Project: NPDES SDG: IPA1192 Analysis: Metals

DATA VALIDATION REPORT

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

17461 Derian Ave., Suite 100, irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1914 E. Cookey Dr., Suite A., Collion, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesepoake Or., Suite 805, San Diego, CA 92123 (858) 505-8596 (AX (858) 305-9689 9830 South \$1st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0051 2320 E. Susset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 004

300 North Lake Avenue, Suite 1200

Report Number: IPA1192

Sampled: 01/14/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Received: 01/15/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA1192-01 (Outfall 00 Reporting Units: ug/l)4 - Water)								Rev Qual
Antimony	EPA 200.8	6A16092	0.050	2.0	1.2	1	01/16/06	01/17/06	PING E I
Cadmium	EPA 200.8	6A16092	0.025	1.0	0.080	ļ	01/16/06	01/17/06	J 1 8
Copper	EPA 200.8	6A16092	0.25	2.0	1.9	1	01/16/06	01/17/06	j
Lead	EPA 200.8	6A16092	0.040	1.0	0.69	1	01/16/06	01/17/06	J
Mercury	EPA 245.1	6A17070	0.050	0.20	0.051	1	01/17/06	01/17/06	The second secon

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

LEVEL IV

The results portain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IPA1192 < Page 2 of 11>

APPENDIX G

Section 21

Outfall 005, January 01, 2006

Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

Project: Routine Outfall 005

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Sampled: 01/01/06 Received: 01/01/06

Issued: 01/18/06 08:29

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED:

Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

CLIENT ID

MATRIX

IPA0005-01

Outfall 005

Water

Reviewed By:

Del Mar Analytical, IrvineMichele Chamberlin

Michele Chamberein

Project Manager

Attention: Bronwyn Kelly

300 North Lake Avenue, Suite 1200

Project ID: Routine Outfall 005

Pasadena, CA 91101

Report Number: IPA0005

Sampled: 01/01/06

Received: 01/01/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0005-01 (Outfall 005 - W	/ater)								
Reporting Units: ug/l									
Antimony	EPA 200.8	6A04084	0.18	2.0	5.9	1	01/04/06	01/05/06	
Cadmium	EPA 200.8	6A04084	0.015	1.0	0.052	1	01/04/06	01/05/06	J
Copper	EPA 200.8	6A04084	0.49	2.0	2.2	1	01/04/06	01/05/06	В
Lead	EPA 200.8	6A04084	0.040	1.0	0.72	1	01/04/06	01/05/06	J
Mercury	EPA 245.1	6A03072	0.050	0.20	ND	1	01/03/06	01/03/06	

Project ID: Routine Outfall 005

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Report Number: IPA0005

Sampled: 01/01/06

Received: 01/01/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0005-01 (Outfall 005 -	Water) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	6A01004	2.6	5.0	160	10	01/01/06	01/01/06	
Nitrate/Nitrite-N	EPA 300.0	6A01004	0.72	2.6	51	10	01/01/06	01/01/06	
Oil & Grease	EPA 413.1	6A06048	0.91	4.9	2.3	1	01/06/06	01/06/06	J
Sulfate	EPA 300.0	6A01004	1.8	5.0	76	10	01/01/06	01/01/06	
Total Dissolved Solids	SM2540C	6A03093	10	10	980	1	01/03/06	01/03/06	
Total Suspended Solids	EPA 160.2	6A05089	10	10	25	1	01/05/06	01/05/06	
Sample ID: IPA0005-01RE1 (Outfall 0	05 - Water)								
Reporting Units: mg/l									
Chloride	EPA 300.0	6A12052	1.5	5.0	160	10	01/12/06	01/12/06	
Total Dissolved Solids	SM2540C	6A10114	10	10	900	1	01/06/06	01/06/06	

Project ID: Routine Outfall 005

Sampled: 01/01/06

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IPA0005

Received: 01/01/06

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 005 (IPA0005-01) - Water	er				
EPA 300.0	2	01/01/2006 09:06	01/01/2006 15:25	01/01/2006 17:30	01/01/2006 21:46

Project ID: Routine Outfall 005

300 North Lake Avenue, Suite 1200

Report Number: IPA0005

Sampled: 01/01/06

Received: 01/01/06

Pasadena, CA 91101 Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

METALS

	1	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03072 Extracted: 01/03/06											
	-										
Blank Analyzed: 01/03/2006 (6A03072-B	LK1)										
Mercury	ND	0.20	0.063	ug/l							
LCS Analyzed: 01/03/2006 (6A03072-BS)	b										
Mercury	7.95	0.20	0.063	ug/l	8.00		99	85-115			
•											
Matrix Spike Analyzed: 01/03/2006 (6A0)	-					rce: IOL2					
Mercury	7.95	0.20	0.063	ug/l	8.00	ND	99	70-130			
Matrix Spike Dup Analyzed: 01/03/2006	(6A03072-MSI	D1)			Sour	rce: IOL2	2617-01				
Mercury	8.00	0.20	0.063	ug/l	8.00	ND	100	70-130	1	20	
Batch: 6A04084 Extracted: 01/04/06											
2.00.00.00.00.00.00.00.00.00.00.00.00.00	•										
Blank Analyzed: 01/05/2006 (6A04084-Bl	LK1)										
Antimony	0.162	2.0	0.050	ug/l							J
Cadmium	ND	1.0	0.025	ug/i							
Copper	0.321	2.0	0.25	ug/l							J
Lead	ND	1.0	0.040	ug/l							
LCS Analyzed: 01/05/2006 (6A04084-BS1)										
Antimony	78.5	2.0	0.050	ug/l	80.0		98	85-115			
Cadmium	80.2	1.0	0.025	ug/l	80.0		100	85-115			
Copper	80.8	2.0	0.25	ug/l	80.0		101	85-115			
Lead	78.3	1.0	0.040	ug/l	80.0		98	85-I15			
Matrix Spike Analyzed: 01/05/2006 (6A04	084-MS1)				Sour	ce: IOL2	694-49				
Antimony	78.2	2.0	0.050	ug/l	80.0	0.26	97	70-130			
Cadmium	76.0	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	102	2.0	0.25	ug/l	80.0	23	99	70-130			
Lead	84.3	1.0	0.040	ug/l	80.0	2.7	102	70-130			

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

Project ID: Routine Outfall 005

Sampled: 01/01/06

Pasadena, CA 91101

Report Number: IPA0005

Received: 01/01/06

Attention: Bronwyn Kelly

300 North Lake Avenue, Suite 1200

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A04084 Extracted: 01/04/06	.										
Matrix Spike Analyzed: 01/05/2006 (6A0	4084-MS2)				Sou	rce: IOL	2694-50				
Antimony	80.0	2.0	0.050	ug/l	80.0	0.094	100	70-130			
Cadmium	76.2	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	101	2.0	0.25	ug/l	80.0	18	104	70-130			
Lead	87.5	1.0	0.040	ug/l	80.0	1.8	107	70-130			
Matrix Spike Dup Analyzed: 01/05/2006	(6A04084-M	SD1)			Sou	rce: IOL2	2694-49				
Antimony	76.7	2.0	0.050	ug/l	80.0	0.26	96	70-130	2	20	
Cadmium	76.1	1.0	0.025	ug/l	80.0	ND	95	70-130	0	20	
Copper	101	2.0	0.25	ug/l	80.0	23	98	70-130	1	20	
Lead	83.9	1.0	0.040	ug/l	80.0	2.7	102	70-130	Ī	20	

Project ID: Routine Outfall 005

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0005

Sampled: 01/01/06 Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A01004 Extracted: 01/01/06	<u> </u>										
Blank Analyzed: 01/01/2006 (6A01004-B	LK1)										
Chloride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.15	0.080	mg/l							
Sulfate	ND	0.50	0.45	mg/l							
LCS Analyzed: 01/01/2006 (6A01004-BS	1)										
Chloride	4.88	0.50	0.15	mg/l	5.00		98	90-110			M-3
Sulfate	9.56	0.50	0.45	mg/l	10.0		96	90-110			
Matrix Spike Analyzed: 01/01/2006 (6A0	1004-MS1)				Sou	rce: IPA(0003-01				
Sulfate	14.4	0.50	0.45	mg/l	10.0	5.1	93	80-120			
Matrix Spike Dup Analyzed: 01/01/2006	(6A01004-MS	SD1)			Sou	rce: IPA(0003-01				
Sulfate	14.8	0.50	0.45	mg/l	10.0	5.1	97	80-120	3	20	
Batch: 6A03093 Extracted: 01/03/06	<u>.</u>										
Blank Analyzed: 01/03/2006 (6A03093-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/03/2006 (6A03093-BS	1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/03/2006 (6A0309	3-DUP1)				Sou	rce: IPA0	005-01				
Total Dissolved Solids	981	10	10	mg/l		980			0	10	
Batch: 6A05089 Extracted: 01/05/06	<u>.</u>										
	-										
Blank Analyzed: 01/05/2006 (6A05089-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							

Del Mar Analytical, Irvine

Michele Chamberlin Project Manager

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Routine Outfall 005

Report Number: IPA0005

Sampled: 01/01/06

Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A05089 Extracted: 01/05/06	_										
LCS Analyzed: 01/05/2006 (6A05089-BS	l)										
Total Suspended Solids	979	10	10	mg/l	1000		98	85-115			
Duplicate Analyzed: 01/05/2006 (6A0508)	9-DUP1)				Sou	rce: IPA(0012-01				
Total Suspended Solids	458	10	10	mg/l		350			27	10	R-3
Batch: 6A06048 Extracted: 01/06/06											
Baten, 0/400040 Extracted, 01/00/00	-										
Blank Analyzed: 01/06/2006 (6A06048-B	LK1)										
Oil & Grease	ND	5.0	0.94	mg/l							
LCS Analyzed: 01/06/2006 (6A06048-BS)	n										M-NR1
Oil & Grease	19.2	5.0	0.94	mg/l	20.0		96	65-120			
1 CC D 1 1- 01/0//2007 /C 10/048	DCD4			_							
LCS Dup Analyzed: 01/06/2006 (6A06048 Oil & Grease	19.6	5.0	0.94		20.0		98	65-120	2	20	
Oil & Grease	19.0	5.0	0.94	mg/l	20.0		98	03-120	2	20	
Batch: 6A10114 Extracted: 01/06/06											
DI	. TZ4\										
Blank Analyzed: 01/06/2006 (6A10114-Bl	•	10	10	ø							
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/06/2006 (6A10114-BS1)										
Total Dissolved Solids	948	10	10	mg/l	1000		95	90-110			
Duplicate Analyzed: 01/06/2006 (6A10114	i-DUP1)				Sour	ce: IPA0	005-01RI	E1			
Total Dissolved Solids	946	10	10	mg/l		900			5	10	

Del Mar Analytical, IrvineMichele Chamberlin
Project Manager

Attention: Bronwyn Kelly

Project ID: Routine Outfall 005

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IPA0005

Sampled: 01/01/06

Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

Analyte Batch: 6A12052 Extracted: 01/12/06	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 01/12/2006 (6A12052-B)	,										
Chloride	ND	0.50	0.15	mg/l							
LCS Analyzed: 01/12/2006 (6A12052-BS1	l)										
Chloride	5.09	0.50	0.15	mg/l	5.00		102	90-110			M-3

Sampled: 01/01/06

MWH-Pasadena/Boeing

Project ID: Routine Outfall 005

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IPA0005 Received: 01/01/06

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IPA0005-01	413.1 Oil and Grease	Oil & Grease	mg/l	2.30	4.9	15
IPA0005-01	Antimony-200.8	Antimony	ug/l	5.90	2.0	6.00
IPA0005-01	Cadmium-200.8	Cadmium	ug/l	0.052	1.0	4.00
IPA0005-01	Chloride - 300.0	Chloride	mg/l	160	5.0	150
IPA0005-01	Copper-200.8	Copper	ug/l	2.20	2.0	14
IPA0005-01	Mercury - 245.1	Mercury	ug/l	0	0.20	0.20
IPA0005-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	51	2.6	10.00
IPA0005-01	Sulfate-300.0	Sulfate	mg/l	76	5.0	250
IPA0005-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	980	10	850
IPA0005-01RE1	Chloride - 300.0	Chloride	mg/l	160	5.0	150
IPA0005-01RE1	TDS - SM 2540C	Total Dissolved Solids	mg/l	900	10	850

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 005

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0005

Sampled: 01/01/06

Received: 01/01/06

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

R-3 The RPD exceeded the method control limit due to sample matrix effects.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

Project ID: Routine Outfall 005

Sampled: 01/01/06

Pasadena, CA 91101

Report Number: IPA0005

Received: 01/01/06

Attention: Bronwyn Kelly

300 North Lake Avenue, Suite 1200

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IPA0005-01

Analysis Performed: EDD + Level 4

Samples: IPA0005-01

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

Del Mar Analytical version 02/17/04 Client Name/Address: Roeing Routis	Anal	lytical s.	Version	02/17/04 Project Boeing-	SS	- Table 1	30:	OF CUSTODY FORM	Ö (s)	a		H ISI	ANALYSIS REQUIRED	1	Dage 1 of 1	-
300 North Lake Avenue, Suite 1200 Pasadena. CA 91101	Avenu 91101	e, Suite 1;	200	Stormw	Stormwater at FSDF-	SDF-1		eteMeta g		·					Temp = 5.6	
Project Manager: Bronwyn Kelly	ger. B	ronwyn K	elly	Phone (828) 5	Phone Number.	der ministration de la companya de l		erable Pb, H					<u></u>		P# / &O	
Sampler R F TX rrist	is	وز روم	ر ک	Fax Number: (626) 568-65	(626) 568-6515			al Recove Cd, Cu, I	s bns) ((essend <i>2</i>	SO4, NC	SST ,8				Comments	
Sample S	Sample	Container	* C	Sampling	pling	Preservative	Bottle .	stoT .de			SOT		<u> </u>			
1-		Poly-1L	-	.0		HN03	4	×								
Ouffall 005- W	>	Paly-1	-			HN03	18	×							etemen men men metalmin sem blenge syk-nin ble bleveske krivitetske der men men sem och selme frimme	
Outfall 005 W	>	Glass-	2			None	2A, 2B		×							
Outfall 005	*	Glass. Amber	2			당	3A, 3B		×							
Outfall 005	3	Poly-500 mi	2	B		None	₩, 4B			×						
Outfall 005	3	Poly-500	~	1.60	900	None	5A, 5B				×					
															\$\$\$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		- Carrier and Carr														
		L														
Relinquished By	\ \ >	N	ă	Date/Time: o/-c/-c/-	7.7.7. s	Received By	4	<u></u>	Sate/Time:)/ ;;	\ <u>`</u>	13/5	احْر	24 Hours 5 Days	ne: (check) 5 Days	
Remainshed By	/ × ·		Ĭ,	Date/Time:	125	Received By	}		Date/Time	4 as	30/	-		48 Hours	10 Days	
Kelinouished Bv),	۶ <u>آ</u>) 	Date/Time:		Received By			Date/Time.					Perchiorate Only 72 Hours	ly 72 Hours	
-			i					(•		Metals Only 72 Hours	Hours	
									_			1020		Commission integral) · · · · · · · · · · · · · · · · · · ·	
										<u>`</u>		1		Name and and	Sample megaliy (Check)	

January 16, 2006

Alta Project I.D.: 27137

Ms. Michele Chamberlin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on January 04, 2006 under your Project Name "IPA0005". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier

Director of HRMS Services

Washe More

Alto Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. This report should not be reproduced except in full without the written approval. of ALTA.

Section I: Sample Inventory Report
Date Received: 1/4/2006

Aita Lab. ID

Client Sample ID

27137-001

IPA0005

SECTION II

Project 27137 Page 3 of 273

Martha M. Maier 16-Jan-2006 11:43

Approved By:

Method Blank		The comments of the control of the c		EPA Method 1613
Matrix: Aqueous	QC Batch No.:	7632	Lab Sample: 0-MB001	
Sample Size: 1.00 L	Date Extracted:	8-Jan-06	Date Analyzed DB-5: 11-Jan-06	Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	DL a EMI	EMPC b Qualifiers	Labeled Standard	%R LCL-UCL ^d Qualifiers
2,3,7,8-TCDD ND	0.000000671		<u>1S</u> 13C-2,3,7,8-TCDD	84.0 25 - 164
1,2,3,7,8-PeCDD ND	0.000000560		13C-1,2,3,7,8-PeCDD	78.7 25 - 181
1,2,3,4,7,8-HxCDD ND	0.00000149		13C-1,2,3,4,7,8-HxCDD	81.9 32-141
1,2,3,6,7,8-HxCDD ND	0.00000147		13C-1,2,3,6,7,8-HxCDD	74.4 28 - 130
1,2,3,7,8,9-HxCDD	0.00000145		13C-1,2,3,4,6,7,8-HpCDD	75.6 23 - 140
1,2,3,4,6,7,8-HpCDD ND	0.00000146		13C-0CDD	40.1 17 - 157
OCDD ND	0.00000535		13C-2,3,7,8-TCDF	82.6 24 - 169
2,3,7,8-TCDF ND	0.000000546		13C-1,2,3,7,8-PeCDF	65.3 24 - 185
DY	0.00000112		13C-2,3,4,7,8-PeCDF	71.3 21-178
S			13C-1,2,3,4,7,8-HxCDF	73.7 26 - 152
2	0.000000511		13C-1,2,3,6,7,8-HxCDF	70.0 26 - 123
1,2,3,6,7,8-HxCDF ND	0.000000518		13C-2,3,4,6,7,8-HxCDF	78.0 28 - 136
2,3,4,6,7,8-HxCDF	0.000000522		13C-1,2,3,7,8,9-HxCDF	79.2 29 - 147
			13C-1,2,3,4,6,7,8-HpCDF	64.7 28 - 143
Q.	0.000000764		13C-1,2,3,4,7,8,9-HpCDF	76.3
(9-HpCDF ND			13C-OCDF	49.6 17 - 157
OCDF	0,00000360		CRS 37Cl-2,3,7,8-TCDD	88.7 35 - 197
Totals			Footnotes	
Total TCDD ND	0.00000671		Sample specific estimated detection limit. Estimated maximum possible concentration.	
2	0.00000147		c. Method detection limit.	
Total HpCDD	0.00000146		d. Lower control limit - upper control limit.	
Total TCDF ND	0.000000546			
Total PeCDR	0.000000097		or o	
	0.000000553			
Total HpCDF	0.00000092			

Analyst JMH

OPR Results				EPA Method 1613	d 1613
Matrix Aqueous Sample Size: 1.00 L	QC Batch No Date Extracted.	7632 8-Jan-06	Lab Sample: 0-OPR001 Date Analyzed DB-5: 11-Jan-06	Date Analyzed DB-225:	S: NA
Analyte	Spike Conc. Conc. (ng/mL)	OPR Limits	Labeled Standard	%R LCL	CLUCL
2,3,7,8-TCDD	10.0 8.44	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	66.2 25 - 104	, o.
1,2,3,7,8-PeCDD	50.0 48.8	35-71	13C-1,2,3,7,8-PeCDD	70.5 25 - 181	00
1,2,3,4,7,8-HxCDD	50.0 48.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	68.7 32 - 141	[4]
1,2,3,6,7,8-HxCDD	50.0	38-67	13C-1,2,3,6,7,8-HxCDD	65.6 28 - 130	130
1,2,3,7,8,9-HxCDD	50.0 48.7	32.81	13C-1,2,3,4,6,7,8-HpCDD	70.6 23 - 140	40
1,2,3,4,6,7,8-HpCDD	50.0 47.2	35 - 70	13C-0CDD	49.9 17 - 157	157
ОСДО	100	78 - 144	13C-2,3,7,8-TCDF	62.9 24 - 169	691
2,3,7,8-TCDF	10.0	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	63.1 24 - 185	185
1,2,3,7,8-PeCDF	50.0% 46.6	40 - 67	13C-2,3,4,7,8-PeCDF	64.2 21 - 178	178
2,3,4,7,8-PeCDF	50.0 48.4	34 - 80	13C-1,2,3,4,7,8-HxCDF	65.4 26 - 152	152
1,2,3,4,7,8-HxCDF	50.0 47.6	36 - 67	13C-1,2,3,6,7,8-HxCDF	63.8 26 - 123	123
1,2,3,6,7,8-HxCDF	50.0 48.7	42 - 65	13C-2,3,4,6,7,8-HxCDF	67.9 28 - 136	136
2,3,4,6,7,8-HxCDF	50,0	35 - 78	13C-1,2,3,7,8,9-HxCDF	70.4 29 - 147	147
1,2,3,7,8,9-HxCDF	50.0 47.3	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	63.1 28 - 143	143
1,2,3,4,6,7,8-HpCDF	50.0	41-61	13C-1,2,3,4,7,8,9-HpCDF	70.1 26-138	138
1,2,3,4,7,8,9-HpCDF	50.0 48.4	39 - 69	13C-OCDF	56.4 17 - 157	157
OCDF	246 001	63 - 170	CRS 37Cl-2,3,7,8-TCDD	81.7 35 197	197

Approved By: Martha M. Maier 16-Jan-2006 11:43

Analyst: JMH

Sample ID: IPA0005							EPA N	EPA Method 1613
Client Data Name Del Mar Analytical, Irvine Project: IPA0005 Date Collected 1-Jan-06 Time Collected: 0906	SI Z S	Sample Data Matrix. Sample Size:	Aqueous 0.925 L	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	27137-001 7632 12-Jan-06	Date Received: Date Extracted Date Analyzed	Date Received: Date Lixtracted Date Analyzed DB-225:	4-Jan-06 8-Jan-06 NA
Analyte Conc. (ug/L) DL	et et	EMPCb	Qualifiers	Labeled Standard	ırd	%R 1	TCT-CCT _q	Ouslifiers
2,3,7,8-TCDD ND 0.00	0.000000816	9		IS 13C-2,3,7,8-TCDD	Q	65.7	25 161	
Q S	0.000000897	7		13C-1,2,3,7,8-PeCDD	CDD	66.4	25 - 181	
1,2,3,4,7,8-HxCDD ND 0.00 1,2,3,6,7,8-HxCDD ND 0.00	0.00000125			13C-1,2,3,4,7,8-HXCDD	axcou axcou	62.6	32 - 141 28 - 130	
Ð	0.00000123			13C-1,2,3,4,6,7,8-HpCDD	HPCDD	64.6	23 - 140	
Ω				13C-OCDD	* *************************************	40.7	17-157	
0.0000311			-	13C-2,3,7,8-TCDF	¥	61.4	24 - 169	t. ==
2	0.000000735	8		13C-1,2,3,7,8-PeCDF	CDF	59.9	24 - 185	
ON THE STATE OF TH	0.00000131		79. 19.	13C-2,3,4,7,8-PeCDF	CDF	61.7	21 - 178	
2	0.00000112		:	13C-1,2,3,4,7,8-HxCDF	HxCDF	62.6	26 - 152	
9	0.000000015	S		13C-1,2,3,6,7,8-HxCDF	HXCDF	63.1	26 - 123	
Q	0.000000864	4		13C-2,3,4,6,7,8-HxCDF	HXCDF	64.1	28 - 136	
2,3,4,6,7,8-HxCDF 0.0	0.000000071			13C-1,2,3,7,8,9-HxCDF	HxCDF	66.3	29 - 147	
Q	0.00000133		-	13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	57.8	28 - 143	
1,2,3,4,6,7,8-HpCDF 0.0	0.00000176			13C-1,2,3,4,7,8,9-HpCDF	э-нрсрг	2.99	26 - 138	1&1 1.
Q	0.00000169			13C-OCDF		49.3	- 157	
OCDF 25 A STATE OCCDF 25 A STATE OCCUPANCE		0.00000839	39	CRS 37CI-2,3,7,8-TCDD	OO	75.9	35 - 197	
Totals				Footnotes				
Total TCDD ND 0.0	0.000000816	9		Sample specific estimated detection limit. Estimated maximum possible concentration.	d detection limit.	H.	81 197	
	0.00000124		:	c. Method detection limit.				
Total HpCDD		e galler Galler Galler		d. Lower control limit - upper control limit.	er control limit.			35 N
2 2 2 3 3 3	0.000000735	<u>ي</u>	ary asy		4.2			
QX	0.00000121							
Total HxCDF ND 0.0	0.00000101	K	\$4.					
minimum consistent and the second								

Analyst: JMH

Approved By: Martha M. Maier 16-Jan-2006 11:43

Project 27137

APPENDIX

Project 27137 Page 7 of 273

DATA QUALIFIERS & ABBREVIATIONS

This compound was also detected in the method blank. The amount reported is the maximum possible concentration due to possible D chlorinated diphenylether interference.

The reported value exceeds the calibration range of the instrument. Ε

The signal-to-noise ratio is greater than 10:1. Η

I Chemical interference

The amount detected is below the Lower Calibration Limit of the instrument. J

See Cover Letter

В

Concentration Conc.

DL Sample-specific estimated Detection Limit

The minimum concentration of a substance that can be measured and MDL reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

Estimated Maximum Possible Concentration **EMPC**

NA Not applicable

Reporting Limit - concentrations that corresponds to low calibration point RL

Not Detected ND

Toxic Equivalency **TEQ**

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
	05-013-0
State of Arkansas, DEQ	
State of Arkansas, DOH	Reciprocity through CA 02102CA
State of California – NELAP Primary AA	02102CA
State of Colorado	NI 0102
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

Project 27137

17461 Derian Ave. Suite 100, Irvine. CA 92614 Ph (949) 261-1022 Fax (949) 261-1228 1014 E. Cooley Dr., Suite A. Colton, CA 92324 Ph (909) 370-4567 Fex (909) 370-1046 9484 Chesapenice Drive, Suite 805, San Diego, CA 92123 Ph (619) 505-9596 Fax (619) 505-9689 9830 South 51st Street, Suite 8-120, Phoenix, AZ 85044 Ph (480) 785-0043 Fex (480) 785-0851 Fax (702) 798-3621

SUBCONTRACT ORDER - PROJECT # IPA0005

SENDE	NG LAHORATORY	¥:	1 1	RECEIVING LABORAT	ORY:
Del Mar Analytical, Irvine			Alta Analytical - S	UB 71	127
17461 Derian Avenue. Suit	e 100		1104 Windfield W	α	121 .
Irvine, CA 92614	•		El Dorado Hills, C.	A 95762	137 . .7℃
Phone: (949) 261-1022			Phone :(916) 933-1	1640	.7°
Fax: (949) 261-1228			Fax: (916) 673-010	06	
Project Manager: Michele C	Chamberlin		,		
Standard TAT is requeste	d unless specific (due date is reques	sted ⇒ Due Date:		Initials:
Analysis	Expiration		Comments		
Sample ID: IPA0005-01 Wa 1613-Dioxin-HR-Alta EDD + Level 4	01/08/06 09:06 01/29/06 09:06	d: 01/01/06 09:06	Instant Nofication J flags, 17 congeners, no Excel EDD cmail to pm.	TEQ.ug/L,sub=Alta Include Std logs for Lvl IV	,
Containers Supplied: 1 L Amber (IPA0005-01C) 1 L Amber (IPA0005-01D)					
	······································	,			
					,
				•	
					-
				•	
			•		
					·
•		SAMD	PLE INTEGRITY:		•
All containers intact:	□ No	Sample labels/COC agn		Samples Received On Ice::	□ Yes □ №
Custody Seals Present: Tyes	□ No .	Samples Preserved Prop	erly: 🗌 Yes 🖟 No	Samples Received at (temp):	
	1.12/61	(Bettina of Ber	1.1 1/4/8	1935
- Joues	1/2/06	T:	Density Pro	Date Date	Time
Released By	1/5/06 Date	Time	Received By	Date	Time
Released By	Date		Received By Received By	Date Date	Time

SAMPLE LOG-IN CHECKLIST

Alta Project #: 27137

Samples Arrival:	Date/Time	0935	Initials:	SB	Location: WR-2				
Logged in:	Date/Time	0730	Initials:	SB	Location:	7			
Delivered By:	EedEx	UPS	Cal	DHL	Hand Othe Delivered				
Preservation:	Ice	Blu	ie Ice	Dry l	lce None				
Temp °C C.	7	Time: 💍	145		Thermometer I	D: DT-20			

					YES	NO	NA
Adequate Sample Volume Received?	,				V		
Holding Time Acceptable?					V		
Shipping Container(s) Intact?					/		
Shipping Custody Seals Intact?					V		
Shipping Documentation Present?					V	<u> </u>	
Airbill Trk# 792	4791	0341t	33		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Sample Container Intact?					V		
Sample Custody Seals Intact?					12		V
Chain of Custody / Sample Documer	tation Pr	esent?			<u> </u>		
COC Anomaly/Sample Acceptance F	orm con	pleted?				V	
If Chlorinated or Drinking Water Sam	ples, Acc	ceptable P	reservation?				<
Na ₂ S ₂ O ₃ Preservation Documented?			coc	•	nple ainer	No	ne
Shipping Container	Alta	Client	Retain	Re	turn	Disp	oose

Comments:

Section 22

Outfall 005, January 01, 2006 AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

Package ID B4DF8

Task Order 1261.001D.01

 MEC^{X}

12269 East Vassar Drive

Au	rora, CO 80014	SDG No. IPA0005
		No. of Analyses 1
	Laboratory Alta	Date: February 10, 2006
	Reviewer K. Shadow	
	Analysis/Method Dioxin/Fura	an by Method 1613 Scala M-
12.22		
AC	TION ITEMS ^a	
•	Case Narrative	
	Deficiencies	
2.	Out of Scone Analyses	
<i>a</i> .	Out of Scope Analyses	
3.	Analyses Not Conducted	
4.	Missing Hardcopy	
	Deliverables	
5.	Incorrect Hardcopy	
	Deliverables	
6.	Deviations from Analysis	Detects below the laboratory lower calibration level were qualified
	Protocol, e.g.,	as estimated.
	Holding Times	Qualification was assigned for an EMPC.
	GC/MS Tune/Inst. Performance	
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS Field QC	
	Internal Standard Performance	
	•	
	Compound Identification Quantitation	
	System Performance	
COL	MENTS ^b	
····		
		
		
	the contractor analytical laborators in not an	eeting contract and/or method requirements.
"SŁ		

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 005

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IPA0005

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

Project:

DATA VALIDATION REPORT

SDG: Analysis:

NPDES IPA0005 D/F

1. INTRODUCTION

Task Order Title:

NPDES

Contract Task Order:

1261.001.01

Sample Delivery Group:

IPA0005

Project Manager:

P. Costa

Water

Matrix:

Analysis:

Dioxins/Furans

QC Level:

Level IV

1

0

No. of Samples:

No. of Reanalyses/Dilutions:

Reviewer:

K. Shadowlight

Date of Review:

February 10, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

1

Project: SDG: Analysis: NPDES IPA0005 D/F

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	(Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 005	IPA0005-01	27137-001	Water	1613

2

SDG: Analysis: NPDES IPA0005 D/F

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical within the temperature limits of 4°C ±2°C. The sample was shipped to Alta for dioxin/furan analysis and was received below the temperature limits at 1°C. As the sample was not noted to be damaged or frozen, no qualifications were required. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. Custody seals were present on the coolers from Del Mar to Alta; however no sample custody seals were present. The Client ID was added to the sample result summary by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

Project: NPDES SDG: IPA0005 Analysis: D/F

DATA VALIDATION REPORT

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 12/30/2005 on instrument VG-7. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of %RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-7632-MB001) was extracted and analyzed with the sample in this SDG. No compounds were reported in the method blank associated with the site sample. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (0-7632-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. A review of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on

B4DF8 4 Revision 0

Project: SDG:

ect: NPDES i: IPA0005 ysis: D/F

DATA VALIDATION REPORT

SDG: Analysis:

the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported estimated maximum possible concentration (EMPC) was qualified as an estimated nondetect, "UJ." No further qualifications were required.

