenzene	ND	20	2.5	ug/l							
2-Nitrophenol	ND	10	3.5	ug/l							
4-Nitrophenol	ND	20	5.5	ug/l							
N-Nitrosodiphenylamine	ND	10	2.0	ug/l							
N-Nitroso-di-n-propylamine	ND	10	2.5	ug/l							
Pentachlorophenol	ND	20	3.5	ug/l							
Phenanthrene	ND	10	2.0	ug/l							
Phenol	ND	10	2.0	ug/l							
Pyrene	ND	10	2.0	ug/l							
1,2,4-Trichlorobenzene	ND	10	2.5	ug/l							
2,4,5-Trichlorophenol	ND	20	3.0	ug/l							
2,4,6-Trichlorophenol	ND	20	3.0	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	20	2.0	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
				_							

 $except\ in\ full,\ without\ written\ permission\ from\ TestAmerica.$

TestAmerica - Irvine, CA

Michele Chamberlin

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07 Received: 02/19/07

Report Number: IQB2023

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Units	Level	Kesuit	/OKEC	Limits	KI D	Limit	Quanners
Batch: 7B21110 Extracted: 02/21/07	<u>1</u>										
Blank Analyzed: 02/23/2007 (7B21110-B	BLK1)										
Surrogate: Phenol-d6	156			ug/l	200		78	35-120			
Surrogate: 2,4,6-Tribromophenol	202			ug/l	200		101	40-120			
Surrogate: Nitrobenzene-d5	83.6			ug/l	100		84	40-120			
Surrogate: 2-Fluorobiphenyl	85.9			ug/l	100		86	45-120			
Surrogate: Terphenyl-d14	97.3			ug/l	100		97	45-120			
LCS Analyzed: 02/23/2007 (7B21110-BS	51)										MNR1
Acenaphthene	80.7	10	2.0	ug/l	100		81	55-120			
Acenaphthylene	87.1	10	2.0	ug/l	100		87	60-120			
Aniline	73.3	10	2.5	ug/l	100		73	40-120			
Anthracene	86.7	10	2.0	ug/l	100		87	60-120			
Benzidine	153	20	8.5	ug/l	100		153	25-160			
Benzoic acid	72.2	20	8.5	ug/l	100		72	25-120			
Benzo(a)anthracene	87.0	10	2.0	ug/l	100		87	60-120			
Benzo(b)fluoranthene	110	10	2.0	ug/l	100		110	55-125			
Benzo(k)fluoranthene	108	10	2.0	ug/l	100		108	50-125			
Benzo(g,h,i)perylene	119	10	3.0	ug/l	100		119	45-130			
Benzo(a)pyrene	114	10	2.0	ug/l	100		114	55-125			
Benzyl alcohol	72.7	20	2.5	ug/l	100		73	50-120			
Bis(2-chloroethoxy)methane	82.7	10	2.0	ug/l	100		83	55-120			
Bis(2-chloroethyl)ether	67.1	10	2.5	ug/l	100		67	50-120			
Bis(2-chloroisopropyl)ether	68.0	10	2.5	ug/l	100		68	45-120			
Bis(2-ethylhexyl)phthalate	83.3	50	4.0	ug/l	100		83	60-125			
4-Bromophenyl phenyl ether	83.0	10	2.5	ug/l	100		83	55-120			
Butyl benzyl phthalate	82.3	20	4.0	ug/l	100		82	50-125			
4-Chloroaniline	79.5	10	2.0	ug/l	100		80	50-120			
2-Chloronaphthalene	81.7	10	2.0	ug/l	100		82	55-120			
4-Chloro-3-methylphenol	79.8	20	2.0	ug/l	100		80	55-120			
2-Chlorophenol	67.5	10	2.0	ug/l	100		68	45-120			
4-Chlorophenyl phenyl ether	82.3	10	2.0	ug/l	100		82	60-120			
Chrysene	90.2	10	2.0	ug/l	100		90	60-120			
Dibenz(a,h)anthracene	122	20	3.0	ug/l	100		122	50-135			
Dibenzofuran	84.0	10	2.0	ug/l	100		84	60-120			
Di-n-butyl phthalate	84.1	20	2.0	ug/l	100		84	55-125			
1,3-Dichlorobenzene	50.4	10	3.0	ug/l	100		50	35-120			
1,4-Dichlorobenzene	51.4	10	2.5	ug/l	100		51	35-120			
Toot A marine Invine CA											

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21110 Extracted: 02/21/0'	7										
	<u>-</u>										
LCS Analyzed: 02/23/2007 (7B21110-BS	S1)										MNR1
1,2-Dichlorobenzene	54.4	10	3.0	ug/l	100		54	40-120			
3,3-Dichlorobenzidine	74.5	20	3.0	ug/l	100		74	50-135			
2,4-Dichlorophenol	79.7	10	2.0	ug/l	100		80	50-120			
Diethyl phthalate	79.1	10	2.0	ug/l	100		79	50-120			
2,4-Dimethylphenol	70.9	20	3.5	ug/l	100		71	35-120			
Dimethyl phthalate	79.5	10	2.0	ug/l	100		80	25-120			
4,6-Dinitro-2-methylphenol	91.6	20	4.0	ug/l	100		92	40-120			
2,4-Dinitrophenol	102	20	4.5	ug/l	100		102	35-120			
2,4-Dinitrotoluene	83.6	10	2.0	ug/l	100		84	60-120			
2,6-Dinitrotoluene	80.2	10	2.0	ug/l	100		80	60-120			
Di-n-octyl phthalate	81.9	20	2.0	ug/l	100		82	60-130			
Fluoranthene	88.6	10	2.0	ug/l	100		89	55-120			
Fluorene	86.1	10	2.0	ug/l	100		86	60-120			
Hexachlorobenzene	84.2	10	2.5	ug/l	100		84	55-120			
Hexachlorobutadiene	60.9	10	3.5	ug/l	100		61	40-120			
Hexachlorocyclopentadiene	66.6	20	5.0	ug/l	100		67	20-120			
Hexachloroethane	47.0	10	3.0	ug/l	100		47	35-120			
Indeno(1,2,3-cd)pyrene	113	20	3.0	ug/l	100		113	45-135			
Isophorone	67.8	10	2.0	ug/l	100		68	50-120			
2-Methylnaphthalene	72.7	10	2.0	ug/l	100		73	50-120			
2-Methylphenol	69.6	10	2.0	ug/l	100		70	50-120			
4-Methylphenol	72.7	10	2.0	ug/l	100		73	45-120			
Naphthalene	68.9	10	2.5	ug/l	100		69	50-120			
2-Nitroaniline	90.3	20	2.0	ug/l	100		90	60-120			
3-Nitroaniline	85.3	20	2.0	ug/l	100		85	55-120			
4-Nitroaniline	88.8	20	2.5	ug/l	100		89	50-125			
Nitrobenzene	70.0	20	2.5	ug/l	100		70	50-120			
2-Nitrophenol	77.1	10	3.5	ug/l	100		77	45-120			
4-Nitrophenol	88.4	20	5.5	ug/l	100		88	40-120			
N-Nitrosodiphenylamine	79.2	10	2.0	ug/l	100		79	55-120			
N-Nitroso-di-n-propylamine	68.1	10	2.5	ug/l	100		68	45-120			
Pentachlorophenol	104	20	3.5	ug/l	100		104	45-125			
Phenanthrene	87.3	10	2.0	ug/l	100		87	60-120			
Phenol	69.0	10	2.0	ug/l	100		69	45-120			
Pyrene	92.1	10	2.0	ug/l	100		92	50-125			

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023 Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21110 Extracted: 02/2	1/07										
LCS Analyzed: 02/23/2007 (7B21110	-BS1)										MNR1
1,2,4-Trichlorobenzene	63.4	10	2.5	ug/l	100		63	45-120			
2,4,5-Trichlorophenol	84.8	20	3.0	ug/l	100		85	50-120			
2,4,6-Trichlorophenol	86.2	20	3.0	ug/l	100		86	50-120			
1,2-Diphenylhydrazine/Azobenzene	76.2	20	2.0	ug/l	100		76	55-120			
N-Nitrosodimethylamine	63.3	20	2.5	ug/l	100		63	40-120			
Surrogate: 2-Fluorophenol	123			ug/l	200		62	30-120			
Surrogate: Phenol-d6	134			ug/l	200		67	35-120			
Surrogate: 2,4,6-Tribromophenol	185			ug/l	200		92	40-120			
Surrogate: Nitrobenzene-d5	72.0			ug/l	100		72	40-120			
Surrogate: 2-Fluorobiphenyl	81.3			ug/l	100		81	45-120			
Surrogate: Terphenyl-d14	89.0			ug/l	100		89	45-120			
LCS Dup Analyzed: 02/23/2007 (7B2	21110-BSD1)										
Acenaphthene	93.8	10	2.0	ug/l	100		94	55-120	15	20	
Acenaphthylene	104	10	2.0	ug/l	100		104	60-120	18	20	
Aniline	77.9	10	2.5	ug/l	100		78	40-120	6	30	
Anthracene	97.5	10	2.0	ug/l	100		98	60-120	12	20	
Benzidine	178	20	8.5	ug/l	100		178	25-160	15	35	L
Benzoic acid	75.5	20	8.5	ug/l	100		76	25-120	4	30	
Benzo(a)anthracene	95.3	10	2.0	ug/l	100		95	60-120	9	20	
Benzo(b)fluoranthene	119	10	2.0	ug/l	100		119	55-125	8	25	
Benzo(k)fluoranthene	118	10	2.0	ug/l	100		118	50-125	9	20	
Benzo(g,h,i)perylene	133	10	3.0	ug/l	100		133	45-130	11	25	L
Benzo(a)pyrene	125	10	2.0	ug/l	100		125	55-125	9	25	
Benzyl alcohol	84.3	20	2.5	ug/l	100		84	50-120	15	20	
Bis(2-chloroethoxy)methane	98.7	10	2.0	ug/l	100		99	55-120	18	20	
Bis(2-chloroethyl)ether	80.5	10	2.5	ug/l	100		80	50-120	18	20	
Bis(2-chloroisopropyl)ether	80.3	10	2.5	ug/l	100		80	45-120	17	20	
Bis(2-ethylhexyl)phthalate	89.2	50	4.0	ug/l	100		89	60-125	7	20	
4-Bromophenyl phenyl ether	95.3	10	2.5	ug/l	100		95	55-120	14	25	
Butyl benzyl phthalate	89.2	20	4.0	ug/l	100		89	50-125	8	20	
4-Chloroaniline	92.5	10	2.0	ug/l	100		92	50-120	15	25	
2-Chloronaphthalene	97.1	10	2.0	ug/l	100		97	55-120	17	20	
4-Chloro-3-methylphenol	88.8	20	2.0	ug/l	100		89	55-120	11	25	
2-Chlorophenol	80.6	10	2.0	ug/l	100		81	45-120	18	25	
4-Chlorophenyl phenyl ether	92.5	10	2.0	ug/l	100		92	60-120	12	20	
Toot Amorina Invina CA											

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21110 Extracted: 02/21/0	7_										
LCS Dup Analyzed: 02/23/2007 (7B211											
Chrysene	98.6	10	2.0	ug/l	100		99	60-120	9	20	
Dibenz(a,h)anthracene	134	20	3.0	ug/l	100		134	50-135	9	25	
Dibenzofuran	96.1	10	2.0	ug/l	100		96	60-120	13	20	
Di-n-butyl phthalate	87.9	20	2.0	ug/l	100		88	55-125	4	20	
1,3-Dichlorobenzene	60.3	10	3.0	ug/l	100		60	35-120	18	25	
1,4-Dichlorobenzene	62.2	10	2.5	ug/l	100		62	35-120	19	25	
1,2-Dichlorobenzene	64.9	10	3.0	ug/l	100		65	40-120	18	25	
3,3-Dichlorobenzidine	97.3	20	3.0	ug/l	100		97	50-135	27	25	R-7
2,4-Dichlorophenol	97.1	10	2.0	ug/l	100		97	50-120	20	20	
Diethyl phthalate	85.8	10	2.0	ug/l	100		86	50-120	8	30	
2,4-Dimethylphenol	78.8	20	3.5	ug/l	100		79	35-120	11	25	
Dimethyl phthalate	87.3	10	2.0	ug/l	100		87	25-120	9	30	
4,6-Dinitro-2-methylphenol	97.4	20	4.0	ug/l	100		97	40-120	6	25	
2,4-Dinitrophenol	106	20	4.5	ug/l	100		106	35-120	4	25	
2,4-Dinitrotoluene	86.5	10	2.0	ug/l	100		86	60-120	3	20	
2,6-Dinitrotoluene	87.5	10	2.0	ug/l	100		88	60-120	9	20	
Di-n-octyl phthalate	90.9	20	2.0	ug/l	100		91	60-130	10	20	
Fluoranthene	98.3	10	2.0	ug/l	100		98	55-120	10	20	
Fluorene	96.0	10	2.0	ug/l	100		96	60-120	11	20	
Hexachlorobenzene	97.3	10	2.5	ug/l	100		97	55-120	14	20	
Hexachlorobutadiene	78.5	10	3.5	ug/l	100		78	40-120	25	25	
Hexachlorocyclopentadiene	85.6	20	5.0	ug/l	100		86	20-120	25	30	
Hexachloroethane	56.8	10	3.0	ug/l	100		57	35-120	19	25	
Indeno(1,2,3-cd)pyrene	123	20	3.0	ug/l	100		123	45-135	8	25	
Isophorone	78.1	10	2.0	ug/l	100		78	50-120	14	20	
2-Methylnaphthalene	86.3	10	2.0	ug/l	100		86	50-120	17	20	
2-Methylphenol	82.6	10	2.0	ug/l	100		83	50-120	17	20	
4-Methylphenol	80.4	10	2.0	ug/l	100		80	45-120	10	20	
Naphthalene	84.6	10	2.5	ug/l	100		85	50-120	20	20	
2-Nitroaniline	103	20	2.0	ug/l	100		103	60-120	13	20	
3-Nitroaniline	93.8	20	2.0	ug/l	100		94	55-120	9	25	
4-Nitroaniline	92.2	20	2.5	ug/l	100		92	50-125	4	20	
Nitrobenzene	85.5	20	2.5	ug/l	100		86	50-120	20	25	
2-Nitrophenol	97.1	10	3.5	ug/l	100		97	45-120	23	25	
4-Nitrophenol	90.3	20	5.5	ug/l	100		90	40-120	2	30	
1				3							

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023 Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21110 Extracted: 02/21/07	<u>7_</u>										
LCS Dup Analyzed: 02/23/2007 (7B2111	(0-BSD1)										
N-Nitrosodiphenylamine	91.8	10	2.0	ug/l	100		92	55-120	15	20	
N-Nitroso-di-n-propylamine	75.3	10	2.5	ug/l	100		75	45-120	10	20	
Pentachlorophenol	111	20	3.5	ug/l	100		111	45-125	7	25	
Phenanthrene	98.1	10	2.0	ug/l	100		98	60-120	12	20	
Phenol	79.9	10	2.0	ug/l	100		80	45-120	15	25	
Pyrene	96.9	10	2.0	ug/l	100		97	50-125	5	25	
1,2,4-Trichlorobenzene	80.8	10	2.5	ug/l	100		81	45-120	24	20	R-7
2,4,5-Trichlorophenol	98.3	20	3.0	ug/l	100		98	50-120	15	30	
2,4,6-Trichlorophenol	100	20	3.0	ug/l	100		100	50-120	15	30	
1,2-Diphenylhydrazine/Azobenzene	91.0	20	2.0	ug/l	100		91	55-120	18	25	
N-Nitrosodimethylamine	76.9	20	2.5	ug/l	100		77	40-120	19	20	
Surrogate: 2-Fluorophenol	150			ug/l	200		75	30-120			
Surrogate: Phenol-d6	153			ug/l	200		76	35-120			
Surrogate: 2,4,6-Tribromophenol	205			ug/l	200		102	40-120			
Surrogate: Nitrobenzene-d5	88.3			ug/l	100		88	40-120			
Surrogate: 2-Fluorobiphenyl	95.7			ug/l	100		96	45-120			
Surrogate: Terphenyl-d14	93.3			ug/l	100		93	45-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Lime	WIDE	Cints	Level	Result	70KEC	Limits	KI D	Limit	Quanners
Batch: 7B22132 Extracted: 02/22/	<u>07</u>										
Plank Analyzada 02/22/2007 (7D22122	DI I/1)										
Blank Analyzed: 02/23/2007 (7B22132-		0.10	0.020	/1							
Aldrin	ND	0.10	0.030	ug/l							
alpha-BHC	ND	0.10	0.020	ug/l							
beta-BHC	ND	0.10	0.040	ug/l							
delta-BHC	ND	0.20	0.020	ug/l							
gamma-BHC (Lindane)	ND	0.10	0.030	ug/l							
Chlordane	ND	1.0	0.20	ug/l							
4,4'-DDD	ND	0.10	0.030	ug/l							
4,4'-DDE	ND	0.10	0.030	ug/l							
4,4'-DDT	ND	0.10	0.030	ug/l							
Dieldrin	ND	0.10	0.030	ug/l							
Endosulfan I	ND	0.10	0.030	ug/l							
Endosulfan II	ND	0.10	0.040	ug/l							
Endosulfan sulfate	ND	0.20	0.050	ug/l							
Endrin	ND	0.10	0.030	ug/l							
Endrin aldehyde	ND	0.10	0.050	ug/l							
Endrin ketone	ND	0.10	0.040	ug/l							
Heptachlor	ND	0.10	0.030	ug/l							
Heptachlor epoxide	ND	0.10	0.030	ug/l							
Methoxychlor	ND	0.10	0.040	ug/l							
Toxaphene	ND	5.0	1.5	ug/l							
Surrogate: Tetrachloro-m-xylene	0.389			ug/l	0.500		78	35-115			
Surrogate: Decachlorobiphenyl	0.428			ug/l	0.500		86	45-120			
LCS Analyzed: 02/23/2007 (7B22132-F	RS1)										MNR1
Aldrin	0.361	0.10	0.030	ug/l	0.500		72	35-120			1121 1212
alpha-BHC	0.403	0.10	0.020	ug/l	0.500		81	45-120			
beta-BHC	0.410	0.10	0.040	ug/l	0.500		82	50-120			
delta-BHC	0.408	0.20	0.020	ug/l	0.500		82	50-120			
gamma-BHC (Lindane)	0.396	0.10	0.030	ug/l	0.500		79	40-120			
4,4'-DDD	0.403	0.10	0.030	ug/l	0.500		81	55-120			
4,4'-DDE	0.403	0.10	0.030	ug/l	0.500		77	50-120			
4,4'-DDE 4,4'-DDT	0.427	0.10		•	0.500		85	55-120			
Dieldrin			0.030	ug/l							
Endosulfan I	0.376	0.10	0.030	ug/l	0.500		75 80	50-120			
	0.402 0.422	0.10	0.030	ug/l	0.500			50-120			
Endosulfan II		0.10	0.040	ug/l	0.500		84	55-120			
Endosulfan sulfate	0.420	0.20	0.050	ug/l	0.500		84	60-120			
TestAmerica - Irvine, CA											

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22132 Extracted: 02/22/07	,										
	_										
LCS Analyzed: 02/23/2007 (7B22132-BS	1)										MNR1
Endrin	0.392	0.10	0.030	ug/l	0.500		78	55-120			
Endrin aldehyde	0.421	0.10	0.050	ug/l	0.500		84	55-120			
Endrin ketone	0.407	0.10	0.040	ug/l	0.500		81	55-120			
Heptachlor	0.391	0.10	0.030	ug/l	0.500		78	40-115			
Heptachlor epoxide	0.406	0.10	0.030	ug/l	0.500		81	50-120			
Methoxychlor	0.415	0.10	0.040	ug/l	0.500		83	55-120			
Surrogate: Tetrachloro-m-xylene	0.372			ug/l	0.500		74	35-115			
Surrogate: Decachlorobiphenyl	0.389			ug/l	0.500		78	45-120			
LCS Dup Analyzed: 02/23/2007 (7B2213	2-BSD1)										
Aldrin	0.339	0.10	0.030	ug/l	0.500		68	35-120	6	30	
alpha-BHC	0.376	0.10	0.020	ug/l	0.500		75	45-120	7	30	
beta-BHC	0.397	0.10	0.040	ug/l	0.500		79	50-120	3	30	
delta-BHC	0.393	0.20	0.020	ug/l	0.500		79	50-120	4	30	
gamma-BHC (Lindane)	0.377	0.10	0.030	ug/l	0.500		75	40-120	5	30	
4,4'-DDD	0.413	0.10	0.030	ug/l	0.500		83	55-120	2	30	
4,4'-DDE	0.383	0.10	0.030	ug/l	0.500		77	50-120	0	30	
4,4'-DDT	0.419	0.10	0.030	ug/l	0.500		84	55-120	2	30	
Dieldrin	0.369	0.10	0.030	ug/l	0.500		74	50-120	2	30	
Endosulfan I	0.391	0.10	0.030	ug/l	0.500		78	50-120	3	30	
Endosulfan II	0.409	0.10	0.040	ug/l	0.500		82	55-120	3	30	
Endosulfan sulfate	0.411	0.20	0.050	ug/l	0.500		82	60-120	2	30	
Endrin	0.377	0.10	0.030	ug/l	0.500		75	55-120	4	30	
Endrin aldehyde	0.410	0.10	0.050	ug/l	0.500		82	55-120	3	30	
Endrin ketone	0.403	0.10	0.040	ug/l	0.500		81	55-120	1	30	
Heptachlor	0.365	0.10	0.030	ug/l	0.500		73	40-115	7	30	
Heptachlor epoxide	0.384	0.10	0.030	ug/l	0.500		77	50-120	6	30	
Methoxychlor	0.406	0.10	0.040	ug/l	0.500		81	55-120	2	30	
Surrogate: Tetrachloro-m-xylene	0.345			ug/l	0.500		69	35-115			
Surrogate: Decachlorobiphenyl	0.392			ug/l	0.500		78	45-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023 Received: 02/19/07

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22132 Extracted: 02/22	<u>/07</u>										
Blank Analyzed: 02/23/2007 (7B22132	2-BLK1)										
Aroclor 1016	ND	1.0	0.35	ug/l							
Aroclor 1221	ND	1.0	0.10	ug/l							
Aroclor 1232	ND	1.0	0.25	ug/l							
Aroclor 1242	ND	1.0	0.25	ug/l							
Aroclor 1248	ND	1.0	0.25	ug/l							
Aroclor 1254	ND	1.0	0.25	ug/l							
Aroclor 1260	ND	1.0	0.30	ug/l							
Surrogate: Decachlorobiphenyl	0.531			ug/l	0.500		106	45-120			
LCS Analyzed: 02/23/2007 (7B22132-	BS2)										MNR1
Aroclor 1016	3.53	1.0	0.35	ug/l	4.00		88	45-115			
Aroclor 1260	3.73	1.0	0.30	ug/l	4.00		93	55-115			
Surrogate: Decachlorobiphenyl	0.494			ug/l	0.500		99	45-120			
LCS Dup Analyzed: 02/23/2007 (7B22	2132-BSD2)										
Aroclor 1016	3.11	1.0	0.35	ug/l	4.00		78	45-115	13	30	
Aroclor 1260	3.49	1.0	0.30	ug/l	4.00		87	55-115	7	25	
Surrogate: Decachlorobiphenyl	0.485			ug/l	0.500		97	45-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21063 Extracted: 02/21/	07										
Blank Analyzed: 02/21/2007 (7B21063	-BLK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	0.0216	0.050	0.020	mg/l							J
Calcium	0.0543	0.10	0.050	mg/l							J
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.0080	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	3.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	15	ug/l							
LCS Analyzed: 02/21/2007 (7B21063-I	BS1)										
Aluminum	510	50	40	ug/l	500		102	85-115			
Arsenic	506	10	7.0	ug/l	500		101	85-115			
Beryllium	518	2.0	0.90	ug/l	500		104	85-115			
Boron	0.535	0.050	0.020	mg/l	0.500		107	85-115			
Calcium	2.64	0.10	0.050	mg/l	2.50		106	85-115			
Chromium	511	5.0	2.0	ug/l	500		102	85-115			
Iron	0.524	0.040	0.015	mg/l	0.500		105	85-115			
Magnesium	2.60	0.020	0.0080	mg/l	2.50		104	85-115			
Nickel	530	10	2.0	ug/l	500		106	85-115			
Selenium	511	10	8.0	ug/l	500		102	85-115			
Silver	262	10	3.0	ug/l	250		105	85-115			
Vanadium	519	10	3.0	ug/l	500		104	85-115			
Zinc	502	20	15	ug/l	500		100	85-115			
				-							

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023 Received: 02/19/07

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21063 Extracted: 02/21/07	,										
Buten. / B21000 Extracted. 02/21/0/	_										
Matrix Spike Analyzed: 02/21/2007 (7B2	21063-MS1)				Sou	rce: IQB	2022-01				
Aluminum	1110	50	40	ug/l	500	550	112	70-130			
Arsenic	543	10	7.0	ug/l	500	ND	109	70-130			
Beryllium	524	2.0	0.90	ug/l	500	ND	105	70-130			
Boron	0.593	0.050	0.020	mg/l	0.500	0.065	106	70-130			
Calcium	5.66	0.10	0.050	mg/l	2.50	3.2	98	70-130			
Chromium	524	5.0	2.0	ug/l	500	7.7	103	70-130			
Iron	1.12	0.040	0.015	mg/l	0.500	0.62	100	70-130			
Magnesium	3.07	0.020	0.0080	mg/l	2.50	0.44	105	70-130			
Nickel	535	10	2.0	ug/l	500	ND	107	70-130			
Selenium	526	10	8.0	ug/l	500	ND	105	70-130			
Silver	271	10	3.0	ug/l	250	ND	108	70-130			
Vanadium	574	10	3.0	ug/l	500	44	106	70-130			
Zinc	533	20	15	ug/l	500	ND	107	70-130			
Matrix Spike Dup Analyzed: 02/21/2007	(7B21063-MS	SD1)			Sou	rce: IQB2	2022-01				
Aluminum	1120	50	40	ug/l	500	550	114	70-130	1	20	
Arsenic	525	10	7.0	ug/l	500	ND	105	70-130	3	20	
Beryllium	525	2.0	0.90	ug/l	500	ND	105	70-130	0	20	
Boron	0.588	0.050	0.020	mg/l	0.500	0.065	105	70-130	1	20	
Calcium	5.65	0.10	0.050	mg/l	2.50	3.2	98	70-130	0	20	
Chromium	515	5.0	2.0	ug/l	500	7.7	101	70-130	2	20	
Iron	1.10	0.040	0.015	mg/l	0.500	0.62	96	70-130	2	20	
Magnesium	2.98	0.020	0.0080	mg/l	2.50	0.44	102	70-130	3	20	
Nickel	525	10	2.0	ug/l	500	ND	105	70-130	2	20	
Selenium	526	10	8.0	ug/l	500	ND	105	70-130	0	20	
Silver	263	10	3.0	ug/l	250	ND	105	70-130	3	20	
Vanadium	567	10	3.0	ug/l	500	44	105	70-130	1	20	
Zinc	517	20	15	ug/l	500	ND	103	70-130	3	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21137 Extracted: 02/21/07											
Dateil. / D2113/ Extracted. 02/21/07	_										
Blank Analyzed: 02/21/2007 (7B21137-B	LK1)										
Antimony	ND	2.0	0.050	ug/l							
Cadmium	0.135	1.0	0.025	ug/l							J
Copper	0.337	2.0	0.25	ug/l							J
Lead	ND	1.0	0.040	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 02/21/2007 (7B21137-BS	1)										
Antimony	78.5	2.0	0.050	ug/l	80.0		98	85-115			
Cadmium	79.6	1.0	0.025	ug/l	80.0		100	85-115			
Copper	79.6	2.0	0.25	ug/l	80.0		100	85-115			
Lead	75.3	1.0	0.040	ug/l	80.0		94	85-115			
Thallium	76.0	1.0	0.15	ug/l	80.0		95	85-115			
Matrix Spike Analyzed: 02/21/2007 (7B2	1137-MS1)				Sou	rce: IQB	2021-01				
Antimony	80.9	2.0	0.050	ug/l	80.0	0.49	101	70-130			
Cadmium	79.8	1.0	0.025	ug/l	80.0	0.056	100	70-130			
Copper	81.8	2.0	0.25	ug/l	80.0	3.7	98	70-130			
Lead	76.5	1.0	0.040	ug/l	80.0	1.7	94	70-130			
Thallium	77.2	1.0	0.15	ug/l	80.0	ND	96	70-130			
Matrix Spike Analyzed: 02/21/2007 (7B2	1137-MS2)				Sou	rce: IQB	2054-04				
Antimony	82.8	2.0	0.050	ug/l	80.0	0.15	103	70-130			
Cadmium	77.1	1.0	0.025	ug/l	80.0	ND	96	70-130			
Copper	75.0	2.0	0.25	ug/l	80.0	2.8	90	70-130			
Lead	72.2	1.0	0.040	ug/l	80.0	0.13	90	70-130			
Thallium	72.9	1.0	0.15	ug/l	80.0	ND	91	70-130			
Matrix Spike Dup Analyzed: 02/21/2007	(7B21137-M	ISD1)			Sou	rce: IQB	2021-01				
Antimony	79.9	2.0	0.050	ug/l	80.0	0.49	99	70-130	1	20	
Cadmium	78.8	1.0	0.025	ug/l	80.0	0.056	98	70-130	1	20	
Copper	81.5	2.0	0.25	ug/l	80.0	3.7	97	70-130	0	20	
Lead	76.5	1.0	0.040	ug/l	80.0	1.7	94	70-130	0	20	
Thallium	76.6	1.0	0.15	ug/l	80.0	ND	96	70-130	1	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023 Received: 02/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22143 Extracted: 02/22/07	<u> </u>										
Blank Analyzed: 02/23/2007 (7B22143-B	SLK1)										
Aluminum	ND	0.050	0.040	mg/l							
Arsenic	ND	0.010	0.0070	mg/l							
Beryllium	ND	0.0020	0.00090	mg/l							
Boron	0.0243	0.050	0.020	mg/l							J
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	0.0050	0.0020	mg/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.0080	mg/l							
Nickel	ND	0.010	0.0020	mg/l							
Selenium	ND	0.010	0.0080	mg/l							
Silver	ND	0.010	0.0060	mg/l							
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							
Vanadium	ND	0.010	0.0030	mg/l							
Zinc	ND	0.020	0.0040	mg/l							
LCS Analyzed: 02/23/2007 (7B22143-BS	1)										
Aluminum	0.446	0.050	0.040	mg/l	0.500		89	85-115			
Arsenic	0.508	0.010	0.0070	mg/l	0.500		102	85-115			
Beryllium	0.511	0.0020	0.00090	mg/l	0.500		102	85-115			
Boron	0.500	0.050	0.020	mg/l	0.500		100	85-115			
Calcium	2.48	0.10	0.050	mg/l	2.50		99	85-115			
Chromium	0.500	0.0050	0.0020	mg/l	0.500		100	85-115			
Iron	0.507	0.040	0.015	mg/l	0.500		101	85-115			
Magnesium	2.50	0.020	0.0080	mg/l	2.50		100	85-115			
Nickel	0.503	0.010	0.0020	mg/l	0.500		101	85-115			
Selenium	0.494	0.010	0.0080	mg/l	0.500		99	85-115			
Silver	0.252	0.010	0.0060	mg/l	0.250		101	85-115			
Vanadium	0.506	0.010	0.0030	mg/l	0.500		101	85-115			
Zinc	0.485	0.020	0.0040	mg/l	0.500		97	85-115			

0/ DEC

DDD

Data

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023 Received: 02/19/07

Spiles Source

METHOD BLANK/QC DATA

DISSOLVED METALS

Donouting

		Reporting	;		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22143 Extracted: 02/22/07	_										
	_										
Matrix Spike Analyzed: 02/23/2007 (7B2	2143-MS1)				Sou	rce: IQB	2022-01				
Aluminum	0.483	0.050	0.040	mg/l	0.500	ND	97	70-130			
Arsenic	0.479	0.010	0.0070	mg/l	0.500	ND	96	70-130			
Beryllium	0.482	0.0020	0.00090	mg/l	0.500	ND	96	70-130			
Boron	0.535	0.050	0.020	mg/l	0.500	0.062	95	70-130			
Calcium	4.45	0.10	0.050	mg/l	2.50	2.1	94	70-130			
Chromium	0.470	0.0050	0.0020	mg/l	0.500	0.0046	93	70-130			
Iron	0.498	0.040	0.015	mg/l	0.500	0.027	94	70-130			
Magnesium	2.60	0.020	0.0080	mg/l	2.50	0.26	94	70-130			
Nickel	0.471	0.010	0.0020	mg/l	0.500	ND	94	70-130			
Selenium	0.462	0.010	0.0080	mg/l	0.500	ND	92	70-130			
Silver	0.247	0.010	0.0060	mg/l	0.250	ND	99	70-130			
Vanadium	0.509	0.010	0.0030	mg/l	0.500	0.037	94	70-130			
Zinc	0.473	0.020	0.0040	mg/l	0.500	0.0043	94	70-130			
Matrix Spike Dup Analyzed: 02/23/2007	(7B22143-MS	SD1)			Sou	rce: IQB	2022-01				
Aluminum	0.480	0.050	0.040	mg/l	0.500	ND	96	70-130	1	20	
Arsenic	0.486	0.010	0.0070	mg/l	0.500	ND	97	70-130	1	20	
Beryllium	0.490	0.0020	0.00090	mg/l	0.500	ND	98	70-130	2	20	
Boron	0.530	0.050	0.020	mg/l	0.500	0.062	94	70-130	1	20	
Calcium	4.49	0.10	0.050	mg/l	2.50	2.1	96	70-130	1	20	
Chromium	0.475	0.0050	0.0020	mg/l	0.500	0.0046	94	70-130	1	20	
Iron	0.505	0.040	0.015	mg/l	0.500	0.027	96	70-130	1	20	
Magnesium	2.62	0.020	0.0080	mg/l	2.50	0.26	94	70-130	1	20	
Nickel	0.474	0.010	0.0020	mg/l	0.500	ND	95	70-130	1	20	
Selenium	0.470	0.010	0.0080	mg/l	0.500	ND	94	70-130	2	20	
Silver	0.247	0.010	0.0060	mg/l	0.250	ND	99	70-130	0	20	
Vanadium	0.513	0.010	0.0030	mg/l	0.500	0.037	95	70-130	1	20	
Zinc	0.474	0.020	0.0040	mg/l	0.500	0.0043	94	70-130	0	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023 Received: 02/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B23073 Extracted: 02/23/07	_										
	_										
Blank Analyzed: 02/23/2007 (7B23073-Bl	LK1)										
Antimony	ND	2.0	0.050	ug/l							
Cadmium	ND	1.0	0.050	ug/l							
Copper	ND	2.0	0.40	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 02/23/2007 (7B23073-BS1	1)										
Antimony	84.3	2.0	0.050	ug/l	80.0		105	85-115			
Cadmium	81.9	1.0	0.050	ug/l	80.0		102	85-115			
Copper	80.6	2.0	0.40	ug/l	80.0		101	85-115			
Lead	81.0	1.0	0.10	ug/l	80.0		101	85-115			
Thallium	82.2	1.0	0.15	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 02/23/2007 (7B2	3073-MS1)				Sou	rce: IQB	2024-01				
Antimony	94.4	2.0	0.050	ug/l	80.0	1.7	116	70-130			
Cadmium	85.0	1.0	0.050	ug/l	80.0	ND	106	70-130			
Copper	82.7	2.0	0.40	ug/l	80.0	0.80	102	70-130			
Lead	73.9	1.0	0.10	ug/l	80.0	ND	92	70-130			
Thallium	77.9	1.0	0.15	ug/l	80.0	ND	97	70-130			
Matrix Spike Dup Analyzed: 02/23/2007	(7B23073-M	SD1)			Sou	rce: IQB	2024-01				
Antimony	94.9	2.0	0.050	ug/l	80.0	1.7	116	70-130	1	20	
Cadmium	85.0	1.0	0.050	ug/l	80.0	ND	106	70-130	0	20	
Copper	83.2	2.0	0.40	ug/l	80.0	0.80	103	70-130	1	20	
Lead	75.0	1.0	0.10	ug/l	80.0	ND	94	70-130	1	20	
Thallium	79.0	1.0	0.15	ug/l	80.0	ND	99	70-130	1	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B20044 Extracted: 02/20/07	•										
	_										
Blank Analyzed: 02/20/2007 (7B20044-B	LK1)										
Chloride	ND	0.50	0.15	mg/l							
Fluoride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.15	0.080	mg/l							
Sulfate	ND	0.50	0.45	mg/l							
LCS Analyzed: 02/20/2007 (7B20044-BS	1)										
Chloride	4.96	0.50	0.15	mg/l	5.00		99	90-110			
Fluoride	4.90	0.50	0.15	mg/l	5.00		98	90-110			
Sulfate	10.2	0.50	0.45	mg/l	10.0		102	90-110			
Matrix Spike Analyzed: 02/20/2007 (7B2	0044-MS1)				Sou	rce: IQB	2022-01				
Chloride	5.66	0.50	0.15	mg/l	5.00	0.73	99	80-120			
Fluoride	5.12	0.50	0.15	mg/l	5.00	0.27	97	80-120			
Sulfate	17.2	0.50	0.45	mg/l	10.0	7.2	100	80-120			
Matrix Spike Dup Analyzed: 02/20/2007	(7B20044-M	(SD1)			Sou	rce: IQB	2022-01				
Chloride	5.58	0.50	0.15	mg/l	5.00	0.73	97	80-120	1	20	
Fluoride	5.15	0.50	0.15	mg/l	5.00	0.27	98	80-120	1	20	
Sulfate	17.0	0.50	0.45	mg/l	10.0	7.2	98	80-120	1	20	
Batch: 7B21063 Extracted: 02/21/07	<u>, </u>										
Blank Analyzed: 02/21/2007 (7B21063-B	LK1)										
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							
Batch: 7B21150 Extracted: 02/21/07	<u>'</u>										
Plank Analyzadi 02/22/2007 (7P21150 P	I I/1)										
Blank Analyzed: 02/22/2007 (7B21150-B	,	10	10	Л							
Total Suspended Solids	ND	10	10	mg/l							

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21150 Extracted: 02/21/07	,										
											
LCS Analyzed: 02/22/2007 (7B21150-BS	1)										
Total Suspended Solids	955	10	10	mg/l	1000		96	85-115			
Duplicate Analyzed: 02/22/2007 (7B2115	0-DUP1)				Sou	rce: IQB	2024-01				
Total Suspended Solids	29.0	10	10	mg/l		28			4	10	
Batch: 7B23078 Extracted: 02/23/07	,										
	_										
Blank Analyzed: 02/23/2007 (7B23078-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/23/2007 (7B23078-BS	1)										
Total Dissolved Solids	998	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 02/23/2007 (7B2307	8-DUP1)				Sou	rce: IQB	2134-01				
Total Dissolved Solids	307	10	10	mg/l		300			2	10	
Batch: 7B23104 Extracted: 02/23/07	,										
Daten. / D25104 Extracted. 02/25/07	_										
Blank Analyzed: 02/23/2007 (7B23104-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 02/23/2007 (7B23104-BS	1)										
Total Cyanide	198	5.0	2.2	ug/l	200		99	90-110			
Matrix Spike Analyzed: 02/23/2007 (7B2	3104_MS1\				Son	rce: IQB	2444-01				
Total Cyanide	442	10	4.4	ug/l	200	220	2 444-01 111	70-115			
Tomi Cyanido	772	10	7.7	ug/1	200	220	111	70 113			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 006

Sampled: 02/19/07

Report Number: IQB2023

Received: 02/19/07

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B23104 Extracted: 02/23/07	_										
Matrix Spike Dup Analyzed: 02/23/2007	(7B23104-MS	D1)			Sou	rce: IQB2	2444-01				
Total Cyanide	431	10	4.4	ug/l	200	220	106	70-115	3	15	
Batch: 7B27143 Extracted: 02/27/07	-										
Blank Analyzed: 02/28/2007 (7B27143-Bl	LK1)										
Perchlorate	ND	4.0	0.80	ug/l							
LCS Analyzed: 02/28/2007 (7B27143-BS1	,										
Perchlorate	45.6	4.0	0.80	ug/l	50.0		91	85-115			
Matrix Spike Analyzed: 02/28/2007 (7B2	,					rce: IQB					
Perchlorate	47.8	4.0	0.80	ug/l	50.0	ND	96	80-120			
Matrix Spike Dup Analyzed: 02/28/2007	(7B27143-MS	D1)			Sou	rce: IQB	2091-01				
Perchlorate	45.8	4.0	0.80	ug/l	50.0	ND	92	80-120	4	20	
Batch: 7B28085 Extracted: 02/28/07	-										
Blank Analyzed: 02/28/2007 (7B28085-Bl	LK1)										
Oil & Grease	ND	5.0	0.94	mg/l							
LCS Analyzed: 02/28/2007 (7B28085-BS1	1)										MNR1
Oil & Grease	18.8	5.0	0.94	mg/l	20.0		94	65-120			
LCS Dup Analyzed: 02/28/2007 (7B28085	5-BSD1)										
Oil & Grease	19.3	5.0	0.94	mg/l	20.0		96	65-120	3	20	

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2023 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IQB2023-01	413.1 Oil and Grease	Oil & Grease	mg/l	0.78	4.9	15
IQB2023-01	Antimony-200.8	Antimony	ug/l	0.65	2.0	6.00
IQB2023-01	Antimony-200.8, Diss	Antimony	ug/l	0.72	2.0	6.00
IQB2023-01	Boron-200.7	Boron	mg/l	0.020	0.050	1.00
IQB2023-01	Boron-200.7, Diss	Boron	mg/l	0.019	0.050	1.00
IQB2023-01	Cadmium-200.8	Cadmium	ug/l	0.100	1.0	4.00
IQB2023-01	Cadmium-200.8, Diss	Cadmium	ug/l	0.028	1.0	4.00
IQB2023-01	Chloride - 300.0	Chloride	mg/l	130	5.0	150
IQB2023-01	Copper-200.8	Copper	ug/l	3.50	2.0	14
IQB2023-01	Copper-200.8, Diss	Copper	ug/l	0.52	2.0	14
IQB2023-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.45	0.15	10.00
IQB2023-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6.00
IQB2023-01	Sulfate-300.0	Sulfate	mg/l	23	0.50	250
IQB2023-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	550	10	850
IQB2023-01	Thallium-200.8	Thallium	ug/l	0.032	1.0	2.00
IQB2023-01	Thallium-200.8, Diss	Thallium	ug/l	0.016	1.0	2.00

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/19/07

MWH-Pasadena/Boeing

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Report Number: IQB2023 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the	ne associated Method Blank.
--------------------------------------	-----------------------------

C-7 Calibration Verification recovery was below the method control limit due to matrix interference carried over from

analytical samples. The matrix interference was confirmed by reanalysis with the same result.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

R-7 LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07
Report Number: IQB2023 Received: 02/19/07

Attention: Bronwyn Kelly

Certification Summary

TestAmerica - Irvine, CA

Method	Matrix	Nelac	California
EPA 160.2	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	N/A	X
EPA 335.2	Water	X	X
EPA 413.1	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
SM2340B	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IQB2023-01

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-Acute 96hr

Samples: IQB2023-01

Eberline Services

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gross Alpha

Samples: IQB2023-01

Analysis Performed: Gross Beta

Samples: IQB2023-01

TestAmerica - Irvine, CAMichele Chamberlin

Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 006

300 North Lake Avenue, Suite 1200 Sampled: 02/19/07

Pasadena, CA 91101 Report Number: IQB2023 Received: 02/19/07

Attention: Bronwyn Kelly

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Analysis Performed: Mercury - 245.1

Samples: IQB2023-01

Analysis Performed: Mercury - 245.1, Diss

Samples: IQB2023-01

MWHP Psade(in)	Del Mar Analy Client Name/Address	Oel Mar Analytical Version 04/28/06 Client Name/Address Project	Versi	on 04/28/06 Project	CHAIN OF	OF	CUSTODY FORM	Y F(ORI	5		ANALYSIS REQUIRED	SISRE	QUIE	RED	Page 1	of 1
Prone Number 1626) 568-6691	ader e Ave 9110	<u>o</u> `	200	Boeing-S Annual o	SSFL NPDES Outfall 006 Iter at FSDF-2	. (1	Нд, В. V. Нагапеss	(1.514 Ac		dd + S30		sss Beta, 06-16			V 8 ,g⊦	Field readings: 1emp = ∑ ≤ €	
11 Poly 1 7 7 7 7 7 7 7 7 7	age	Bronwyn F	(elly	Phone N (626) 56 Fax Nur (626) 568	lumber: 8-6691 aber: 8-6515		Cd, Cu, Pb. I e, Al, + PP. I co3	Grease (EF	hlorate			on2 ,shqlA sa 3 ,*0.309) mu	22 & 9 <u>22 mui</u>		l Dissolved <i>N</i> Cd, Cu, Pb, H e, Al, + PP, H	II Q.	
11 Poly 1 2/47 1/15 HN03 18 X	ample		# of Cont.	Sampling Date/Time	l l	*	Sb, F TI, F as C	8 IiO	Perc			Gros Tritiu	Rad		Tota Sb, (Tl, F		
1. Poly 1 HN03 18 X HN03 18 X HN03 18 X HN046 2 HN06 2 A 2B X HN06 2 A 2B X		1L Poly	-	4:47 118	HNO3	1A	×										
11 Amber 2 None 2A.2B X	≷	1L Poly	_	•	HN03	18	×										
11 Amber 2 HC 34,38	3	1L Amber	2		None	2A,2B		×									
Poly-500 2 None 4A.4B X X X X X X X X X	W	1L Amber	2		HCI	3A, 3B		×									
Poly-500 2 None 5A, 5B None 5A, 5B SC None 5A, 5B SC None TA, TB, TC None TA, TB, TB, TC None TA, TB, TC None TA, TB, TC None TA, TB, TB, TC None TA, TB, TC None TA, TB, TC None TA, TB, TB, TB, TB, TB, TB, TB, TB, TB, TB	3	Poly-500 ml	2		None	4A,4B			×								
VOAs 3 HCI 6A 6B, 6C X X X X X X X X X	3	Poly-500 ml	2		None	5A, 5B				×							
1. Amber 2 None 7A, 7B, 7C X X X X X X X X X		VOAs	3		HCI	6A, 6B, 6C				×							T
11 Amber 2 None 8A, 8B X	3	VOAs	က		None	7A, 7B, 7C					×						
2.5 Gal Cube 1 None 15A, 15B, None 15C, 10B	3	1L Amber	2		None	8A, 8B					^						
11 Amber 2	3	2.5 Gal Cube 100 ml Amber VOAs			None None	9A 15A, 15B, 15C						×				Analyze for Total Combine 226 & RA-228 only if Gros Alpha/Beta exceed permit Analyze for Tritium and Sr if Ra-2268228 exceed per	ed RA-s s limit. -90 only mit limit.
1 Gal Poly 1		1L Amber	2		None	10A, 10B					-		×				
Somi		1 Gal Poly	-		None	11A			1					×			
Poly-1L 1 None 13 X X X X X X X X	3	500ml Poly	-		NaOH	12								×			
VOAS 3 2/m/1/5 HCI 14A, 14B, 16C, 16B, 16C, 16B, 16C, 16B, 16C, 16B, 16C, 16B, 16C, 16C, 16C, 16C, 16C, 16C, 16C, 16C	3	Poly-1L	-		None	13									×	Filter w/in 24hrs of rece	pt at
VOAs 3 2/4 115 HCI 16A, 16B, 16B, 16C Ann around Time: (check) 24 Hours Turn around Time: (check) 24 Hours Turn around Time: (check) 24 Hours Turn around Time: (check) 24 Hours 5 Days Date/Time: Received By Date/Time:	3	VOAs	3		None	14A, 14B, 14C					×					12	(a
Date/Time: Received By Date/Time: Turn around Time: (check) 24 Hours 5 Days Date/Time: Received By Date/Time: Normal Normal Date/Time: Date/Time: Normal Normal Date/Time: Received By Date/Time: Normal Date/Time: Date/Time: Date/Time: Normal Date/	3	VOAs		3/10/1/115	 	16A, 16B, 16C				×							Po
Date/Time: Received By Date/Time: 72 Hours 10 Days Date/Time: Received By Date/Time: Normal Normal Normal Date/Time: Received By Date/Time: Da	By S		311	Date/Time:	-	**************************************	Dat	e/Time:					Turr 24 F	around	1 Time: (check) 5 Day		P/
Date/Time: Received By Date/Time: Normal Nor	ないこと		3	Not.	360	100		2/6//1	7			645	48 F	ours	10 Da	ys	
Date/Time: Received By Date/Time: Sample Integrity (Cireck) Infact On los:	<u>}</u>		SIL	Date/Time:	\.	4	Da Da	ê/Time:	9		ت	(5) (8)	Perc 72 H	ours	Nori Only 72 Hours_	X len	.,, .
	By			Date/Time:	})	Dat	e/Time:					Met	ıls Only	72 Hours	7,2/5	
													Saiii	pie inte t	grijy (Check)		2

March 02, 2007

Alta Project I.D.: 28725

Ms. Michele Chamberlin Test America-Irvine 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on February 21, 2007 under your Project Name "IQB2023". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier

Director of HRMS Services

Min Analytical Laboranov cortiles that the report borein meets all the removements set jointh by N.L.A.C for those applicable test methods, theselve only to the samples as received by the laboratory. This report should not be reproduced except in full without the written improved of 41.4.4.

Alta Analytical Laboratory, Inc.

1104 Windfield Way El Dorado Hills, CA 95762 (916) 933-1640 FAX (916) 673-0106

Section I: Sample Inventory Report

Date Received:

2/21/2007

Alta Lab. ID

Client Sample ID

28725-001

IQB2023-01

Page 2 of 245 Project 28718

SECTION II

Project 28718 Page 3 of 245

Method Blank				EPA Method 1613
Matrix: Aqueous	QC Batch No.	8883	Lab Sample: 0-MB001	
Sample Size: 1.00 L	Date Extracted:	: 23-Feb-07	Date Analyzed DB-5: 26-Feb-07	Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	(ug/L) DL ^a	EMPC ^b Qualifiers	Labeled Standard	%R LCL-UCL ^d Qualifiers
2 3 7 8-TCDD	ND 0.00000105		IS 13C-2,3,7,8-TCDD	91.5 25 - 164
			13C-1,2,3,7,8-PeCDD	92.8 25 - 181
1,2,3,4,7,8-HxCDD	ND 0.00000193		13C-1,2,3,4,7,8-HxCDD	32 -
	0.000002		13C-1,2,3,6,7,8-HxCDD	87.1 28 - 130
	ND 0.00000197		13C-1,2,3,4,0,7,0-11pCDD	17 - 157
1,2,3,4,6,7,8-HpCDD	0.00000272		13C-2,3,7,8-TCDF	
2.3,7,8-TCDF	ND 0.00000896		13C-1,2,3,7,8-PeCDF	
DF	ND 0.000000819		13C-2,3,4,7,8-PeCDF	21-178
2,3,4,7,8-PeCDF	ND 0.00000133		13C-1,2,3,4,7,8-HxCDF	
1,2,3,4,7,8-HxCDF	ND 0.000000566		13C-1,2,3,6,7,8-HxCDF	
1,2,3,6,7,8-HxCDF	ND 0.00000620		13C-2,3,4,6,7,8-HxCDF	28 - 136
2,3,4,6,7,8-HxCDF	ND 0.000000687		13C-1,2,3,7,8,9-HxCDF	
1,2,3,7,8,9-HxCDF	0.00000		13C-1,2,3,4,6,7,8-HpCDF	92.1 28 - 143 00 5 76 138
1,2,3,4,6,7,8-HpCDF	0.00000		13C-OCDE	
1,2,3,4,7,8,9-HpCDF	ND 0.00000198 ND 0.00000732		CRS	93,0
Totals			Footnotes	
Total TCDD	3		a. Sample specific estimated detection limit.	
Total PeCDD			b. Estimated maximum possible concentration	- 鎌田町では著作の観光で、一定戦に、「今日で、大阪の東の大阪町で、一直の大阪の大阪町で、一直の大阪の大阪の大阪の大阪の大阪の大阪の大阪の大阪の大阪の大阪の大阪の大阪の大阪の
Total HxCDD Total HpCDD	ND 0.00000201 0.00000272	0.00000545	c. Method detection limit. d. Lower control limit - upper control limit	
	0.00000896 ND 0.000000896			
Iotal PecDFs: Asset Total HxCDF	ND 0.000000685			
Total HpCDF	ND 0.00000342			
Analyst: MAS			Approved By: William J. Luksemburg	uksemburg 01-Mar-2007 13:20

OPR Results					EP.	EPA Method 1613	613
Matrix Aqueous Sample Size 1.00 L		QC Batch No Date Extracted:	8883 23-Feb-07	1 ab Sample 0-OPR001 Date Analyzed DB-5: 26-Feb-07 L	Date Analya	Date Analyzed DB-225:	₹
Analyte	Spike Conc. Conc. (n	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	TCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	10.1	6.7 - 15.8	IS 13C-2,3,7,8-TCDD	6.92	25 - 164	
1,2,3,7,8-PeCDD	50.0	53.4	35 - 71	13C-1,2,3,7,8-PeCDD	73.9	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	53.0	35-82	13C-1,2,3,4,7,8-HxCDD	81.7	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	54.4	38 - 67	13C-1,2,3,6,7,8-HxCDD	78.5	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	53.2	32-81	13C-1,2,3,4,6,7,8-HpCDD	85.5	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	54.6	35 - 70	13C-OCDD	72.3	17 - 157	
ОСОО	100	108	78 - 144	13C-2,3,7,8-TCDF	75.0	24 - 169	
2,3,7,8-TCDF	10.0	10.4	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	84.8	24 - 185	
1,2,3,7,8-PeCDF	50.0	53.7	40 - 67	13G-2,3,4,7,8-PeCDF	79.5	21 - 178	
2,3,4,7,8-PeCDF	50.0	55.9	34 - 80	13C-1,2,3,4,7,8-HxCDF	91.7	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	53.3	36 - 67	13C-1,2,3,6,7,8-HxCDF	83.3	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	54.6	42 - 65	13C-2,3,4,6,7,8-HxCDF	80.0	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	54.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	0.96	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	57.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	9.68	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	53.0	41 - 61	13C-1,2,3,4,7,8;9-HpCDF	90.3	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	55.6	39 - 69	13C-OCDF	83.0	17 - 157	
OCDF	100	106	63 - 170	CRS 37CI-2,3,7,8 TCDD	78.5	35 - 197	

Analyst: MAS

Sample ID: IQB2023-01						EPAN	EPA Method 1613
Cileut Data Name: Test America-Irvine Project: IQB2023 Date Collected: 19-Feb-07 Time Collected: 1115	ine	Sample Data Matrix: Sample Size	Aqueous 1.04 L	Laboratory Data Lab Sample OC Batch No. Date Analyzed DB-5:	28725-001 8883 26-Feb-07	Date Received: Date Extracted: Date Analyzed DB-225:	21-Feb-07 23-Feb-07 NA
Analyte Conc. (ug/L)	L) DL a	EMPC ^b	Qualifiers	Labeled Standard	ırd	%R LCL-UCL ^d	Oualifiers
	0.00000137 0.00000129 0.00000249	37 29 49		IS 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	OD CDD HXCDD HXCDD	65.1 25 - 164 60.4 25 - 181 59.0 32 - 141 55.5 28 - 130	
1,2,3,6,7,8-HxCDD ND 1,2,3,7,8,9-HxCDD ND 1,2,3,4,6,7,8-HpCDD 0.00000422		\$2.55 \$2.50	J,B	13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF	з-н _р срр		
TCDF 8-PeCDF	0.00000119			13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	CDF CDF HXCDF	61.4 24-185 61.7 21-178 58.2 26-152	
2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HXCDF ND 1,2,3,6,7,8-HXCDF ND 2,2,4,6,7,8-HXCDF ND	0.00000915 0.000000932 0.000000932	104 1915 1932 105		13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	HxCDF HxCDF HxCDF		
H H		0		13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF CRS 37Cl-2,3,7,8-TCDD	8-HpCDF 9-HpCDF DD	58.6 28 - 143 60.7 26 - 138 53.4 17 - 157 85.0 35 - 197	
Totals				Footnotes			
Total TCDD ND Total PeCDD ND Total HxCDD ND	0.00000137 0.00000129 0.00000431	129 431 0.0000968	B 89	a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. c. Method detection limit. d. Lower control limit - upper control limit.	d detection limit. ssible concentration. per control limit.		
	0.00000119						
Total HxCDF ND Total HpCDF ND Analyst: MAS	0.00000211	211	than see	Approved By:	William J. Luksemburg	01-Mar-2	007 13:20

APPENDIX

Page 7 of 245

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

Chemical interference

The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Project 28718 Page 8 of 245

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

28725 3.0°C

SUBCONTRACT ORDER - PROJECT # IQB2023

SENI TestAmerica - Irvine, CA 17461 Derian Avenue. St Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Michele	uite 100	RECEIVING LABORATORY Alta Analytical 1104 Windfield Way El Dorado Hills, CA 95762 Phone: (916) 933-1640 Fax: (916) 673-0106 Project Location: California	? :
Standard TAT is reque	sted unless specific due date is requested Expiration	I => Due Date: Init Comments	ials:
Sample ID: IQB2023-01 1613-Dioxin-HR-Alta Level 4 + EDD-OUT		J flags,17 congeners,no TEQ, Excel EDD email to pm,Inclu	
Containers Supplied: 1 L Amber (IQB2023-01)	Ε)		
	•		
All containers intact: Custody Seals Present:	Yes □ No Sample labels/COC agree:	E INTEGRITY: Yes No Samples Received On Ice:: Yes No Samples Received at (temp):	√Yes □ No 3.0°C
Released By	Date Time	Bettinai P. Bonodief 2/21/07 Received By Date	Time
Paleocad Ry	Date Time	Received By Date	Time

Received By

Date

Released By

Project 28718

Time

Pagege0106245

SAMPLE LOG-IN CHECKLIST

Alta Project #:	28725					stand	larc	L
	Date/Time		Initials	»:	Location	: WR	· 2-	
Samples Arrival:	2/21/07	0849	B	NB	Shelf/Rad	ck: N	A	
	Date/Time		Initials	s:	Location	:INR	-2	
Logged in:	2/21/07	1336	FE	B	Shelf/Ra	· .0	,-6	
Delivered By:	FedEx L	IPS	Cal	DHL	Hai Delive		Ot	her
Preservation:	Ice	Blue	Ice	Dry lo	ce	N	one	
Temp °C 3. ⊘	Tin	ne: 090	5		Thermon	neter II) : IR-	1
						YES	NO	NA
						123	NO	IVA
Adequate Sample		1?				1		
Holding Time Acce								
Shipping Containe	r(s) Intact?		·			-	<u> </u>	
Shipping Custody Seals Intact?								
Shipping Documer		• • •	· 	000		/		
Airbill	Trk# 7	9909	062	9386	<u> </u>	V		
Sample Container	Intact?					V	1	
Sample Custody S	Seals Intact?						<u> </u>	4
Chain of Custody /	/ Sample Docume	entation Pre	esent?			1	<u> </u>	
COC Anomaly/Sar							1	
If Chlorinated or D				Preservation				4
Na ₂ S ₂ O ₃ Preserva				coc	San	nple ainer	No	ne
Shipping Containe	er	Alta	Client	Retair	Ret	urn	Disp	ose

Comments:

LABORATORY REPORT

Date:

February 25, 2007

Client:

Test America - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614

Attn: Michele Chamberlin

Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107

Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-07022005-001

Sample ID.:

IQB2023-01

Sample Control:

The sample was received by ATL in a chilled state, within the recommended hold

time and with the chain of custody record attached.

Date Sampled:

02/19/07

Date Received:

02/20/07

Temp. Received:

2°C

Chlorine (TRC):

 $0.0 \, \text{mg/l}$

Date Tested:

02/20/07 to 02/24/07

Sample Analysis:

The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Sample ID.

Results

IQB2023-01

100% Survival (TUa = 0.0)

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-07022005-001

Client/ID: TestAmerica IQB2023-01

Start Date: 02/20/2007

TEST SUMMARY

Species: Pimephales promelas.

Age: <u>/3</u> (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Dilution water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C.

Number of fish per chamber: 10. QA/QC Batch No.: RT-070206.

TEST DATA

		ř	COI DAIL	- "			
		°C	DO	рН	# D	ead	Analyst & Time
			DO	pri	Α	В	of Readings
INITIAL	Control	20-9	8.8	7.8	0	U	for
INITIAL	100%	19.6	10.3	8.1	0	0	1400
24 Hr	Control	19.6	7.7	7.1	()	0	2~
24 111	100%	19.8	8.0	8.1		0	1200
48 Hr	Control	19.7	20	7.3	0	0	2-
40111	100%	19.8	7.6	8.2	0	0	1400
Renewal	Control	20.5	8.8	7-8	0	0	R
Kenewai	100%	20.4	10.6	8.0	0	0	1400
70 H	Control	19.2	8.3	2.4	0	0	2~ 1200
72 Hr	100%	19.3	29	8./	0	0	1200
06 11.	Control	19.2	8.1	7.4	0	0	2~
96 Hr	100%	19.2	8.0	8.1	0	0	1300

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 8./; Conductivity: 850 umho; Temp: 2°C;

DO: <u>M.3 mg/l</u>; Alkalinity: <u>224 mg/l</u>; Hardness: <u>M.8 mg/l</u>; NH₃-N: <u>0.3 mg/l</u>. Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No.

Control: Alkalinity: 60 mg/l; Hardness: 9/ mg/l; Conductivity: 325 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No.

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

Percent Survival In: Control: 100% Sample: 100% Sample:

SUBCONTRACT ORDER - PROJECT # IQB2023

	SUDCONI	RACI ORDI	en-Inoje	ACT # IQDZU	40
Fax: (949) 260-3297 Project Manager: Micl	2. Suite 100	':		50-0546 -0756	RATORY:
Standard TAT is req	uested unless specific d Expiration	ue date is requested	=> Due Date:	Comments	Initials:
Sample ID: IQB2023-0 Bioassay-Acute 96hr Containers Supplied: 1 gal Poly (IQB2023-0	02/20/07 23:15	l: 02/19/07 11:15	ACCIONA TRAVERSIA ESTA ESTA ESTA ESTA ESTA ESTA ESTA EST	FH minnow, EPA/82	21-R02-012, Sub to AqTox Lab
		SAMPLE	INTEGRITY:		
All containers intact: Custody Seals Present:		Sample labels/COC agree: Samples Preserved Properly:	Yes No	Samples Received On Samples Received at (t	and the second
Hanfor U	2 02/20/5 · Date	7 0730 Time	Received By M	Da Creen 84	2s/07 073 0 te Time

Page 1 of 1 NPDES - 441

FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS

QA/QC Batch No.: RT-070206

TEST SUMMARY

Species: Pimephales promelas.

Age: // days old.
Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF. Source: In-lab culture.

Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs.

Test chamber: 600 ml glass beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

TEST DATA

		INITIAL	J			24 Hr					48 Hr		
Date/Time:	2-6	-07	1400	2-7	-07		1200	υ U	2-1	1-07		13	'07)
Analyst:		12	or military.			<u> </u>							
		DO		00	DO		# D	ead	°C	DO	II	# D	ead
	°C	DO	pН	°C	DO	pН	A	В		DO	pН	A	В
Control	20.6	8.8	8.1	20.0	29	7.6	1)	0	20.1	6.8	7.4	0	0
1.0 mg/l	20.6	8.8	8.1	20.0	29	2.5	0	0	20.0	7.4	7.4	0	0
2.0 mg/l	206	8.9	8.1	19.9	2.8	2.4	0	0	20.0	7.1	7.3	0	0
4.0 mg/l	20.6	8.9	8.0	19.9	6.8	7.2	0	0	20.0	7.0	7.3		/
8.0 mg/l	20.6	8.9	8.0	20.0	5.7	7.1	10	10	CAMPAN	mitphase.	-	*Storage en-	#Materials

	R	RENEWA	\L	72 Hr						96 Hr			
Date/Time:	2-80	07	1300	2-9-07				201)	2-16	2-10-07 1300			
Analyst:		/ů		2-						K	2~		
	°C			°C	DO		# D	ead	°C	DO	II	# D	ead
	٠	DO	pН		DO	pН	A	В		DO	pН	A	В
Control	20.5	9.0	7.8	20.1	20	24	()	0	20.4	5.7	7.3	()	0
1.0 mg/l	20.5	9.0	7.8	20.1	69	7.4	0	0	20.4	6.6	23	0	0
2.0 mg/l	20.5	9.1	28	20.0		7.3	0	0	20.4	6.7	7.2	0	0
4.0 mg/l	20.5	9.1	7.8	20.1	6.7	7.3	0	0	20.4	6.3	7.2	0	0
8.0 mg/l	Ganagement	Wilmings.	âna-	*Mingrace***	Nacione.	2550 A Grandon Company	***************************************	~	Season,	garage.	******	^	ng Sila

Comments:

Control: Alkalinity: 6/ mg/l; Hardness: 9/ mg/l; Conductivity: 360 umho. SDS: Alkalinity: 6/ mg/l; Hardness: 9/ mg/l; Conductivity: 350 umho.

Acute Fish Test-96 Hr Survival											
Start Date:	06 Feb-07	14:00	Test ID:	RT-070206f	Sample ID:	REF-Ref Toxicant					
End Date:	10 Feb-07	13:00	Lab ID:	CAATL-Aquatic Testing Labs	Sample Type:	SDS-Sodium dodecyl sulfate					
Sample Date:	06 Feb-07	00:00	Protocol:	ACUTE-EPA-821-R-02-012	Test Species:	PP-Pimephales promelas					
Comments:											
Conc-mg/L	1	2									
D-Control	1.0000	1.0000									
1	1.0000	1.0000									
2	1.0000	1.0000									
4	0.9000	0.9000									
8	0.0000	0.0000									

	Transform: Arcsin Square Root						Number	Total	
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	0.9000	0.9000	1.2490	1.2490	1.2490	0.000	2	2	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				
Equality of variance cannot be confirmed				

				Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	·
0.0%	5.2780	4.8093	5.7924	
5.0%	5.3968	4.8053	6.0611	
10.0%	5.4432	5.1395	5.7648	1.0 -
20.0%	5.4432	5.1395	5.7648	Į.
Auto-0.0%	5.2780	4.8093	5.7924	0.9

Fathead Minnow Acute Laboratory Control Chart

CV% = 15.3

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-070206

SOURCE: In-Lab Culture		
DATE HATCHED: 1-26-07	_	
APPROXIMATE QUANTITY:	400	
APPROXIMATE QUANTITY:	ooch_	
# MORTALITIES 48 HOURS PRIOD TO USE IN TESTING:	вто	
DATE USED IN LAB: Z/6	17	
AVERAGE FISH WEIGHT:	<u>06</u> gm	
TEST LOADING LIMITS: 0.65 gm/	liter	
200 ml test solution volume = 250 ml test solution volume =		
ACCLIMATION WATER QUALITY	/:	
Тетр.: <u>20-6</u> °С	pH: <u>8</u> , <u>0</u> An	amonia: <u><_/</u> mg/l NH ₃ -N
DO: mg/l	Alkalinity: 6 mg/l	Hardness: 7 / mg/l
READINGS RECORDED BY:	Jan Jan	DATE:
	V	

Laboratory Temperature Chart

QA/QC Batch No: RT-070206

Date Tested: 02/06/07 to 02/10/07

Acceptable Range: 20+/- 1°C

March 23, 2007

Ms. Michele Chamberlin Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project No. IQB2023

Eberline Services NELAP Cert #01120CA (exp. 01/31/08)

Eberline Services Report R702123-8658

Dear Ms. Chamberlin:

Enclosed are results from the analyses of one water sample received at Eberline Services on February 21, 2007. The sample was analyzed according to the accompanying Test America Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0). The sample was not filtered prior to analysis; the sample was prepared for analysis within 5 days of collection. Quality control samples consisted of an LCS, blank analysis, duplicate analysis, and matrix spike. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual. A level IV data package will follow within one week.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

melin Mann

MCM/njv

Enclosure:

Report

Subcontract Form Receipt checklist

Invoice

Eberline Services

ANALYSIS RESULTS

SDG <u>8658</u>
Work Order <u>R702123-01</u>

Received Date 02/21/07

Client TA IRVINE

Contract PROJECT# IQB2023

Matrix WATER

Client Lab

Sample ID Sample ID Collected Analyzed Nuclide Results ± 2σ Units MDA

IQB2023-01 8658-001 02/19/07 03/08/07 GrossAlpha -0.901 ± 1.5 pCi/L 2.5
03/08/07 Gross Beta 63.8 ± 2.8 pCi/L 2.2

Eberline Services

QC RESULTS

 SDG 8658
 Client TA IRVINE

 Work Order R702123-01
 Contract PROJECT# IQB2023

 Received Date 02/21/07
 Matrix WATER

Lab Sample ID	Nuclide	<u>Results</u>	<u>Units</u>	Amount	Added	MDA	<u>Eva</u>	luation	
LCS									
8657-002	GrossAlpha	8.17 ± 0.65	pCi/Smp			0.318		recove:	_
	Gross Beta	9.76 ± 0.37	pCi/Smp	9.	60	0.27	7 102	% recove	ery
BLANK									
8657-003	GrossAlpha	-0.364 ± 0.15	pCi/Smp	1	AN	0.348	3 <mi< td=""><td>PΑ</td><td></td></mi<>	PΑ	
	Gross Beta	-0.091 ± 0.15	pCi/Smp	01	NA	0.269	9 <mi< td=""><td>PΑ</td><td></td></mi<>	PΑ	
	DUPLICATES				ORIGINALS	3	****	:	3 o
Sample ID	<u>Nuclide</u>	Results ± 20	MDA	Sample ID	Results	± 2σ	MDA	RPD (T	ot) Eval
8657-004	GrossAlpha	-0.302 ± 0.53	0.882	8657-001	-0.192 ±	0.44	0.698	-	0 satis.
	Gross Beta	27.3 ± 1.3	1.47		24.3 ±	1.1	1.04	12	44 satis.
Market design and the second	SPIKED SAMPL	E		OR	IGINAL SAN	MPLE	_		
Sample ID		Results ± 20	<u>MDA</u>	Sample ID	Results		MDA	Added	%Recv
8657-005	GrossAlpha	77.4 ± 6.8	1.9	8657-001	-0.192 ±		0.698	70.8	110
	Gross Beta	95.0 ± 4.0	2.0		24.3 ±	1.1	1.04	70.4	100

Certified by 29

Report Date 03/23/07

Page 2

TestAmerica - Irvine, CA 17461 Derian Avenue. Su Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Michele	nite 100	RECEIVING LABORATORY: Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone: (510) 235-2633 Fax: (510) 235-0438 Project Location: California requested => Due Date:
Analysis	Expiration	Comments
Sample ID: IQB2023-01	Water Sampled: 02/19/07	11:15
EDD + Level 4	03/19/07 11:15	
Gross Alpha-O	08/18/07 11:15	→ DONT FILTER, 900.0, RESULT>15 pCi/L, run Rac
0 0	00100100000	226&228
Gross Beta-O	08/18/07 11:15	DONT FILTER, 900.0, RESULT>50 pCi/L, run Rac
Radium, Combined-O	02/19/08 11:15	226&228
Addrain, Combined-O	02/19/08 11.13	HOLD for G A&B results; EPA 903.1&904.0,NO FILTER
Strontium 90-O	02/19/08 11:15	HOLD for Ra 226&228 results, EPA 905.0, DONT
		FILTER
Tritium-O	02/19/08 11:15	HOLD for Ra 226&228 results, EPA 906.0, DONT FILTER
Containers Supplied:		
2.5 gal Poly (IQB2023-015	5)	+ 5 day HT
40 ml Amber Voa Vial (IQ	B2023-01T)	W
40 ml Amber Voa Vial (IQ		
	B2023-01V)	

SAMPLE INTEGRITY:												
All containers intact: Custody Seals Present:	☐ Yes			Sample labels/COC a Samples Preserved Pr	_		□ No □ No	-	s Received On Ice:: s Received at (temp):	☐ Yes	□ No	
Minute &	M	1	2/28	1/0>			Mil		07/21/0	·7	9:00	
Refeased/By	1	19	Date	Time	Rece	eived B	1		Date	Т	ime	
Released By			Date	Time	Rece	eived B	y		Date	T	ime	

© EBERLINE

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

			MC
2)	21	107	-
		ţ	

Client:	TEST	twe	MCA	City _	141NE 10B2023	,	State			
Date/Tir	me received	orpila	79:00	No	1QB 2023					
Contain	ier l.D. No	axta H	& GTEST Reques	ted TAT (Days) 21 P	IO. Receive	d Yes[] No []	
				IN	SPECTION					
1	Custody se	als on ship	oping contains	er intact?		Y	es 🏏]	No[]	N/A []	
2.	Custody se	als on snip	oping contains	er dated &	signed?	Y	es [大]	No[]	N/A []	
3	Custody se	als on san	npie container	s intact?		Ϋ́	es j	No[]	N/A [X]	
4	Custody se	als on sam	nple container	s dated &	signed?	X	es []	No[]	N/A [*]	
5	Facking ma	aterial is:			1			Dry [x]		
6			n shipping cor		Sample	e Matrix <u>V</u>		***		
7	Number of	containers	per sample	4	(Or see	CoC	1			
8.	Samples a	re in corre	ct container	,	Yes [)]	No []			
9.		-	th samples?		7	No [
10.					Rad labels [
11					_eaking [X] E				[]	
12.	Samples a				ed [] pH					
13.	Describe a	ny anoma	lies:	17114	INING VO	1. 70	work	of LE	75	
		LEA	KING -	144	THE COM	THUT	. •			
				71714	THE CO.	chert.				
14.	Was P.M.	notified of	f any anomalie		Yes []	No[] [iT		
14. 15.	Was P.M. Inspected		f any anomalie		Yes [] Date: 0 7 21 0		Date	IJ		
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		- Wine	
15. Cust	Inspected		f any anomalie		Date DY 21 a] Time:		mR/h r	wipe	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wipe	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wipe	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wine	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wipe	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wine	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wipe	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wide	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wide	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wide	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wipe	
15. Cust	Inspected	by	Huy		Date DY 21 a	Time:	10:		wine	
Cust Same	Inspected tomer pie No.	com	mR/hr	Wipe	Custome N	Time:	cpm	mR/h r		
15. Cust Sam:	Inspected tomer pie No.	D	mR/hr	Wine	Calibrati	Time:	cpm	mR/h r		
15. Cust Same	Inspected tomer pie No.	EDM	mR/hr	Wips	Calibrati Calibrati	on date	cpm	mR/h r		

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

03/02/07 19:24

17461 Derian Ave, Suite 100

Received Date:

02/22/07 12:30

Irvine, CA 92614

Fax: (949) 260-3297

Turn Around:

Normal

Attention: Michele Chamberlin

Work Order #:

7022247

Phone:

(949) 261-1022

Client Project:

IQB2023

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Michele Chamberlin:

Enclosed are the results of analyses for samples received 02/22/07 12:30 with the Chain of Custody document. The samples were received in good condition, at 5.5 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Taylor Maligmat

Project Manager

Page 1 of 7

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022247 Project ID: IQB2023 Date Received: 02/22/07 12:30 Date Reported: 03/02/07 19:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IQB2023-01	client		7022247-01	Water	02/19/07 11:15

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022247 Project ID: IQB2023 Date Received: 02/22/07 12:30 Date Reported: 03/02/07 19:24

IQB2023-01 7022247-01 (Water)

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1095	02/27/07	03/02/07 jl	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1095	02/27/07	03/02/07 jl	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022247 Project ID: IQB2023 Date Received: 02/22/07 12:30 Date Reported: 03/02/07 19:24

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022247 Project ID: IQB2023 Date Received: 02/22/07 12:30 Date Reported: 03/02/07 19:24

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers	
Batch W7B1095 - EPA 245.1											
Blank (W7B1095-BLK1)				Analyzed:	03/02/07						
Mercury, Dissolved	ND	0.20	ug/l								
Mercury, Total	ND	0.20	ug/l								
Blank (W7B1095-BLK2)					Analyzed: 03/02/07						
Mercury, Total	ND	0.20	ug/l								
Mercury, Dissolved	ND	0.20	ug/l								
LCS (W7B1095-BS1)				Analyzed:	03/02/07						
Mercury, Total	0.870	0.20	ug/l	1.00		87.0	85-115				
Mercury, Dissolved	0.870	0.20	ug/l	1.00		87.0	85-115				
LCS (W7B1095-BS2)				Analyzed:	03/02/07						
Mercury, Total	0.893	0.20	ug/l	1.00		89.3	85-115				
Mercury, Dissolved	0.893	0.20	ug/l	1.00		89.3	85-115				
Matrix Spike (W7B1095-MS1)	Sour	ce: 7022133-0	2	Analyzed: 03/02/07							
Mercury, Total	0.895	0.20	ug/l	1.00	ND	89.5	70-130				
Mercury, Dissolved	0.895	0.20	ug/l	1.00	ND	89.5	70-130				
Matrix Spike (W7B1095-MS2)	Sour	ce: 7022201-0	4	Analyzed:	03/02/07						
Mercury, Total	0.884	0.20	ug/l	1.00	0.030	85.4	70-130				
Mercury, Dissolved	0.884	0.20	ug/l	1.00	0.033	85.1	70-130				
Matrix Spike (W7B1095-MS3)	Sour	ource: 7022201-07		Analyzed: 03/02/07							
Mercury, Total	0.884	0.20	ug/l	1.00	0.033	85.1	70-130				
Mercury, Dissolved	0.884	0.20	ug/l	1.00	0.026	85.8	70-130				
Matrix Spike Dup (W7B1095-MSD1)	Sour	Source: 7022133-02			03/02/07						
Mercury, Total	0.861	0.20	ug/l	1.00	ND	86.1	70-130	3.87	20		
Mercury, Dissolved	0.861	0.20	ug/l	1.00	ND	86.1	70-130	3.87	20		

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022247 Project ID: IQB2023 Date Received: 02/22/07 12:30 Date Reported: 03/02/07 19:24

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W7B1095 - EPA 245.1										
Matrix Spike Dup (W7B1095-MSD2)	Source: 7022201-04			Analyzed: 03/02/07						
Mercury, Dissolved	0.890	0.20	ug/l	1.00	0.033	85.7	70-130	0.676	20	
Mercury, Total	0.890	0.20	ug/l	1.00	0.030	86.0	70-130	0.676	20	
Matrix Spike Dup (W7B1095-MSD3)	Sourc	Source: 7022201-07			Analyzed: 03/02/07					
Mercury, Total	0.935	0.20	ug/l	1.00	0.033	90.2	70-130	5.61	20	
Mercury, Dissolved	0.935	0.20	ug/l	1.00	0.026	90.9	70-130	5.61	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100

Irvine CA, 92614

Report ID: 7022247 Date Received: 02/22/07 12:30 Project ID: IQB2023 Date Reported: 03/02/07 19:24

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

Percent Recovery % Rec

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 13

Outfall 009, February 19, 2007

MECX Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

	69 East Vassar Drive ora, CO 80014 Laboratory Alta	Package ID B4DF121 Task Order 1261.001D.0 1000.0 0 SDG No. IQB2021 No. of Analyses 1 Date: April 9, 2007 Reviewer's Signature
	Reviewer K. Shadowl	
/	Analysis/Method Dioxin/Fura	n by 1613 Suads (1)
ACT	ION ITEMS ^a	
701	Case Narrative	
•	Deficiencies	
	Demoicroics	
2.	Out of Scope Analyses	
3.	Analyses Not Conducted	
4.	Missing Hardcopy	
	Deliverables	
5.	Incorrect Hardcopy	
	Deliverables	
6.	Deviations from Analysis	Qualifications were assigned for the following:
J 0.	Protocol, e.g.,	Qualification in the designed for the following.
	Holding Times	*Any detect below the laboratory lower calibration level was
	GC/MS Tune/Inst. Performance	qualified as estimated, "J."
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS	
	Field QC	
	Internal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
CON	MENTS ^b	
ļ		
a ç.	shoontracted analytical laboratory is not	meeting contract and/or method requirements.
		d by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Monitoring Program Annual Outfall 009

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IQB2021

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

NPDES IQB2021 D/F

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title: NPDES

Contract Task Order: 1261.100D.00 Sample Delivery Group: IQB2021

Project Manager: P. Costa

Matrix: Water

Analysis: Dioxins/Furans

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: K. Shadowlight Date of Review: April 9, 2007

The samples listed in Table 1 were validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: SDG:

NPDES IQB2021 Analysis: D/F

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID (TestAmerica- Irvine)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 009	IQB2021-01	28723-001	Water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica-Irvine within the temperature limits of 4° C $\pm 2^{\circ}$ C. The sample was shipped to Alta for dioxin/furan analysis and was received within the temperature limits. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to TestAmerica-Irvine, custody seals were not required. Custody seals were present on the coolers from TestAmerica to Alta; however, no sample custody seals were present. The Client ID was added to the sample result summary by the reviewer. No qualifications were required.

2.1.3 Holding Times

The sample was extracted and analyzed within one year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

B4DF121 3 Revision 0

Project: SDG: Analysis: NPDES IQB2021 D/F

DATA VALIDATION REPORT

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 10/24/2006 on instrument VG-5. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with %RSDs \leq 20% for the 16 native compounds (calibration by isotope dilution) and \leq 35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of %RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-8883-MB001) was extracted and analyzed with the sample in this SDG. Target compounds 1,2,3,4,6,7,8-HpCDD, OCDD, and total HpCDD were reported in the method blank at concentrations below the laboratory lower calibration level. The target compounds were reported in the site sample; however, the concentrations exceeded five times the concentrations of the method blank and non qualifications were required. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (0-8883-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. A review of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

B4DF121 4 Revision 0

Project: SDG: Analysis: NPDES IQB2021 D/F

DATA VALIDATION REPORT

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

B4DF121 5 Revision 0

		Sample ID: IQ	10B2021-01 Ou+fell	P6 11.29					BPA IV	EPA Method 1613
		Client Data			Sample Data		Laboratory Data			
			Test America-Irvine		Matrix:	Aqueous	Lab Sample:	28723-001	Date Received:	21-Feb-07
300 - S	S,	Date Collected: 19	1Q52021 19-Feb-07 0930		Sample Size:	1.03 L	QC Batch No.: Date Analyzed DB-5:	8883 27-Feb-07	Date Extracted: Date Analyzed DB-225;	23-Feb-07
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Z		Conc. (ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard	lard	-	Oualifiers
א		2,3,7,8-TCDD	2	0.00000172	Z		15 13C-2.3.7.8-TCDD	00	79.1 25 - 164	
		1,2,3,7,8-PeCDD		0.00000291	11			eCDD		
		1,2,3,4,7,8-HxCDD	2	0.00000384	***************************************		13C-1,2,3,4,7,8-HxCDD	HxCDD	78.3 32 - 141	
		1,2,3,6,7,8-HxCDD	N ON	0.00000568	88		13C-1,2,3,6,7,8-HxCDD	-HxCDD		
)		1,2,3,7,8,9-HxCDD	2	0.00000519	61		13C-1,2,3,4,6,7,8-HpCDD	8-HpCDD	84.3 23 - 140	
		1,2,3,4,6,7,8-HpCDD	Ω			М	13C-OCDD			
		OCDD	0.000976			m	13C-2,3,7,8-TCDF	ď	72.7 24 - 169	
 ゴ		2,3,7,8-TCDF	Ð	0.00000168	88		13C-1,2,3,7,8-PeCDF	eCDF		
		1,2,3,7,8-PeCDF	2	0.00000186	92		13C-2,3,4,7,8-PeCDF	eCDF	82.9 21 - 178	
		2,3,4,7,8-PeCDF	£	0.00000318	∞.		13C-1,2,3,4,7,8-HxCDF	-HxCDF	79.8 26 - 152	
		1,2,3,4,7,8-HxCDF	2	0.000000202	œ.		13C-1,2,3,6,7,8-HxCDF	HxCDF	74.3 26-123	
		1,2,3,6,7,8-HxCDF	2	0.00000208	80		13C-2,3,4,6,7,8-HxCDF	-HxCDF	78.0 28 - 136	
		2,3,4,6,7,8-HxCDF	Q	0.00000157	£\$		13C-1,2,3,7,8,9-HxCDF	HXCDF	84.2 29 - 147	
>		1,2,3,7,8,9-HxCDF	Q	0.00000204	4		13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	82.5 28 - 143	
h	0 0 0	1,2,3,4,6,7,8-HpCDF	F 0.0000229				13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	86.6 26-138	
3		1,2,3,4,7,8,9-HpCDF	N P	0.00000472	72		13C-OCDF		73.6 17 - 157	-
		OCDF	0.0000656				CRS 37C1-2,3,7,8-TCDD	90	84.7 35-197	
		Totals					Footnotes			of any constant of the state of
5 :		Total TCDD	Ð	0.00000172	72		a. Sample specific estimated detection limit.	ed detection limit.	STREET AND	
3		Total PeCDD	2	0.0000029			b. Estimated maximum possible concentration	sible concentration		
		Total HxCDD	0.00000435				c. Method detection limit.			
		Total HpCDD	0.000145			a	d Lower coutrol limit - apper control limit	per control limit.		
۲		Total TCDF	Ð	0.00000168	88					
		Total PeCDF	0.000000200							
		Total HxCDF Total HnCDF	0.00000576		0.0000136	91				
•		Analyst: MAS					Approved By.	William J. Luksemburg	semburg 01-Mar-2007 13:15	7 13:15

Project 28723

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MEC ^X		Package ID:	B4MT113
12269 East Vassar Drive		Task Order:	1261.001D.01
Aurora, CO 80014		SDG No.:	IQB2021
•	No.	of Analyses:	1
Laboratory: Weck		Date: April 4	
Reviewer: P. Meek	3	Reviewer's Si	ignature
Analysis/Method: Metals		1. MO	<u> </u>
ACTION ITEMS ^a			
. Case Narrative			
Deficiencies			
2. Out of Scope Analyses			
3. Analyses Not Conducted			
	The second secon	and the second s	
4. Missing Hardcopy			
Deliverables		Andrew Control of the	
<u> </u>			
5. Incorrect Hardcopy Deliverables			
Deliverables			
6. Deviations from Analysis			
Protocol, e.g.,			
Holding Times			
GC/MS Tune/Inst. Performance			
Calibration			Angewania and a second a second and a second a second and
Method blanks			
Surrogates			
Matrix Spike/Dup LCS		***************************************	
Field QC			
Internal Standard Performance			
Compound Identification			
Quantitation			
System Performance			
COMMENTS ^b	Acceptable as reviewed.		
, , , , , , , , , , , , , , , , , , , ,			
		Burdensky Burdensky Strategy Company	
 ^a Subcontracted analytical laboratory is no ^b Differences in protocol have been adopt 			required.
1 Directions in protocol have been adopt	, inc idealatory but no dollon again		

DATA VALIDATION REPORT

NPDES Sampling Outfall 009

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IQB2021

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

ect: NPDES 6: IQB2021

Analysis:

Metals

1. INTRODUCTION

Task Order Title: NPDES Sampling

MEC^X Project Number: 1261.001D.01 Sample Delivery Group: IQB2021

Project Manager: P. Costa

Matrix: Water
Analysis: Metals
QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

DATA VALIDATION REPORT

Reviewer: P. Meeks
Date of Review: April 4, 2007

The samples listed in Table 1 were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for ICP and ICP-MS Metals (DVP-5, Rev. 0), EPA Method 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project:

NPDES

SDG:

IQB2021

Analysis:

Metals

Table 1. Sample Identification

DATA VALIDATION REPORT

Client ID	TestAmerica Laboratory ID	Weck Laboratory ID	Matrix	COC Method
Outfall 009	IQA2021-01	7022234-01	Water	245.1, total and dissolved

SDG: Analysis:

Metals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica within the temperature limits of 4°C ±2°C, but was received above the temperature limits at the subcontract laboratory, Weck, at 8°C; however, due to the nonvolatile nature of the analyte, no qualifications were required. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The original and transfer COCs were signed and dated by the appropriate field and/or laboratory personnel and accounted for the sample and analyses presented in this SDG. As the sample was transported directly from the field to TestAmerica, custody seals were not necessary. Custody seals were not present upon receipt at Weck. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the date of analysis recorded in the raw data documented that the sample analyses were performed within the specified holding time of 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

As ICP-MS was not utilized for the analysis, the ICP-MS tune criteria are not applicable.

2.3 CALIBRATION

The mercury initial calibration r^2 was ≥ 0.995 . The ICV and CCV results showed acceptable recoveries, 85-115% for mercury. No qualifications were required.

Project: SDG:

NPDES

Analysis:

IQB2021 Metals

DATA VALIDATION REPORT **BLANKS**

2.4

Mercury was not detected in any of the blanks associated with the site sample analysis. No qualifications were required.

ICP INTERFERENCE CHECK SAMPLE (ICS A/AB) 2.5

As neither ICP nor ICP-MS were utilized for the analysis, the interference check sample results are not applicable.

BLANK SPIKES AND LABORATORY CONTROL SAMPLES 2.6

The recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 **MATRIX SPIKES**

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on the LCS results. No qualifications were required.

ICP/MS AND ICP SERIAL DILUTION 2.9

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

As ICP-MS was not utilized for the analysis, the ICP-MS internal standard results are not applicable.

Revision 0 B4MT113

Project: SDG: NPDES IQB2021

DATA VALIDATION REPORT

Analysis:

Metals

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified and the sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022234 Project ID: IQB2021 Date Received: 02/21/07 10:58 Date Reported: 03/02/07 19:24

Outfall 009

IQB2021-01 7022234-01 (Water)

Metals by EPA 200 Series Methods

Analyte	fer Qual	Qual Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissol	ved U	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1095	02/27/07	03/02/07 jl	
Mercury, Total	0	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1095	02/27/07	03/02/07 jl	

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MEC	×	Package ID: B4MT116
1226	69 East Vassar Drive	Task Order: 1261.100100
Auro	ora, CO 80014	SDG No.: IQB2021
	**	No. of Analyses: 1
	Laboratory: TestAmer	ica Date: April 24, 2007
	Reviewer: P. Meeks	Reviewer's Signature
	Analysis/Method: Metals	P. MD
ACT	ION ITEMS ^a	
	Case Narrative	
	Deficiencies	
2.	Out of Scope Analyses	
3.	Analyses Not Conducted	
4.	Missing Hardcopy	
	Deliverables	
5.	Incorrect Hardcopy	
	Deliverables	
6.	Deviations from Analysis	Qualification applied for method blank contamination.
	Protocol, e.g.,	
	Holding Times	
	GC/MS Tune/Inst. Performance	
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS	
	Field QC	
	Internal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
COI	MMENTS ^b	
	A Commence of the Commence of	
	The state of the s	
a S	ubcontracted analytical laboratory is not	meeting contract and/or method requirements.

^b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Annual Outfall 009

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IQB2021

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014
 Project:
 NPDES

 SDG:
 IQB2021

 DATA VALIDATION REPORT
 Analysis:
 Metals

1. INTRODUCTION

Task Order Title: NPDES Sampling

MEC^X Project Number: 1261.100D.00

Sample Delivery Group: IQB2021 Project Manager: P. Costa

> Matrix: Water Analysis: Metals

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: P. Meeks
Date of Review: April 24, 2007

The samples listed in Table 1 were validated based on the guidelines outlined in the *MEC^X Data Validation Procedure for ICP and ICP-MS Metals (DVP-5, Rev. 0), EPA Method 200.7*, and validation guidelines outlined in the *USEPA CLP National Functional Guidelines for Inorganic Data Review* (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: NPDES SDG: IQB2021

DATA VALIDATION REPORT Analysis: Metals

Table 1. Sample Identification

Client ID	TestAmerica Laboratory ID	Matrix	COC Method
Outfall 009	IQA2021-01	Water	200.7

Project: NPDES SDG: IQB2021 Analysis: Metals

DATA VALIDATION REPORT SDG:
Analysis:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica within the temperature limits of 4°C ±2°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The original COC was signed and dated by the appropriate field and laboratory personnel and accounted for the sample and analyses presented in this SDG. As the sample was transported directly from the field to TestAmerica, custody seals were not necessary. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the date of analysis recorded in the raw data documented that the sample analyses were performed within the specified holding time of 6 months for ICP metals. No qualifications were required.

2.2 ICP-MS TUNING

As the ICP-MS analytes were not validated, the ICP-MS tune criteria were not assessed.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP metals. The laboratory analyzed reporting limit check standards in association with the sample in this SDG. Selenium was recovered above 130% in the 10 ppb reporting limit check standard; however, selenium was not detected in the site sample. All other recoveries were considered to be acceptable. No qualifications were required.

Project: NPDES SDG: IQB2021 Analysis: Metals

DATA VALIDATION REPORT SDG: IQ
Analysis:

2.4 BLANKS

Although the ICP-MS metals were not validated, the reviewer noted that cadmium was detected in method blank 7B21137-BLK1 at 0.135 μ g/L; therefore, cadmium detected in the sample was qualified as an estimated nondetect, "UJ." Silver was detected in a bracketing CCB; however, silver was not detected in the site sample. There were no other detects of sufficient concentration to qualify the site sample. No further qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were performed in association with the ICP analyses of the site sample. The ICSA and ICSAB results were acceptable with recoveries within the control limits of 80-120%. Selenium was reported in the ISCA at -11.4 μ g/L and silver was detected at 6.7 μ g/L; however, no interferents were present in the site sample at concentrations requiring qualification. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the ICP analytes of the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on the LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

Project: NPDES SDG: IQB2021 Analysis: Metals

DATA VALIDATION REPORT Analysis: Metals

2.10 INTERNAL STANDARDS PERFORMANCE

As the ICP-MS analytes were not validated, the ICP-MS internal standard results were not assessed.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified and the sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Sampled: 02/19/07

Attention: Bronwyn Kellý

Report Number: IQB2021

Received: 02/19/07

W 47 1		7 A	T	•
	н я	^		•

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
									Rev in	1
Sample ID: IQB2021-01 (Outfall 009	- Water) - cont.								0 1 100	101
Reporting Units: mg/l									Way (0)	al
Boron	EPA 200.7	7B21063	0.020	0.050	0.21	1	02/21/07	02/21/07	В	
lron	EPA 200.7	7B21063	0.015	0.040	0.42	1	02/21/07	02/21/07		

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

X Analysis not validated

IQB2021 <Page 9 of 43>

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: IQB2021

Sampled: 02/19/07

Received: 02/19/07

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifi	
Sample ID: IQB2021-01 (Outfall 009		Dutti	Laure	Zillik	Ittouri	Tactor	Danacted	R		Qual
Reporting Units: ug/l									0-0	(ode
Aluminum	EPA 200.7	7B21063	40	50	410	1	02/21/07	02/21/07	ì	
Antimony	EPA 200.8	7B21137	0.050	2.0	0.49	1	02/21/07	02/21/07	∦ J	
Arsenic	EPA 200.7	7B21063	7.0	10	ND	1	02/21/07	02/21/07	U	
Beryllium	EPA 200.7	7B21063	0.90	2.0	ND	1	02/21/07	02/21/07	U	6
Cadmium	EPA 200.8	7B21137	0.025	1.0	0.056	1	02/21/07	02/21/07	JJ B, J	B
Chromium	EPA 200.7	7B21063	2.0	5.0	ND	1	02/21/07	02/21/07	U	
Copper	EPA 200.8	7B21137	0.25	2.0	3.7	1	02/21/07	02/21/07	X	1
Lead	EPA 200.8	7B21137	0.040	1.0	1.7	1	02/21/07	02/21/07	*	
Nickel	EPA 200.7	7B21063	2.0	10	ND	1	02/21/07	02/21/07	Ų	
Selenium	EPA 200.7	7B21063	8.0	10	ND	1	02/21/07	02/21/07	1	
Silver	EPA 200.7	7B21063	3.0	10	ND	1	02/21/07	02/21/07	1	
Thallium	EPA 200.8	7B21137	0.15	1.0	ND	1	02/21/07	02/21/07	X	
Vanadium	EPA 200.7	7B21063	3.0	10	ND	1	02/21/07	02/21/07	U	
Zinc	EPA 200.7	7B21063	15	20	51	1	02/21/07	02/21/07		

TestAmerica - Irvine, CAMichele Chamberlin
Project Manager

* Analysis not validated

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB2021 <Page 10 of 43>

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MECX		Package ID: B4RA10
12269 East Vassar Driv	e	Task Order: 1261. 001D.01 100D.0
Aurora, CO 80014		SDG No.: IQB2021
		No. of Analyses: 1
Laboratory: I	Eberlin	Date: April 5, 2007
Reviewer: I	² . Meeks	Reviewer's Signature
Analysis/Method: F	Radionuclides	P.M.
ACTION ITEMS ^a		
Case Narrative		
Deficiencies		
2. Out of Scope Analys	ses	
	Marine Control of the	
3. Analyses Not Condu	uctod	
5. Alialyses Not Collar	ucteu	
4. Missing Hardcopy		
Deliverables	The state of the s	
	The second secon	
5. Incorrect Hardcopy		
Deliverables		
6. Deviations from An	alysis Qualification applie	d for detector efficiency.
Protocol, e.g.,		
Holding Times		
GC/MS Tune/Inst. Perfe	ormance	
Calibration		
Method blanks		
Surrogates		
Matrix Spike/Dup LCS	Management of the second of th	
Field QC		
Internal Standard Perfo		
Compound Identification	on	
Quantitation		
System Performance		
COMMENTS ^b		
A COLOR OF THE STATE OF THE STA		
^a Subcontracted analytical labor	oratory is not meeting contract and/or m	ethod requirements.

^b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Annual Outfall 009

ANALYSIS: RADIONUCLIDES

SAMPLE DELIVERY GROUP: IQB2021

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: IQB2021 Analysis:

NPDES

Rad

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title: NPDES Sampling

MECX Project Number: 1261.100D.00

Sample Delivery Group: IQB2021 Project Manager: P. Costa

> Water Matrix:

Analysis: Radionuclides

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

> Reviewer: P. Meeks

April 5, 2007 Date of Review:

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Method 900.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

 Project:
 NPDES

 SDG:
 IQB2021

 DATA VALIDATION REPORT
 Analysis:
 Rad

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Eberline)	Matrix	COC Method
Outfall 009	IQB2021-01	8656-001	Water	900.0

NPDES IQB2021

DATA VALIDATION REPORT

Analysis:

Rad

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica within the temperature limits of 4±2°C. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. The sample was noted to have been received intact, in good condition, with cooler and sample container custody seals intact.

According to the Los Angeles Regional Water Quality Control Board's (LARWQCB) guidance letter dated 01/12/05, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. The tritium sample for Outfall 009 was received unpreserved in a glass container.

According to the LARWQCB guidance letter dated 01/12/05, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration. All aliquots were received at Eberline unfiltered and unpreserved and were neither preserved nor filtered after receipt. No qualifications were required.

2.1.2 Chain of Custody

The original COC was signed and dated by field and laboratory personnel. The transfer COC was signed by personnel from both laboratories. Eberline did not list the MWH ID on the sample result summary form; therefore, the reviewer edited the Form I to reflect this ID. No qualifications were required.

2.1.3 Holding Times

Aliquots for gross alpha and gross beta were prepared within the five-day analytical holding time for unpreserved samples. No qualifications were necessary.

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability. The gross alpha and gross beta initial calibration included with the data was performed in February 2003. The gross alpha detector efficiency

Project: NPDES SDG: IQB2021 Analysis: Rad

DATA VALIDATION REPORT

was less than 20%; therefore, the gross alpha result was qualified as an estimated detect, "J." The gross beta detector efficiency was above 20% and no further qualifications were required.

2.3 BLANKS

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Aqueous blank spikes were analyzed in association with the sample in this SDG. The blank spike results were within the laboratory-established control limits. No qualifications were necessary.

2.5 LABORATORY DUPLICATES

No laboratory duplicate analyses were performed. No qualifications were necessary.

2.6 MATRIX SPIKES

No matrix spike analyses were performed. Method accuracy was evaluated based on the blank spike results. No qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the sample in this data package. Sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. No qualifications were necessary.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample.

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

Project: SDG: NPDES IQB2021

DATA VALIDATION REPORT

Analysis:

Rad

2.8.2 Field Duplicates

There were no field duplicate samples in this SDG.

Eberline Services

ANALYSIS RESULTS

 SDG 8656
 Client TA IRVINE

 Work Order R702121-01
 Contract PR0JECT# IQB2021

 Received Date 02/21/07
 Matrix WATER

Client Lab

Sample ID Sample ID Collected Analyzed Nuclide Results ± 20 Units MDA Qual Code

Outfall 009

IQB2021-01 8656-001 02/19/07 03/08/07 Gross Beta 3.33 ± 0.64 pCi/L 0.89

Recu Qual Code

03/08/07 Gross Beta 3.33 ± 0.64 pCi/L 0.89

LEVEL (V

Certified by Report Date 03/23/07
Page 1

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MEC ^X			Package ID:	B4WC96		
12269 East Vassar Drive				1261.100D.00		
Aurora, CO 80014			SDG No.:	IQB2021		
		No.	of Analyses:	1		
Laboratory: TestAmerica			Date: April 25	5, 2007		
Reviewer: P. Meeks			Reviewer's Si	gnature		
Analysis/Method: General Minerals			IV. Mus			
-				The state of the s		
ACTION ITEMS ^a						
. Case Narrative						
Deficiencies			V-1,1			
-				***************************************		
2. Out of Scope Analyses						
_			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
-						
3. Analyses Not Conducted						
_						
4. Missing Hardcopy						
Deliverables						
5. Incorrect Hardcopy						
Deliverables				······································		

6. Deviations from Analysis	Qualification applied for a	a det	ect below the re	porting limit.		
Protocol, e.g.,						
Holding Times						
GC/MS Tune/Inst. Performance						
Calibration						
Method blanks						
Surrogates _						
Matrix Spike/Dup LCS						
Field QC						
Internal Standard Performance						
Compound Identification						
Quantitation						
System Performance						
COMMENTS ^b						
^a Subcontracted analytical laboratory is not meeting contract and/or method requirements.						
b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.						

DATA VALIDATION REPORT

NPDES Sampling Annual Outfall 009

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUP: IQB2021

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014
 Project:
 NPDES

 SDG:
 IQB2021

 DATA VALIDATION REPORT
 Analysis:
 Gen. Min.

1. INTRODUCTION

Task Order Title: NPDES Sampling MEC^X Project Number: 1261.001D.01

Sample Delivery Group: IQB2021 Project Manager: P. Costa

Matrix: Water

Analysis: General Minerals

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: P. Meeks
Date of Review: April 25, 2007

The sample listed in Table 1 was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), USEPA Methods 160.2 and 335.2, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form Is as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

 Project:
 NPDES

 SDG:
 IQB2021

 DATA VALIDATION REPORT
 Analysis:
 Gen. Min.

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 009	IQB2021-01	Water	General Minerals

Project: NPDES SDG: IQB2021 Analysis: Gen. Min.

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4° C \pm 2° C. No preservation problems were noted by the laboratory and no qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and the analysis presented in this SDG. As the sample was couriered directly from the field to the laboratory, custody seals were not necessary. No qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The TSS analysis was performed within the analytical holding time of seven days form collection and the cyanide analysis was performed within the analytical holding time of 14 days from collection. No qualifications were required.

2.2 CALIBRATION

The cyanide initial calibration r^2 result was ≥ 0.995 and the ICV and CCV results were within the control limits of 90-110%. No qualifications were required.

2.3 BLANKS

There were no detects in the method blanks or CCBs associated with the sample analyses. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The reported LCS recoveries were within the laboratory-established control limits. No qualifications were required.

Project: NPDES
SDG: IQB2021
Analysis: Gen Min

DATA VALIDATION REPORT SDG: IQB2021
Analysis: Gen. Min.

2.5 LABORATORY DUPLICATES

No laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.6 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Evaluation of method accuracy was based on the LCS results. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form I were verified against the raw data. Cyanide was detected in the site sample below the reporting limit. The cyanide result was qualified as estimated, "J." and was denoted with "DNQ" in accordance with the NPDES report. No further qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

*

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IQB2021

Received: 02/19/07

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	Qual
Sample ID: IQB2021-01 (Outfall 0 Reporting Units: ug/l	09 - Water) - cont.			ğ					Qual	Cole
Total Cyanide	EPA 335.2	7B23104	2.2	5.0	2.2	1	02/23/07	02/23/07	71	DNQ
Perchlorate	EPA 314.0	7B27143	0.80	4.0	ND	1	02/27/07	02/28/07	*	

* Analysis not validated

TestAmerica - Irvine, CAMichele Chamberlin
Project Manager

LEVEL IV

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB2021 <Page 14 of 43>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Report Number: IQB2021

Sampled: 02/19/07

Pasadena, CA 91101

Attention: Bronwyn Kelly

Received: 02/19/07

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	0 1	n 1
Sample ID: IQB2021-01 (Outfall 00	9 - Water) - cont.								Buch	Dode
Reporting Units: mg/l								distance		سرمر
Chloride	EPA 300.0	7B20044	0.15	0.50	13	1	02/20/07	02/20/07	*	
Fluoride	EPA 300.0	7B20044	0.15	0.50	0.40	1	02/20/07	02/20/07	J	
Hardness (as CaCO3)	SM2340B	7B21063	1.0	1.0	98	1	02/21/07	02/21/07		
Nitrate/Nitrite-N	EPA 300.0	7B20044	0.080	0.15	0.55	1	02/20/07	02/20/07		
Oil & Grease	EPA 413.1	7B28085	0.89	4.7	ND	1	02/28/07	02/28/07		
Sulfate	EPA 300.0	7B20044	0.45	0.50	44	1	02/20/07	02/20/07	V	
Total Dissolved Solids	SM2540C	7B23078	10	10	270	1	02/23/07	02/23/07	*	
Total Suspended Solids	EPA 160.2	7B21150	10	10	12	1	02/21/07	02/22/07		
									1	

* Analysis not validated

TestAmerica - Irvine, CAMichele Chamberlin
Project Manager

LEVEL IV

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB2021 <Page 13 of 43>

APPENDIX G

Section 14

Outfall 009, February 19, 2007 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Sampled: 02/19/07 Received: 02/19/07

Issued: 04/03/07 19:12

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 3°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: Enclosed are complete final results. The results for Radiochemistry were added.