Project 27137

I I (CLAILT)						四 十0			2			ر د			1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			, a	- 4,		- Code N		Z C	
Total upcast	Total HxCDF	Total TCDF	Total HxCDD	Total PcCDD	Totals	OCDF	7 2 4 7 6 0 14	1,2,3,7,8,9-HxCDF	2,3,4,6,7,8-HxCDF	2,3,6,7,8-HxCDF	2,347,8-HxCDF	2.3.4.7.8-PeCDF	12378-PeCUF		1,2,3,4,6,7,8-HpCDD	,2,3,7,8,9.HxCDD	2,3,6,7,8-HxCDD	2,3,4,7,8-11xCDD	1,2,3,7,8-PeCDD	17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Analyte	Project Date Collected. Time Collected:	Client Data Name	
		\$ 100 miles						Co P	Ser.		2	,		:		DD.	G	8	• :		Conc.	1-Jan-06 0906	Del Mar Analytical, Irvine	¥ 7×0000
	₹ €	g 8	ND 0.00000631	N S		ND	<u>Z</u>	ቼ ቼ	E	8	3	S	3	Z D	0.0000311	, ND	8	ND.	3 3	N D	(ug/L)		lytical, Irvine	
	0.00000101	0.000000735	· a	0.000000816			0.00000169	0.00000133	0.000000971	0.000000864	0.000000915	0.00000112	0.00000131	.00000		0.000000123	0.00000125		0.0000000897	9180000000	DL a			
	01 72	735 21	124	316 897		0.00000839			71	64		N		<u>ن</u> ن		3		5	3 7	i6	EMPCb	Sample Size:	Sample Data Matrix	
	•	*			**************************************	839								•	, •••• •	- 100 - 100		a Service Service			Qualifiers	0.925 L	Aqueous	<u> </u>
**************************************			c. Method detection limit. d. Lower control limit - upper control limit.		Footnotes	CRS 37CI-2,3,7,8-TCDD	13C-OCDF	13C-1,2,3,4,7,8,9-HpCDF	13C-1,2,3,7,8,9-HxCDF	13C-2,3,4,6,7,8-HxCDF	13C-1,2,3,6,7,8-Hx-CDF	13C-1,2,3,4,7,8-HxCDF	13C-2,3,4,7,8-PeCDF	13C-1,2,3,7,8-PeCDF	13C-2,3,7,8-TCDF	130-0000				IS 13C-2.3.7.8-TCDD	Labeled Standard	QC Batch No.: Date Analyzed DB-5:	Lub Sample:	
Musella M. Maior			pper control limit	ted detection limit.	a de la companya de constituent de la companya del companya del companya de la co	EDD .		,9-HpCDF	HACON	HxCDF	· .	3	CDF	aCD;	24	in pour	HxCDD	HxCDD	ac	ם	ard	7632 12-Jan-06	27137-001	
4-12-16 lan 2006 11-43	and the state of t				-confessory/organicum services subject to the confessor subject to the	75.9 35 - 197	49.3 17-157	66.7 26 - 138			1 1	62.6	61.7 21 - 178	59.9 24 - 185	61.4 24 - 169	40.7 17-157	5.			65.7 25 161	%R LCL-UCLd	Date Extracted Date Analyzed DB-225.	Date Received	And the second s
, ,	- Andrew Control of the Control of t	,	75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			202				152	 3										Qualifiers	8-Jan-06 NA	4-Jan-06	

Page 6 of 273

Level IV

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

				Package ID	В4МТ9
ME	C^{x}				1261,001D.01
122	69 East Vassar Drive			SDG No.	IPA0005
Aur	ora, CO 80014		No.	of Analyses	1
	Laboratory Del Mar A	nalytical		Date: Februa	ary 3, 2006
	Reviewer P. Meeks			Reviewer's S	gnature
	Analysis/Method Metals			1 P.Me	D
AC.	TION ITEMS'				
	Case Narrative				
	Deficiencies				
					·
2.	Out of Scope				
	Analyses				
3.	Analyses Not Conducted				
		·			
***************************************				·	
4.	Missing Hardcopy				
	Deliverables				
					war water and the same of the
5.	Incorrect Hardcopy Deliverables				
	Denverables	· · · · · · · · · · · · · · · · · · ·	·		
6.	Deviations from Analysis				
٥.	Protocol, e.g.,	Analytes detected below the	he ren	ortina limit we	re qualified as estimated
	Holding Times	Alialytes detected ector to	ne rep	Orting mint we	ro quantion as comment.
	GC/MS Tune/Inst. Performance				
	Calibration				
	Method blanks	.,,	·····		<u> </u>
	Surrogates	<u> </u>			
	Matrix Spike/Dup LCS			······································	
	Field QC	······································			
	Internal Standard Performance			-	
	Compound Identification				
	Quantitation				
	System Performance				
CO	MMENTS [*]				// /
·	<u> </u>	 			
* Su	beontracted analytical laboratory is not m	eeting contract and/or method requi	rements	L.	

b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 005

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IPA0005

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG:

Analysis:

NPDES IPA0005 Metals

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title: NPDES Sampling

MEC^X Project Number: 1261.001D.01 Sample Delivery Group: IPA0005

Project Manager: P. Costa

Matrix: Water Analysis: Metals QC Level: Level IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Reviewer: P. Meeks

Date of Review: February 3, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for ICP-MS Metals (DVP-5, Rev. 0), EPA Methods 200.8 and 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

B4MT9 1 Revision 0

NPDES IPA0005

SDG: Analysis:

Metals

Table 1. Sample Identification

DATA VALIDATION REPORT

Client ID	Laboratory ID	Matrix	COC Method
Outfall 005	IPA0005-01	Water	200.8, 245.1

NPDES

SDG: Analysis: IPA0005 Metals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ±2°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The method specified tune criteria were met and no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP-MS metals and 80-120% for mercury. The laboratory analyzed reporting limit check standards in association with the sample in this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were at concentrations insufficient to qualify the site sample. No qualifications were required.

B4MT9

NPDES

SDG: Analysis: IPA0005 Metals

DATA VALIDATION REPORT

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Antimony and lead, which are not present in the ICSA or ICSAB, were detected in both the ICSA and the ICSAB; however, as the wastewater method (EPA SW-846 6020) lists no known interferents for lead or antimony, no qualifications were required. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP-MS, the ICP-MS internal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No

B4MT9 4 Revision 0

Project: NPDES SDG: IPA0005 Analysis: Metals

DATA VALIDATION REPORT

transcription errors or calculation errors were noted. Cadmium and lead detected below the reporting limit were qualified as estimated, "J," and annotated with "DNQ," in accordance with the requirements of the NPDES permit. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Routine Outfall 005

Report Number: IPA0005

Sampled: 01/01/06

Received: 01/01/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	_i
Sample ID: IPA0005-01 (Outfall 0									Revol	Code
Reporting Units: ug/l						*	01:04:06	01/02/04		
Antimony	EPA 200.8	6A04084	0.18	2.0	5.9	l l	01/04/06	01/05/06		and
Cadmium	EPA 200.8	6A04084	0.015	1.0	0.052	1	01/04/06	01/05/06	1 7	DNG
Copper	EPA 200.8	6A04084	0.49	2.0	2.2	1	01/04/06	01/05/06	В	
Lead	EPA 200.8	6A04084	0.040	1.0	0.72	- 1	01/04/06	01/05/06	JJ	DNO
Mercury	EPA 245.1	6A03072	0.050	0.20	ND	1	01/03/06	01/03/06	O	

LEVEL IV

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IPA0005 <Page 2 of 12>

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

		Package ID B4WCI
MEC*		Task Order 1261.001D.01
12269 East Vassar Drive		SDG No. IPA0005
Aurora, CO 80014	1	No. of Analyses 1
Laboratory Del Mar		Date: February 4, 2006
Reviewer P. Meeks		Reviewer's Signature
Analysis/Method General M		P.M.S
Analysis/iviculou General I	/IIICiais	
ACTION ITEMS*		
. Case Narrative		
Deficiencies		
2. Out of Scope		
Analyses		
Allalyses		

A A A A A A A A A A A A A A A A A A A		
3. Analyses Not Conducted		
4. Missing Hardcopy		
Deliverables		
	<u> </u>	
5. Incorrect Hardcopy	***************************************	
Deliverables		
6. Deviations from Analysis		
Protocol, e.g.,	Reanalysis results rejected in	favor of original results.
Holding Times		
GC/MS Tune/Inst. Performance		
Calibration		
Method blanks		
Surrogates		
Matrix Spike/Dup LCS		
Field QC		
Internal Standard Performance	·	
Compound Identification		
Quantitation		
System Performance		
COMMENTS ^b		
<u>a ranga manananananananananananananananananana</u>	······································	
<u> </u>		
* Subcontracted analytical laboratory is not	meeting contract and/or method requirem	ents.

^b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 005

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUP: IPA0005

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

NPDES

SDG: Analysis: IPA0005 Gen. Min.

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title: NPDES Sampling

MEC^X Project Number: 1261.001D.01 Sample Delivery Group: IOJ0411

Project Manager: P. Costa

Matrix: Water

Analysis: General Minerals

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: P. Meeks

Date of Review: February 4, 2006

The sample listed in Table 1 was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, Standard Methods for the Examination of Water and Wastewater Method SM2540-C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form Is as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

B4WC1 1 Revision 0

NPDES IPA0005

DATA VALIDATION REPORT Analysis:

SDG:

Gen. Min.

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 005	IPA0005-01	Water	General Minerals
Outfall 005 RE1	IPA0005-01 RE1	Water	General Minerals

NPDES

SDG: Analysis:

Gen. Min.

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4° C \pm 2° C. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and all analyses presented in this SDG. As the sample was couriered directly from the field to the laboratory, custody seals were not necessary.

Per a request from MWH personnel, Outfall 005 was reanalyzed for chloride and TDS. As the laboratory did not append the client ID of the reanalysis with "RE1," the reviewer added this information to the Form I. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analysis. The 28-day sulfate and chloride the seven-day TDS, and the 48-hour nitrate analytical holding times were met. No qualifications were required.

2.2 CALIBRATION

For chloride, sulfate, and nitrate, the initial calibration correlation coefficients were ≥0.995 and the ICV and CCV recoveries were within the control limits of 90-110%. Balance calibration logs were included in the data package for TDS. No qualifications were required.

2.3 BLANKS

There were no detects in the method blanks or CCBs associated with the sample analyses. Raw data was reviewed to verify the blank data. No qualifications were required.

B4WC1 3 Revision 0

NPDES

DATA VALIDATION REPORT

SDG: Analysis:

Gen. Min.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The reported LCS recoveries were within the laboratory-established control limits. No LCS recovery was listed for nitrate; however, the reviewer checked the raw data and found that nitrate was spiked into the LCS and was recovered acceptably. No qualifications were required.

2.5 LABORATORY DUPLICATES

Duplicate analyses were performed on Outfall 005 and Outfall 005 RE1 for TDS only. The RPD was less than the laboratory control limit of ≤20%. No qualifications were required.

2.6 MATRIX SPIKES

No MS/MSD analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion. Evaluation of method accuracy was based on LCS results. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Chloride, nitrate, and sulfate were reported from 10× dilutions. The chloride and sulfate MDLs, and the nitrate MDL and reporting limit were not correctly adjusted for the dilutions; therefore, the reviewer hand corrected the Form I.

As the reanalysis results for chloride and TDS were similar to the original results, the reviewer rejected, "R," the reanalysis results, Outfall 005 RE1, in favor of the original results, Outfall 005. No further qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

B4WC1 4 Revision 0

NPDES

Gen. Min.

SDG: Analysis:

IPA0005

DATA VALIDATION REPORT

There were no field duplicate pairs associated with this SDG.

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 251-1022 FAX (949) 260-3297 17461 Denian Ave., Suite 100, Irvine, CA 92814 (949) 261-1022 FAX (949) 280-3297
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (658) 505-8596 FAX (658) 505-9689
9830 Suith 51st St., Suite B-120, Proenix, AZ 85044 (480) 785-0043 FAX (480) 785-0051
2520 E. Sunsat Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 005

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Attention: Bronwyn Kelly

Sampled: 01/01/06

Report Number: IPA0005

Received: 01/01/06

INORGANICS

Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	1Qvd
- Water) - cont.									Code
EPA 300.0	6A01004	251.	5.0	160	10	01/01/06	01/01/06		\$
EPA 300:0	6A01004	220.	40261.5	51	10	01/01/06	01/01/06		12
EPA 413.1	6A06048	0.91	4.9	2.3	1	01/06/06	01/06/06	* 1	
EPA 300.0	6A01004	48-4	5.0	76	10	01/01/06	01/01/06		\$
SM2540C	6A03093	10	10	980	1	01/03/06	01/03/06		
EPA 160.2	6A05089	10	10	25]	01/05/06	01/05/06	*	
005 - Water) Out	fall 005	RE1							
			-						
EPA 300.0	6A12052	1.5	5.0	160	10	01/12/06	01/12/06	R	D
SM2540C	6A10114	10	10	900	1	01/06/06	01/06/06	R	D
	EPA 300.0 EPA 300.0 EPA 413.1 EPA 300.0 SM2540C EPA 160.2	EPA 300.0 6A01004 EPA 300.0 6A01004 EPA 413.1 6A06048 EPA 300.0 6A01004 SM2540C 6A03093 EPA 160.2 6A05089 005 - Water) Outfall co5	- Water) - cont. EPA 300.0 6A01004 261. EPA 300.0 6A01004 0.720. EPA 413.1 6A06048 0.91 EPA 300.0 6A01004 1.644 SM2540C 6A03093 10 EPA 160.2 6A05089 10 005 - Water) Outfull 005 RE1. EPA 300.0 6A12052 1.5	- Water) - cont. EPA 300.0 6A01004 261.5 5.0 EPA 300.0 6A01004 0.720.40 261.5 EPA 413.1 6A06048 0.91 4.9 EPA 300.0 6A01004 1.84.5 5.0 SM2540C 6A03093 10 10 EPA 160.2 6A05089 10 10 005 - Water) Outfall 005 RE1. EPA 300.0 6A12052 1.5 5.0	-Water) - cont. EPA 300.0 6A01004 261.5 5.0 160 EPA 300.0 6A01004 0.720.60 261.5 51 EPA 413.1 6A06048 0.91 4.9 2.3 EPA 300.0 6A01004 1.84.5 5.0 76 SM2540C 6A03093 10 10 980 EPA 160.2 6A05089 10 10 25 005 - Water) Outfull COS RE1 EPA 300.0 6A12052 1.5 5.0 160	- Water) - cont. EPA 300.0 6A01004 261.5 5.0 160 10 EPA 300.0 6A01004 0720.40 261.5 51 10 EPA 413.1 6A06048 0.91 4.9 2.3 1 EPA 300.0 6A01004 184.5 5.0 76 10 SM2540C 6A03093 10 10 980 1 EPA 160.2 6A05089 10 10 25 1 005 - Water) Outfall COS RE1 EPA 300.0 6A12052 1.5 5.0 160 10	-Water) - cont. EPA 300.0 6A01004 261.5 5.0 160 10 01/01/06 EPA 300.0 6A01004 0.720.40 261.5 51 10 01/01/06 EPA 413.1 6A06048 0.91 4.9 2.3 1 01/06/06 EPA 300.0 6A01004 1.84.5 5.0 76 10 01/01/06 SM2540C 6A03093 10 10 980 1 01/03/06 EPA 160.2 6A05089 10 10 25 1 01/05/06 O05 - Water) Outfall COS RE1 EPA 300.0 6A12052 1.5 5.0 160 10 01/12/06	-Water) - cont. EPA 300.0 6A01004 261.5 5.0 160 10 01/01/06 01/01/06 EPA 300.0 6A01004 0.720.40 261.5 51 10 01/01/06 01/01/06 EPA 413.1 6A06048 0.91 4.9 2.3 1 01/06/06 01/06/06 EPA 300.0 6A01004 184.5 5.0 76 10 01/01/06 01/01/06 SM2540C 6A03093 10 10 980 1 01/03/06 01/03/06 EPA 160.2 6A05089 10 10 25 1 01/05/06 01/05/06 O05 - Water) Outfull COS RE1 EPA 300.0 6A12052 1.5 5.0 160 10 01/12/06 01/12/06	-Water) - cont. EPA 300.0 6A01004 261.5 5.0 160 10 01/01/06 01/01/06 EPA 300.0 6A01004 0.720.40 261.5 51 10 01/01/06 01/01/06 EPA 413.1 6A06048 0.91 4.9 2.3 1 01/06/06 01/06/06 EPA 300.0 6A01004 1.84.5 5.0 76 10 01/01/06 01/01/06 SM2540C 6A03093 10 10 980 1 01/03/06 01/03/06 EPA 160.2 6A05089 10 10 25 1 01/05/06 01/05/06 COS - Water) Outfall COS RE1 EPA 300.0 6A12052 1.5 5.0 160 10 01/12/06 01/12/06 R

* Analysis not validated

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

APPENDIX G

Section 23

Outfall 006, January 01, 2006 Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project: Routine Outfall 006

Sampled: 01/01/06 Received: 01/01/06

Issued: 01/16/06 09:51

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

Samples were received intact, at 3°C, on ice and with chain of custody documentation. SAMPLE RECEIPT:

All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar HOLDING TIMES:

Analytical Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

All analyses met method criteria, except as noted in the report with data qualifiers. QA/QC CRITERIA:

Results that fall between the MDL and RL are 'J' flagged. COMMENTS:

Refer to the last page for specific subcontract laboratory information included in this report. SUBCONTRACTED:

> LABORATORY ID CLIENT ID MATRIX Water IPA0003-01

Outfall 006

Reviewed By:

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

any Windham

Project Manager

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0003

Sampled: 01/01/06

Received: 01/01/06

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0003-01 (Outfall 006 -	Water)								
Reporting Units: ug/l									
Antimony	EPA 200.8	6A04084	0.18	2.0	5.0	1	01/04/06	01/05/06	
Cadmium	EPA 200.8	6A04084	0.015	1.0	ND	1	01/04/06	01/05/06	
Copper	EPA 200.8	6A04084	0.49	2.0	3.0	1	01/04/06	01/05/06	В
Lead	EPA 200.8	6A04084	0.040	1.0	0.34	1	01/04/06	01/05/06	J
Mercury	EPA 245.1	6A03072	0.050	0.20	ND	1	01/03/06	01/03/06	

Sampled: 01/01/06

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0003 Received: 01/01/06

Attention: Bronwyn Kelly

INORGANICS

Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
5 - Water) - cont.								
EPA 300.0	6A01004	1.3	2.5	48	5	01/01/06	01/01/06	
EPA 300.0	6A01004	0.072	0.26	0.13	1	01/01/06	01/01/06	J
EPA 413.1	6A06048	0.91	4.9	1.6	1	01/06/06	01/06/06	J
EPA 300.0	6A01004	0.18	0.50	5.1	1	01/01/06	01/01/06	
SM2540C	6A03093	10	10	200	. 1	01/03/06	01/03/06	
EPA 160.2	6A05089	10	10	ND	1	01/05/06	01/05/06	
	EPA 300.0 EPA 300.0 EPA 413.1 EPA 300.0 SM2540C	EPA 300.0 6A01004 EPA 300.0 6A01004 EPA 413.1 6A06048 EPA 300.0 6A01004 SM2540C 6A03093	Method Batch Limit 5 - Water) - cont. EPA 300.0 6A01004 1.3 EPA 300.0 6A01004 0.072 EPA 413.1 6A06048 0.91 EPA 300.0 6A01004 0.18 SM2540C 6A03093 10	Method Batch Limit Limit 5 - Water) - cont. EPA 300.0 6A01004 1.3 2.5 EPA 300.0 6A01004 0.072 0.26 EPA 413.1 6A06048 0.91 4.9 EPA 300.0 6A01004 0.18 0.50 SM2540C 6A03093 10 10	Method Batch Limit Limit Result 5 - Water) - cont. EPA 300.0 6A01004 1.3 2.5 48 EPA 300.0 6A01004 0.072 0.26 0.13 EPA 413.1 6A06048 0.91 4.9 1.6 EPA 300.0 6A01004 0.18 0.50 5.1 SM2540C 6A03093 10 10 200	Method Batch Limit Limit Result Factor 5 - Water) - cont. EPA 300.0 6A01004 1.3 2.5 48 5 EPA 300.0 6A01004 0.072 0.26 0.13 1 EPA 413.1 6A06048 0.91 4.9 1.6 1 EPA 300.0 6A01004 0.18 0.50 5.1 1 SM2540C 6A03093 10 10 200 .1	Method Batch Limit Limit Result Factor Extracted 5 - Water) - cont. EPA 300.0 6A01004 1.3 2.5 48 5 01/01/06 EPA 300.0 6A01004 0.072 0.26 0.13 1 01/01/06 EPA 413.1 6A06048 0.91 4.9 1.6 1 01/06/06 EPA 300.0 6A01004 0.18 0.50 5.1 1 01/01/06 SM2540C 6A03093 10 10 200 .1 01/03/06	Method Batch Limit Limit Result Factor Extracted Analyzed 5 - Water) - cont. EPA 300.0 6A01004 1.3 2.5 48 5 01/01/06 01/03/06 </td

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0003 Attention: Bronwyn Kelly Sampled: 01/01/06

Received: 01/01/06

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 006 (IPA0003-01) - Wate	er				
EPA 300.0	2	01/01/2006 09:25	01/01/2006 15:25	01/01/2006 17:30	01/01/2006 18:42

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0003

Sampled: 01/01/06 Received: 01/01/06

METHOD BLANK/QC DATA

METALS

		Reporting	;		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03072 Extracted: 01/03/06	<u>.</u>										
m	\										
Blank Analyzed: 01/03/2006 (6A03072-B	•	0.00	0.064								
Mercury	ND	0.20	0.063	ug/l							
LCS Analyzed: 01/03/2006 (6A03072-BS	1)										
Mercury	7.95	0.20	0.063	ug/l	8.00		99	85-115			
Matrix Spike Analyzed: 01/03/2006 (6A0	3072-MS1)				Sou	rce: IOL	2617-01				
Mercury	7.95	0.20	0.063	ug/l	8.00	ND	99	70-130			
Matrix Spike Dup Analyzed: 01/03/2006	(6A03072-M	SD1)			Sou	rce: IOL	2617-01				
Mercury	8.00	0.20	0.063	ug/l	8.00	ND	100	70-130	1	20	
Batch: 6A04084 Extracted: 01/04/06											
	•										
Blank Analyzed: 01/05/2006 (6A04084-B	LK1)										
Antimony	0.162	2.0	0.050	ug/l							J
Cadmium	ND	1.0	0.025	ug/l							
Copper	0.321	2.0	0.25	ug/l							J
Lead	ND	1.0	0.040	ug/l							
LCS Analyzed: 01/05/2006 (6A04084-BS)	I)										
Antimony	78.5	2.0	0.050	ug/l	80.0		98	85-115			
Cadmium	80.2	1.0	0.025	ug/l	80.0		100	85-115			
Copper	80.8	2.0	0.25	ug/l	80.0		101	85-115			
Lead	78.3	1.0	0.040	ug/l	80.0		98	85-115			
Matrix Spike Analyzed: 01/05/2006 (6A0-	4084-MS1)				Sou	rce: IOL2	2694-49				
Antimony	78.2	2.0	0.050	ug/I	80.0	0.26	97	70-130			
Cadmium	76.0	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	102	2.0	0.25	ug/l	80.0	23	99	70-130			
Lead	84.3	1.0	0.040	ug/l	80.0	2.7	102	70-130			

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

Project Manager

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Report Number: IPA0003

Sampled: 01/01/06

Received: 01/01/06

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC	RPD	RPD Limit	Data Qualifiers
Batch: 6A04084 Extracted: 01/04/0							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				C
Matrix Spike Analyzed: 01/05/2006 (6A	04084-MS2)				Sou	rce: IOL	2694-50				
Antimony	80.0	2.0	0.050	ug/l	80.0	0.094	100	70-130			
Cadmium	76.2	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	101	2.0	0.25	ug/l	80.0	18	104	70-130			
Lead	87.5	1.0	0.040	ug/l	80.0	1.8	107	70-130			
Matrix Spike Dup Analyzed: 01/05/2006	(6A04084-N	ISD1)			Sou	rce: IOL	2694-49				
Antimony	76.7	2.0	0.050	ug/l	80.0	0.26	96	70-130	2	20	
Cadmium	76.1	1.0	0.025	ug/l	80.0	ND	95	70-130	0	20	
Copper	101	2.0	0.25	ug/l	80.0	23	98	70-130	1	20	
Lead	83.9	1.0	0.040	ug/l	80.0	2.7	102	70-130	1	20	

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0003

Sampled: 01/01/06

Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A01004 Extracted: 01/01/0	<u>6</u>										
Blank Analyzed: 01/01/2006 (6A01004-1	DI 121\										
Chloride	ND	0.50	0.15	M							
Chioride Nitrate/Nitrite-N	ND ND		0.15	mg/l							
		0.15	0.080	mg/l							
Sulfate	ND	0.50	0.45	mg/l							
LCS Analyzed: 01/01/2006 (6A01004-BS	S1)										
Chloride	4.88	0.50	0.15	mg/l	5.00		98	90-110			M-3
Sulfate	9.56	0.50	0.45	mg/l	10.0		96	90-110			
Matrix Spike Analyzed: 01/01/2006 (6A	01004-MS1)				Sou	rce: IPA(0003-01				
Sulfate	14.4	0.50	0.45	mg/l	10.0	5.1	93	80-120			
Matrix Spike Dup Analyzed: 01/01/2006	(6A01004-M	SD1)			Sou	rce: IPA(003-01				
Sulfate	14.8	0.50	0.45	mg/l	10.0	5.1	97	80-120	3	20	
Batch: 6A03093 Extracted: 01/03/00	<u>5</u>										
Blank Analyzed: 01/03/2006 (6A03093-E	ILK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/03/2006 (6A03093-BS	(1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/03/2006 (6A0309	3-DUP1)				Sou	rce: IPA0	005-01				
Total Dissolved Solids	981	10	10	mg/l		980			0	10	
Batch: 6A05089 Extracted: 01/05/06	<u>5</u> _										
Blank Analyzed: 01/05/2006 (6A05089-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

Project Manager

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0003

Sampled: 01/01/06 Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A05089 Extracted: 01/05/06	<u>i</u>										
LCS Analyzed: 01/05/2006 (6A05089-BS	1)										
Total Suspended Solids	979	10	10	mg/l	1000		98	85-115			
Duplicate Analyzed: 01/05/2006 (6A0508	9-DUP1)				Sou	rce: IPA0	012-01				
Total Suspended Solids	458	10	10	mg/l		350			27	10	R-3
Batch: 6A06048 Extracted: 01/06/06	<u>.</u>										
Blank Analyzed: 01/06/2006 (6A06048-B	LK1)										
Oil & Grease	ND	5.0	0.94	mg/l							
LCS Analyzed: 01/06/2006 (6A06048-BS	1)										M-NR1
Oil & Grease	19.2	5.0	0.94	mg/l	20.0		96	65-120			
LCS Dup Analyzed: 01/06/2006 (6A0604	8-BSD1)										
Oil & Grease	19.6	5.0	0.94	mg/l	20.0		98	65-120	2	20	

Sampled: 01/01/06

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0003 Received: 01/01/06

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IPA0003-01	413.1 Oil and Grease	Oil & Grease	mg/l	1,60	4.9	15
IPA0003-01	Antimony-200.8	Antimony	ug/l	5.00	2.0	6.00
IPA0003-01	Cadmium-200.8	Cadmium	ug/l	0	1.0	4.00
IPA0003-01	Chloride - 300.0	Chloride	mg/l	48	2.5	150
IPA0003-01	Copper-200.8	Copper	ug/l	3.00	2.0	14
IPA0003-01	Mercury - 245.1	Mercury	ug/l	0	0.20	0.20
IPA0003-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.13	0.26	10.00
IPA0003-01	Sulfate-300.0	Sulfate	mg/l	5.10	0.50	250
IPA0003-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	200	10	850

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Report Number: IPA0003

Sampled: 01/01/06 Received: 01/01/06

Attention: Bronwyn Kelly

Pasadena, CA 91101

R-3

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.

The RPD exceeded the method control limit due to sample matrix effects.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 01/01/06 Pasadena, CA 91101 Report Number: IPA0003 Received: 01/01/06

Attention: Bronwyn Kelly

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	x
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IPA0003-01

Analysis Performed: EDD + Level 4

Samples: IPA0003-01

Del Mar Analytical version 02/17/05	ב ב) ECa	Version	-		1				Δ	ANALYSIS RECLIRED	CHA =		
Client Name/Address	Addres			Project	1						מולטור ו סוס שוניאו			
	(Boeing-SSFL NPDES	NPDES		:s		1.				Field readings:	9
MVVT-Fasaucilia 300 North Lake Avenue, Suite 1200 Pacadene CA 91101	Avenu 9 Avenu 91101	e, Suite 1;	200	Stormwater at FSDF-2	I FSDF-2		Meta 9		,			WHILE AT HARLES	Temp = 55	3 -
Project Manager: Bronwyn Kelly	ger B	ronwyn K	(elly	Phone Number:	er:	MINING AND ADDRESS OF THE PERSON AND ADDRESS	elds H ,d					<u> </u>	48.7 =Ha	K.
Sampler: D. & RE.prof.	CA.	rees		(626) 568-6691 Fax Number: (626) 568-6515	5 5		il Recover Cd, Cu, P	s bns) ((SO4, NO	SST ,		······································	Some	Comments
Sample	Sample	Container	# C	Sampling	Preservativ	itiv Bottle	1 stoT			SOT.				
+-	×	Poly-1L	-	3 (: 60	HNO3	14	×							
1.	3	Poly-1L	-		HN03	49	×							
900 He	3	Glass-	~	The second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section in the second section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in	None	2A, 2B	-	×						
Outfall 006 V	3	Glass-	~		文	3A, 3B			×					
Outfall 006	*	Poly-500	~	3	None	44.48	*		×					***************************************
Outfall 006	×	Poly-500	7	90-1-1	None	5A, 5B	~			×				
			_											
Relinquished By			-0	Date/Time: 13/2	Received By	and the same of th		Date/Time:	1 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 //	13.5		Turn around Time: (check) 24 Hours 5 Days	
Rein Not By	2		Date //	Lime	Received	ed By		Date/Time:	ë	⊾ .[48 Hours	10 Days Normal	1
Relinquished By	\ **			Date/Time:	Received	ed By	•	Date/Time:	3e:			Perchlorate	Perchiorate Only 72 Hours	1
							3			9	11/06 1529	Metais Only 72 Hours Sample integrity: (Ch	eck) On ice:	3.6
	Westernament Water of the same	Personal complete control of the con	***************************************	ALL PROPERTY AND ASSOCIATION OF THE PROPERTY ASSOCIATION O		***************************************								

January 16, 2006

Alta Project I.D.: 27133

Ms. Michele Chamberlin Del Mar Analyticai, Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on January 04, 2006 under your Project Name "IPA0003". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely.

Martha M. Maicr

Director of HRMS Services

Walle Marer

Project 27133

Alia Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable text methods. This report should not be reproduced except in full without the written approval of ALTA.

Page 1 of 274

Section I: Sample Inventory Report

Date Received:

1/4/2006

Alta Lab. ID

Client Sample ID

27133-001

IPA0003-01

SECTION II

Page 3 of 274

Method Blank				EPA Method 1613
Matrix: Aqueous	QC Batch No.:	7632	Lab Sample: 0-MB001	
Sample Size: 1.00 L	Date Extracted:	8-Jan-06	Date Analyzed DB-5: 11-Jan-06	Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	DL a EN	EMPC ^b Qualifiers	Labeled Standard	%R LCL-UCL ^d Qualifiers
2,3,7,8-TCDD ND	0.00000671		<u>1S</u> 13C-2,3,7,8-TCDD	84.0 25 161
1,2,3,7,8-PeCDD ND	0.000000560		13C-1,2,3,7,8-PeCDD	78.7 25 - 181
1,2,3,4,7,8-HxCDD ND	0.00000149		13C-1,2,3,4,7,8-HxCDD	81.9 32 - 141
1,2,3,6,7,8-HxCDD ND	0.00000147		13C-1,2,3,6,7,8-HxCDD	74.4 28 - 130
1,2,3,7,8,9-HxCDD	0.00000145		13C-1,2,3,4,6,7,8-HpCDD	75.6 23 - 140
_	0.00000146		13C-OCDD	40.1 17 - 157
OCDD			13C-2,3,7,8-TCDF	82.6 24 - 169
2,3,7,8-TCDF ND	0.000000546		13C-1,2,3,7,8-PeCDF	65.3 24-185
1,2,3,7,8-PeCDF ND	0.00000112		13C-2,3,4,7,8-PeCDF	71.3 21 - 178
2,3,4,7,8-PeCDF ND	0.000000885		13C-1,2,3,4,7,8-HxCDF	73.7 26 - 152
1,2,3,4,7,8-HxCDF	0.000000511		13C-1,2,3,6,7,8-HxCDF	70.0 26 - 123
1,2,3,6,7,8-HxCDF ND			13C-2,3,4,6,7,8-HxCDF	78.0 28 - 136
2,3,4,6,7,8-HxCDF	0.000000522		13C-1,2,3,7,8,9-HxCDF	79.2 29-147
	0.000000675		13C-1,2,3,4,6,7,8-HpCDF	64.7 28 - 143
1,2,3,4,6,7,8-HpCDF	6.000000764		13C-1,2,3,4,7,8,9-HpCDF	76.3 26-138
9-HpCDF		:	13C-OCDF	49.6 17 - 157
OCDF	0.00000360		CRS 37Cl-2,3,7,8-TCDD	88.7 35 - 197
Totals			Footnotes	
Total TCDD ND	0.000000671		Sample specific estimated detection limit Besimated maximum possible concentration	
			c. Method detection limit.	
	0.00000146		d. Lower control limit - upper control limit.	
Total TCDF ND	0.000000546	1000 1000 1000 1000 1000 1000 1000 100		
r V	7.50000000			
Total HpCDF ND	0.00000692			And the state of t
Analyst: JMH			Approved By: Martha M. Maier	Maier 16-Jan-2006 11:31

OPR Results					***************************************	EPA	EPA Method 1613	[3
	QC Batch No.			Lab Sample: 0.	0-OPR001	Date Analyzed DB 225.	(DB.225.	<u> </u>
Sample State: 1.00 L	Date Exilad	64. 00-Jan-00		Date Allatyzeu DD-5. 11-Jair-00	-Jall-00	Date Altaly 280	1 DD-443.	
Analyte Spike C	Spike Conc. Conc. (ng/mL)	mL) OPR Limits	nits	Labeled Standard		%R	TCI-DCI	_
2,3,7,8-TCDD 10	10.0 8.44	6.7 - 15.8	5.8	IS 13C-2,3,7,8-1CDD		66.2	73 - 164	
1,2,3,7,8-PeCDD 50	50.0 48.8	35-71	71	13C-1,2,3,7,8-PeCDD	_	70.5	25 - 181	·········
1,2,3,4,7,8-HxCDD 50	50.0 48.8	35 - 82	82	13C-1,2,3,4,7,8-HxCDD		68.7	32 - 141	
	50.0 46.7	38-67	57	13C-1,2,3,6,7,8-HxCDD	CO	9'59	28 - 130	····
1,2,3,7,8,9-HxCDD 50.0	0.0 48.7	32 - 81		13C-1,2,3,4,6,7,8-HpCDD	CDD	9.0%	23 - 140	v.
1,2,3,4,6,7,8-HpCDD 50	50.0 47.2	35 - 70	70	13C-OCDD		49.9	17-157	
OCDD STATE OF THE	100 95.4	78 - 144	44	13C-2,3,7,8-TCDF	A A	62.9	24 - 169	
	10.0 9.58	7.5 - 15.8	5.8	13C-1,2,3,7,8-PeCDF	**	63.1	24 - 185	
1,2,3,7,8-PeCDF	0.0	40-67	67	13C-2,3,4,7,8-PeCDF		64.2	21 - 178	
	50.0 48.4	34 - 80	80	13C-1,2,3,4,7,8-HxCDF	DF	65.4	26 - 152	
1,2,3,4,7,8-HxCDF 50.0	0.0	36-67		13C-1,2,3,6,7,8-HxCDF	D.	63.8	26 - 123	
1,2,3,6,7,8-HxCDF 50	50.0 48.7	42 - 65	65	13C-2,3,4,6,7,8-HxCDF	DF	61.9	28 - 136	`
2,3,4,6,7,8-HxCDF 50.0	0.0 47.3	35 - 78	78	13C-1,2,3,7,8,9-HxCDF	DF	70.4	29 - 147	<i>e-i</i>
1,2,3,7,8,9-HxCDF	50.0 47.3	39 - 65	65	13C-1,2,3,4,6,7,8-HpCDF	CDF	63.1	28 - 143	:
1,2,3,4,6,7,8-HpCDF	50.0	41-6	. 20	13C-1,2,3,4,7,8,9-HpCDF	CDF	 1.6	26 - 138	
	50.0 48.4	69 - 68	69	13C-0CDF		56.4	17 - 157	
OCDF	100 97.7	63 - 170	170	CRS 37CI-2,3,7,8-TCDD	A	81.7	35-197	i Ja

Approved By: Martha M. Maier 16-Jan-2006 11:31

Analyst: JMH

Sample 1D: IPA0003-01					3	EPA Method 1613
Clieut Data Name: Del Mar Analytical, Irvine Project: IPA0003	Sample Data Matrix: Sample Size:	Aqueous 0.927 L	Laboratory Data Lab Sample: QC Batch No.	27133-001 7632	Date Received: Date Extracted	4-Jan-06 8-Jan-06
		The state of the s	Date Analyzed DB-5	12-Jan-06	Date Analyzed DB-225	-225 NA
Analyte Conc. (ug/L) DL. a	EMPC ^b	Qualifiers	Labeled Standard	dard	%R LCL-UCL ^d	CL ^d Oualifiers
2,3,7,8-TCDD 0.000000496	100496		IS 13C-2,5,7,8-TCDD	COC	79.0 25	161
QQ	000585		13C-1,2,3,7,8-PeCDD	eCDD	79.5 25 - 181	18
1,2,3,4,7,8-HxCDD 0.00000128	10128		13C-1,2,3,4,7,8-HxCDD	-HxCDD	76.4 32 - 141	4]
1,2,3,6,7,8-HxCDD ND 0.00000137	00137		13C-1,2,3,6,7,8-HxCDD	-HxCDD	69.1 28 - 130	30
1,2,3,7,8,9-HxCDD ND 0.00000132	00132		13C-1,2,3,4,6,7,8-HpCDD	'8-HpCDD	68.8 23 - 140	. 40
1,2,3,4,6,7,8-HpCDD 0.00000662		-	13C-0CDD		41.2 17-157	157
OCDD 0.0000757		Ha Ha	13C-2,3,7,8-TCDF	DF	78.9 24-169	691
2,3,7,8-TCDF ND 0.000000526	00526		13C-1,2,3,7,8-PeCDF	PeCDF	79.3 24-185	185
DF ND ND	0.000000007		13C-2,3,4,7,8-PeCDF	PeCDF	81.9 21 - 178	8/1
QN	0.000000840		13C-1,2,3,4,7,8-HxCDF	-HxCDF	72.3 26 - 152	152
	0.000000940		13C-1,2,3,6,7,8-HxCDF	-HxCDF	70.9 26 - 123	123
	0.000000871		13C-2,3,4,6,7,8-HxCDF	3-HxCDF	75.3 28 - 136	136
2	0.00000026		13C-1,2,3,7,8,9-HxCDF	-HxCDF	75.4 29 - 147	147
1,2,3,7,8,9-HxCDF 0.00000134	20134		13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	62.4 28 - 143	143
1,2,3,4,6,7,8-HpCDF ND ND 0,00000207	20207		13C-1,2,3,4,7,8,9-HpCDF	8,9-HpCDF	69.1 26 138	300
1,2,3,4,7,8,9-HpCDF ND 0.00000207	00207		13C-OCDF		49.1 17-157	157
OCDF 0.0000166			CRS 37Cl-2,3,7,8-TCDD	CDD	83,4 35	197
Totals			Footnotes			
QN	0.000000496		a. Sample specific estimated detection limit	rted detection limit.	:	
Q !	0.000000585		b. Estimated maximum possible concentration	ossible concentration.		\$
Total HxCDD	00132		d. Lower control limit - upper control limit.	pper control limit.		er o
2	0.000000526					
Total PeCDF 0,0000	0.000000001			1 L	i P	
Total HxCDF ND 0.00000101	0.00000101				Žit.	
			Approved By:	Martha M. Maier	ier 16-Jan-2006 11:33	6 11:31

APPENDIX

Project 27133 Page 7 of 274

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEO Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

Project 27133

17461 Derian Ava. Suite 100, Invine, CA 92614 Ph (949) 261-1022 Fax (949) 261-1228

1014 E. Cooley Dr., Suite A, Colton, CA 92324 Ph (999) 370-4667 Fax (909) 370-1046

9484 Chesapeake Drive, Suite 805, San Diego, CA 92123 Ph (619) 505-9596 Fax (619) 605-9689

9830 South Stat Street, Suite B-120, Phoenix, AZ 65044 Ph (480) 785-0043 Fax (480) 785-0851

2500 E. Sunset, Rd. Suite 32 Lies Venes, NV 99120 Ph (702) 798-3629 Fax (702) 798-3021

SUBCONTRACT ORDER - PROJECT #IPA0003

RECEIVING LABORATORY: SENDING LABORATORY: Alta Analytical - SUB 27133 Del Mar Analytical, Irvine 1104 Windfield Way 17461 Derian Avenue, Suite 100 El Dorado Hills, CA 95762 Irvine, CA 92614 Phone:(916) 933-1640 Phone: (949) 261-1022 Fax: (916) 673-0106 Fax: (949) 261-1228 9.9°C Project Manager. Michele Chambe lin Standard TAT is requested unless specific due date is requested => Due Date: Initials: Comments Expiration Sampled: 01/01/06 09:25 Instant Nofication Sample ID: IPA0003-01 Water J flags, 17 congeners, no TEQ, ug/L, sub=Alta 1613-Dioxin-HR-Alta 01/(:8/06 09:25 Excel EDD email to pm, Include Std logs for Lvl IV EDD + Level 4 01/29/06 09:25 Containers Supplied: 1 L Amber (IPA0003-01C) I L Amber (IPA0003-01D) SAMPLE INTEGRITY: Samples Received On ice:: Sample labels/COC agree: All containers intect: Samples Received at (temp): Samples Preserved Properly: Custody Seals Pre Time Released By Released By Date Time Received By

Page 1010 6274

SAMPLE LOG-IN CHECKLIST

Alta Project #: 37133

Samples Arrival:	Date/Time 1/4/06	0935	Initials	UB	Location: WR-2)
Logged In:	Date/Time	1519	Initials	320	Location: WK	2-2
Delivered By:	FedEx	UPS	Cal	DHL	Hand Delivered	Other
Preservation:	loe	Blu	ie Ice	Dry		lone
Temp °C O	9	Time: 🧷	940		Thermometer I	D: DT-20

					YEŞ	NO	NA		
Adequate Sample Volume Receive	d?				V				
Holding Time Acceptable?					V				
Shipping Container(s) Intact?					V				
Shipping Custody Seals Intact?					1/				
Shipping Documentation Present?					1/	<u> </u>			
Airbill Trk# 79	24 79	03 41	61	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1				
Sample Container Intact?									
Sample Custody Seals Intact?					ļ.,	4	\ <u> </u>		
Chain of Custody / Sample Docum	entation Pr	esent?			V	↓	4		
COC Anomaly/Sample Acceptance						V	<u> </u>		
If Chlorinated or Drinking Water Samples, Acceptable Preservation?							V		
Na ₂ S ₂ O ₃ Preservation Documente					Sample Container		one		
Shipping Container	Alta	Client	Retain	(Re	turn	Dis	pose		

Comments:

.

APPENDIX G

Section 24

Outfall 006, January 01, 2006 AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

		Package ID B4MT2
ME	C ^x	Task Order 1261.001D.01
	69 East Vassar Drive	SDG No. IPA0003
Aure	ora, CO 80014	No. of Analyses 1
	Laboratory Del Mar A	
	Reviewer P. Meeks	Reviewer's Signature
	Analysis/Method Metals	P. Needs
ACI	TION ITEMS'	
	Case Narrative	
	Deficiencies	
2.	Out of Scope	
	Analyses	
3.	Analyses Not Conducted	
4.	Missing Hardcopy	
	Deliverables	
	*	
5.	Incorrect Hardcopy Deliverables	
	Denverances	
6.	Deviations from Analysis	Analytes detected below the reporting limit were qualified as estimated.
	Protocol, e.g.,	
	Holding Times	
	GC/MS Tune/Inst. Performance	
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS	
ŀ	Field QC	
	Internal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
CO	MMENTS ⁶	
<u></u>		
ŧ	· ·	meeting contract and/or method requirements.

DATA VALIDATION REPORT

NPDES Sampling Outfall 006

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IPA0003

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG:

NPDES IPA0003

Analysis:

Metals

1. INTRODUCTION

Task Order Title:

NPDES Sampling

MECX Project Number:

DATA VALIDATION REPORT

1261.001D.01

Sample Delivery Group:

IPA0003

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Metals

QC Level:

Level IV

No. of Samples:

0

No. of Reanalyses/Dilutions:

P. Meeks

Reviewer: Date of Review:

February 3, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for ICP-MS Metals (DVP-5, Rev. 0), EPA Methods 200.8 and 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: NPDES SDG: IPA0003 Analysis: Metals

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 006	IPA0003-01	Water	200.8, 245.1

Project: NPDES SDG: IPA0003 Analysis: Metals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ±2°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The method specified tune criteria were met and no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP-MS metals and 80-120% for mercury. The laboratory analyzed reporting limit check standards in association with the sample in this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were at concentrations insufficient to qualify the site sample. No qualifications were required.

B4MT2 3 Revision 0

Project:

NPDES

SDG: Analysis: IPA0003 Metals

DATA VALIDATION REPORT

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Antimony and lead, which are not present in the ICSA or ICSAB, were detected in both the ICSA and the ICSAB; however, as the wastewater method (EPA SW-846 6020) lists no known interferents for lead or antimony, no qualifications were required. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP-MS, the ICP-MS internal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No

B4MT2

4

Revision 0

Project: NPDES SDG: IPA0003 Analysis: Metals

DATA VALIDATION REPORT

transcription errors or calculation errors were noted. Lead detected below the reporting limit was qualified as estimated, "J," and annotated with "DNQ," in accordance with the requirements of the NPDES permit. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (658) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (460) 785-0043 FAX (460) 785-0651 FAX (460) 785-0651 FAX (702) 796-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200

Sampled: 01/01/06

Pasadena, CA 91101

Report Number: IPA0003

Received: 01/01/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IPA0003-01 (Outfall Reporting Units: ug/l	006 - Water)								Rev	Code
Antimony	EPA 200.8	6A04084	0.18	2.0	5.0	1	01/04/06	01/05/06		
Cadmium	EPA 200.8	6A04084	0.015	1.0	ND	1	01/04/06	01/05/06	U	element to the
Copper	EPA 200.8	6A04084	0.49	2.0	3.0	1	01/04/06	01/05/06	В	
Lead	EPA 200.8	6A04084	0.040	1.0	0.34	1	01/04/06	01/05/06	JJ	DNG
Mercury	EPA 245.1	6A03072	0.050	0.20	ND	1	01/03/06	01/03/06	U	-

TEAR IL

Del Mar Analytical, Irvine Amy Windham For Michele Chamberlin Project Manager

The results periain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IPA0003 <Page 2 of 11>

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA MECX, LLC Package ID B4DF2 12260 East Vassar Drive Task Order <u>1261.001.01</u> Suite 500 SDG No. <u>IPA0003</u> No. of Analyses Lakewood, CO 80226 Date: February 3, 2006 Laboratory Alta Analytical Reviewer's Signature Reviewer E. Wessling Analysis/Method Dioxins/Furans by 1613 ACTION ITEMS* Case Narrative **Deficiencies** 2. Out of Scope Analyses 3. Analyses Not Conducted 4. Missing Hardcopy Deliverables 5. Incorrect Hardcopy **Deliverables** Qualifications were assigned for the following: 6. Deviations from Analysis Protocol, e.g., --estimated values between the RL and the MDL **Holding Times** GC/MS Tune/Inst. Performance Calibration Method blanks Surrogates Matrix Spike/Dup LCS Field QC Internal Standard Performance Compound Identification Quantitation System Performance COMMENTS^b ^a Subcontracted analytical laboratory is not meeting contract and/or method requirements. b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 006

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IPA0003

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Ans

Project: TTF SDG: IPA0003 Analysis: D/F

1. INTRODUCTION

Task Order Title: NPDES
Contract Task Order: 1261.001.01
Sample Delivery Group: IPA0003

Project Manager: P. Costa

Matrix: Water

Analysis: Dioxins/Furans

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: E. Wes

Reviewer: E. Wessling
Date of Review: February 2, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Revision 0

Project: SDG: Analysis: TTF IPA0003 D/F

DATA VALIDATION REPORT

Table 1. Sample Identification

Sample ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 006	IPA0003-01	27133-001	Water	1613

Project: SDG: Analysis: TTF IPA0003

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical within the temperature limits of 4°C ±2°C. The sample was shipped to Alta for dioxin/furan analysis and was received within the temperature limits of 4°C ±2°C or slightly below. As the sample was not noted to be damaged or frozen, no qualifications were required. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. Custody seals were present on the coolers from Del Mar to Alta; however not sample custody seals were present. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

B4DF2 3 Revision 0

Project: SDG:

magni and professional and an analysis of the second secon

TTF IPA0003

DATA VALIDATION REPORT Anal

SDG: Analysis:

D/F

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 12/30/2005 on instrument VG-7. The calibration consisted of six concentration level standards (CS1 through CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of %RSDs were verified from the raw data, and no calculation or transcription errors were noted. The confirmation ICAL was analyzed on VG-6 on 4/29/2005. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-7632-MB001) was extracted and analyzed with the sample in this SDG. No compounds were reported in the method blank associated with the site sample. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (0-7632-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. A review of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

Revision 0

Project: SDG: Analysis: TTF IPA0003

DATA VALIDATION REPORT

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG. No qualification was required.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No qualifications were required.

B4DF2

Revision 0

Martha M. Majer 16-Jan-2006 11:31

Approved By:

			IPA0003-01 動の	の対象で					- Wash 1/4	
			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	`	Sample Date	·	Laboratory Data			
		Project	Del Mar Analytical, Irvino	911	Matrix:	Aqueous	Lab Sample:	27133-001	Date Received:	4-Jan-06
	45°		1-Jan-06	······································	Sample Size.	0.927.L	OC Datch No.: Date Analyzed DD-5:	7632 12.1sn-06	Date Extracted: Date Analyzed DB-225	8-Jan-06
	\$ % y %	Analyte	Conc. (ug/L)	DF #	EMPC	Qualifiers	Labeled Standard		%R LCL-UCL	o
5	The state of the s	2,3,7,8,3,000 ki	R	0.000000496	26		IS 13C-2,3,7,8-TCDD		79.0 25-164	
		1,2,3,7,8-PeCDD	1,2.3,7,8-PeCDD ND		85		13C-1,2,3,7,8-PeCDD	Q	79.5 25 181	
Michaelean pana		1,7,3,4,7,8,HxCD	8	Ĭ,			DON'S' STREET			
>		1.23.6, / B-HxCD	1.2.3.6.7.8-HxCDD ND	0.00000137		i i	13C-1,2,3,6,7,8-HxCDD		69.1 28 - 130	
*	で	-	00000 GC	C.		· -	13C-OCDD	(† 8)	41.2 17-157	F'
···········		1000 1000	OGDD, 17 18 18 18 18 18 18 18 18 18 18 18 18 18		10000000000000000000000000000000000000		West 13 C-2.2, As TODE			
<u> </u>	***************************************	2,3,7,8-TCDF	2	3	%:		13C-1,2,3,7,8-PeCDF	į.	79.3 24 185	*
	***************************************	12.3.7.8.PeCDR	2,3,7,8 PCDE				13C.2,3,4,7,8-PecuF	200	81.94.21-178	
		2.3.4.7.8-PeCU (2.3.4.7.8 H&QU)	2.3.4.7,8-PecDF	0.000000840	14 15 9-9		13C-1,2,3,4,7,8-HxCDF		72.3 26-152 % 70.9 26-123	
		1,2,3,6,7,8-HxCDF	2		1		13C-2,3,4,6,7,8-HxCDF		75.3 28-136	
-		2,3,4,6,7,8 HXCDF S S S N	E. S.	Ì			13C11237,8PHKCDF		75.4 29 1.47	
·····		12.3.7.8.9-H _W CDF 12.3.4.6.78-H _P CDH ^M 和A		0.00000134			13C-1,2,3,4,6,7,8-HpCDF		62.4 28 - 143	
<u> </u>	Z Ž	1.2.3.4.7.8.9.HpCDF NI OCDF: If Delice of	DF ND 0,0000166			<u> </u>	13C-OCDF CRS 37Cl 2,3,7,8-7CDD		49.1 17-157 88.4 35-197	
	J	Totals			deresia de la facilita de la calenda de la facilita		Footnates			
J J	<u> </u>	Total TCDD Total PecDD	Q	0.000000496	9		a. Sample specific estimated detection limit. b. Estimated maximum possible concentration	Mestion limit.		
<u> </u>	- 2.₩.2*	Total HxCDD Total HpCDD Total HpCDD	UN 410000.0	0.00000132			c. Mathod detaction limit. d. Lower control limit upper control limit.	Sonited limit.		
ろる	<u> </u>	Total TCDF Total PeCDR	9	0.000000526	•					
	• •	Total HACDF	QX.	0.00000101						
<u> </u>	J	TOTAL STREET		0,000,000,000,000,000,000,000,000,000,		79.				money chief to the project of the first of t

Project 27133

Analysi: DMS

NPDES 4592

APPENDIX G

Section 25

Outfall 007, January 01, 2006 Del Mar Analytical Laboratory Report

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project: Routine Outfall 007

Sampled: 01/01/06 Received: 01/01/06

Issued: 01/16/06 14:34

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED:

Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

CLIENT ID

MATRIX

IPA0007-01

Outfall 007

Water

Reviewed By:

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

any Windham

Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0007

Sampled: 01/01/06 Received: 01/01/06

Attention: Bronwyn Kelly

METALS

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IPA0007-01 (Outfall 007 - \	Water)								
Reporting Units: ug/l									
Antimony	EPA 200.8	6A04084	0.050	2.0	4.6	1	01/04/06	01/05/06	
Cadmium	EPA 200.8	6A04084	0.025	1.0	0.22	1	01/04/06	01/05/06	J
Copper	EPA 200.8	6A04084	0.25	2.0	8.0	1	01/04/06	01/05/06	
Lead	EPA 200.8	6A04084	0.040	1.0	4.4	1	01/04/06	01/05/06	
Mercury	EPA 245.1	6A03072	0.050	0.20	0.087	1	01/03/06	01/03/06	J

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Report Number: IPA0007

Sampled: 01/01/06

Received: 01/01/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0007-01 (Outfall 007 -	Water) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	6A01004	0.75	2.5	84	5	01/01/06	01/01/06	
Nitrate/Nitrite-N	EPA 300.0	6A01004	0.080	0.15	0.45	1	01/01/06	01/01/06	
Oil & Grease	EPA 413.1	6A06048	0.90	4.8	2.0	1	01/06/06	01/06/06	J
Sulfate	EPA 300.0	6A01004	0.45	0.50	24	1	01/01/06	01/01/06	
Total Dissolved Solids	SM2540C	6A03093	10	10	440	1	01/03/06	01/03/06	
Total Suspended Solids	EPA 160.2	6A05089	10	10	72	1	01/05/06	01/05/06	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Coiton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0007

Sampled: 01/01/06

Received: 01/01/06

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 007 (IPA0007-01) - Water	r				
EPA 300.0	2	01/01/2006 10:06	01/01/2006 15:25	01/01/2006 17:30	01/01/2006 19:38

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IPA0007

Sampled: 01/01/06 Received: 01/01/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03072 Extracted: 01/03/06	_										
Blank Analyzed: 01/03/2006 (6A03072-B	•										
Mercury	ND	0.20	0.063	ug/l							
LCS Analyzed: 01/03/2006 (6A03072-BS	1)										
Mercury	7.95	0.20	0.063	ug/l	8.00		99	85-115			
Matrix Spike Analyzed: 01/03/2006 (6A0	3072-MS1)				Sou	rce: IOL2	2617-01				
Mercury	7.95	0.20	0.063	ug/l	8.00	ND	99	70-130			
Matrix Spike Dup Analyzed: 01/03/2006	(6A03072-MS	D1)			Sou	rce: IOL2	2617-01				
Mercury	8.00	0.20	0.063	ug/l	8.00	ND	100	70-130	ı	20	
Batch: 6A04084 Extracted: 01/04/06	_										
	=										
Blank Analyzed: 01/05/2006 (6A04084-B	LK1)										
Antimony	0.162	2.0	0.050	ug/l							J
Cadmium	ND	1.0	0.025	ug/l							
Copper	0.321	2.0	0.25	ug/l							J
Lead	ND	1.0	0.040	ug/l							
LCS Analyzed: 01/05/2006 (6A04084-BS)	1)										
Antimony	78.5	2.0	0.050	ug/l	80.0		98	85-115			
Cadmium	80.2	1.0	0.025	ug/I	80.0		100	85-115			
Copper	80.8	2.0	0.25	ug/l	80.0		101	85-115			
Lead	78.3	1.0	0.040	ug/l	80.0		98	85-115			
Matrix Spike Analyzed: 01/05/2006 (6A0-	4084-MS1)				Sour	rce: IOL2	694-49				
Antimony	78.2	2.0	0.050	ug/l	80.0	0.26	97	70-130			
Cadmium	76.0	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	102	2.0	0.25	ug/l	80.0	23	99	70-130			
Lead	84.3	1.0	0.040	ug/l	80.0	2.7	102	70-130			

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-8689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0007

Sampled: 01/01/06 Received: 01/01/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A04084 Extracted: 01/04/06	<u>i_</u>										
Matrix Spike Analyzed: 01/05/2006 (6A0		Sou	rce: IOL	2694-50							
Antimony	80.0	2.0	0.050	ug/l	80.0	0.094	100	70-130			
Cadmium	76.2	0.1	0.025	ug/l	80.0	ND	95	70-130			
Copper	101	2.0	0.25	ug/l	80.0	18	104	70-130			
Lead	87.5	1.0	0.040	ug/l	80.0	1.8	107	70-130			
Matrix Spike Dup Analyzed: 01/05/2006	(6A04084-M	SD1)			Sou	rce: IOL2	2694-49				
Antimony	76.7	2.0	0.050	ug/l	80.0	0.26	96	70-130	2	20	
Cadmium	76.1	1.0	0.025	ug/l	80.0	ND	95	70-130	0	20	
Copper	101	2.0	0.25	ug/l	80.0	23	98	70-130	1	20	
Lead	83.9	1.0	0.040	ug/l	80.0	2,7	102	70-130	1	20	

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced,

 $except\ in\ full,\ without\ written\ permission\ from\ Del\ Mar\ Analytical.$

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9630 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0631 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200

Report Number: IPA0007

Attention: Bronwyn Kelly

Sampled: 01/01/06 Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPĐ	RPD Limit	Data Qualifiers
Batch: 6A01004 Extracted: 01/01/06			A . M. M. P.					***************************************			C
Blank Analyzed: 01/01/2006 (6A01004-B	•										
Chloride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND ND	0.15	0.080	mg/l							
Sulfate	ND	0.50	0.45	mg/l							
LCS Analyzed: 01/01/2006 (6A01004-BS	1)										
Chloride	4.88	0.50	0.15	mg/l	5.00		98	90-110			M-3
Sulfate	9.56	0.50	0.45	mg/l	10.0		96	90-110			
Matrix Spike Analyzed: 01/01/2006 (6A0	1004-MS1)				Sou	rce: IPA(003-01				
Sulfate	14.4	0.50	0.45	mg/l	10.0	5.1	93	80-120			
Matrix Spike Dup Analyzed: 01/01/2006	(6A01004-M	ISD1)			Sou	rce: IPA0	003-01				
Sulfate	14.8	0.50	0.45	mg/l	10.0	5.1	97	80-120	3	20	
Batch: 6A03093 Extracted: 01/03/06	<u>.</u>										
Dt	T TZ1)										
Blank Analyzed: 01/03/2006 (6A03093-B) Total Dissolved Solids	ND	10	10	/1							
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/03/2006 (6A03093-BS)	1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/03/2006 (6A0309)	3-DUP1)				Sou	rce: IPA0	005-01				
Total Dissolved Solids	981	10	10	mg/l		980			0	10	
Batch: 6A05089 Extracted: 01/05/06	_										
Blank Analyzed: 01/05/2006 (6A05089-B)	LK1)										
Total Suspended Solids	ND	10	10	mg/l							

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

Project Manager

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Report Number: IPA0007

Sampled: 01/01/06 Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A05089 Extracted: 01/05/06	<u> </u>										
LCS Analyzed: 01/05/2006 (6A05089-BS Total Suspended Solids	1) 979	10	10	mg/l	1000		98	85-115			
Duplicate Analyzed: 01/05/2006 (6A0508) Total Suspended Solids	19-DUP1) 458	10	10	mg/l	Sou	rce: IPA0 350	012-01		27	10	R-3
Batch: 6A06048 Extracted: 01/06/06	<u>í</u>										
Blank Analyzed: 01/06/2006 (6A06048-B Oil & Grease	LK1) ND	5.0	0.94	mg/l							
LCS Analyzed: 01/06/2006 (6A06048-BS Oil & Grease	1) 19.2	5.0	0.94	mg/l	20.0		96	65-120			M-NR1
LCS Dup Analyzed: 01/06/2006 (6A0604 Oil & Grease	8-BSD1) 19.6	5.0	0.94	mg/l	20.0		98	65-120	2	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200

Sampled: 01/01/06 Report Number: IPA0007 Received: 01/01/06 Pasadena, CA 91101

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IPA0007-01	413.1 Oil and Grease	Oil & Grease	mg/l	2.00	4.8	15
IPA0007-01	Antimony-200.8	Antimony	ug/l	4.60	2.0	6.00
IPA0007-01	Cadmium-200.8	Cadmium	ug/l	0.22	1.0	4.00
IPA0007-01	Chloride - 300.0	Chloride	mg/l	84	2.5	150
IPA0007-01	Copper-200.8	Copper	ug/l	8.00	2.0	14
IPA0007-01	Mercury - 245.1	Mercury	ug/l	0.087	0.20	0.20
IPA0007-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.45	0.15	10.00
IPA0007-01	Sulfate-300.0	Sulfate	mg/l	24	0.50	250
IPA0007-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	440	10	850

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

M-3

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Sampled: 01/01/06 Received: 01/01/06

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability. Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

Report Number: IPA0007

accepted based on acceptable recovery in the Blank Spike (LCS).