LABORATORY IDCLIENT IDMATRIXIQB2021-01Outfall 009WaterIQB2021-02Trip BlankWater

Reviewed By:

TestAmerica - Irvine, CAMichele Chamberlin

Michele Chamberdin

Michele Chamberlir Project Manager

Pasadena, CA 91101

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

A a Lada	M-4b-J	Dadah	MDL	Reporting	-	Dilution	Date	Date	Data Qualifiers
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Quanners
Sample ID: IQB2021-01 (Outfall 009 - Wa	ter)								
Reporting Units: ug/l									
Benzene	EPA 624	7B21011	0.28	1.0	ND	1	02/21/07	02/21/07	M1
Bromodichloromethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	M1
Bromoform	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Bromomethane	EPA 624	7B21011	0.42	5.0	ND	1	02/21/07	02/21/07	M1
Carbon tetrachloride	EPA 624	7B21011	0.28	0.50	ND	1	02/21/07	02/21/07	
Chlorobenzene	EPA 624	7B21011	0.36	2.0	ND	1	02/21/07	02/21/07	M1
Chloroethane	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Chloroform	EPA 624	7B21011	0.33	2.0	ND	1	02/21/07	02/21/07	
Chloromethane	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	M1
Dibromochloromethane	EPA 624	7B21011	0.28	2.0	ND	1	02/21/07	02/21/07	M1
1,2-Dichlorobenzene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	M1
1,3-Dichlorobenzene	EPA 624	7B21011	0.35	2.0	ND	1	02/21/07	02/21/07	M1
1,4-Dichlorobenzene	EPA 624	7B21011	0.37	2.0	ND	1	02/21/07	02/21/07	M1
1,1-Dichloroethane	EPA 624	7B21011	0.27	2.0	ND	1	02/21/07	02/21/07	M1
1,2-Dichloroethane	EPA 624	7B21011	0.28	0.50	ND	1	02/21/07	02/21/07	
1,1-Dichloroethene	EPA 624	7B21011	0.42	5.0	ND	1	02/21/07	02/21/07	
trans-1,2-Dichloroethene	EPA 624	7B21011	0.27	2.0	ND	1	02/21/07	02/21/07	M1
1,2-Dichloropropane	EPA 624	7B21011	0.35	2.0	ND	1	02/21/07	02/21/07	M1
cis-1,3-Dichloropropene	EPA 624	7B21011	0.22	2.0	ND	1	02/21/07	02/21/07	
trans-1,3-Dichloropropene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
Ethylbenzene	EPA 624	7B21011	0.25	2.0	ND	1	02/21/07	02/21/07	M1
Methylene chloride	EPA 624	7B21011	0.95	5.0	ND	1	02/21/07	02/21/07	
1,1,2,2-Tetrachloroethane	EPA 624	7B21011	0.24	2.0	ND	1	02/21/07	02/21/07	
Tetrachloroethene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
Toluene	EPA 624	7B21011	0.36	2.0	ND	1	02/21/07	02/21/07	M1
1,1,1-Trichloroethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
1,1,2-Trichloroethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	M1
Trichloroethene	EPA 624	7B21011	0.26	2.0	ND	1	02/21/07	02/21/07	M1
Trichlorofluoromethane	EPA 624	7B21011	0.34	5.0	ND	1	02/21/07	02/21/07	
Vinyl chloride	EPA 624	7B21011	0.30	0.50	ND	1	02/21/07	02/21/07	M1
Xylenes, Total	EPA 624	7B21011	0.90	4.0	ND	1	02/21/07	02/21/07	M1
Trichlorotrifluoroethane (Freon 113)	EPA 624	7B21011	1.5	5.0	ND	1	02/21/07	02/21/07	
Surrogate: Dibromofluoromethane (80-1209	26)				100 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Rromofluorohenzene (80-120%	6)				08 %				

Surrogate: 4-Bromofluorobenzene (80-120%)

98 %

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

	1 0 1 1 1	, , , , , , , , , , , , , , , , , , , ,		C/MS (LI	,				
			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQB2021-02 (Trip Blank - Water	.)								
Reporting Units: ug/l									
Benzene	EPA 624	7B21011	0.28	1.0	ND	1	02/21/07	02/21/07	
Bromodichloromethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
Bromoform	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Bromomethane	EPA 624	7B21011	0.42	5.0	ND	1	02/21/07	02/21/07	
Carbon tetrachloride	EPA 624	7B21011	0.28	0.50	ND	1	02/21/07	02/21/07	
Chlorobenzene	EPA 624	7B21011	0.36	2.0	ND	1	02/21/07	02/21/07	
Chloroethane	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Chloroform	EPA 624	7B21011	0.33	2.0	ND	1	02/21/07	02/21/07	
Chloromethane	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Dibromochloromethane	EPA 624	7B21011	0.28	2.0	ND	1	02/21/07	02/21/07	
1,2-Dichlorobenzene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
1,3-Dichlorobenzene	EPA 624	7B21011	0.35	2.0	ND	1	02/21/07	02/21/07	
1,4-Dichlorobenzene	EPA 624	7B21011	0.37	2.0	ND	1	02/21/07	02/21/07	
1,1-Dichloroethane	EPA 624	7B21011	0.27	2.0	ND	1	02/21/07	02/21/07	
1,2-Dichloroethane	EPA 624	7B21011	0.28	0.50	ND	1	02/21/07	02/21/07	
1,1-Dichloroethene	EPA 624	7B21011	0.42	5.0	ND	1	02/21/07	02/21/07	
trans-1,2-Dichloroethene	EPA 624	7B21011	0.27	2.0	ND	1	02/21/07	02/21/07	
1,2-Dichloropropane	EPA 624	7B21011	0.35	2.0	ND	1	02/21/07	02/21/07	
cis-1,3-Dichloropropene	EPA 624	7B21011	0.22	2.0	ND	1	02/21/07	02/21/07	
trans-1,3-Dichloropropene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
Ethylbenzene	EPA 624	7B21011	0.25	2.0	ND	1	02/21/07	02/21/07	
Methylene chloride	EPA 624	7B21011	0.95	5.0	ND	1	02/21/07	02/21/07	
1,1,2,2-Tetrachloroethane	EPA 624	7B21011	0.24	2.0	ND	1	02/21/07	02/21/07	
Tetrachloroethene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
Toluene	EPA 624	7B21011	0.36	2.0	ND	1	02/21/07	02/21/07	
1,1,1-Trichloroethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
1,1,2-Trichloroethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
Trichloroethene	EPA 624	7B21011	0.26	2.0	ND	1	02/21/07	02/21/07	
Trichlorofluoromethane	EPA 624	7B21011	0.34	5.0	ND	1	02/21/07	02/21/07	
Vinyl chloride	EPA 624	7B21011	0.30	0.50	ND	1	02/21/07	02/21/07	
Xylenes, Total	EPA 624	7B21011	0.90	4.0	ND	1	02/21/07	02/21/07	
-	EPA 624	7B21011	1.5	5.0	ND	1	02/21/07	02/21/07	
Surrogate: Dibromofluoromethane (80-120%)					96 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					98 %				

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

PURGEABLES-- GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2021-01 (Outfall 009 - Water	er)								
Reporting Units: ug/l									
Acrolein	EPA 624	7B21011	4.6	50	ND	1	02/21/07	02/21/07	
Acrylonitrile	EPA 624	7B21011	0.70	50	ND	1	02/21/07	02/21/07	
2-Chloroethyl vinyl ether	EPA 624	7B21011	1.8	5.0	ND	1	02/21/07	02/21/07	
Surrogate: Dibromofluoromethane (80-120%))				100 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					98 %				
Sample ID: IQB2021-02 (Trip Blank - Wate	er)								
Reporting Units: ug/l									
Acrolein	EPA 624	7B21011	4.6	50	ND	1	02/21/07	02/21/07	
Acrylonitrile	EPA 624	7B21011	0.70	50	ND	1	02/21/07	02/21/07	
2-Chloroethyl vinyl ether	EPA 624	7B21011	1.8	5.0	ND	1	02/21/07	02/21/07	
Surrogate: Dibromofluoromethane (80-120%))				96 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					98 %				

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Suite 1200 Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		ISE/ITEC			`	,	ъ.	D (D-4-
Analyta	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution	Date Extracted	Date Analyzed	Data Qualifiers
Analyte	Method	Daten	Lillit	Lillit	Result	Factor	Extracteu	Allalyzeu	Qualificis
Sample ID: IQB2021-01 (Outfall 009 - W	ater)								
Reporting Units: ug/l									
Acenaphthene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Acenaphthylene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Aniline	EPA 625	7B21110	2.6	10	ND	1.03	02/21/07	02/25/07	
Anthracene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Benzidine	EPA 625	7B21110	8.8	21	ND	1.03	02/21/07	02/25/07	L
Benzoic acid	EPA 625	7B21110	8.8	21	ND	1.03	02/21/07	02/25/07	
Benzo(a)anthracene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Benzo(b)fluoranthene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Benzo(k)fluoranthene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Benzo(g,h,i)perylene	EPA 625	7B21110	3.1	10	ND	1.03	02/21/07	02/25/07	L
Benzo(a)pyrene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Benzyl alcohol	EPA 625	7B21110	2.6	21	ND	1.03	02/21/07	02/25/07	
Bis(2-chloroethoxy)methane	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Bis(2-chloroethyl)ether	EPA 625	7B21110	2.6	10	ND	1.03	02/21/07	02/25/07	
Bis(2-chloroisopropyl)ether	EPA 625	7B21110	2.6	10	ND	1.03	02/21/07	02/25/07	
Bis(2-ethylhexyl)phthalate	EPA 625	7B21110	4.1	52	ND	1.03	02/21/07	02/25/07	
4-Bromophenyl phenyl ether	EPA 625	7B21110	2.6	10	ND	1.03	02/21/07	02/25/07	
Butyl benzyl phthalate	EPA 625	7B21110	4.1	21	ND	1.03	02/21/07	02/25/07	
4-Chloroaniline	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
2-Chloronaphthalene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
4-Chloro-3-methylphenol	EPA 625	7B21110	2.1	21	ND	1.03	02/21/07	02/25/07	
2-Chlorophenol	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
4-Chlorophenyl phenyl ether	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Chrysene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Dibenz(a,h)anthracene	EPA 625	7B21110	3.1	21	ND	1.03	02/21/07	02/25/07	
Dibenzofuran	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Di-n-butyl phthalate	EPA 625	7B21110	2.1	21	ND	1.03	02/21/07	02/25/07	
1,3-Dichlorobenzene	EPA 625	7B21110	3.1	10	ND	1.03	02/21/07	02/25/07	
1,4-Dichlorobenzene	EPA 625	7B21110	2.6	10	ND	1.03	02/21/07	02/25/07	
1,2-Dichlorobenzene	EPA 625	7B21110	3.1	10	ND	1.03	02/21/07	02/25/07	
3,3-Dichlorobenzidine	EPA 625	7B21110	3.1	21	ND	1.03	02/21/07	02/25/07	
2,4-Dichlorophenol	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Diethyl phthalate	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
2,4-Dimethylphenol	EPA 625	7B21110	3.6	21	ND	1.03	02/21/07	02/25/07	
Dimethyl phthalate	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
4,6-Dinitro-2-methylphenol	EPA 625	7B21110	4.1	21	ND	1.03	02/21/07	02/25/07	
2,4-Dinitrophenol	EPA 625	7B21110	4.6	21	ND	1.03	02/21/07	02/25/07	
2,4-Dinitrotoluene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
2,6-Dinitrotoluene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Di-n-octyl phthalate	EPA 625	7B21110	2.1	21	ND	1.03	02/21/07	02/25/07	
Fluoranthene	EPA 625	7B21110 7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Total Anna San Indian CA	1111 023	, 221110	2.1	10	110	1.05	02,21,01	32,23,01	

TestAmerica - Irvine, CA

Michele Chamberlin

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result		Extracted	Analyzed	Qualifiers
Sample ID: IQB2021-01 (Outfall 009 - Wat	er) - cont								
Reporting Units: ug/l	cr) cont.								
Fluorene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Hexachlorobenzene	EPA 625	7B21110	2.6	10	ND	1.03	02/21/07	02/25/07	
Hexachlorobutadiene	EPA 625	7B21110	3.6	10	ND	1.03	02/21/07	02/25/07	
Hexachlorocyclopentadiene	EPA 625	7B21110	5.2	21	ND	1.03	02/21/07	02/25/07	
Hexachloroethane	EPA 625	7B21110	3.1	10	ND	1.03	02/21/07	02/25/07	
Indeno(1,2,3-cd)pyrene	EPA 625	7B21110	3.1	21	ND	1.03	02/21/07	02/25/07	
Isophorone	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
2-Methylnaphthalene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
2-Methylphenol	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
4-Methylphenol	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Naphthalene	EPA 625	7B21110	2.6	10	ND	1.03	02/21/07	02/25/07	
2-Nitroaniline	EPA 625	7B21110	2.1	21	ND	1.03	02/21/07	02/25/07	
3-Nitroaniline	EPA 625	7B21110	2.1	21	ND	1.03	02/21/07	02/25/07	
4-Nitroaniline	EPA 625	7B21110	2.6	21	ND	1.03	02/21/07	02/25/07	
Nitrobenzene	EPA 625	7B21110	2.6	21	ND	1.03	02/21/07	02/25/07	
2-Nitrophenol	EPA 625	7B21110	3.6	10	ND	1.03	02/21/07	02/25/07	
4-Nitrophenol	EPA 625	7B21110	5.7	21	ND	1.03	02/21/07	02/25/07	
N-Nitrosodiphenylamine	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
N-Nitroso-di-n-propylamine	EPA 625	7B21110	2.6	10	ND	1.03	02/21/07	02/25/07	
Pentachlorophenol	EPA 625	7B21110	3.6	21	ND	1.03	02/21/07	02/25/07	
Phenanthrene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Phenol	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
Pyrene	EPA 625	7B21110	2.1	10	ND	1.03	02/21/07	02/25/07	
1,2,4-Trichlorobenzene	EPA 625	7B21110	2.6	10	ND	1.03	02/21/07	02/25/07	
2,4,5-Trichlorophenol	EPA 625	7B21110	3.1	21	ND	1.03	02/21/07	02/25/07	
2,4,6-Trichlorophenol	EPA 625	7B21110	3.1	21	ND	1.03	02/21/07	02/25/07	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	7B21110	2.1	21	ND	1.03	02/21/07	02/25/07	
N-Nitrosodimethylamine	EPA 625	7B21110	2.6	21	ND	1.03	02/21/07	02/25/07	
Surrogate: 2-Fluorophenol (30-120%)					62 %				
Surrogate: Phenol-d6 (35-120%)					65 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					83 %				
Surrogate: Nitrobenzene-d5 (40-120%)					70 %				
Surrogate: 2-Fluorobiphenyl (45-120%)					77 %				
Surrogate: Terphenyl-d14 (45-120%)					88 %				

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2021-01 (Outfall 009 - Water	er) - cont.								
Reporting Units: ug/l									
Aldrin	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	C-7
alpha-BHC	EPA 608	7B22132	0.019	0.095	ND	0.952	02/22/07	02/25/07	
beta-BHC	EPA 608	7B22132	0.038	0.095	ND	0.952	02/22/07	02/25/07	
delta-BHC	EPA 608	7B22132	0.019	0.19	ND	0.952	02/22/07	02/25/07	
gamma-BHC (Lindane)	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	
Chlordane	EPA 608	7B22132	0.19	0.95	ND	0.952	02/22/07	02/25/07	
4,4'-DDD	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	
4,4'-DDE	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	
4,4'-DDT	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	C-7
Dieldrin	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	
Endosulfan I	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	
Endosulfan II	EPA 608	7B22132	0.038	0.095	ND	0.952	02/22/07	02/25/07	
Endosulfan sulfate	EPA 608	7B22132	0.048	0.19	ND	0.952	02/22/07	02/25/07	
Endrin	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	
Endrin aldehyde	EPA 608	7B22132	0.048	0.095	ND	0.952	02/22/07	02/25/07	
Endrin ketone	EPA 608	7B22132	0.038	0.095	ND	0.952	02/22/07	02/25/07	
Heptachlor	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	
Heptachlor epoxide	EPA 608	7B22132	0.029	0.095	ND	0.952	02/22/07	02/25/07	
Methoxychlor	EPA 608	7B22132	0.038	0.095	ND	0.952	02/22/07	02/25/07	C-7
Toxaphene	EPA 608	7B22132	1.4	4.8	ND	0.952	02/22/07	02/25/07	
Surrogate: Tetrachloro-m-xylene (35-115%)					60 %				
Surrogate: Decachlorobiphenyl (45-120%)					76 %				

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/19/07

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IQB2021

Received: 02/19/07

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2021-01 (Outfall 009 - Wat	ter) - cont.								
Reporting Units: ug/l									
Aroclor 1016	EPA 608	7B22132	0.33	0.95	ND	0.952	02/22/07	02/23/07	
Aroclor 1221	EPA 608	7B22132	0.095	0.95	ND	0.952	02/22/07	02/23/07	
Aroclor 1232	EPA 608	7B22132	0.24	0.95	ND	0.952	02/22/07	02/23/07	
Aroclor 1242	EPA 608	7B22132	0.24	0.95	ND	0.952	02/22/07	02/23/07	
Aroclor 1248	EPA 608	7B22132	0.24	0.95	ND	0.952	02/22/07	02/23/07	
Aroclor 1254	EPA 608	7B22132	0.24	0.95	ND	0.952	02/22/07	02/23/07	
Aroclor 1260	EPA 608	7B22132	0.29	0.95	ND	0.952	02/22/07	02/23/07	
Surrogate: Decachlorobiphenyl (45-120%)					95 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IQB2021

Received: 02/19/07

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2021-01 (Outfall 009 Reporting Units: mg/l	- Water) - cont.								
Boron Iron	EPA 200.7 EPA 200.7	7B21063 7B21063	0.020 0.015	0.050 0.040	0.21 0.42	1 1	02/21/07 02/21/07	02/21/07 02/21/07	В

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2021-01 (Outfall 0	09 - Water) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7	7B21063	40	50	410	1	02/21/07	02/21/07	
Antimony	EPA 200.8	7B21137	0.050	2.0	0.49	1	02/21/07	02/21/07	J
Arsenic	EPA 200.7	7B21063	7.0	10	ND	1	02/21/07	02/21/07	
Beryllium	EPA 200.7	7B21063	0.90	2.0	ND	1	02/21/07	02/21/07	
Cadmium	EPA 200.8	7B21137	0.025	1.0	0.056	1	02/21/07	02/21/07	B, J
Chromium	EPA 200.7	7B21063	2.0	5.0	ND	1	02/21/07	02/21/07	
Copper	EPA 200.8	7B21137	0.25	2.0	3.7	1	02/21/07	02/21/07	
Lead	EPA 200.8	7B21137	0.040	1.0	1.7	1	02/21/07	02/21/07	
Nickel	EPA 200.7	7B21063	2.0	10	ND	1	02/21/07	02/21/07	
Selenium	EPA 200.7	7B21063	8.0	10	ND	1	02/21/07	02/21/07	
Silver	EPA 200.7	7B21063	3.0	10	ND	1	02/21/07	02/21/07	
Thallium	EPA 200.8	7B21137	0.15	1.0	ND	1	02/21/07	02/21/07	
Vanadium	EPA 200.7	7B21063	3.0	10	ND	1	02/21/07	02/21/07	
Zinc	EPA 200.7	7B21063	15	20	51	1	02/21/07	02/21/07	

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2021-01 (Outfall 009 - V	Vater) - cont.								
Reporting Units: mg/l									
Aluminum	EPA 200.7-Diss	7B22143	0.040	0.050	ND	1	02/22/07	02/23/07	
Arsenic	EPA 200.7-Diss	7B22143	0.0070	0.010	ND	1	02/22/07	02/23/07	
Beryllium	EPA 200.7-Diss	7B22143	0.00090	0.0020	ND	1	02/22/07	02/23/07	
Boron	EPA 200.7-Diss	7B22143	0.020	0.050	0.21	1	02/22/07	02/23/07	В
Chromium	EPA 200.7-Diss	7B22143	0.0020	0.0050	ND	1	02/22/07	02/23/07	
Iron	EPA 200.7-Diss	7B22143	0.015	0.040	0.026	1	02/22/07	02/23/07	J
Nickel	EPA 200.7-Diss	7B22143	0.0020	0.010	0.0023	1	02/22/07	02/23/07	J
Selenium	EPA 200.7-Diss	7B22143	0.0080	0.010	ND	1	02/22/07	02/23/07	
Hardness (as CaCO3)	SM2340B	7B22143	1.0	1.0	91	1	02/22/07	02/23/07	
Silver	EPA 200.7-Diss	7B22143	0.0060	0.010	ND	1	02/22/07	02/23/07	
Vanadium	EPA 200.7-Diss	7B22143	0.0030	0.010	ND	1	02/22/07	02/23/07	
Zinc	EPA 200.7-Diss	7B22143	0.0040	0.020	ND	1	02/22/07	02/23/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2021-01 (Outfall 009 -	Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	7B23073	0.050	2.0	0.48	1	02/23/07	02/23/07	J
Cadmium	EPA 200.8-Diss	7B23073	0.050	1.0	ND	1	02/23/07	02/23/07	
Copper	EPA 200.8-Diss	7B23073	0.40	2.0	2.1	1	02/23/07	02/23/07	
Lead	EPA 200.8-Diss	7B23073	0.10	1.0	0.15	1	02/23/07	02/23/07	J
Thallium	EPA 200.8-Diss	7B23073	0.15	1.0	ND	1	02/23/07	02/23/07	

Pasadena, CA 91101

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2021-01 (Outfall 009 - W	ater) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	7B20044	0.15	0.50	13	1	02/20/07	02/20/07	
Fluoride	EPA 300.0	7B20044	0.15	0.50	0.40	1	02/20/07	02/20/07	J
Hardness (as CaCO3)	SM2340B	7B21063	1.0	1.0	98	1	02/21/07	02/21/07	
Nitrate/Nitrite-N	EPA 300.0	7B20044	0.080	0.15	0.55	1	02/20/07	02/20/07	
Oil & Grease	EPA 413.1	7B28085	0.89	4.7	ND	1	02/28/07	02/28/07	
Sulfate	EPA 300.0	7B20044	0.45	0.50	44	1	02/20/07	02/20/07	
Total Dissolved Solids	SM2540C	7B23078	10	10	270	1	02/23/07	02/23/07	
Total Suspended Solids	EPA 160.2	7B21150	10	10	12	1	02/21/07	02/22/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IQB2021

Received: 02/19/07

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2021-01 (Outfall 009 - W Reporting Units: ug/l	ater) - cont.								
Total Cyanide Perchlorate	EPA 335.2 EPA 314.0	7B23104 7B27143	2.2 0.80	5.0 4.0	2.2 ND	1 1	02/23/07 02/27/07	02/23/07 02/28/07	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Report Number: IQB2021

Sampled: 02/19/07 Received: 02/19/07

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

S I ID O (CHOOLGODAM) W	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 (IQB2021-01) - Wate	r				
EPA 300.0	2	02/19/2007 09:30	02/19/2007 18:55	02/20/2007 15:00	02/20/2007 15:17
EPA 624	3	02/19/2007 09:30	02/19/2007 18:55	02/21/2007 00:00	02/21/2007 11:40
Sample ID: Trip Blank (IQB2021-02) - Water	r				
EPA 624	3	02/19/2007 09:30	02/19/2007 18:55	02/21/2007 00:00	02/21/2007 09:37

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MDL	Units	Levei	Kesuit	70KEC	Limits	KPD	Limit	Quanners
Batch: 7B21011 Extracted: 02/21/0	7_										
Blank Analyzed: 02/21/2007 (7B21011-1	· · · · · · · · · · · · · · · · · · ·										
Benzene	ND	1.0	0.28	ug/l							
Bromodichloromethane	ND	2.0	0.30	ug/l							
Bromoform	ND	5.0	0.40	ug/l							
Bromomethane	ND	5.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	2.0	0.36	ug/l							
Chloroethane	ND	5.0	0.40	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
Chloromethane	ND	5.0	0.40	ug/l							
Dibromochloromethane	ND	2.0	0.28	ug/l							
1,2-Dichlorobenzene	ND	2.0	0.32	ug/l							
1,3-Dichlorobenzene	ND	2.0	0.35	ug/l							
1,4-Dichlorobenzene	ND	2.0	0.37	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	5.0	0.42	ug/l							
trans-1,2-Dichloroethene	ND	2.0	0.27	ug/l							
1,2-Dichloropropane	ND	2.0	0.35	ug/l							
cis-1,3-Dichloropropene	ND	2.0	0.22	ug/l							
trans-1,3-Dichloropropene	ND	2.0	0.32	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Methylene chloride	ND	5.0	0.95	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Toluene	ND	2.0	0.36	ug/l							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
Trichloroethene	ND	2.0	0.26	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	4.0	0.90	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.5	ug/l							
Surrogate: Dibromofluoromethane	22.2			ug/l	25.0		89	80-120			
Surrogate: Toluene-d8	25.0			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
v				Ü							

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 7B21011 Extracted: 02/21/0											
Daten. / B21011 Extracted. 02/21/0	<u> </u>										
LCS Analyzed: 02/21/2007 (7B21011-B	S1)										
Benzene	24.4	1.0	0.28	ug/l	25.0		98	70-120			
Bromodichloromethane	24.9	2.0	0.30	ug/l	25.0		100	70-135			
Bromoform	22.8	5.0	0.40	ug/l	25.0		91	55-130			
Bromomethane	25.5	5.0	0.42	ug/l	25.0		102	65-140			
Carbon tetrachloride	23.3	0.50	0.28	ug/l	25.0		93	65-140			
Chlorobenzene	24.8	2.0	0.36	ug/l	25.0		99	75-120			
Chloroethane	21.6	5.0	0.40	ug/l	25.0		86	60-140			
Chloroform	23.5	2.0	0.33	ug/l	25.0		94	70-130			
Chloromethane	30.5	5.0	0.40	ug/l	25.0		122	50-140			
Dibromochloromethane	26.8	2.0	0.28	ug/l	25.0		107	70-140			
1,2-Dichlorobenzene	25.3	2.0	0.32	ug/l	25.0		101	75-120			
1,3-Dichlorobenzene	25.3	2.0	0.35	ug/l	25.0		101	75-120			
1,4-Dichlorobenzene	24.8	2.0	0.37	ug/l	25.0		99	75-120			
1,1-Dichloroethane	23.5	2.0	0.27	ug/l	25.0		94	70-125			
1,2-Dichloroethane	25.0	0.50	0.28	ug/l	25.0		100	60-140			
1,1-Dichloroethene	23.3	5.0	0.42	ug/l	25.0		93	70-125			
trans-1,2-Dichloroethene	24.4	2.0	0.27	ug/l	25.0		98	70-125			
1,2-Dichloropropane	25.6	2.0	0.35	ug/l	25.0		102	70-125			
cis-1,3-Dichloropropene	24.1	2.0	0.22	ug/l	25.0		96	75-125			
trans-1,3-Dichloropropene	24.7	2.0	0.32	ug/l	25.0		99	70-125			
Ethylbenzene	25.8	2.0	0.25	ug/l	25.0		103	75-125			
Methylene chloride	21.4	5.0	0.95	ug/l	25.0		86	55-130			
1,1,2,2-Tetrachloroethane	27.4	2.0	0.24	ug/l	25.0		110	55-130			
Tetrachloroethene	22.4	2.0	0.32	ug/l	25.0		90	70-125			
Toluene	25.4	2.0	0.36	ug/l	25.0		102	70-120			
1,1,1-Trichloroethane	23.1	2.0	0.30	ug/l	25.0		92	65-135			
1,1,2-Trichloroethane	26.5	2.0	0.30	ug/l	25.0		106	70-125			
Trichloroethene	24.6	2.0	0.26	ug/l	25.0		98	70-125			
Trichlorofluoromethane	23.0	5.0	0.34	ug/l	25.0		92	65-145			
Vinyl chloride	26.6	0.50	0.30	ug/l	25.0		106	55-135			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.7			ug/l	25.0		107	80-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 7B21011 Extracted: 02/21/0'	7										
Batch. /BEIVIT Extracted. VE/E1/V	<u>/</u>										
Matrix Spike Analyzed: 02/21/2007 (7B2	21011-MS1)				Sou	rce: IQB	2021-01				
Benzene	33.0	1.0	0.28	ug/l	25.0	ND	132	65-125			M1
Bromodichloromethane	34.1	2.0	0.30	ug/l	25.0	ND	136	70-135			M1
Bromoform	28.1	5.0	0.40	ug/l	25.0	ND	112	55-135			
Bromomethane	38.2	5.0	0.42	ug/l	25.0	ND	153	55-145			MI
Carbon tetrachloride	34.0	0.50	0.28	ug/l	25.0	ND	136	65-140			
Chlorobenzene	33.2	2.0	0.36	ug/l	25.0	ND	133	75-125			M1
Chloroethane	32.6	5.0	0.40	ug/l	25.0	ND	130	55-140			
Chloroform	33.4	2.0	0.33	ug/l	25.0	ND	134	65-135			
Chloromethane	43.7	5.0	0.40	ug/l	25.0	ND	175	45-145			M1
Dibromochloromethane	35.3	2.0	0.28	ug/l	25.0	ND	141	65-140			M1
1,2-Dichlorobenzene	32.8	2.0	0.32	ug/l	25.0	ND	131	75-125			M1
1,3-Dichlorobenzene	33.2	2.0	0.35	ug/l	25.0	ND	133	75-125			M1
1,4-Dichlorobenzene	32.2	2.0	0.37	ug/l	25.0	ND	129	75-125			M1
1,1-Dichloroethane	33.3	2.0	0.27	ug/l	25.0	ND	133	65-130			M1
1,2-Dichloroethane	32.9	0.50	0.28	ug/l	25.0	ND	132	60-140			
1,1-Dichloroethene	31.0	5.0	0.42	ug/l	25.0	ND	124	60-130			
trans-1,2-Dichloroethene	33.8	2.0	0.27	ug/l	25.0	ND	135	65-130			M1
1,2-Dichloropropane	34.0	2.0	0.35	ug/l	25.0	ND	136	65-130			M1
cis-1,3-Dichloropropene	31.4	2.0	0.22	ug/l	25.0	ND	126	70-130			
trans-1,3-Dichloropropene	31.2	2.0	0.32	ug/l	25.0	ND	125	65-135			
Ethylbenzene	34.9	2.0	0.25	ug/l	25.0	ND	140	65-130			M1
Methylene chloride	30.2	5.0	0.95	ug/l	25.0	ND	121	50-135			
1,1,2,2-Tetrachloroethane	31.6	2.0	0.24	ug/l	25.0	ND	126	55-135			
Tetrachloroethene	30.2	2.0	0.32	ug/l	25.0	ND	121	65-130			
Toluene	34.1	2.0	0.36	ug/l	25.0	ND	136	70-125			M1
1,1,1-Trichloroethane	33.9	2.0	0.30	ug/l	25.0	ND	136	65-140			
1,1,2-Trichloroethane	32.8	2.0	0.30	ug/l	25.0	ND	131	65-130			M1
Trichloroethene	33.6	2.0	0.26	ug/l	25.0	ND	134	65-125			M1
Trichlorofluoromethane	34.6	5.0	0.34	ug/l	25.0	ND	138	60-145			
Vinyl chloride	40.4	0.50	0.30	ug/l	25.0	ND	162	45-140			M1
Surrogate: Dibromofluoromethane	26.6			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	27.1			ug/l	25.0		108	80-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21011 Extracted: 02/21/0'	<u>7_</u>										
											
Matrix Spike Dup Analyzed: 02/21/2007						rce: IQB	2021-01				
Benzene	28.9	1.0	0.28	ug/l	25.0	ND	116	65-125	13	20	
Bromodichloromethane	29.9	2.0	0.30	ug/l	25.0	ND	120	70-135	13	20	
Bromoform	25.6	5.0	0.40	ug/l	25.0	ND	102	55-135	9	25	
Bromomethane	33.5	5.0	0.42	ug/l	25.0	ND	134	55-145	13	25	
Carbon tetrachloride	29.7	0.50	0.28	ug/l	25.0	ND	119	65-140	14	25	
Chlorobenzene	29.5	2.0	0.36	ug/l	25.0	ND	118	75-125	12	20	
Chloroethane	28.8	5.0	0.40	ug/l	25.0	ND	115	55-140	12	25	
Chloroform	29.4	2.0	0.33	ug/l	25.0	ND	118	65-135	13	20	
Chloromethane	39.2	5.0	0.40	ug/l	25.0	ND	157	45-145	11	25	M1
Dibromochloromethane	31.8	2.0	0.28	ug/l	25.0	ND	127	65-140	10	25	
1,2-Dichlorobenzene	30.5	2.0	0.32	ug/l	25.0	ND	122	75-125	7	20	
1,3-Dichlorobenzene	30.1	2.0	0.35	ug/l	25.0	ND	120	75-125	10	20	
1,4-Dichlorobenzene	29.4	2.0	0.37	ug/l	25.0	ND	118	75-125	9	20	
1,1-Dichloroethane	29.5	2.0	0.27	ug/l	25.0	ND	118	65-130	12	20	
1,2-Dichloroethane	29.3	0.50	0.28	ug/l	25.0	ND	117	60-140	12	20	
1,1-Dichloroethene	28.0	5.0	0.42	ug/l	25.0	ND	112	60-130	10	20	
trans-1,2-Dichloroethene	29.8	2.0	0.27	ug/l	25.0	ND	119	65-130	13	20	
1,2-Dichloropropane	30.2	2.0	0.35	ug/l	25.0	ND	121	65-130	12	20	
cis-1,3-Dichloropropene	27.7	2.0	0.22	ug/l	25.0	ND	111	70-130	13	20	
trans-1,3-Dichloropropene	27.8	2.0	0.32	ug/l	25.0	ND	111	65-135	12	25	
Ethylbenzene	30.7	2.0	0.25	ug/l	25.0	ND	123	65-130	13	20	
Methylene chloride	26.6	5.0	0.95	ug/l	25.0	ND	106	50-135	13	20	
1,1,2,2-Tetrachloroethane	30.7	2.0	0.24	ug/l	25.0	ND	123	55-135	3	30	
Tetrachloroethene	26.6	2.0	0.32	ug/l	25.0	ND	106	65-130	13	20	
Toluene	29.8	2.0	0.36	ug/l	25.0	ND	119	70-125	13	20	
1,1,1-Trichloroethane	30.0	2.0	0.30	ug/l	25.0	ND	120	65-140	12	20	
1,1,2-Trichloroethane	29.4	2.0	0.30	ug/l	25.0	ND	118	65-130	11	25	
Trichloroethene	29.1	2.0	0.26	ug/l	25.0	ND	116	65-125	14	20	
Trichlorofluoromethane	30.4	5.0	0.34	ug/l	25.0	ND	122	60-145	13	25	
Vinyl chloride	35.3	0.50	0.30	ug/l	25.0	ND	141	45-140	13	30	M1
Surrogate: Dibromofluoromethane	26.4			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21011 Extracted: 02/21/07											
	=										
Blank Analyzed: 02/21/2007 (7B21011-B)	LK1)										
Acrolein	ND	50	4.6	ug/l							
Acrylonitrile	ND	50	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: Dibromofluoromethane	22.2			ug/l	25.0		89	80-120			
Surrogate: Toluene-d8	25.0			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
LCS Analyzed: 02/21/2007 (7B21011-BS)	1)										
2-Chloroethyl vinyl ether	24.0	5.0	1.8	ug/l	25.0		96	25-170			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.7			ug/l	25.0		107	80-120			
Matrix Spike Analyzed: 02/21/2007 (7B2	1011-MS1)				Sou	rce: IQB	2021-01				
2-Chloroethyl vinyl ether	27.2	5.0	1.8	ug/l	25.0	ND	109	25-170			
Surrogate: Dibromofluoromethane	26.6			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	27.1			ug/l	25.0		108	80-120			
Matrix Spike Dup Analyzed: 02/21/2007	(7B21011-M	SD1)			Sou	rce: IQB	2021-01				
2-Chloroethyl vinyl ether	24.8	5.0	1.8	ug/l	25.0	ND	99	25-170	9	25	
Surrogate: Dibromofluoromethane	26.4			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			

RPD

Result %REC Limits

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

RPD

Limit

Data

Qualifiers

Report Number: IQB2021 Received: 02/19/07

Source

Spike

Level

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Reporting

		Reporting		
Analyte	Result	Limit	MDL	Units
Batch: 7B21110 Extracted: 02/21/07	-			
Blank Analyzed: 02/23/2007 (7B21110-B	LK1)			
Acenaphthene	ND	10	2.0	ug/l
Acenaphthylene	ND	10	2.0	ug/l
Aniline	ND	10	2.5	ug/l
Anthracene	ND	10	2.0	ug/l
Benzidine	ND	20	8.5	ug/l
Benzoic acid	ND	20	8.5	ug/l
Benzo(a)anthracene	ND	10	2.0	ug/l
Benzo(b)fluoranthene	ND	10	2.0	ug/l
Benzo(k)fluoranthene	ND	10	2.0	ug/l
Benzo(g,h,i)perylene	ND	10	3.0	ug/l
Benzo(a)pyrene	ND	10	2.0	ug/l
Benzyl alcohol	ND	20	2.5	ug/l
Bis(2-chloroethoxy)methane	ND	10	2.0	ug/l
Bis(2-chloroethyl)ether	ND	10	2.5	ug/l
Bis(2-chloroisopropyl)ether	ND	10	2.5	ug/l
Bis(2-ethylhexyl)phthalate	ND	50	4.0	ug/l
4-Bromophenyl phenyl ether	ND	10	2.5	ug/l
Butyl benzyl phthalate	ND	20	4.0	ug/l
4-Chloroaniline	ND	10	2.0	ug/l
2-Chloronaphthalene	ND	10	2.0	ug/l
4-Chloro-3-methylphenol	ND	20	2.0	ug/l
2-Chlorophenol	ND	10	2.0	ug/l
4-Chlorophenyl phenyl ether	ND	10	2.0	ug/l
Chrysene	ND	10	2.0	ug/l
Dibenz(a,h)anthracene	ND	20	3.0	ug/l
Dibenzofuran	ND	10	2.0	ug/l
Di-n-butyl phthalate	ND	20	2.0	ug/l
1,3-Dichlorobenzene	ND	10	3.0	ug/l
1,4-Dichlorobenzene	ND	10	2.5	ug/l
1,2-Dichlorobenzene	ND	10	3.0	ug/l
3,3-Dichlorobenzidine	ND	20	3.0	ug/l
2,4-Dichlorophenol	ND	10	2.0	ug/l
Diethyl phthalate	ND	10	2.0	ug/l
2,4-Dimethylphenol	ND	20	3.5	ug/l
Dimethyl phthalate	ND	10	2.0	ug/l

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

Data

Qualifiers

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: 7B21110 Extracted: 02/21/07										
Buten, (BEIIIO Extracted, 02/21/07	-									
Blank Analyzed: 02/23/2007 (7B21110-B	LK1)									
4,6-Dinitro-2-methylphenol	ND	20	4.0	ug/l						
2,4-Dinitrophenol	ND	20	4.5	ug/l						
2,4-Dinitrotoluene	ND	10	2.0	ug/l						
2,6-Dinitrotoluene	ND	10	2.0	ug/l						
Di-n-octyl phthalate	ND	20	2.0	ug/l						
Fluoranthene	ND	10	2.0	ug/l						
Fluorene	ND	10	2.0	ug/l						
Hexachlorobenzene	ND	10	2.5	ug/l						
Hexachlorobutadiene	ND	10	3.5	ug/l						
Hexachlorocyclopentadiene	ND	20	5.0	ug/l						
Hexachloroethane	ND	10	3.0	ug/l						
Indeno(1,2,3-cd)pyrene	ND	20	3.0	ug/l						
Isophorone	ND	10	2.0	ug/l						
2-Methylnaphthalene	ND	10	2.0	ug/l						
2-Methylphenol	ND	10	2.0	ug/l						
4-Methylphenol	ND	10	2.0	ug/l						
Naphthalene	ND	10	2.5	ug/l						
2-Nitroaniline	ND	20	2.0	ug/l						
3-Nitroaniline	ND	20	2.0	ug/l						
4-Nitroaniline	ND	20	2.5	ug/l						
Nitrobenzene	ND	20	2.5	ug/l						
2-Nitrophenol	ND	10	3.5	ug/l						
4-Nitrophenol	ND	20	5.5	ug/l						
N-Nitrosodiphenylamine	ND	10	2.0	ug/l						
N-Nitroso-di-n-propylamine	ND	10	2.5	ug/l						
Pentachlorophenol	ND	20	3.5	ug/l						
Phenanthrene	ND	10	2.0	ug/l						
Phenol	ND	10	2.0	ug/l						
Pyrene	ND	10	2.0	ug/l						
1,2,4-Trichlorobenzene	ND	10	2.5	ug/l						
2,4,5-Trichlorophenol	ND	20	3.0	ug/l						
2,4,6-Trichlorophenol	ND	20	3.0	ug/l						
1,2-Diphenylhydrazine/Azobenzene	ND	20	2.0	ug/l						
N-Nitrosodimethylamine	ND	20	2.5	ug/l						
Surrogate: 2-Fluorophenol	148			ug/l	200		74	30-120		

TestAmerica - Irvine, CA

Michele Chamberlin

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Units	Level	Kesuit	/OKEC	Limits	KI D	Limit	Quanners
Batch: 7B21110 Extracted: 02/21/07	<u>1</u>										
Blank Analyzed: 02/23/2007 (7B21110-B	BLK1)										
Surrogate: Phenol-d6	156			ug/l	200		78	35-120			
Surrogate: 2,4,6-Tribromophenol	202			ug/l	200		101	40-120			
Surrogate: Nitrobenzene-d5	83.6			ug/l	100		84	40-120			
Surrogate: 2-Fluorobiphenyl	85.9			ug/l	100		86	45-120			
Surrogate: Terphenyl-d14	97.3			ug/l	100		97	45-120			
LCS Analyzed: 02/23/2007 (7B21110-BS	51)										MNR1
Acenaphthene	80.7	10	2.0	ug/l	100		81	55-120			
Acenaphthylene	87.1	10	2.0	ug/l	100		87	60-120			
Aniline	73.3	10	2.5	ug/l	100		73	40-120			
Anthracene	86.7	10	2.0	ug/l	100		87	60-120			
Benzidine	153	20	8.5	ug/l	100		153	25-160			
Benzoic acid	72.2	20	8.5	ug/l	100		72	25-120			
Benzo(a)anthracene	87.0	10	2.0	ug/l	100		87	60-120			
Benzo(b)fluoranthene	110	10	2.0	ug/l	100		110	55-125			
Benzo(k)fluoranthene	108	10	2.0	ug/l	100		108	50-125			
Benzo(g,h,i)perylene	119	10	3.0	ug/l	100		119	45-130			
Benzo(a)pyrene	114	10	2.0	ug/l	100		114	55-125			
Benzyl alcohol	72.7	20	2.5	ug/l	100		73	50-120			
Bis(2-chloroethoxy)methane	82.7	10	2.0	ug/l	100		83	55-120			
Bis(2-chloroethyl)ether	67.1	10	2.5	ug/l	100		67	50-120			
Bis(2-chloroisopropyl)ether	68.0	10	2.5	ug/l	100		68	45-120			
Bis(2-ethylhexyl)phthalate	83.3	50	4.0	ug/l	100		83	60-125			
4-Bromophenyl phenyl ether	83.0	10	2.5	ug/l	100		83	55-120			
Butyl benzyl phthalate	82.3	20	4.0	ug/l	100		82	50-125			
4-Chloroaniline	79.5	10	2.0	ug/l	100		80	50-120			
2-Chloronaphthalene	81.7	10	2.0	ug/l	100		82	55-120			
4-Chloro-3-methylphenol	79.8	20	2.0	ug/l	100		80	55-120			
2-Chlorophenol	67.5	10	2.0	ug/l	100		68	45-120			
4-Chlorophenyl phenyl ether	82.3	10	2.0	ug/l	100		82	60-120			
Chrysene	90.2	10	2.0	ug/l	100		90	60-120			
Dibenz(a,h)anthracene	122	20	3.0	ug/l	100		122	50-135			
Dibenzofuran	84.0	10	2.0	ug/l	100		84	60-120			
Di-n-butyl phthalate	84.1	20	2.0	ug/l	100		84	55-125			
1,3-Dichlorobenzene	50.4	10	3.0	ug/l	100		50	35-120			
1,4-Dichlorobenzene	51.4	10	2.5	ug/l	100		51	35-120			
Toot A marine Invine CA											

TestAmerica - Irvine, CA

Michele Chamberlin

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21110 Extracted: 02/21/0	<u>7_</u>										
	_										
LCS Analyzed: 02/23/2007 (7B21110-BS											MNR1
1,2-Dichlorobenzene	54.4	10	3.0	ug/l	100		54	40-120			
3,3-Dichlorobenzidine	74.5	20	3.0	ug/l	100		74	50-135			
2,4-Dichlorophenol	79.7	10	2.0	ug/l	100		80	50-120			
Diethyl phthalate	79.1	10	2.0	ug/l	100		79	50-120			
2,4-Dimethylphenol	70.9	20	3.5	ug/l	100		71	35-120			
Dimethyl phthalate	79.5	10	2.0	ug/l	100		80	25-120			
4,6-Dinitro-2-methylphenol	91.6	20	4.0	ug/l	100		92	40-120			
2,4-Dinitrophenol	102	20	4.5	ug/l	100		102	35-120			
2,4-Dinitrotoluene	83.6	10	2.0	ug/l	100		84	60-120			
2,6-Dinitrotoluene	80.2	10	2.0	ug/l	100		80	60-120			
Di-n-octyl phthalate	81.9	20	2.0	ug/l	100		82	60-130			
Fluoranthene	88.6	10	2.0	ug/l	100		89	55-120			
Fluorene	86.1	10	2.0	ug/l	100		86	60-120			
Hexachlorobenzene	84.2	10	2.5	ug/l	100		84	55-120			
Hexachlorobutadiene	60.9	10	3.5	ug/l	100		61	40-120			
Hexachlorocyclopentadiene	66.6	20	5.0	ug/l	100		67	20-120			
Hexachloroethane	47.0	10	3.0	ug/l	100		47	35-120			
Indeno(1,2,3-cd)pyrene	113	20	3.0	ug/l	100		113	45-135			
Isophorone	67.8	10	2.0	ug/l	100		68	50-120			
2-Methylnaphthalene	72.7	10	2.0	ug/l	100		73	50-120			
2-Methylphenol	69.6	10	2.0	ug/l	100		70	50-120			
4-Methylphenol	72.7	10	2.0	ug/l	100		73	45-120			
Naphthalene	68.9	10	2.5	ug/l	100		69	50-120			
2-Nitroaniline	90.3	20	2.0	ug/l	100		90	60-120			
3-Nitroaniline	85.3	20	2.0	ug/l	100		85	55-120			
4-Nitroaniline	88.8	20	2.5	ug/l	100		89	50-125			
Nitrobenzene	70.0	20	2.5	ug/l	100		70	50-120			
2-Nitrophenol	77.1	10	3.5	ug/l	100		77	45-120			
4-Nitrophenol	88.4	20	5.5	ug/l	100		88	40-120			
N-Nitrosodiphenylamine	79.2	10	2.0	ug/l	100		79	55-120			
N-Nitroso-di-n-propylamine	68.1	10	2.5	ug/l	100		68	45-120			
Pentachlorophenol	104	20	3.5	ug/l	100		104	45-125			
Phenanthrene	87.3	10	2.0	ug/l	100		87	60-120			
Phenol	69.0	10	2.0	ug/l	100		69	45-120			
Pyrene	92.1	10	2.0	ug/l	100		92	50-125			

TestAmerica - Irvine, CA Michele Chamberlin

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21110 Extracted: 02/2	1/07										
LCS Analyzed: 02/23/2007 (7B21110	-BS1)										MNR1
1,2,4-Trichlorobenzene	63.4	10	2.5	ug/l	100		63	45-120			
2,4,5-Trichlorophenol	84.8	20	3.0	ug/l	100		85	50-120			
2,4,6-Trichlorophenol	86.2	20	3.0	ug/l	100		86	50-120			
1,2-Diphenylhydrazine/Azobenzene	76.2	20	2.0	ug/l	100		76	55-120			
N-Nitrosodimethylamine	63.3	20	2.5	ug/l	100		63	40-120			
Surrogate: 2-Fluorophenol	123			ug/l	200		62	30-120			
Surrogate: Phenol-d6	134			ug/l	200		67	35-120			
Surrogate: 2,4,6-Tribromophenol	185			ug/l	200		92	40-120			
Surrogate: Nitrobenzene-d5	72.0			ug/l	100		72	40-120			
Surrogate: 2-Fluorobiphenyl	81.3			ug/l	100		81	45-120			
Surrogate: Terphenyl-d14	89.0			ug/l	100		89	45-120			
LCS Dup Analyzed: 02/23/2007 (7B2	(1110-BSD1)										
Acenaphthene	93.8	10	2.0	ug/l	100		94	55-120	15	20	
Acenaphthylene	104	10	2.0	ug/l	100		104	60-120	18	20	
Aniline	77.9	10	2.5	ug/l	100		78	40-120	6	30	
Anthracene	97.5	10	2.0	ug/l	100		98	60-120	12	20	
Benzidine	178	20	8.5	ug/l	100		178	25-160	15	35	L
Benzoic acid	75.5	20	8.5	ug/l	100		76	25-120	4	30	
Benzo(a)anthracene	95.3	10	2.0	ug/l	100		95	60-120	9	20	
Benzo(b)fluoranthene	119	10	2.0	ug/l	100		119	55-125	8	25	
Benzo(k)fluoranthene	118	10	2.0	ug/l	100		118	50-125	9	20	
Benzo(g,h,i)perylene	133	10	3.0	ug/l	100		133	45-130	11	25	L
Benzo(a)pyrene	125	10	2.0	ug/l	100		125	55-125	9	25	
Benzyl alcohol	84.3	20	2.5	ug/l	100		84	50-120	15	20	
Bis(2-chloroethoxy)methane	98.7	10	2.0	ug/l	100		99	55-120	18	20	
Bis(2-chloroethyl)ether	80.5	10	2.5	ug/l	100		80	50-120	18	20	
Bis(2-chloroisopropyl)ether	80.3	10	2.5	ug/l	100		80	45-120	17	20	
Bis(2-ethylhexyl)phthalate	89.2	50	4.0	ug/l	100		89	60-125	7	20	
4-Bromophenyl phenyl ether	95.3	10	2.5	ug/l	100		95	55-120	14	25	
Butyl benzyl phthalate	89.2	20	4.0	ug/l	100		89	50-125	8	20	
4-Chloroaniline	92.5	10	2.0	ug/l	100		92	50-120	15	25	
2-Chloronaphthalene	97.1	10	2.0	ug/l	100		97	55-120	17	20	
4-Chloro-3-methylphenol	88.8	20	2.0	ug/l	100		89	55-120	11	25	
2-Chlorophenol	80.6	10	2.0	ug/l	100		81	45-120	18	25	
4-Chlorophenyl phenyl ether	92.5	10	2.0	ug/l	100		92	60-120	12	20	
Toot Amorica Invince CA				•							

TestAmerica - Irvine, CA

Michele Chamberlin

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21110 Extracted: 02/21	1/07										
<u> </u>											
LCS Dup Analyzed: 02/23/2007 (7B2	1110-BSD1)										
Chrysene	98.6	10	2.0	ug/l	100		99	60-120	9	20	
Dibenz(a,h)anthracene	134	20	3.0	ug/l	100		134	50-135	9	25	
Dibenzofuran	96.1	10	2.0	ug/l	100		96	60-120	13	20	
Di-n-butyl phthalate	87.9	20	2.0	ug/l	100		88	55-125	4	20	
1,3-Dichlorobenzene	60.3	10	3.0	ug/l	100		60	35-120	18	25	
1,4-Dichlorobenzene	62.2	10	2.5	ug/l	100		62	35-120	19	25	
1,2-Dichlorobenzene	64.9	10	3.0	ug/l	100		65	40-120	18	25	
3,3-Dichlorobenzidine	97.3	20	3.0	ug/l	100		97	50-135	27	25	R-7
2,4-Dichlorophenol	97.1	10	2.0	ug/l	100		97	50-120	20	20	
Diethyl phthalate	85.8	10	2.0	ug/l	100		86	50-120	8	30	
2,4-Dimethylphenol	78.8	20	3.5	ug/l	100		79	35-120	11	25	
Dimethyl phthalate	87.3	10	2.0	ug/l	100		87	25-120	9	30	
4,6-Dinitro-2-methylphenol	97.4	20	4.0	ug/l	100		97	40-120	6	25	
2,4-Dinitrophenol	106	20	4.5	ug/l	100		106	35-120	4	25	
2,4-Dinitrotoluene	86.5	10	2.0	ug/l	100		86	60-120	3	20	
2,6-Dinitrotoluene	87.5	10	2.0	ug/l	100		88	60-120	9	20	
Di-n-octyl phthalate	90.9	20	2.0	ug/l	100		91	60-130	10	20	
Fluoranthene	98.3	10	2.0	ug/l	100		98	55-120	10	20	
Fluorene	96.0	10	2.0	ug/l	100		96	60-120	11	20	
Hexachlorobenzene	97.3	10	2.5	ug/l	100		97	55-120	14	20	
Hexachlorobutadiene	78.5	10	3.5	ug/l	100		78	40-120	25	25	
Hexachlorocyclopentadiene	85.6	20	5.0	ug/l	100		86	20-120	25	30	
Hexachloroethane	56.8	10	3.0	ug/l	100		57	35-120	19	25	
Indeno(1,2,3-cd)pyrene	123	20	3.0	ug/l	100		123	45-135	8	25	
Isophorone	78.1	10	2.0	ug/l	100		78	50-120	14	20	
2-Methylnaphthalene	86.3	10	2.0	ug/l	100		86	50-120	17	20	
2-Methylphenol	82.6	10	2.0	ug/l	100		83	50-120	17	20	
4-Methylphenol	80.4	10	2.0	ug/l	100		80	45-120	10	20	
Naphthalene	84.6	10	2.5	ug/l	100		85	50-120	20	20	
2-Nitroaniline	103	20	2.0	ug/l	100		103	60-120	13	20	
3-Nitroaniline	93.8	20	2.0	ug/l	100		94	55-120	9	25	
4-Nitroaniline	92.2	20	2.5	ug/l	100		92	50-125	4	20	
Nitrobenzene	85.5	20	2.5	ug/l	100		86	50-120	20	25	
2-Nitrophenol	97.1	10	3.5	ug/l	100		97	45-120	23	25	
4-Nitrophenol	90.3	20	5.5	ug/l	100		90	40-120	2	30	
-				-							

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21110 Extracted: 02/21/0	<u>)7</u>										
LCS Dup Analyzed: 02/23/2007 (7B211	10 DCD1)										
	,										
N-Nitrosodiphenylamine	91.8	10	2.0	ug/l	100		92	55-120	15	20	
N-Nitroso-di-n-propylamine	75.3	10	2.5	ug/l	100		75	45-120	10	20	
Pentachlorophenol	111	20	3.5	ug/l	100		111	45-125	7	25	
Phenanthrene	98.1	10	2.0	ug/l	100		98	60-120	12	20	
Phenol	79.9	10	2.0	ug/l	100		80	45-120	15	25	
Pyrene	96.9	10	2.0	ug/l	100		97	50-125	5	25	
1,2,4-Trichlorobenzene	80.8	10	2.5	ug/l	100		81	45-120	24	20	R-7
2,4,5-Trichlorophenol	98.3	20	3.0	ug/l	100		98	50-120	15	30	
2,4,6-Trichlorophenol	100	20	3.0	ug/l	100		100	50-120	15	30	
1,2-Diphenylhydrazine/Azobenzene	91.0	20	2.0	ug/l	100		91	55-120	18	25	
N-Nitrosodimethylamine	76.9	20	2.5	ug/l	100		77	40-120	19	20	
Surrogate: 2-Fluorophenol	150			ug/l	200		75	30-120			
Surrogate: Phenol-d6	153			ug/l	200		76	35-120			
Surrogate: 2,4,6-Tribromophenol	205			ug/l	200		102	40-120			
Surrogate: Nitrobenzene-d5	88.3			ug/l	100		88	40-120			
Surrogate: 2-Fluorobiphenyl	95.7			ug/l	100		96	45-120			
Surrogate: Terphenyl-d14	93.3			ug/l	100		93	45-120			

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
Batch: 7B22132 Extracted: 02/22/0											C
											
Blank Analyzed: 02/23/2007 (7B22132-	,										
Aldrin	ND	0.10	0.030	ug/l							
alpha-BHC	ND	0.10	0.020	ug/l							
beta-BHC	ND	0.10	0.040	ug/l							
delta-BHC	ND	0.20	0.020	ug/l							
gamma-BHC (Lindane)	ND	0.10	0.030	ug/l							
Chlordane	ND	1.0	0.20	ug/l							
4,4'-DDD	ND	0.10	0.030	ug/l							
4,4'-DDE	ND	0.10	0.030	ug/l							
4,4'-DDT	ND	0.10	0.030	ug/l							
Dieldrin	ND	0.10	0.030	ug/l							
Endosulfan I	ND	0.10	0.030	ug/l							
Endosulfan II	ND	0.10	0.040	ug/l							
Endosulfan sulfate	ND	0.20	0.050	ug/l							
Endrin	ND	0.10	0.030	ug/l							
Endrin aldehyde	ND	0.10	0.050	ug/l							
Endrin ketone	ND	0.10	0.040	ug/l							
Heptachlor	ND	0.10	0.030	ug/l							
Heptachlor epoxide	ND	0.10	0.030	ug/l							
Methoxychlor	ND	0.10	0.040	ug/l							
Toxaphene	ND	5.0	1.5	ug/l							
Surrogate: Tetrachloro-m-xylene	0.389			ug/l	0.500		78	35-115			
Surrogate: Decachlorobiphenyl	0.428			ug/l	0.500		86	45-120			
LCS Analyzed: 02/23/2007 (7B22132-B	S1)										MNR1
Aldrin	0.361	0.10	0.030	ug/l	0.500		72	35-120			
alpha-BHC	0.403	0.10	0.020	ug/l	0.500		81	45-120			
beta-BHC	0.410	0.10	0.040	ug/l	0.500		82	50-120			
delta-BHC	0.408	0.20	0.020	ug/l	0.500		82	50-120			
gamma-BHC (Lindane)	0.396	0.10	0.030	ug/l	0.500		79	40-120			
4,4'-DDD	0.403	0.10	0.030	ug/l	0.500		81	55-120			
4,4'-DDE	0.384	0.10	0.030	ug/l	0.500		77	50-120			
4,4'-DDT	0.427	0.10	0.030	ug/l	0.500		85	55-120			
Dieldrin	0.376	0.10	0.030	ug/l	0.500		75	50-120			
Endosulfan I	0.402	0.10	0.030	ug/l	0.500		80	50-120			
Endosulfan II	0.422	0.10	0.040	ug/l	0.500		84	55-120			
Endosulfan sulfate	0.420	0.20	0.050	ug/l	0.500		84	60-120			
TestAmerica - Irvine, CA				-							

Michele Chamberlin

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22132 Extracted: 02/22/07											
	_										
LCS Analyzed: 02/23/2007 (7B22132-BS	1)										MNR1
Endrin	0.392	0.10	0.030	ug/l	0.500		78	55-120			
Endrin aldehyde	0.421	0.10	0.050	ug/l	0.500		84	55-120			
Endrin ketone	0.407	0.10	0.040	ug/l	0.500		81	55-120			
Heptachlor	0.391	0.10	0.030	ug/l	0.500		78	40-115			
Heptachlor epoxide	0.406	0.10	0.030	ug/l	0.500		81	50-120			
Methoxychlor	0.415	0.10	0.040	ug/l	0.500		83	55-120			
Surrogate: Tetrachloro-m-xylene	0.372			ug/l	0.500		74	35-115			
Surrogate: Decachlorobiphenyl	0.389			ug/l	0.500		78	45-120			
LCS Dup Analyzed: 02/23/2007 (7B2213	2-BSD1)										
Aldrin	0.339	0.10	0.030	ug/l	0.500		68	35-120	6	30	
alpha-BHC	0.376	0.10	0.020	ug/l	0.500		75	45-120	7	30	
beta-BHC	0.397	0.10	0.040	ug/l	0.500		79	50-120	3	30	
delta-BHC	0.393	0.20	0.020	ug/l	0.500		79	50-120	4	30	
gamma-BHC (Lindane)	0.377	0.10	0.030	ug/l	0.500		75	40-120	5	30	
4,4'-DDD	0.413	0.10	0.030	ug/l	0.500		83	55-120	2	30	
4,4'-DDE	0.383	0.10	0.030	ug/l	0.500		77	50-120	0	30	
4,4'-DDT	0.419	0.10	0.030	ug/l	0.500		84	55-120	2	30	
Dieldrin	0.369	0.10	0.030	ug/l	0.500		74	50-120	2	30	
Endosulfan I	0.391	0.10	0.030	ug/l	0.500		78	50-120	3	30	
Endosulfan II	0.409	0.10	0.040	ug/l	0.500		82	55-120	3	30	
Endosulfan sulfate	0.411	0.20	0.050	ug/l	0.500		82	60-120	2	30	
Endrin	0.377	0.10	0.030	ug/l	0.500		75	55-120	4	30	
Endrin aldehyde	0.410	0.10	0.050	ug/l	0.500		82	55-120	3	30	
Endrin ketone	0.403	0.10	0.040	ug/l	0.500		81	55-120	1	30	
Heptachlor	0.365	0.10	0.030	ug/l	0.500		73	40-115	7	30	
Heptachlor epoxide	0.384	0.10	0.030	ug/l	0.500		77	50-120	6	30	
Methoxychlor	0.406	0.10	0.040	ug/l	0.500		81	55-120	2	30	
Surrogate: Tetrachloro-m-xylene	0.345			ug/l	0.500		69	35-115			
Surrogate: Decachlorobiphenyl	0.392			ug/l	0.500		78	45-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22132 Extracted: 02/22/0	<u>7_</u>										
Blank Analyzed: 02/23/2007 (7B22132-F	BLK1)										
Aroclor 1016	ND	1.0	0.35	ug/l							
Aroclor 1221	ND	1.0	0.10	ug/l							
Aroclor 1232	ND	1.0	0.25	ug/l							
Aroclor 1242	ND	1.0	0.25	ug/l							
Aroclor 1248	ND	1.0	0.25	ug/l							
Aroclor 1254	ND	1.0	0.25	ug/l							
Aroclor 1260	ND	1.0	0.30	ug/l							
Surrogate: Decachlorobiphenyl	0.531			ug/l	0.500		106	45-120			
LCS Analyzed: 02/23/2007 (7B22132-BS	52)										MNR1
Aroclor 1016	3.53	1.0	0.35	ug/l	4.00		88	45-115			
Aroclor 1260	3.73	1.0	0.30	ug/l	4.00		93	55-115			
Surrogate: Decachlorobiphenyl	0.494			ug/l	0.500		99	45-120			
LCS Dup Analyzed: 02/23/2007 (7B2213	32-BSD2)										
Aroclor 1016	3.11	1.0	0.35	ug/l	4.00		78	45-115	13	30	
Aroclor 1260	3.49	1.0	0.30	ug/l	4.00		87	55-115	7	25	
Surrogate: Decachlorobiphenyl	0.485			ug/l	0.500		97	45-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Lillit	MIDL	Units	Levei	Result	/OKEC	Limits	KI D	Lillit	Quanners
Batch: 7B21063 Extracted: 02/21/0	<u>07</u>										
Blank Analyzed: 02/21/2007 (7B21063-	-BLK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	0.0216	0.050	0.020	mg/l							J
Calcium	0.0543	0.10	0.050	mg/l							J
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.0080	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	3.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	15	ug/l							
LCS Analyzed: 02/21/2007 (7B21063-B	BS1)										
Aluminum	510	50	40	ug/l	500		102	85-115			
Arsenic	506	10	7.0	ug/l	500		101	85-115			
Beryllium	518	2.0	0.90	ug/l	500		104	85-115			
Boron	0.535	0.050	0.020	mg/l	0.500		107	85-115			
Calcium	2.64	0.10	0.050	mg/l	2.50		106	85-115			
Chromium	511	5.0	2.0	ug/l	500		102	85-115			
Iron	0.524	0.040	0.015	mg/l	0.500		105	85-115			
Magnesium	2.60	0.020	0.0080	mg/l	2.50		104	85-115			
Nickel	530	10	2.0	ug/l	500		106	85-115			
Selenium	511	10	8.0	ug/l	500		102	85-115			
Silver	262	10	3.0	ug/l	250		105	85-115			
Vanadium	519	10	3.0	ug/l	500		104	85-115			
Zinc	502	20	15	ug/l	500		100	85-115			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 7B21063 Extracted: 02/21/07							,,,,,,,				Q
Batch. /B21003 Extracted. 02/21/07	-										
Matrix Spike Analyzed: 02/21/2007 (7B2	1063-MS1)				Sou	rce: IQB	2022-01				
Aluminum	1110	50	40	ug/l	500	550	112	70-130			
Arsenic	543	10	7.0	ug/l	500	ND	109	70-130			
Beryllium	524	2.0	0.90	ug/l	500	ND	105	70-130			
Boron	0.593	0.050	0.020	mg/l	0.500	0.065	106	70-130			
Calcium	5.66	0.10	0.050	mg/l	2.50	3.2	98	70-130			
Chromium	524	5.0	2.0	ug/l	500	7.7	103	70-130			
Iron	1.12	0.040	0.015	mg/l	0.500	0.62	100	70-130			
Magnesium	3.07	0.020	0.0080	mg/l	2.50	0.44	105	70-130			
Nickel	535	10	2.0	ug/l	500	ND	107	70-130			
Selenium	526	10	8.0	ug/l	500	ND	105	70-130			
Silver	271	10	3.0	ug/l	250	ND	108	70-130			
Vanadium	574	10	3.0	ug/l	500	44	106	70-130			
Zine	533	20	15	ug/l	500	ND	107	70-130			
Matrix Spike Dup Analyzed: 02/21/2007	(7B21063-M	SD1)			Sou	rce: IQB	2022-01				
Aluminum	1120	50	40	ug/l	500	550	114	70-130	1	20	
Arsenic	525	10	7.0	ug/l	500	ND	105	70-130	3	20	
Beryllium	525	2.0	0.90	ug/l	500	ND	105	70-130	0	20	
Boron	0.588	0.050	0.020	mg/l	0.500	0.065	105	70-130	1	20	
Calcium	5.65	0.10	0.050	mg/l	2.50	3.2	98	70-130	0	20	
Chromium	515	5.0	2.0	ug/l	500	7.7	101	70-130	2	20	
Iron	1.10	0.040	0.015	mg/l	0.500	0.62	96	70-130	2	20	
Magnesium	2.98	0.020	0.0080	mg/l	2.50	0.44	102	70-130	3	20	
Nickel	525	10	2.0	ug/l	500	ND	105	70-130	2	20	
Selenium	526	10	8.0	ug/l	500	ND	105	70-130	0	20	
Silver	263	10	3.0	ug/l	250	ND	105	70-130	3	20	
Vanadium	567	10	3.0	ug/l	500	44	105	70-130	1	20	
Zinc	517	20	15	ug/l	500	ND	103	70-130	3	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Limit	MIDE	Cints	Level	Result	70KEC	Limits	KI D	Limit	Quanners
Batch: 7B21137 Extracted: 02/21/07	_										
Blank Analyzed: 02/21/2007 (7B21137-B	LK1)										
Antimony	ND	2.0	0.050	ug/l							
Cadmium	0.135	1.0	0.025	ug/l							J
Copper	0.337	2.0	0.25	ug/l							J
Lead	ND	1.0	0.040	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 02/21/2007 (7B21137-BS	1)										
Antimony	78.5	2.0	0.050	ug/l	80.0		98	85-115			
Cadmium	79.6	1.0	0.025	ug/l	80.0		100	85-115			
Copper	79.6	2.0	0.25	ug/l	80.0		100	85-115			
Lead	75.3	1.0	0.040	ug/l	80.0		94	85-115			
Thallium	76.0	1.0	0.15	ug/l	80.0		95	85-115			
Matrix Spike Analyzed: 02/21/2007 (7B2	21137-MS1)				Sou	rce: IQB	2021-01				
Antimony	80.9	2.0	0.050	ug/l	80.0	0.49	101	70-130			
Cadmium	79.8	1.0	0.025	ug/l	80.0	0.056	100	70-130			
Copper	81.8	2.0	0.25	ug/l	80.0	3.7	98	70-130			
Lead	76.5	1.0	0.040	ug/l	80.0	1.7	94	70-130			
Thallium	77.2	1.0	0.15	ug/l	80.0	ND	96	70-130			
Matrix Spike Analyzed: 02/21/2007 (7B2	21137-MS2)				Sou	rce: IQB	2054-04				
Antimony	82.8	2.0	0.050	ug/l	80.0	0.15	103	70-130			
Cadmium	77.1	1.0	0.025	ug/l	80.0	ND	96	70-130			
Copper	75.0	2.0	0.25	ug/l	80.0	2.8	90	70-130			
Lead	72.2	1.0	0.040	ug/l	80.0	0.13	90	70-130			
Thallium	72.9	1.0	0.15	ug/l	80.0	ND	91	70-130			
Matrix Spike Dup Analyzed: 02/21/2007	(7B21137-M	ISD1)			Sou	rce: IQB	2021-01				
Antimony	79.9	2.0	0.050	ug/l	80.0	0.49	99	70-130	1	20	
Cadmium	78.8	1.0	0.025	ug/l	80.0	0.056	98	70-130	1	20	
Copper	81.5	2.0	0.25	ug/l	80.0	3.7	97	70-130	0	20	
Lead	76.5	1.0	0.040	ug/l	80.0	1.7	94	70-130	0	20	
Thallium	76.6	1.0	0.15	ug/l	80.0	ND	96	70-130	1	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 7B22143 Extracted: 02/22/07		Ziiiii	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Cints	Level	resure	/UILE	Zimits	I L	Ziiiii	Quantities
Batch. /B22145 Extracted. 02/22/07	_										
Blank Analyzed: 02/23/2007 (7B22143-B	LK1)										
Aluminum	ND	0.050	0.040	mg/l							
Arsenic	ND	0.010	0.0070	mg/l							
Beryllium	ND	0.0020	0.00090	mg/l							
Boron	0.0243	0.050	0.020	mg/l							J
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	0.0050	0.0020	mg/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.0080	mg/l							
Nickel	ND	0.010	0.0020	mg/l							
Selenium	ND	0.010	0.0080	mg/l							
Silver	ND	0.010	0.0060	mg/l							
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							
Vanadium	ND	0.010	0.0030	mg/l							
Zinc	ND	0.020	0.0040	mg/l							
LCS Analyzed: 02/23/2007 (7B22143-BS	1)										
Aluminum	0.446	0.050	0.040	mg/l	0.500		89	85-115			
Arsenic	0.508	0.010	0.0070	mg/l	0.500		102	85-115			
Beryllium	0.511	0.0020	0.00090	mg/l	0.500		102	85-115			
Boron	0.500	0.050	0.020	mg/l	0.500		100	85-115			
Calcium	2.48	0.10	0.050	mg/l	2.50		99	85-115			
Chromium	0.500	0.0050	0.0020	mg/l	0.500		100	85-115			
Iron	0.507	0.040	0.015	mg/l	0.500		101	85-115			
Magnesium	2.50	0.020	0.0080	mg/l	2.50		100	85-115			
Nickel	0.503	0.010	0.0020	mg/l	0.500		101	85-115			
Selenium	0.494	0.010	0.0080	mg/l	0.500		99	85-115			
Silver	0.252	0.010	0.0060	mg/l	0.250		101	85-115			
Vanadium	0.506	0.010	0.0030	mg/l	0.500		101	85-115			
Zinc	0.485	0.020	0.0040	mg/l	0.500		97	85-115			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting	<u> </u>		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22143 Extracted: 02/22/07											
	_										
Matrix Spike Analyzed: 02/23/2007 (7B2	2143-MS1)				Sou	rce: IQB	2022-01				
Aluminum	0.483	0.050	0.040	mg/l	0.500	ND	97	70-130			
Arsenic	0.479	0.010	0.0070	mg/l	0.500	ND	96	70-130			
Beryllium	0.482	0.0020	0.00090	mg/l	0.500	ND	96	70-130			
Boron	0.535	0.050	0.020	mg/l	0.500	0.062	95	70-130			
Calcium	4.45	0.10	0.050	mg/l	2.50	2.1	94	70-130			
Chromium	0.470	0.0050	0.0020	mg/l	0.500	0.0046	93	70-130			
Iron	0.498	0.040	0.015	mg/l	0.500	0.027	94	70-130			
Magnesium	2.60	0.020	0.0080	mg/l	2.50	0.26	94	70-130			
Nickel	0.471	0.010	0.0020	mg/l	0.500	ND	94	70-130			
Selenium	0.462	0.010	0.0080	mg/l	0.500	ND	92	70-130			
Silver	0.247	0.010	0.0060	mg/l	0.250	ND	99	70-130			
Vanadium	0.509	0.010	0.0030	mg/l	0.500	0.037	94	70-130			
Zinc	0.473	0.020	0.0040	mg/l	0.500	0.0043	94	70-130			
Matrix Spike Dup Analyzed: 02/23/2007	(7B22143-MS	D1)			Sou	rce: IQB	2022-01				
Aluminum	0.480	0.050	0.040	mg/l	0.500	ND	96	70-130	1	20	
Arsenic	0.486	0.010	0.0070	mg/l	0.500	ND	97	70-130	1	20	
Beryllium	0.490	0.0020	0.00090	mg/l	0.500	ND	98	70-130	2	20	
Boron	0.530	0.050	0.020	mg/l	0.500	0.062	94	70-130	1	20	
Calcium	4.49	0.10	0.050	mg/l	2.50	2.1	96	70-130	1	20	
Chromium	0.475	0.0050	0.0020	mg/l	0.500	0.0046	94	70-130	1	20	
Iron	0.505	0.040	0.015	mg/l	0.500	0.027	96	70-130	1	20	
Magnesium	2.62	0.020	0.0080	mg/l	2.50	0.26	94	70-130	1	20	
Nickel	0.474	0.010	0.0020	mg/l	0.500	ND	95	70-130	1	20	
Selenium	0.470	0.010	0.0080	mg/l	0.500	ND	94	70-130	2	20	
Silver	0.247	0.010	0.0060	mg/l	0.250	ND	99	70-130	0	20	
Vanadium	0.513	0.010	0.0030	mg/l	0.500	0.037	95	70-130	1	20	
Zinc	0.474	0.020	0.0040	mg/l	0.500	0.0043	94	70-130	0	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021 Received: 02/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B23073 Extracted: 02/23/07											
	_										
Blank Analyzed: 02/23/2007 (7B23073-Bl	LK1)										
Antimony	ND	2.0	0.050	ug/l							
Cadmium	ND	1.0	0.050	ug/l							
Copper	ND	2.0	0.40	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 02/23/2007 (7B23073-BS1	1)										
Antimony	84.3	2.0	0.050	ug/l	80.0		105	85-115			
Cadmium	81.9	1.0	0.050	ug/l	80.0		102	85-115			
Copper	80.6	2.0	0.40	ug/l	80.0		101	85-115			
Lead	81.0	1.0	0.10	ug/l	80.0		101	85-115			
Thallium	82.2	1.0	0.15	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 02/23/2007 (7B2	3073-MS1)				Sou	rce: IQB	2024-01				
Antimony	94.4	2.0	0.050	ug/l	80.0	1.7	116	70-130			
Cadmium	85.0	1.0	0.050	ug/l	80.0	ND	106	70-130			
Copper	82.7	2.0	0.40	ug/l	80.0	0.80	102	70-130			
Lead	73.9	1.0	0.10	ug/l	80.0	ND	92	70-130			
Thallium	77.9	1.0	0.15	ug/l	80.0	ND	97	70-130			
Matrix Spike Dup Analyzed: 02/23/2007	(7B23073-MS	SD1)			Sou	rce: IQB	2024-01				
Antimony	94.9	2.0	0.050	ug/l	80.0	1.7	116	70-130	1	20	
Cadmium	85.0	1.0	0.050	ug/l	80.0	ND	106	70-130	0	20	
Copper	83.2	2.0	0.40	ug/l	80.0	0.80	103	70-130	1	20	
Lead	75.0	1.0	0.10	ug/l	80.0	ND	94	70-130	1	20	
Thallium	79.0	1.0	0.15	ug/l	80.0	ND	99	70-130	1	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B20044 Extracted: 02/20/07											
	_										
Blank Analyzed: 02/20/2007 (7B20044-B	LK1)										
Chloride	ND	0.50	0.15	mg/l							
Fluoride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.15	0.080	mg/l							
Sulfate	ND	0.50	0.45	mg/l							
LCS Analyzed: 02/20/2007 (7B20044-BS	1)										
Chloride	4.96	0.50	0.15	mg/l	5.00		99	90-110			
Fluoride	4.90	0.50	0.15	mg/l	5.00		98	90-110			
Sulfate	10.2	0.50	0.45	mg/l	10.0		102	90-110			
Matrix Spike Analyzed: 02/20/2007 (7B2	0044-MS1)				Sou	rce: IQB	2022-01				
Chloride	5.66	0.50	0.15	mg/l	5.00	0.73	99	80-120			
Fluoride	5.12	0.50	0.15	mg/l	5.00	0.27	97	80-120			
Sulfate	17.2	0.50	0.45	mg/l	10.0	7.2	100	80-120			
Matrix Spike Dup Analyzed: 02/20/2007	(7B20044-MS	SD1)			Sou	rce: IQB	2022-01				
Chloride	5.58	0.50	0.15	mg/l	5.00	0.73	97	80-120	1	20	
Fluoride	5.15	0.50	0.15	mg/l	5.00	0.27	98	80-120	1	20	
Sulfate	17.0	0.50	0.45	mg/l	10.0	7.2	98	80-120	1	20	
Batch: 7B21063 Extracted: 02/21/07	<u>-</u>										
Blank Analyzed: 02/21/2007 (7B21063-B	I.K1)										
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							
,		1.0	1.0	1118/1							
Batch: 7B21150 Extracted: 02/21/07	_										
Blank Analyzed: 02/22/2007 (7B21150-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21150 Extracted: 02/21/07	-										
LCS Analyzed: 02/22/2007 (7B21150-BS1 Total Suspended Solids	955	10	10	mg/l	1000		96	85-115			
Duplicate Analyzed: 02/22/2007 (7B21150 Total Suspended Solids	D-DUP1) 29.0	10	10	mg/l	Sou	rce: IQB	2024-01		4	10	
Batch: 7B23078 Extracted: 02/23/07		10	10	ilig/i		28			7	10	
Blank Analyzed: 02/23/2007 (7B23078-Bl Total Dissolved Solids	L K1) ND	10	10	mg/l							
LCS Analyzed: 02/23/2007 (7B23078-BS1 Total Dissolved Solids	998	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 02/23/2007 (7B23078 Total Dissolved Solids	3 07	10	10	mg/l	Sou	rce: IQB2 300	2134-01		2	10	
Batch: 7B23104 Extracted: 02/23/07	-										
Blank Analyzed: 02/23/2007 (7B23104-Bl Total Cyanide	L K1) ND	5.0	2.2	ug/l							
LCS Analyzed: 02/23/2007 (7B23104-BS1 Total Cyanide	198	5.0	2.2	ug/l	200		99	90-110			
Matrix Spike Analyzed: 02/23/2007 (7B23 Total Cyanide	3104-MS1) 442	10	4.4	ug/l	Sou : 200	rce: IQB2 220	2444-01 111	70-115			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/19/07

Report Number: IQB2021

Received: 02/19/07

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B23104 Extracted: 02/23/07	_										
Matrix Spike Dup Analyzed: 02/23/2007	(7B23104-MS	D1)			Sou	rce: IQB2	2444-01				
Total Cyanide	431	10	4.4	ug/l	200	220	106	70-115	3	15	
Batch: 7B27143 Extracted: 02/27/07	-										
Blank Analyzed: 02/28/2007 (7B27143-Bl	LK1)										
Perchlorate	ND	4.0	0.80	ug/l							
LCS Analyzed: 02/28/2007 (7B27143-BS1	,										
Perchlorate	45.6	4.0	0.80	ug/l	50.0		91	85-115			
Matrix Spike Analyzed: 02/28/2007 (7B2	,					rce: IQB					
Perchlorate	47.8	4.0	0.80	ug/l	50.0	ND	96	80-120			
Matrix Spike Dup Analyzed: 02/28/2007	(7B27143-MS	D1)			Sou	rce: IQB	2091-01				
Perchlorate	45.8	4.0	0.80	ug/l	50.0	ND	92	80-120	4	20	
Batch: 7B28085 Extracted: 02/28/07	-										
Blank Analyzed: 02/28/2007 (7B28085-Bl	LK1)										
Oil & Grease	ND	5.0	0.94	mg/l							
LCS Analyzed: 02/28/2007 (7B28085-BS1	1)										MNR1
Oil & Grease	18.8	5.0	0.94	mg/l	20.0		94	65-120			
LCS Dup Analyzed: 02/28/2007 (7B28085	5-BSD1)										
Oil & Grease	19.3	5.0	0.94	mg/l	20.0		96	65-120	3	20	

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Report Number: IQB2021 Sampled: 02/19/07
Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IQB2021-01	413.1 Oil and Grease	Oil & Grease	mg/l	0	4.7	15
IQB2021-01	Boron-200.7	Boron	mg/l	0.21	0.050	1.00
IQB2021-01	Boron-200.7, Diss	Boron	mg/l	0.21	0.050	1.00
IQB2021-01	Chloride - 300.0	Chloride	mg/l	13	0.50	150
IQB2021-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.55	0.15	10.00
IQB2021-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6.00
IQB2021-01	Sulfate-300.0	Sulfate	mg/l	44	0.50	250
IQB2021-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	270	10	850

Sampled: 02/19/07

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associate	ated Method Blank.
--	--------------------

C-7 Calibration Verification recovery was below the method control limit due to matrix interference carried over from

analytical samples. The matrix interference was confirmed by reanalysis with the same result.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits.

Analyte not detected, data not impacted.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

R-7 LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200

| Sampled: 02/19/07 | Report Number: IQB2021 | Received: 02/19/07

Attention: Bronwyn Kelly

Certification Summary

TestAmerica - Irvine, CA

Method	Matrix	Nelac	California
EPA 160.2	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	N/A	X
EPA 335.2	Water	X	X
EPA 413.1	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
SM2340B	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IQB2021-01

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-Acute 96hr

Samples: IQB2021-01

Eberline Services

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gross Alpha

Samples: IQB2021-01

Analysis Performed: Gross Beta

Samples: IQB2021-01

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

300 North Lake Avenue, Suite 1200 Sampled: 02/19/07

Pasadena, CA 91101 Report Number: IQB2021 Received: 02/19/07

Attention: Bronwyn Kelly

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Analysis Performed: Mercury - 245.1

Samples: IQB2021-01

Analysis Performed: Mercury - 245.1, Diss

Samples: IQB2021-01

Del Ma	ır An	Jel Mar Analytical Version 04/28/06	Vers	on 04/28/06	CHAIN OF		CUSTODY FORM	Y FOI	R						-	Page 1 of 1
Client Name/Address	ne/Addr	ess.		Project.								ANALYSIS REC'IIRED	S REC	JIRE		
MWH-Pasadena 300 North Lake Avenue. Pasadena, CA 91101	asader -ake Ave CA 9110	າສ ການe. Suite 1200 31	200	Boeing-S Annual Stormwa	Boeing-SSFL NPDES Annual Outfall 009 Stormwater at WS-13		le Metals: Hg, B, V, Hardness	105 N' E		NE DE2 + bb		pəuid		, ,	Metals: V. B. V Hardness	Field readings: Temp = S R 2
Project Manager.	anager.	Bronwyn Kelly	(elly	Phone Number (626) 568-6691	umber 8-6691		I 'dd I '9d	e (EF							₽P" ŀ	pH= 7.3
Sampler			بستر	Fax Number: (626) 568-6515	nber: 8-6515	,	Cd, Cu, e, AI, +	SO4, N	chlorate 5, TSS ,	(ÞSð) s0 A+A s0	licides/	sdqlA aa 309) mu lstoT (.č 3 <u>SS mui</u>	Cs - Proxic	əpin		, and a
Sample Description	Sample	Container	# of Cont.	Sampling Date/Time	Preservative	Bottle *#	Sb, Tl, F	O!I 8	TDS			iitinT 309)	SAC	Суа	Sb, c	Silling
Outfall 009	3	1L Poly	-	2/4/2930	HNO3	14	×			-						
Outfall 009- Dup	M	1L Poly		,	HNO3	118	×									
Outfall 009	V	1L Amber	2		None	2A,2B	×									
Outfall 009	Λ	1L Amber	2		HCI	3A, 3B		×					-			
Ontfall 009	3	Poly-500 ml	2	gana ber digi make na pila. m	None	4A,4B		×								
Outfall 009	3	Poly-500 ml	7		None	5A, 5B			×							
Outfall 009	8	VOAs	က		HCI	6A, 6B, 6C				×			-			
Outfall 009	W	VOAs	3		None	7A, 7B, 7C				×						
Outfall 009	3	1L Amber	2		None	8A, 8B					×			-		
Outfall 009	3	2.5 Gal Cube 100 ml Amber VOAs	- κ	and a man date of the page beautiful and the same and	None None	9A 15A, 15B, 15C						×				Analyze for Total Combined R4- 226 & RA-228 only if Gross Alpha/Beta exceed permit limit. Analyze for Tritium and St-90 only if Ra-226&228 exceed permit limit.
Outfall 009	3	1L Amber	2		None	10A, 10B				-			×	-		
Outfall 009	Μ	1 Gal Poly	-		None	11A							×			
Outfall 009	3	500ml Poly	_		NaOH	12								×		
Outfall 009	3	Poly-1L	-		None	13									×	Filter w/in 24hrs of receipt at
Trip Blanks		VOAs	m		None	14A, 14B, 14C				×						3
Trip Blank	Μ	VOAs	ю	neba /2	HC.	16A, 16B, 16C				×	ļ					
Relinquished By	1 By	7		Date/Time:	Received By	***	Date	Date/Time:		-			Turn ar 24 Hou	ound Tin	Turn around Time: (check) 24 Hours 5 Days	
3 William	San C		161	11917 164S	25	Locus	/6//e	767		2	7	10	3 Hours	32	10 Days	
Relinquished By	i By	'	1	Date/Time:	Received By		Date	Date/Ťime:					72 Hours	8	Normal	X X X X X X X X
J.	d	37.70	11811	62 185	1		, \	HIGH	\sum		$\overline{\hat{\otimes}}$	55	Perchio	rate Only	Perchlorate Only 72 Hours	
Retinduished By	ı By.			Date/Time:	Received By)	Date	Date/Time:					Metals	Metals Only 72 Hours	Hours	, , , ,
													Sample Intact	tree it	Sample Integrity. (Check) Intact On Ice	(7.0)
0																

March 01, 2007

Alta Project I.D.: 28723

Ms. Michele Chamberlin Test America-Irvine 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on February 21, 2007 under your Project Name "IQB2021". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier

Director of HRMS Services

And Analytical Laboratory corrilles that the report herein meets all the requirements set torth by NELAC for those applicable test methods. Results retain only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of ALLA.

Alta Analytical Laboratory, Inc.

1104 Windfield Way El Dorado Hills, CA 95762 (916) 933-1640 FAX (916) 673-0106

Section I: Sample Inventory Report Date Received: 2/21/2007

Alta Lab. ID Client Sample ID

28723-001 IQB2021-01

Project 28723 Page 2 of 292

SECTION II

Page 3 of 292

Method Blank								EPA Method 1613	od 1613
Matrix: Aqueous		QC Batch No.	8883	<u>e</u>	Lab Sample:	0-MB001			
Sample Size: 1.00 L		Date Extracted:		23-Feb-07	Date Analyzed DB-5;	26-Feb-07	Date Analyzed DB-225:	ed DB-225:	< Z
Analyte Conc. (ug/L)	ug/L)	DF a	EMPC ^b	Qualifiers	Labeled Standard	ırd	%R LC	CL-UCL ^d O	Qualifiers
2,3,7,8-TCDD	ND	0.00000105			IS 13C-2,3,7,8-TCDD	DD	91.5	25 - 164	
1,2,3,7,8-PeCDD	22	0.000000997			13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	еСИЛ НхСDD	92.8	25 - 181 32 - 141	
* * *	S					HxCDD	87.1	28 - 130	
	ND	0.00000197			13C-1,2,3,4,6,7,8-HpCDD	8-нрсрр	94.2	23 - 140	
1,2,3,4,6,7,8-HpCDD OCDD	0.00000272			. T. U. T. T. T. T. T. T.	13C-2CD 13C-2,3,7,8-TCDF	DF	88.4	24 - 169	
	Q	96800000000			13C-1,2,3,7,8-PeCDF	eCDF	105	24 - 185	
1,2,3,7,8-PeCDF	Š.	0.000000819			13C-2,3,4,7,8-PeCDF	eCDF H.CDF	97.0	26 - 152	
2,3,4,7,8-PeCDF		0.000000133			13C-1,2,3,4,7,8-ffxCDF	-nxcDr -HxcDF	87.4	26 - 132 26 - 123	
	2	0.000000620				-HxCDF	86.2	28 - 136	
2,3,4,6,7,8-HxCDF	Q	0.000000687			13C-1,2,3,7,8,9-HxCDF	-HxCDF	100	29 - 147	
1,2,3,7,8,9-HxCDF	Q	0.000000895			13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	92.1	28 - 143 26 - 138	A.
1,2,3,4,6,7,8-HpCDF	Q Z	0.00000194			13C-1,2,3,4,7,8,9-HPUPF	,y-ripodr	79.9	17 - 157	e e e le
1,2,3,4,7,8,9-HpCDF OCDF	2 2	0.00000132			CRS 37Cl-2,3,7,8-TCDD	2DD	93.0	35 - 197	
Totals					Footnotes				
Total TCDD	QX QX	0.00000105			a. Sample specific estimated detection limit. b. Estimated maximum possible concentration.	l detection limit. ible concentration.			
	ND 0.0000027.	0.00000201	0.00000545	51	c. Method detection limit d. Lower control limit - upper control limit.	er control limit.			
	<u> </u>	0.000000896							
Total HxCDF	N Q	0.000000685							
Anal yst: MAS					Approved By:	William J. Luksemburg		01-Mar-2007 13:15	3:15

OPR Results				EPA Method 1613
Matrix Aqueous Sample Size 1.00 L	QC Batch No. Date Extracted.	8883 23 - Feb-07	Lab Sample. 0-OPR001 Date Analyzed DB-5: 26-Feb-07	Date Analyzed DB-225: NA
Analyte	Spike Conc. Conc. (ng/mL)	OPR Limits	Labeled Standard	%R LCL-UCL Qualifier
2,3,7,8-TCDD	10.0	6.7 - 15.8	IS 13C-2,3,7,8-TCDD	76.9 25 - 164
1,2,3,7,8-PeCDD	50.0 53.4	35 - 71	13C-1,2,3,7,8-PeCDD	73.9 25 - 181
1,2,3,4,7,8-HxCDD	50.0	35 + 82	13C-1,2,3,4,7,8-HxCDD	32 - 141 26 81.7
1,2,3,6,7,8-HxCDD	50.0 54.4	38 - 67	13C-1,2,3,6,7,8-HxCDD	78.5 28 - 130
1,2,3,7,8,9-HxCDD	50.0	32-81	13C-1,2,3,4,6,7,8-HpCDD	85.5 23 - 140
1,2,3,4,6,7,8-HpCDD	50.0 54.6	35 - 70	13C-OCDD	72.3 17 - 157
	100	78 - 144	13C-2,3,7,8-TCDF	75.0 24 - 169
2,3,7,8-TCDF	10.0	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	84.8 24 - 185
1,2,3,7,8-PeCDF	50.0	40 - 67	13C-2,3,4,7,8-PeCDF	79.5
2,3,4,7,8-PeCDF	50.0	34 - 80	13C-1,2,3,4,7,8-HxCDF	91.7 26 - 152
1,2,3,4,7,8-HxCDF	53.3	36-67	13C-1,2,3,6,7,8-HxCDF	83.3 26 - 123
1,2,3,6,7,8-HxCDF	50.0 54.6	42 - 65	13C-2,3,4,6,7,8-HxCDF	80.0 28 - 136
2,3,4,6,7,8-HxCDF	54.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	96.0 29 - 147
1,2,3,7,8,9-HxCDF	50.0 57.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	89.6 28 - 143
1,2,3,4,6,7,8-HpCDF	50.0	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	90,3
1,2,3,4,7,8,9-HpCDF	50.0 55.6	39 - 69	13C-OCDF	83.0 17 - 157
OCDF	100	63 - 170	<u>CRS</u> 37CI-2,3,7,8-TCDD	78.5 35-197

William J. Luksemburg 01-Mar-2007 13:15 Approved By:

Analyst: MAS

Sample ID: IQB2021-01	121-01							EPA M	EPA Method 1613
Cilient Data Name Project Project Date Collected: 19-Feb-07 Time Collected: 0930	Test America-I r vine QB2021 19-Feb-07		Sample Data Matrix: Sample Size:	Aqueous 1.03 L	Laboratory Data Lab Sample: QC Batch No Date Analyzed DB-5:	28723-001 8883 27-Feb-07	Date Received Date Extracted Date Analyzed	Date Received Date Extracted Date Analyzed DB-225	21-Feb-07 23-Feb-07 NA
Analyte	Conc. (ug/L)	DL a	EMPC ^b	Qualifiers	Labeled Standard	dard	%R L	rcr-ncr _q	Qualifiers
2,3,7,8-TCDD	ND % ON	0.00000172	2		IS 13C-2,3,7,8-TCDD)DD	79.1	25 - 164	
OC	ND	0.00000291			13C-1,2,3,7,8-PeCDD	PeCDD	6.62	25 - 181	
Q	ND	0.00000384	4		13C-1,2,3,4,7,8-HxCDD	-HxCDD	78.3	32 - 141	
	ND	0.00000568	&		13C-1,2,3,6,7,8-HxCDD	8-HxCDD	73.6	28 - 130	
	ND	0.00000519	6		13C-1,2,3,4,6,7,8-HpCDD	1,8-НрСDD	84.3	23 - 140	9.
Q	0.0000660		:	В	13C-OCDD		9.59	17 - 157	
OCDD	0.000976			В	13C-2,3,7,8-TCDF	CDF	72.7	24 - 169	
	ND	0.00000168		:	13C-1,2,3,7,8-PeCDF	PeCDF	82.8	24 - 185	
DF	Q	0.00000186	9		13C-2,3,4,7,8-PeCDF	PeCDF	82.9	21 - 178	
	ND	0.00000318			13C-1,2,3,4,7,8-HxCDF	8-HxCDF	79.8	26 - 152	
J.	ND	0.00000202			13C-1,2,3,6,7,8-HxCDF	3-HxCDF	74.3	26 - 123	
		0.00000208	<u>&</u>	3	13C-2,3,4,6,7,8-HxCDF	3-HxCDF	78.0	28 - 136	
	Ŋ	0.00000157	7		13C-1,2,3,7,8,9-HxCDF	-HxCDF	84.2	29 - 147	
	ND	0.00000204		1 1 2 2	13C-1,2,3,4,6,7,8-HpCDF	7,8-НрСDF	82.5	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.0000229				13C-1,2,3,4,7,8,9-HpCDF	3,9-НрСDF	9.98	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.00000472			13C-OCDF		73.6	17 - 157	
OCDF	0.0000656				CKS 37CI-2,3,7,8-TCDD	CDD	84.7	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.00000172	72		a. Sample specific estimated detection limit. b. Estimated maximim possible concentration.	ited detection limit.			
	0.00000435		.		c. Method detection limit.			5- - - - - -	
Total HpCDD	0.000145			В	d. Lower control limit - upper control limit.	pper control limit			
	ND	0.00000168	828	**					
Total PeCDF	0.00000200			i Š					
Total HxCDF Total HpCDF	0.00000 576 0.00004 84		0.0000136	6					
Analyst: MAS					Approved By:	William J. Luksemburg	ksemburg	01-Mar-2007 13:15	7 13:15

APPENDIX

Project 28723 Page 7 of 292

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

Chemical interference

The amount detected is below the Lower Calibration Limit of the instrument.

See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

Project 28723 Page 9 of 292

Project 28723

28723 2.4°C

SUBCONTRACT ORDER - PROJECT # IQB2021

TestAmerica - Irvine, CA 17461 Derian Avenue. Suite Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Michele Cha		Alta Analytical 1104 Windfield El Dorado Hills Phone :(916) 9: Fax: (916) 673 Project Location	1 Way s, CA 95762 33-1640 -0106	Initials:
Analysis	Expiration	questeu -> Due Date	Comments	Intrans.
Sample ID: IQB2021-01 Water 1613-Dioxin-HR-Alta Level 4 + EDD-OUT	er Sampled: 02/19/07 09: 02/26/07 09:30 03/19/07 09:30	:30	J flags,17 congeners,no Excel EDD email to pm,	FEQ,ug/L,sub=Alta Include Std logs for Lvl IV
Containers Supplied: 1 L Amber (IQB2021-01E)				
			·	
		•		
<u> </u>		DARMY TO TRUTH CON YORK		
All containers intact:	□ No Sample labels/Co □ No Samples Preserve	•	Samples Received On Ice:: Samples Received at (temp	Yes No
Affenske El	Date Time	Bettine J. B	enedict 201/c	07 0859 Time
Released By	Date Time	Received By	Date	Time

Pagagle0106292

SAMPLE LOG-IN CHECKLIST

/ Alta Project #:	18723			_ TAT	Sta	nd	ard	<u> </u>
	Date/Time	Initials:		Locati	ion: U	SR	-2	
Samples Arrival:	2/21/07 0849	B		Shelf/		N/	<u>/</u>	
	Date/Time	Initials:		Locat	ion: 🕠	36	-2	
Logged In:	2/21/07 1316	B	16		Rack:_	13	-5	
Delivered By:	(FedEx UPS	Cal	DHL	1	Hand elivered		Oth	ner
Preservation:	lce Blue	Ice	Dry lo	ce		No	ne	
Temp °C 2.4	Time: 08	358		Thern	nomete	r ID	: IR-1	1
			80 7 (magazine		2390 175			NIA
					YE	2	NO	NÀ
Adequate Sample	Volume Received?		<u></u>			<u> </u>		
Holding Time Acce	eptable?							
Shipping Containe	V							
Shipping Custody	. V							
Shipping Docume	K		·					
Airbill	Trk# 7919 36	081 &	1799) 	1		·	
Sample Container	Intact?				l			
Sample Custody S								V
	/ Sample Documentation Pre	esent?	2		V			
	mple Acceptance Form com						V	F
							<u></u>	
ੀ Chlorinated or D	Drinking Water Samples, Acc	eptable F	reservati	on?	<u> </u>		<u> </u>	
Na ₂ S ₂ O ₃ Preserva	ation Documented?		coc		Sample ontaine		<u></u>	one)
Olimpia Contain	Alfo (Client	Retai	n	Return	· /	Dist	oose

L:/QA/Forms/SampleControl/Sample Login 12/2006 rmh Page 11 of 292

Comments:

LABORATORY REPORT

Date:

February 25, 2007

Client:

Test America - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614

Attn: Michele Chamberlin

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-07022003-001

Sample ID.:

IQB2021-01

Sample Control:

The sample was received by ATL in a chilled state, within the recommended hold

time and with the chain of custody record attached.

Date Sampled:

02/19/07

Date Received:

02/20/07

Temp. Received:

2°C

Chlorine (TRC):

0.0 mg/l

Date Tested:

02/20/07 to 02/24/07

Sample Analysis:

The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Sample ID.

Results

IQB2021-01

100% Survival (TUa = 0.0)

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-07022003-001

Client/ID: TestAmerica IQB2021-01

Start Date: 02/20/2007

TEST SUMMARY

Species: *Pimephales promelas*.

Age: 13 (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Dilution water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C.

Number of fish per chamber: 10. QA/QC Batch No.: RT-070206.

TEST DATA

		°C	DO	pН	# Г	Pead	Analyst & Time
				1	A	В	of Readings
INITIAL	Control	20.9	8.8	28	0	0	2
HVIII	100%	19.8	10.3	7.2	0	0	1400
24 Hr	Control	19.C	7.7	2.1	0	0	1200
24 111	100%	19.6	7.8	7.4	0	0	1200
48 Hr	Control	19.7	7.0	7.3	0	0	R
46 111	100%	19.7	7.4	7.5	0	0	1400
Renewal	Control	20.5	8.8	7.8	0	0	. 2
Renewar	100%	20.2	10.6	7.1	0	0	1400
72 11	Control	19.2	8:3	2.4	U	0	1200
72 Hr	100%	19.2	8.0	7.4	0	0	1200
96 Hr	Control	19.2	8.1	7.4	0	0	2. ·
. 90 ПІ	100%	19.2	7.9	7.4	U	0	1300

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 7.2; Conductivity: 290 umho; Temp: 2°C;

DO: 10.3 mg/l; Alkalinity: 86 mg/l; Hardness: 109 mg/l; NH₃-N: 0.3 mg/l. Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No.

Control: Alkalinity: 40 mg/l; Hardness: 9/ mg/l; Conductivity: 325 umfo.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

Percent Survival In: Control: /ov % 100% Sample: //ov %

Phone: (949) 261-1022

Project Manager: Michele Chamberlin

Fax: (949) 260-3297

SUBCONTRACT ORDER - PROJECT # IQB2021

RECEIVING LABORATORY: SENDING LABORATORY: Aquatic Testing Laboratories-SUB TestAmerica - Irvine, CA 4350 Transport Street, Unit 107 17461 Derian Avenue. Suite 100 Ventura, CA 93003 Irvine, CA 92614

Phone: (805) 650-0546 Fax: (805) 650-0756

Project Location: California

Standard TAT is req	uested unless specific due date is requested => 1	Due Date: Initials:
Analysis	Expiration	Comments
Sample ID: IQB2021-0 Bioassay-Acute 96hr	1 Water Sampled: 02/19/07 09:30 02/20/07 21:30	FH minnow, EPA/821-R02-012, Sub to AqTox Labs
Containers Supplied: 1 gal Poly (IQB2021-0	01A)	

		and the second s		SAMPL	E INTEGRI	ITY:	атил на то и по в сели не со сели сели сели сели сели сели сели сели	ericania (n. 1714 et 1864 et 1884 et 1	
All containers intact:	Yes	□ No		ample labels/COC agree:		☐ No	Samples Received On		Yes D No
Custody Seals Present:	☐ Yes	Ø-No	Sa	imples Preserved Properl	y: Tes	□ No	Samples Received at (t	emp):	- Lazar
Johnsofen	<i>10</i>	02/20	107	0738	Equa	são (huntot	62/20/	0730
Released By	1	C)	Date	Time	Received B	y//2/1	, / Da	te	Time
Knuler	Ace	w	1240	1200		2////		-20-0>	
Released By			Date	[/] Time	Received B	y /	Da	te	Time
					#				Page 1 of 1

FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS

QA/QC Batch No.: RT-070206

TEST SUMMARY

Species: Pimephales promelas.

Age: _//_ days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF. Source: In-lab culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs.

Test chamber: 600 ml glass beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

TEST DATA

		INITIAI				24 Hr					48 Hr		
Date/Time:	2-6	-07	1400	2-7	-07		1200	\mathcal{O}	2-5	1-07		13	07)
Analyst:		12				<u> </u>	uno-			_			
	°C	DO		°C	DO	all	# D	ead	°C	DO		# D	ead
		DO	рН		DO	pН	A	В		DO	pН	A	В
Control	20.6	8.8	8.1	20.0	20.0 2.9 7.6		0	U	20./	6.8	7.4	0	0
1.0 mg/l	2010	8.8	8.1	20.0	29	2.5	0	0	20.0	2.4	7.4	0	0
2.0 mg/l	20.6	8.9	8./	19.9	28	2.4	0	U	20.0	2.1	7.3	U	0
4.0 mg/l	20.6	8.9	8.0	19.9	6.8	7.2	0	0	20.0	7.0	j. 3	/	1
8.0 mg/l	2016	8.9	8.0	20.0	5.7	7.1	10	10	(98603een	moleculary.	~~	Plantan	YETHER DOTTERS.

25	R	RENEWA	N L			72 Hr	An in-contract of the contract	:			96 Hr		
Date/Time:	2-8.	07	1300	2-9	-07			201)	2-11	1-07		130	מכו
Analyst:		/ů			4	2				K	2~		
	°C	DO	pН	°C	DO	рН	# D	ead	°C	DO	pН	# D	ead
		DO	pπ		DO	pm	A	В	C	DO .	рп	A	В
Control	20.5	9.0	7.8	20.1	20	24	\mathcal{L}	0	20.4	5.7	7.3		()
1.0 mg/l	20.5	9.0	7.8	20.1	49	24	0	0	20.4	6.6	23	0	0
2.0 mg/l	205	9.1	2.8	20.0	İ	7.3	0	0	20.4	6.7	7.2	0	\mathcal{O}
4.0 mg/l	20.5	9.1	7.8	20.1	6.7	7.3	0	0	20.4	6.3	2.2	0	0
8.0 mg/l	The state of the s	-	Anna -	*Mangagenee + -	Name of the last o	Milhelppean.	Obsessor.	/	phone.	photograps,	Parameter .	^	u lin

Comments:

Control: Alkalinity: 6/ mg/l; Hardness: 9/ mg/l; Conductivity: 360 umho. SDS: Alkalinity: 6/ mg/l; Hardness: 9/ mg/l; Conductivity: 350 umho.

Acute Fish Test-96 Hr Survival								
Start Date:	06 Feb-07	14:00	Test ID:	RT-070206f	Sample ID:	REF-Ref Toxicant		
End Date:	10 Feb-07	13:00	Lab ID:	CAATL-Aquatic Testing Labs	Sample Type:	SDS-Sodium dodecyl sulfate		
Sample Date:	06 Feb-07	00:00	Protocol:	ACUTE-EPA-821-R-02-012	Test Species:	PP-Pimephales promelas		
Comments:								
Conc-mg/L	1	2						
D-Control	1.0000	1.0000						
1	1.0000	1.0000						
2	1.0000	1.0000						
4	0.9000	0.9000						
8	0.0000	0.0000						

			Tra	Transform: Arcsin Square Root				Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp 1	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	0.9000	0.9000	1.2490	1.2490	1.2490	0.000	2	2	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				
Equality of variance cannot be confirmed				

_	mqaamiy or tarre	21100 0a1111	0.00 00		
					Trimmed Spearman-Karber
	Trim Level	EC50	95%	CL	
	0.0%	5.2780	4.8093	5.7924	
	5.0%	5.3968	4.8053	6.0611	
	10.0%	5.4432	5.1395	5.7648	1.0 -
	20.0%	5.4432	5.1395	5.7648	
	Auto-0.0%	5.2780	4.8093	5.7924	0.9

Fathead Minnow Acute Laboratory Control Chart

CV% = 15.3

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-070206

SOURCE: In-Lab Culture

DATE HATCHED: 1-X6-07		
APPROXIMATE QUANTITY:	400	
APPROXIMATE QUANTITY: GENERAL APPEARANCE:	LOOCA	
# MORTALITIES 48 HOURS PRIOR TO USE IN TESTING:	R TO	
DATE USED IN LAB: 2/6	17	
AVERAGE FISH WEIGHT:	006 gm	
TEST LOADING LIMITS: 0.65 gm/ 200 ml test solution volume = 250 ml test solution volume = ACCLIMATION WATER QUALITY	= 0.013 gm mean fish v = 0.016 gm mean fish v	<u> </u>
		Ammonia: <u><o <="" u="">mg/l NH₃-N</o></u>
DO: <u>7-8</u> mg/l	Alkalinity: 61	mg/l Hardness: <u>9</u> / mg/l
READINGS RECORDED BY:	Jan	DATE:

Laboratory Temperature Chart

QA/QC Batch No: RT-070206

Date Tested: 02/06/07 to 02/10/07

Acceptable Range: 20+/- 1°C

March 23, 2007

Ms. Michele Chamberlin Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project No. IQB2021

Eberline Services NELAP Cert #01120CA (exp. 01/31/08)

Eberline Services Report R702121-8656

Dear Ms. Chamberlin:

Enclosed are results from the analyses of one water sample received at Eberline Services on February 21, 2007. The sample was analyzed according to the accompanying Test America Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0). The sample was not filtered prior to analysis; the sample was prepared for analysis within 5 days of collection. Quality control samples consisted of an LCS, blank analysis, duplicate analysis, and matrix spike. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual. A level IV data package will follow within one week.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melle Marrisi

MCM/njv

Enclosure:

Report

Subcontract Form Receipt checklist

Invoice

Eberline Services

ANALYSIS RESULTS

SDG <u>8656</u>
Work Order <u>R702121-01</u>

Client TA IRVINE

Contract PR0JECT# IQB2021

Received Date 02/21/07

Matrix WATER

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	<u>Nuclide</u>	Results ± 20	Units	MDA
IQB2021-01	8656-001	02/19/07 03/08/07	GrossAlpha	1.86 ± 0.73	pCi/L	0.87
		03/08/07	Gross Beta	3.33 ± 0.64	pCi/L	0.89

Certified by Report Date 03/23/07
Page 1

Eberline Services

QC RESULTS

SDG <u>8656</u>
Work Order <u>R702121-01</u>

Client TA IRVINE

Contract PROJECT# IQB2021

Received Date 02/21/07

Matrix WATER

Lab <u>Sample ID</u>	<u>Nuclide</u>	<u>Results</u>	<u>Units</u>	Amount	Added	<u>MDA</u>	<u>Evaluation</u>
LCS							
8657-002	GrossAlpha	8.17 ± 0.65	pCi/Smp	1 10	. 1	0.318	81% recovery
	Gross Beta	9.76 ± 0.37	pCi/Smp	1 9.0	60	0.277	102% recovery
<u>BLANK</u> 8657-003	GrossAlpha Gross Beta	-0.364 ± 0.15 -0.091 ± 0.15	pCi/Smp	_	NA NA	0.348	<mda <mda< td=""></mda<></mda
	DUPLICATES	WALLES AND			ORIGINALS		3σ
Sample ID	Nuclide	Results ± 20	MDA	Sample ID	Results	± 2σ ME	A RPD (Tot) Eval
				8657-001	-0.192 ±		698 - 0 satis.
8657-004	GrossAlpha	-0.302 ± 0.53	0.882	100-1001	_		
	Gross Beta	27.3 ± 1.3	1.47		24.3 ±	1.1 1.	04 12 44 satis.