There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike M-NR1

Duplicate.

The RPD exceeded the method control limit due to sample matrix effects. R-3

Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified. ND

RPD Relative Percent Difference

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Project ID: Routine Outfall 007 MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Sampled: 01/01/06 Pasadena, CA 91101 Received: 01/01/06 Report Number: IPA0007

Attention: Bronwyn Kelly

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IPA0007-01

Analysis Performed: EDD + Level 4

Samples: IPA0007-01

		Field readings:		Temp = O.O.		//: #Hd			Comments												•			Turn around Time: (check) 24 Hours 50 Bays	44 House			Perchiorate Only 72 Hours	Metais Only 72 Hours	Semple Integrity (Check)
DEGINE OF THE PERIOD OF THE PE			1.8	:15	٧	43)	9:	N 'I	SO4	'-IC				×	×	×	×							Date/Time: 10/6/	1 +2/	Date/Time:		Date/Time:	•	1.15
DO SON LO NIENTO					e M	ablas 1 'd	.e.	cov,	1 Ke	Preservative Bottle	*	HNO3 1A X	HNO3 1B X	None 2A, 2B	HCi 3A, 3B	None 4A, 4B	None 5A. 5B							Received By	10-10 June	Received By		Received By	(ろ 二(\
Version 02/17/05	Project	Boeing-SSTL NTUES	Routine Outfall 007	200 Stormwater at Building 100			(626) 568-6691		(626) 568-6515	* of Samolino	Cont. Date/Time	70: 9-1-7		2	2	4	90-1-1	30:01						Date/Time:	130	Date/Time:	1 1/6 /3 1-	Date/Time:		
Tical	Client Name/Address		MWH-Pasadena	and North Lake Avenue, Suite 1200	Pasadena, CA 91101	Project Manager: Bronwyn Kelly		Sampler / care	100 J. J. W. J.	r	Description Matrix Type	¥ P	×	3	*	3	184	Cuttan oc.						Relinquished By	100	Relinguished By	THE SHOWE	Refinquished By		

January 17, 2006

Alta Project I.D.: 27134

Ms. Michele Chamberlin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on January 04, 2006 under your Project Name "IPA0007". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maicr

Director of HRMS Services

Alia Analytical Laboratory vertifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. This report should not be reproduced except in full without the written approval—of AUTA.

Section I: Sample Inventory Report
Date Received: 1/4/2006

Alta Lab. ID Client Sample ID

27134-001 IPA0007-01

SECTION II

Martha M. Maier 17-Jan-2006 13:35

Approved By:

Aqueous QC Batch No.: 7632 Lab Sample: 0-MB001 1.00 L Date Extracted: 8-Jan-06 Date Analyzed DB-5: 11-Jan-06 Date Analyzed DB-5: 18-Da-12-Jay-B-CDD-7: 18-Da-12-Jay-B-CDD-7: 18-Da-12-Jay-B-CDD-7: 18-Da-12-Jay-B-CDD-7: 18-Da-12-Jay-B-CDP-7: 18-Da-12-Jay-B-CDP-7:<	Method Blank							EPA Met	EPA Method 1613
1.00 L Date Extracted: 8-Jan-06 Date Analyzed DB-5: 11-Jan-06 Date Analyzed DB-5: 11-J		QC Batch N		.32		IB001			
Core. (ugL) DL. a EMPC b Qualifiers Qualifiers Labeled Standard %R 0.0000005671 IS 13C-2,37,8-TCDD 84.0 DD ND 0.000000560 13C-1,2,7,8-PcDD 78.1 CDD ND 0.00000147 13C-1,2,3,4,7,8-HxCDD 74.4 CDD ND 0.00000147 13C-1,2,3,4,7,8-HxCDD 74.4 CDD ND 0.00000145 13C-1,2,3,4,7,8-HxCDD 74.4 CDD ND 0.00000535 13C-1,2,3,4,7,8-HxCDD 75.6 HCDD ND 0.000000546 13C-1,2,3,4,7,8-HxCDF 82.5 DF ND 0.000000546 13C-2,3,4,7,8-PcDF 71.3 DF ND 0.000000585 13C-1,2,3,4,7,8-PcDF 73.7 CDF ND 0.00000051 13C-1,2,3,4,7,8-HxCDF 78.0 CDF ND 0.00000051 13C-1,2,3,4,7,8-HxCDF 78.0 CDF ND 0.00000051 13C-1,2,3,4,7,8-HxCDF 78.0 CDF ND 0.00000052 13C-1,2,3,4,7,8-HxCDF 78.0<		Date Extrac		Jan-06		Jan-06	Date An	Date Analyzed DB-225:	NA
ND 0.000000671 IS 13C-2,3,7,8-PcDD DD ND 0.00000560 13C-1,2,3,7,8-PcDD CDD ND 0.00000147 13C-1,2,3,7,8-PcDD CDD ND 0.00000145 13C-1,2,3,7,8-PcDD CDD ND 0.00000145 13C-1,2,3,4,7,8-HxCDD CDD ND 0.000000518 13C-1,2,3,4,7,8-PcDF ND 0.000000518 13C-1,2,3,4,7,8-PcDF DF ND 0.00000051 13C-1,2,3,4,7,8-PcDF CDF ND 0.00000051 13C-1,2,3,4,7,8-PcDF CDF ND 0.00000051 13C-1,2,3,4,7,8-PcDF CDF ND 0.00000051 13C-1,2,3,4,7,8-PcDF CDF ND 0.00000051 13C-1,2,3,4,7,8-PcDF ADD 0.00000051 13C-1,2,3,4,7,8-PcDF ADD 0.00000052 13C-1,2,3,4,7,8-PcDF ADDF ND 0.000000674 13C-1,2,3,4,7,8-PcDF ADD ND 0.000000674 13C-1,2,3,4,7,8-PcDF ADD ND 0.000000674 13		DE		Qualifiers	Labeled Standard		%R	LCL-UCL ^d Oualifiers)ualifiers
DD ND 0.000000560 13C-1,2,3,7,8-PeCDD CDD ND 0.0000147 13C-1,2,3,7,8-PeCDD CDD ND 0.00000145 13C-1,2,3,4,7,8-HxCDD CUD ND 0.00000146 13C-1,2,3,4,7,8-HxCDD HCDD ND 0.00000046 13C-1,2,3,7,8-PeCDF ND 0.00000051 13C-2,3,7,8-PeCDF DF ND 0.00000088 13C-1,2,3,7,8-PeCDF DF ND 0.00000088 13C-1,2,3,7,8-PeCDF CDF ND 0.00000088 13C-1,2,3,7,8-PeCDF CDF ND 0.00000088 13C-1,2,3,7,8-PeCDF CDF ND 0.00000051 13C-1,2,3,7,8-PeCDF CDF ND 0.00000052 13C-1,2,3,7,8-PeCDF CDF ND 0.000000674 13C-1,2,3,7,8-PeCDF AD 0.000000674 13C-1,2,3,7,8-PeCDF ND 0.000000674 13C-1,2,3,7,8-PeCDF ND 0.000000670 13C-1,2,3,7,8-PeCDF ND 0.000000540 1.5 Estimated maximum possible concentration limit. </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>84.0</td> <td>25 - 164</td> <td></td>			-				84.0	25 - 164	
DD ND 0.00000149 13C-1,2,3,7,8-HxCDD DD ND 0.00000147 13C-1,2,3,7,8-HxCDD DD ND 0.00000145 13C-1,2,3,4,7,8-HyCDD DD ND 0.00000146 13C-1,2,3,4,6,7,8-HyCDD DD ND 0.00000035 13C-2,3,7,8-TCDF ND 0.00000012 13C-1,2,3,7,8-PeCDF ND 0.00000012 13C-1,2,3,7,8-HyCDF DF ND 0.00000011 F ND 0.00000018 F ND 0.00000067 F ND 0.00000067 DF ND 0.00000067 ND 0.00000067 13C-1,2,3,7,8,9-HpCDF ND 0.0000067 13C-1,2,3,7,8,9-HpCDF ND 0.0000067 13C-0,2,3,7,8,-HpCDF ND 0.0000006	αq		Q				78.7	25 - 181	
CDD ND 0.00000147 13C-1,2,3,6,7,8-HxCDD CUDD ND 0.00000146 13C-1,2,3,4,6,7,8-HpCDD HpCDD ND 0.00000355 13C-2,3,7,8-TCDF DF ND 0.00000112 13C-1,2,3,7,8-PeCDF DF ND 0.00000051 13C-1,2,3,7,8-PeCDF CDF ND 0.00000051 13C-1,2,3,7,8-HpCDF CCDF ND 0.00000051 13C-1,2,3,4,78-HpCDF CCDF ND 0.00000051 13C-1,2,3,4,78-HpCDF CCDF ND 0.00000052 13C-1,2,3,4,8,-HpCDF HpCDF ND 0.00000067 13C-1,2,3,4,8,-HpCDF HpCDF ND 0.00000067 13C-1,2,3,4,8,-HpCDF HpCDF ND 0.00000067 13C-1,2,3,4,8,-HpCDF HpCDF ND 0.00000067 13C-1,2,3,4,8,-HpCDF HpCDF ND 0.000000667 13C-1,2,3,4,8,-HpCDF ND 0.00000067 13C-1,2,3,4,8,-HpCDF 13C-1,2,3,4,8,-HpCDF ND 0.00000067 15C-1,2,3,4,8,-HpCDF 15C-1,2,3,4,8,-HpC	QQ				13C-1,2,3,4,7,8-HxCD	Q	81.9	32 - 141	
CUDD ND 6.00000145 13C-1,2,3,4,6,7,8-HpCDD 4pCDD ND 0.0000035 13C-0CDD ND 0.000000546 13C-2,3,7,8-TCDF DF ND 0.000000112 DF ND 0.00000051 CCDF ND 0.00000051 CCDF ND 0.00000052 CDF ND 0.00000057 CDF ND 0.00000057 CDF ND 0.00000067 HPCDF ND 0.00000067 ND 0.00000067 CRS ND 0.00000067 Eximate specific esimated detection limit. ND 0.000000660 Eximate specific esimated detection limit. ND 0.000000660 Eximate specific esimated detection limit. ND 0.000000660 <td< td=""><td></td><td>0.00000</td><td></td><td></td><td>13C-1,2,3,6,7,8-HxCD</td><td>. Q</td><td>74.4</td><td>28 - 130</td><td></td></td<>		0.00000			13C-1,2,3,6,7,8-HxCD	. Q	74.4	28 - 130	
tpCDD ND 0.00000146 13C-OCDD ND 0.000000535 13C-2,3,7,8-TCDF DF ND 0.00000012 13C-1,2,3,7,8-PcDF DF ND 0.00000081 13C-1,2,3,7,8-PcDF CDF ND 0.00000051 13C-1,2,3,4,7,8-PcDF CDF ND 0.00000052 13C-1,2,3,4,7,8-PcDF CDF ND 0.00000052 13C-1,2,3,4,7,8-PcDF CDF ND 0.00000067 13C-1,2,3,4,7,8-PcDF HpCDF ND 0.00000067 13C-1,2,3,4,6,7,8-HpCDF HpCDF ND 0.00000067 13C-1,2,3,7,8-TCDD HpCDF ND 0.00000067 2.Sample specific estimated detection limit. ND 0.00000067 2.Sample specific estimated detection limit. ND 0.00000044 2.Method detection limit. ND 0.000000546 4.Lower control limit - upper control limit. ND 0.000000550 2.Method detection limit. ND 0.000000560 4.Lower control limit - upper control limit.	4	0.000001			13C-1,2,3,4,6,7,8-HpC	00:	75.6	23 - 140	
ND 0.00000535 13C-2,3,7,8-TCDF DF ND 0.000000546 13C-1,2,3,7,8-PeCDF DF ND 0.00000085 13C-1,2,3,7,8-PeCDF DF ND 0.000000511 13C-1,2,3,7,8-PeCDF CDF ND 0.000000518 13C-1,2,3,7,8-PeCDF CDF ND 0.00000052 13C-1,2,3,7,8-PeCDF CDF ND 0.000000675 13C-1,2,3,7,8-PeCDF HpCDF ND 0.000000675 13C-1,2,3,7,8-PeCDF HpCDF ND 0.000000675 13C-1,2,3,7,8-PeCDF HpCDF ND 0.000000674 13C-1,2,3,7,8-PeCDF HpCDF ND 0.000000674 13C-1,2,3,7,8-PeCDF HpCDF ND 0.000000672 13C-1,2,3,7,8-PeCDF ND 0.000000674 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF ND 0.000000670 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF ND 0.000000671 a. Sample specific estimated detection limit. ND 0.0000000660 0.000000660 0.000000660	Ω				13C-OCDD		40.1	17 - 157	
DF ND 0.000000546 13C-1,2,3,7,8-PeCDF DF ND 0.00000885 13C-2,3,4,7,8-PeCDF DF ND 0.000000511 13C-1,2,3,4,7,8-HxCDF CDF ND 0.00000052 13C-1,2,3,4,7,8-HxCDF CDF ND 0.00000052 13C-1,2,3,4,7,8-HxCDF CDF ND 0.000000764 13C-1,2,3,4,7,8-HxCDF HpCDF ND 0.000000764 13C-1,2,3,4,7,8-HxCDF HpCDF ND 0.000000675 13C-1,2,3,4,7,8-HxCDF HpCDF ND 0.00000676 13C-1,2,3,4,7,8-HxCDF HpCDF ND 0.00000675 13C-1,2,3,4,8,9-HpCDF ND 0.00000660 CRS 37C1-2,3,7,8-TCDD ND 0.00000671 a. Sample specific estimated detection limit. ND 0.00000146 b. Estimated maximum possible concentration. ND 0.000000546 b. Estimated maximum possible concentration. ND 0.000000553 c. Method detection limit. ND 0.000000553 c. Method detection limit. ND		_			13C-2,3,7,8-TCDF		82.6	24 - 169	
DF ND 0.00000112 13C-2,3,4,7,8-PeCDF DF ND 0.00000081 13C-1,2,3,4,7,8-PeCDF CDF ND 0.00000051 13C-1,2,3,4,7,8-PeCDF CDF ND 0.00000052 13C-1,2,3,4,6,7,8-HxCDF CDF ND 0.000000675 13C-1,2,3,4,6,7,8-HxCDF HpCDF ND 0.00000067 13C-1,2,3,4,6,7,8-HpCDF HpCDF ND 0.00000062 CRS 37C1-2,3,4,6,7,8-HpCDF HpCDF ND 0.00000062 CRS 37C1-2,3,4,6,7,8-HpCDF ND 0.00000062 CRS 37C1-2,3,4,6,7,8-HpCDF ND 0.00000062 CRS 37C1-2,3,4,7,8,9-HpCDF ND 0.00000060 CRS 37C1-2,3,7,8-TCDD ND 0.000000147 a. Sample specific estimated detection limit. ND 0.000000546 b. Estimated maximum possible concentration. ND 0.000000554 c. Method detection limit. ND 0.000000553 c. Method detection limit. ND 0.000000553			9		13C-1,2,3,7,8-PeCDF		65.3	24 - 185	
ND 0.000000885 13C-1,2,3,4,7,8-HxCDF ND 0.000000511 13C-1,2,3,6,7,8-HxCDF ND 0.000000522 13C-1,2,3,6,7,8-HxCDF ND 0.000000675 13C-1,2,3,4,6,7,8-HxCDF ND 0.000000676 13C-1,2,3,4,6,7,8-HxCDF ND 0.000000622 CRS ND 0.000000671 a. Sample specific estimated detection limit. ND 0.00000047 a. Sample specific estimated detection limit. ND 0.000000546 b. Estimated maximum possible concentration. ND 0.000000546 c. Method detection limit. ND 0.000000546 d. Lower control limit - upper control limit. ND 0.000000553 c. Method detection limit. ND 0.000000553 c. Method detection limit.	D.	. •:			13C-2,3,4,7,8-PeCDF		71.3	21 - 178	
ND 0.000000511 13C-1,2,3,6,7,8-HxCDF ND 0.000000518 13C-2,3,4,6,7,8-HxCDF ND 0.000000675 13C-1,2,3,7,8,9-HxCDF ND 0.000000622 CRS 37C-1,2,3,7,8-HpCDF ND 0.000000671 Rootnotes ND 0.00000671 a. Sample specific estimated detection limit. ND 0.000000560 c. Method detection limit. ND 0.000000546 c. Method detection limit. ND 0.000000546 d. Lower control limit - upper control limit. ND 0.000000550 c. Method detection limit. ND 0.000000550 d. Lower control limit - upper control limit.			55		13C-1,2,3,4,7,8-HxCD)F	73.7	26 - 152	
ND 0.000000518 13C-2,3,4,6,7,8-HxCDF ND 0.000000522 13C-1,2,3,7,8,9-HxCDF ND 0.000000675 13C-1,2,3,7,8,9-HxCDF ND 0.000000622 CRS ND 0.000000671 a. Sample specific estimated detection limit. ND 0.000000560 b. Estimated maximum possible concentration. ND 0.000000546 c. Method detection limit. ND 0.000000546 c. Method detection limit. ND 0.000000556 c. Method detection limit.)F	er L			13C-1,2,3,6,7,8-HxCD	¥	70.0	26 - 123	
ND 0.00000675 13C-1,2,3,7,8,9-HxCDF			00		13C-2,3,4,6,7,8-HxCL	Ŧ.	78.0	28 - 136	
ND 0.00000675 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF 13C-0			22		13C-1,2,3,7,8,9-HxCL	Ŧ	79.2	29 - 147	
IpCDF ND 0.000000764 13C-1,2,3,7,8,9-HpCDF IpCDF ND 0.00000052 CRS 37C1-2,3,7,8-TCDD ND 0.000000671 a. Sample specific estimated detection limit. ND 0.00000147 b. Estimated maximum possible concentration. ND 0.000000146 c. Method detection limit. ND 0.000000546 d. Lower control limit. upper control limit. ND 0.000000533 o.000000533 ND 0.000000553			75		13C-1,2,3,4,6,7,8-HpC	CDF	64.7	28 - 143	
IpCDF ND 0.00000622 I3C-OCDF ND 0.00000671 a. Sample specific estimated detection limit. ND 0.00000147 b. Estimated maximum possible concentration. ND 0.00000146 c. Method detection limit. ND 0.000000546 d. Lower control limit - upper control limit. ND 0.000000553 o.000000553		.5. 	4		13C-1,2,3,4,7,8,9-HpC	JDF.	76.3	26 - 138	• .
ND 0.00000360 CRS 37CI-2,3,7,8-TCDD ND 0.00000671 a. Sample specific estimated detection limit. ND 0.00000147 c. Method detection limit. ND 0.00000146 d. Lower control limit upper control limit. ND 0.000000346 d. Lower control limit upper control limit. ND 0.000000553 o.000000553			77	;	I3C-OCDF		49,6	17 - 157	
ND 0.00000671 ND 0.00000147 ND 0.00000146 ND 0.00000546 ND 0.000000533					CRS 37CI-2,3,7,8-TCDD		88.7	35-197	
ND 0.00000671 ND 0.00000147 ND 0.00000146 ND 0.00000546 ND 0.00000053	Totals				Footnotes				
ND 0.00000560 ND 0.0000147 ND 0.00000146 ND 0.000000546 ND 0.000000553	_		7.1	-	a, Sample specific estimated detection	on limit.			
ND 0.00000146 ND 0.000000546 ND 0.000000997 ND 0.000000553	1 % 1 % 1 %		05		b. Estimated maximum possible con-	centration.			
ND 0.00000146 ND 0.00000097 ND 0.000000533	_				c. Method detection limit.		,		
222					d. Lower control limit - upper contro	M limit.			
999			46		-				
2 2			7.6						
			53						
NO	Total HpCDF N	ND 0.000000692	92		The state of the s				

Project 27134

Analyst: JMH

OPR Results					EPA	EPA Method 1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	7632 8-Jan-06	Lab Sample: 0-OPR001 Date Analyzed DB-5: 11-Jan-06	Date Analyzed DB-225:	I DB-225: NA
Analyte	Spike Conc. Conc. (Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	TCL-UCL
2,3,7,8-TCDD	10.0	8.44	6.7 - 15.8	IS 13C-2,3,7,8-TCDD	66.2	25 - 164
1,2,3,7,8-PeCDD	20.0	48.8	35 - 71	13C-1,2,3,7,8-PeCDD	70.5	25 - 181
1,2,3,4,7,8-HxCDD	50.0	48.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	68.7	32 - 141
1,2,3,6,7,8-HxCDD	50.0	46.7	38 - 67	13C-1,2,3,6,7,8-HxCDD	65.6	28 - 130
1,2,3,7,8,9-HxCDD	50.0	48.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	70.6	23 - 140
1,2,3,4,6,7,8-HpCDD	50.0	47.2	35 - 70	13C-0CDD	49.9	17 - 157
OCDD	100	95.4	78 - 144	13C-2,3,7,8-TCDF	62.9	24 - 169
2,3,7,8-TCDF	10.0	9.58	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	63.1	24 - 185
1,2,3,7,8-PeCDF	50.0	46.6	40 - 67	13C-2,3,4,7,8-PeCDF	64.2	21 - 178
2,3,4,7,8-PeCDF	50.0	48.4	34 - 80	13C-1,2,3,4,7,8-HxCDF	65.4	26 - 152
1,2,3,4,7,8-HxCDF	50.0	47.6	36-67	13C-1,2,3,6,7,8-HxCDF	63.8	26 - 123
1,2,3,6,7,8-HxCDF	50.0	48.7	42 - 65	13C-2,3,4,6,7,8-HxCDF	6.79	28 - 136
2,3,4,6,7,8-HxCDF	20.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	70.4	29 - 147
1,2,3,7,8,9-HxCDF	50.0	47.3	39 - 62	13C-1,2,3,4,6,7,8-HpCDF	63.1	28 - 143
1,2,3,4,6,7,8-HpCDF	0'05	48.5	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	70.1	26 - 138
1,2,3,4,7,8,9-HpCDF	50.0	48.4	39 - 68	13C-OCDF	56.4	17 - 157
OCDF	100	97.7.	63 - 170	CRS 37Cl-2,3,7,8-TCDD	81.7	35 - 197

Approved By: Martha M. Maier 17-Jan-2006 13:35

Analyst: JMH

Sample ID: IPA0007-01	7-01							EPA N	EPA Method 1613
Clent Data			Sample Data		Laboratory Data				
	Del Mar Analytical, Irvine	-	Matrix:	Aqueous	Lab Sample:	27134-001	Date Received:	.	4-Jan-06
Project: IFAU007 Date Collected: I-Jan-06 Time Collected: 1006			Sample Size:	1.00 L	QC Batch No.: Date Analyzed DB-5:	7632 12-Jan-06	Date Extracted: Date Analyzed DB-225:	d: d DB-225:	8-Jan-06 NA
Analyte Conc.	ic. (ug/L)	DL. a	EMPCb	Qualifiers	Labeled Standard	dard	%R LC	rcr-ncr _q	Oualifiers
2,3,7,8-TCDD	R	0.000000703	03		IS 13C-2,3,7,8-TCDD	DD	69.7 2	25 - 164	
1,2,3,7,8-PeCDD	Q	0.000000984	84		13C-1,2,3,7,8-PeCDD	eCDD	67.0 2	25 - 181	
1,2,3,4,7,8-HxCDD	QX	0.00000156	9	5 -	13C-1,2,3,4,7,8-HxCDD	-HxCDD	57.3 3	32 - 141	
1,2,3,6,7,8-HxCDD	Q	0.00000158	∞		13C-1,2,3,6,7,8-HxCDD	-HxCDD	55.5 2	28 - 130	
1,2,3,7,8,9-HxCDD	Q	0.00000153	m	* .	13C-1,2,3,4,6,7,8-HpCDD	1,8-HpCDD	51.5	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000303				13C-OCDD		35.2	17 - 157	
ОСДО	0.000223				13C-2,3,7,8-TCDF	JDF.	68.1 2	24 - 169	
2,3,7,8-TCDF	QN	0.00000101	-		13C-1,2,3,7,8-PeCDF	PeCDF	65.3 2	24 - 185	
1,2,3,7,8-PeCDF	Q	0.00000123	<u>.</u>	-	13C-2,3,4,7,8-PeCDF	PeCDF	62.4 2	21 - 178	
2,3,4,7,8-PeCDF	Q	0.00000113	[3		13C-1,2,3,4,7,8-HxCDF	3-HxCDF	53.8 2	26 - 152	
1,2,3,4,7,8-HxCDF	QN	0.00000132	2		13C-1,2,3,6,7,8-HxCDF	3-HxCDF	53.3	26 - 123	
1,2,3,6,7,8-HxCDF	Q.	0.00000131			13C-2,3,4,6,7,8-HxCDF	3-HxCDF	53.9 2	28 - 136	
2,3,4,6,7,8-HxCDF	Q	0.0000143	⊕ •	:	13C-1,2,3,7,8,9-HxCDF	-HxCDF	54.7	29 - 147	
1,2,3,7,8,9-HxCDF	QN	0.00000194	4		13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	45.1 2	28 - 143	-
1,2,3,4,6,7,8-HpCDF	0.00000540				13C-1,2,3,4,7,8,9-HpCDF	3,9-HpCDF	48.3	26 - 138	
1,2,3,4,7,8,9-HpCDF	QN	0.00000283			13C-OCDF		37.1	17 - 157	
OCDF	0.0000190				CRS 37CI-2,3,7,8-TCDD	CDD	86.3	35 - 197	
Totals					Footnotes				
Total TCDD	GN.	0.000000703	703		a. Sample specific estimated detection limit	ited detection limit.		2	
Total PeCDD	Ð	0.000000984	984		b. Estimated maximum possible concentration.	ossible concentration.			
Total HxCDD	0.00000816				c. Method detection limit.				
Total HpCDD	0.0000618			**************************************	d. Lower control limit - upper control limit.	pper control limit.			
Total TCDF	2	0.00000101	01		***				
Total PeCDF	2	0.00000118	18						
Total HxCDF	0.00000215								
Total HpCDF	0.0000100								
Analyst: DMS					Approved By:	Martha M. Maier		17-Jan-2006 13:35	10

APPENDIX

Page 7 of 280

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

I Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

17461 Derian Ave. Suite 100, Irvine, CA 92614 1014 E. Cooley Dr., Suite A. Colton, CA 92324

Ph (909) 370-4667 Fax (909) 370-1046 Ph (619) 505-9596 Fax (619) 505-9689

Ph (949) 261-1022 Fax (949) 261-1228

9484 Cheespesius Drive, Suite 805, San Diego, CA 92123 9630 South 51st Street, Suite B-120, Phoenix, AZ 85044

2520 E. Surent Rd., Suite #3, Lee Veges, NV 89120

Ph (490) 785-0043 Fax (480) 785-0851

SUBCONTRACT ORDER - PROJECT # IPA0007

SENDING LABORATORY:	RECEIVING LABORATORY:
Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Chamberlin	Alta Analytical - SUB 1104 Windfield Way El Dorado Hills, CA 95762 Phone: (916) 933-1640 Fax: (916) 673-0106 0.9°

Standard TAT is requ	ested unless specific due date is request	ed => Due Date:	Initials:
Analysis	Expiration .	Comments	
Sample ID: IPA0007-01	Water Sampled: 01/01/06 10:06	Instant Nofication	
1613-Dioxin-HR-Alta	01/08/06 10:06	J flags, 17 congeners, no TEQ, ug/L, sub=Alta	•
EDD + Level 4	01/29/06 10:06	Excel EDD email to pm, Include Std logs for Lvl IV	<u>'</u>

		SAMPLE	INTEGRITY:		
All containers intact: Yes Custody Seals Present: Yes		Sample labels/COC agree: Samples Preserved Properly:	☐ Yes ☐ No ☐ Yes ☐ No	Samples Received On Ice:: Samples Received at (temp):	□ Yes □ No
(Sand)	1/3/66			Benedict 1/4/6	06 0935
Released By	// Date	: Time	Received By	Date'	Time
Released By	Date	. Time	Received By	Date	Time
Project 27134			*		Pagg_0p6280

SAMPLE LOG-IN CHECKLIST

Alta Project #:	27134						
Samples Arrival:	Date/Time 1/4/06	0935	Initials	UB	Locati	on: WR-2)
Logged In:	Date/Time	1527	Initials	BLD	Locati	on: W	R-2
Delivered By:	FedEx	UPS	Cal	DHL	1	Hand elivered	Other
Preservation:	lce	Bit	ie Ice	Dry l	се	No	one
Tomas oc O.	9	Time: P	1017		Therm	ometer ID): DT-20

					YES,	NO	NA
Adequate Sample Volume Received?					V	/	
Holding Time Acceptable?					/	٠	
Shipping Container(s) Intact?					1/		
Shipping Custody Seals Intact?					1/		
Shipping Documentation Present?					1/		
Airbill Trk# 792	4 79	03 41	61		1/	<u> </u>	
Sample Container Intact?					V		/
Sample Custody Seals Intact?							V
Chain of Custody / Sample Documen	tation Pr	esent?			V		<u></u>
COC Anomaly/Sample Acceptance F						1/	
If Chlorinated or Drinking Water Sam			reservation?				K
Na ₂ S ₂ O ₃ Preservation Documented?			coc		nple ainer	(No	one
Shipping Container	Alta	(Client)	Retain	(Re	turn	Dis	pose

Comments:

APPENDIX G

Section 26

Outfall 007, January 01, 2006 AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

 MEC^{x}

Package ID <u>B4MT7</u>
Task Order <u>1261.001D.01</u>

122	69 East Vassar Drive		SDG No. IPA0007
Aur	rora, CO 80014	No	o. of Analyses 1
	Laboratory Del Mar A	nalytical	Date: February 3, 2006
	Reviewer P. Meeks		Repjewer's Signature
	Analysis/Method Metals		r. Mai
AC'	TION ITEMS*		
	Case Narrative		
	Deficiencies		
	· · · · · · · · · · · · · · · · · · ·		
2.	Out of Scope		
	Analyses		
3.	Analyses Not Conducted		

4.	Missing Hardcopy		
	Deliverables		
5.	Incorrect Hardcopy		
	Deliverables		
6.	Deviations from Analysis		
O,	Protocol, e.g.,	Analytes detected below the re	porting limit were qualified as estimated.
	Holding Times	Zindiyees detected outpy the re	porting intal viola quantum as to
	GC/MS Tune/Inst. Performance		
	Calibration		
	Method blanks	······································	
	Surrogates	·	
	Matrix Spike/Dup LCS		
	Field QC	· .	
	Internal Standard Performance		
	Compound Identification		
	Quantitation		
	System Performance		
CO	MMENTS ^b		•
·····			
* St	ubcontracted analytical laboratory is not n	secting contract and/or method requiremen	uts.

b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 007

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IPA0007

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: NPDES IPA0007

DATA VALIDATION REPORT

Analysis: Metals

1. INTRODUCTION

Task Order Title: NPDES Sampling MEC^x Project Number: 1261.001D.01

Sample Delivery Group: IPA0007 Project Manager: P. Costa

Matrix: Water
Analysis: Metals

Analysis: Metals QC Level: Level IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Reviewer: P. Meeks

Date of Review: February 3, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for ICP-MS Metals (DVP-5, Rev. 0), EPA Methods 200.8 and 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

B4MT7 1 Revision 0

Project:

NPDES IPA0007

SDG: Analysis:

Metals

Table 1. Sample Identification

DATA VALIDATION REPORT

Client ID	Laboratory ID	Matrix	COC Method
Outfall 007	IPA0007-01	Water	200.8, 245.1

Project:

NPDES

SDG: Analysis: IPA0007 Metals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ±2°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The method specified tune criteria were met and no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP-MS metals and 80-120% for mercury. The laboratory analyzed reporting limit check standards in association with the sample in this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were at concentrations insufficient to qualify the site sample. No qualifications were required.

B4MT7

Project:

NPDES

SDG: Analysis:

IPA0007 Metals

DATA VALIDATION REPORT

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Antimony and lead, which are not present in the ICSA or ICSAB, were detected in both the ICSA and the ICSAB; however, as the wastewater method (EPA SW-846 6020) lists no known interferents for lead or antimony, no qualifications were required. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP-MS, the ICP-MS internal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No

B4MT7 4 Revision 0

Project: NPDES SDG: IPA0007

DATA VALIDATION REPORT Analysis: Metals

transcription errors or calculation errors were noted. Cadmium and mercury detected below the reporting limit were qualified as estimated, "J," and annotated with "DNQ," in accordance with the requirements of the NPDES permit. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

B4MT7 5 Revision 0

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Cohon, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: Routine Outfall 007

300 North Lake Avenue, Suite 1200

Report Number: IPA0007

Sampled: 01/01/06 Received: 01/01/06

Attention: Bronwyn Kelly

imber: irAuuu/

METALS

*		•								
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result			Date Analyzed	Data Qualifiers	\$
Sample ID: IPA0007-01 (Outfall 0) Reporting Units: ug/l	07 - Water)								Reval	Qua Code
Antimony	EPA 200.8	6A04084	0.050	2.0	4.6	1	01/04/06	01/05/06		
Cadmium	EPA 200.8	6A04084	0.025	1.0	0.22	1	01/04/06	01/05/06	12	DVC
Copper	EPA 200.8	6A04084	0.25	2.0	8.0	1	01/04/06	01/05/06		
Lead	EPA 200.8	6A04084	0.040	1.0	4.4	1	01/04/06	01/05/06		
Mercury	EPA 245.1	6A03072	0.050	0.20	0.087	1	01/03/06	01/03/06	17	DNG

LEVEL IV

Del Mar Analytical, Irvine Amy Windham For Michele Chamberlin Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MECX

ME	Cx		Package ID	B4DF6
122	269 East Vassar Drive		Task Order	
Au	ora, CO 80014		SDG No.	
		No	. of Analyses	1
	Laboratory Alta		Date: Febr	uary 10, 2006
	Reviewer K. Shadow		Reviewer's	
4	Analysis/Method Dioxin/Fura	n by Method 1613	K Shag	met
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				2
AC	FION ITEMS*			
٠	Case Narrative			
	Deficiencies			
2.	Out of Scope Analyses	***************************************		······································
	en e			
3.	Analyses Not Conducted			
4.	Missing Hardcopy			
7.	Deliverables			
	Deliverables			
5.	Incorrect Hardcopy			
•.	Deliverables	4-12-1		
6.	Deviations from Analysis	Detects below the labora	tory lower calib	ration level were qualified
	Protocol, e.g.,	as estimated.	<u> </u>	
	Holding Times			
	GC/MS Tune/Inst. Performance			
	Calibration			
	Method blanks			
	Surrogates			
	Matrix Spike/Dup LCS			
	Field QC			
	Internal Standard Performance			
	Compound Identification			
	Quantitation			
ممد	System Performance			
UUN	IMENTS ⁵			

		·		· · · · · · · · · · · · · · · · · · ·

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 007

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IPA0007

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Analysis:

1. INTRODUCTION

Task Order Title:

NPDES

Contract Task Order:

1261.001.01

Sample Delivery Group:

IPA0007

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Dioxins/Furans

QC Level:

Level IV

No. of Samples:

1

No. of Reanalyses/Dilutions:

Reviewer:

K. Shadowlight

Date of Review:

February 10, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: SDG: NPDES IPA0007 D/F

DATA VALIDATION REPORT

SDG: Analysis:

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 007	IPA0007-01	27134-001	Water	1613

NPDES IPA0007 Analysis: D/F

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical within the temperature limits of 4°C ±2°C. The sample was shipped to Alta for dioxin/furan analysis and was received below the temperature limits at 1°C. As the sample was not noted to be damaged or frozen, no qualifications were required. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. Custody seals were present on the coolers from Del Mar to Alta; however no sample custody seals were present. The Client ID was added to the sample result summary by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 **INSTRUMENT PERFORMANCE**

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

3

2.2.2 Mass Spectrometer Performance

Project: SDG: Analysis: NPDES IPA0007 D/F

DATA VALIDATION REPORT

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 12/30/2005 on instrument VG-7. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of %RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-7632-MB001) was extracted and analyzed with the sample in this SDG. No compounds were reported in the method blank associated with the site sample. A review of the method blank raw data and chromatograms indicated no false. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (0-7632-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. A review of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

B4DF6 4

Revision 0

Project: SDG: NPDES

D/F

DATA VALIDATION REPORT

SDG: Analysis:

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No qualifications were required.

E C	Data		·	Sample Data		Laboratory Data				
Name		Del Mar Analytical, Irvine		Matrix:	Aqueous	Lab Sample:	27134-001	Date Received:	Ŧ	4-Jan-06
	lected:			Sample Size:	1.00 L	OC Batch No.:	7632	Date Extracted:		8-Jan-06
Analyte	lyte Cane	(na/L)	P. B	PMPCP	Onoliffore	Tabalas Canadan	12-Jan-00			NA S
L	l duo.) ADV	0 000000	2 1 2	C AMBINITION O	` .				Manne
	ক্ট			- TS		12C-5,5,58-15UD	3	73	2. Z	NAME OF THE PERSON NAME OF THE P
	100	2	0.000000984	5 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13C-1,2,3,7,8-PeCDD	CD:	67.0 2	25 - 181	
S.		ND 0,0000156	0.0000015	9		13C-1,2,3,4,7,8-HXCDD	HXCDD	57.3	32-141	
7.3	SHEGOTO BY	A	0.00000158	00		13C-1,2,3,6,7,8-HxCDD	-HxCDD	55.5 2	28 - 130	
1,2,3	1,2,3,7,8,9-HxCDD	9	0.00000153	3		13C-1,2,3,4,6,7,8-HpCDD	8-НрСDD	515 2	23-140	
1,2,3						13C-OCDD	٠.	35.2	17-157	
<u> </u>	OCDD	0.000223			を 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13C-2,3,7,8-TCDF	t a	68.1	24-169	
2,3,7	2,3,7,8-TCDF	Ð	0.00000101			13C-1,2,3,7,8-PeCDF	eCDF	65.3	24 - 185	
<u></u>	L,2,3,7,8-PeCDF	Q	0.00000123	2		13C-2,3,4,7,8-PeCDF	SOF.	najetí Pojsky	21 - 178	
2,3,4	2,3,4,7,8-PeCDF	2	0.00000113			13C-1,2,3,4,7,8-HxCDF	-HxCDF		26 - 152	
	1,2,3,4,7,8-HxCDF	2	0.00000132	2		13C-1,2,3,6,7,8-HXCDF	HCOM	53.3	26-123	
1,2,3	1,2,3,6,7,8-HxCDF	Q	0,00000131	•••		13C-2,3,4,6,7,8-HxCDF	HxCDF	53.9 2	28 - 136	
2,3,4	2,3,4,6,7,8-HxCDF	N	0.00000143			13C-1,2,3,7,8,9-HxCDF	HXCDP	54.7	29 - 147	
12,3	,2,3,7,8,9-HxCDF	Q	0.00000194	7		13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	45.1 2	28 - 143	
DAG 1.23	1,2,3,4,6,7,8-HpCDF	0.00000540				13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	48.3	26-138	
1,2,3	1,2,3,4,7,8,9-HpCDF	R	0.00000283			13C-0CDF	•	37.1	17-157	, ()
DAS OCUF		0.0000190				CRS 37CI-2,3,7,8-TCDD	QQ	86.3	35-197	
Totals	lis		:			Footnotes				
Tota	Total TCDD	S	0.000000703	03		a. Sample specific estimated detection limit.	ed detection limit.	Availability and the second of the second		
Tota	Total PeCDD	2	0.000000984	**		b. Estimated maximum possible concentration.	ssible concentration.		,	
Tota	Total HxCDD	0.00000816				c. Method detection limit.				
Tota	Total HpCDD	0.0000618				d. Lower control limit - upper control limit.	per control limit.	٠,٠		:
Tota	Total TCDF	呈	0.00000101							
Tota	Total PeCDF	2	0.00000118			÷.	ě			
Tota	Total HxCDF	0.00000215		•						
Tota	Total HpCDF	0.0000100							٠	

APPENDIX G

Section 27

Outfall 008, January 01, 2006

Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project: Routine Outfall 008

Sampled: 01/01/06 Received: 01/01/06

Issued: 01/16/06 14:43

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

CLIENT ID

MATRIX

IPA0004-01

Outfall 008

Water

Reviewed By:

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

any Windham

Project Manager

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

METALS

			V II II I I I I I I I I I I I I I I I I	LJ.J					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0004-01 (Outfall 008	- Water)								
Reporting Units: ug/l									
Antimony	EPA 200.8	6A04084	0.050	2.0	0.77	1	01/04/06	01/05/06	B, J
Cadmium	EPA 200.8	6A04084	0.025	1.0	0.14	1	01/04/06	01/05/06	J
Copper	EPA 200.8	6A04084	0.25	2.0	12	1	01/04/06	01/05/06	
Lead	EPA 200.8	6A04084	0.040	1.0	20	1	01/04/06	01/05/06	
Mercury	EPA 245.1	6A04080	0.050	0.20	ND	1	01/04/06	01/04/06	

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0004-01 (Outfall 008 - V	Vater) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	6A01004	0.15	0.50	2.9	1	01/01/06	01/01/06	
Nitrate/Nitrite-N	EPA 300.0	6A01004	0.072	0.26	4.9	1	01/01/06	01/01/06	
Oil & Grease	EPA 413.1	6A06048	0.91	4.9	ND	1	01/06/06	01/06/06	
Sulfate	EPA 300.0	6A01004	0.45	0.50	9.3	1	01/01/06	01/01/06	
Total Dissolved Solids	SM2540C	6A03093	10	10	210	1	01/03/06	01/03/06	
Total Suspended Solids	EPA 160.2	6A05089	10	10	220	1	01/05/06	01/05/06	
Sample ID: IPA0004-01 (Outfall 008 - V	Vater)								
Reporting Units: ug/l									
Perchlorate	EPA 314.0	6A03076	0.80	4.0	ND	l	01/03/06	01/03/06	

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Report Number: IPA0004

Sampled: 01/01/06

Received: 01/01/06

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 008 (IPA0004-01) - Water	r				
EPA 300.0	2	01/01/2006 10:18	01/01/2006 15:25	01/01/2006 17:30	01/01/2006 18:56

Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Pasadena, CA 91101

300 North Lake Avenue, Suite 1200

Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A04080 Extracted: 01/04/06											
Blank Analyzed: 01/04/2006 (6A04080-Bl	LK1)										
Mercury	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/04/2006 (6A04080-BS1)										
Mercury	8.40	0.20	0.050	ug/l	8.00		105	85-115			
•											
Matrix Spike Analyzed: 01/04/2006 (6A04	,					rce: IPA6					
Mercury	8.03	0.20	0.050	ug/l	8.00	ND	100	70-130			
Matrix Spike Dup Analyzed: 01/04/2006 (6A04080-MS	D1)			Soui	rce: IPA0	079-01				
Mercury	8.17	0.20	0.050	ug/l	8.00	ND	102	70-130	2	20	
Batch: 6A04084 Extracted: 01/04/06											
Date 27 Size 100 1 Date access 010 0700	•										
Blank Analyzed: 01/05/2006 (6A04084-BI	.K1)										
Antimony	0.162	2.0	0.050	ug/l							J
Cadmium	ND	1.0	0.025	ug/l							
Copper	0.321	2.0	0.25	ug/l							J
Lead	ND	1.0	0.040	ug/l							
LCS Analyzed: 01/05/2006 (6A04084-BS1)										
Antimony	78.5	2.0	0.050	ug/l	80.0		98	85-115			
Cadmium	80.2	1.0	0.025	ug/l	80.0		100	85-115			
Copper	80.8	2.0	0.25	ug/l	80.0		101	85-115			
Lead	78.3	1.0	0.040	ug/l	80.0		98	85-115			
Matrix Spike Analyzed: 01/05/2006 (6A04	084-MS1)				Sour	ce: IOL2	694-49				
Antimony	78.2	2.0	0.050	ug/l	80.0	0.26	97	70-130			
Cadmium	76.0	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	102	2.0	0.25	ug/l	80.0	23	99	70-130			
Lead	84.3	1.0	0.040	ug/l	80.0	2.7	102	70-130			

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

Project Manager

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A04084 Extracted: 01/04/06	_										
Matrix Spike Analyzed: 01/05/2006 (6A0	4084-MS2)				Sou	rce: IOL	2694-50				
Antimony	80.0	2.0	0.050	ug/l	80.0	0.094	100	70-130			
Cadmium	76.2	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	101	2.0	0.25	ug/l	80.0	18	104	70-130			
Lead	87.5	1.0	0.040	ug/l	80.0	1.8	107	70-130			
Matrix Spike Dup Analyzed: 01/05/2006	(6A04084-M	SD1)			Sou	rce: IOL2	2694-49				
Antimony	76.7	2.0	0.050	ug/l	80.0	0.26	96	70-130	2	20	
Cadmium	76.1	1.0	0.025	ug/l	80.0	ND	95	70-130	0	20	
Copper	101	2.0	0.25	ug/l	80.0	23	98	70-130	1	20	
Lead	83.9	1.0	0.040	ug/l	80.0	2.7	102	70-130	1	20	

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

A a Broke	73 14	Reporting	1.577.7	** *.	Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A01004 Extracted: 01/01/06	=										
Blank Analyzed: 01/01/2006 (6A01004-B	LK1)										
Chloride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.15	0.080	mg/l							
Sulfate	ND	0.50	0.45	mg/l							
LCS Analyzed: 01/01/2006 (6A01004-BS	1)										
Chloride	4.88	0.50	0.15	mg/l	5.00		98	90-110			M-3
Sulfate	9.56	0.50	0.45	mg/l	10.0		96	90-110			
Matrix Spike Analyzed: 01/01/2006 (6A0	1004-MS1)				Sou	rce: IPA0	003-01				
Sulfate	14.4	0.50	0.45	mg/l	10.0	5.1	93	80-120			
Matrix Spike Dup Analyzed: 01/01/2006	(6A01004-MS	D 1)			Sou	rce: IPA0	003-01				
Sulfate	14.8	0.50	0.45	mg/l	10.0	5.1	97	80-120	3	20	
Batch: 6A03076 Extracted: 01/03/06	•										
Blank Analyzed: 01/03/2006 (6A03076-Bl	LK1)										
Perchlorate	ND	4.0	0.80	ug/l							
LCS Analyzed: 01/03/2006 (6A03076-BS1)										
Perchlorate	49.4	4.0	0.80	ug/l	50.0		99	85-115			
Matrix Spike Analyzed: 01/03/2006 (6A03	076-MS1)				Sour	ce: IPA0	022-18				
Perchlorate	50.5	4.0	0.80	ug/l	50.0	ND	101	80-120			
Matrix Spike Dup Analyzed: 01/03/2006 (6A03076-MSI	D 1)			Sour	ce: IPA0	022-18				
Perchlorate	50.2	4.0	0.80	ug/l	50.0	ND	100	80-120	1	20	

Project Manager

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 6A03093 Extracted: 01/03/06	.										
Blank Analyzed: 01/03/2006 (6A03093-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/03/2006 (6A03093-BS	1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/03/2006 (6A0309	3-DUP1)				Sour	rce: IPA0	005-01				
Total Dissolved Solids	981	10	10	mg/l		980			0	10	
Batch: 6A05089 Extracted: 01/05/06	-										
Blank Analyzed: 01/05/2006 (6A05089-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/05/2006 (6A05089-BS)	l)										
Total Suspended Solids	979	10	10	mg/l	1000		98	85-115			
Duplicate Analyzed: 01/05/2006 (6A0508)	9-DUP1)				Sour	ce: IPA0	012-01				
Total Suspended Solids	458	10	10	mg/l		350			27	10	R-3
Batch: 6A06048 Extracted: 01/06/06	•										
Blank Analyzed: 01/06/2006 (6A06048-Bl	LKI)										
Oil & Grease	ND	5.0	0.94	mg/l							
LCS Analyzed: 01/06/2006 (6A06048-BS1)										M-NR1
Oil & Grease	19.2	5.0	0.94	mg/l	20.0		96	65-120			

Del Mar Analytical, Irvine Amy Windham For Michele Chamberlin Project Manager

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 6A06048 Extracted: 01/06/06	<u>i</u>										-
LCS Dup Analyzed: 01/06/2006 (6A0604 Oil & Grease	8-BSD1) 19.6	5.0	0.94	mg/l	20.0		98	65-120	2	20	

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IPA0004-01	413.1 Oil and Grease	Oil & Grease	mg/l	0.78	4.9	15
IPA0004-01	Chloride - 300.0	Chloride	mg/l	2.90	0.50	150
IPA0004-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	4.90	0.26	8.00
IPA0004-01	Perchlorate 314.0	Perchlorate	ug/l	0	4.0	6.00
IPA0004-01	Sulfate-300.0	Sulfate	mg/l	9.30	0.50	300
IPA0004-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	210	10	950

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

R-3 The RPD exceeded the method control limit due to sample matrix effects.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

Project ID: Routine Outfall 008

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0004

Sampled: 01/01/06 Received: 01/01/06

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	N/A	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IPA0004-01

Analysis Performed: EDD + Level 4

Samples: IPA0004-01

4000 HAI CHAIN OF CUSTODY FORM

Page 1 of 1

Temp = 58 © Comments Field readings: S ~ #d Sample Integrity: (Check) Intect On loa 10 Days Turn around Time: (check) 24 Hours 5 Days Perchlorate Only 72 Hours Metals Only 72 Hours 72 Hours 48 Hours ANALYSIS REQUIRED G2G1 90/1/1 TCDD (snd all congeners) × × SST, SQT Perchlorate My A T. Date/Time: Date/Time: Date/Time: × CF' 804' NO3+NOS-N Oil & Grease (EPA 413.1) × Total Reoverable Metals: Sp, Cd, Cu, Pb, Hg × 6A, 6B 5A, 5B 4A, 4B 3A, 3B **** 9 Preservative | Bottle Received By Received By Stormwater at Happy Valley HN03 HN03 None 8 None Boeing-SSFL NPDES Routine Outfall 008 걸 Phone Number. (626) 568-6691 Fax Number. (626) 568-6515 $\boldsymbol{\omega}$ Sampling Date/Time 000 Date/Time: 6 Del Mar Analytical version 02/17/05 Date/Time Project C # Project Manager: Bronwyn Kelly MWH-Pasadena 300 Noth Lake Avenue, Suite 1200 Pasadena, CA 91101 Sampler P BANACA Sample Container Matrix Type Glass-Amber Poly-500 ml Poly-500 ml Glass-Amber Poly-1L Poly-1L Client Name/Address 3 ₹ ₹ ≥ ₹ ₹ Relipqobyhed By Sample Description Ourfall 008 Outfall 008 Outfall 008 Outfall 008 Outfall 008 Outfall 008

January 17, 2006

Alta Project I.D.: 27136

Ms. Michele Chamberlin Del Mar Analytical, Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on January 04, 2006 under your Project Name "IPA0004". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely.

Martha M. Maier

Madles Marco

Director of HRMS Services

alta Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. This report should not be reproduced except in full without the written approval of ALTA.

4

Section I: Sample Inventory Report

Date Received:

1/4/2006

Alta Lab. ID

Client Sample ID

27136-001

IPA0004-01

SECTION II

Aqueous QC Batch No.: 7632 Lab Sample: 0-MB001 1.00 L Date Extracted: 8-Jan-06 Date Annalyzed DB-5: 11-Jan-06 Conc. (ug/L) DL. a EMPC b Qualifiers Labeled Standard 13-12-3,7,8-TCDD ND 0.000000560 13C-12,3,7,8-PcCDD 13C-12,3,7,8-PcCDD ND 0.00000147 13C-12,3,7,8-PcCDD 13C-12,3,7,8-PcCDD CDD ND 0.00000146 13C-12,3,7,8-PcCDD CDD ND 0.00000146 13C-12,3,7,8-PcCDF ND 0.000000346 13C-12,3,7,8-PcCDF ND 0.000000346 13C-12,3,7,8-PcCDF ND 0.000000346 13C-12,3,7,8-PcCDF ND 0.00000031 13C-12,3,7,8-PcCDF ND 0.00000031 13C-12,3,7,8-PcCDF ND 0.00000031 13C-12,3,7,8-PcCDF ND 0.000000031 13C-12,3,4,7,8-PcCDF ND 0.000000032 13C-12,3,4,7,8-PcCDF ND 0.000000046 13C-12,3,4,6,7,8-PcCDF ND 0.0000000046 13C-12,3,4,7,8-PcCDF	Method Blank					EPA Method 1613
1.00 Date Extracted: 8-Jan-06 Date Analyzed DB-5: 11-Jan-06		(ACB)	atch No.:	7632		
Conc. (ug/L) DL. a EMPC b Qualifiers Qualifiers Labeled Standard % ND 0.000000671 18 13C-2,3,7,8-TCDD ND 0.000000560 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-TCDD ND 0.00000149 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD ND 0.00000146 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-0,2,3,4,8-HxCDF ND 0.000000346 13C-1,2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-HxCDF ND 0.00000031 13C-1,2,3,7,8-HxCDF 13C-1,2,3,7,8-HxCDF 13C-1,2,3,7,8-HxCDF ND 0.00000031 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF ND 0.000000031 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF ND 0.00000052 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF ND 0.00000062 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF ND 0.00000062 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF ND 0.00000060 1 CRS 37C1-2,3,7,8-TCDD 1 CRS 37C1-2,3,7,8-TCDD 1 CRS 37C1-2,3,7,8-TCDD		Date	Extracted:	8-Jan-06		Date Analyzed DB-225: NA
ND 0.000000671 IS 13C-2,3,7,8-PCDD ND 0.000000560 13C-1,2,3,7,8-PcDD ND 0.00000147 13C-1,2,3,4,7,8-PcDD ND 0.00000145 13C-1,2,3,4,7,8-PcDD ND 0.00000145 13C-1,2,3,4,7,8-PcDD ND 0.00000353 13C-1,2,3,7,8-PcDF ND 0.00000031 13C-2,3,7,8-PcDF ND 0.00000012 13C-2,3,4,7,8-PcDF ND 0.00000031 13C-1,2,3,4,7,8-PcDF ND 0.00000031 13C-1,2,3,4,7,8-PcDF ND 0.00000051 13C-1,2,3,4,7,8-PcDF ND 0.000000675 13C-1,2,3,4,7,8-PcDF ND 0.000000675 13C-1,2,3,4,7,8-PcDF ND 0.000000676 13C-1,2,3,4,7,8-PcDF ND 0.000000676 13C-1,2,3,4,7,8-PcDF ND 0.00000067 13C-1,2,3,4,7,8-PcDF ND 0.00000067 13C-1,2,3,4,7,8-PcDF ND 0.00000067 13C-1,2,3,4,7,8-PcDF ND 0.00000067 13C-1,2,3,4,7,8-PcDF ND			res.		Labeled Standard	%R LCL-UCL ^d Oualifiers
ND 0.00000560 13C-1,2,3,7,8-PeCDD ND 0.0000147 13C-1,2,3,7,8-PeCDD ND 0.00000145 13C-1,2,3,4,7,8-HxCDD ND 0.00000146 13C-1,2,3,4,7,8-PeCDD ND 0.00000034 13C-1,2,3,4,8-PeCDF ND 0.00000034 13C-1,2,3,7,8-PeCDF ND 0.00000034 13C-1,2,3,7,8-PeCDF ND 0.00000031 13C-1,2,3,7,8-PeCDF ND 0.00000031 13C-1,2,3,7,8-PeCDF ND 0.00000031 13C-1,2,3,7,8-PeCDF ND 0.00000051 13C-1,2,3,7,8-PeCDF ND 0.00000052 13C-1,2,3,4,8-PeCDF ND 0.00000052 13C-1,2,3,4,6,7,8-HxCDF ND 0.000000675 13C-1,2,3,4,6,7,8-HxCDF ND 0.000000676 13C-1,2,3,4,6,7,8-HxCDF ND 0.000000676 13C-1,2,3,4,7,8-PtCDF ND 0.000000670 A Sample specific estimated detection limit. ND 0.00000046 A Sample specific estimated detection limit. ND 0.00000053 A Sample specific estimated dete			1/9000			84.0 25 - 164
ND 0.00000149 13C-1,2,3,4,7,8-HxCDD ND 0.00000145 13C-1,2,3,4,7,8-HxCDD ND 0.00000146 13C-1,2,3,4,6,7,8-HyCDD ND 0.00000335 13C-2,3,7,8-HyCDF ND 0.000000346 13C-1,2,3,7,8-PyCDF ND 0.00000031 13C-1,2,3,4,7,8-PyCDF ND 0.00000031 13C-1,2,3,4,7,8-PyCDF ND 0.00000051 13C-1,2,3,4,7,8-PyCDF ND 0.00000051 13C-1,2,3,4,5,7,8-PyCDF ND 0.00000052 13C-1,2,3,4,5,7,8-PyCDF ND 0.000000674 13C-1,2,3,4,6,7,8-PyCDF ND 0.000000674 13C-1,2,3,4,6,7,8-PyCDF ND 0.000000674 13C-1,2,3,7,8-TCDD ND 0.000000674 13C-1,2,3,7,8-TCDD ND 0.000000674 A Sample specific estimated detection limit. ND 0.000000674 A Sample specific estimated detection limit. ND 0.000000674 A Sample specific estimated detection limit. ND 0.000000650 A Sample specific estimated detection limit. ND			090000		13C-1,2,3,7,8-PeCDD	78.7 25 - 181
ND 0.00000147 13C-1,2,3,6,7,8-HxCDD			00149		13C-1,2,3,4,7,8-HxCDD	81.9 32 - 141
(CDD ND 0.00000145 13C-1,2,3,4,6,7,8-HpCDD 4pCDD ND 0.00000355 13C-2,3,7,8-TCDF ND 0.000000346 13C-1,2,3,7,8-PeCDF DF ND 0.00000012 13C-1,2,3,7,8-PeCDF DF ND 0.00000051 13C-1,2,3,7,8-PeCDF CCDF ND 0.00000051 13C-1,2,3,4,7,8-PeCDF ACDF ND 0.00000051 13C-1,2,3,4,6,7,8-HxCDF ACDF ND 0.00000052 13C-1,2,3,4,6,7,8-HxCDF ACDF ND 0.00000052 13C-1,2,3,4,6,7,8-HyCDF APCDF ND 0.00000067 13C-1,2,3,4,7,8,9-HyCDF APCDF ND 0.00000067 13C-1,2,3,4,8,9-HyCDF APCDF ND 0.00000067 13C-1,2,3,4,8,9-HyCDF <			00147		13C-1,2,3,6,7,8-HxCDD	74.4 28 - 130
tpCDD ND 0.00000146 13C-OCDD ND 0.00000535 13C-2,3,7,8-TCDF DF ND 0.000000546 13C-1,2,3,7,8-PeCDF DF ND 0.00000081 13C-1,2,3,4,7,8-PeCDF CCDF ND 0.00000051 13C-1,2,3,4,7,8-PeCDF CCDF ND 0.00000052 13C-1,2,3,4,7,8-PeCDF CCDF ND 0.00000052 13C-1,2,3,4,7,8-PeCDF CCDF ND 0.00000067 13C-1,2,3,4,7,8-PeCDF CCDF ND 0.00000067 13C-1,2,3,4,7,8-PeCDF HPCDF ND 0.00000067 13C-1,2,3,4,6,7,8-PeCDF HPCDF ND 0.00000067 13C-1,2,3,4,6,7,8-PeCDF HPCDF ND 0.00000067 13C-1,2,3,4,6,7,8-PeCDF HPCDF ND 0.00000067 13C-1,2,3,4,7,8-PeCDF HPCDF ND 0.00000067 13C-1,2,3,4,6,7,8-PeCDF HPCDF ND 0.00000067 13C-1,2,3,4,6,7,8-PeCDF HPCDF ND 0.00000067 13C-1,2,3,4,6,7,8-PeCDF <td< td=""><td></td><td></td><td>00145</td><td></td><td>13C-1,2,3,4,6,7,8-HpCDD</td><td>75.6 23 - 140</td></td<>			00145		13C-1,2,3,4,6,7,8-HpCDD	75.6 23 - 140
ND 0.00000535 13C-2,3,7,8-TCDF			00146		13C-OCDD	40.1 17 - 157
DF ND 0.000000546 13C-1,2,3,7,8-PeCDF DF ND 0.00000885 13C-1,2,3,4,7,8-PeCDF DF ND 0.000000511 13C-1,2,3,4,7,8-HxCDF CDF ND 0.000000522 13C-1,2,3,4,5,7,8-HxCDF CDF ND 0.00000052 13C-1,2,3,4,6,7,8-HxCDF CDF ND 0.000000764 13C-1,2,3,4,6,7,8-HxCDF HpCDF ND 0.000000764 13C-1,2,3,4,6,7,8-HxCDF HpCDF ND 0.000000764 13C-1,2,3,4,8,9-HpCDF HpCDF ND 0.00000062 CRS 37C1-2,3,7,8-TCDD MD 0.00000056 a Sample specific estimated detection limit. ND 0.000000560 a Sample specific estimated detection limit. ND 0.000000560 a Sample specific control limit - upper control limit. ND 0.000000546 a Sample specific control limit. ND 0.000000533 ND 0.000000533 ND 0.000000632			00535		13C-2,3,7,8-TCDF	82.6 24 - 169
ND 0.00000112 13C-2,3,4,7,8-PeCDF ND 0.00000081 13C-1,2,3,4,7,8-HxCDF ND 0.000000518 13C-1,2,3,6,7,8-HxCDF ND 0.000000522 13C-1,2,3,4,7,8-HxCDF ND 0.000000675 13C-1,2,3,4,7,8-HxCDF ND 0.000000675 13C-1,2,3,4,7,8-HxCDF ND 0.000000676 13C-1,2,3,4,7,8-HxCDF ND 0.000000671 CRS ND 0.000000671 a. Sample specific estimated detection limit. ND 0.000000546 a. Sample specific estimated detection limit. ND 0.000000546 a. Sample specific estimated maximum possible concentration. ND 0.000000546 a. Listimated maximum possible concentration. ND 0.000000546 a. Listimated maximum possible concentration. ND 0.000000546 a. Lower control limit - upper control limit. ND 0.000000553 a. Marchod detection limit. ND 0.000000653 a. Marchod detection limit.		;	000546	-	13C-1,2,3,7,8-PeCDF	65.3 24 - 185
ND 0.000000885 13C-1,2,3,4,7,8-HxCDF ND 0.000000518 13C-1,2,3,6,7,8-HxCDF ND 0.000000522 13C-1,2,3,4,6,7,8-HxCDF ND 0.000000675 13C-1,2,3,4,6,7,8-HxCDF ND 0.000000676 13C-1,2,3,4,7,8,9-HxCDF ND 0.000000622 CRS ND 0.000000671 a Sample specific estimated detection limit. ND 0.00000146 a Sample specific estimated detection limit. ND 0.000000546 c. Method detection limit. ND 0.000000546 c. Method detection limit. ND 0.000000546 d. Lower control limit - upper control limit. ND 0.000000553 c. Method detection limit. ND 0.00000053 c. Method detection limit. ND 0.000000550 c. Method detection limit.	DF		00112		13C-2,3,4,7,8-PeCDF	71.3 21 - 178
ND 0.000000511 13C-1,2,3,6,7,8-HxCDF ND 0.000000528 13C-1,2,3,7,8,9-HxCDF ND 0.000000675 13C-1,2,3,7,8,9-HxCDF ND 0.000000622 CRS 37C-1,2,3,7,8-HxCDF ND 0.000000671 Extinated maximum possible concentration. ND 0.000000560 Extinated maximum possible concentration. ND 0.000000546 Extinated maximum possible concentration. ND 0.000000546 Extinated maximum possible concentration. ND 0.000000546 A Lower control limit.			000885			73.7 26 - 152
ND 0.000000518 13C-2,3,4,6,7,8-HxCDF ND 0.000000675 13C-1,2,3,7,8,9-HxCDF ND 0.000000675 13C-1,2,3,4,7,8-HpCDF ND 0.000000622 CRS ND 0.000000671 a Sample specific estimated detection limit. ND 0.000000671 b Estimated maximum possible concentration. ND 0.000000146 c Method detection limit. ND 0.000000369 c Method detection limit.		9.	000511		agin Tg	70.0 26 - 123
ND 0.000006522 13C-1,2,3,7,8,9-HxCDF ND 0.000000675 13C-1,2,3,4,6,7,8-HpCDF ND 0.000000622 13C-1,2,3,4,7,8,9-HpCDF ND 0.000000671 Example specific estimated detection limit. ND 0.000000560 a. Sample specific estimated detection limit. ND 0.000000146 a. Lower control limit - upper control limit. ND 0.000000946 d. Lower control limit - upper control limit. ND 0.000000563 a. Lower control limit - upper control limit. ND 0.000000553 nD ND 0.000000553 nD			000518		13C-2,3,4,6,7,8-HxCDF	78.0 28 - 136
5,9-HxCDF ND 0.00000675 13C-1,2,3,4,7,8,9-HpCDF 7,3,8-HpCDF ND 0.000000764 13C-1,2,3,4,7,8,9-HpCDF 7,8,9-HpCDF ND 0.00000622 CRS 37C-1,2,3,4,7,8,9-HpCDF 7,8,9-HpCDF ND 0.00000671 a Sample specific estimated detection limit. CDD ND 0.00000147 a Sample specific estimated detection limit. CDD ND 0.00000146 a Lower control limit - upper control limit. CDF ND 0.00000097 c. Method detection limit - upper control limit. CDF ND 0.000000546 a Lower control limit - upper control limit. CDF ND 0.000000533 a Lower control limit - upper control limit. ACDF ND 0.000000533 a Lower control limit - upper control limit.			000522		13C-1,2,3,7,8,9-HxCDF	79.2 29 - 147
5,7,8-HpCDF ND 0.000000622 13C-1,2,3,4,7,8,9-HpCDF 7,8,9-HpCDF ND 0.000000622 CRS 37C1-2,3,7,8-TCDD 7,8,9-HpCDF ND 0.000000671 a Sample specific estimated detection limit. CDD ND 0.000000560 b Estimated maximum possible concentration. CDD ND 0.000000146 c Method detection limit. CDF ND 0.000000546 d Lower control limit - upper control limit. CDF ND 0.000000546 c Method detection limit. CDF ND 0.000000553 c Lower control limit - upper control limit. ND 0.000000553 c Lower control limit - upper control limit.			000675		13C-1,2,3,4,6,7,8-HpCDF	64.7 28 - 143
7,8,9-HpCDF ND 0.00000622 13C-OCDF CRS 37Cl-2,3,7,8-TCDD CDD ND 0.00000671 a. Sample specific estimated detection limit. CDD ND 0.000000560 b. Estimated maximum possible concentration. CDD ND 0.00000146 c. Method detection limit. CDF ND 0.000000546 d. Lower control limit - upper control limit. CDF ND 0.000000546 c. Method detection limit. CDF ND 0.000000546 c. Method detection limit. CDF ND 0.000000553 c. Method detection limit. CDF ND 0.000000553 c. Method detection limit.			1000764		13C-1,2,3,4,7,8,9-HpCDF	76.3 26-138
CDD ND 0.000000560 Footnotes CDD ND 0.000000671 a. Sample specific estimated detection limit. CDD ND 0.000000560 b. Estimated traximum possible concentration. CDD ND 0.00000147 c. Method detection limit. CDF ND 0.000000546 d. Lower control limit - upper control limit. CDF ND 0.000000997 c. Method detection limit. ACDF ND 0.000000553 c. Method detection limit. ACDF ND 0.000000553 c. Method detection limit.			000622		13C-OCDF	
ND 0.00000671 ND 0.000000560 D ND 0.00000147 D ND 0.000000546 ND 0.000000546 F ND 0.000000553 F ND 0.000000553			09800		CRS 37CI-2,3,7,8-TCDD	
D ND 0.00000671 D ND 0.00000147 D ND 0.00000146 ND 0.00000146 ND 0.000000546 F ND 0.00000053	Totals				Footnotes	
ND 0.00000560 ND 0.00000147 ND 0.000000546 ND 0.000000553 ND 0.000000553 ND 0.000000553			1000671		a. Sample specific estimated detection limit.	
ND 0.00000146 ND 0.00000546 ND 0.00000097 ND 0.00000053			095000		b. Estimated maximum possible concentration.	
ND 0.00000146 ND 0.000000546 ND 0.000000553 ND 0.00000652			00147		c. Method detection limit.	
8 8			900146		d. Lower control limit - upper control limit.	
ON ON ON			0000546		-	
2 2			7660000	100		
QX			0000553		:	
	Total HpCDF N		269000			**