SPIKED :	SAMPLE	OR	IGINAL SAMPLE				
Sample ID Nuclide	Results ± 20	MDA	Sample ID	Results ± 20	MDA	Added	%Recv
8657-005 GrossAl	pha 77.4 ± 6.8	1.9	8657-001	-0.192 ± 0.44	0.698	70.8	110
Gross B	eta 95.0 <u>+</u> 4.0	2.0		24.3 ± 1.1	1.04	70.4	100

Certified by Report Date 03/23/07
Page 2

SUBCONTRACT ORDER - PROJECT # IQB2021

(III)	THE LABOR LEGAL		
TestAmerica - Irvine, CA	ING LABORATORY:		RECEIVING LABORATORY:
			Eberline Services
17461 Derian Avenue. Su	ite 100		2030 Wright Avenue
Irvine, CA 92614			Richmond, CA 94804
Phone: (949) 261-1022			Phone: (510) 235-2633 (86156)
Fax: (949) 260-3297			Fax: (510) 235-0438
Project Manager: Michele	Chamberlin		Defeated in Cities in
			Project Location: California
Standard TAT is request	ted unless specific due o	date is requeste	d \Rightarrow Due Date: $30KTAT$ Initials: MC
7 11141 9 515	Expiration		Comments
Sample ID: IQB2021-01 V	Vater Sampled: 02	/19/07 09:30	
EDD + Level 4	03/19/07 09:30		
Gross Alpha-O	08/18/07 09:30		→ DONT FILTER, 900.0, RESULT>15 pCi/L, run Ra
Gross Beta-O	08/18/07 09:30		226&228 DONT FILTER, 900.0, RESULT>50 pCi/L, run Ra
Radium, Combined-O	02/19/08 09:30		226&228 HOLD for G A&B results; EPA 903.1&904.0,NO
Strontium 90-O	02/19/08 09:30		FILTER HOLD for Ra 226&228 results,EPA 905.0, DONT FILTER
Tritium-O	02/19/08 09:30		HOLD for Ra 226&228 results, EPA 906.0, DONT FILTER
Containers Supplied:			
2.5 gal Poly (IQB2021-01S)		
40 ml Amber Voa Vial (IQ			* 5 day hold time.
40 ml Amber Voa Vial (IQ)			MC
40 ml Amber Voa Vial (IQ)	•		
		SAMPLI	E INTEGRITY:
All containers intact: Ye	s 🗆 No Samp		
Custody Seals Present: Ye	/	le labels/COC agree: les Preserved Properly:	140
01 1 10	0/- /		
Released By	2/20/07	<u>></u>	My 07/21/07 9:00
Released By	Date	Time	Received By Date Time
Released By	Date	Time	Received By Date Time

Time

Received By

Time

Date

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Al 2/2/1	7
----------	---

Client:	TEST	ther	ICA	_ City	IMINE	State	CA	
Date/Ti	me received	E> 21 0	7 9:00	10. PR	1MINE 2021			
Contair	ner LD. No	jue ut	ZT _{Requeste}	d TAT (Days)	2) P.O. Rece	ived Yes[] No[]
				INSPEC	TION			
1	Custody se	als on snipp	oing container	intact?		Yes [🗡]	No[] N	V/A. []
2.	Custody se	als on snipp	ing container	dated & signed	19	Yes [X]	No[] N	1/A []
3	Custody se	als on same	ole containers	intact?		Yes[]	No[] N	NA [V] AVI
4,	Custody se	ais on samp	ole containers	dated & signed	17	Yes []	No[] N	₩ [汝]
5.	Packing ma	iterial is:		i			Dry [🗸]	
6			snipping conta		Sample Matrix			
7	Number of	containers p	per sample: _	4	(Or see CoC	j i		
8.	Samples ar	e in correct	container	1	Yes [\forall] N	o[]		
9.	Paperwork	agrees with	samples?		Yes [Y] N	0[]		
10.	Samples ha	ave: Tape	[] Hazard	labels [] R	ad labels [] App	propriate sam	ple labels	[×]
11.	Samples ar	re: In go	od condition [() Leaking	[] Broken Co	ontainer []	Missing	[]
12.	Samples ar	e: Preserv	ed [] Not ;	preserved [$ ot X$]	pH Prese	rvative		
13.	Describe a	ny anomalie	s:					
		····		·				
14.	Was P.M.	notified of a	iny anomalies		[]] No[]			
14. 15.	Was P.M.	ــر	iny anomalies		[Date	<u> </u>	
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	m2/n s	
15. Cus	Inspected I	ــر	mR/nr	٨	YZUOT Time:	10:15	mR/h r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wide:
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/n r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wipe
15. Cus	Inspected I	ру	Fry	Date:	Customer Sample	10.14	mR/h r	wide
15. Cus Sami	Inspected I	cpm	Fry	Wipe	Customer Sample	cpm		
15. Cus Sami	Inspected Inspec	cpm	mR/nr !	Wipe	Customer Sample	D 1		

Form SCP-02, 06-24-05

Page A3 of A14

"over 55 years of quality nuclear services"

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client: TestAmerica, Inc. - Irvine

Report Date:

03/02/07 19:24

17461 Derian Ave, Suite 100

Received Date:

02/21/07 10:58

Irvine, CA 92614

Fax: (949) 260-3297

Turn Around:

Normal

Attention: Michele Chamberlin

Work Order #:

7022234

Phone:

(949) 261-1022

Client Project:

IQB2021

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Michele Chamberlin:

Enclosed are the results of analyses for samples received 02/21/07 10:58 with the Chain of Custody document. The samples were received in good condition, at 7.7 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Taylor Maligmat

Project Manager

Page 1 of 7

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022234 Project ID: IQB2021

Date Received: 02/21/07 10:58 Date Reported: 03/02/07 19:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IQB2021-01	client		7022234-01	Water	02/19/07 09:30

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022234 Project ID: IQB2021 Date Received: 02/21/07 10:58 Date Reported: 03/02/07 19:24

IQB2021-01 7022234-01 (Water)

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1095	02/27/07	03/02/07 jl	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1095	02/27/07	03/02/07 jl	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022234 Project ID: IQB2021 Date Received: 02/21/07 10:58 Date Reported: 03/02/07 19:24

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022234 Project ID: IQB2021

Date Received: 02/21/07 10:58 Date Reported: 03/02/07 19:24

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W7B1095 - EPA 245.1										
Blank (W7B1095-BLK1)				Analyzed:	03/02/07					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
Blank (W7B1095-BLK2)				Analyzed:	03/02/07					
Mercury, Total	ND	0.20	ug/l							
Mercury, Dissolved	ND	0.20	ug/l							
LCS (W7B1095-BS1)				Analyzed:	03/02/07					
Mercury, Total	0.870	0.20	ug/l	1.00		87.0	85-115			
Mercury, Dissolved	0.870	0.20	ug/l	1.00		87.0	85-115			
LCS (W7B1095-BS2)				Analyzed:	03/02/07					
Mercury, Total	0.893	0.20	ug/l	1.00		89.3	85-115			
Mercury, Dissolved	0.893	0.20	ug/l	1.00		89.3	85-115			
Matrix Spike (W7B1095-MS1)	Sour	ce: 7022133-0	2	Analyzed: 03/02/07						
Mercury, Total	0.895	0.20	ug/l	1.00	ND	89.5	70-130			
Mercury, Dissolved	0.895	0.20	ug/l	1.00	ND	89.5	70-130			
Matrix Spike (W7B1095-MS2)	Sour	ce: 7022201-0	4	Analyzed: 03/02/07						
Mercury, Total	0.884	0.20	ug/l	1.00	0.030	85.4	70-130			
Mercury, Dissolved	0.884	0.20	ug/l	1.00	0.033	85.1	70-130			
Matrix Spike (W7B1095-MS3)	Sour	ce: 7022201-0	7	Analyzed: 03/02/07						
Mercury, Total	0.884	0.20	ug/l	1.00	0.033	85.1	70-130			
Mercury, Dissolved	0.884	0.20	ug/l	1.00	0.026	85.8	70-130			
Matrix Spike Dup (W7B1095-MSD1)	Sour	ce: 7022133-0	2	Analyzed:	03/02/07					
Mercury, Total	0.861	0.20	ug/l	1.00	ND	86.1	70-130	3.87	20	
Mercury, Dissolved	0.861	0.20	ug/l	1.00	ND	86.1	70-130	3.87	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022234 Project ID: IQB2021

Date Received: 02/21/07 10:58 Date Reported: 03/02/07 19:24

Metals by EPA 200 Series Methods - Quality Control

Analyte Batch W7B1095 - EPA 245.1	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Matrix Spike Dup (W7B1095-MSD2)	Sourc	ee: 7022201-0	4	Analyzed:	03/02/07					
Mercury, Dissolved	0.890	0.20	ug/l	1.00	0.033	85.7	70-130	0.676	20	
Mercury, Total	0.890	0.20	ug/l	1.00	0.030	86.0	70-130	0.676	20	
Matrix Spike Dup (W7B1095-MSD3)	rix Spike Dup (W7B1095-MSD3) Source: 7022201-07 Analyzed: 03/02/07		03/02/07							
Mercury, Total	0.935	0.20	ug/l	1.00	0.033	90.2	70-130	5.61	20	
Mercury, Dissolved	0.935	0.20	ug/l	1.00	0.026	90.9	70-130	5.61	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614

Report ID: 7022234 Project ID: IQB2021

Date Received: 02/21/07 10:58 Date Reported: 03/02/07 19:24

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

Percent Recovery % Rec

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 15

Outfall 010, February 19, 2007

MECX Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MECX	Package ID B4DF124
12269 East Vassar Drive	Task Order 1261. 001D.0 / 00⊅,00
Aurora, CO 80014	SDG No. IQB2024
	No. of Analyses 1
Laboratory Alta	Date: April 9, 2007
Reviewer K. Shadow	
Analysis/Method Dioxin/Fura	an by 1613 KSuadi (T
	, d
ACTION ITEMS ^a	
. Case Narrative	
Deficiencies	
2. Out of Scope Analyses	
3. Analyses Not Conducted	
4. Missing Hardcopy	
Deliverables	
Deliverables	
5. Incorrect Hardcopy	
Deliverables	
6. Deviations from Analysis	Qualifications were assigned for the following:
Protocol, e.g.,	* Method blank contamination
Holding Times	· Detect below the RL
GC/MS Tune/Inst. Performance	
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Internal Standard Performance	
Compound Identification	
Quantitation	
System Performance COMMENTS ^b	
and the state of t	
a Subcontracted analytical laboratory is not	meeting contract and/or method requirements.
	d by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Monitoring Program Annual Outfall 010

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IQB2024

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: Analysis:

NPDES IQB2024 D/F

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title:

NPDES

Contract Task Order:

1261.100D.00

Sample Delivery Group:

IQB2024

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Dioxins/Furans

QC Level:

Level IV

No. of Samples: No. of Reanalyses/Dilutions:

1 0

Reviewer:

K. Shadowlight

Date of Review:

April 9, 2007

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: SDG: Analysis: NPDES IQB2024 D/F

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID (TestAmerica- Irvine)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 010	IQB2024-01	28724-001	Water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica-Irvine within the temperature limits of 4° C $\pm 2^{\circ}$ C. The sample was shipped to Alta for dioxin/furan analysis and was received within the temperature limits. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to TestAmerica-Irvine, custody seals were not required. Custody seals were present on the coolers from TestAmerica to Alta; however, no sample container custody seals were present. The Client ID was added to the sample result summary by the reviewer. No qualifications were required.

2.1.3 Holding Times

The sample was extracted and analyzed within one year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

B4DF124 3 Revision 0

Project: SDG: Analysis: NPDES IQB2024 D/F

DATA VALIDATION REPORT

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 10/24/2006 on instrument VG-5. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with %RSDs $\leq 20\%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35\%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of %RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-8883-MB001) was extracted and analyzed with the sample in this SDG. Target compounds 1,2,3,4,6,7,8-HpCDD, OCDD, and total HpCDD were reported in the method blank at concentrations below the laboratory lower calibration level. 1,2,3,4,6,7,8-HpCDD and OCDD were reported in the site sample at concentrations less than five times the concentration of the method blank; therefore, the detects for HpCDD and OCDD were qualified as estimated nondetects, "UJ," at the levels of contamination in the site sample. As a portion of total HpCDD included isomer 1,2,3,4,6,7,8-HpCDD, the result for total HpCDD was qualified as estimated, "J," due to the method blank contamination. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (0-8883-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. A review of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

B4DF124 4 Revision 0

Project: SDG: Analysis: NPDES IQB2024 D/F

DATA VALIDATION REPORT

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

William J. Luksemburg 01-Mar-2007 13:19

Approved By:

	Client Data				Sample Data		Laboratory Data			
	Name: Project: Date Collected:	Test Amer IQB2024 19-Feb-07	Test America-Irvine IQB2024 19-Feb-07		Matrix: Sample Size:	Aqueous 1.03 L	Lab Sample: QC Batch No.:	28724-001 8883	Date Received: Date Extracted:	21-Feb-07 23-Feb-07
30	Time Collected:	1015	1	6	-0	!	Date Analyzed DB-5:	26-Feb-07	ř	NA
 ا	Let Analyte	ں	Conc. (ug/L)	DF "	EMPC	Qualifiers	Labeled Standard	dard	%R LCL-UCL	Oualifiers
-	2,3,7,8-TCDD		2	0.00000104	*		IS 13C-23.7.8-TCDD	an R	74.8 25 - 164	
	1,2,3,7,8-PeCDD	CC	N QN	0.000000888	388		13C-1,2,3,7,8-PeCDD	PecDD	77.5 25 - 181	
	1,2,3,4,7,8-HxCDD	xCDD	£	0.00000246	¥.		13C-1,2,3,4,7,8-HxCDD	HxCDD	80.4 32 - 141	
	1,2,3,6,7,8-HxCDD	KCDD	QN QN	0.00000243	13		13C-1,2,3,6,7,8-HxCDD	3-HxCDD	75.6 28 - 130	
	1,2,3,7,8,9-HxCDD	ÇDD	Q	0.00000237			13C-1,2,3,4,6,7,8-HpCDD	',8.HpCDD	83.8 23 - 140	
	B 1,2,3,4,6,7,8-HpCDD	НрСОО	0.00000427			ΕŢ	13C-OCDD		73.5 17 - 157	
E ST	9 ocen		0.0000451			ď	13C-2,3,7,8-TCDF	Ä	66.5 24 - 169	
	2,3,7,8-TCDF	۲÷	Ð	0.000000849	349		13C-1,2,3,7,8-PeCDF	PeCDF	79.0 24 - 185	
	1,2,3,7,8-PeCDF	占	2	0.00000103	23		13C-2,3,4,7,8-PeCDF	PeCDF	80.0 21-178	
	2,3,4,7,8-PeCDF	ŢĊ	Ð	0.000000952)52		13C-1,2,3,4,7,8-HxCDF	3-HxCDF	77.4 26 - 152	
	1,2,3,4,7,8-HxCDF	KCDF	Я	0.000000718	00		13C-1,2,3,6,7,8-HxCDF	8-HxCDF	72.5 26-123	
	1,2,3,6,7,8-HxCDF	xCDF	Ð	0.000000743	743		13C-2,3,4,6,7,8-HxCDF	3-HxCDF	78.4 28 - 136	
	2,3,4,6,7,8-HxCDF	*CDF	2	0.0000000850	\$50		13C-1,2,3,7,8,9.HxCDF	HXCDF	85.2 29-147	
	1,2,3,7,8,9-HxCDF	xCDF	Ð	0.00000111			13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	83.4 28 - 143	
	1,2,3,4,6,7,8-HpCDF	HpCDF	Ø	0.00000204	×		13C-1,2,3,4,7,8,9-HpCDF	8,9-HpCDF	90,2 26-138	
	1,2,3,4,7,8,9-HpCDF	НрСDF	Q	0,000000960	960		13C-OCDF		76.7 17 - 157	
DAIR	Q OCDF		0.00000461				CRS 37CI-2,3,7,8-TCDD	CDD	82.5 35-197	
	Totals						Footnotes			
	Total TCDD		R	0.00000104	74		a. Sample specific estimated detection limit	ted detection limit.		
	Total PeCDD		2	0.00000222	22		b. Estimated maximum possible concentration	ossible concentration		
	Total HxCDD	_	Ð	0.00000242	12		c. Method detection limit.			
24	Total HpCDD	~	0.0000116			m	d Lower control limit - upper control limit	pper control limit.		
	Total TCDF		9	0.000000849	849					
	I ofal Pecul			**************************************	* :					
	Total HxCDF	r-	Ð	0.000000847	847					
_	Total HoCDE	F	2	0.00000377						

Project 28724 Level II

Analyst: MAS

NPDES - 585

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MECX			Package ID:	B4MT112
	East Vassar Drive			1261.001D.01
	a, CO 80014		SDG No.:	IQB2024
,	2, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	No.	of Analyses:	1
	Laboratory: Weck		Date: April 4,	2007
	Reviewer: P. Meeks		Reviewer's Si	gnature
Δ	Analysis/Method: Metals		P. Mas	\
ACTIO	ON ITEMS ^a			
. C	ase Narrative			
D	Deficiencies			
2. C	Out of Scope Analyses			Maria III.
	_			
3. A	Analyses Not Conducted			
	-			
	Missing Hardcopy			
L	Deliverables -			
<i>E</i> 1.	ncorrect Hardcopy			
	Deliverables	,		and the second s
_	Jenverables	The second secon		
6. C	Deviations from Analysis			
	Protocol, e.g.,			The second secon
	Holding Times	A CONTRACTOR OF THE CONTRACTOR		- Laboratoria de la companya de la c
	GC/MS Tune/Inst. Performance			
	Calibration			
N	Vlethod blanks			
5	Surrogates			
i	Matrix Spike/Dup LCS			
1	Field QC			
ı	internal Standard Performance			
	Compound Identification		MANAGEMENT AND ADMINISTRATION OF THE PARTY O	
	Quantitation			the state of the s
	System Performance			
COM	MENTS ^b	Acceptable as reviewed.		
	And the second s			
a C. 1	ocontracted analytical laboratory is not t	meeting contract and/or method regu	irements.	
b Diffe	erences in protocol have been adopted	by the laboratory but no action again	nst the laboratory is	required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 010

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IQB2024

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project:

NPDES IQB2024

SDG: Analysis:

Metals

1. INTRODUCTION

Task Order Title:

NPDES Sampling

MEC^X Project Number:

DATA VALIDATION REPORT

1261.001D.01

Sample Delivery Group:

IQB2024

Project Manager:

P. Costa

Matrix:

Water

Metals

Analysis: QC Level:

Level IV

No. of Samples:

1 0

No. of Reanalyses/Dilutions:

Reviewer:

P. Meeks

Date of Review:

April 4, 2007

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for ICP and ICP-MS Metals (DVP-5, Rev. 0), EPA Method 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: SDG: NPDES IQB2024

Analysis:

Metals

Table 1. Sample Identification

DATA VALIDATION REPORT

Client ID	TestAmerica Laboratory ID	Weck Laboratory ID	Matrix	COC Method
Outfall 010	IQA2024-01	7022248-01	Water	245.1, total and dissolved

NPDES

Analysis:

IQB2024 Metals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica within the temperature limits of 4°C ±2°C, but was received above the temperature limits at the subcontract laboratory, Weck, at 8°C; however, due to the nonvolatile nature of the analyte, no qualifications were required. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The original and transfer COCs were signed and dated by the appropriate field and/or laboratory personnel and accounted for the sample and analyses presented in this SDG. As the sample was transported directly from the field to TestAmerica, custody seals were not necessary. Custody seals were not present upon receipt at Weck. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the date of analysis recorded in the raw data documented that the sample analyses were performed within the specified holding time of 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

As ICP-MS was not utilized for the analysis, the ICP-MS tune criteria are not applicable.

2.3 CALIBRATION

The mercury initial calibration r^2 was ≥ 0.995 . The ICV and CCV results showed acceptable recoveries, 85-115% for mercury. No qualifications were required.

Revision 0

Project: SDG:

NPDES

Analysis:

IQB2024 Metals

DATA VALIDATION REPORT **BLANKS**

2.4

Mercury was not detected in any of the blanks associated with the site sample analysis. No qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

As neither ICP nor ICP-MS were utilized for the analysis, the interference check sample results are not applicable.

BLANK SPIKES AND LABORATORY CONTROL SAMPLES 2.6

The recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 **MATRIX SPIKES**

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on the LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

INTERNAL STANDARDS PERFORMANCE 2.10

As ICP-MS was not utilized for the analysis, the ICP-MS internal standard results are not applicable.

Revision 0 B4MT112 4

Project: SDG: NPDES

Analysis:

Metals

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified and the sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.12 FIELD QC SAMPLES

DATA VALIDATION REPORT

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

B4MT112 5 Revision 0

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100

Irvine CA, 92614

Report ID: 7022248 Project ID: IQB2024 Date Received: 02/22/07 10:58

Date Reported: 03/20/07 14:41

010

IQB2024-01 7022248-01 (Water)

Metals by EPA 200 Series Methods

Analyte	Rev Qual Qual/code	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	U	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1096	02/28/07	03/01/07 jl	
Mercury, Total	U	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1096	02/28/07	03/01/07 jl	

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MEG	c ^x	Package ID: B4MT119
122	69 East Vassar Drive	Task Order: 1261.100 1 00
Auro	ora, CO 80014	SDG No.: IQB2024
		No. of Analyses: 1
	Laboratory: TestAmer	
	Reviewer: P. Meeks	Reviewer's Signature
	Analysis/Method: Metals	P. Mur
ACT	ION ITEMS ^a	
-	Case Narrative	
	Deficiencies	
2.	Out of Scope Analyses	
3.	Analyses Not Conducted	
4.	Missing Hardcopy	
	Deliverables	
5.	Incorrect Hardcopy	
	Deliverables	
6.	Deviations from Analysis	Qualifications applied for method blank contamination and a detects
	Protocol, e.g.,	below the reporting limit.
	Holding Times	
	GC/MS Tune/Inst. Performance	8 4
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS	В
	Field QC	
	Internal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
CON	/IMENTS ^b	

Rev 3 (5/2/00- lhw) L:\public\dataval\ccsdtrax.frm

^a Subcontracted analytical laboratory is not meeting contract and/or method requirements.

^b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Annual Outfall 010

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IQB2024

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014
 Project:
 NPDES

 SDG:
 IQB2024

 DATA VALIDATION REPORT
 Analysis:
 Metals

1. INTRODUCTION

Task Order Title: NPDES Sampling

MEC^x Project Number: 1261.100D.00

Sample Delivery Group: IQB2024 Project Manager: P. Costa

> Matrix: Water Analysis: Metals QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: P. Meeks
Date of Review: April 24, 2007

The samples listed in Table 1 were validated based on the guidelines outlined in the *MEC^X Data Validation Procedure for ICP and ICP-MS Metals (DVP-5, Rev. 0), EPA Method 200.7*, and validation guidelines outlined in the *USEPA CLP National Functional Guidelines for Inorganic Data Review* (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

 Project:
 NPDES

 SDG:
 IQB2024

 DATA VALIDATION REPORT
 Analysis:
 Metals

Table 1. Sample Identification

Client ID	TestAmerica Laboratory ID	Matrix	COC Method
Outfall 010	IQA2024-01	Water	200.7

Project: **NPDES** SDG: IQB2024

DATA VALIDATION REPORT Analysis: Metals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica within the temperature limits of 4°C ±2°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The original COC was signed and dated by the appropriate field and laboratory personnel and accounted for the sample and analyses presented in this SDG. As the sample was transported directly from the field to TestAmerica, custody seals were not necessary. qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the date of analysis recorded in the raw data documented that the sample analyses were performed within the specified holding time of 6 months for ICP metals. No qualifications were required.

2.2 **ICP-MS TUNING**

As the ICP-MS analytes were not validated, the ICP-MS tune criteria were not assessed.

2.3 **CALIBRATION**

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP metals. The laboratory analyzed reporting limit check standards in association with the sample in this SDG. Selenium was recovered above 130% in the 10 ppb reporting limit check standard; however, selenium was not detected in the site sample. All other recoveries were considered to be acceptable. No qualifications were required.

Project: **NPDES** SDG: IQB2024

DATA VALIDATION REPORT Analysis: Metals

2.4 **BLANKS**

Boron was detected in method blank 7B21063-BLK1 at 0.0216 mg/L; therefore, boron detected in the sample was qualified as an estimated nondetect, "UJ." Although the ICP-MS metals were not validated, the reviewer noted that cadmium was detected in method blank 7B21137-BLK1 at 0.135 µg/L; therefore, cadmium detected in the sample was qualified as an estimated nondetect, "UJ." Silver was detected in a bracketing CCB; however, silver was not detected in the site sample. There were no other detects of sufficient concentration to qualify the site sample. No further qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were performed in association with the ICP analyses of the site sample. The ICSA and ICSAB results were acceptable with recoveries within the control limits of 80-120%. Selenium was reported in the ISCA at -11.4 µg/L and silver was detected at 6.7 µg/L; however, no interferents were present in the site sample at concentrations requiring qualification. No qualifications were required.

2.6 **BLANK SPIKES AND LABORATORY CONTROL SAMPLES**

The recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 **MATRIX SPIKES**

No MS/MSD analyses were performed in association with the ICP analytes of the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on the LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

Project: NPDES SDG: IQB2024 Analysis: Metals

DATA VALIDATION REPORT Analysis: Metals

2.10 INTERNAL STANDARDS PERFORMANCE

As the ICP-MS analytes were not validated, the ICP-MS internal standard results were not assessed.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified and the sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. Chromium and vanadium were detected between the MDL and the reporting limit; therefore, chromium and vanadium were qualified as estimated and denoted with "DNQ" in accordance with the NPDES permit. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Report Number: IQB2024

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Received: 02/19/07

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifie	rs C
Sample ID: IQB2024-01 (Outfall 0	10 - Water) - cont.								Qual	Code
Reporting Units: ug/I									goal	000
Aluminum	EPA 200.7	7B21063	40	50	1600	1	02/21/07	02/21/07		
Antimony	EPA 200.8	7B21137	0.050	2.0	1.6	1	02/21/07	02/21/07	* J	
Arsenic	EPA 200.7	7B21063	7.0	10	ND	1	02/21/07	02/21/07	U	
Beryllium	EPA 200.7	7B21063	0.90	2.0	ND	1	02/21/07	02/21/07	U	
Cadmium	EPA 200.8	7B21137	0.025	1.0	0.090	1	02/21/07	02/21/07	UT J, B	В
Chromium	EPA 200.7	7B21063	2.0	5.0	3.3	1	02/21/07	02/21/07	J	DNQ
Copper	EPA 200.8	7B21137	0.25	2.0	2.4	1	02/21/07	02/21/07	Ж в	
Lead	EPA 200.8	7B21137	0.040	1.0	0.84	1	02/21/07	02/21/07	* J	
Nickel	EPA 200.7	7B21063	2.0	10	ND	1	02/21/07	02/21/07	Ü	1
Selenium	EPA 200.7	7B21063	8.0	10	ND	1	02/21/07	02/21/07	Ĭ	
Silver	EPA 200.7	7B21063	3.0	10	ND	1	02/21/07	02/21/07	V	
Thallium	EPA 200.8	7B21137	N/A	1.0	ND	1	02/21/07	02/21/07 -	×	
Vanadium	EPA 200.7	7B21063	3.0	10	8.3	1	02/21/07	02/21/07	JJ	DNG
Zinc	EPA 200.7	7B21063	15	20	ND	1	02/21/07	02/21/07	* U	- 33
				846			2			

* Analysis not validated

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL IV

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB2024 <Page 10 of 43>

14

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IQB2024

Sampled: 02/19/07

Received: 02/19/07

Attention: Bronwyn Kelly

METALS

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced,

except in full, without written permission from TestAmerica.

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers Per	1 Oual
Sample ID: IQB2024-01 (Outfall 010	- Water) - cont.								Qual	code
Reporting Units: mg/l Boron	EPA 200.7	7B21063	0.020	0.050	. 0.021	1	02/21/07	02/21/07	03 J, B	B
Iron	. EPA 200.7	7B21063	0.015	0.040	1.5	1	02/21/07	02/21/07		

TestAmerica - Irvine, CAMichele Chamberlin
Project Manager

LEVEL IV

IQB2024 <Page 9 of 43>

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MECX	Package ID: B4RA13
12269 East Vassar Drive	Task Order: 1261 :001D:01 100D.00
Aurora, CO 80014	SDG No.: IQB2024
,	No. of Analyses: 1
Laboratory: Eberline	Date: April 6, 2007
Reviewer: P. Meeks	Reviewer's Signature
Analysis/Method: Radionuclides	P. M2
ACTION ITEMS ^a	
. Case Narrative	
Deficiencies	
2. Out of Scope Analyses	
3. Analyses Not Conducted	
4. Missing Hardcopy	
Deliverables	
5. Incorrect Hardcopy	
Deliverables	
<u>-</u>	fication applied for detector efficiency.
Protocol, e.g.,	
Holding Times	
GC/MS Tune/Inst. Performance	
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Internal Standard Performance	
Compound Identification	
Quantitation	
System Performance	
COMMENTS ^b	
^a Subcontracted analytical laboratory is not meeting	contract and/or method requirements
	aboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Annual Outfall 010

ANALYSIS: RADIONUCLIDES

SAMPLE DELIVERY GROUP: IQB2024

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: NPDES

Rad

DATA VALIDATION REPORT

Analysis:

1. INTRODUCTION

Task Order Title:

NPDES Sampling

MEC^X Project Number:

1261.100D.00

Sample Delivery Group:

1201.1000.00

Project Manager:

IQB2024

Toject Mariager

P. Costa

Matrix:

Water

Analysis:

Radionuclides

QC Level:

Level IV

No. of Samples:

1

0

No. of Reanalyses/Dilutions:

Reviewer:

P. Meeks

Date of Review:

April 6, 2007

The samples listed in Table 1 were validated based on the guidelines outlined in the *EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Method 900.0,* and validation procedures outlined in the *USEPA CLP National Functional Guidelines for Inorganic Data Review* (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project:

NPDES IQB2024

DATA VALIDATION REPORT

SDG: Analysis:

Rad

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Eberline)	Matrix	COC Method
Outfall 010	IQB2024-01	8659-001	Water	900.0

SDG: Analysis:

Rad

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica within the temperature limits of $4\pm2^{\circ}$ C. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. The sample was noted to have been received intact, in good condition, with cooler and sample container custody seals intact.

According to the Los Angeles Regional Water Quality Control Board's (LARWQCB) guidance letter dated 01/12/05, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. The tritium sample for Outfall 010 was received unpreserved in a glass container.

According to the LARWQCB guidance letter dated 01/12/05, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration. All aliquots were received at Eberline unfiltered and unpreserved and were neither preserved nor filtered after receipt. No qualifications were required.

2.1.2 Chain of Custody

The original COC was signed and dated by field and laboratory personnel. The transfer COC was signed by personnel from both laboratories. Eberline did not list the MWH ID on the sample result summary form; therefore, the reviewer edited the Form I to reflect this ID. No qualifications were required.

2.1.3 Holding Times

Aliquots for gross alpha and gross beta were prepared within the five-day analytical holding time for unpreserved samples. No qualifications were necessary.

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability. The gross alpha and gross beta initial calibration included with the data was performed in February 2003. The gross alpha detector efficiency was less than 20%; therefore, the gross alpha result was qualified as an estimated nondetect,

Project: NPDES SDG: IQB2024 Analysis: Rad

DATA VALIDATION REPORT

"UJ." The gross beta detector efficiency was above 20% and no further qualifications were required.

2.3 BLANKS

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Aqueous blank spikes were analyzed in association with the sample in this SDG. The blank spike results were within the laboratory-established control limits. No qualifications were necessary.

2.5 LABORATORY DUPLICATES

No laboratory duplicate analyses were performed. No qualifications were necessary.

2.6 MATRIX SPIKES

No matrix spike analyses were performed. Method accuracy was evaluated based on the blank spike results. No qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the sample in this data package. Sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. No qualifications were necessary.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample.

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

Project: NPDES SDG: IQB2024 Analysis: Rad

DATA VALIDATION REPORT

2.8.2 Field Duplicates

There were no field duplicate samples in this SDG.

Eberline Services

ANALYSIS RESULTS

A	
SDG 8659	Client TA IRVINE
Work Order R702124-01	Contract PROJECT# IQB2024
Received Date 02/21/07	Matrix WATER

LEVEL IV

Certified by 20 Report Date 03/23/07 Page 1

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

ME	Cx			Package ID:	B4WC99
122	69 East Vassar Drive			Task Order:	1261.100D.00
Aur	ora, CO 80014			SDG No.:	IQB2024
			No. o	of Analyses:	1
	Laboratory: TestAme	rica	Ī	Date: April 25	5, 2007
	Reviewer: P. Meeks			Reviewer's Si	gnature
	Analysis/Method: General M	linerals	_	K. Muss	
ACT	TION ITEMS ^a				
	Case Narrative				
	Deficiencies				
2.	Out of Scope Analyses				
3.	Analyses Not Conducted				
4.	Missing Hardcopy				
	Deliverables				
					······································
5.	Incorrect Hardcopy				
	Deliverables				
	Davietiene from Analysis				
6.	Deviations from Analysis				
	Protocol, e.g.,				· · · · · · · · · · · · · · · · · · ·
	Holding Times				
	GC/MS Tune/Inst. Performance		·		· · · · · · · · · · · · · · · · · · ·
	Calibration				
	Method blanks				.,,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.
	Surrogates Matrix Spike/Dup LCS				
	Field QC				
	Internal Standard Performance				
	Compound Identification		*************		
	Quantitation				
	System Performance				
COL	WMENTS ^b	Acceptable as reviewed.			
501	TITILITIO	/ tocoptable as reviewed.			
			······		
^a S	ubcontracted analytical laboratory is not	meeting contract and/or method	eguirer	ments.	

^b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Annual Outfall 010

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUP: IQB2024

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014
 Project:
 NPDES

 SDG:
 IQB2024

 DATA VALIDATION REPORT
 Analysis:
 Gen. Min.

1. INTRODUCTION

Task Order Title: NPDES Sampling MEC^X Project Number: 1261.001D.01

Sample Delivery Group: IQB2024 Project Manager: P. Costa

Matrix: Water

Analysis: General Minerals

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: P. Meeks
Date of Review: April 25, 2007

The sample listed in Table 1 was validated based on the guidelines outlined in the *MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), USEPA Methods 160.2 and 335.2,* and validation guidelines outlined in the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review* (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form Is as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

NPDES - 613

 Project:
 NPDES

 SDG:
 IQB2024

 DATA VALIDATION REPORT
 Analysis:
 Gen. Min.

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 010	IQB2024-01	Water	General Minerals

Project: **NPDES** SDG: IQB2024

DATA VALIDATION REPORT Analysis: Gen. Min.

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ± 2°C. No preservation problems were noted by the laboratory and no qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and the analysis presented in this SDG. As the sample was couriered directly from the field to the laboratory, custody seals were not necessary. No qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The TSS analysis was performed within the analytical holding time of seven days form collection and the cyanide analysis was performed within the analytical holding time of 14 days from collection. No qualifications were required.

2.2 **CALIBRATION**

The cyanide initial calibration r² result was ≥0.995 and the ICV and CCV results were within the control limits of 90-110%. No qualifications were required.

2.3 **BLANKS**

There were no detects in the method blanks or CCBs associated with the sample analyses. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 **BLANK SPIKES AND LABORATORY CONTROL SAMPLES**

The reported LCS recoveries were within the laboratory-established control limits. No qualifications were required.

Project: **NPDES** SDG:

IQB2024 DATA VALIDATION REPORT Analysis: Gen. Min.

2.5 LABORATORY DUPLICATES

Laboratory duplicate analyses were performed for TSS on the sample in this SDG. The RPD was within the laboratory-established control limit of ≤10%. No qualifications were required.

2.6 **MATRIX SPIKES**

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Evaluation of method accuracy was based on the LCS results. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form I were verified against the raw data. qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.8.1 **Field Blanks and Equipment Rinsates**

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Report Number: IQB2024

Sampled: 02/19/07

Received: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifier	rs .
Analyte	1.101.10							•	Rev 1	Qual
Sample ID: IQB2024-01 (Outfall 010 - Wa	ater) - cont.								Qual	Codi
Reporting Units: mg/l										2001
Chloride	EPA 300.0	7B20044	1.5	5.0	61	10	02/20/07	02/20/07	X	
Fluoride	EPA 300.0	7B20044	0.15	0.50	0.39	1	02/20/07	02/20/07	J	
Hardness (as CaCO3)	SM2340B	7B21063	1.0	1.0	160	1	02/21/07	02/21/07		
Nitrate/Nitrite-N	EPA 300.0	7B20044	0.080	0.15	0.42	1	02/20/07	02/20/07		
Oil & Grease	EPA 413.1	7B28085	0.92	4.9	ND	1	02/28/07	02/28/07		
Sulfate	EPA 300.0	7B20044	0.45	0.50	12	1	02/20/07	02/20/07	V	
Total Dissolved Solids	SM2540C	7B23078	10	10	300	1	02/23/07	02/23/07	×	
Total Suspended Solids	EPA 160.2	7B21150	10	10	28	1.	02/21/07	02/22/07		

* Analysis not validated

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL IV

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB2024 <Page 13 of 43>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IQB2024

Received: 02/19/07

INORGANICS

			MDL	Reporting	Sample	Dilution	Date	Date	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	
Sample ID: IQB2024-01 (Outfall 01 Reporting Units: ug/l	0 - Water) - cont.								Rev	Cody
Total Cyanide	EPA 335.2	7B23104	2.2	5.0	ND	1	02/23/07	02/23/07	0	
Perchlorate	EPA 314.0	7B27119	0.80	4.0	ND	1	02/27/07	02/27/07	X	

* Analysis not validated

TestAmerica - Irvine, CAMichele Chamberlin
Project Manager

LEVEL IV

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB2024 <Page 14 of 43>

APPENDIX G

Section 16

Outfall 010, February 19, 2007 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Sampled: 02/19/07 Received: 02/19/07

Issued: 04/03/07 19:32

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

 ${\it This\ entire\ report\ was\ reviewed\ and\ approved\ for\ release}.$

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 3°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: Enclosed are complete final results. The results for Mercury and Radiochemistry were added.

 LABORATORY ID
 CLIENT ID
 MATRIX

 IQB2024-01
 Outfall 010
 Water

 IQB2024-02
 Trip Blank
 Water

Reviewed By:

TestAmerica - Irvine, CAMichele Chamberlin

Michele Chamberdin

Project Manager

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

PURGEABLES BY GC/MS (EPA 624)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result		Extracted	Analyzed	Qualifiers
Sample ID: IQB2024-01 (Outfall 010 - Wat	er)								
Reporting Units: ug/l									
Benzene	EPA 624	7B21011	0.28	1.0	ND	1	02/21/07	02/21/07	
Bromodichloromethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
Bromoform	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Bromomethane	EPA 624	7B21011	0.42	5.0	ND	1	02/21/07	02/21/07	
Carbon tetrachloride	EPA 624	7B21011	0.28	0.50	ND	1	02/21/07	02/21/07	
Chlorobenzene	EPA 624	7B21011	0.36	2.0	ND	1	02/21/07	02/21/07	
Chloroethane	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Chloroform	EPA 624	7B21011	0.33	2.0	ND	1	02/21/07	02/21/07	
Chloromethane	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Dibromochloromethane	EPA 624	7B21011	0.28	2.0	ND	1	02/21/07	02/21/07	
1,2-Dichlorobenzene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
1,3-Dichlorobenzene	EPA 624	7B21011	0.35	2.0	ND	1	02/21/07	02/21/07	
1,4-Dichlorobenzene	EPA 624	7B21011	0.37	2.0	ND	1	02/21/07	02/21/07	
1,1-Dichloroethane	EPA 624	7B21011	0.27	2.0	ND	1	02/21/07	02/21/07	
1,2-Dichloroethane	EPA 624	7B21011	0.28	0.50	ND	1	02/21/07	02/21/07	
1,1-Dichloroethene	EPA 624	7B21011	0.42	5.0	ND	1	02/21/07	02/21/07	
trans-1,2-Dichloroethene	EPA 624	7B21011	0.27	2.0	ND	1	02/21/07	02/21/07	
1,2-Dichloropropane	EPA 624	7B21011	0.35	2.0	ND	1	02/21/07	02/21/07	
cis-1,3-Dichloropropene	EPA 624	7B21011	0.22	2.0	ND	1	02/21/07	02/21/07	
trans-1,3-Dichloropropene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
Ethylbenzene	EPA 624	7B21011	0.25	2.0	ND	1	02/21/07	02/21/07	
Methylene chloride	EPA 624	7B21011	0.95	5.0	ND	1	02/21/07	02/21/07	
1,1,2,2-Tetrachloroethane	EPA 624	7B21011	0.24	2.0	ND	1	02/21/07	02/21/07	
Tetrachloroethene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
Toluene	EPA 624	7B21011	0.36	2.0	ND	1	02/21/07	02/21/07	
1,1,1-Trichloroethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
1,1,2-Trichloroethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
Trichloroethene	EPA 624	7B21011	0.26	2.0	ND	1	02/21/07	02/21/07	
Trichlorofluoromethane	EPA 624	7B21011	0.34	5.0	ND	1	02/21/07	02/21/07	
Vinyl chloride	EPA 624	7B21011	0.30	0.50	ND	1	02/21/07	02/21/07	
Xylenes, Total	EPA 624	7B21011	0.90	4.0	ND	1	02/21/07	02/21/07	
Trichlorotrifluoroethane (Freon 113)	EPA 624	7B21011	1.5	5.0	ND	1	02/21/07	02/21/07	
Surrogate: Dibromofluoromethane (80-120%)	6)				104 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%))				98 %				

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

TURGEADLES DT GC/MS (ETA 024)									
			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQB2024-02 (Trip Blank - Wate	r)								
Reporting Units: ug/l	•)								
Benzene	EPA 624	7B21011	0.28	1.0	ND	1	02/21/07	02/21/07	
Bromodichloromethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
Bromoform	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Bromomethane	EPA 624	7B21011	0.42	5.0	ND	1	02/21/07	02/21/07	
Carbon tetrachloride	EPA 624	7B21011	0.28	0.50	ND	1	02/21/07	02/21/07	
Chlorobenzene	EPA 624	7B21011	0.36	2.0	ND	1	02/21/07	02/21/07	
Chloroethane	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Chloroform	EPA 624	7B21011	0.33	2.0	ND	1	02/21/07	02/21/07	
Chloromethane	EPA 624	7B21011	0.40	5.0	ND	1	02/21/07	02/21/07	
Dibromochloromethane	EPA 624	7B21011	0.28	2.0	ND	1	02/21/07	02/21/07	
1,2-Dichlorobenzene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
1,3-Dichlorobenzene	EPA 624	7B21011	0.35	2.0	ND	1	02/21/07	02/21/07	
1,4-Dichlorobenzene	EPA 624	7B21011	0.37	2.0	ND	1	02/21/07	02/21/07	
1,1-Dichloroethane	EPA 624	7B21011	0.27	2.0	ND	1	02/21/07	02/21/07	
1,2-Dichloroethane	EPA 624	7B21011	0.28	0.50	ND	1	02/21/07	02/21/07	
1,1-Dichloroethene	EPA 624	7B21011	0.42	5.0	ND	1	02/21/07	02/21/07	
trans-1,2-Dichloroethene	EPA 624	7B21011	0.27	2.0	ND	1	02/21/07	02/21/07	
1,2-Dichloropropane	EPA 624	7B21011	0.35	2.0	ND	1	02/21/07	02/21/07	
cis-1,3-Dichloropropene	EPA 624	7B21011	0.22	2.0	ND	1	02/21/07	02/21/07	
trans-1,3-Dichloropropene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
Ethylbenzene	EPA 624	7B21011	0.25	2.0	ND	1	02/21/07	02/21/07	
Methylene chloride	EPA 624	7B21011	0.95	5.0	ND	1	02/21/07	02/21/07	
1,1,2,2-Tetrachloroethane	EPA 624	7B21011	0.24	2.0	ND	1	02/21/07	02/21/07	
Tetrachloroethene	EPA 624	7B21011	0.32	2.0	ND	1	02/21/07	02/21/07	
Toluene	EPA 624	7B21011	0.36	2.0	ND	1	02/21/07	02/21/07	
1,1,1-Trichloroethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
1,1,2-Trichloroethane	EPA 624	7B21011	0.30	2.0	ND	1	02/21/07	02/21/07	
Trichloroethene	EPA 624	7B21011	0.26	2.0	ND	1	02/21/07	02/21/07	
Trichlorofluoromethane	EPA 624	7B21011	0.34	5.0	ND	1	02/21/07	02/21/07	
Vinyl chloride	EPA 624	7B21011	0.30	0.50	ND	1	02/21/07	02/21/07	
Xylenes, Total	EPA 624	7B21011	0.90	4.0	ND	1	02/21/07	02/21/07	
Trichlorotrifluoroethane (Freon 113)	EPA 624	7B21011	1.5	5.0	ND	1	02/21/07	02/21/07	
Surrogate: Dibromofluoromethane (80-120%					98 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					98 %				
J (- / v / v /									

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Report Number: IQB2024 Sampled: 02/19/07
Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

PURGEABLES-- GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2024-01 (Outfall 010 - Water	er)								
Reporting Units: ug/l									
Acrolein	EPA 624	7B21011	4.6	50	ND	1	02/21/07	02/21/07	
Acrylonitrile	EPA 624	7B21011	0.70	50	ND	1	02/21/07	02/21/07	
2-Chloroethyl vinyl ether	EPA 624	7B21011	1.8	5.0	ND	1	02/21/07	02/21/07	
Surrogate: Dibromofluoromethane (80-120%))				104 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%))				98 %				
Sample ID: IQB2024-02 (Trip Blank - Wate	er)								
Reporting Units: ug/l									
Acrolein	EPA 624	7B21011	4.6	50	ND	1	02/21/07	02/21/07	
Acrylonitrile	EPA 624	7B21011	0.70	50	ND	1	02/21/07	02/21/07	
2-Chloroethyl vinyl ether	EPA 624	7B21011	1.8	5.0	ND	1	02/21/07	02/21/07	
Surrogate: Dibromofluoromethane (80-120%))				98 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%))				98 %				

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Report Number: IQB2024 Sampled: 02/19/07
Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2024-01 (Outfall 010 - W	(ator)							٠	
Reporting Units: ug/l	ater)								
Acenaphthene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Acenaphthylene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Aniline	EPA 625	7B21110	2.5	9.8	ND	0.98	02/21/07	02/25/07	
Anthracene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Benzidine	EPA 625	7B21110	8.3	20	ND	0.98	02/21/07	02/25/07	L
Benzoic acid	EPA 625	7B21110	8.3	20	ND	0.98	02/21/07	02/25/07	
Benzo(a)anthracene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Benzo(b)fluoranthene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Benzo(k)fluoranthene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Benzo(g,h,i)perylene	EPA 625	7B21110	2.9	9.8	ND	0.98	02/21/07	02/25/07	L
Benzo(a)pyrene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Benzyl alcohol	EPA 625	7B21110	2.5	20	ND	0.98	02/21/07	02/25/07	
Bis(2-chloroethoxy)methane	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Bis(2-chloroethyl)ether	EPA 625	7B21110	2.5	9.8	ND	0.98	02/21/07	02/25/07	
Bis(2-chloroisopropyl)ether	EPA 625	7B21110	2.5	9.8	ND	0.98	02/21/07	02/25/07	
Bis(2-ethylhexyl)phthalate	EPA 625	7B21110	3.9	49	ND	0.98	02/21/07	02/25/07	
4-Bromophenyl phenyl ether	EPA 625	7B21110	2.5	9.8	ND	0.98	02/21/07	02/25/07	
Butyl benzyl phthalate	EPA 625	7B21110	3.9	20	ND	0.98	02/21/07	02/25/07	
4-Chloroaniline	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
2-Chloronaphthalene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
4-Chloro-3-methylphenol	EPA 625	7B21110	2.0	20	ND	0.98	02/21/07	02/25/07	
2-Chlorophenol	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
4-Chlorophenyl phenyl ether	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Chrysene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Dibenz(a,h)anthracene	EPA 625	7B21110	2.9	20	ND	0.98	02/21/07	02/25/07	
Dibenzofuran	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Di-n-butyl phthalate	EPA 625	7B21110	2.0	20	ND	0.98	02/21/07	02/25/07	
1,3-Dichlorobenzene	EPA 625	7B21110	2.9	9.8	ND	0.98	02/21/07	02/25/07	
1,4-Dichlorobenzene	EPA 625	7B21110	2.5	9.8	ND	0.98	02/21/07	02/25/07	
1,2-Dichlorobenzene	EPA 625	7B21110	2.9	9.8	ND	0.98	02/21/07	02/25/07	
3,3-Dichlorobenzidine	EPA 625	7B21110	2.9	20	ND	0.98	02/21/07	02/25/07	
2,4-Dichlorophenol	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Diethyl phthalate	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
2,4-Dimethylphenol	EPA 625	7B21110	3.4	20	ND	0.98	02/21/07	02/25/07	
Dimethyl phthalate	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
4,6-Dinitro-2-methylphenol	EPA 625	7B21110	3.9	20	ND	0.98	02/21/07	02/25/07	
2,4-Dinitrophenol	EPA 625	7B21110	4.4	20	ND	0.98	02/21/07	02/25/07	
2,4-Dinitrotoluene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
2,6-Dinitrotoluene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Di-n-octyl phthalate	EPA 625	7B21110	2.0	20	ND	0.98	02/21/07	02/25/07	
Fluoranthene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Tost A morios Invino CA									

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

Pasadena, CA 91101

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

A 1.	N. (1 1	D ()	MDL	Reporting	_	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQB2024-01 (Outfall 010 - Water	er) - cont.								
Reporting Units: ug/l									
Fluorene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Hexachlorobenzene	EPA 625	7B21110	2.5	9.8	ND	0.98	02/21/07	02/25/07	
Hexachlorobutadiene	EPA 625	7B21110	3.4	9.8	ND	0.98	02/21/07	02/25/07	
Hexachlorocyclopentadiene	EPA 625	7B21110	4.9	20	ND	0.98	02/21/07	02/25/07	
Hexachloroethane	EPA 625	7B21110	2.9	9.8	ND	0.98	02/21/07	02/25/07	
Indeno(1,2,3-cd)pyrene	EPA 625	7B21110	2.9	20	ND	0.98	02/21/07	02/25/07	
Isophorone	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
2-Methylnaphthalene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
2-Methylphenol	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
4-Methylphenol	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Naphthalene	EPA 625	7B21110	2.5	9.8	ND	0.98	02/21/07	02/25/07	
2-Nitroaniline	EPA 625	7B21110	2.0	20	ND	0.98	02/21/07	02/25/07	
3-Nitroaniline	EPA 625	7B21110	2.0	20	ND	0.98	02/21/07	02/25/07	
4-Nitroaniline	EPA 625	7B21110	2.5	20	ND	0.98	02/21/07	02/25/07	
Nitrobenzene	EPA 625	7B21110	2.5	20	ND	0.98	02/21/07	02/25/07	
2-Nitrophenol	EPA 625	7B21110	3.4	9.8	ND	0.98	02/21/07	02/25/07	
4-Nitrophenol	EPA 625	7B21110	5.4	20	ND	0.98	02/21/07	02/25/07	
N-Nitrosodiphenylamine	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
N-Nitroso-di-n-propylamine	EPA 625	7B21110	2.5	9.8	ND	0.98	02/21/07	02/25/07	
Pentachlorophenol	EPA 625	7B21110	3.4	20	ND	0.98	02/21/07	02/25/07	
Phenanthrene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Phenol	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
Pyrene	EPA 625	7B21110	2.0	9.8	ND	0.98	02/21/07	02/25/07	
1,2,4-Trichlorobenzene	EPA 625	7B21110	2.5	9.8	ND	0.98	02/21/07	02/25/07	
2,4,5-Trichlorophenol	EPA 625	7B21110	2.9	20	ND	0.98	02/21/07	02/25/07	
2,4,6-Trichlorophenol	EPA 625	7B21110	2.9	20	ND	0.98	02/21/07	02/25/07	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	7B21110	2.0	20	ND	0.98	02/21/07	02/25/07	
N-Nitrosodimethylamine	EPA 625	7B21110	2.5	20	ND	0.98	02/21/07	02/25/07	
Surrogate: 2-Fluorophenol (30-120%)					74 %				
Surrogate: Phenol-d6 (35-120%)					78 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					93 %				
Surrogate: Nitrobenzene-d5 (40-120%)					81 %				
Surrogate: 2-Fluorobiphenyl (45-120%)					88 %				
Surrogate: Terphenyl-d14 (45-120%)					90 %				

Pasadena, CA 91101

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result		Extracted	Analyzed	Qualifiers
Sample ID: IQB2024-01 (Outfall 010 - Wate	er) - cont								
Reporting Units: ug/l	ary cont.								
Aldrin	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	C-7
alpha-BHC	EPA 608	7B22132	0.019	0.094	ND	0.943	02/22/07	02/26/07	
beta-BHC	EPA 608	7B22132	0.038	0.094	ND	0.943	02/22/07	02/26/07	
delta-BHC	EPA 608	7B22132	0.019	0.19	ND	0.943	02/22/07	02/26/07	
gamma-BHC (Lindane)	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	
Chlordane	EPA 608	7B22132	0.19	0.94	ND	0.943	02/22/07	02/26/07	
4,4'-DDD	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	
4,4'-DDE	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	
4,4'-DDT	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	C-7
Dieldrin	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	
Endosulfan I	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	
Endosulfan II	EPA 608	7B22132	0.038	0.094	ND	0.943	02/22/07	02/26/07	
Endosulfan sulfate	EPA 608	7B22132	0.047	0.19	ND	0.943	02/22/07	02/26/07	
Endrin	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	
Endrin aldehyde	EPA 608	7B22132	0.047	0.094	ND	0.943	02/22/07	02/26/07	
Endrin ketone	EPA 608	7B22132	0.038	0.094	ND	0.943	02/22/07	02/26/07	
Heptachlor	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	
Heptachlor epoxide	EPA 608	7B22132	0.028	0.094	ND	0.943	02/22/07	02/26/07	
Methoxychlor	EPA 608	7B22132	0.038	0.094	ND	0.943	02/22/07	02/26/07	C-7
Toxaphene	EPA 608	7B22132	1.4	4.7	ND	0.943	02/22/07	02/26/07	
Surrogate: Tetrachloro-m-xylene (35-115%)					77 %				
Surrogate: Decachlorobiphenyl (45-120%)					82 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Report Number: IQB2024 Sampled: 02/19/07
Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2024-01 (Outfall 010 - Wat	ter) - cont.								
Reporting Units: ug/l									
Aroclor 1016	EPA 608	7B22132	0.33	0.94	ND	0.943	02/22/07	02/23/07	
Aroclor 1221	EPA 608	7B22132	0.094	0.94	ND	0.943	02/22/07	02/23/07	
Aroclor 1232	EPA 608	7B22132	0.24	0.94	ND	0.943	02/22/07	02/23/07	
Aroclor 1242	EPA 608	7B22132	0.24	0.94	ND	0.943	02/22/07	02/23/07	
Aroclor 1248	EPA 608	7B22132	0.24	0.94	ND	0.943	02/22/07	02/23/07	
Aroclor 1254	EPA 608	7B22132	0.24	0.94	ND	0.943	02/22/07	02/23/07	
Aroclor 1260	EPA 608	7B22132	0.28	0.94	ND	0.943	02/22/07	02/23/07	
Surrogate: Decachlorobiphenyl (45-120%)					102 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IQB2024