Analyst: JMH

Approved By:

Martha M. Maier 17-Jan-2006 14:38

OPR Results					EPA M	EPA Method 1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	7632 8-Jan-06	Lab Sample: 0-OPR001 Date Analyzed DB-5: 11-Jan-06	Date Analyzed DB-225:	DB-225: NA
Analyte	Spike Conc. Conc. (Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	TCL-UCL
2,1,7,8-TCDD	10.0	8.44	6.7 - 15.8	IS 13C-2,3,7,8-TCDD	66.2	25 - 164
1,2,3,7,8-PeCDD	20.0	48.8	35 - 71	13C-1,2,3,7,8-PeCDD	70.5	25 - 181
1,2,3,4,7,8-HxCDD	50.0	8.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	68.7	32 - 141
1,2,3,6,7,8-HxCDD	20.0	46.7	38 - 67	13C-1,2,3,6,7,8-HxCDD	65.6	28 - 130
1,2,3,7,8,9-HxCDD	50.0	48.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	70.6	23 - 140
1,2,3,4,6,7,8-HpCDD	20.0	47.2	35 - 70	13C-OCDD	49.9	17 - 157
ОСДД	001	95.4	78 - 144	13C-2,3,7,8-TCDF	62.9	24 - 169
2,3,7,8-TCDF	10.0	9.58	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	63.1	24 - 185
1,2,3,7,8-PeCDF	50.0	46.6	40 - 67	13C-2,3,4,7,8-PeCDF	64.2	21 - 178
2,3,4,7,8-PeCDF	50.0	48.4	34 - 80	13C-1,2,3,4,7,8-HxCDF	65.4	26 - 152
1,2,3,4,7,8-HxCDF	50.0	47.6	36 - 67	13C-1,2,3,6,7,8-HxCDF	63.8	26 - 123
1,2,3,6,7,8-HxCDF	20.0	48.7	42 - 65	13C-2,3,4,6,7,8-HxCDF	6.1.9	28 - 136
2,3,4,6,7,8-HxCDF	20.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	70.4	29 - 147
1,2,3,7,8,9-HxCDF	20.0	47.3	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	63.1	28 - 143
1,2,3,4,6,7,8-HpCDF	20.0	48.5	41-61	13C-1,2,3,4,7,8,9-HpCDF	70.1	26 - 138
1,2,3,4,7,8,9-HpCDF	20.0	48.4	39 - 69	13C-OCDF	56.4	17 - 157
OCDF	100	7.76	63 - 170	CRS 37CI-2,3,7,8-TCDD	81.7 s	35 - 197

Approved By: Martha M. Maier 17-Jan-2006 14:38

Analyst: JMH

Sample 1D: IPA0004-01								EPA N	EPA Method 1613
Client Data			Sample Data		Laboratory Data				
	Del Mar Analytical, Irvine		Matrix:	Aqueous	Lab Sample:	27136-001	Date Received	ived	4-Jan-06
Project: IPA0004 Date Collected: I-Jan-06			Sample Size:	1.00.L	QC Batch No.:	7632	Date Extracted:	icted:	8-Jan-06
					Date Analyzed DB-5:	12-Jan-06	Date Anal	Date Analyzed DI3-225:	VA
Analyte Conc. ((ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard	dard	%R I	rcr-ncr _q	Oualifiers
2.3.7.8-TCDD	N CK	0.000000804	804		IS 13C-2,3,7,8-TCDD	OQ;	73.4	25 - 164	
1.2.3.7.8-PeCDD	QN ON	0.00000000	606		13C-1,2,3,7,8-PeCDD	PeCDD	77.2	25 - 181	-
1,2,3,4,7,8-HxCDD	QN QN	0.00000121	21		13C-1,2,3,4,7,8-HxCDD	-HxCDD	78.2	32 - 141	
1,2,3,6,7,8-HxCDD	QN	0.00000130	30		13C-1,2,3,6,7,8-HxCDD	-HxCDD	73.0	28 - 130	
1,2,3,7,8,9-HxCDD	Q.	0.00000123	23		13C-1,2,3,4,6,7,8-HpCDD	',8-HpCDD	76.3	23 - 140	
1.2,3,4,6,7,8-HpCDD	0.00000598			-	13C-OCDD		51.4	17 - 157	
OCDD	0.0000327				13C-2,3,7,8-TCDF	JOF .	74.9	24 - 169	
2,3,7,8-TCDF	QN	0.00000156	56		13C-1,2,3,7,8-PeCDF	PeCDF	78.4	24 - 185	.:
1,2,3,7,8-PeCDF	Q	0.00000161	61		13C-2,3,4,7,8-PeCDF	PeCDF	79.0	21 - 178	
2,3,4,7,8-PeCDF	R	0.00000136	36		13C-1,2,3,4,7,8-HxCDF	3-HxCDF	74.7	26 - 152	
1,2,3,4,7,8-HxCDF	0.00000117	 : :		,	13C-1,2,3,6,7,8-HxCDF	3-HxCDF	75.8	26 - 123	
1,2,3,6,7,8-HxCDF	0.000000815			ьщ	13C-2,3,4,6,7,8-HxCDF	8-HxCDF	78.1	28 - 136	
2,3,4,6,7,8-HxCDF	Q	0.00000000	606		13C-1,2,3,7,8,9-HxCDF	9-HxCDF	78.2	29 - 147	
1,2,3,7,8,9-HxCDF	Ð	0.00000135	35		13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	6.79	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000463				13C-1,2,3,4,7,8,9-HpCDF	8,9-HpCDF	9.77	26 - 138	
1,2,3,4,7,8,9-HpCDF	Q.	0.00000179			13C-0CDF	:	59.9	17 - 157	
	0.0000103				CRS 37Cl-2,3,7,8-TCDD	CDD	77.5	35 - 197	
Totals					Footnotes				
Total TCDD	Q	0.000000804	9804		a. Sample specific estimated detection limit	nted detection limit.	A A B		
	2	0.000000000	606		b. Estimated maximum possible concentration.	ossible concentration.			
Total HxCDD	ND 0.0000134		0.00000310	3.0	c. Method detection limit.	iner control limit	41. 		
Iodal ripCUD		00000			A ANTINE COMMENT ANTINE	the course with			
Total PeCDF	2 8	0.00000158	148		7				
Total HxCDF	0.00000472			-					
Total HpCDF	0.00000463				avawa.a.				
Analyst: JMH					Approved By:	Martha M. Maier		17-Jan-2006 14:38	&

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

Chemical interference

The amount detected is below the Lower Calibration Limit of the instrument.

See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

17461 Derian Ave. Suite 100, Irvine, CA 92614 1014 E. Cooley Dr., Suite A, Colton, CA 92324

9484 Chesapeake Drive, Suite 805, San Diego, CA 92123 9830 South 51st Street, Suite 8-120, Phoenix, AZ 85044

Ph (909) 370-4667 Fax (909) 370-1046
Ph (619) 505-6596 Fax (619) 505-9889
Ph (480) 785-0043 Fax (480) 785-0851

2520 E. Sureet Rd., Suite #3, Las Vegas, NV 89120

ike #3, Las Vegas, NV 89120 Ph (702) 799-3620 Fax (702) 798-3621

SUBCONTRACT ORDER - PROJECT # IPA0004

SENDING LABORATORY:	RECEIVING LABORATORY:
Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Chamberlin	Alta Analytical - SUB 1104 Windfield Way El Dorado Hills, CA 95762 Phone: (916) 933-1640 Fax: (916) 673-0106
Standard TAT is requested unless specific due date is re	equested => Due Date: Initials:

Standard TAT is requ	ested unless specific due date is reques	ted => Due Date: Initials:
Analysis	Expiration	Comments
Sample ID: IPA0004-01	Water Sampled: 01/01/06 10:18	Instant Nofication
1613-Dioxin-HR-Alta	01/08/06 10:18	J flags, 17 congeners, no TEQ, ug/L, sub=Alta
EDD + Level 4	01/29/06 10:18	Excel EDD email to pm, Include Std logs for Lvl IV

	·			
		SAMPLE INTEGRITY:	·	
All containers intact: Yes No	Sample labels/0	COC agree: Yes No	Samples Received On Ice::	☐ Yes ☐ No
Custody Seals Present Yes No	Samples Preserv	ed Properly:	Samples Received at (temp):	
(Justil 1/3/06		Settina S.	Benedial 1/4/06	0935
Released By	Date Time	Received By	Date	Time
Released By	Date Time	Received By	Date	Time
Project 27136				Page 40 to £279

SAMPLE LOG-IN CHECKLIST

Alta Project #:	21104			
Samples Arrival:	Date/Time	0935	Initials:	Location: WR-2
Logged in:	Date/Time	106 OH7	Initials:	Location: R-2

27136

Hand Other UPS DHL Cal Delivered By: Delivered Dry Ice None Blue Ice Preservation: Ice 0945 Thermometer ID: DT-20 0.72 Time: Temp °C

					YES	NO	NA
Adequate Sample Volume Received	?	•			V		
Holding Time Acceptable?	-				V		
Shipping Container(s) Intact?				•	/		
Shipping Custody Seals Intact?							
Shipping Documentation Present?					V	<u> </u>	
Airbill Trk# 79	2479	03419	3		V		
Sample Container Intact?							ļ.,
Sample Custody Seals Intact?							V_
Chain of Custody / Sample Documentation Present?							4
COC Anomaly/Sample Acceptance Form completed?							
If Chlorinated or Drinking Water Sa	mples. Ac	ceptable P	reservation?			<u> </u>	K
Na ₂ S ₂ O ₃ Preservation Documented			coc	t	nple tainer	(No	one)
Shipping Container	Alta	Client	Retain	Re	turn	Dis	oose

Comments:

APPENDIX G

Section 28

Outfall 008, January 01, 2006 AMEC Data Validation Reports

	JANCE SCREENING FORM FOR HARDCOPY DATA
MECX, LLC	Package ID BYMT13
12260 East Vassar Drive	Task Order 1261,0010.01
Suite 500	SDG No. 1PACO4
Lakewood, CO 80226	No. of Analyses
Laboratory De Mar	Analytical Date: February 17, 2006
Reviewer P. Marks	Reviewer's Signature
Analysis/Method Metas	P. Muss
1.	
ACTION ITEMS*	
. Case Narrative	
Deficiencies	
2. Out of Scope	
Analyses	
•	
3. Analyses Not Conducted	
•	
4. Missing Hardeopy	
Deliverables	
A W 2	
5. Incorrect Hardcopy	
Deliverables	
Denverables	
	3.50
6. Deviations from Analysis	Qualifications were assigned for the following:
Protocol, e.g.,	(1) Blank detect
Holding Times	@ Detect below the reporting limit
GC/MS Tune/Inst. Performance	
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Internal Standard Performance	
Compound Identification	
Quantitation	
System Performance	
COMMENTS ^b	
2004-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	
* Subcontracted analytical laboratory is not n	neeting contract and/or method requirements.
· ·	by the laboratory but, no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 008

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IPA0004

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project:

NPDES IPA0004

SDG: Analysis:

Metals

1. INTRODUCTION

Task Order Title:

NPDES Sampling

MEC^X Project Number:

1261.001D.01

Sample Delivery Group:

IPA0004

Project Manager:

Matrix:

P. Costa Water

Analysis:

Metals

QC Level:

Level IV

No. of Samples:

1 0

No. of Reanalyses/Dilutions:

DATA VALIDATION REPORT

P. Meeks

Reviewer: Date of Review:

February 17, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for ICP-MS Metals (DVP-5, Rev. 0), EPA Methods 200.8 and 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Revision 0 **B4MT13** 1

Project: NPDES SDG: IPA0004 Analysis: Metals

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 008	IPA0004-01	Water	200.8, 245.1

Project: NPDES SDG: IPA0004 Analysis: Metals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ±2°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The method-specified tune criteria were met and no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP-MS metals and 80-120% for mercury. The laboratory analyzed reporting limit check standards in association with the sample in this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

Antimony was detected in method blank 6A04084-BLK1 at 0.162 µg/L; therefore, antimony detected in Outfall 008 was qualified as an estimated nondetect, "UJ." The remaining method blank and CCB results were nondetects at the reporting limit or were at concentrations insufficient to qualify the site sample. No further qualifications were required.

B4MT13 3 Revision 0

Project: SDG: Analysis: NPDES IPA0004 Metals

DATA VALIDATION REPORT

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Antimony and lead, which are not present in the ICSA or ICSAB, were detected in both the ICSA and the ICSAB; however, as the wastewater method (EPA SW-846 6020) lists no known interferents for antimony or lead, no qualifications were required. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP-MS, the ICP-MS internal standards were within established control limits. No qualifications were required.

Revision 0

Project: NPDES SDG: IPA0004 Analysis: Metals

DATA VALIDATION REPORT

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Cadmium detected below the reporting limit was qualified as estimated, "J," and denoted with "DNQ," in accordance with the NPDES permit. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

B4MT13 5 Revision 0

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: IPA0004

Sampled: 01/01/06

Received: 01/01/06

METALS

	-								
Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifier	2
8 - Water)								(Rew (Reson)	Qual Code
EPA 200.8	6A04084	0.050	2.0	0.77	1	01/04/06	01/05/06	UT B, J	В
EPA 200.8	6A04084	0.025	1.0	0.14	1	01/04/06	01/05/06	J	DNG
EPA 200.8	6A04084	0.25	2.0	12	1	01/04/06	01/05/06		
EPA 200.8	6A04084	0.040	1.0	20	1	01/04/06	01/05/06		
EPA 245.1	6A04080	0.050	0.20	ND	1.	01/04/06	01/04/06	U	
	EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8	EPA 200.8 6A04084 EPA 200.8 6A04084 EPA 200.8 6A04084 EPA 200.8 6A04084	Method Batch Limit 8 - Water) EPA 200.8 6A04084 0.050 EPA 200.8 6A04084 0.025 EPA 200.8 6A04084 0.25 EPA 200.8 6A04084 0.040	Method Batch Limit Limit 8 - Water) EPA 200.8 6A04084 0.050 2.0 EPA 200.8 6A04084 0.025 1.0 EPA 200.8 6A04084 0.25 2.0 EPA 200.8 6A04084 0.040 1.0	Method Batch Limit Limit Result 8 - Water) EPA 200.8 6A04084 0.050 2.0 0.77 EPA 200.8 6A04084 0.025 1.0 0.14 EPA 200.8 6A04084 0.25 2.0 12 EPA 200.8 6A04084 0.040 1.0 20	Method Batch Limit Limit Result Factor 8 - Water) EPA 200.8 6A04084 0.050 2.0 8.77 1 EPA 200.8 6A04084 0.025 1.0 6.14 1 EPA 200.8 6A04084 0.25 2.0 12 1 EPA 200.8 6A04084 0.040 1.0 20 1	Method Batch Limit Limit Result Factor Extracted 8 - Water) EPA 200.8 6A04084 0.050 2.0 0.77 1 01/04/06 EPA 200.8 6A04084 0.025 1.0 0.14 1 01/04/06 EPA 200.8 6A04084 0.25 2.0 12 1 01/04/06 EPA 200.8 6A04084 0.040 1.0 20 1 01/04/06	Method Batch Limit Limit Result Factor Extracted Analyzed 8 - Water) EPA 200.8 6A04084 0.050 2.0 0.77 1 01/04/06 01/05/06 EPA 200.8 6A04084 0.025 1.0 0.14 1 01/04/06 01/05/06 EPA 200.8 6A04084 0.25 2.0 12 1 01/04/06 01/05/06 EPA 200.8 6A04084 0.040 1.0 20 1 01/04/06 01/05/06	Method Batch Limit Limit Result Factor Extracted Analyzed Qualifier Result Factor Factor

LEVEL IV

Del Mar Analytical, Irvine Amy Windham For Michele Chamberlin Project Manager

APPENDIX G

Section 29

Outfall 009, January 01, 2006 Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Sampled: 01/01/06 Received: 01/01/06

Issued: 01/16/06 14:26

Project: Routine Outfall 009

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 3°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar

Analytical Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID CLIENT ID MATRIX
IPA0006-01 Outfall 009 Water

Reviewed By:

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

any Windham

Project Manager

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0006

Sampled: 01/01/06

Received: 01/01/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IPA0006-01 (Outfall 009 - Was	ter)									
Reporting Units: ug/l										
Antimony	EPA 200.8	6A04084	0.050	2.0	0.86	1	01/04/06	01/05/06	B, J	
Cadmium	EPA 200.8	6A04084	0.025	1.0	0.043	1	01/04/06	01/05/06	J	
Copper	EPA 200.8	6A04084	0.25	2.0	3.0	1	01/04/06	01/05/06	В	
Lead	EPA 200.8	6A04084	0.040	1.0	0.78	1	01/04/06	01/05/06	J	
Mercury	EPA 245.1	6A03072	0.050	0.20	ND	1	01/03/06	01/03/06		

Sampled: 01/01/06

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0006 Received: 01/01/06

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0006-01 (Outfall 009	- Water) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	6A01004	0.15	0.50	27	1	01/01/06	01/01/06	
Nitrate/Nitrite-N	EPA 300.0	6A01004	0.080	0.15	2.0	1	01/01/06	01/01/06	
Oil & Grease	EPA 413.1	6A06048	0.90	4.8	2.7	1	01/06/06	01/06/06	J
Sulfate	EPA 300.0	6A01004	0.90	1.0	72	2	01/01/06	01/01/06	
Total Dissolved Solids	SM2540C	6A03093	10	10	340	1	01/03/06	01/03/06	
Total Suspended Solids	EPA 160.2	6A05089	10	10	ND	1	01/05/06	01/05/06	

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Nu

Report Number: IPA0006

Sampled: 01/01/06 Received: 01/01/06

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 (IPA0006-01) - Wate	r				
EPA 300.0	2	01/01/2006 10:41	01/01/2006 15:25	01/01/2006 17:30	01/01/2006 19:24

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0006

Sampled: 01/01/06 Received: 01/01/06

METHOD BLANK/QC DATA

METALS

	.	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03072 Extracted: 01/03/06											
Blank Analyzed: 01/03/2006 (6A03072-Bl	LK1)										
Mercury	ND	0.20	0.063	ug/l							
LCS Analyzed: 01/03/2006 (6A03072-BS)	1)										
Mercury	7.95	0.20	0.063	ug/l	8.00		99	85-115			
Matrix Spike Analyzed: 01/03/2006 (6A03	3072-MS1)				Sou	rce: IOL2	2617-01				
Mercury	7.95	0.20	0.063	ug/l	8.00	ND	99	70-130			
Matrix Spike Dup Analyzed: 01/03/2006	(6A03072-MS	5D1)			Sour	rce: IOL2	2617-01				
Mercury	8.00	0.20	0.063	ug/l	8.00	ND	100	70-130	1	20	
Batch: 6A04084 Extracted: 01/04/06	•										
Blank Analyzed: 01/05/2006 (6A04084-BI	LK1)										
Antimony	0.162	2.0	0.050	ug/l							J
Cadmium	ND	1.0	0.025	ug/l							
Copper	0.321	2.0	0.25	ug/l							J
Lead	ND	1.0	0.040	ug/l							
LCS Analyzed: 01/05/2006 (6A04084-BS1)										
Antimony	78.5	2.0	0.050	ug/l	80.0		98	85-115			
Cadmium	80.2	1.0	0.025	ug/l	80.0		100	85-115			
Copper	80.8	2.0	0.25	ug/l	80.0		101	85-115			
Lead	78.3	1.0	0.040	ug/l	80.0		98	85-115			
Matrix Spike Analyzed: 01/05/2006 (6A04	(084-MS1)				Sour	ce: IOL2	694-49				
Antimony	78.2	2.0	0.050	ug/l	80.0	0.26	97	70-130			
Cadmium	76.0	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	102	2.0	0.25	ug/l	80.0	23	99	70-130			
Lead	84.3	1.0	0.040	ug/l	0.08	2.7	102	70-130			

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

Project Manager

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Report Number: IPA0006

Sampled: 01/01/06

Attention: Bronwyn Kelly

Received: 01/01/06

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A04084 Extracted: 01/04/06	<u>5</u>										
Matrix Spike Analyzed: 01/05/2006 (6A)4084-MS2)				Sou	rce: IOL	2694-50				
Antimony	80.0	2.0	0.050	ug/l	80.0	0.094	100	70-130			
Cadmium	76.2	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	101	2.0	0.25	ug/l	80.0	18	104	70-130			
Lead	87.5	1.0	0.040	ug/l	80.0	1.8	107	70-130			
Matrix Spike Dup Analyzed: 01/05/2006	(6A04084-M	ISD1)			Sou	rce: IOL	2694-49				
Antimony	76.7	2.0	0.050	ug/l	80.0	0.26	96	70-130	2	20	
Cadmium	76.1	1.0	0.025	ug/l	80.0	ND	95	70-130	0	20	
Copper	101	2.0	0.25	ug/l	80.0	23	98	70-130	1	20	
Lead	83.9	1.0	0.040	ug/l	80.0	2.7	102	70-130	1	20	

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

| Sampled: 01/01/06 | Report Number: IPA0006 | Received: 01/01/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A01004 Extracted: 01/01/06	-										
Blank Analyzed: 01/01/2006 (6A01004-Bl	LK1)										
Chloride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.15	0.080	mg/l							
Sulfate	ND	0.50	0.45	mg/l							
LCS Analyzed: 01/01/2006 (6A01004-BS1	1)										
Chloride	4.88	0.50	0.15	mg/l	5.00		98	90-110			M-3
Sulfate	9.56	0.50	0.45	mg/l	10.0		96	90-110			
Matrix Spike Analyzed: 01/01/2006 (6A0)	(004-MS1)				Sou	rce: IPA(003-01				
Sulfate	14.4	0.50	0.45	mg/l	10.0	5.1	93	80-120			
Matrix Spike Dup Analyzed: 01/01/2006 ((6A01004-M	SD1)			Sou	rce: IPA0	003-01				
Sulfate	14.8	0.50	0.45	mg/l	10.0	5.1	97	80-120	3	20	
Batch: 6A03093 Extracted: 01/03/06											
Blank Analyzed: 01/03/2006 (6A03093-BI	JKD										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/03/2006 (6A03093-BS1	`										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
						***		, , , , , ,			
Duplicate Analyzed: 01/03/2006 (6A03093					Sour	rce: IPA0	005-01				
Total Dissolved Solids	981	10	10	mg/l		980			0	10	
Batch: 6A05089 Extracted: 01/05/06											
Blank Analyzed: 01/05/2006 (6A05089-BI	.K1)										
Total Suspended Solids	ND	10	10	mg/l							

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

Project Manager

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Pasadena, CA 91101

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Report Number: IPA0006

Sampled: 01/01/06

Received: 01/01/06

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPÐ	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A05089 Extracted: 01/05/06	<u>.</u>										
LCS Analyzed: 01/05/2006 (6A05089-BS	1)										
Total Suspended Solids	979	10	10	mg/l	1000		98	85-115			
Duplicate Analyzed: 01/05/2006 (6A0508	9-DUP1)				Sou	rce: IPA0	012-01				
Total Suspended Solids	458	10	10	mg/l		350			27	10	R-3
Batch: 6A06048 Extracted: 01/06/06	•										
Blank Analyzed: 01/06/2006 (6A06048-B	LK1)										
Oil & Grease	ND	5.0	0.94	mg/l							
LCS Analyzed: 01/06/2006 (6A06048-BS)	1)										M-NR1
Oil & Grease	19.2	5.0	0.94	mg/l	20.0		96	65-120			
LCS Dup Analyzed: 01/06/2006 (6A06048	3-BSD1)										
Oil & Grease	19.6	5.0	0.94	mg/l	20.0		98	65-120	2	20	

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 01/01/06 Pasadena, CA 91101 Report Number: IPA0006 Received: 01/01/06

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IPA0006-01	413.1 Oil and Grease	Oil & Grease	mg/l	2.70	4.8	15
IPA0006-01	Chloride - 300.0	Chloride	mg/l	27	0.50	150
IPA0006-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	2.00	0.15	10.00
IPA0006-01	Sulfate-300.0	Sulfate	mg/l	72	1.0	250
IPA0006-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	340	10	850
IPA0006-01 IPA0006-01 IPA0006-01	Chloride - 300.0 Nitrogen, NO3+NO2 -N Sulfate-300.0	Chloride Nitrate/Nitrite-N Sulfate	mg/l mg/l mg/l	27 2.00 72	0.50 0.15 1.0	150 10.00 250

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 01/01/06 Pasadena, CA 91101 Report Number: IPA0006 Received: 01/01/06

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

В	Analyte was detected in the associated Method Blank.
---	--

- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
- M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- R-3 The RPD exceeded the method control limit due to sample matrix effects.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- RPD Relative Percent Difference

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 01/01/06 Pasadena, CA 91101 Report Number: IPA0006 Received: 01/01/06

Attention: Bronwyn Kelly

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IPA0006-01

Analysis Performed: EDD + Level 4

Samples: IPA0006-01

Project: Routine Outfall 009 Stormwater at WS-13 Stormwater at WS	ANALYSIS REQUIRED	Cioly readions.
otal Recoverable Metals: CDD (and all congeners) CDD (and all congeners) CDD (and all congeners)		
otal Recoverable Metal otal Recoverable Metal 5b, Cd, Cu, Pb, Hg CDD (and all congener On & Grease (EPA 413.		_
otal Recoverable CDD (and all concepts & Grease (EPA)		Temp = 5 /
otal Recovers CDD (and all CDD (and all		pt= 7.36
otal Rec CDD (a CDD (a CDD (a		
10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	ST ,8	Comments
D D T ST **	:OL	
HN03 1A X		
HNO3 18 X		
None 2A, 2B X		
HCi 3A, 3B X		
None 4A,4B X		
None 5A, 58	×	
Date/Time:		Turn around Time: (check) 24 Hours 5 Days
Date-Time:		10 Days
	4 7010 4	
	Perchlorate	Perchlorate Only 72 Hours
		Metals Only 72 Hours Semple Integrity: (Check)
Received By Received By	DateTime: DateTime: (11 00	21/1/62 13/I

January 16, 2006

Alta Project I.D.: 27138

Ms. Michele Chamberlin Del Mar Analytical, Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on January 04, 2006 under your Project Name "IPA0006". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier

Director of HRMS Services

Alta Analytical Laboratory vertifies that the export herein meets all the requirements set forth by NELAC for those applicable test methods. This report should not be reproduced except in full without the written approval of ALTA.