Received: 02/19/07

METALS

Method	Batch	MDL Limit	Reporting Limit	Sample Result			Date Analyzed	Data Qualifiers
- Water) - cont.								
EPA 200.7 EPA 200.7	7B21063	0.020	0.050 0.040	0.021 1.5	1 1	02/21/07	02/21/07	J, B
	- Water) - cont.	- Water) - cont. EPA 200.7 7B21063	Method Batch Limit - Water) - cont. EPA 200.7 7B21063 0.020	Method Batch Limit Limit - Water) - cont. EPA 200.7 7B21063 0.020 0.050	Method Batch Limit Limit Result - Water) - cont. EPA 200.7 7B21063 0.020 0.050 0.021	Method Batch Limit Limit Result Factor - Water) - cont. EPA 200.7 7B21063 0.020 0.050 0.021 1	Method Batch Limit Limit Result Factor Extracted - Water) - cont. EPA 200.7 7B21063 0.020 0.050 0.021 1 02/21/07	Method Batch Limit Limit Result Factor Extracted Analyzed - Water) - cont. EPA 200.7 7B21063 0.020 0.050 0.021 1 02/21/07 02/21/07

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2024-01 (Outfall 0 Reporting Units: ug/l	10 - Water) - cont.								
Aluminum	EPA 200.7	7B21063	40	50	1600	1	02/21/07	02/21/07	
Antimony	EPA 200.8	7B21003	0.050	2.0	1.6	1	02/21/07	02/21/07	J
•									J
Arsenic	EPA 200.7	7B21063	7.0	10	ND	1	02/21/07	02/21/07	
Beryllium	EPA 200.7	7B21063	0.90	2.0	ND	1	02/21/07	02/21/07	
Cadmium	EPA 200.8	7B21137	0.025	1.0	0.090	1	02/21/07	02/21/07	J, B
Chromium	EPA 200.7	7B21063	2.0	5.0	3.3	1	02/21/07	02/21/07	J
Copper	EPA 200.8	7B21137	0.25	2.0	2.4	1	02/21/07	02/21/07	В
Lead	EPA 200.8	7B21137	0.040	1.0	0.84	1	02/21/07	02/21/07	J
Nickel	EPA 200.7	7B21063	2.0	10	ND	1	02/21/07	02/21/07	
Selenium	EPA 200.7	7B21063	8.0	10	ND	1	02/21/07	02/21/07	
Silver	EPA 200.7	7B21063	3.0	10	ND	1	02/21/07	02/21/07	
Thallium	EPA 200.8	7B21137	N/A	1.0	ND	1	02/21/07	02/21/07	
Vanadium	EPA 200.7	7B21063	3.0	10	8.3	1	02/21/07	02/21/07	J
Zinc	EPA 200.7	7B21063	15	20	ND	1	02/21/07	02/21/07	

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2024-01 (Outfall 010 - V	Vater) - cont.								
Reporting Units: mg/l									
Aluminum	EPA 200.7-Diss	7B22143	N/A	0.050	ND	1	02/22/07	02/23/07	
Arsenic	EPA 200.7-Diss	7B22143	N/A	0.010	ND	1	02/22/07	02/23/07	
Beryllium	EPA 200.7-Diss	7B22143	N/A	0.0020	ND	1	02/22/07	02/23/07	
Boron	EPA 200.7-Diss	7B22143	N/A	0.050	ND	1	02/22/07	02/23/07	В
Chromium	EPA 200.7-Diss	7B22143	N/A	0.0050	ND	1	02/22/07	02/23/07	
Iron	EPA 200.7-Diss	7B22143	N/A	0.040	ND	1	02/22/07	02/23/07	
Nickel	EPA 200.7-Diss	7B22143	N/A	0.010	ND	1	02/22/07	02/23/07	
Selenium	EPA 200.7-Diss	7B22143	N/A	0.010	ND	1	02/22/07	02/23/07	
Hardness (as CaCO3)	SM2340B	7B22143	N/A	1.0	140	1	02/22/07	02/23/07	
Silver	EPA 200.7-Diss	7B22143	N/A	0.010	ND	1	02/22/07	02/23/07	
Vanadium	EPA 200.7-Diss	7B22143	N/A	0.010	ND	1	02/22/07	02/23/07	
Zinc	EPA 200.7-Diss	7B22143	N/A	0.020	ND	1	02/22/07	02/23/07	

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Report Number: IQB2024
Sampled: 02/19/07
Received: 02/19/07

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2024-01 (Outfall 010 - V	Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	7B23073	N/A	2.0	ND	1	02/23/07	02/23/07	
Cadmium	EPA 200.8-Diss	7B23073	N/A	1.0	ND	1	02/23/07	02/23/07	
Copper	EPA 200.8-Diss	7B23073	N/A	2.0	ND	1	02/23/07	02/23/07	
Lead	EPA 200.8-Diss	7B23073	N/A	1.0	ND	1	02/23/07	02/23/07	
Thallium	EPA 200.8-Diss	7B23073	N/A	1.0	ND	1	02/23/07	02/23/07	

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2024-01 (Outfall 010 -	Water) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	7B20044	1.5	5.0	61	10	02/20/07	02/20/07	
Fluoride	EPA 300.0	7B20044	0.15	0.50	0.39	1	02/20/07	02/20/07	J
Hardness (as CaCO3)	SM2340B	7B21063	1.0	1.0	160	1	02/21/07	02/21/07	
Nitrate/Nitrite-N	EPA 300.0	7B20044	0.080	0.15	0.42	1	02/20/07	02/20/07	
Oil & Grease	EPA 413.1	7B28085	0.92	4.9	ND	1	02/28/07	02/28/07	
Sulfate	EPA 300.0	7B20044	0.45	0.50	12	1	02/20/07	02/20/07	
Total Dissolved Solids	SM2540C	7B23078	10	10	300	1	02/23/07	02/23/07	
Total Suspended Solids	EPA 160.2	7B21150	10	10	28	1	02/21/07	02/22/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2024-01 (Outfall 010 - Wa	iter) - cont.								
Reporting Units: ug/l									
Total Cyanide	EPA 335.2	7B23104	2.2	5.0	ND	1	02/23/07	02/23/07	
Perchlorate	EPA 314.0	7B27119	0.80	4.0	ND	1	02/27/07	02/27/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 010 (IQB2024-01) - Water	er				
EPA 300.0	2	02/19/2007 10:15	02/19/2007 18:55	02/20/2007 15:00	02/20/2007 15:59
EPA 624	3	02/19/2007 10:15	02/19/2007 18:55	02/21/2007 00:00	02/21/2007 14:12
Sample ID: Trip Blank (IQB2024-02) - Water	er				
EPA 624	3	02/19/2007 10:15	02/19/2007 18:55	02/21/2007 00:00	02/21/2007 11:09

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyta	Dogule	Reporting Limit	MDI	IIm:4a	Spike Level	Source	%REC	%REC	RPD	RPD	Data Qualifiers
Analyte	Result	Limit	MDL	Units	Levei	Result	%KEC	Limits	KPD	Limit	Quaimers
Batch: 7B21011 Extracted: 02/21/0	<u>7_</u>										
Blank Analyzed: 02/21/2007 (7B21011-1				_							
Benzene	ND	1.0	0.28	ug/l							
Bromodichloromethane	ND	2.0	0.30	ug/l							
Bromoform	ND	5.0	0.40	ug/l							
Bromomethane	ND	5.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	2.0	0.36	ug/l							
Chloroethane	ND	5.0	0.40	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
Chloromethane	ND	5.0	0.40	ug/l							
Dibromochloromethane	ND	2.0	0.28	ug/l							
1,2-Dichlorobenzene	ND	2.0	0.32	ug/l							
1,3-Dichlorobenzene	ND	2.0	0.35	ug/l							
1,4-Dichlorobenzene	ND	2.0	0.37	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	5.0	0.42	ug/l							
trans-1,2-Dichloroethene	ND	2.0	0.27	ug/l							
1,2-Dichloropropane	ND	2.0	0.35	ug/l							
cis-1,3-Dichloropropene	ND	2.0	0.22	ug/l							
trans-1,3-Dichloropropene	ND	2.0	0.32	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Methylene chloride	ND	5.0	0.95	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Toluene	ND	2.0	0.36	ug/l							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
Trichloroethene	ND	2.0	0.26	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	4.0	0.90	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.5	ug/l							
Surrogate: Dibromofluoromethane	22.2			ug/l	25.0		89	80-120			
Surrogate: Toluene-d8	25.0			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
G											

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 7B21011 Extracted: 02/21/0											
Daten. / B21011 Extracted. 02/21/0	<u> </u>										
LCS Analyzed: 02/21/2007 (7B21011-B	S1)										
Benzene	24.4	1.0	0.28	ug/l	25.0		98	70-120			
Bromodichloromethane	24.9	2.0	0.30	ug/l	25.0		100	70-135			
Bromoform	22.8	5.0	0.40	ug/l	25.0		91	55-130			
Bromomethane	25.5	5.0	0.42	ug/l	25.0		102	65-140			
Carbon tetrachloride	23.3	0.50	0.28	ug/l	25.0		93	65-140			
Chlorobenzene	24.8	2.0	0.36	ug/l	25.0		99	75-120			
Chloroethane	21.6	5.0	0.40	ug/l	25.0		86	60-140			
Chloroform	23.5	2.0	0.33	ug/l	25.0		94	70-130			
Chloromethane	30.5	5.0	0.40	ug/l	25.0		122	50-140			
Dibromochloromethane	26.8	2.0	0.28	ug/l	25.0		107	70-140			
1,2-Dichlorobenzene	25.3	2.0	0.32	ug/l	25.0		101	75-120			
1,3-Dichlorobenzene	25.3	2.0	0.35	ug/l	25.0		101	75-120			
1,4-Dichlorobenzene	24.8	2.0	0.37	ug/l	25.0		99	75-120			
1,1-Dichloroethane	23.5	2.0	0.27	ug/l	25.0		94	70-125			
1,2-Dichloroethane	25.0	0.50	0.28	ug/l	25.0		100	60-140			
1,1-Dichloroethene	23.3	5.0	0.42	ug/l	25.0		93	70-125			
trans-1,2-Dichloroethene	24.4	2.0	0.27	ug/l	25.0		98	70-125			
1,2-Dichloropropane	25.6	2.0	0.35	ug/l	25.0		102	70-125			
cis-1,3-Dichloropropene	24.1	2.0	0.22	ug/l	25.0		96	75-125			
trans-1,3-Dichloropropene	24.7	2.0	0.32	ug/l	25.0		99	70-125			
Ethylbenzene	25.8	2.0	0.25	ug/l	25.0		103	75-125			
Methylene chloride	21.4	5.0	0.95	ug/l	25.0		86	55-130			
1,1,2,2-Tetrachloroethane	27.4	2.0	0.24	ug/l	25.0		110	55-130			
Tetrachloroethene	22.4	2.0	0.32	ug/l	25.0		90	70-125			
Toluene	25.4	2.0	0.36	ug/l	25.0		102	70-120			
1,1,1-Trichloroethane	23.1	2.0	0.30	ug/l	25.0		92	65-135			
1,1,2-Trichloroethane	26.5	2.0	0.30	ug/l	25.0		106	70-125			
Trichloroethene	24.6	2.0	0.26	ug/l	25.0		98	70-125			
Trichlorofluoromethane	23.0	5.0	0.34	ug/l	25.0		92	65-145			
Vinyl chloride	26.6	0.50	0.30	ug/l	25.0		106	55-135			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.7			ug/l	25.0		107	80-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Report Number: IQB2024

Sampled: 02/19/07 Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 7B21011 Extracted: 02/21/0'	7										
Batch. /BEIVIT Extracted. VE/E1/V	<u>/</u>										
Matrix Spike Analyzed: 02/21/2007 (7B2	21011-MS1)				Sou	rce: IQB	2021-01				
Benzene	33.0	1.0	0.28	ug/l	25.0	ND	132	65-125			M1
Bromodichloromethane	34.1	2.0	0.30	ug/l	25.0	ND	136	70-135			M1
Bromoform	28.1	5.0	0.40	ug/l	25.0	ND	112	55-135			
Bromomethane	38.2	5.0	0.42	ug/l	25.0	ND	153	55-145			MI
Carbon tetrachloride	34.0	0.50	0.28	ug/l	25.0	ND	136	65-140			
Chlorobenzene	33.2	2.0	0.36	ug/l	25.0	ND	133	75-125			M1
Chloroethane	32.6	5.0	0.40	ug/l	25.0	ND	130	55-140			
Chloroform	33.4	2.0	0.33	ug/l	25.0	ND	134	65-135			
Chloromethane	43.7	5.0	0.40	ug/l	25.0	ND	175	45-145			M1
Dibromochloromethane	35.3	2.0	0.28	ug/l	25.0	ND	141	65-140			M1
1,2-Dichlorobenzene	32.8	2.0	0.32	ug/l	25.0	ND	131	75-125			M1
1,3-Dichlorobenzene	33.2	2.0	0.35	ug/l	25.0	ND	133	75-125			M1
1,4-Dichlorobenzene	32.2	2.0	0.37	ug/l	25.0	ND	129	75-125			M1
1,1-Dichloroethane	33.3	2.0	0.27	ug/l	25.0	ND	133	65-130			M1
1,2-Dichloroethane	32.9	0.50	0.28	ug/l	25.0	ND	132	60-140			
1,1-Dichloroethene	31.0	5.0	0.42	ug/l	25.0	ND	124	60-130			
trans-1,2-Dichloroethene	33.8	2.0	0.27	ug/l	25.0	ND	135	65-130			M1
1,2-Dichloropropane	34.0	2.0	0.35	ug/l	25.0	ND	136	65-130			M1
cis-1,3-Dichloropropene	31.4	2.0	0.22	ug/l	25.0	ND	126	70-130			
trans-1,3-Dichloropropene	31.2	2.0	0.32	ug/l	25.0	ND	125	65-135			
Ethylbenzene	34.9	2.0	0.25	ug/l	25.0	ND	140	65-130			M1
Methylene chloride	30.2	5.0	0.95	ug/l	25.0	ND	121	50-135			
1,1,2,2-Tetrachloroethane	31.6	2.0	0.24	ug/l	25.0	ND	126	55-135			
Tetrachloroethene	30.2	2.0	0.32	ug/l	25.0	ND	121	65-130			
Toluene	34.1	2.0	0.36	ug/l	25.0	ND	136	70-125			M1
1,1,1-Trichloroethane	33.9	2.0	0.30	ug/l	25.0	ND	136	65-140			
1,1,2-Trichloroethane	32.8	2.0	0.30	ug/l	25.0	ND	131	65-130			M1
Trichloroethene	33.6	2.0	0.26	ug/l	25.0	ND	134	65-125			M1
Trichlorofluoromethane	34.6	5.0	0.34	ug/l	25.0	ND	138	60-145			
Vinyl chloride	40.4	0.50	0.30	ug/l	25.0	ND	162	45-140			M1
Surrogate: Dibromofluoromethane	26.6			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	27.1			ug/l	25.0		108	80-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Report Number: IQB2024

Sampled: 02/19/07 Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21011 Extracted: 02/21/0'	<u>7_</u>										
											
Matrix Spike Dup Analyzed: 02/21/2007						rce: IQB	2021-01				
Benzene	28.9	1.0	0.28	ug/l	25.0	ND	116	65-125	13	20	
Bromodichloromethane	29.9	2.0	0.30	ug/l	25.0	ND	120	70-135	13	20	
Bromoform	25.6	5.0	0.40	ug/l	25.0	ND	102	55-135	9	25	
Bromomethane	33.5	5.0	0.42	ug/l	25.0	ND	134	55-145	13	25	
Carbon tetrachloride	29.7	0.50	0.28	ug/l	25.0	ND	119	65-140	14	25	
Chlorobenzene	29.5	2.0	0.36	ug/l	25.0	ND	118	75-125	12	20	
Chloroethane	28.8	5.0	0.40	ug/l	25.0	ND	115	55-140	12	25	
Chloroform	29.4	2.0	0.33	ug/l	25.0	ND	118	65-135	13	20	
Chloromethane	39.2	5.0	0.40	ug/l	25.0	ND	157	45-145	11	25	M1
Dibromochloromethane	31.8	2.0	0.28	ug/l	25.0	ND	127	65-140	10	25	
1,2-Dichlorobenzene	30.5	2.0	0.32	ug/l	25.0	ND	122	75-125	7	20	
1,3-Dichlorobenzene	30.1	2.0	0.35	ug/l	25.0	ND	120	75-125	10	20	
1,4-Dichlorobenzene	29.4	2.0	0.37	ug/l	25.0	ND	118	75-125	9	20	
1,1-Dichloroethane	29.5	2.0	0.27	ug/l	25.0	ND	118	65-130	12	20	
1,2-Dichloroethane	29.3	0.50	0.28	ug/l	25.0	ND	117	60-140	12	20	
1,1-Dichloroethene	28.0	5.0	0.42	ug/l	25.0	ND	112	60-130	10	20	
trans-1,2-Dichloroethene	29.8	2.0	0.27	ug/l	25.0	ND	119	65-130	13	20	
1,2-Dichloropropane	30.2	2.0	0.35	ug/l	25.0	ND	121	65-130	12	20	
cis-1,3-Dichloropropene	27.7	2.0	0.22	ug/l	25.0	ND	111	70-130	13	20	
trans-1,3-Dichloropropene	27.8	2.0	0.32	ug/l	25.0	ND	111	65-135	12	25	
Ethylbenzene	30.7	2.0	0.25	ug/l	25.0	ND	123	65-130	13	20	
Methylene chloride	26.6	5.0	0.95	ug/l	25.0	ND	106	50-135	13	20	
1,1,2,2-Tetrachloroethane	30.7	2.0	0.24	ug/l	25.0	ND	123	55-135	3	30	
Tetrachloroethene	26.6	2.0	0.32	ug/l	25.0	ND	106	65-130	13	20	
Toluene	29.8	2.0	0.36	ug/l	25.0	ND	119	70-125	13	20	
1,1,1-Trichloroethane	30.0	2.0	0.30	ug/l	25.0	ND	120	65-140	12	20	
1,1,2-Trichloroethane	29.4	2.0	0.30	ug/l	25.0	ND	118	65-130	11	25	
Trichloroethene	29.1	2.0	0.26	ug/l	25.0	ND	116	65-125	14	20	
Trichlorofluoromethane	30.4	5.0	0.34	ug/l	25.0	ND	122	60-145	13	25	
Vinyl chloride	35.3	0.50	0.30	ug/l	25.0	ND	141	45-140	13	30	M1
Surrogate: Dibromofluoromethane	26.4			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Received: 02/19/07

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21011 Extracted: 02/21/07	-										
Blank Analyzed: 02/21/2007 (7B21011-B	LK1)										
Acrolein	ND	50	4.6	ug/l							
Acrylonitrile	ND	50	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: Dibromofluoromethane	22.2			ug/l	25.0		89	80-120			
Surrogate: Toluene-d8	25.0			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
LCS Analyzed: 02/21/2007 (7B21011-BS	1)										
2-Chloroethyl vinyl ether	24.0	5.0	1.8	ug/l	25.0		96	25-170			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.7			ug/l	25.0		107	80-120			
Matrix Spike Analyzed: 02/21/2007 (7B21011-MS1)					Source: IQB2021-01						
2-Chloroethyl vinyl ether	27.2	5.0	1.8	ug/l	25.0	ND	109	25-170			
Surrogate: Dibromofluoromethane	26.6			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	27.1			ug/l	25.0		108	80-120			
Matrix Spike Dup Analyzed: 02/21/2007	atrix Spike Dup Analyzed: 02/21/2007 (7B21011-MSD1)				Source: IQB2021-01						
2-Chloroethyl vinyl ether	24.8	5.0	1.8	ug/l	25.0	ND	99	25-170	9	25	
Surrogate: Dibromofluoromethane	26.4			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

RPD

RPD

Limit

Data

Qualifiers

Report Number: IQB2024 Received: 02/19/07

Spike

Source

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits
Batch: 7B21110 Extracted: 02	/21/07							
Blank Analyzed: 02/23/2007 (7B2	1110-BLK1)							
Acenaphthene	ND	10	2.0	ug/l				
Acenaphthylene	ND	10	2.0	ug/l				
Aniline	ND	10	2.5	ug/l				
Anthracene	ND	10	2.0	ug/l				
Benzidine	ND	20	8.5	ug/l				
Benzoic acid	ND	20	8.5	ug/l				
Benzo(a)anthracene	ND	10	2.0	ug/l				
Benzo(b)fluoranthene	ND	10	2.0	ug/l				
Benzo(k)fluoranthene	ND	10	2.0	ug/l				
Benzo(g,h,i)perylene	ND	10	3.0	ug/l				
Benzo(a)pyrene	ND	10	2.0	ug/l				
Benzyl alcohol	ND	20	2.5	ug/l				
Bis(2-chloroethoxy)methane	ND	10	2.0	ug/l				
Bis(2-chloroethyl)ether	ND	10	2.5	ug/l				
Bis(2-chloroisopropyl)ether	ND	10	2.5	ug/l				
Bis(2-ethylhexyl)phthalate	ND	50	4.0	ug/l				
4-Bromophenyl phenyl ether	ND	10	2.5	ug/l				
Butyl benzyl phthalate	ND	20	4.0	ug/l				
4-Chloroaniline	ND	10	2.0	ug/l				
2-Chloronaphthalene	ND	10	2.0	ug/l				
4-Chloro-3-methylphenol	ND	20	2.0	ug/l				
2-Chlorophenol	ND	10	2.0	ug/l				
4-Chlorophenyl phenyl ether	ND	10	2.0	ug/l				
Chrysene	ND	10	2.0	ug/l				
Dibenz(a,h)anthracene	ND	20	3.0	ug/l				
Dibenzofuran	ND	10	2.0	ug/l				
Di-n-butyl phthalate	ND	20	2.0	ug/l				
1,3-Dichlorobenzene	ND	10	3.0	ug/l				
1,4-Dichlorobenzene	ND	10	2.5	ug/l				
1,2-Dichlorobenzene	ND	10	3.0	ug/l				
3,3-Dichlorobenzidine	ND	20	3.0	ug/l				
2,4-Dichlorophenol	ND	10	2.0	ug/l				
Diethyl phthalate	ND	10	2.0	ug/l				
2,4-Dimethylphenol	ND	20	3.5	ug/l				
Dimethyl phthalate	ND	10	2.0	ug/l				

Reporting

TestAmerica - Irvine, CA

Michele Chamberlin

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Reporting

Received: 02/19/07

RPD

Data

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Spike

Source

		reporting			Spike	Source				KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: 7B21110 Extracted: 02/2	21/07										
Blank Analyzed: 02/23/2007 (7B211	110-BLK1)										
4,6-Dinitro-2-methylphenol	ND	20	4.0	ug/l							
2,4-Dinitrophenol	ND	20	4.5	ug/l							
2,4-Dinitrotoluene	ND	10	2.0	ug/l							
2,6-Dinitrotoluene	ND	10	2.0	ug/l							
Di-n-octyl phthalate	ND	20	2.0	ug/l							
Fluoranthene	ND	10	2.0	ug/l							
Fluorene	ND	10	2.0	ug/l							
Hexachlorobenzene	ND	10	2.5	ug/l							
Hexachlorobutadiene	ND	10	3.5	ug/l							
Hexachlorocyclopentadiene	ND	20	5.0	ug/l							
Hexachloroethane	ND	10	3.0	ug/l							
Indeno(1,2,3-cd)pyrene	ND	20	3.0	ug/l							
Isophorone	ND	10	2.0	ug/l							
2-Methylnaphthalene	ND	10	2.0	ug/l							
2-Methylphenol	ND	10	2.0	ug/l							
4-Methylphenol	ND	10	2.0	ug/l							
Naphthalene	ND	10	2.5	ug/l							
2-Nitroaniline	ND	20	2.0	ug/l							
3-Nitroaniline	ND	20	2.0	ug/l							
4-Nitroaniline	ND	20	2.5	ug/l							
Nitrobenzene	ND	20	2.5	ug/l							
2-Nitrophenol	ND	10	3.5	ug/l							
4-Nitrophenol	ND	20	5.5	ug/l							
N-Nitrosodiphenylamine	ND	10	2.0	ug/l							
N-Nitroso-di-n-propylamine	ND	10	2.5	ug/l							
Pentachlorophenol	ND	20	3.5	ug/l							
Phenanthrene	ND	10	2.0	ug/l							
Phenol	ND	10	2.0	ug/l							
Pyrene	ND	10	2.0	ug/l							
1,2,4-Trichlorobenzene	ND	10	2.5	ug/l							
2,4,5-Trichlorophenol	ND	20	3.0	ug/l							
2,4,6-Trichlorophenol	ND	20	3.0	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	20	2.0	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
Surrogate: 2-Fluorophenol	148			ug/l	200		74	30-120			

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Report Number: IQB2024

Spike

Source

Sampled: 02/19/07 Received: 02/19/07

RPD

Data

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Reporting

		Reporting			Spike	Source		/UKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21110 Extracted: 02/2	21/07										
Blank Analyzed: 02/23/2007 (7B211	10-BLK1)										
Surrogate: Phenol-d6	156			ug/l	200		78	35-120			
Surrogate: 2,4,6-Tribromophenol	202			ug/l	200		101	40-120			
Surrogate: Nitrobenzene-d5	83.6			ug/l	100		84	40-120			
Surrogate: 2-Fluorobiphenyl	85.9			ug/l	100		86	45-120			
Surrogate: Terphenyl-d14	97.3			ug/l	100		97	45-120			
LCS Analyzed: 02/23/2007 (7B2111	0-BS1)										MNR1
Acenaphthene	80.7	10	2.0	ug/l	100		81	55-120			
Acenaphthylene	87.1	10	2.0	ug/l	100		87	60-120			
Aniline	73.3	10	2.5	ug/l	100		73	40-120			
Anthracene	86.7	10	2.0	ug/l	100		87	60-120			
Benzidine	153	20	8.5	ug/l	100		153	25-160			
Benzoic acid	72.2	20	8.5	ug/l	100		72	25-120			
Benzo(a)anthracene	87.0	10	2.0	ug/l	100		87	60-120			
Benzo(b)fluoranthene	110	10	2.0	ug/l	100		110	55-125			
Benzo(k)fluoranthene	108	10	2.0	ug/l	100		108	50-125			
Benzo(g,h,i)perylene	119	10	3.0	ug/l	100		119	45-130			
Benzo(a)pyrene	114	10	2.0	ug/l	100		114	55-125			
Benzyl alcohol	72.7	20	2.5	ug/l	100		73	50-120			
Bis(2-chloroethoxy)methane	82.7	10	2.0	ug/l	100		83	55-120			
Bis(2-chloroethyl)ether	67.1	10	2.5	ug/l	100		67	50-120			
Bis(2-chloroisopropyl)ether	68.0	10	2.5	ug/l	100		68	45-120			
Bis(2-ethylhexyl)phthalate	83.3	50	4.0	ug/l	100		83	60-125			
4-Bromophenyl phenyl ether	83.0	10	2.5	ug/l	100		83	55-120			
Butyl benzyl phthalate	82.3	20	4.0	ug/l	100		82	50-125			
4-Chloroaniline	79.5	10	2.0	ug/l	100		80	50-120			
2-Chloronaphthalene	81.7	10	2.0	ug/l	100		82	55-120			
4-Chloro-3-methylphenol	79.8	20	2.0	ug/l	100		80	55-120			
2-Chlorophenol	67.5	10	2.0	ug/l	100		68	45-120			
4-Chlorophenyl phenyl ether	82.3	10	2.0	ug/l	100		82	60-120			
Chrysene	90.2	10	2.0	ug/l	100		90	60-120			
Dibenz(a,h)anthracene	122	20	3.0	ug/l	100		122	50-135			
Dibenzofuran	84.0	10	2.0	ug/l	100		84	60-120			
Di-n-butyl phthalate	84.1	20	2.0	ug/l	100		84	55-125			
1,3-Dichlorobenzene	50.4	10	3.0	ug/l	100		50	35-120			
1,4-Dichlorobenzene	51.4	10	2.5	ug/l	100		51	35-120			
T											

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21110 Extracted: 02/21/0'	7										
	<u>-</u>										
LCS Analyzed: 02/23/2007 (7B21110-BS	S1)										MNR1
1,2-Dichlorobenzene	54.4	10	3.0	ug/l	100		54	40-120			
3,3-Dichlorobenzidine	74.5	20	3.0	ug/l	100		74	50-135			
2,4-Dichlorophenol	79.7	10	2.0	ug/l	100		80	50-120			
Diethyl phthalate	79.1	10	2.0	ug/l	100		79	50-120			
2,4-Dimethylphenol	70.9	20	3.5	ug/l	100		71	35-120			
Dimethyl phthalate	79.5	10	2.0	ug/l	100		80	25-120			
4,6-Dinitro-2-methylphenol	91.6	20	4.0	ug/l	100		92	40-120			
2,4-Dinitrophenol	102	20	4.5	ug/l	100		102	35-120			
2,4-Dinitrotoluene	83.6	10	2.0	ug/l	100		84	60-120			
2,6-Dinitrotoluene	80.2	10	2.0	ug/l	100		80	60-120			
Di-n-octyl phthalate	81.9	20	2.0	ug/l	100		82	60-130			
Fluoranthene	88.6	10	2.0	ug/l	100		89	55-120			
Fluorene	86.1	10	2.0	ug/l	100		86	60-120			
Hexachlorobenzene	84.2	10	2.5	ug/l	100		84	55-120			
Hexachlorobutadiene	60.9	10	3.5	ug/l	100		61	40-120			
Hexachlorocyclopentadiene	66.6	20	5.0	ug/l	100		67	20-120			
Hexachloroethane	47.0	10	3.0	ug/l	100		47	35-120			
Indeno(1,2,3-cd)pyrene	113	20	3.0	ug/l	100		113	45-135			
Isophorone	67.8	10	2.0	ug/l	100		68	50-120			
2-Methylnaphthalene	72.7	10	2.0	ug/l	100		73	50-120			
2-Methylphenol	69.6	10	2.0	ug/l	100		70	50-120			
4-Methylphenol	72.7	10	2.0	ug/l	100		73	45-120			
Naphthalene	68.9	10	2.5	ug/l	100		69	50-120			
2-Nitroaniline	90.3	20	2.0	ug/l	100		90	60-120			
3-Nitroaniline	85.3	20	2.0	ug/l	100		85	55-120			
4-Nitroaniline	88.8	20	2.5	ug/l	100		89	50-125			
Nitrobenzene	70.0	20	2.5	ug/l	100		70	50-120			
2-Nitrophenol	77.1	10	3.5	ug/l	100		77	45-120			
4-Nitrophenol	88.4	20	5.5	ug/l	100		88	40-120			
N-Nitrosodiphenylamine	79.2	10	2.0	ug/l	100		79	55-120			
N-Nitroso-di-n-propylamine	68.1	10	2.5	ug/l	100		68	45-120			
Pentachlorophenol	104	20	3.5	ug/l	100		104	45-125			
Phenanthrene	87.3	10	2.0	ug/l	100		87	60-120			
Phenol	69.0	10	2.0	ug/l	100		69	45-120			
Pyrene	92.1	10	2.0	ug/l	100		92	50-125			

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024 Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21110 Extracted: 02/21/0'	7										
LCS Analyzed: 02/23/2007 (7B21110-BS	S1)										MNR1
1,2,4-Trichlorobenzene	63.4	10	2.5	ug/l	100		63	45-120			
2,4,5-Trichlorophenol	84.8	20	3.0	ug/l	100		85	50-120			
2,4,6-Trichlorophenol	86.2	20	3.0	ug/l	100		86	50-120			
1,2-Diphenylhydrazine/Azobenzene	76.2	20	2.0	ug/l	100		76	55-120			
N-Nitrosodimethylamine	63.3	20	2.5	ug/l	100		63	40-120			
Surrogate: 2-Fluorophenol	123			ug/l	200		62	30-120			
Surrogate: Phenol-d6	134			ug/l	200		67	35-120			
Surrogate: 2,4,6-Tribromophenol	185			ug/l	200		92	40-120			
Surrogate: Nitrobenzene-d5	72.0			ug/l	100		72	40-120			
Surrogate: 2-Fluorobiphenyl	81.3			ug/l	100		81	45-120			
Surrogate: Terphenyl-d14	89.0			ug/l	100		89	45-120			
LCS Dup Analyzed: 02/23/2007 (7B2111	10-BSD1)										
Acenaphthene	93.8	10	2.0	ug/l	100		94	55-120	15	20	
Acenaphthylene	104	10	2.0	ug/l	100		104	60-120	18	20	
Aniline	77.9	10	2.5	ug/l	100		78	40-120	6	30	
Anthracene	97.5	10	2.0	ug/l	100		98	60-120	12	20	
Benzidine	178	20	8.5	ug/l	100		178	25-160	15	35	L
Benzoic acid	75.5	20	8.5	ug/l	100		76	25-120	4	30	
Benzo(a)anthracene	95.3	10	2.0	ug/l	100		95	60-120	9	20	
Benzo(b)fluoranthene	119	10	2.0	ug/l	100		119	55-125	8	25	
Benzo(k)fluoranthene	118	10	2.0	ug/l	100		118	50-125	9	20	
Benzo(g,h,i)perylene	133	10	3.0	ug/l	100		133	45-130	11	25	L
Benzo(a)pyrene	125	10	2.0	ug/l	100		125	55-125	9	25	
Benzyl alcohol	84.3	20	2.5	ug/l	100		84	50-120	15	20	
Bis(2-chloroethoxy)methane	98.7	10	2.0	ug/l	100		99	55-120	18	20	
Bis(2-chloroethyl)ether	80.5	10	2.5	ug/l	100		80	50-120	18	20	
Bis(2-chloroisopropyl)ether	80.3	10	2.5	ug/l	100		80	45-120	17	20	
Bis(2-ethylhexyl)phthalate	89.2	50	4.0	ug/l	100		89	60-125	7	20	
4-Bromophenyl phenyl ether	95.3	10	2.5	ug/l	100		95	55-120	14	25	
Butyl benzyl phthalate	89.2	20	4.0	ug/l	100		89	50-125	8	20	
4-Chloroaniline	92.5	10	2.0	ug/l	100		92	50-120	15	25	
2-Chloronaphthalene	97.1	10	2.0	ug/l	100		97	55-120	17	20	
4-Chloro-3-methylphenol	88.8	20	2.0	ug/l	100		89	55-120	11	25	
2-Chlorophenol	80.6	10	2.0	ug/l	100		81	45-120	18	25	
4-Chlorophenyl phenyl ether	92.5	10	2.0	ug/l	100		92	60-120	12	20	
Tost America Invine CA				_							

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07 Received: 02/19/07

Report Number: IQB2024

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B21110 Extracted: 02/21/0	7										
LCS Dup Analyzed: 02/23/2007 (7B211	,										
Chrysene	98.6	10	2.0	ug/l	100		99	60-120	9	20	
Dibenz(a,h)anthracene	134	20	3.0	ug/l	100		134	50-135	9	25	
Dibenzofuran	96.1	10	2.0	ug/l	100		96	60-120	13	20	
Di-n-butyl phthalate	87.9	20	2.0	ug/l	100		88	55-125	4	20	
1,3-Dichlorobenzene	60.3	10	3.0	ug/l	100		60	35-120	18	25	
1,4-Dichlorobenzene	62.2	10	2.5	ug/l	100		62	35-120	19	25	
1,2-Dichlorobenzene	64.9	10	3.0	ug/l	100		65	40-120	18	25	
3,3-Dichlorobenzidine	97.3	20	3.0	ug/l	100		97	50-135	27	25	R-7
2,4-Dichlorophenol	97.1	10	2.0	ug/l	100		97	50-120	20	20	
Diethyl phthalate	85.8	10	2.0	ug/l	100		86	50-120	8	30	
2,4-Dimethylphenol	78.8	20	3.5	ug/l	100		79	35-120	11	25	
Dimethyl phthalate	87.3	10	2.0	ug/l	100		87	25-120	9	30	
4,6-Dinitro-2-methylphenol	97.4	20	4.0	ug/l	100		97	40-120	6	25	
2,4-Dinitrophenol	106	20	4.5	ug/l	100		106	35-120	4	25	
2,4-Dinitrotoluene	86.5	10	2.0	ug/l	100		86	60-120	3	20	
2,6-Dinitrotoluene	87.5	10	2.0	ug/l	100		88	60-120	9	20	
Di-n-octyl phthalate	90.9	20	2.0	ug/l	100		91	60-130	10	20	
Fluoranthene	98.3	10	2.0	ug/l	100		98	55-120	10	20	
Fluorene	96.0	10	2.0	ug/l	100		96	60-120	11	20	
Hexachlorobenzene	97.3	10	2.5	ug/l	100		97	55-120	14	20	
Hexachlorobutadiene	78.5	10	3.5	ug/l	100		78	40-120	25	25	
Hexachlorocyclopentadiene	85.6	20	5.0	ug/l	100		86	20-120	25	30	
Hexachloroethane	56.8	10	3.0	ug/l	100		57	35-120	19	25	
Indeno(1,2,3-cd)pyrene	123	20	3.0	ug/l	100		123	45-135	8	25	
Isophorone	78.1	10	2.0	ug/l	100		78	50-120	14	20	
2-Methylnaphthalene	86.3	10	2.0	ug/l	100		86	50-120	17	20	
2-Methylphenol	82.6	10	2.0	ug/l	100		83	50-120	17	20	
4-Methylphenol	80.4	10	2.0	ug/l	100		80	45-120	10	20	
Naphthalene	84.6	10	2.5	ug/l	100		85	50-120	20	20	
2-Nitroaniline	103	20	2.0	ug/l	100		103	60-120	13	20	
3-Nitroaniline	93.8	20	2.0	ug/l	100		94	55-120	9	25	
4-Nitroaniline	92.2	20	2.5	ug/l	100		92	50-125	4	20	
Nitrobenzene	85.5	20	2.5	ug/l	100		86	50-120	20	25	
2-Nitrophenol	97.1	10	3.5	ug/l	100		97	45-120	23	25	
4-Nitrophenol	90.3	20	5.5	ug/l	100		90	40-120	2	30	

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Received: 02/19/07

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21110 Extracted: 02/21/0	07										
LCS Dup Analyzed: 02/23/2007 (7B21)	110 PCD1)										
• •	· · · · · · · · · · · · · · · · · · ·									•	
N-Nitrosodiphenylamine	91.8	10	2.0	ug/l	100		92	55-120	15	20	
N-Nitroso-di-n-propylamine	75.3	10	2.5	ug/l	100		75	45-120	10	20	
Pentachlorophenol	111	20	3.5	ug/l	100		111	45-125	7	25	
Phenanthrene	98.1	10	2.0	ug/l	100		98	60-120	12	20	
Phenol	79.9	10	2.0	ug/l	100		80	45-120	15	25	
Pyrene	96.9	10	2.0	ug/l	100		97	50-125	5	25	
1,2,4-Trichlorobenzene	80.8	10	2.5	ug/l	100		81	45-120	24	20	R-7
2,4,5-Trichlorophenol	98.3	20	3.0	ug/l	100		98	50-120	15	30	
2,4,6-Trichlorophenol	100	20	3.0	ug/l	100		100	50-120	15	30	
1,2-Diphenylhydrazine/Azobenzene	91.0	20	2.0	ug/l	100		91	55-120	18	25	
N-Nitrosodimethylamine	76.9	20	2.5	ug/l	100		77	40-120	19	20	
Surrogate: 2-Fluorophenol	150			ug/l	200		75	30-120			
Surrogate: Phenol-d6	153			ug/l	200		76	35-120			
Surrogate: 2,4,6-Tribromophenol	205			ug/l	200		102	40-120			
Surrogate: Nitrobenzene-d5	88.3			ug/l	100		88	40-120			
Surrogate: 2-Fluorobiphenyl	95.7			ug/l	100		96	45-120			
Surrogate: Terphenyl-d14	93.3			ug/l	100		93	45-120			

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07 Received: 02/19/07

RPD

Data

Report Number: IQB2024

Spike

Source

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Reporting

		reporting			Spike	Source		/UKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22132 Extracted: 02/2	22/07										
Blank Analyzed: 02/23/2007 (7B221	132-BLK1)										
Aldrin	ND	0.10	0.030	ug/l							
alpha-BHC	ND	0.10	0.020	ug/l							
beta-BHC	ND	0.10	0.040	ug/l							
delta-BHC	ND	0.20	0.020	ug/l							
gamma-BHC (Lindane)	ND	0.10	0.030	ug/l							
Chlordane	ND	1.0	0.20	ug/l							
4,4'-DDD	ND	0.10	0.030	ug/l							
4,4'-DDE	ND	0.10	0.030	ug/l							
4,4'-DDT	ND	0.10	0.030	ug/l							
Dieldrin	ND	0.10	0.030	ug/l							
Endosulfan I	ND	0.10	0.030	ug/l							
Endosulfan II	ND	0.10	0.040	ug/l							
Endosulfan sulfate	ND	0.20	0.050	ug/l							
Endrin	ND	0.10	0.030	ug/l							
Endrin aldehyde	ND	0.10	0.050	ug/l							
Endrin ketone	ND	0.10	0.040	ug/l							
Heptachlor	ND	0.10	0.030	ug/l							
Heptachlor epoxide	ND	0.10	0.030	ug/l							
Methoxychlor	ND	0.10	0.040	ug/l							
Toxaphene	ND	5.0	1.5	ug/l							
Surrogate: Tetrachloro-m-xylene	0.389			ug/l	0.500		78	35-115			
Surrogate: Decachlorobiphenyl	0.428			ug/l	0.500		86	45-120			
LCS Analyzed: 02/23/2007 (7B2213	2-BS1)										MNR1
Aldrin	0.361	0.10	0.030	ug/l	0.500		72	35-120			
alpha-BHC	0.403	0.10	0.020	ug/l	0.500		81	45-120			
beta-BHC	0.410	0.10	0.040	ug/l	0.500		82	50-120			
delta-BHC	0.408	0.20	0.020	ug/l	0.500		82	50-120			
gamma-BHC (Lindane)	0.396	0.10	0.030	ug/l	0.500		79	40-120			
4,4'-DDD	0.403	0.10	0.030	ug/l	0.500		81	55-120			
4,4'-DDE	0.384	0.10	0.030	ug/l	0.500		77	50-120			
4,4'-DDT	0.427	0.10	0.030	ug/l	0.500		85	55-120			
Dieldrin	0.376	0.10	0.030	ug/l	0.500		75	50-120			
Endosulfan I	0.402	0.10	0.030	ug/l	0.500		80	50-120			
Endosulfan II	0.422	0.10	0.040	ug/l	0.500		84	55-120			
Endosulfan sulfate	0.420	0.20	0.050	ug/l	0.500		84	60-120			
TestAmerica - Irvine, CA											

Michele Chamberlin

Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Received: 02/19/07

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22132 Extracted: 02/22/07											
	_										
LCS Analyzed: 02/23/2007 (7B22132-BS	1)										MNR1
Endrin	0.392	0.10	0.030	ug/l	0.500		78	55-120			
Endrin aldehyde	0.421	0.10	0.050	ug/l	0.500		84	55-120			
Endrin ketone	0.407	0.10	0.040	ug/l	0.500		81	55-120			
Heptachlor	0.391	0.10	0.030	ug/l	0.500		78	40-115			
Heptachlor epoxide	0.406	0.10	0.030	ug/l	0.500		81	50-120			
Methoxychlor	0.415	0.10	0.040	ug/l	0.500		83	55-120			
Surrogate: Tetrachloro-m-xylene	0.372			ug/l	0.500		74	35-115			
Surrogate: Decachlorobiphenyl	0.389			ug/l	0.500		78	45-120			
LCS Dup Analyzed: 02/23/2007 (7B2213	2-BSD1)										
Aldrin	0.339	0.10	0.030	ug/l	0.500		68	35-120	6	30	
alpha-BHC	0.376	0.10	0.020	ug/l	0.500		75	45-120	7	30	
beta-BHC	0.397	0.10	0.040	ug/l	0.500		79	50-120	3	30	
delta-BHC	0.393	0.20	0.020	ug/l	0.500		79	50-120	4	30	
gamma-BHC (Lindane)	0.377	0.10	0.030	ug/l	0.500		75	40-120	5	30	
4,4'-DDD	0.413	0.10	0.030	ug/l	0.500		83	55-120	2	30	
4,4'-DDE	0.383	0.10	0.030	ug/l	0.500		77	50-120	0	30	
4,4'-DDT	0.419	0.10	0.030	ug/l	0.500		84	55-120	2	30	
Dieldrin	0.369	0.10	0.030	ug/l	0.500		74	50-120	2	30	
Endosulfan I	0.391	0.10	0.030	ug/l	0.500		78	50-120	3	30	
Endosulfan II	0.409	0.10	0.040	ug/l	0.500		82	55-120	3	30	
Endosulfan sulfate	0.411	0.20	0.050	ug/l	0.500		82	60-120	2	30	
Endrin	0.377	0.10	0.030	ug/l	0.500		75	55-120	4	30	
Endrin aldehyde	0.410	0.10	0.050	ug/l	0.500		82	55-120	3	30	
Endrin ketone	0.403	0.10	0.040	ug/l	0.500		81	55-120	1	30	
Heptachlor	0.365	0.10	0.030	ug/l	0.500		73	40-115	7	30	
Heptachlor epoxide	0.384	0.10	0.030	ug/l	0.500		77	50-120	6	30	
Methoxychlor	0.406	0.10	0.040	ug/l	0.500		81	55-120	2	30	
Surrogate: Tetrachloro-m-xylene	0.345			ug/l	0.500		69	35-115			
Surrogate: Decachlorobiphenyl	0.392			ug/l	0.500		78	45-120			

TestAmerica - Irvine, CAMichele Chamberlin
Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Received: 02/19/07

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22132 Extracted: 02/22	<u>/07</u>										
Blank Analyzed: 02/23/2007 (7B22132	2-BLK1)										
Aroclor 1016	ND	1.0	0.35	ug/l							
Aroclor 1221	ND	1.0	0.10	ug/l							
Aroclor 1232	ND	1.0	0.25	ug/l							
Aroclor 1242	ND	1.0	0.25	ug/l							
Aroclor 1248	ND	1.0	0.25	ug/l							
Aroclor 1254	ND	1.0	0.25	ug/l							
Aroclor 1260	ND	1.0	0.30	ug/l							
Surrogate: Decachlorobiphenyl	0.531			ug/l	0.500		106	45-120			
LCS Analyzed: 02/23/2007 (7B22132-	BS2)										MNR1
Aroclor 1016	3.53	1.0	0.35	ug/l	4.00		88	45-115			
Aroclor 1260	3.73	1.0	0.30	ug/l	4.00		93	55-115			
Surrogate: Decachlorobiphenyl	0.494			ug/l	0.500		99	45-120			
LCS Dup Analyzed: 02/23/2007 (7B22	2132-BSD2)										
Aroclor 1016	3.11	1.0	0.35	ug/l	4.00		78	45-115	13	30	
Aroclor 1260	3.49	1.0	0.30	ug/l	4.00		87	55-115	7	25	
Surrogate: Decachlorobiphenyl	0.485			ug/l	0.500		97	45-120			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07 Received: 02/19/07