Section I: Sample Inventory Report
Date Received: 1/4/2006

Alta Lab. ID

Client Sample ID

27138-001

IPA0006

SECTION II

Page 3 of 275

Martha M. Maier 16-Jan-2006 11:56

Approved By:

Method Blank	A A SERVICA VERY AND THE MEMORY AND ASSESSMENT OF THE PROPERTY AND ASSESSMENT OF THE PROPERTY OF THE PROPERTY ASSESSMENT OF THE PROPERTY OF THE PROPERTY ASSESSMENT OF THE PROPERTY ASSESSMENT OF THE PROPERTY ASSESSMENT OF THE PROPERTY ASSESSMENT OF THE PROPERTY OF	- М ейний-гу Афений-гу гиймий Маний Manud Manu		***			***************************************	EPA Met	EPA Method 1613
Matrix: Aqueous	sno	QC Batch No.:	7632	7	Lab Sample: 0-M	0-MB001			
Sample Size: 1.00 L	0 L	Date Extracted;		8-Jan-06	Date Analyzed DB-5: 11-1	11-Jan-06	Date Am	Date Analyzed DB-225:	Ϋ́ V
Analyte	Conc. (ug/L)	DL a	EMPC b	Qualifiers	Labeled Standard		%R	rcracr _q (Oualifiers
2,3,7,8-TCDD	S	0.000000671			LS 13C-2,3,7,8-TCDD		84.6	25 - 164	
1,2,3,7,8-PeCDD	Q	0.000000560			13C-1,2,3,7,8-PeCDD		78.7	25 - 181	
1,2,3,4,7,8-HxCDD	æ	0.00000149			13C-1,2,3,4,7,8-HxCDD	0	81,9	32 - 141	
12,3,6,7.8-HxCDD	S	0.00000147			13C-1,2,3,6,7,8-HxCDD	Ö	74.4	28 - 130	
1,2,3,7,8,9-HxCDD	2	0.00000145	150 150 150 150		13C-1,2,3,4,6,7,8-HpCDD	, QQ	75.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	QN	0.00000146			13C-OCDD		40.1	17 - 157	
OCDD	2	0.00000535			13C-2,3,7,8-TCDF		82.6	24 - 169	
2,3,7,8-TCDF	Q.	0.000000546			13C-1,2,3,7,8-PeCDF		65.3	24 - 185	
1,2,3,7,8-PeCDF	Q.	0.00000112			13C-2,3,4,7,8-PeCDF		-71.3	21 - 178	
2,3,4,7,8-PeCDF	2	0.000000885			13C-1,2,3,4,7,8-HxCDF	<u>.</u>	73.7	26 - 152	
1,2,3,4,7,8-HxCDF	£	0.000000511			13C-1,2,3,6,7,8-HxCDF		70.0	26 - 123	
1,2,3,6,7,8-HxCDF	2	0.000000518			13C-2,3,4,6,7,8-HxCDF	Ŧ	78.0	28 - 136	;
2,3,4,6,7,8-HxCDF	æ	0.000000522			13C-1,2,3,7,8,9-HxCDF		79.2	29 - 147	
1,2,3,7,8,9-HxCDF	Q.	0.000000675			13C-1,2,3,4,6,7,8-HpCDF	'DF	64.7	28 - 143	3
1,2,3,4,6,7,8-HpCDF	2	0.000000764			13C-1,2,3,4,7,8,9-HpCDF	:DF	76.3	26 - 138	
1,2,3,4,7,8,9-HpCDF	S	0.000000622		:	13C-OCDF	-	49.6	17 - 157	
OCDF	QN	0.00000360			CRS 37CI-2,3,7,8-TCDD		88.7	35-197	2
Totals					Footnotes				
Total TCDD	QX		:		a. Sample specific estimated detection limit	n lunit.	, ,		
Total PeCDD	Q	0.000000560	44 41.		b. Estimated maximum possible concentration.	centration.			
Total HxCDD	2	Ā		*	c. Method detection limit.		:		
Total HpCDD	2	i.			d Lower control limit - upper control limit	l imit			
Total TCDF	2	0.000000546	4						
Total PeCDF	2	0.00000097		4.					٠
Total HxCDF	2:	0.000000553		y Y			-	٠	
Total HpCDF	QN	0.000000692							***************************************

Project 27138

Analyst: JMH

Matrix Aqueous Q					
	QC Batch No.: Date Extracted:	7632 8-Jan-06	Lab Sample: 0-OPR001 Date Analyzed DB-5: 11-Jan-06	Date Analyzed DB-225:	225: NA
Analyte Spike Conc. Conc. (ng/mL)	Jone. (ng/mL)	OPR Limits	Labeled Standard	%R LC	LCL-UCL
2,3,7,8-TCDD 10.0	8.44	6.7 - 15.8	1S 13C-2,3,7,8-1CDD	66.2 25	25 - 164
	48.8	35-71	13C-1,2,3,7,8-PeCDD	70.5 25	25 - 181
1,2,3,4,7,8-HxCDD 50.0	48.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	68.7 32	32 - 141
12,3,6,7,8-HxCDD 50.0	46.7	38 - 67	13C-1,2,3,6,7,8-HxCDD		28 - 130
1,2,3,7,8,9-HxCDD 50.0	48.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	70.6	23 - 140
1.2,3,4,6,7,8-HpCDD 50.0	47.2	35 - 70	13C-0CDD	49.9	17-157
100 100 100 100 100 100 100 100 100 100	95.4	78 - 144	13C-2,3,7,8-TCDF	62.9	24 - 169
2,3,7,8-TCDF 10.0	9.58	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	63.1 24	24 - 185
1,2,3,7,8-PeCDF 50.0	46.6	40 - 67	13C-2,3,4,7,8-PeCDF	64.2 21	21 - 178
	48.4	34 - 80	13C-1,2,3,4,7,8-HxCDF	65.4 26	26 - 152
1.2,3,4,7,8-HxCDF	47.6	36 - 67	13C-1,2,3,6,7,8-HxCDF	63.8 26	26-123
1,2,3,6,7,8-HxCDF 50.0	48.7	42 - 65	13C-2,3,4,6,7,8-HxCDF	67.9 28	28 - 136
2,3,4,6,7,8-HxCDF 50.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	70.4 29	29 - 147
	47.3	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	63.1 28	28 - 143
1,2,3,4,6,7,8-HpCDF	48.5	41-61	13C-1,2,3,4,7,8,9-HpCDF	70.1	26 - 138
IpCDF	48.4	39 - 69	13C-OCDF	56.4 17	17 - 157
OCDF	276	63 - 170	CRS 37Cl-2,3,7,8-TCDD	81.7	35-197

Approved By:

Analyst: JMH

Martha M. Maier 16-Jan-2006 11:56

Sample ID: IPA0006								EPA N	EPA Method 1613
(Data	A THE RESIDENCE OF THE PROPERTY OF THE PROPERT		Sample Data		Laboratory Data	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1		***************************************	
	Del Mar Analytical, Irvine		Matrix	Aqueous	Lab Sample	27138-001	Date Received	ived	4-Jan-06
Date Collected 1-Jan-06 Time Collected 1041			Sample Size.	0.917 L	QC Batch No. Date Analyzed DB-5	7632 12-Jan-06	Date Extracted Date Analyzed	Date Extracted: Date Analyzed DB-225:	8-Jan-06 NA
Analyte Conc. ((ng/L)	DL a	EMPCb	Qualifiers	Labeled Standard	lard	%R 1	ICL-UCL ^d	Qualifiers
2,3,7,8-TCDD	NO QX	0.000000598	86		IS 13C-2,3,7,8-TCDD	DD	74.6	25 - 164	
1,2,3,7,8-PeCDD	ON	0.000000847	47		13C-1,2,3,7,8-PeCDD	eCDD	76.1	25 - 181	
1,2,3,4,7,8-HxCDD	Q	0.00000183		:: -	13C-1,2,3,4,7,8-HxCDD	HxCDD	78.1	32 - 141	
1,2,3,6,7,8-HxCDD	QN	0.00000187	7	•	13C-1,2,3,6,7,8-HxCDD	-HxCDD	74.3	28 - 130	
1,2,3,7,8,9-HxCDD	NO O	0.00000181		-	13C-1,2,3,4,6,7,8-HpCDD	8-HpCDD	76.2	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.00000800			<u></u>	13C-0CDD		52.3	17 - 157	
OCDD	0.0000577			-4.4	13C-2,3,7,8-TCDF	DF	73.9	24 - 169	
	2	0.000000576	76		13C-1,2,3,7,8-PeCDF	eCDF	77.5	24 - 185	
	ND	0.00000018	18		13C-2,3,4,7,8-PeCDF	eCDF	79.8	21 - 178	
	S	0.000000788	88		13C-1,2,3,4,7,8-HxCDF	-HxCDF	74.9	26 - 152	
1,2,3,4,7,8-HxCDF	Q	0.000000888	88		13C-1,2,3,6,7,8-HxCDF	HXCDF	72.7	26 - 123	
	S	0.000000867	29		13C-2,3,4,6,7,8-HxCDF	-HxCDF	76.7	28 - 136	
2,3,4,6,7,8-HxCDF	Q	0.000000000	8	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	13C-1,2,3,7,8,9-HxCDF	HXCDF	77.6	29 - 147	
	Q.	0.00000124	4		13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	68.1	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000270				13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	77.4	26 - 138	
1,2,3,4,7,8,9-HpCDF	2	0.00000123			13C-OCDF		59.9	17 - 157	
OCDI	0.0000138				CRS 37CI-2,3,7,8-TCDD	SDD 🐇	81.6	35 - 197	
Totals					Footnotes				
Total TCDD		0.000000598		: ::	a Sample specific estimated detection limit	ed detection limit.	\$ 10 mm		
Total Lecture	2 2	0.000000847	+		b. Estimated maximum possible concentration.	ssible concentration.	V 4 8 8 8 8 8 8		
	0.0000174		- ² -1-2 1-2 1-1-1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1 1-1 1 1 1 1 1 1 1 1 1		d. Lower control limit - upper control limit	per control limit	<i>F</i> ;		
ē.		0.000000576	76				:		-
Total PeCDF	Q	0.000000851	51						
Total HxCDF	0.00000731	0.000000965	65	¥					
Analyst: JMH	venture constant framework to the constant management and the constant of th		And the second s	MAAA A WAXAA A	Approved By:	Martha M. Maier	1	16-Jan-2006 11:56	

APPENDIX

Page 7 of 275

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
---	--

D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

I Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

Project 27138

17461 Derian Ave. Suite 100, Irvine, CA 92614 Ph (949) 251-1022 Fex (949) 251-1226
1014 E. Cooley Dr., Suite A, Colton, CA 92324 Ph (909) 370-4667 Fex (909) 370-1046
9464 Chessepoeke Drive, Suite 805, Sen Diego, CA 92123 Ph (619) 505-9896 Pix (619) 505-9889
9830 Scuth 51st Street, Suite 8-129, Phoenix, AZ 85044 Ph (480) 785-0043 Fex (480) 785-0651
2520 E. Sunest Rd., Suite 83, Lee Vegas, NV 89120 Ph (702) 798-3620 Fex (702) 798-3621

SUBCONTRACT ORDER - PROJECT # IPA0006

omi	DEVOTABODATOR	7-		ENTOYO F A BOOK A TRONS
Del Mar Analytical, Irvi	DING LABORATORY	E :	Alta Analytical - SUB	EIVING LABORATORY:
17461 Derian Avenue. S		•	1104 Windfield Way	27138 0.7°C
Irvine, CA 92614	,410 100		El Dorado Hills, CA 95	762
Phone: (949) 261-1022			Phone :(916) 933-1640	1 → 1 • · · · · · · · · · · · · · · · · · ·
Fax: (949) 261-1228			Fax: (916) 673-0106	0.10
Project Manager: Michel	e Chamberlin			
Standard TAT is reque	sted unless specific d	lue date is request	ed => Due Date:	Initials:
Analysis	Expiration		Comments	
Sample ID: IPA0006-01 1613-Dioxin-HR-Alta EDD + Level 4	Water Samples 01/08/06 10:41 01/29/06 10:41	l: 01/01/06 10:41	Instant Nofication J flags, 17 congeners, no TEQ, Excel EDD email to pm, Inclu	
Containers Supplied: 1 L Amber (IPA0006-010				
1 L Amber (IPA0006-01I	D) .	**************************************		
		•		
			•	
				•
			,	
			•	
		4	•	
				,
	***************************************	24 2 3 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* ** *********************************	
puming .			E INTEGRITY:	
		Sample labels/COC agree: Samples Preserved Propert		mples Received On Ice::
	7	The state of the s	., a	
- Omitil	1/3/06		Bettera J. Sone	
Released By	//Date	Time	Received By	Date Time
Released By	Date	Time	Received By	Date Time

Pagge010f£75

SAMPLE LOG-IN CHECKLIST

Alta Project #:	27/38						
Samples Arrival	Date/Time	0935	Initials	JB	Locat	ion: ピーター	
Logged In:	Date/Time	0734	Initials	Initials:		Location: WR-7	
Delivered By:	EedEx	UPS	Cal	DHL	(Hand elivered	Other
Preservation:	lce	Blu	e Ice	Dry I	ce	No	one
Temp °C €.	7	Time: 0°	145		Thern	nometer ID): DT-20

					YEŞ.	NO	NA
Adequate Sample Volume Received?	,				/ /		
Holding Time Acceptable?					V		
Shipping Container(s) Intact?					/		
Shipping Custody Seals Intact?					V		
Shipping Documentation Present?					V/		
Airbill Trk # 792	4790	03419	8 <u>3 </u>		V		
Sample Container Intact?					V		
Sample Custody Seals Intact?	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					/_	V
Chain of Custody / Sample Documen	tation Pr	esent?			, ,	/	
COC Anomaly/Sample Acceptance F	orm com	pleted?				\ <u> </u>	
If Chlorinated or Drinking Water Sam	ples, Acc	ceptable P	reservation?				\leq
Na ₂ S ₂ O ₃ Preservation Documented?			coc	San Cont	nple ainer	No	ne
Shipping Container	Alta	Client	Retain	Re	turn	Disp	ose
Comments:							

APPENDIX G

Section 30

Outfall 009, January 01, 2006 AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

ME	C^			Package ID	
122	269 East Vassar Drive			Task Order	
Au	rora, CO 80014			SDG No.	IPA0006
	•	!	No.	of Analyses	1
	Laboratory Alta			Date: Febr	uary 10, 2006
	Reviewer K. Shadowli	ght		Reviewer's	• k
	Analysis/Method Dioxin/Fura			1 K. Shad	lonkato
AC	TION ITEMS ^a				
	Case Narrative				
•	Deficiencies				
2.	Out of Scope Analyses				
3.	Analyses Not Conducted				
	•				
4.	Missing Hardcopy				
	Deliverables				
5.	Incorrect Hardcopy				
	Deliverables				
6.	Deviations from Analysis	Detects below the lat	ore	itory lower callb	oration level were qualified
	Protocol, e.g.,	as estimated.			
	Holding Times				
	GC/MS Tune/Inst. Performance				
	Calibration				
	Method blanks				
	Surrogates				
	Matrix Spike/Dup LCS				
	Field QC				
	Internal Standard Performance				
	Compound Identification				
	Quantitation				
	System Performance	<u> </u>			
CO	MMENTS				
	Subcontracted analytical laboratory is not r				in zametirad
° E	Differences in protocol have been adopted	by the laboratory but no action	N1 80	all ist the laboratory	is required.

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 009

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IPA0006

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: Analysis:

NPDES IPA0006 D/F

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title: **NPDES** Contract Task Order: 1261.001.01 Sample Delivery Group: IPA0006 Project Manager: P. Costa

Matrix: Water

Dioxins/Furans Analysis:

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions:

Reviewer: K. Shadowlight February 10, 2006 Date of Review:

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Revision 0 B4DF5

Project: SDG: Analysis:

NPDES IPA0006 D/F

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 009	IPA0006-01	27138-001	Water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical within the temperature limits of 4°C ±2°C. The sample was shipped to Alta for dioxin/furan analysis and was received below the temperature limits at 1°C. As the sample was not noted to be damaged or frozen, no qualifications were required. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. Custody seals were present on the coolers from Del Mar to Alta; however no sample custody seals were present. The Client ID was added to the sample result summary by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2.3.7.8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

B4DF5 3 Revision 0

Project: **NPDES** SDG: Analysis:

IPA0006 D/F

DATA VALIDATION REPORT

The mass spectrometer performance was acceptable with the static resolving power greater than 10.000. No qualifications were required.

2.3 **CALIBRATION**

2.3.1 Initial Calibration

The initial calibration was analyzed 12/30/2005 on instrument VG-7. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of %RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of The VERs were acceptable with the concentrations within the each analytical sequence. acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 **BLANKS**

One method blank (0-7632-MB001) was extracted and analyzed with the sample in this SDG. No compounds were reported in the method blank associated with the site sample. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 **BLANK SPIKES AND LABORATORY CONTROL SAMPLES**

One blank spike (0-7632-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. A review of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on

B4DF5 4 Revision 0

Project: SDG: Analysis: NPDES IPA0006 D/F

DATA VALIDATION REPORT

the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No qualifications were required.

		III A WIND CATHA	15 15	_						EPAM	EPA Method 1613
	Clicat Data Name. Project:	Del Mar Analytical, Irvine IPA0006	il, fruinc		Sample Data Matrix: Sample Size.	Aqueous	Laborators Data Lab Sample (IC Datch No.	27138-001	Date Received	ed ed.	4-Jan-06
	Time Collected	1041					Date Analyzed DB-5	12-Jan-06	Date Amilyzed DB-225	ed DH-225	NA
Z = 25 = 25 = 25 = 25 = 25 = 25 = 25 = 2	Analyte	Conc. (ug/L)		, JO	EMPC	Qualifiers	Labeled Standard	ard	%R LC	רכור-חכור _ק	Qualifiers
	2,3,7,8-TCDD	Z	ON	0.000000598	. 86		15 13C-2,3,7,8-TCDD	ac	74.6 2	25 - 164	
	1,2,3,7,8-PeCDD		오	0.000000847	4)		13C-1,2,3,7,8-PeCDD	CDD	76.1	25 - 181	
	1,2,3,4,7,8-HxCDD		2	0.00000183			13C-1,2,3,4,7,8-HxCDD	HxCDD	78.1	32 - 141	
***************************************	1,2,3.6.7,8-HxCDD		웊	0.00000187	_		13C-1,2,3,6,7,8-HxCDD	HxCDD	74.3 2	28 - 130	
······································	1,2,3,7,8,9-11xCDD	QQ QQ		0.00000181			13C-1,2,3,4,6,7,8-HpCDD	8-HpCDD	76.2	23 - 140	
SA SA	1,2,3,4,6,7,8-HpCDD	_	0.00000000				13C-0CDD		52.3	17-157	
o.oumusaha	aggo	1 m	0.0000577	**************************************	÷		13C-2,3,7,8-TCDF	24	73.9	24 - 169	
Securios de proprio de	2,3,7,8-TCDF		CN	0.000000576	92		13C-1,2,3,7,8-PeCDF	SCDF	77.5	24 - 185	
i tte Sawaidire (d	1,2,3,7,8-PeCDF		QN A	0.000000018	82		13C-2,3,4,7,8-PeCDF	CDF	79.8	21 - 178	
∧meneuv e é	2,3,4,7,8-PeCDF		ND ON	0.000000788	88		13C-1,2,3,4,7,8-11xCDF	HXCDF	74.9	26 - 152	
erestrive wise	1,2,3,4,7,8-HxCDF		ND	0.000000888	90 90		13C-1,2,3,6,7,8-HxCDF	HxCDF	72.7	26 - 123	
	1,2,3,6,7,8-HxCDF			0.000000867			13C-2,3,4,6,7,8-11xCDF	HxCDF	76.7	28 - 136	
ochemievoues.	2,3,4,6,7,8-HxCDP	***	NO	0.000000000	8	1. 18 1. 18 1. 18 1. 18	13C-1,2,3,7,8,9-HxCDF	HxCDF	3.60	29 - 147	
Million of a mail of the parties	1,2,3,7,8,9-11xCDF			0.00000124	·		13C-1,2,3,4,6,7,8-HpCDF			28 - 143	
9	1,2,3,4,6,7,8-HpCDF	in the second	0.00000270				13C-1,2,3,4,7,8,9 HpCDF	J	77.4	26 - 138	
	1,2,3,4,7,8,9-HpCDF		Q.	0.00000123			13C OCDF		29.9	17 - 157	
ダ	, dCOO		0,0000138				CRS 37Cl-2,3,7,8-TCDD 58	oo.	81.6	35 - 197	
***************************************	I S I S						Footnotes				
NA	Total TCDD		ŀ	0.000000598	98		a. Sample specific estimated detection limit.	ed detection limit.			
elle latinate qui qu	Total PeCDD	10000000000000000000000000000000000000	2.0	0.000000847	47	A Company	b. Estimated maximum possible concentration.	sable concentration			
***************************************	Total HxCDD		ND	0.00000184	7		c. Method detection limit.	٠			
of the State of th	Total HpCDD	. 1921 . Takit . ()	0.0000174	in a			d Lower control limit - upper control limit.	per control limit		100	
	Total TCDF	-	Q.	0.000000576	9/			:			
milder (an initial in the	Total PeCDF		Q	0.000000851							
forettissis de strata	Total HxCDF		ND	0.000000965				-			
	Total MpCDF	2	0.00000731	***************************************			**************************************		, , , , , , , , , , , , , , , , , , , ,	W	
	Analysi: JMH						Approved By:	Martha M. Maier 16-Jan-2006 11:56	lier 16-Jan-	-2006 11:56	
						6	777 00				
Pro	Project 27138					3	7				Page 6 o

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA Package ID B4MT6

			I OCKORU III	ENTITE I U
ME	$\mathbf{C}^{\mathbf{x}}$		_	1261.001 D .01
122	69 East Vassar Drive		SDG No.	IPA0006
Aur	rora, CO 80014	No	of Analyses	1
	Laboratory Del Mar A	nalytical	Date: Februa	ary 3, 2006
	Reviewer P. Meeks		Rexiewer's S	
	Analysis/Method Metals		P. ALE	`
AC'	FION ITEMS*			
	Case Narrative			
	Deficiencies			
2.	Out of Scope			
	Analyses			
	•			
3.	Analyses Not Conducted	······································		
				, , , , , , , , , , , , , , , , , , ,
4.	Missing Hardcopy			
	Deliverables			
				······································
5 .	Incorrect Hardcopy			
	Deliverables		···········	
-			· · · · · · · · · · · · · · · · · · ·	
6.	Deviations from Analysis	A 1. A A. A A. A. A. A. A. A A	1::	
	Protocol, e.g.,	Analytes detected below the re	porting timit we	re quanned as estimated.
	Holding Times GC/MS Tune/Inst. Performance			
	Calibration			
	Method blanks			·
	Surrogates		<u> </u>	
	Matrix Spike/Dup LCS			
	Field QC			···
	Internal Standard Performance			
	Compound Identification			
	Quantitation			
	System Performance			
CON	MENTS ^b			
······		·		
* Su	bcontracted analytical laboratory is not m	eeting contract and/or method requirement	is.	

^b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 009

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IPA0006

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: NPDES

DATA VALIDATION REPORT

SDG: IPA0006 Analysis: Metals

1. INTRODUCTION

Task Order Title: NPDES Sampling MEC^x Project Number: 1261.001D.01

Sample Delivery Group: IPA0006

Project Manager: P. Costa

Matrix: Water
Analysis: Metals
QC Level: Level IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

ses/Dilutions: 0

Reviewer: P. Meeks

Date of Review: February 3, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for ICP-MS Metals (DVP-5, Rev. 0), EPA Methods 200.8 and 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

B4MT6 1 Revision 0

Project:

NPDES IPA0006

SDG: Analysis:

Metals

Table 1. Sample Identification

DATA VALIDATION REPORT

Client ID	Laboratory ID	Matrix	COC Method
Outfall 009	IPA0006-01	Water	200.8, 245.1

Project: SDG: Analysis: NPDES IPA0006 Metals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ±2°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The method specified tune criteria were met and no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP-MS metals and 80-120% for mercury. The laboratory analyzed reporting limit check standards in association with the sample in this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were at concentrations insufficient to qualify the site sample. No qualifications were required.

B4MT6 3 Revision 0

Project: SDG: NPDES

DATA VALIDATION REPORT

SDG: IPA0006 Analysis: Metals

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Antimony and lead, which are not present in the ICSA or ICSAB, were detected in both the ICSA and the ICSAB; however, as the wastewater method (EPA SW-846 6020) lists no known interferents for lead or antimony, no qualifications were required. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP-MS, the ICP-MS internal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No

B4MT6 4 Revision 0

NPDES Project: SDG: IPA0006

Metals

DATA VALIDATION REPORT Analysis:

transcription errors or calculation errors were noted. Antimony, cadmium, and, lead detected below the reporting limit were qualified as estimated, "J," and annotated with "DNQ," in accordance with the requirements of the NPDES permit. No further qualifications were required.