Report Number: IQB2024

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Units	Levei	Result	/oKEC	Limits	KI D	Lillit	Quanners
Batch: 7B21063 Extracted: 02/21/0	<u>)7 </u>										
Blank Analyzed: 02/21/2007 (7B21063-	BLK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	0.0216	0.050	0.020	mg/l							J
Calcium	ND	0.10	N/A	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	N/A	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	3.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zine	ND	20	15	ug/l							
LCS Analyzed: 02/21/2007 (7B21063-B	SS1)										
Aluminum	510	50	40	ug/l	500		102	85-115			
Arsenic	506	10	7.0	ug/l	500		101	85-115			
Beryllium	518	2.0	0.90	ug/l	500		104	85-115			
Boron	0.535	0.050	0.020	mg/l	0.500		107	85-115			
Calcium	2.64	0.10	N/A	mg/l	2.50		106	85-115			
Chromium	511	5.0	2.0	ug/l	500		102	85-115			
Iron	0.524	0.040	0.015	mg/l	0.500		105	85-115			
Magnesium	2.60	0.020	N/A	mg/l	2.50		104	85-115			
Nickel	530	10	2.0	ug/l	500		106	85-115			
Selenium	511	10	8.0	ug/l	500		102	85-115			
Silver	262	10	3.0	ug/l	250		105	85-115			
Vanadium	519	10	3.0	ug/l	500		104	85-115			
Zinc	502	20	15	ug/l	500		100	85-115			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024 Received: 02/19/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 7B21063 Extracted: 02/21/07							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				C
Batch. /B21003 Extracted. 02/21/07	_										
Matrix Spike Analyzed: 02/21/2007 (7B2	1063-MS1)				Sou	rce: IQB	2022-01				
Aluminum	1110	50	40	ug/l	500	550	112	70-130			
Arsenic	543	10	7.0	ug/l	500	ND	109	70-130			
Beryllium	524	2.0	0.90	ug/l	500	ND	105	70-130			
Boron	0.593	0.050	0.020	mg/l	0.500	0.065	106	70-130			
Calcium	5.66	0.10	N/A	mg/l	2.50	3.2	98	70-130			
Chromium	524	5.0	2.0	ug/l	500	7.7	103	70-130			
Iron	1.12	0.040	0.015	mg/l	0.500	0.62	100	70-130			
Magnesium	3.07	0.020	N/A	mg/l	2.50	0.44	105	70-130			
Nickel	535	10	2.0	ug/l	500	ND	107	70-130			
Selenium	526	10	8.0	ug/l	500	ND	105	70-130			
Silver	271	10	3.0	ug/l	250	ND	108	70-130			
Vanadium	574	10	3.0	ug/l	500	44	106	70-130			
Zinc	533	20	15	ug/l	500	ND	107	70-130			
Matrix Spike Dup Analyzed: 02/21/2007	(7B21063-M	SD1)			Sou	rce: IQB	2022-01				
Aluminum	1120	50	40	ug/l	500	550	114	70-130	1	20	
Arsenic	525	10	7.0	ug/l	500	ND	105	70-130	3	20	
Beryllium	525	2.0	0.90	ug/l	500	ND	105	70-130	0	20	
Boron	0.588	0.050	0.020	mg/l	0.500	0.065	105	70-130	1	20	
Calcium	5.65	0.10	N/A	mg/l	2.50	3.2	98	70-130	0	20	
Chromium	515	5.0	2.0	ug/l	500	7.7	101	70-130	2	20	
Iron	1.10	0.040	0.015	mg/l	0.500	0.62	96	70-130	2	20	
Magnesium	2.98	0.020	N/A	mg/l	2.50	0.44	102	70-130	3	20	
Nickel	525	10	2.0	ug/l	500	ND	105	70-130	2	20	
Selenium	526	10	8.0	ug/l	500	ND	105	70-130	0	20	
Silver	263	10	3.0	ug/l	250	ND	105	70-130	3	20	
Vanadium	567	10	3.0	ug/l	500	44	105	70-130	1	20	
Zinc	517	20	15	ug/l	500	ND	103	70-130	3	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024 Received: 02/19/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Limit	WIDE	Cints	Level	Result	70KEC	Limits	KI D	Limit	Quanners
Batch: 7B21137 Extracted: 02/21/07	_										
Blank Analyzed: 02/21/2007 (7B21137-B	LK1)										
Antimony	ND	2.0	0.050	ug/l							
Cadmium	0.135	1.0	0.025	ug/l							J
Copper	0.337	2.0	0.25	ug/l							J
Lead	ND	1.0	0.040	ug/l							
Thallium	ND	1.0	N/A	ug/l							
LCS Analyzed: 02/21/2007 (7B21137-BS	1)										
Antimony	78.5	2.0	0.050	ug/l	80.0		98	85-115			
Cadmium	79.6	1.0	0.025	ug/l	80.0		100	85-115			
Copper	79.6	2.0	0.25	ug/l	80.0		100	85-115			
Lead	75.3	1.0	0.040	ug/l	80.0		94	85-115			
Thallium	76.0	1.0	N/A	ug/l	80.0		95	85-115			
Matrix Spike Analyzed: 02/21/2007 (7B2	21137-MS1)				Sou	rce: IQB	2021-01				
Antimony	80.9	2.0	0.050	ug/l	80.0	0.49	101	70-130			
Cadmium	79.8	1.0	0.025	ug/l	80.0	0.056	100	70-130			
Copper	81.8	2.0	0.25	ug/l	80.0	3.7	98	70-130			
Lead	76.5	1.0	0.040	ug/l	80.0	1.7	94	70-130			
Thallium	77.2	1.0	N/A	ug/l	80.0	ND	96	70-130			
Matrix Spike Analyzed: 02/21/2007 (7B2	21137-MS2)				Sou	rce: IQB	2054-04				
Antimony	82.8	2.0	0.050	ug/l	80.0	0.15	103	70-130			
Cadmium	77.1	1.0	0.025	ug/l	80.0	ND	96	70-130			
Copper	75.0	2.0	0.25	ug/l	80.0	2.8	90	70-130			
Lead	72.2	1.0	0.040	ug/l	80.0	0.13	90	70-130			
Thallium	72.9	1.0	N/A	ug/l	80.0	ND	91	70-130			
Matrix Spike Dup Analyzed: 02/21/2007	(7B21137-M	ISD1)			Sou	rce: IQB	2021-01				
Antimony	79.9	2.0	0.050	ug/l	80.0	0.49	99	70-130	1	20	
Cadmium	78.8	1.0	0.025	ug/l	80.0	0.056	98	70-130	1	20	
Copper	81.5	2.0	0.25	ug/l	80.0	3.7	97	70-130	0	20	
Lead	76.5	1.0	0.040	ug/l	80.0	1.7	94	70-130	0	20	
Thallium	76.6	1.0	N/A	ug/l	80.0	ND	96	70-130	1	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Received: 02/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B22143 Extracted: 02/22/0	7										
Blank Analyzed: 02/23/2007 (7B22143-I	BLK1)										
Aluminum	ND	0.050	N/A	mg/l							
Arsenic	ND	0.010	N/A	mg/l							
Beryllium	ND	0.0020	N/A	mg/l							
Boron	ND	0.050	N/A	mg/l							
Calcium	ND	0.10	N/A	mg/l							
Chromium	ND	0.0050	N/A	mg/l							
Iron	ND	0.040	N/A	mg/l							
Magnesium	ND	0.020	N/A	mg/l							
Nickel	ND	0.010	N/A	mg/l							
Selenium	ND	0.010	N/A	mg/l							
Silver	ND	0.010	N/A	mg/l							
Hardness (as CaCO3)	ND	1.0	N/A	mg/l							
Vanadium	ND	0.010	N/A	mg/l							
Zinc	ND	0.020	N/A	mg/l							
LCS Analyzed: 02/23/2007 (7B22143-BS	S1)										
Aluminum	0.446	0.050	N/A	mg/l	0.500		89	85-115			
Arsenic	0.508	0.010	N/A	mg/l	0.500		102	85-115			
Beryllium	0.511	0.0020	N/A	mg/l	0.500		102	85-115			
Boron	0.500	0.050	N/A	mg/l	0.500		100	85-115			
Calcium	2.48	0.10	N/A	mg/l	2.50		99	85-115			
Chromium	0.500	0.0050	N/A	mg/l	0.500		100	85-115			
Iron	0.507	0.040	N/A	mg/l	0.500		101	85-115			
Magnesium	2.50	0.020	N/A	mg/l	2.50		100	85-115			
Nickel	0.503	0.010	N/A	mg/l	0.500		101	85-115			
Selenium	0.494	0.010	N/A	mg/l	0.500		99	85-115			
Silver	0.252	0.010	N/A	mg/l	0.250		101	85-115			
Vanadium	0.506	0.010	N/A	mg/l	0.500		101	85-115			
Zinc	0.485	0.020	N/A	mg/l	0.500		97	85-115			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024 Received: 02/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	WIDE	Cints	Level	Result	70KEC	Limits	KI D	Limit	Quanners
Batch: 7B22143 Extracted: 02/22/07	_										
Matrix Spike Analyzed: 02/23/2007 (7B2	2143-MS1)				Sou	rce: IQB2	2022-01				
Aluminum	0.483	0.050	N/A	mg/l	0.500	ND	97	70-130			
Arsenic	0.479	0.010	N/A	mg/l	0.500	ND	96	70-130			
Beryllium	0.482	0.0020	N/A	mg/l	0.500	ND	96	70-130			
Boron	0.535	0.050	N/A	mg/l	0.500	0.062	95	70-130			
Calcium	4.45	0.10	N/A	mg/l	2.50	2.1	94	70-130			
Chromium	0.470	0.0050	N/A	mg/l	0.500	0.0046	93	70-130			
Iron	0.498	0.040	N/A	mg/l	0.500	0.027	94	70-130			
Magnesium	2.60	0.020	N/A	mg/l	2.50	0.26	94	70-130			
Nickel	0.471	0.010	N/A	mg/l	0.500	ND	94	70-130			
Selenium	0.462	0.010	N/A	mg/l	0.500	ND	92	70-130			
Silver	0.247	0.010	N/A	mg/l	0.250	ND	99	70-130			
Vanadium	0.509	0.010	N/A	mg/l	0.500	0.037	94	70-130			
Zinc	0.473	0.020	N/A	mg/l	0.500	0.0043	94	70-130			
Matrix Spike Dup Analyzed: 02/23/2007	(7B22143-M	SD1)			Sou	rce: IQB	2022-01				
Aluminum	0.480	0.050	N/A	mg/l	0.500	ND	96	70-130	1	20	
Arsenic	0.486	0.010	N/A	mg/l	0.500	ND	97	70-130	1	20	
Beryllium	0.490	0.0020	N/A	mg/l	0.500	ND	98	70-130	2	20	
Boron	0.530	0.050	N/A	mg/l	0.500	0.062	94	70-130	1	20	
Calcium	4.49	0.10	N/A	mg/l	2.50	2.1	96	70-130	1	20	
Chromium	0.475	0.0050	N/A	mg/l	0.500	0.0046	94	70-130	1	20	
Iron	0.505	0.040	N/A	mg/l	0.500	0.027	96	70-130	1	20	
Magnesium	2.62	0.020	N/A	mg/l	2.50	0.26	94	70-130	1	20	
Nickel	0.474	0.010	N/A	mg/l	0.500	ND	95	70-130	1	20	
Selenium	0.470	0.010	N/A	mg/l	0.500	ND	94	70-130	2	20	
Silver	0.247	0.010	N/A	mg/l	0.250	ND	99	70-130	0	20	
Vanadium	0.513	0.010	N/A	mg/l	0.500	0.037	95	70-130	1	20	
Zinc	0.474	0.020	N/A	mg/l	0.500	0.0043	94	70-130	0	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024 Received: 02/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B23073 Extracted: 02/23/07	_										
	_										
Blank Analyzed: 02/23/2007 (7B23073-B	LK1)										
Antimony	ND	2.0	N/A	ug/l							
Cadmium	ND	1.0	N/A	ug/l							
Copper	ND	2.0	N/A	ug/l							
Lead	ND	1.0	N/A	ug/l							
Thallium	ND	1.0	N/A	ug/l							
LCS Analyzed: 02/23/2007 (7B23073-BS)	1)										
Antimony	84.3	2.0	N/A	ug/l	80.0		105	85-115			
Cadmium	81.9	1.0	N/A	ug/l	80.0		102	85-115			
Copper	80.6	2.0	N/A	ug/l	80.0		101	85-115			
Lead	81.0	1.0	N/A	ug/l	80.0		101	85-115			
Thallium	82.2	1.0	N/A	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 02/23/2007 (7B2	3073-MS1)				Sou	rce: IQB	2024-01				
Antimony	94.4	2.0	N/A	ug/l	80.0	1.7	116	70-130			
Cadmium	85.0	1.0	N/A	ug/l	80.0	ND	106	70-130			
Copper	82.7	2.0	N/A	ug/l	80.0	0.80	102	70-130			
Lead	73.9	1.0	N/A	ug/l	80.0	ND	92	70-130			
Thallium	77.9	1.0	N/A	ug/l	80.0	ND	97	70-130			
Matrix Spike Dup Analyzed: 02/23/2007	(7B23073-M	SD1)			Sou	rce: IQB	2024-01				
Antimony	94.9	2.0	N/A	ug/l	80.0	1.7	116	70-130	1	20	
Cadmium	85.0	1.0	N/A	ug/l	80.0	ND	106	70-130	0	20	
Copper	83.2	2.0	N/A	ug/l	80.0	0.80	103	70-130	1	20	
Lead	75.0	1.0	N/A	ug/l	80.0	ND	94	70-130	1	20	
Thallium	79.0	1.0	N/A	ug/l	80.0	ND	99	70-130	1	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024 Received: 02/19/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B20044 Extracted: 02/20/07	•										
	_										
Blank Analyzed: 02/20/2007 (7B20044-B	LK1)										
Chloride	ND	0.50	0.15	mg/l							
Fluoride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.15	0.080	mg/l							
Sulfate	ND	0.50	0.45	mg/l							
LCS Analyzed: 02/20/2007 (7B20044-BS	1)										
Chloride	4.96	0.50	0.15	mg/l	5.00		99	90-110			
Fluoride	4.90	0.50	0.15	mg/l	5.00		98	90-110			
Sulfate	10.2	0.50	0.45	mg/l	10.0		102	90-110			
Matrix Spike Analyzed: 02/20/2007 (7B2	0044-MS1)				Sou	rce: IQB	2022-01				
Chloride	5.66	0.50	0.15	mg/l	5.00	0.73	99	80-120			
Fluoride	5.12	0.50	0.15	mg/l	5.00	0.27	97	80-120			
Sulfate	17.2	0.50	0.45	mg/l	10.0	7.2	100	80-120			
Matrix Spike Dup Analyzed: 02/20/2007	(7B20044-M	(SD1)			Sou	rce: IQB	2022-01				
Chloride	5.58	0.50	0.15	mg/l	5.00	0.73	97	80-120	1	20	
Fluoride	5.15	0.50	0.15	mg/l	5.00	0.27	98	80-120	1	20	
Sulfate	17.0	0.50	0.45	mg/l	10.0	7.2	98	80-120	1	20	
Batch: 7B21063 Extracted: 02/21/07	<u>, </u>										
Blank Analyzed: 02/21/2007 (7B21063-B	LK1)										
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							
Batch: 7B21150 Extracted: 02/21/07	<u>'</u>										
Plank Analyzadi 02/22/2007 (7P21150 P	I I/1)										
Blank Analyzed: 02/22/2007 (7B21150-B	,	10	10	Л							
Total Suspended Solids	ND	10	10	mg/l							

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Sampled: 02/19/07

Report Number: IQB2024

Received: 02/19/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B21150 Extracted: 02/21/07	_										
LCS Analyzed: 02/22/2007 (7B21150-BS1	1)										
Total Suspended Solids	955	10	10	mg/l	1000		96	85-115			
Duplicate Analyzed: 02/22/2007 (7B2115	0-DUP1)				Sou	rce: IQB	2024-01				
Total Suspended Solids	29.0	10	10	mg/l		28			4	10	
Batch: 7B23078 Extracted: 02/23/07	_										
Blank Analyzed: 02/23/2007 (7B23078-Bl	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/23/2007 (7B23078-BS)	1)										
Total Dissolved Solids	998	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 02/23/2007 (7B2307	8-DUP1)				Sou	rce: IQB	2134-01				
Total Dissolved Solids	307	10	10	mg/l		300			2	10	
Batch: 7B23104 Extracted: 02/23/07	-										
Blank Analyzed: 02/23/2007 (7B23104-Bl	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 02/23/2007 (7B23104-BS1	1)										
Total Cyanide	198	5.0	2.2	ug/l	200		99	90-110			
Matrix Spike Analyzed: 02/23/2007 (7B2	3104-MS1)				Sou	rce: IQB	2444-01				
Total Cyanide	442	10	4.4	ug/l	200	220	111	70-115			

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Annual Outfall 010

Report Number: IQB2024

Sampled: 02/19/07 Received: 02/19/07

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7B23104 Extracted: 02/23/07											
Matrix Spike Dup Analyzed: 02/23/2007	(7B23104-MS	D1)			Sou	rce: IQB2	2444-01				
Total Cyanide	431	10	4.4	ug/l	200	220	106	70-115	3	15	
Batch: 7B27119 Extracted: 02/27/07											
Blank Analyzed: 02/27/2007 (7B27119-Bl	LK1)										
Perchlorate	ND	4.0	0.80	ug/l							
LCS Analyzed: 02/27/2007 (7B27119-BS1)										
Perchlorate	46.8	4.0	0.80	ug/l	50.0		94	85-115			
Matrix Spike Analyzed: 02/27/2007 (7B2					Sou	rce: IQB2	2024-01				
Perchlorate	47.7	4.0	0.80	ug/l	50.0	ND	95	80-120			
Matrix Spike Dup Analyzed: 02/27/2007	•					rce: IQB2					
Perchlorate	47.7	4.0	0.80	ug/l	50.0	ND	95	80-120	0	20	
Batch: 7B28085 Extracted: 02/28/07	•										
Blank Analyzed: 02/28/2007 (7B28085-BI	LK1)										
Oil & Grease	ND	5.0	0.94	mg/l							
LCS Analyzed: 02/28/2007 (7B28085-BS1)										MNR1
Oil & Grease	18.8	5.0	0.94	mg/l	20.0		94	65-120			
LCS Dup Analyzed: 02/28/2007 (7B28085	S-BSD1)										
Oil & Grease	19.3	5.0	0.94	mg/l	20.0		96	65-120	3	20	

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IQB2024-01	413.1 Oil and Grease	Oil & Grease	mg/l	0.20	4.9	15
IQB2024-01	Boron-200.7	Boron	mg/l	0.021	0.050	1.00
IQB2024-01	Boron-200.7, Diss	Boron	mg/l	0.028	0.050	1.00
IQB2024-01	Chloride - 300.0	Chloride	mg/l	61	5.0	150
IQB2024-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.42	0.15	10.00
IQB2024-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6.00
IQB2024-01	Sulfate-300.0	Sulfate	mg/l	12	0.50	250
IQB2024-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	300	10	850

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IQB2024

Received: 02/19/07

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the	ne associated Method Blank.
--------------------------------------	-----------------------------

C-7 Calibration Verification recovery was below the method control limit due to matrix interference carried over from

analytical samples. The matrix interference was confirmed by reanalysis with the same result.

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits.

Analyte not detected, data not impacted.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

R-7 LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 02/19/07 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

Certification Summary

TestAmerica - Irvine, CA

Method	Matrix	Nelac	California
EPA 160.2	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	N/A	X
EPA 335.2	Water	X	X
EPA 413.1	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
SM2340B	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IQB2024-01

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-Acute 96hr

Samples: IQB2024-01

Eberline Services

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gross Alpha

Samples: IQB2024-01

Analysis Performed: Gross Beta

Samples: IQB2024-01

TestAmerica - Irvine, CA

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing Project ID: Annual Outfall 010

300 North Lake Avenue, Suite 1200 Sampled: 02/19/07

Pasadena, CA 91101 Report Number: IQB2024 Received: 02/19/07

Attention: Bronwyn Kelly

Weck Laboratories, Inc

 $14859\ E.\ Clark\ Avenue$ - City of Industry, CA 91745

Analysis Performed: Mercury - 245.1 Samples: IQB2024-01

Analysis Performed: Mercury - 245.1, Diss

Samples: IQB2024-01

Page 1 of 1

Del Mar Analytical Version 04/28/06 CHAIN OF CUSTODY FORM

		,												Total Name or other Persons or other Per		5
Client Name/Address	ne/Addre	ess:		Project.								ANALYSIS		REOL	REQUIRED	
	! - - -			Boeing-5	Boeing-SSFL NPDES					Ь						Field readings
MIVVH-Pasadena 300 North Lake Avenue.	asaden ake Aver	i a nue. Suite 1200	200	Stormwa	Anridai Outrail 010 Stormwater at Building	ig 203	, Β, V,			d + S		Beta 00	 ieq		,IT ,V	Temp = 5 3 2
Project Manager E		Bronwyn Kelly	Kelly	Phone Number	lumber 8-6691		gH dc			NPDE	SCAE	 Gross J-1S ,*C		Λ	,β,β⊦	2/2 = Hd
Sampler				(626) 568-6515 (626) 568-6515	o 5537 nber: 8-6515		Recove d, Cu, F e, Al, + F GO3	o (and s Grease	O4, NC	SST (624),	+A+A ?)9\səbic ,shqlA a).809) m) Total (<u>822 mi</u>	99 - PP Toxicit	vlossiQ H ,dq ,u: ,qq + ,l	
Sample	Sample	Container	# of Cont	Sampling	Preservative	Bottle *#	Sb, C TI, F€		Cl-, S	VOCS	ΛΟC	Gross IuitinT	Radic		Cq, C	Comments
Outfall 010	× ×	1L Poly	-	2/4/2.01	INO3	1A	×	-					 			
Outfall 010- Dup	3	1L Poly	_	•	HNO3	18	×			-						
Outfall 010	3	1L Amber	2		None	2A,2B		×								F. A.
Outfall 010	3	1L Amber	2		모	3A, 3B		×								7,00,04
Outfall 010	Μ	Poly-500 ml	2		None	4A,4B			×							10101 10101
Outfall 010	≥	Poly-500 ml	2		None	5A, 5B				×						1 1 1
Outfall 010	3	VOAs	3		HCI	6A, 6B, 6C				×						
Outfall 010	3	VOAs	3		None	7A, 7B, 7C					×					
Outfall 010	Ν	1L Amber	2		None	8A, 8B						×				
Outfall 010	3	2.5 Gal Cube 100 ml Amber VOAs	- ო		None None	9A 15A, 15B, 15C						*				Analyze for Total Combined RA- 226 & RA-228 only if Gross Alpha/Beta exceed permit limit. Analyze for Tritium and Sr-90 only if Ra-226&228 exceed permit limit.
Outfall 010	3	1L Amber	2		None	10A, 10B								×		
Outfall 010	N	1 Gal Poly	1		None	11A								×		
Outfall 010	3	500mi Poly	<u> </u>		NaOH	12									×	
Outfall 010	8	Poly-1L	1-		None										×	Filter w/in 24hrs of receipt
Trip Blanks	8	VOAs	3		None						×					
Trip Blank	W	VOAs	3	2101/2		16A, 16B, 16C				×			:			
Relinquished By	l By	C		Date/Time:	Received By	"	Da	Date/Time	ioi ~				F 2	urn aro	Turn around Time: (check) 24 Hours 5 Days) ays
and all	Ze X	7	ヹ	YOU LINE		Coel	7	1/6/	2		164	M	4	48 Hours		lays
Relinquished By	l By			Date/Time:	Received By	(Da	Date/Time:	as a					72 Hours		Normal
A X	be	シンシュ	Wy.	67 855	- 1		7	1(915	(2)		<u>w</u>	56		erchlor.	Perchlorate Only 72 Hours_	
Relinquished By	ı By			Date/Time.	Received By)	Da	Date/Time	ini di				2	/letais O	Metals Only 72 Hours	7,5/2
													0) =	sample I	Sample Integrity: (Check) Intact On Ice:	

March 02, 2007

Alta Project I.D.: 28724

Ms. Michele Chamberlin Test America-Irvine 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on February 21, 2007 under your Project Name "IQB2024". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier

Director of HRMS Services

And Analytical Laborousty certifies that the report herein meets all the regretements set tooth by NELAC for those applicable ast methods. Results relate only to the samples as received by the laborousty. This report should not be reproduced except in full without the written approval of ALE!

Alta Analytical Laboratory, Inc.

1104 Windfield Way El Dorado Hills, CA 95762 (916) 933-1640 FAX (916) 673-0106 Section I: Sample Inventory Report
Date Received: 2/21/2007

Alta Lab. ID

Client Sample ID

28724-001

IQB2024-01

Project 28724

SECTION II

Project 28724 Page 3 of 236

Method Blank				EPA Method 1613
Matrix: Aqueous	QC Batch No	8883	Lab Sample: 0-MB001	
Sample Size: 1.00 L	Date Extracted:	d: 23-Feb-07	Date Analyzed DB-5: 26-Feb-07	Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	g/L) DL ^a	EMPC ^b Qualifiers	Labeled Standard	%R LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND 0.00000105		<u>IS</u> 13C-2,3,7,8-TCDD	
			13C-1,2,3,7,8-PeCDD	
	ND 0.00000193		13C-1,2,3,4,7,8-HxCDD	88.5 July 32 - 141 July 18 87.1 87.1 28 - 130
1,2,3,6,7,8-HxCDD			13C-1,2,3,4,6,7,8-HpCDD	
Ō			13C-OCDD	73.0 17 - 157
	0.0000173		13C-2,3,7,8-TCDF	88.4 24 - 169 2
	is Y		13C-1,2,3,7,8-PeCDF	105 24 - 185
	N.D 0.00000819		13C-2,3,4,7,8-PeCUF	97.0 21-170
2,3,4,/8.Pecur 1,2,3,4,78.HxCDF			13C-1,2,3,6,7,8-HxCDF	
			13C-2,3,4,6,7,8-HxCDF	86.2 28 - 136
	ND 0.00000687		13C-1,2,3,7,8,9-HxCDF	29 147 2 2 2 147
	ND 0.00000895		13C-1,2,3,4,6,7,8-HpCDF	*.
1,2,3,4,6,7,8-HpCDF	ND 0.00000194		13C-1,2,3,4,7,8,9-HpCDF	
8,9-HpCDF	0.000001		13C-OCDF	79.9 17 - 157
OCDF	N.D		CAD 1.01.1.2,3,1,01.1.20))
Totals			Footnotes	
			b. Estimated maximum possible concentration.	And 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HxCDD Total HpCDD	0.00000272 0.00000201	0.00000545	c. Method detection mint. d. Lower control limit - upper control limit.	
Total TCDF	ND 0.000000896 ND 0.00000129			
S. S.			Approved By: William J. Luksemburg	uksemburg 01-Mar-2007 13:19

OPR Results				EPA Method 1613
Matrix Aqueous Sample Size 1.00 L	QC Batch No. Date Extracted	8883 23-Feb-07	Lab Sample 0-OPR001 Date Analyzed DB-5: 26-Feb-07	Date Analyzed DB-225: NA
Analyte	Spike Conc. Conc. (ng/mL)	OPR Limits	Labeled Standard	%R LCL-UCL Qualifier
2,3,7,8-TCDD	10.0	6.7-15.8	IS 13C-2,3,7,8-TCDD	76.9 25 - 164
1,2,3,7,8-PeCDD	50.0 53.4	35 - 71	13C-1,2,3,7,8-PeCDD	73.9 25 - 181
1,2,3,4,7,8-HxCDD	50.0	35 - 82	13C-1,2,3,4,7,8-HxCDD	81.7 5 232 - 1418
1,2,3,6,7,8-HxCDD	50.0 54.4	38 - 67	13C-1,2,3,6,7,8-HxCDD	78.5 28 - 130
1,2,3,7,8,9-HxCDD	50.0	32-81	13C-1,2,3,4,6,7,8-HpCDD	85.5 23-140
1,2,3,4,6,7,8-HpCDD		35 - 70	13C-OCDD	72.3 17 - 157
ОСРР	100	78 - 144	13C-2,3,7,8-TCDF	75.0
2,3,7,8-TCDF	10.0 10.4	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	84.8 24 - 185
1,2,3,7,8-PeCDF	50.0	40 - 67	13C-2,3,4,7,8-PeCDF	79.5 21-178
2,3,4,7,8-PeCDF		34 - 80	13C-1,2,3,4,7,8-HxCDF	91.7 26 - 152
1,2,3,4,7,8-HxCDF	50.0	36-67	13C-1,2,3,6,7,8-HxCDF	83.3 26 - 123
1,2,3,6,7,8-HxCDF	50.0 54.6	42 - 65	13C-2,3,4,6,7,8-HxCDF	80.0 28 - 136
2,3,4,6,7,8-HxCDF	50.0	35-78	13C-1,2,3,7,8,9-HxCDF	96.0 29 147
1,2,3,7,8,9-HxCDF	50.0 57.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	89.6 28 - 143
1,2,3,4,6,7,8-HpCDF	50.0	41-61	13C-1,2,3,4,7,8,9-HpCDF	90.3
1,2,3,4,7,8,9-HpCDF	50.0 55.6	39 - 69	13C-OCDF	83.0 17 - 157
OCDF	100	63 - 170	CRS 37Cl-2,3,7,8-TCDD	78.5 35 - 197

Analyst: MAS

Sample ID: IQB2024-01					EP	EPA Method 1613
Cilicat Data Name Test America-Irvine Project: IQB2024 Date Collected: 19-Feb-07 Time Collected: 1015	Sample Data Matrix: Sample Size:	Aqueous 1.03 L	Laboratory Data Lab Sample: QC Batch No Date Analyzed DB-5:	28724-001 8883 26-Feb-07	Date Received Date Extracted Date Analyzed DB-225	21-Feb-07 23-Feb-07 NA
Analyte Conc. (ug/L) DL ^a	EMPC ^b	Qualifiers	Labeled Standard	7	%R LCL-UCL ^d	L ^d Qualifiers
ND See See See See See See See See See Se	104 3888		<u>IS</u> 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	ОС		
1,2,3,4,7,8-HxCDD ND 0.00000246 1,2,3,6,7,8-HxCDD ND 0.00000243	246 243	1. # 1	13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HnCDD	CDD	80.4 32 - 141 75.6 28 - 130 83.8 23 - 140	
000427 004 <i>5</i> 1			13C-OCDD 13C-23,7,8-TCDF			7
CDF PeCDF		4 4 8	13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	DF.	79.0 24 - 185 80.0 21 - 178	\$ 8
ND	0952 0718	Rocker Store Store Booker Total	13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	CDF	77.4 26 - 152 72.5 26 - 123	3
QX CX	0743 0850	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	CDF	78.4 28 - 136 85.2 29 - 147	9
ND F. ND	111 204	Park No.	13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	HpCDF HpCDF	83.4 28 - 143 90.2 26 - 138	8
ND 0.00000461	0960		13C-OCDF CRS 37Cl-2,3,7,8-TCDD		76.7 17 - 157 82.5 35 - 197	7
Totals			Footnotes			
Total TCDD ND 0.00000104 Total PeCDD ND 0.00000222	104 222		a Sample specific estimated detection limit b. Estimated maximum possible concentration.	etection limit.		
Total HxCDD ND 0.00000242 Total HpCDD 0.00001.16	242	В	c. Method detection limit. d. Lower control limit - upper control limit	control limit		
Total TCDF ND 0.000000849 Total PeCDF ND 0.000000992	0849 0992					
Total HxCDF ND 0.000000847 Total HpCDF ND 0.00000377	7			7.2 A		
Analyst: MAS			Approved By:	William J. Luksemburg		01-Mar-2007 13:19

APPENDIX

Page 7 of 236

DATA QUALIFIERS & ABBREVIATIONS

This compound was also detected in the method blank. В

The amount reported is the maximum possible concentration due to possible D

chlorinated diphenylether interference.

The reported value exceeds the calibration range of the instrument. Ε

The signal-to-noise ratio is greater than 10:1. Н

Chemical interference

The amount detected is below the Lower Calibration Limit of the instrument. J

See Cover Letter

Concentration Conc.

Sample-specific estimated Detection Limit DL

The minimum concentration of a substance that can be measured and **MDL**

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

Estimated Maximum Possible Concentration **EMPC**

Not applicable NA

Reporting Limit - concentrations that corresponds to low calibration point RL

Not Detected ND

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Page 8 of 236 Project 28724

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

Project 28724 Page 9 of 236

Project 28724

2872H 3.0°C

RECEIVING LABORATORY:

SUBCONTRACT ORDER - PROJECT # IQB2024

TestAmerica - Irvine, CA 17461 Derian Avenue. Sui Irvine, CA 92614 Phone. (949) 261-1022 Fax: (949) 260-3297 Project Manager: Michele (Alta Analytical 1104 Windfield V El Dorado Hills, (Phone :(916) 933 Fax: (916) 673-0	CA 95762 -1640 106
Standard TAT is request	ed unless specific due date is requested	⇒ Due Date:	Initials:
Analysis	Expiration		Comments
Sample ID: 1QB2024-01 W 1613-Dioxin-HR-Alta Level 4 + EDD-OUT	Vater Sampled: 02/19/07 10:15 02/26/07 10:15 03/19/07 10:15		J flags,17 congeners,no TEQ,ug/L,sub=Alta Excel EDD email to pm,Include Std logs for Lvl IV
Containers Supplied: 1 L Amber (IQB2024-01D)			
	SAMPLI	E INTEGRITY:	
	Yes □ No Sample labels/COC agree: Yes □ No Samples Preserved Properly	Yes No	Samples Received On Ice:: Yes No Samples Received at (temp): 3-0°C
Rejeased By	Daix Time	Bettina L. Received By	Benedict 2/21/07 0906 Date Time
Released By	Date Time	Received By	Date Time

Pagegeoloof236

SAMPLE LOG-IN CHECKLIST

Alta Project #:	8724				TAT_ <u>C</u>	Stand	laro	<u>L</u>
	Date/Time		Initials	s:	Location	: WR	7	
Samples Arrival:	2/21/07	0849	VE	WB	Shelf/Ra	ck: N	A	
	Date/Time		Initials	s:	Location: WP-2			
Logged In:	2/21/07	1329	FE	ES Shelf/Rack:		- ,	3-5	
Delivered By:	FedEx	UPS	Cal	DHL	Hand Other			her
Preservation:								
Temp °C 3.0 Time: 0905 Thermometer ID: IR-1				1				
						¥ VEC	l NO	NA
						YES	NO	IVA
Adequate Sample		∍d?	 					
Holding Time Acce	ptable?						-	 -
Shipping Container(s) Intact?								
Shipping Custody	Seals Intact?							<u> </u>
Shipping Documer	ntation Present?					1		ļ
Airbill	Trk# 7	1990	9062	9386	<u> </u>	V		
Sample Container						V		
Sample Custody S								1
Chain of Custody / Sample Documentation Present?								
COC Anomaly/Sa							V	1
If Chlorinated or D	rinking Water S	amples, A	cceptable	Preservati	on?			4
Na ₂ S ₂ O ₃ Preserva				coc	Saı	nple tainer	No	one
Shipping Contains	ar	Δltac	Client	Retail	n Re	turn	Dis	pose

Comments:

LABORATORY REPORT

Date:

February 25, 2007

Client:

Test America - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614

Attn: Michele Chamberlin

Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-07022006-001

Sample ID.:

IQB2024-01

Sample Control:

The sample was received by ATL in a chilled state, within the recommended hold

time and with the chain of custody record attached.

Date Sampled:

02/19/07

Date Received:

02/20/07

Temp. Received:

2°C

Chlorine (TRC):

 $0.0 \, \text{mg/l}$

Date Tested:

02/20/07 to 02/24/07

Sample Analysis:

The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Sample ID.

Results

IQB2024-01

100% Survival (TUa = 0.0)

Quality Control:

Reviewed and approved by:

Joseph A. LeMax

Laboratory Director

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-07022006-001

Client/ID: TestAmerica IQB2024-01

Start Date: 02/20/2007

TEST SUMMARY

Species: Pimephales promelas.

Age: <u>/3</u> (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Dilution water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C.

Number of fish per chamber: 10. QA/QC Batch No.: RT-070206.

TEST DATA

			LSI DAIA	<u> </u>			
	·	°C	DO	7.1	# I	Dead	Analyst & Time
		<u>.</u>	DO	pН	A	В	of Readings
INITIAL	Control	20.9	8.8	7-8	()	0	R
INITIAL	100%	20-0	10.3	7.6	0	0	1400
24.11	Control	19.6	2.7	2.1	/)	<i>(</i>)	L
24 Hr	100%	19.9	7.8	8.0	()	0	1200
40 11	Control	19.7	20	7.3	/)	0	K
48 Hr	100%	20.0	25	8.1	0	0	1400
D on over 1	Control	20.5	8.8	28	0	0	2 -
Renewal	100%	20.4	10.7	7.6	0	0	1400
72.11.	Control	19.2	8.3	7.4	0	73)	Ž
72 Hr	100%	19.3	29	8.1	0	0	1200
06 11.	Control	19.2	8.1	7.4	0	0	R~ 1300
96 Hr	100%	19.2	8.0	8.1	1)	0	1300

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 76; Conductivity: 570 umho; Temp: 2°C;

DO: 10.3 mg/l; Alkalinity: 200 mg/l; Hardness: 15/ mg/l; NH₃-N: 0.3 mg/l. Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No.

Control: Alkalinity: 100 mg/l; Hardness: 91 mg/l; Conductivity: 325 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

SUBCONTRACT ORDER - PROJECT # IQB2024

	ODCOTTAL							
SENDING	G LABORATORY:			RECEIVING LABORA	ATORY:			
TestAmerica - Irvine, CA			Aquatic Testing	g Laboratories-SUB				
17461 Derian Avenue. Suite	100			Street, Unit 107				
Irvine, CA 92614			Ventura, CA 93					
Phone: (949) 261-1022			Phone :(805) 6:					
Fax: (949) 260-3297			Fax: (805) 650-0756					
Project Manager: Michele Ch	amberlin	[Project Location:	· California				
			Troject Boutton	·				
Standard TAT is requested	unless specific due date	e is requested =>	> Due Date:		Initials:			
Analysis	Expiration	•		Comments				
Sample ID: IQB2024-01 Wat Bioassay-Acute 96hr	ter Sampled: 02/19/ 02/20/07 22:15	07 10:15		FH minnow, EPA/821	-R02-012, Sub to AqTox Lab			
Containers Supplied: 1 gal Poly (IQB2024-01A)					J. 4			
*								
production and the second seco								
		SAMPLE II	NTEGRITY:					
All containers intact: Yes		U	Yes No	Samples Received On Ice	24			
Custody Seals Present:	No Samples F	Preserved Properly: -	Yes No	Samples Received at (ten	np):			
Hanefer El	02/26/07	0733	Enview	Cen or/w	10/000			
Released By	Oz/Date	Time Re	eceived By	Date	Time			
Controllee	12907	1240	W/////V	L 117/	2-2007 1258			
Released By	Date	Time Re	epeived By	Date				

Page 1 of 1 NPDES - 677

FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS

QA/QC Batch No.: RT-070206

TEST SUMMARY

Species: Pimephales promelas.

Age: _//_ days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF. Source: In-lab culture.

Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs.

Test chamber: 600 ml glass beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

TEST DATA

		INITIAI				24 Hr			48 Hr				
Date/Time:	2-10	-07	1400	2-7-07			1200	<i>)</i>	2-8-07			1300)	
Analyst:	A.			R				L_					
	°C	DO	· »II	°C DO pH # Dead		°C		# D	ead				
		DO	рН		DO	рН	A	В		DO	pН	A	В
Control	20.6	8.8	8.1	20.0	29	7.6	1)	0	20,1	1a.8	7.4	0	0
1.0 mg/l	2016	8.8	8.1	20.0	29	7.5	0	0	20.0	7.4	7.4	0	0
2.0 mg/l	206	8.9	8./	19.9	2.8	2.4	0	0	20.0	7.1	7.3	0	0
4.0 mg/l	20.6	8.9	8.0	19.9	6.8	7.2	0	0	20.0	7.0	j. 3		/
8.0 mg/l	2016	8.9	8.0	20.0	5.7	7.1	10	10	Continues.	and and a second	Military)	Chiquese	ologi _{emstore} ,

×.	R	RENEWA	\L			72 Hr			96 Hr				
Date/Time:	2-8	07	1300	2-9	2-9-07			12vr) 2-10-07			1300		
Analyst:		/L		L.			R						
	°C	DO	pН	°C	DO	pН	# D	ead	°C	DO	"U	# D	ead
4	C	DO	pm		DO	pri	A	В		DO	pН	A	В
Control	20.5	9.0	7.8	20.1	20	24	0	0	20.4	5.7	7.3	73	0
1.0 mg/l	20.5	9.0	7.8	20.1	69	24	0	0	20.4	6.6	23	0	0
2.0 mg/l	205	9.1	28	20.0	-	7.3	0	0	20.4	6.7	7.2	0	\mathcal{O}
4.0 mg/l	20.5	9.1	7.8	20.1	6.7	7.3	0	0	20.4	6.3	2.2	0	0
8.0 mg/l	The Control of the Co		desper	**************************************	Name.	Military and a second	Salata /	Name.	(Programme)	philase	-	^	

Comments:

Control: Alkalinity: 6/ mg/l; Hardness: 9/ mg/l; Conductivity: 360 umho. SDS: Alkalinity: 6/ mg/l; Hardness: 9/ mg/l; Conductivity: 350 umho.

				Acute Fish Test-96	Hr Survival	
Start Date:	06 Feb-07	14:00	Test ID:	RT-070206f	Sample ID:	REF-Ref Toxicant
End Date:	10 Feb-07	13:00	Lab ID:	CAATL-Aquatic Testing Labs	Sample Type:	SDS-Sodium dodecyl sulfate
Sample Date:	06 Feb-07	00:00	Protocol:	ACUTE-EPA-821-R-02-012	Test Species:	PP-Pimephales promelas
Comments:					•	
Conc-mg/L	1	2				
D-Control	1.0000	1.0000				
1	1.0000	1.0000				
2	1.0000	1.0000				
4	0.9000	0.9000				
8	0.0000	0.0000				

		_	Tra	ansform:	Arcsin Sc	uare Roo	<u> </u>	Number Tot	tal
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp Num	ıber
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	0.9000	0.9000	1.2490	1.2490	1.2490	0.000	2	2	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				

Trimmed Spearman-Karber

Equality of variance cannot be confirmed

Trim Level	EC50	95%	CL	
0.0%	5.2780	4.8093	5.7924	
5.0%	5.3968	4.8053	6.0611	
10.0%	5.4432	5.1395	5.7648	
20.0%	5.4432	5.1395	5.7648	
Auto-0.0%	5.2780	4.8093	5.7924	

Fathead Minnow Acute Laboratory Control Chart

CV% = 15.3

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-070206

SOURCE: In-Lab Culture

DATE HATCHED: 1-26-07	_							
APPROXIMATE QUANTITY:	100							
APPROXIMATE QUANTITY:	oot/							
# MORTALITIES 48 HOURS PRIOR TO USE IN TESTING:	вто							
DATE USED IN LAB: 2/6	17							
AVERAGE FISH WEIGHT:	06 gm							
TEST LOADING LIMITS: 0.65 gm/liter 200 ml test solution volume = 0.013 gm mean fish weight limit 250 ml test solution volume = 0.016 gm mean fish weight limit								
ACCLIMATION WATER QUALITY	<i>7</i> :							
Temp.: <u>20-6</u> °C	р Н: <u>8. О</u>	Ammonia: <u><o\f\ l="" mg="" nh_3-n<="" u=""></o\f\></u>						
DO: <u>7-8</u> mg/l	Alkalinity: 6 m	ng/l Hardness: <u>% / mg</u> /l						
READINGS RECORDED BY:	gen	DATE: 2.7-7						

Laboratory Temperature Chart

QA/QC Batch No: RT-070206

Date Tested: 02/06/07 to 02/10/07

Acceptable Range: 20+/- 1°C

March 23, 2007

Ms. Michele Chamberlin Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project No. IQB2024

Eberline Services NELAP Cert #01120CA (exp. 01/31/08)

Eberline Services Report R702124-8659

Dear Ms. Chamberlin:

Enclosed are results from the analyses of one water sample received at Eberline Services on February 21, 2007. The sample was analyzed according to the accompanying Test America Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0). The sample was not filtered prior to analysis; the sample was prepared for analysis within 5 days of collection. Quality control samples consisted of an LCS, blank analysis, duplicate analysis, and matrix spike. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual. A level IV data package will follow within one week.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

melin Massin

MCM/njv

Enclosure: Report

Subcontract Form Receipt checklist

Invoice

Eberline Services

ANALYSIS RESULTS

 SDG 8659
 Client TA IRVINE

 Work Order R702124-01
 Contract PR0JECT# IQB2024

 Received Date 02/21/07
 Matrix WATER

Client Lab

Sample ID Sample ID Collected Analyzed Nuclide Results ± 20 Units MDA

IQB2024-01 8659-001 02/19/07 03/10/07 GrossAlpha 0.236 ± 1.0 pCi/L 1.6
03/10/07 Gross Beta 26.8 ± 1.6 pCi/L 1.5

Certified by 219 Report Date 03/23/07 Page 1

Eberline Services

QC RESULTS

SDG <u>8659</u>

Client TA IRVINE

Work Order <u>R702124-01</u>

Contract PROJECT# IQB2024

Received Date 02/21/07

Matrix WATER

1								
<u> </u>								
Lab								
Sample ID	<u>Nuclide</u>	Results	<u>Units</u>	Amount	Added	<u>MDA</u>	Evaluation	
LCS 8657-002	GrossAlpha	8.17 ± 0.65	pCi/Smp	1 10	1	0.318	81% recove:	rv
8657-002	Gross Beta	9.76 ± 0.37	pCi/Smp			0.277	102% recov	_
	Gross Beta	9.76 ± 0.37	bc1/2mt	·1 5.		0.277	1020 10000	<u>1</u>
BLANK								
8657-003	GrossAlpha	-0.364 ± 0.15	pCi/Smp	1 1	NA	0.348	<mda< td=""><td></td></mda<>	
	Gross Beta		pCi/Smp		NA	0.269	<mda< td=""><td></td></mda<>	
	DUPLICATES				ORIGINALS			
								3σ
Sample ID	Nuclide	Results ± 20	MDA.	Sample ID	Results ±	2o MDA	RPD (T	ot) Eval
8657-004	GrossAlpha	-0.302 ± 0.53	0.882	8657-001	-0.192 ± 0.	44 0.6	98 -	0 satis.
	Gross Beta	27.3 ± 1.3	1.47		$24.3 \pm 1.$	1 1.0	12	44 satis.
	SPIKED SAMPL	E		OR	IGINAL SAMPI	E		
Sample ID	Nuclide	Results ± 20	MDA	Sample ID	Results ±			<u>%Recv</u>
8657-005	GrossAlpha	77.4 ± 6.8	1.9	8657-001	-0.192 ± 0.			110
	Gross Beta	95.0 ± 4.0	2.0		$24.3 \pm 1.$.1 1.0	70.4	100

Certified by Report Date 03/23/07
Page 2

Released By

SUBCONTRACT ORDER - PROJECT # IQB2024

			_		
SENDI	ING LABORATOR	RY:		RECEIVING LABORA	TORY:
TestAmerica - Irvine, CA			Eberline Ser		
17461 Derian Avenue. Sui	ite 100		2030 Wright		
Irvine, CA 92614			Richmond, C	/ (365a)
Phone: (949) 261-1022			Phone :(510)		9609
Fax: (949) 260-3297			Fax: (510) 23	35-0438	
Project Manager: Michele	Chamberlin		Project Locati	ion: California	
Standard TAT is request	ed unless specific	due date is requested	=> Due Date:	3WLTAT	Initials: MC
Analysis	Expiration			Comments	
Sample ID: IQB2024-01 W	ater Sample	ed: 02/19/07 10:15			
EDD + Level 4	03/19/07 10:15				
Gross Alpha-O	08/18/07 10:15			→ DONT FILTER, 900.0,	RESULT>15 pCi/L,run Rac
Gross Beta-O	08/18/07 10:15			226&228 DONT FILTER, 900.0, 226&228	RESULT>50 pCi/L,run Rac
Radium, Combined-O	02/19/08 10:15				lts; EPA 903.1&904.0,NO
Strontium 90-O	02/19/08 10:15			HOLD for Ra 226&228 FILTER	results, EPA 905.0, DONT
Tritium-O	02/19/08 10:15				results,EPA 906.0, DONT
Containers Supplied:		·		7.2.2.	
2.5 gal Poly (IQB2024-01R))			* 5day Hold-	time.
40 ml'Amber Voa Vial (IQE	32024-01S)				MC
40 ml Amber Voa Vial (IQE					•
40 ml Amber Voa Vial (IQE	32024-01U)				
ALL CONTRACTOR OF THE CONTRACT		SAMPLE	INTEGRITY:		
All containers intact: Yes	□ No	Sample labels/COC agree:	☑ Yes ☐ No	Samples Received On Ice::	☐ Yes ☐ No
Custody Seals Present: Yes		Samples Preserved Properly:	Yes No	Samples Received On Ice:: Samples Received at (temp)	
	>	- x - x - x - x - x - x - x - x - x - x			
) ~/Q	0/07	May	02/21/0-	9:00

Received By

Received By

Date

Time

Time

Date

Date

© EBERLIZE

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

1	KJN	107
---	-----	-----

Client	TE ST	AUT	EPUKA	City	1PUINE 432024	State	CA	
Onerre.		02/21/	m 9:00 N	10	132024			
Date/1 ir	me received A	17/14	elates T	· - 	21 P.O. Recei		1 N - 1 1	
Contair	کے۔ner I.D. No	Defrit la	Requested	TAT (Days)	P.O. Recei	ved Yes [J NO[]	
				INSPEC	CTION		-	
1			oing container ii			/	No[] N/4	1
2.			oing container d		d?		No [] N/A	
3			ole containers i				No [] N/A	, ,
4, ,	Custody sea	ais on same	ole containers o	iated & signe	d?	+	No[] N/A	, 1×1
5	Facking ma	iterial is:		1		Wet[]	Div (X)	
8	Number of	samples in	snipping conta	iner:	Sample Matrix _	<u>w</u>		
7.				4	(Or see CoC	1		
8.	Samples ar				Yes [X] No			
9.	Paperwork	agrees with	n samples?		Yes [X] N		mnle lahele [1	
10.	Samples ha	ave: Tape	e [] Hazard	labels []	Rad labels [] App	intainer []	Missino I	X ¹
11.	Samples ar	re: In go	ood condition [N Leakin	ng [] Broken Co	rvative	estrig (J
12.				oreserved [*	() pH Prese			
13.	Describe a	ny anomalii	es:					
4.4	Mas D M	notified of	any anomalies	? Ye	s[/] / No[]	Date		
14. 15.	Inspected	_	. /	Date:	07/7/07 Time:	10:	15	
			FOO		Customer Sample		1	
1	stomer nple No.	cpm	mR/hr i	Wipe	No.	, cbu:	mR/h r	wipe
	1	ì			i	4		
		!						!
1		!						
Ion Cha	amber Ser. N	10.						

Form SCP-02, 06-24-05

Page A3 of A14

"over 55 years of quality nuclear services"

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

03/20/07 14:41

17461 Derian Ave, Suite 100

Received Date:

02/22/07 10:58

Irvine, CA 92614

Turn Around:

Attention: Michele Chamberlin

Work Order #:

7022248

Normal

Phone:

(949) 261-1022

Fax: (949) 260-3297

Client Project:

IQB2024

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Michele Chamberlin:

Enclosed are the results of analyses for samples received 02/22/07 10:58 with the Chain of Custody document. The samples were received in good condition, at 7.7 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Taylor Maligmat

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022248 Project ID: IQB2024 Date Received: 02/22/07 10:58 Date Reported: 03/20/07 14:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IQB2024-01	client		7022248-01	Water	02/19/07 10:15

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022248 Project ID: IQB2024 Date Received: 02/22/07 10:58 Date Reported: 03/20/07 14:41

IQB2024-01 7022248-01 (Water)

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1096	02/28/07	03/01/07 jl	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W7B1096	02/28/07	03/01/07 jl	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022248 Project ID: IQB2024 Date Received: 02/22/07 10:58 Date Reported: 03/20/07 14:41

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022248 Project ID: IQB2024 Date Received: 02/22/07 10:58 Date Reported: 03/20/07 14:41

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W7B1096 - EPA 245.1			·							
Blank (W7B1096-BLK1)				Analyzed:	03/01/07					
Mercury, Total	ND	0.10	ug/l							
Mercury, Dissolved	ND	0.10	ug/l							
LCS (W7B1096-BS1)				Analyzed:	03/01/07					
Mercury, Total	0.913	0.10	ug/l	1.00		91.3	85-115			
Mercury, Dissolved	0.913	0.10	ug/l	1.00		91.3	85-115			
Matrix Spike (W7B1096-MS1)	Sour	ce: 7022253-0	7	Analyzed:	03/01/07					
Mercury, Total	1.04	0.10	ug/l	1.00	ND	104	70-130			
Mercury, Dissolved	1.04	0.10	ug/l	1.00	ND	104	70-130			
Matrix Spike (W7B1096-MS2)	Sour	ce: 7022253-1	0	Analyzed:	03/01/07					
Mercury, Total	0.928	0.10	ug/l	1.00	ND	92.8	70-130			
Mercury, Dissolved	0.928	0.10	ug/l	1.00	ND	92.8	70-130			
Matrix Spike Dup (W7B1096-MSD1)	Sour	ce: 7022253-0	7	Analyzed:	03/01/07					
Mercury, Total	1.10	0.10	ug/l	1.00	ND	110	70-130	5.61	20	
Mercury, Dissolved	1.10	0.10	ug/l	1.00	ND	110	70-130	5.61	20	
Matrix Spike Dup (W7B1096-MSD2)	Sour	ce: 7022253-1	0	Analyzed:	03/01/07					
Mercury, Total	1.09	0.10	ug/l	1.00	ND	109	70-130	16.1	20	
Mercury, Dissolved	1.09	0.10	ug/l	1.00	ND	109	70-130	16.1	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine
17461 Derian Ave, Suite 100

Irvine CA, 92614

Report ID: 7022248 Project ID: IQB2024

Date Received: 02/22/07 10:58 Date Reported: 03/20/07 14:41

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 17

Outfall 006, February 27, 2007

MECX Data Validation Reports

DATA VALIDATION REPORT

NPDES Monitoring Program Annual Outfall 006

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IQB2967

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014
 Project:
 NPDES

 SDG:
 IQB2967

 DATA VALIDATION REPORT
 Analysis:
 D/F

1. INTRODUCTION

Task Order Title: NPDES

Contract Task Order: 1261.100D.00
Sample Delivery Group: IQB2967
Project Manager: P. Costa

Matrix: Water

Analysis: Dioxins/Furans

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: E. Wessling
Date of Review: April 27, 2007

The samples listed in Table 1 were validated based on the guidelines outlined in the *MEC^X Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613*, and the *National Functional Guidelines for Chlorinated Dioxin/Furan Data Review* (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

 Project:
 NPDES

 SDG:
 IQB2967

 DATA VALIDATION REPORT
 Analysis:
 D/F

Table 1. Sample Identification

Client ID	Laboratory ID (TestAmerica- Irvine)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 006	IQB2967-01	28755-001	Water	1613

 Project:
 NPDES

 SDG:
 IQB2967

 DATA VALIDATION REPORT
 Analysis:
 D/F

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica-Irvine within the temperature limits of 4°C ±2°C. The sample was shipped to Alta for dioxin/furan analysis and was below the temperature limits at 1.6°C; however, as the sample was in good condition and not frozen, no qualifications were required. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to TestAmerica-Irvine, custody seals were not required. Custody seals were present on the coolers from TestAmerica to Alta; however, no sample container custody seals were present. The Client ID was added to the sample result summary by the reviewer. No qualifications were required.

2.1.3 Holding Times

The sample was extracted and analyzed within one year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations were acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

NPDES Project: SDG:

IQB2967 DATA VALIDATION REPORT Analysis: D/F

2.3 **CALIBRATION**

2.3.1 **Initial Calibration**

The initial calibration was analyzed 10/24/2006 on instrument VG-5. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of %RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 **BLANKS**

One method blank (8913-MB001) was extracted and analyzed with the sample in this SDG. No target compounds were reported in the method blank at concentrations below the laboratory lower calibration level. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 **BLANK SPIKES AND LABORATORY CONTROL SAMPLES**

One blank spike (8913-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613 with the exception of a few targets were above the acceptance criteria. As the target compounds were not detected in the associated sample, no qualifications were required. A review of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE 2.6

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

NPDES Project: SDG: IQB2967 D/F

DATA VALIDATION REPORT Analysis:

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 **Field Blanks and Equipment Rinsates**

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG.

INTERNAL STANDARDS 2.8

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 **COMPOUND IDENTIFICATION**

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. OCDD detected below the laboratory lower calibration level was qualified as estimated, "J," by the laboratory. This "J" value was annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

Analyst: RAS

Approved By:

Martha M. Maier 23-Mar-2007 14:09

	Sample ID: IQI	IQB2967-01							EPA Method 1613	
	Client Data			Sample Data		Laboratory Data				
		Test America-Irvine		Matrix	Aqueous	Lab Sample:	28755-001	Date Received:	cived:	
	Project: IQB3 Date Collected: 27-F	IQB2967 27-Feb-07		Sample Size	1.01 L	QC Batch No.	8913	Date Extracted Date Analyzed I	Date Extracted: Date Analyzed DB-225:	
	Analyte	Conc. (ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard	dard	%R	rcr-ncr _q	Oualifiers
	2,3,7,8-TCDD	ND	0.000000521	521		IS 13C-2,3,7,8-TCDD	ממנ	78.2	25 - 164	
panelle.	1,2,3,7,8-PeCDD	ND	0.00000124	24		13C-1,2,3,7,8-PeCDD	eCDD	72.8	25 - 181	
	1,2,3,4,7,8-HxCDD	ND	0.00000300	00		13C-1,2,3,4,7,8-HxCDD	-HxCDD	76.1	32 - 141	
	1,2,3,6,7,8-HxCDD	ND	0.00000138	38		13C-1,2,3,6,7,8	3,6,7,8-HxCDD	81.6	28 - 130	
	1,2,3,7,8,9-HxCDD	ND	0.00000131	3		13C-1,2,3,4,6,7,8-HpCDD	,8-HpCDD	54.6	23 - 140	
Len	1,2,3,4,6,7,8-HpCDD	ND	0.00000290	90	2000	13C-0CDD		38.6	17 - 157	
	OCDD	0.0000350			L	13C-2,3,7,8-TCDF	DF	76.3	24 - 169	
~	2,3,7,8-TCDF	ND	0.000000466	466		13C-1,2,3,7,8-PeCDF	eCDF	70.1	24 - 185	
	1,2,3,7,8-PeCDF	ND	0.000000589	589		13C-2,3,4,7,8-PeCDF	eCDF	65.0	21 - 178	
	2,3,4,7,8-PeCDF	ND	0.0000000614	614		13C-1,2,3,4,7,8-HxCDF	-HxCDF	83.3	26 - 152	
	1,2,3,4,7,8-HxCDF	ND	0.000000543	543		13C-1,2,3,6,7,8-HxCDF	-HxCDF	91.2	26 - 123	
	1,2,3,6,7,8-HxCDF	ND	0.000000548	548		13C-2,3,4,6,7,8-HxCDF	-HxCDF	87.6	28 - 136	
	2,3,4,6,7,8-HxCDF	ND	0.000000658	658		13C-1,2,3,7,8,9-HxCDF	-HxCDF	73.5	29 - 147	
	1,2,3,7,8,9-HxCDF	ND	0.00000117	7	Control of the Control	13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	59.9	28 - 143	
	1,2,3,4,6,7,8-HpCDF	ND	0.00000112	12	was, co	13C-1,2,3,4,7,8,9-HpCDF	,9-HpCDF	44.6	26 - 138	
	1,2,3,4,7,8,9-HpCDF	ND	0.00000141	1		13C-OCDF		31.8	17 - 157	
	OCDF	ND	0.00000242	12		CRS 37CI-2,3,7,8-TCDD	CDD	94.3	35 - 197	1
	Totals					Footnotes				
	Total TCDD	ND	0.000000521	521		a. Sample specific estimat	estimated detection limit.			
	Total PeCDD	ND	0.00000124	24		b. Estimated maximum possible concentration	ssible concentration			
	Total HxCDD	ND	0.00000190	90		c. Method detection limit.				
11	Total HpCDD	0.00000639				d. Lower control limit - upper control limit.	per control limit.			
, ح	Total TCDF	ND	0.000000466	166						
	Total PeCDF	ND	0.000000602	502						
	Total HxCDF	ND	0.000000730	730						
_	Total HpCDF	ND	0.00000126	26						

Page 6 of 410

DATA VALIDATION REPORT

NPDES Sampling Outfall 006

ANALYSIS: RADIONUCLIDES

SAMPLE DELIVERY GROUP: IQB2967

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: NPDES IQB2967

Rad

DATA VALIDATION REPORT

SDG: IC Analysis:

1. INTRODUCTION

Task Order Title:

NPDES Sampling

MECX Project Number:

1261.100D.00

Sample Delivery Group:

IQB2967

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Radionuclides

QC Level:

Reviewer:

Level IV

No. of Samples:

No. of Reanalyses/Dilutions:

P. Meeks

0

Date of Review:

April 28, 2007

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Method 900.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project:

NPDES IQB2967

SDG: Analysis:

Rad

Table 1. Sample Identification

	Client ID	Laboratory ID (Del Mar)	Laboratory ID (Eberline)	Matrix	COC Method
Г	Outfall 006	IQA2967-01	8665-001	Water	900.0

DATA VALIDATION REPORT

Project: SDG: NPDES IQB2967

Analysis:

Rad

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica within the temperature limits of $4\pm2^{\circ}$ C. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. The samples were noted to have been received intact, in good condition, with cooler and sample container custody seals intact.

According to the LARWQCB guidance letter dated 01/12/05, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration. All aliquots were received at Eberline unfiltered and unpreserved and were neither preserved nor filtered after receipt. No qualifications were required.

2.1.2 Chain of Custody

The original COC was signed and dated by field and laboratory personnel. The transfer COC was signed by personnel from both laboratories. The gross beta analysis was requested by MWH personnel on 4/1/07. Eberline did not list the MWH ID on the Form I; therefore, the reviewer edited the Form I to reflect this ID. No qualifications were required.

2.1.3 Holding Times

The gross beta aliquot was prepared beyond the five-day analytical holding time for unpreserved samples; therefore, gross beta detected in Outfall 006 was qualified as estimated, "J." No further qualifications were necessary.

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability. The initial calibration included with the data was performed in February 2003. The gross beta detector efficiency was ≥20%. No qualifications were required.

Project: SDG: NPDES IQB2967

Analysis:

Rad

2.3 BLANKS

DATA VALIDATION REPORT

No measurable activity was detected in the method blank; therefore, no qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

An aqueous blank spike was analyzed in association with the sample in this SDG. The gross beta recovery was within the laboratory-established control limits. No qualifications were necessary.

2.5 LABORATORY DUPLICATES

The laboratory performed duplicate analyses on Outfall 006 for gross beta. The RPD was within the laboratory-established control limit. No qualifications were necessary.

2.6 MATRIX SPIKES

The laboratory performed a matrix spike analysis on Outfall 006 for gross beta. The recovery was within the laboratory-established control limits. No qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the sample in this data package. The sample result and MDA reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. No qualifications were necessary.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample.

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples in this SDG.

Eberline Services

ANALYSIS RESULTS

SDG 8665

Client TA IRVINE

Work Order R704064-01

Contract PROJECT# IOB2967

Received Date 04/11/07

Matrix WATER

Client Sample ID Lab

Sample ID Collected Analyzed Nuclide

IQB2967-01

8665-001

02/27/07 04/17/07 Gross Beta

23.5 ± 2.2

pCi/L

2.0

Lancel

Certified by

Report Date 04/18/07

Page 1

DATA VALIDATION REPORT

NPDES Sampling Annual Outfall 006

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUP: IQB2967

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014
 Project:
 NPDES

 SDG:
 IQB2967

 DATA VALIDATION REPORT
 Analysis:
 Gen. Min.

1. INTRODUCTION

Task Order Title: NPDES Sampling MEC^X Project Number: 1261.001D.01

Sample Delivery Group: IQB2967 Project Manager: P. Costa

Matrix: Water

Analysis: General Minerals

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: E. Wessling
Date of Review: April 30, 2007

The sample listed in Table 1 was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), USEPA Method 160.2, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form Is as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

NPDES - 709

 Project:
 NPDES

 SDG:
 IQB2967

 DATA VALIDATION REPORT
 Analysis:
 Gen. Min.

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 006	IQB2967-01	Water	160.2

Project: **NPDES** SDG: IQB2967

DATA VALIDATION REPORT Analysis: Gen. Min.

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ± 2°C. No preservation problems were noted by the laboratory and no qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and the analysis presented in this SDG. As the sample was couriered directly from the field to the laboratory, custody seals were not necessary. No qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The TSS analysis was performed within the analytical holding time of seven days form collection. No qualifications were required.

2.2 **CALIBRATION**

The balance calibration was reviewed and deemed acceptable. No qualifications were required.

2.3 **BLANKS**

There were no detects in the method blank associated with the sample analyses. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The reported LCS recovery was within the laboratory-established control limits. No qualifications were required.

Project: NPDES SDG: IQB2967 Analysis: Gen. Min.

DATA VALIDATION REPORT SDG: IQB2
Analysis: Gen.

2.5 LABORATORY DUPLICATES

Laboratory duplicate analyses were performed for TSS on a sample in another SDG; therefore, precision could not be evaluated. No qualifications were required.

2.6 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Evaluation of method accuracy was based on the LCS result. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample result reported on the Form I was verified against the raw data. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Report Number: IQB2967

Sampled: 02/27/07

Received: 02/27/07

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed		
Sample ID: IQB2967-01 (Our Reporting Units: mg/l	tfall 006 - Water) - con	t.							Qual	mos
Chloride	EPA 300.0	7B27040	3.0	10	58	20	02/27/07	02/27/07	*	
Nitrate/Nitrite-N	EPA 300.0	7B27040	0.080	0.15	0.33	1	02/27/07	02/27/07)	
Oil & Grease	EPA 413.1	7C08093	0.89	4.7	ND	1	03/08/07	03/08/07	1	1
Sulfate	EPA 300.0	7B27040	0.45	0.50	15	1	02/27/07	02/27/07		1
Total Dissolved Solids	SM2540C	7C02071	10	10	290	1	03/02/07	03/02/07	7	1
Total Suspended Solids	EPA 160.2	7C02122	10	10	13	1	03/02/07	03/05/07		1

Level IX

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced.

IQB2967 <Page 4 of 12>

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

ME	C ^X	Package ID: B4MT120
122	69 East Vassar Drive	Task Order: 1261.100D.00
Auro	ora, CO 80014	SDG No.: IQB2967
		No. of Analyses: 1
	Laboratory: TestAmer	
	Reviewer: P. Meeks	
	Analysis/Method: Metals	V.MW
)
ACT	TION ITEMS ^a	
	Case Narrative	
	Deficiencies	
2.	Out of Scope Analyses	
3.	Analyses Not Conducted	
4.	Missing Hardcopy	
	Deliverables	
5.	Incorrect Hardcopy	
	Deliverables	
	Desirations from Assistant	Our life a life and the life an
6.	Deviations from Analysis	Qualification applied for a detect below the reporting limit.
	Protocol, e.g.,	
	Holding Times	
	GC/MS Tune/Inst. Performance	
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS	
	Field QC	
	Internal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
CO	MMENTS ^b	
a c	ubcontracted analytical laboratory is not	meeting contract and/or method requirements.
b D	ifferences in protocol have been adopted	d by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 006

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IQB2967

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project:

NPDES

SDG:

IQB2967

Analysis:

Metals

1. INTRODUCTION

Task Order Title:

NPDES Sampling

MECX Project Number:

DATA VALIDATION REPORT

1261.100D.00

Sample Delivery Group:

IQB2967

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Metals

QC Level:

Level IV 1

No. of Samples:

No. of Reanalyses/Dilutions:

P. Meeks Reviewer:

Date of Review:

May 3, 2007

The sample listed in Table 1 was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for ICP and ICP-MS Metals (DVP-5, Rev. 0), EPA Method 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: SDG: NPDES IQB2967

Analysis:

Metals

Table 1. Sample Identification

Client ID	TestAmerica Laboratory ID	Weck Laboratory ID	Matrix	COC Method
Outfall 006	IQA2967-01	7022815-01	Water	245.1, total and dissolved

DATA VALIDATION REPORT

Project:

NPDES

DATA VALIDATION REPORT

SDG: Analysis: IQB2967 Metals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at TestAmerica and the subcontract laboratory, Weck within the temperature limits of 4°C ±2°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The original and transfer COCs were signed and dated by the appropriate field and/or laboratory personnel and accounted for the sample and analyses presented in this SDG. As the sample was transported directly from the field to TestAmerica, custody seals were not necessary. Custody seals were not present upon receipt at Weck. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the date of analysis recorded in the raw data documented that the sample analyses were performed within the specified holding time of 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

As ICP-MS was not utilized for the analysis, the ICP-MS tune criteria are not applicable.

2.3 CALIBRATION

The mercury initial calibration r^2 was ≥ 0.995 . The ICV and CCV results showed acceptable recoveries, 85-115% for mercury. No qualifications were required.

2.4 BLANKS

Mercury was not detected in any of the blanks associated with the site sample analysis. No qualifications were required.

B4MT120 3 Revision 0

Project:

NPDES

SDG: Analysis: IQB2967 Metals

DATA VALIDATION REPORT

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

As neither ICP nor ICP-MS were utilized for the analysis, the interference check sample results are not applicable.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on the LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

As ICP-MS was not utilized for the analysis, the ICP-MS internal standard results are not applicable.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified and the sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. Total mercury was detected between the MDL and the reporting limit; therefore, total mercury was qualified as estimated, "J," and denoted with "DNQ" in accordance with the NPDES permit. No further qualifications were required.

B4MT120

4

Revision 0

Project: NPDES SDG: IQB2967 Analysis: Metals

DATA VALIDATION REPORT

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022815 Project ID: IQB2967 Date Received: 02/28/07 10:30 Date Reported: 03/20/07 20:26

IQB2967-01 7022815-01 (Water)

Analyte	wal	Code	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	U		ND	0.050	ug/l	0.20	1	EPA 245.1	W7C0122	03/04/07	03/13/07 jl	
Mercury, Total	J	DNQ	0.057	0.050	ug/l	0.20	1	EPA 245.1	W7C0122	03/04/07	03/13/07 jl	J

LEVEL IV

APPENDIX G

Section 18

Outfall 006, February 27, 2007 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Sampled: 02/27/07 Received: 02/27/07

Issued: 04/18/07 16:39

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 2°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: Enclosed are complete final results. The results for subcontract analyses were added.

LABORATORY ID CLIENT ID MATRIX

IQB2967-01 Outfall 006 Water

Reviewed By:

TestAmerica - Irvine, CAMichele Chamberlin

Michele Chamberdin

Project Manager

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/27/07 Report Number: IQB2967 Received: 02/27/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2967-01 (Outfall 006 -	· Water)								
Reporting Units: ug/l									
Antimony	EPA 200.8	7B28065	0.050	2.0	0.45	1	02/28/07	02/28/07	J
Cadmium	EPA 200.8	7B28065	0.025	1.0	0.12	1	02/28/07	02/28/07	J
Copper	EPA 200.8	7B28065	0.25	2.0	1.7	1	02/28/07	02/28/07	J
Lead	EPA 200.8	7B28065	0.040	1.0	1.1	1	02/28/07	02/28/07	
Thallium	EPA 200.8	7B28065	0.15	1.0	ND	1	02/28/07	02/28/07	

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Report Number: IQB2967 Sampled: 02/27/07
Received: 02/27/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2967-01 (Outfall 006 - V	Vater) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	7B28136	0.050	2.0	0.46	1	02/28/07	03/01/07	J
Cadmium	EPA 200.8-Diss	7B28136	0.050	1.0	ND	1	02/28/07	03/01/07	
Copper	EPA 200.8-Diss	7B28136	0.40	2.0	0.50	1	02/28/07	03/01/07	J
Lead	EPA 200.8-Diss	7B28136	0.10	1.0	ND	1	02/28/07	03/01/07	
Thallium	EPA 200.8-Diss	7B28136	0.15	1.0	ND	1	02/28/07	03/01/07	

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/27/07 Report Number: IQB2967 Received: 02/27/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2967-01 (Outfall 006 - V	Water) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	7B27040	3.0	10	58	20	02/27/07	02/27/07	
Nitrate/Nitrite-N	EPA 300.0	7B27040	0.080	0.15	0.33	1	02/27/07	02/27/07	
Oil & Grease	EPA 413.1	7C08093	0.89	4.7	ND	1	03/08/07	03/08/07	
Sulfate	EPA 300.0	7B27040	0.45	0.50	15	1	02/27/07	02/27/07	
Total Dissolved Solids	SM2540C	7C02071	10	10	290	1	03/02/07	03/02/07	
Total Suspended Solids	EPA 160.2	7C02122	10	10	13	1	03/02/07	03/05/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 02/27/07

Report Number: IQB2967

Received: 02/27/07

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 006 (IQB2967-01) - Water	er				
EPA 300.0	2	02/27/2007 11:30	02/27/2007 19:15	02/27/2007 18:00	02/27/2007 22:43

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 02/27/07

Report Number: IQB2967 Received: 02/27/07

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B28065 Extracted: 02/28/07											
	=										
Blank Analyzed: 02/28/2007 (7B28065-B	LK1)										
Antimony	ND	2.0	0.050	ug/l							
Cadmium	ND	1.0	0.025	ug/l							
Copper	ND	2.0	0.25	ug/l							
Lead	ND	1.0	0.040	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 02/28/2007 (7B28065-BS)	1)										
Antimony	79.3	2.0	0.050	ug/l	80.0		99	85-115			
Cadmium	78.6	1.0	0.025	ug/l	80.0		98	85-115			
Copper	84.4	2.0	0.25	ug/l	80.0		106	85-115			
Lead	85.9	1.0	0.040	ug/l	80.0		107	85-115			
Thallium	86.3	1.0	0.15	ug/l	80.0		108	85-115			
Matrix Spike Analyzed: 02/28/2007 (7B2	8065-MS1)				Sou	rce: IQB	0465-04R	E2			
Antimony	75.2	2.0	0.050	ug/l	80.0	0.054	94	70-130			
Cadmium	72.8	1.0	0.025	ug/l	80.0	ND	91	70-130			
Copper	80.9	2.0	0.25	ug/l	80.0	ND	101	70-130			
Lead	81.1	1.0	0.040	ug/l	80.0	ND	101	70-130			
Thallium	82.2	1.0	0.15	ug/l	80.0	ND	103	70-130			
Matrix Spike Dup Analyzed: 02/28/2007	(7B28065-M	SD1)			Sou	rce: IQB	0465-04R	E2			
Antimony	78.0	2.0	0.050	ug/l	80.0	0.054	97	70-130	4	20	
Cadmium	75.2	1.0	0.025	ug/l	80.0	ND	94	70-130	3	20	
Copper	82.6	2.0	0.25	ug/l	80.0	ND	103	70-130	2	20	
Lead	81.8	1.0	0.040	ug/l	80.0	ND	102	70-130	1	20	
Thallium	83.4	1.0	0.15	ug/l	80.0	ND	104	70-130	1	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 02/27/07

Report Number: IQB2967 Received: 02/27/07

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B28136 Extracted: 02/28/07											
	=										
Blank Analyzed: 03/01/2007 (7B28136-Bl	LK1)										
Antimony	ND	2.0	0.050	ug/l							
Cadmium	ND	1.0	0.050	ug/l							
Copper	ND	2.0	0.40	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 03/01/2007 (7B28136-BS1	1)										
Antimony	82.8	2.0	0.050	ug/l	80.0		104	85-115			
Cadmium	86.3	1.0	0.050	ug/l	80.0		108	85-115			
Copper	77.8	2.0	0.40	ug/l	80.0		97	85-115			
Lead	78.7	1.0	0.10	ug/l	80.0		98	85-115			
Thallium	77.9	1.0	0.15	ug/l	80.0		97	85-115			
Matrix Spike Analyzed: 03/01/2007 (7B2	8136-MS1)				Sou	rce: IQB	2967-01				
Antimony	81.5	2.0	0.050	ug/l	80.0	0.46	101	70-130			
Cadmium	80.2	1.0	0.050	ug/l	80.0	ND	100	70-130			
Copper	76.6	2.0	0.40	ug/l	80.0	0.50	95	70-130			
Lead	75.4	1.0	0.10	ug/l	80.0	ND	94	70-130			
Thallium	73.1	1.0	0.15	ug/l	80.0	ND	91	70-130			
Matrix Spike Dup Analyzed: 03/01/2007	(7B28136-M	SD1)			Sou	rce: IQB	2967-01				
Antimony	83.3	2.0	0.050	ug/l	80.0	0.46	104	70-130	2	20	
Cadmium	80.9	1.0	0.050	ug/l	80.0	ND	101	70-130	1	20	
Copper	76.8	2.0	0.40	ug/l	80.0	0.50	95	70-130	0	20	
Lead	75.9	1.0	0.10	ug/l	80.0	ND	95	70-130	1	20	
Thallium	75.7	1.0	0.15	ug/l	80.0	ND	95	70-130	3	20	

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 02/27/07

Report Number: IQB2967

Received: 02/27/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7B27040 Extracted: 02/27/07	-										
DI I A I I 02/27/2007 (7D27040 D)	T 171)										
Blank Analyzed: 02/27/2007 (7B27040-B	,	0.50	0.15	/1							
Chloride	0.168	0.50	0.15	mg/l							J
Nitrate/Nitrite-N	ND	0.15	0.080	mg/l							
Sulfate	ND	0.50	0.45	mg/l							
LCS Analyzed: 02/27/2007 (7B27040-BS)	1)										
Chloride	4.67	0.50	0.15	mg/l	5.00		93	90-110			M-3
Sulfate	9.67	0.50	0.45	mg/l	10.0		97	90-110			
Matrix Spike Analyzed: 02/27/2007 (7B2	7040-MS1)				Sou	rce: IOB	2795-01				
Sulfate	24.5	0.50	0.45	mg/l	10.0	15	95	80-120			
Matrix Spike Dup Analyzed: 02/27/2007	(7B27040-M	ISD1)			Sou	rce: IQB	2795-01				
Sulfate	24.6	0.50	0.45	mg/l	10.0	15	96	80-120	0	20	
Batch: 7C02071 Extracted: 03/02/07											
	_										
Blank Analyzed: 03/02/2007 (7C02071-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 03/02/2007 (7C02071-BS	1)										
Total Dissolved Solids	998	10	10	mg/l	1000		100	90-110			
Total Dissolved Solids	770	10	10	mg/i	1000		100	<i>70</i> 110			
Duplicate Analyzed: 03/02/2007 (7C0207	1-DUP1)				Sou	rce: IQB	2959-01				
Total Dissolved Solids	306	10	10	mg/l		310			1	10	
Batch: 7C02122 Extracted: 03/02/07	, -										
Blank Analyzed: 03/05/2007 (7C02122-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 02/27/07

Report Number: IQB2967

Received: 02/27/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7C02122 Extracted: 03/02/07	<u>'</u> _										
LCS Analyzed: 03/05/2007 (7C02122-BS	1)										
Total Suspended Solids	939	10	10	mg/l	1000		94	85-115			
Duplicate Analyzed: 03/05/2007 (7C0212	2-DUP1)				Sou	rce: IQC	0209-01				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 7C08093 Extracted: 03/08/07	<u>'</u> _										
Blank Analyzed: 03/08/2007 (7C08093-B	LK1)										
Oil & Grease	ND	5.0	0.94	mg/l							
LCS Analyzed: 03/08/2007 (7C08093-BS	1)										MNR1
Oil & Grease	20.3	5.0	0.94	mg/l	20.0		102	65-120			
LCS Dup Analyzed: 03/08/2007 (7C0809	3-BSD1)										
Oil & Grease	19.7	5.0	0.94	mg/l	20.0		98	65-120	3	20	

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/27/07 Pasadena, CA 91101 Report Number: IQB2967 Received: 02/27/07

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IQB2967-01	413.1 Oil and Grease	Oil & Grease	mg/l	0.57	4.7	15
IQB2967-01	Antimony-200.8	Antimony	ug/l	0.45	2.0	6.00
IQB2967-01	Antimony-200.8, Diss	Antimony	ug/l	0.46	2.0	6.00
IQB2967-01	Cadmium-200.8	Cadmium	ug/l	0.12	1.0	4.00
IQB2967-01	Cadmium-200.8, Diss	Cadmium	ug/l	0.024	1.0	4.00
IQB2967-01	Chloride - 300.0	Chloride	mg/l	58	10	150
IQB2967-01	Copper-200.8	Copper	ug/l	1.70	2.0	14
IQB2967-01	Copper-200.8, Diss	Copper	ug/l	0.50	2.0	14
IQB2967-01	Lead-200.8	Lead	ug/l	1.10	1.0	5.20
IQB2967-01	Lead-200.8, Diss	Lead	ug/l	0.060	1.0	5.20
IQB2967-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.33	0.15	10.00
IQB2967-01	Sulfate-300.0	Sulfate	mg/l	15	0.50	250
IQB2967-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	290	10	850
IQB2967-01	Thallium-200.8	Thallium	ug/l	0.042	1.0	2.00
IQB2967-01	Thallium-200.8, Diss	Thallium	ug/l	0.14	1.0	2.00

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IQB2967 Sampled: 02/27/07
Received: 02/27/07

Attention: Bronwyn Kelly

M-3

DATA QUALIFIERS AND DEFINITIONS

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 02/27/07 Report Number: IQB2967 Received: 02/27/07

Attention: Bronwyn Kelly

Pasadena, CA 91101

Certification Summary

TestAmerica - Irvine, CA

Method	Matrix	Nelac	California
EPA 160.2	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IQB2967-01

Eberline Services

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gross Beta Samples: IQB2967-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Analysis Performed: Mercury - 245.1

Samples: IQB2967-01

Analysis Performed: Mercury - 245.1, Diss

Samples: IQB2967-01

ADDITIONAL ANALYSIS REQUEST FORM

Today's Date: 4/9/0	Del Ma	ar Analytical F	Project Manag	er:(_		
Request via:telepho	one chain of custoo	dy form fax	transmission	∕ <u>`</u> E-mail	other	
Client: MWH-Paul Ps	xing	Contac	et: <u>В</u> Мпи	uin Kell	4	
Project: 2 outre	e. Outfall C	006		· · · · · · · · · · · · · · · · · · ·	14.00	
Date Sampled:	127107	Date	Received:	2/21	107	
Status: in progress						
SAMPLE NUMBER	SAMPLE DESCRIPTI		ANALYSIS REQUESTE		SPECIAL REQUIREME	_
3246701	outfalloo(o (C	10056 Beta -	t well	Tritum	(on)
Add in san	ne workorde due 4/17	107				
TURNAROUN	ID STATUS:5days _				3days	

g:\dmai\misc\forms\add-req.doc

Date: 04/09/07

300 N. Lake Ave., Suite 1200 Pasadena, California 91101

Tel: 626-568-6691 Fax: 626-568-6515

To:	Michele Chamberlin	/ TestAmeric	a, Irvine	Fax No:	949-260-3297
From:	Travis Peterson				
	sign:				
Subject:	Chain-of-Custody l	Form Analyti	cal Request Change	No. of Pa (including	
	the changes listed lor these samples.	below to the	chain-of-custody analytica	l request	form. Include this form with the final
TestAmerica Work Order	Sample ID(s):	Date Collected	Change(s) Requested, No Completed		nge(s) and Method (s) Requested
IQB2023	Outfall 006	02/19/07	None	Ad	d reanalysis of gross beta;
					d Gamma Spectrometry (including 40, Co-60, Cs-137, and Eu-152)
				Le	vel IV Data package
IQB2967	Outfall 006	02/27/07	None	Ad	d gross beta from extra unpreserved poly
				Le	vel IV Data package
The reason for	r these changes:				
Incorrectly ma	arked on COC form				
Lack of sample	•		•	_	
	ersonnel require this	change	X	_	
Other: Conta	iners mislabeled			_	
This Change (Order supersedes all p	revious chang	e orders submitted.		
Thank you					

Del Mar Analytical version 04/28/06 CHAIN OF CUSTODY FORM	Anal	ytical	Versic	o4/28/06	CHA	IN OF	CUST	ODY FC)RM			, -seri		···	Page 1 of 1
Client Name/Address	ddress	1.4		Project		The same of the sa		to manufacture departs of the same			ANA	ANALYSIS RE	REQUIRED		
MWH-Pasadena 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101	dena Avenue 31101	Suite 1.	200	Boeing-SSFL NPDES Routine Outfall 006 Stormwater at FSDF-2	SSFL N Outfall Iter at F	PDES I 006 'SDF-2								ш ⊢	Field readings Temp =
Project Manager: Bronwyn Kelly Sampler: Ricにぶっいみらみ Sampler: Soe Mariscal	Jer. Br	onwyn k 17 N 17 7 R. S. C.	celly 7 6 7	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	lumber: 8-6691 nber: 8-6515			Recoverable 3d, Cu, Pb, Hg	oo lls bns) C Aq∃) əssərƏ	04' NO3+NC	SSI	Dissolved Me		α.	= Hd
Sample Sa Description M	Sample (Container Type	# of Cont.	Sampling Date/Time	ling	Preservative	Bottle *				,SQT		,		Comments
		1L Poly	4	2.27.0	~	HN03	4 ₁	×							
Outfall 006- W		1L Poly	-			HN03	· 4	×							
Outfall 006 W		1L Amber	2			None	2A, 2B		×						
Outfall 006 W		1L Amber	2			HCI	3A, 3B		×						
Outfall 006 W		Poly-500 ml	7			None	4A, 4B			×					
Outfall 006 W		Poty-500 ml	2	A		None	5A, 5B				×				
Outfall 006 W		Poly-1L	_	2.22-0	r 0	None	ဖ					×		ju.	Filter w/in 24hr of receipt at lab
						-									
						•									
		1													
Relinquished By)	2.27	0	- 3 7 : 5 7 Date/Time: / <	Š	Received By		Δ'	Date/Time:	7		2,0	Tul 24	Turn around Time: 24 Hours	e. (check) 5 Days
Relinquished By				Date/Time:		Received By	2	Ď	Date/Time:		<u>'</u>	. 3	48	48 Hours	10 Days
73	١	,)	127	_	\widetilde{z}'			And the second s		124.	10	16	72	72 Hours	Normal
Relinquished By				Date/Time:		Received By		O.	Date/Time:	+			P. B.	Perchlorate Only 72 Hours	72 Hours
>>													Me	Metals Only 72 Hours	lours
													Sa	ample Integrity:	Sample Integrity: (Check) 3/2
Are Oth	15 AX	2	~									H H	2-27-07	70.	
·													107	1 0	

April 18, 2007

Ms. Michele Chamberlin Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project No. IQB2967

Eberline Services NELAP Cert #01120CA (exp. 01/31/08)

Eberline Services Report R704064-8665

Dear Ms. Chamberlin:

Enclosed are results from the analyses of one water sample received at Eberline Services on April 11, 2007. The sample was analyzed according to the accompanying Test America Subcontract Order Form. The requested analysis was gross beta (EPA900.0). The sample was not filtered prior to analysis. Quality control samples consisted of an LCS, blank analysis, duplicate analysis, and matrix spike. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual. A level IV data package will follow within one week.

Please call me if you have any questions concerning this report.

Regards,

For Melissa Mannion

Senior Program Manager

MCM/njv

Enclosure: Report

Subcontract Form Receipt checklist

Invoice

Eberline Services

ANALYSIS RESULTS

SDG 8665 Work Order <u>R704064-01</u> Client TA IRVINE

Contract PROJECT# IQB2967

Received Date 04/11/07

Matrix WATER

Client

Lab

Sample ID

Sample ID Collected Analyzed Nuclide

Results $\pm 2\sigma$ Units

MDA

IQB2967-01

8665-001 02/27/07 04/17/07 Gross Beta 23.5 \pm 2.2 pCi/L

2.0

Certified by_

Report Date <u>04/18/07</u>

Page 1

Eberline Services

QC RESULTS

	L								
<u>S</u>	Lab ample ID	Nuclide	<u>Results</u>	<u>Units</u>	Amount	Added	<u>MDA</u>	Evaluation	
-	LCS 3665-002	Gross Beta	9.30 ± 0.71	pCi/Smp	ol 9.5	58	0.56	97% recove	ry
_	BLANK B665-003	Gross Beta	0.160 ± 0.32	pCi/Smp	ol M	NA.	0.56	<mda< td=""><td></td></mda<>	
		DUPLICATES				ORIGINALS			3 σ
2	Sample ID 8665-004	Nuclide Gross Beta	Results $\pm 2\sigma$ 23.9 \pm 2.6		<u>Sample ID</u> 8665-001	Results ± 23.5 ± 2.			ot) <u>Eval</u> 48 satis.
		SPIKED SAMPLE	·		ORI	GINAL SAMPL	E		
5	Sample ID	Nuclide	Results ± 2 σ	MDA.	Sample ID	Results +	<u>2σ</u> <u>MDA</u>	Added	%Recv

8665-005 Gross Beta 91.8 ± 4.1 3.0 8665-001 23.5 ± 2.2 2.0 63.9 107

Certified by Report Date 04/18/07
Page 2

SUBCONTRACT ORDER

TestAmerica - Irvine, CA IQB2967

SENDING LABORATORY:

TestAmerica - Irvine, CA 17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Michele Chamberlin

RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone:(510) 235-2633 Fax: (510) 235-0438

Project Location: California

Receipt Temperature:_

Analysis	Due	Expires	Comments
Sample ID: IQB2967-01	Water	Sampled: 02	2/27/07 11:30
Gross Beta-O	03/27/07 12:00	08/26/07 11:30	DONT FILTER, 900.0,RESULT>50 pCi/L,run Rad 226&228
Level 4 Data Package -	Out 04/17/07 12:00	03/27/07 11:30	
Radium, Combined-O	04/17/07 12:00	02/27/08 11:30	HOLD for G A&B results; EPA 903.1&904.0,NO FILTER
Strontium 90-O	04/17/07 12:00	02/27/08 11:30	HOLD for Ra 226&228 results, EPA 905.0, DONT FILTER
Tritium-O	04/17/07 12:00	02/27/08 11:30	HOLD for Ra 226&228 results,EPA 906.0, DONT FILTER
Containers Supplied:			
500 ml Poly (G)	500 ml Poly (H)	500 ml Poly (I)	1 Liter Poly (K)

Released By	Date	Received By	Date	
Released By	Date	Received By	Date	

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

ent: 1884	Americ	9	City	VE	_ State _		
-Time received	4/11/07	/0:2000C N	o. <u>12B2</u> 6	16+			
ntoiner ID No.	Box	<_ Requested	TAT (Days)	P.O. Received	Yes []	No []	
numer i.b. itel			INSPECT	ION	,		
Ot	ale on shini	ping container i	ntact?			No [] N/A	
Custody se	als on ship	ping container	dated & signed	•		No [] N/A	
Custody se	ais on sam	ple containers	intact?	10	• -	A\N [] O\	
Custody St	als on sam	ple containers	dated & signed	•		No[] N/A	
Packing m		•			/et []	Dry[] ⊮	MAV
		shipping conta	iner:	Sample Matrix	WHIL		
Number of	containers	per sample: _					
Samples a	are in correc	ct container	/	165[]			
				Yes [√] No [nsiata sam	nie labels [V	ĺ
			d labels [] F	Rad labels [] Appro	onate sam	Missina [1
1. Samples	are: in (good condition	[V] Leaking	g[] Broken Contr	allier []	,411.00	1
a Campine	are: Prese	erved [] Not	preserved (*) bri			
3. Describe	any anoma	ilies:	6-0	251 not-	leak		
1	0L 6	offles	nas v	, 040 - //			- I - I
				1. sample	m	chelle	Cham Di
Cal	led a	leent con	ncerner	y sample	. M	challe	Cham De
				y scomple	Date 4	ichelle	Cham Dit
 14. Was P.M	1. notified c	of any anomalie	2 Va	No[]	Date	1/11/07	<u>Cham Di</u>
 14. Was P.M	1. notified c	of any anomalie	2 Va	S[V] No[] 4/11/07 Time: _	Date	1/11/07	Cham Die
14. Was P.M 15. Inspecte		of any anomalie #K	s? Yei Date:	No [] No []	Date	1/11/07	Cham Die
14. Was P.M	1. notified c	of any anomalie	2 Va	S[V] No[] 4/11/07 Time: _	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	1. notified o	of any anomalie #K	s? Yei Date:	No [] No []	Date)///0+ D	
14. Was P.M 15. Inspecte	notified of	of any anomalie AR mR/hr	s? Ye: Date: Wipe	No [] No []	Date	mR/hr	wipe

March 23, 2007

Vista Project I.D.: 28755

Ms. Michele Chamberlin Test America-Irvine 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on March 01, 2007 under your Project Name "IQB2967". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The recoveries of the native analytes are slightly outside the QC limits in the Ongoing Precision and Recovery sample (OPR). The labeled internal standard recoveries are proportionately low, suggesting that an air bubble was present in the syringe during the spiking of the internal standard solution into the OPR. The re-extraction of the second sample aliquot failed. Because the data quality for this project does not meet our requirements, no invoice will be issued for this analysis.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Walle More

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 3/1/2007

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

28755-001 IQB2967-01

Project 28755 NPQES 276410

SECTION II

Project 28755 NPQES 3765410

Method Blan	k					+				EPA Method 1613
Matrix:	Aqueous		QC Batch No.:	8	3913	Lab	Sample:	0-MB001		
Sample Size:	1.00 L		Date Extracted	: (6-Mar-07	Date	Analyzed DB-5:	14-Mar-07	Date An	alyzed DB-225: NA
1							,			,
Analyte	Conc.	(ug/L)	DL a	EMPC b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD		ND	0.00000131			<u>IS</u>	13C-2,3,7,8-TCI	DD	83.6	25 - 164
1,2,3,7,8-PeCD	DD	ND	0.00000121				13C-1,2,3,7,8-Pe	·CDD	67.4	25 - 181
1,2,3,4,7,8-Hx0	CDD	ND	0.00000276				13C-1,2,3,4,7,8-	HxCDD	82.7	32 - 141
1,2,3,6,7,8-Hx0	CDD	ND	0.00000286				13C-1,2,3,6,7,8-	HxCDD	79.6	28 - 130
1,2,3,7,8,9-Hx	CDD	ND	0.00000273				13C-1,2,3,4,6,7,8	3-HpCDD	71.4	23 - 140
1,2,3,4,6,7,8-H	pCDD	ND	0.00000243				13C-OCDD		58.9	17 - 157
OCDD		ND	0.00000575				13C-2,3,7,8-TCI	DF	82.1	24 - 169
2,3,7,8-TCDF		ND	0.00000101				13C-1,2,3,7,8-Pe	CDF	68.8	24 - 185
1,2,3,7,8-PeCD	F	ND	0.00000153				13C-2,3,4,7,8-Pe	CDF	72.3	21 - 178
2,3,4,7,8-PeCD)F	ND	0.00000144				13C-1,2,3,4,7,8-	HxCDF	72.6	26 - 152
1,2,3,4,7,8-Hx	CDF	ND	0.000000811				13C-1,2,3,6,7,8-	HxCDF	73.3	26 - 123
1,2,3,6,7,8-Hx(CDF	ND	0.000000797				13C-2,3,4,6,7,8-1	HxCDF	77.6	28 - 136
2,3,4,6,7,8-Hx0	CDF	ND	0.000000867				13C-1,2,3,7,8,9-1	HxCDF	77.7	29 - 147
1,2,3,7,8,9-Hx	CDF	ND	0.00000128				13C-1,2,3,4,6,7,8	B-HpCDF	71.9	28 - 143
1,2,3,4,6,7,8-H	pCDF	ND	0.00000123				13C-1,2,3,4,7,8,9	9-HpCDF	59.3	26 - 138
1,2,3,4,7,8,9-Н		ND	0.00000164				13C-OCDF		54.5	17 - 157
OCDF		ND	0.00000470			CRS	37Cl-2,3,7,8-TC	DD	85.3	35 - 197
Totals						Foot	notes			
Total TCDD		ND	0.00000131			a. San	nple specific estimated of	detection limit.		
Total PeCDD		ND	0.00000121				imated maximum possib			
Total HxCDD		ND	0.00000278				thod detection limit.			
Total HpCDD		ND	0.00000243			d. Lov	wer control limit - upper	control limit.		
Total TCDF		ND	0.00000101							
Total PeCDF		ND	0.00000148							
Total HxCDF		ND	0.000000924							
Total HpCDF		ND	0.00000140							

Analyst: MAS Approved By: Martha M. Maier 23-Mar-2007 14:09

Project 28755

NPQES 4746410

OPR Results					EP	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	8913 6-Mar-07	Lab Sample: 0-OPR001 Date Analyzed DB-5: 14-Mar-07	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	12.0	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	62.3	25 - 164	
1,2,3,7,8-PeCDD	50.0	67.5	35 - 71	13C-1,2,3,7,8-PeCDD	61.5	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	63.4	35 - 82	13C-1,2,3,4,7,8-HxCDD	65.4	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	65.0	38 - 67	13C-1,2,3,6,7,8-HxCDD	65.6	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	66.1	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	56.4	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	65.4	35 - 70	13C-OCDD	36.9	17 - 157	
OCDD	100	135	78 - 144	13C-2,3,7,8-TCDF	62.2	24 - 169	
2,3,7,8-TCDF	10.0	13.1	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	67.5	24 - 185	
1,2,3,7,8-PeCDF	50.0	65.5	40 - 67	13C-2,3,4,7,8-PeCDF	68.8	21 - 178	
2,3,4,7,8-PeCDF	50.0	67.6	34 - 80	13C-1,2,3,4,7,8-HxCDF	58.8	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	65.6	36 - 67	13C-1,2,3,6,7,8-HxCDF	58.1	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	67.8	42 - 65	13C-2,3,4,6,7,8-HxCDF	63.0	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	65.2	35 - 78	13C-1,2,3,7,8,9-HxCDF	62.6	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	66.6	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	55.5	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	68.1	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	37.7	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	65.5	39 - 69	13C-OCDF	31.4	17 - 157	
OCDF	100	125	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	74.9	35 - 197	

Analyst: MAS Approved By: Martha M. Maier 23-Mar-2007 14:09

Project 28755

NPQES 5767410

Sample ID: IQB	2967-01								EPA N	Method 1613
Client Data			Sample Data		Lab	oratory Data				
	America-Irvine		Matrix:	Aqueous	Lab	Sample:	28755-001	Date Re	ceived:	1-Mar-07
3	2967 Feb-07		Sample Size:	1.01 L	QC I	Batch No.:	8913	Date Ex	tracted:	6-Mar-07
Time Collected: 27-1					Date	Analyzed DB-5:	22-Mar-07	Date Ana	alyzed DB-225:	NA
Analyte	Conc. (ug/L)	D L a	EMPC ^b	Qualifiers		Labeled Standa	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	521		<u>IS</u>	13C-2,3,7,8-TCD	DD .	78.2	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000001	24			13C-1,2,3,7,8-Pe	CDD	72.8	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000003	00			13C-1,2,3,4,7,8-H	IxCDD	76.1	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000001	38			13C-1,2,3,6,7,8-H	łxCDD	81.6	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	31			13C-1,2,3,4,6,7,8	-HpCDD	54.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	ND	0.000002	90			13C-OCDD		38.6	17 - 157	
OCDD	0.0000350			J		13C-2,3,7,8-TCD	F	76.3	24 - 169	
2,3,7,8-TCDF	ND	0.000000	466			13C-1,2,3,7,8-Pet	CDF	70.1	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000	589			13C-2,3,4,7,8-Pe	CDF	65.0	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000	614			13C-1,2,3,4,7,8-H	HxCDF	83.3	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	543			13C-1,2,3,6,7,8-H	HxCDF	91.2	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000	548			13C-2,3,4,6,7,8-H	HxCDF	87.6	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	658			13C-1,2,3,7,8,9-H	HxCDF	73.5	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000001	17			13C-1,2,3,4,6,7,8	-HpCDF	59.9	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.000001	12			13C-1,2,3,4,7,8,9	-HpCDF	44.6	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	41			13C-OCDF		31.8	17 - 157	
OCDF	ND	0.000002	42		CRS	37Cl-2,3,7,8-TCI	OD	94.3	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000000	521		a. Sa	imple specific estimated	detection limit.			
Total PeCDD	ND	0.000001	24		b. Es	stimated maximum poss	ible concentration.			
Total HxCDD	ND	0.000001	90		c. M	ethod detection limit.				
Total HpCDD	0.00000639				d. Lo	ower control limit - uppe	er control limit.			
Total TCDF	ND	0.000000	466							
Total PeCDF	ND	0.000000	602							
Total HxCDF	ND	0.000000	730							
Total HpCDF	ND	0.000001	26							

Analyst: RAS Approved By: Martha M. Maier 23-Mar-2007 14:09

Project 28755

NPQES 6748410

APPENDIX

Project 28755 NPQES 7769410

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

I Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Project 28755 NPQES 8750410

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

Project 28755 NPQES 9751410

2875S, 1.6°C

SUBCONTRACT ORDER - PROJECT # IQB2967

TestAmerica - Irvine, CA

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Project 28755

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Michele Chamberlin

RECEIVING LABORATORY:

MARE 107512410

Vista Analytical Laboratory-SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone:(916) 673-1520

Fax: (916) 673-0106

Project Location: California

Standard TAT is requ	ested unless specific due date is requested => Due	e Date: Initials:
Analysis	Expiration	Comments
Sample ID: IQB2967-01	Water Sampled: 02/27/07 11:30	
1613-Dioxin-HR-Alta	03/06/07 11:30	J flags,17 congeners,no TEQ,ug/L,sub=Alta
EDD + Level 4	03/27/07 11:30	Excel EDD email to pm, Include Std logs for Lvl IV
Containers Supplied:		
1 L Amber (IQB2967-0)	1C)	
1 L Amber (IQB2967-0)	1D)	

		·		
		•		
	SAMPLE INTEG	RITY:		
All containers intact: Yes No Custody Seals Present: Yes No	Sample labels/COC agree: Samples Preserved Properly: Ye	es	eived On Ice:: eived at (temp):	Yes No 1.6°C
Released By	Date Time Received	<i>y</i> . / <i>G</i>	3/1/07 Date	1102 Time
Released By	Date Time Received	⊥By	Date	Time Page 1 of 1

SAMPLE LOG-IN CHECKLIST

Alta Project #:	2875	<u> </u>			_ TA	r <u>STI</u>	<u>)</u>
	Date/Time		Initial	s:	Locat	ion:	2-2
Samples Arrival:	3.1.07	1058	FE	JB	Shelf/	Rack: <u>\</u>) A
	Date/Time	Initial	s:	Location: WR-2			
Logged In:	3.1.07	1401	o Fer	3		Rack: 13	
Delivered By:	FedEx	UPS	Cal	DHL	Hand		Other
Preservation:	Ice) В	lue Ice	ce Dry k		No	ne
Temp °C 1.6°	T	Γime:	1101.	ongo is it.	Thermometer ID: IR-1		

				YES	NO	NA			
Adequate Sample Volume Received	?			1					
Holding Time Acceptable?				V					
Shipping Container(s) Intact?				1					
Shipping Custody Seals Intact?				1					
Shipping Documentation Present?				W		-			
Airbill Trk # 790	068279-	7565		2					
Sample Container Intact?				V					
Sample Custody Seals Intact?					-	~			
Chain of Custody / Sample Documer	ntation Present?			V					
COC Anomaly/Sample Acceptance I	COC Anomaly/Sample Acceptance Form completed?								
If Chlorinated or Drinking Water Sam	nples, Acceptable P	reservation?	····			V			
Na ₂ S ₂ O ₃ Preservation Documented?	coc	San Conta	•	Mo	ne				
Shipping Container	Alta Client	Client Retain Return Dis				ose			

Comments:

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client: TestAmerica, Inc. - Irvine

03/20/07 20:26

17461 Derian Ave, Suite 100

Received Date:

02/28/07 10:30

Irvine, CA 92614

Turn Around:

Report Date:

Normal

Attention: Michele Chamberlin

Work Order #:

7022815

Phone: (949) 261-1022

Fax: (949) 260-3297

Client Project: IQB2967

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Michele Chamberlin:

Enclosed are the results of analyses for samples received 02/28/07 10:30 with the Chain of Custody document. The samples were received in good condition, at 4.1 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Taylor Maligmat

Project Manager

*nelac

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022815 Project ID: IQB2967 Date Received: 02/28/07 10:30 Date Reported: 03/20/07 20:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IQB2967-01	Client		7022815-01	Water	02/27/07 11:30

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022815 Project ID: IQB2967 Date Received: 02/28/07 10:30 Date Reported: 03/20/07 20:26

IQB2967-01 7022815-01 (Water)

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W7C0122	03/04/07	03/13/07 jl	
Mercury, Total	0.057	0.050	ug/l	0.20	1	EPA 245.1	W7C0122	03/04/07	03/13/07 jl	J

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022815 Project ID: IQB2967 Date Received: 02/28/07 10:30 Date Reported: 03/20/07 20:26

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022815 Project ID: IQB2967 Date Received: 02/28/07 10:30 Date Reported: 03/20/07 20:26

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W7C0122 - EPA 245.1										
Blank (W7C0122-BLK1)				Analyzed	03/13/07					
Mercury, Total	ND	0.20	ug/l							
Mercury, Dissolved	ND	0.20	ug/l							
LCS (W7C0122-BS1)				Analyzed	03/13/07					
Mercury, Total	1.13	0.20	ug/l	1.00		113	85-115			
Mercury, Dissolved	1.13	0.20	ug/l	1.00		113	85-115			
Matrix Spike (W7C0122-MS1)	Sour	ce: 7030235-0	2	Analyzed: 03/13/07						
Mercury, Total	1.25	0.20	ug/l	1.00	0.049	120	70-130			
Mercury, Dissolved	1.25	0.20	ug/l	1.00	0.049	120	70-130			
Matrix Spike (W7C0122-MS2)	Sour	ce: 7030235-0	8	Analyzed: 03/13/07						
Mercury, Total	0.878	0.20	ug/l	1.00	0.035	84.3	70-130			
Mercury, Dissolved	0.878	0.20	ug/l	1.00	0.035	84.3	70-130			
Matrix Spike Dup (W7C0122-MSD1)	Sour	ce: 7030235-0	2	Analyzed	03/13/07					
Mercury, Total	1.22	0.20	ug/l	1.00	0.049	117	70-130	2.43	20	
Mercury, Dissolved	1.22	0.20	ug/l	1.00	0.049	117	70-130	2.43	20	
Matrix Spike Dup (W7C0122-MSD2)	Sour	ce: 7030235-0	8	Analyzed	03/13/07					
Mercury, Total	0.999	0.20	ug/l	1.00	0.035	96.4	70-130	12.9	20	
Mercury, Dissolved	0.999	0.20	ug/l	1.00	0.035	96.4	70-130	12.9	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022815 Project ID: IQB2967

Date Received: 02/28/07 10:30 Date Reported: 03/20/07 20:26

Notes and Definitions

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 19

EBERLINE SERVICES REPORT

February 26, 2007

February 26, 2007

Ms. Michele Chamberlin Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project No. IQA2793

Eberline Services NELAP Cert #01120CA (exp. 01/31/08)

Eberline Services Report R701193-8655

Dear Ms. Chamberlin:

Enclosed is a Level IV data report (on CD) for the results of one water sample received at Eberline Services on January 31, 2007. The sample was analyzed according to the accompanying Test America Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA905.0), Ra-226 (EPA903.1), and Ra-228 (EPA904.0). Quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spikes (excluding Sr-90 and Ra-228). All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as Sr-90 and Ra-228, do not require matrix spike analyses to be performed. A copy of this report (on CD) was mailed to Ms. Elizabeth Wessling, 12269 E. Vassar Dr., Aurora CO 80014.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melissi Mann

MCM/njv

Enclosure: CD Report

cc: Elizabeth Wessling, CD Report

Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.eberlineservices.com

Table of Contents

Section 1

Chain-of-Custody & Sample Receipt Information
Analysis Results
Sample Analysis Raw Data
Aliquot Information

Section 2

Preparation Logs & Standards Certification for Quality Control Samples

Section 3

Instrument Calibration Information

Section 1

Chain-of-Custody & Sample Receipt Information
Analysis Results
Sample Analysis Raw Data
Aliquot Information

SUBCONTRACT ORDER - PROJECT # IQA2793

SENDING LABORATORY: TestAmerica - Irvine, CA Eberline Services 17461 Derian Avenue. Suite 100 2030 Wright Avenue Irvine, CA 92614 Richmond, CA 94804 Phone: (949) 261-1022 Phone : (510) 235-2633 Fax: (949) 260-3297 Fax: (510) 235-0438 Project Manager: Michele Chamberlin Kichmond, CA 94804

Standard TAT is requested unless specific due date is requested => Due D		ate: Initials:
Analysis	Expiration	Comments
Sample ID: IQA2793-01	Water Sampled: 01/28/07 10:40	
Gross Alpha-O	07/27/07 10:40	EPA 900.0, DONT FILTER, 5 day HT!, sub to Eberline
Gross Beta-O	07/27/07 10:40	EPA 900.0, DONT FILTER, 5 day HT!, sub to Eberline
Level 4 + EDD-OUT	02/25/07 10:40	**LEVEL IV QC, ACCESS 7 EDD**
Radium, Combined-O	01/28/08 10:40	EPA 903.1 & 904.0, DONT FILTER, sub to Eberline
Strontium 90-O	01/28/08 10:40	EPA 905.0, DONT FILTER, 5 day HT!, sub to Eberline
Tritium-O	01/28/08 10:40	EPA 906.0, DONT FILTER, sub to Eberline
Containers Supplied:		
1 gal Poly (IQA2793-01L)		
1 gal Poly (IQA2793-01M	()	
1 gal Poly (IQA2793-01N)	
40 ml Amber Voa Vial (IC	(A2793-01O)	
40 ml Amber Voa Vial (IC	(A2793-01P)	
40 ml Amber Voa Vial (IC)A2793-01Q)	

_	SAMPL	E INTEGRITY:		
All containers intact: ☐ Yes ☐ No Custody Seals Present: ☐ Yes ☐ No	Sample labels/COC agree: Samples Preserved Properly		Samples Received On Ice:: Samples Received at (temp):	Yes No
- Va Bank	1/30/07	ithus	00 31 57	9:15
Released By	Date Time	Received By	Date	Time
Released By	Date Time	Received By	Date	Time

Page 1 of 1

Ion Chamber Ser. No.	Calibration date
Alpha Meter Ser. No.	Calibration date
Beta/Gamma Meter Ser. No	Calibration date

Form SCP-02, 06-24-05

Page A3 of A14

"over 55 years of quality nuclear services"

Eberline Services

ANALYSIS RESULTS

 SDG
 8655
 Client
 TA IRVINE

 Work Order
 R701193-01
 Contract
 PROJECT# IQA2793

 Received Date
 01/31/07
 Matrix
 WATER

Client Sample ID	Lab Sample ID	Collected Analyzed	<u>Nuclide</u>	Results ± 2σ	<u>Units</u>	MDA
IQA2793-01	8655-001	01/28/07 02/20/07	GrossAlpha	-1.15 ± 0.75	pCi/L	1.3
		02/20/07	Gross Beta	56.3 ± 1.9	pCi/L	1.3
		02/15/07	Ra-228	0.013 ± 0.092	pCi/L	0.26
		02/12/07	H-3	47.7 ± 93	pCi/L	150
		02/16/07	Ra-226	0.254 ± 0.45	pCi/L	0.79
		02/09/07	Sr-90	0.004 + 0.24	pCi/L	0.49

Certified by Report Date 02/23/07
Page 1

Eberline Services

QC RESULTS

SDG 8655 Client TA IRVINE

Work Order <u>R701193-01</u> Contract <u>PR0JECT# IQA2793</u>

Received Date 01/31/07 Matrix WATER

Lab <u>Sample ID</u>	<u>Nuclide</u>	<u>Results</u>	<u>Units</u>	Amount	Added MD2	<u> </u>	Evaluation	
<u>LCS</u> 8655-002	GrossAlpha Gross Beta Ra-228 H-3 Ra-226	7.14 ± 0.56 11.7 ± 0.47 12.0 ± 0.70 224 ± 14 5.90 ± 0.27	pCi/SmppCi/SmppCi/SmppCi/SmppCi/SmppCi/SmppCi/SmppCi/SmppCi/SmppCi/SmppCi/SmppCi/SmppCi/SmppCi/Smp	ol 11. ol 11.	5 0.4 2 0.4 2 16	16 16	64% recover 102% recove 107% recove 97% recover 106% recove	ery ery y
BLANK	Sr-90	12.8 ± 0.61	pCi/Smp	ol 12.	0 0.2	23	107% recove	ery
8655-003	GrossAlpha Gross Beta Ra-228 H-3 Ra-226 Sr-90	-0.097 ± 0.12 -0.021 ± 0.16 -0.099 ± 0.16 -1.48 ± 9.0 0.006 ± 0.040 0.058 ± 0.13	pCi/Smp pCi/Smp pCi/Smp pCi/Smp pCi/Smp	ol nol nol	A 0.2 A 0.4 A 15	26 16 078	<mda <mda="" <mda<="" td=""><td></td></mda>	
	DUPLICATES				ORIGINALS		3	3 σ
<u>Sample ID</u> 8655-004	Nuclide GrossAlpha Gross Beta Ra-228 H-3 Ra-226 Sr-90	Results ± 20 -1.30 ± 0.68 55.8 ± 1.9 0.006 ± 0.11 32.9 ± 93 -0.049 ± 0.37 0.044 ± 0.44	MDA 1.2 1.5 0.25 160 0.74 0.93	<u>Sample ID</u> 8655-001	Results ± 20 -1.15 ± 0.75 56.3 ± 1.9 0.013 ± 0.092 47.7 ± 93 0.254 ± 0.45 0.004 ± 0.24	MDA 1.3 1.3 0.26 150 0.79 0.49	RPD (To	0 satis. 43 satis. 0 satis. 0 satis. 0 satis. 0 satis. 0 satis.
***************************************	SPIKED SAMPLE	3		ORI	GINAL SAMPLE			
<u>Sample ID</u> 8655-005	Nuclide GrossAlpha Gross Beta H-3 Ra-226	Results ± 2σ 137 ± 3.2 158 ± 3.0 19300 ± 420 121 ± 4.4	MDA 0.71 1.2 210 0.76	<u>Sample ID</u> 8655-001	Results ± 20 -1.15 ± 0.75 56.3 ± 1.9 47.7 ± 93 0.254 ± 0.45	MDA 1.3 1.3 150	Added 103 96.1 21200 123	*Recv 134 106 91 98

Certified by Report Date 02/23/07
Page 2