2.12 **FIELD QC SAMPLES**

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

17461 Derian Ave., Sulte 100, Invine. CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Sulte A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Sulte 805, San Diego, CA 92123 (858) 505-8598 FAX (858) 505-9689 9830 South 51st St., Sulte 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. 93, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0006

Sampled: 01/01/06

Received: 01/01/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers Per	الإدما
Sample ID: IPA0006-01 (Outfall 00	19 - Water)								Qual	(od
Reporting Units: ug/l					***		03.504.604	01/05/06	丁 B.J	DNO
Antimony	EPA 200.8	6A04084	0.050	2.0	0.86	1	01/04/06			DNG
Cadmium	EPA 200.8	6A04084	0.025	1.0	0.043	1	01/04/06	01/05/06	J	DW4
Copper	EPA 200.8	6A04084	0.25	2.0	3.0	1	01/04/06	01/05/06	B	DNG
Lead	EPA 200.8	6A04084	0.040	1.0	0.78	1	01/04/06	01/05/06	丁」	17104
Mercury	EPA 245.1	6A03072	0.050	0.20	ND	1	01/03/06	01/03/06	Û	
	EPA 245.1	6A03072	0.050	0.20	ND	1	01/03/06	(01/03/ 06	31/03/ 06 ∪

LEVEL IV

Del Mar Analytical, IrvineAmy Windham For Michele Chamberlin
Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IPA0006 < Page 2 of 11>

APPENDIX G

Section 31

Outfall 009, January 14, 2006 Del Mar Analytical Laboratory Report

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colkon, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Sampled: 01/14/06 Received: 01/15/06 Issued: 02/04/06 16:48

Project: Routine Outfall 009

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID CLIENT ID MATRIX
IPA1191-01 Outfall 009 Water

Reviewed By:

Del Mar Analytical, IrvineMichele Chamberlin
Project Manager

Michile Chamberdin

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Sampled: 01/14/06

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA1191 Received: 01/15/06

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA1191-01 (Outfall 009 - '	Water)								
Reporting Units: ug/l									
Antimony	EPA 200.8	6A16092	0.050	2.0	0.54	1	01/16/06	01/17/06	J
Cadmium	EPA 200.8	6A16092	0.025	1.0	0.048	1	01/16/06	01/17/06	J
Copper	EPA 200.8	6A16092	0.25	2.0	3.1	1	01/16/06	01/17/06	
Lead	EPA 200.8	6A16092	0.040	1.0	0.50	1	01/16/06	01/17/06	J
Mercury	EPA 245.1	6A17070	0.050	0.20	ND	1	01/17/06	01/17/06	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA1191

Sampled: 01/14/06 Received: 01/15/06

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA1191-01 (Outfall 00	9 - Water) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	6A15017	1.5	5.0	46	10	01/15/06	01/15/06	M-3
Nitrate/Nitrite-N	EPA 300.0	6A15017	0.080	0.10	0.13	1	01/15/06	01/15/06	
Oil & Grease	EPA 413.1	6A17048	0.90	4.8	ND	1	01/17/06	01/17/06	
Sulfate	EPA 300.0	6A15017	4.5	5.0	130	10	01/15/06	01/15/06	M-3
Total Dissolved Solids	SM2540C	6A19093	10	10	570	1	01/19/06	01/19/06	
Total Suspended Solids	EPA 160.2	6A17118	10	10	ND	1	01/17/06	01/17/06	

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-869 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0043 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA1191

Sampled: 01/14/06 Received: 01/15/06

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 (IPA1191-01) - Water	r				
EPA 300.0	2	01/14/2006 10:15	01/15/2006 16:00	01/15/2006 17:00	01/15/2006 18:50

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA1191

Sampled: 01/14/06 Received: 01/15/06

METHOD BLANK/QC DATA

METALS

A malinto	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPĐ Limit	Data Qualifiers
Analyte	Resun	Limit	MIDE	UHRS	Level	Result	/OKEC	LAMINES	KID	Lilling	Quamicia
Batch: 6A16092 Extracted: 01/16/06	•										
Blank Analyzed: 01/17/2006 (6A16092-Bl	LK1)										
Antimony	ND	2.0	0.050	ug/l							
Cadmium	ND	1.0	0.025	ug/l							
Copper	ND	2.0	0.25	ug/l							
Lead	ND	1.0	0.040	ug/l							
LCS Analyzed: 01/17/2006 (6A16092-BS1	.)										
Antimony	79.1	2.0	0.050	ug/l	80.0		99	85-115			
Cadmium	80.9	1.0	0.025	ug/l	80.0		101	85-115			
Copper	79.1	2.0	0.25	ug/l	80.0		99	85-115			
Lead	79.0	1.0	0.040	ug/l	80.0		99	85-115			
Matrix Spike Analyzed: 01/17/2006 (6A16	6092-MS1)				Sou	rce: IPA(831-01				
Antimony	81.3	2.0	0.050	ug/l	80.0	0.51	101	70-130			
Cadmium	77.1	1.0	0.025	ug/l	80.0	0.084	96	70-130			
Copper	78.4	2.0	0.25	ug/l	80.0	4.4	92	70-130			
Lead	78.4	1.0	0.040	ug/l	80.0	0.75	97	70-130			
Matrix Spike Analyzed: 01/17/2006 (6A10	5092-MS2)				Sou	rce: IPA1	191-01				
Antimony	83.2	2.0	0.050	ug/l	80.0	0.54	103	70-130			
Cadmium	79.0	1.0	0.025	ug/l	80.0	0.048	99	70-130			
Copper	76.9	2.0	0.25	ug/l	80.0	3.1	92	70-130			
Lead	77.3	1.0	0.040	ug/l	80.0	0.50	96	70-130			
Matrix Spike Dup Analyzed: 01/17/2006 (6A16092-M	SD1)			Sou	rce: IPA0	831-01				
Antimony	82.8	2.0	0.050	ug/l	80.0	0.51	103	70-130	2	20	
Cadmium	78.2	1.0	0.025	ug/l	80.0	0.084	98	70-130	1	20	
Copper	78.8	2.0	0.25	ug/l	80.0	4.4	93	70-130	1	20	
Lead	78.7	1.0	0.040	ug/l	80.0	0.75	97	70-130	0	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 £. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0043 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA1191

Sampled: 01/14/06 Received: 01/15/06

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPĐ Limit	Data Qualifiers
Batch: 6A17070 Extracted: 01/17/06											
Blank Analyzed: 01/17/2006 (6A17070-B	LK1)										
Mercury	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/17/2006 (6A17070-BS	1)										
Mercury	8.14	0.20	0.050	ug/l	8.00		102	85-115			
Matrix Spike Analyzed: 01/17/2006 (6A1	7070-MS1)				Sou	rce: IPA1	162-01				
Mercury	8.07	0.20	0.050	ug/l	8.00	ND	101	70-130			
Matrix Spike Dup Analyzed: 01/17/2006	(6A17070-M	SD1)			Sou	rce: IPA1	162-01				
Mercury	8.12	0.20	0.050	ug/l	8.00	ND	102	70-130	1	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51s St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IPA1191

Sampled: 01/14/06 Received: 01/15/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A15017 Extracted: 01/15/06											
Disease Assessment 01/15/2006 (6 A 15017 D)	r 821\										
Blank Analyzed: 01/15/2006 (6A15017-B)		0.50	0.15								
Chloride	ND	0.50 0.10	0.15 0.080	mg/l							
Nitrate/Nitrite-N Sulfate	ND ND	0.10	0.080	mg/l mg/l							
Surface	ND	0.50	0.43	ing/i							
LCS Analyzed: 01/15/2006 (6A15017-BS)	l)										
Chloride	4.95	0.50	0.15	mg/l	5.00		99	90-110			M-3
Sulfate	9.80	0.50	0.45	mg/l	10.0		98	90-110			M-3
Batch: 6A17048 Extracted: 01/17/06	-										
Blank Analyzed: 01/17/2006 (6A17048-Bl	LK1)										
Oil & Grease	ND	5.0	0.94	mg/l							
LCS Analyzed: 01/17/2006 (6A17048-BS1)										M-NRI
Oil & Grease	16.0	5.0	0.94	mg/l	20.0		80	65-120			
LCS Dup Analyzed: 01/17/2006 (6A17048	B-BSD1)										
Oil & Grease	17.0	5.0	0.94	mg/l	20.0		85	65-120	6	20	
Batch: 6A17118 Extracted: 01/17/06											
Blank Analyzed: 01/17/2006 (6A17118-BI	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/17/2006 (6A17118-BS1)										
Total Suspended Solids	950	10	10	mg/l	1000		95	85-115			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Report Number: IPA1191

Sampled: 01/14/06 Received: 01/15/06

Attention: Bronwyn Kelly

Pasadena, CA 91101

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A17118 Extracted: 01/17/0	<u>)6</u>										
Duplicate Analyzed: 01/17/2006 (6A17)	118-DUP1)				Sou	rce: IPA	1313-01				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 6A19093 Extracted: 01/19/0	<u>)6</u>										
Blank Analyzed: 01/19/2006 (6A19093-	BLK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/19/2006 (6A19093-B	S1)										
Total Dissolved Solids	1050	10	10	mg/l	1000		105	90-110			
Duplicate Analyzed: 01/19/2006 (6A190	93-DUP1)				Sou	rce: IPA1	473-01				
Total Dissolved Solids	660	10	10	mg/l		650			2	10	

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colkon, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0031 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Sampled: 01/14/06

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA1191 Received: 01/15/06

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Comphance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IPA1191-01	413.1 Oil and Grease	Oil & Grease	mg/l	0.86	4.8	15
IPA1191-01	Chloride - 300.0	Chloride	mg/l	46	5.0	150
IPA1191-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.13	0.10	10.00
IPA1191-01	Sulfate-300.0	Sulfate	mg/l	130	5.0	250
IPA1191-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	570	10	850

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Sampled: 01/14/06 Report Number: IPA1191 Pasadena, CA 91101 Received: 01/15/06

Attention: Bronwyn Kelly

M-3

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified. ND

RPD Relative Percent Difference

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA1191

Sampled: 01/14/06 Received: 01/15/06

Attention: Bronwyn Kelly

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IPA1191-01

Analysis Performed: EDD + Level 4

Samples: IPA1191-01

Client Name/Address:	ress:		Client Name/Address: Project:							ANA	ANALYSIS REQUIRED	CUIRED		**************************************
			Boeing-SSFL NPDES	SSFL N	PDES		:s	<u></u>					Field	Field readings:
IMVVIT-Frasaueria 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101	anue, Suite 1. O1		Stormw	ater at V	VS-13		e Metai						Temp	Temp = 53, 4
Project Manager. Bronwyn Kelly Sampler: <i>K. Extras</i> o Z. MAYS	Bronwyn k	(elly	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Number: 18-6691 Inber: 18-6515			al Recoverable	ioo ils bns) GC (역크) esser &	N+60N ,403	SST ,S			#	7, 2.
Sample Sample Co	Container Type	70 ti ₩ 00	Sampling Date/Time	ding Fine	Preservative	Bottle *	Tct ,48			SCIT.				
1	Poly-1L	-	1-14-10	01-14-46-/ACE HNO3	HNO3	14	×							
Outfall 009- W	Poly-1	-			HNO3	48	×							
Outfall 009 W	Glass- Amber	73			None	2A, 2B		×						
Outfall 009 W	Glass- Amber	8			HQ.	3A, 3B		×						
Outfall 009 W	Poly-500	2			None	4,48			×					
Outfall 009 W	Poly-500 mi	7	4	31:01	None	5A, 5B				×		***************************************		
***************************************														And shift in the state of the
					A CONTRACTOR OF THE PROPERTY O									
	Personal de la companya de la compan							_						
Relinquished By		- at	Date Time: "	30.34	Received By	1		Date/Time:	\$///>	Se Se			Turn around Time: (check) 24 Hours 5 Days	eck) 5 Days
/ Star Kra			635	•	A	9	eer 2	10:3	.35				AR House	40 Dave
B. Suilshed By	2	ā\\	Date/Time: //S/00 /		Received By	9	٠.	Date/Tim	 			-	***************************************	Normal
Relinquished By		ō	Date/Time:		Received By	(Date/Time			and the same designation of the same and the	4	Perchiorate Only 72 Hours	ours
						A.	90 01	9	1600	^		<u> </u>	Metals Only 72 Hours Sample Integrity: (Check)	200

26, 2006

ject I.D.: 27210

hele Chamberlin
Analytical, Irvine
lerian Avenue, Suite 100
2A 92614

i. Chamberlin,

d are the results for the one aqueous sample received at Alta Analytical Laboratory on January 5 under your Project Name "IPA1191". This sample was extracted and analyzed using EPA 1613 for tetra-octa chlorinated dioxins and furans. A standard turnaround time was provided work.

owing report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the ix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current tions, and copies of the raw data (if requested).

alytical Laboratory is committed to serving you effectively. If you require additional tion, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for g Alta as part of your analytical support team.

у,

M. Maier

of HRMS Services

ue mos

Section I: Sample Inventory Report

Date Received: 1/17/2006

Alta Lab. ID Client Sample ID

27210-001 IPA1191-01

SECTION II

Project 27210 Pa**NPDES**29**724**

Method Blank					EPA Method 1613
Matrix: Aqueous		QC Batch No.:	7686	Lab Sample: 0-MB001	
Sample Size: 1.00 L		Date Extracted:	22-Jan-06	Date Analyzed DB-5: 24-Jan-06	Date Analyzed DB-225: NA
Analyte Cor	Conc. (ug/L)	DF a	EMPC b Qualifiers	Labeled Standard	%R LCL-UCL ^d Oualifiers
2,3,7,8-TCDD	Ş	0.00000125		IS 13C-2,3,7,8-TCDD	64.8 25-164
1,2,3,7,8-PeCDD	2	0.00000167			64.5 25 - 181
1,2,3,4,7,8-HxCDD	QN	0.00000336		13C-1,2,3,4,7,8-HxCDD	59.5 32 - 141
1,2,3,6,7,8-HxCDD	S	0.00000330		13C-1,2,3,6,7,8-HxCDD	61.9 28 - 130
1,2,3,7,8,9-HxCDD	Ą	0.00000322		13C-1,2,3,4,6,7,8-HpCDD	58.2
1,2,3,4,6,7,8-HpCDD	0.00000569)569	 3	13C-OCDD	33.9 17 - 157
	0.0000472	8		13C-2,3,7,8-TCDF	66.4 24 - 169
2,3,7,8-TCDF	Q	0.00000106		13C-1,2,3,7,8-PeCDF	70.3 24 - 185
1,2,3,7,8-PeCDF	ş	0.00000139		13C-2,3,4,7,8-PeCDF	73.0 21 - 178
2,3,4,7,8-PeCDF	2	0.00000121		13C-1,2,3,4,7,8-HxCDF	
1,2,3,4,7,8-HxCDF	9	0.00000123		13C-1,2,3,6,7,8-HxCDF	57.8 26-123
1,2,3,6,7,8-HxCDF	2	0.00000114		13C-2,3,4,6,7,8-HxCDF	61.4 28 - 136
2,3,4,6,7,8-HxCDF	2	0.00000120		13C-1,2,3,7,8,9-HxCDF	62.2 29 - 147
1,2,3,7,8,9-HxCDF	2	0.00000176		13C-1,2,3,4,6,7,8-HpCDF	53.4 28 - 143
1,2,3,4,6,7,8-HpCDF	Ą	0.00000230		13C-1,2,3,4,7,8,9-HpCDF	57.4 26-138
1,2,3,4,7,8,9-HpCDF	2	0.00000246		13C-OCDF	38.9 17 - 157
16000	Q	0.00000535		CRS 37CI-2,3,7,8-TCDD	83.3 35 - 197
Totals				Footnotes	
Total TCDD	QN	0.00000125		a. Sample specific estimated detection limit.	
Total PeCDD	9	0.00000167		b. Estimated maximum possible concentration.	
Total HxCDD	N	0.00000329		c. Method detection limit,	
Total HpCDD	695000000	6950		d. Lower control limit - upper control limit.	
Total TCDF	S	0.00000106			
Total PeCDF	Q	0.00000130			
Total HxCDF	2	0.00000132			
Total HpCDF		0.00000238			
Analyst: DMS				Approved By: Martha M. Maier	laier 26-Jan-2006 08:20

OPR Results					EPA Method 1613
Matrix: Aqueous		QC Batch No.:	7686	Lab Sample: 0-OPR001	
Sample Size: 1.00 L		Date Extracted:	22-Jan-06	Date Analyzed DB-5: 24-Jan-06	Date Analyzed DB-225: NA
Analyte	Spike Conc. Conc. (ng/m	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R LCL-UCL
2,3,7,8-TCDD	0.01	10.4	6.7 - 15.8	18C-2,3,7,8-TCDD	64.1 25 - 164
1,2,3,7,8-PeCDD	50.0	56.0	35 - 71	13C-1,2,3,7,8-PeCDD	66.4 25 - 181
1,2,3,4,7,8-HxCDD	200	\$4.5	35-82	13C-1,2,3,4,7,8-HxCDD	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1,2,3,6,7,8-HxCDD	50.0	52.7	38 - 67	13C-1,2,3,6,7,8-HxCDD	: :
1,2,3,7,8,9-HxCDD	20.0	53.6	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	57.3 23 - 140
1,2,3,4,6,7,8-HpCDD	50.0	53.5	35 - 70	13C-OCDD	36.7 17-157
QQDO	100	100	78 - 144	13C-2,3,7,8-TCDF	66.8 24 - 169
2,3,7,8-TCDF	10.0	10.8	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	:
1,2,3,7,8-PeCDF	0.08	520	40-67	13C-2,3,4,7,8-PeCDF	74.6 21 - 178
2,3,4,7,8-PeCDF	50.0	52.8	34 - 80	13C-1,2,3,4,7,8-HxCDF	
1,2,3,4,7,8-HxCDF	50.0	53.5	29-98	13C-1,2,3,6,7,8-HxCDF	60.4 26 - 123
1,2,3,6,7,8-HxCDF	50.0	52.4	42 - 65	13C-2,3,4,6,7,8-HxCDF	64.7 28 - 136
2,3,4,6,7,8-HxCDF	50.0	52.4	35 - 78	13C-1,2,3,7,8,9-HxCDF	62.5 29 - 147
1,2,3,7,8,9-HxCDF	50.0	52.8	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	54.0 28 - 143
1.2,3,4,6,7,8-HpCDF	0008	51.9	77-17	13C-1,2,3,4,7,8,9-HpCDF	58.8 26 - 138
1,2,3,4,7,8,9-HpCDF	50.0	51.9	39 - 69	13C-OCDF	41.9 17 - 157
OCDF	100	0.66	63 - 170	CRS 37Cl-2,3,7,8-TCDD	81.2 35 - 197

Martha M. Maier 26-Jan-2006 08:20 Approved By:

Analyst: DMS

Sample ID: IPA1191-01	3							EPA N	EPA Method 1613
Data			Sample Data		Laboratory Data	A STATE OF THE STA			
Name: Del Mar A	Del Mar Analytical, Irvine IPA I 191		Matrix:	Aqueous	Lab Sample:	27210-001	Date Received:	ved:	17-Jan-06
llected:			Sample Size:	1.01 L	QC Batch No.: Date Analyzed DB-5:	7686 24-Jan-06	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225:	22-Jan-06 NA
Analyte Conc.	(ug/L)	DL a	EMPC	Qualifiers	Labeled Standard	ard	%R LO	rcr-ncr _d	Oualifiers
2,3,7,8-TCDD	GZ	0.00000109	6(<u>IS</u> 13C-2,3,7,8-TCDD	00	71.3	25 - 164	
1,2,3,7,8-PeCDD	S	0.0000013	[3]		13C-1,2,3,7,8-PeCDD	CDD		25 - 181	
1,2,3,4,7,8-HxCDD	Q	0.00000198	38		13C-1,2,3,4,7,8-HxCDD	HXCDD	72.2	32 - 141	
1,2,3,6,7,8-HxCDD	2	0.00000211		-	13C-1,2,3,6,7,8-HxCDD	HxCDD		28 - 130	
1,2,3,7,8,9-HxCDD	Q	0.0000015	99		13C-1,2,3,4,6,7,8-HpCDD	%HpCDD	72.4	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.00000793			J,B	13C-OCDD		43.7	17 - 157	
aco	0.0000896			М	13C-2,3,7,8-TCDF	*	72.4	24 - 169	
2,3,7,8-TCDF	S	0.000000933	73.3		13C-1,2,3,7,8-PeCDF	CDF		24 - 185	-
1,2,3,7,8-PeCDF	QN.	0.000014	42		13C-2,3,4,7,8-PeCDF	ä		21 - 178	
2,3,4,7,8-PeCDF	S	0.00000132	32		13C-1,2,3,4,7,8-HxCDF	HxCDF		26 - 152	
1,2,3,4,7,8-HxCDF	g	0.000000795	202		13C-1,2,3,6,7,8-HxCDF	HYCON.		26 - 123	
1,2,3,6,7,8-HxCDF	S	0.000000762	762		13C-2,3,4,6,7,8-HxCDF	HxCDF		28 - 136	
2,3,4,6,7,8-HxCDF	2	0.000000827	27		13C-1,2,3,7,8,9-HxCDF	HXCDF	73.5	29 - 147	
1,2,3,7,8,9-HxCDF	2	0.00000114	14		13C-1,2,3,4,6,7,8-HpCDF	3-HpCDF		28 - 143	
1,2,3,4,6,7,8-HpCDF	Z	0.0000015	6		13C-1,2,3,4,7,8,9-HpCDF	AHPCDF	73.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	2	0.0000018	81		13C-OCDF		50.8	17-157	
	0.00000508			J	CRS 37CI-2,3,7,8-TCDD	QQ	9.06	35 - 197	
Totals					Footnotes				
Total TCDD	QN	0.00000109)6		a. Sample specific estimated detection limit	1 detection limit.	***************************************	this contract the second secon	
Total PeCDD	Q	0.00000131			b. Estimated maximum possible concentration.	sible concentration.			
Total HxCDD	2	0.00000203)3		c. Method detection limit.				
Total HpCDD	0.0000186			В	d. Lower control limit - upper control limit.	er control limit.			
Total TCDF	Q.	0.000000933	933						
Total PeCDF	Q	0.00000137	**						
Total HxCDF	2	0.000000871	371					:	
Total HpCDF	QN	0.0000018	98						
Analysis Dake			-			***************************************			

Analyst: DMS

Approved By:

Martha M. Maier 26-Jan-2006 08:20

APPENDIX

Project 27210 Pa**NPOFS**29**728**

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

I Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Project 27210 Pa**NPDES**29**729**

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q
is commence and the comment of the c	

Project 27210 PaNPOFF 329730

17461 Derian Ave. Suite 100, Invine, CA 92614 1014 E. Cooley Dr., Suite A, Coiton, CA 92324 9484 Chesapeake Drive, Suite 805, San Diego, CA 92123

Ph (909) 370-4667 Ph (619) 505-9596 Ph (480) 785-0043

Fax (909) 370-1046 Fax (619) 505-9689

9830 South 51st Street, Suite B-120, Phoenix, AZ 85044 Ph (480) 785-0043 2520 E. Sunset Rd., Suite #3, Las Vegas, NV 89120 Ph (702) 798-3620

Fax (480) 785-0851

SUBCONTRACT ORDER - PROJECT # IPA1191

	SENDING LABORATORY:	RECEIVING LABORATORY:
Del Mar Analytica 17461 Derian Aver Irvine, CA 92614 Phone: (949) 261-122 Project Manager: M	nue. Suite 100 022 8	Alta Analytical - SUB 1104 Windfield Way El Dorado Hills, CA 95762 Phone: (916) 933-1640 Fax: (916) 673-0106
Standard TAT is 1	equested unless specific due date	e is requested => Due Date: Initials:

Analysis	Expiration	Comments
Sample ID: IPA1191-01 1613-Dioxin-HR-Alta EDD + Level 4	Water Sampled: 01/14/06 10:15 01/21/06 10:15 02/11/06 10:15	Instant Nofication J flags, 17 congeners, no TEQ, ug/L, sub=Alta Excel EDD email to pm, Include Std logs for Lvl IV
Containers Supplied: 1 L Amber (IPA1191-010 1 L Amber (IPA1191-011		

·	SA	MPLE INTEGRITY:		
All containers intact: Yes No Custody Seals Present No No	Sample labels/COC Samples Preserved P		Samples Received On Ice:: Samples Received at (temp):	Yes 🗆 No
	6/6/ 1700	Bettmart.	Benedict 1/17/66	0840
Released By	Date Time	Received By	Date	Time
teleased By	Date Time	Received By	Date	Time

SAMPLE LOG-IN CHECKLIST

Alta Project #:	27210
-----------------	-------

Samples Arrival:	Date/Time	. 0840	Initials:	5	Location: WK-2	
Logged In:	Date/Time	1420	initials:	<i>b</i>	Location: W R	-2
Delivered By:	PedEx	UPS	Cal	DHL	Hand Delivered	Other
Preservation:	(Ice	Blue	e Ice	Dry lo	ce N	one
Temp °C	Time: 06	100		Thermometer II	D: DT-20	

					YES,	NO	NA
Adequate Sample Volume Received?	Adequate Sample Volume Received?						
Holding Time Acceptable?					V		
Shipping Container(s) Intact?					1/		
Shipping Custody Seals Intact?							
Shipping Documentation Present?							
Airbill Trk# 7924 8983 9854							
Sample Container Intact?						ļ	
Sample Custody Seals Intact?							V
Chain of Custody / Sample Documentation Present?						<u> </u>	
COC Anomaly/Sample Acceptance Form completed?						V	<u> </u>
If Chlorinated or Drinking Water Samples, Acceptable Preservation?							V
Na ₂ S ₂ O ₃ Preservation Documented?				San Cont	nple ainer	No	one
Shipping Container	Alta	Client	Retain	Ref	turn	Dis	ose

Comments:

SAMPLE LOG-IN CHECKLIST

Alta Project #: 27 210

Samples Arrival:	Date/Time	. 0840	Initials:	b	Locat	ion: WK-J	-
Logged In:	Date/Time	1420	Initials	В	Locat	ion: WR-	-2-
Delivered By:	PedEx	UPS	Cal	DHL	1	Hand elivered	Other
Preservation:	(Ice	Blue	e Ice	Dry I	ce None		one
Temp °C 0.9%		Time: 06	100	4	Thermometer ID: DT-20		

					YES	NO	NA
Adequate Sample Volume Received	V.						
Holding Time Acceptable?					V		
Shipping Container(s) Intact?					1		
Shipping Custody Seals Intact?							
Shipping Documentation Present?							
Airbill Trk # 7924 8983 9854							
Sample Container Intact?							
Sample Custody Seals Intact?							V
Chain of Custody / Sample Documentation Present?							
COC Anomaly/Sample Acceptance Form completed?						1	<u> - </u>
If Chlorinated or Drinking Water Sam			V				
Na ₂ S ₂ O ₃ Preservation Documented? COC Sam					• .	No	ne
Shipping Container	Alta	Client	Retain	Ret	urn	Disp	ose

Comments:

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MECX	Package ID B4DF27
12269 East Vassar Drive	Task Order 1261.001D.01
Aurora, CO 80014	SDG No. IPA1191
• • •	No. of Analyses 1
Laboratory Alta	Date: February 25, 2006
Reviewer K. Shado	TO THE PARTY OF TH
Analysis/Method Dioxin/Fi	<u> </u>
ACTION ITEMS*	
. Case Narrative	
Deficiencies	
2. Out of Scope Analyses	
3. Analyses Not Conducted	
4. Missing Hardcopy	
Deliverables	
5. Incorrect Hardcopy	
Deliverables	
6. Deviations from Analysis	
Protocol, e.g.,	Detects below the laboratory lower calibration level were qualified
Holding Times	as estimated.
GC/MS Tune/Inst, Performan	
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS Field QC	
internal Standard Performanc	
Compound Identification	
Quantitation	
System Performance	
COMMENTS	
en e	
terpetri Philippin construit i la signi sun qua ango sun qua sun sun anno anno anno anno anno anno anno an	
and distribution of the state o	
* Subcontracted analytical laboratory is	not meeting contract and/or method requirements.
	oted by the laboratory but no action against the laboratory is required:

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 009

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IPA1191

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: Analysis:

NPDES IPA1191 D/F

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title:

NPDES

Contract Task Order:

1261.001.01

Sample Delivery Group:

IPA1191

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Dioxins/Furans

QC Level:

Level IV

No. of Samples:

No. of Reanalyses/Dilutions:

0 K. Shadowlight

Reviewer: Date of Review:

February 25, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: SDG: Analysis:

NPDES IPA1191 D/F

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 009	IPA1191-01	27210-001	Water	1613

D/F

Analysis:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical within the temperature limits of 4°C ±2°C. The sample was shipped to Alta for dioxin/furan analysis and was received below the temperature limits at 1°C. As the sample was not noted to be damaged or frozen, no qualifications were required. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. Custody seals were present on the coolers from Del Mar to Alta; however no sample custody seals were present. The Client ID was added to the sample result summary by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within one year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

840F27

Project: NPDES SDG: IPA1191 Analysis: D/F

DATA VALIDATION REPORT

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 01/12/2006 on instrument VG-7. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of %RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-7686-MB001) was extracted and analyzed with the sample in this SDG. Target compounds 1,2,3,4,6,7,8-HpCDD and OCDD were reported at concentrations below the laboratory lower calibration level in the method blank. Target compounds 1,2,3,4,6,7,8-HpCDD and OCDD were also reported in the site sample; therefore, the detects for HpCDD and OCDD were qualified as estimated nondetects, "UJ," at the levels of contamination in the site sample. As a portion of total HpCDD was qualified for method blank contamination the result for total HpCDD was qualified as estimated, "J," in the site sample. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (0-7632-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. A review

840F27 4 Revision 0

Project:	NPDES
SDG:	IPA119
Analysis:	D/F

DATA VALIDATION REPORT

of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

Nume: De Project: IP, Date Collected: 14 Time Collected: 101 Analyte 2,3,7,8-TCDD 1,2,3,7,8-HcCDD 1,2,3,4,7,8-HcCDD 1,2,3,4,7,8-HpCDI 0,2,3,7,8-TCDF 2,3,7,8-TCDF 2,3,7,8-TCDF 2,3,7,8-TCDF 2,3,7,8-TCDF 2,3,7,8-TCDF 2,3,7,8-TCDF 2,3,7,8-TCDF 2,3,7,8-TCDF 2,3,7,8-TCDF	el Mar Analyt A1191 -Jan-06 15 Conc. (ug		Aqueous 1.01 L Qualifiers 1,B B.	Lab Sample: 27210-001 QC Batch No.: 7686 Date Analyzed DB-5: 24-Jan-06 Labeled Standard Labeled Standard 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-0CDD 13C-2,3,7,8-PeCDF	Date Extracted: Date Extracted: Date Analyzed DB-225: %R L.CLU.C.L.d 71.3 25-164 74.1 25-181 72.2 32-141 74.0 28-130	17-Jan-06 22-Jan-06 NA
Analyte Analyte 23,7,8-TCDD 12,3,7,8-EKC 12,3,6,7,8-EKC 12,3,6,7,8-Hp 0CDD 23,7,8-PCDF 12,3,4,6,7,8-Hp 0CDD 23,7,8-PCDF 23,7,8-PCDF 23,7,8-PCDF	-Jan-06 15 Conc. (ug)	DL a 0.0000010 0.0000019 0.0000019 0.0000014 0.0000013	5	C Batch No.: Labeled Standard Labeled Standard 13C-2,37,8-TCDD 13C-1,23,7,8-PeCT 13C-1,23,47,8-Hxt 13C-1,23,4,5,8-Hxt 13C-1,23,4,6,7,8-Hxt 13C-2,23,4,6,7,8-PeCT 13C-2,3,7,8-PeCT	l	22-Jan-06 NA
Analyte 23.7,8-TCDD 12,3,7,8-PeCDI 12,3,4,8-HxC 12,3,6,7,8-HxC 12,3,4,6,7,8-Hx 0CDD 23,7,8-TCDF 12,3,4,6,7,8-PeCDI 23,7,8-PeCDI 23,7,8-PeCDI	Conc. (ug	0.00000131 0.00000131 0.00000198 0.00000198 0.00000132 0.00000132		Labeled Standard 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCI 13C-1,2,3,6,7,8-Hx 13C-1,2,3,6,7,8-H 13C-0,2,3,7,8-TCDF 13C-2,3,7,8-PeCI	LCL-UCL ^d 25-164 1 25-181 25-181 2 32-141	
13,7,8-TCDD 1,2,3,4,7,8-PeCDI 1,2,3,4,7,8-HxC 1,2,3,4,5,8-PxC 1,2,3,4,8,9-HxC 1,2,3,7,8-TCDF 1,2,3,7,8-PeCDI 2,3,4,7,8-PeCDI						Oualiffers
1,2,3,4,7,8-PeCDI 1,2,3,4,7,8-HxC 1,2,3,4,5,7,8-Hx 1,2,3,4,6,7,8-Hp 0,CDD 0,CDD 2,3,7,8-PeCDI 2,3,7,8-PeCDI	C		J.B B	13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,7,8-TCDF		
12,3,47,8-HxC 12,3,67,8-HxC 12,3,4,67,8-Hp 0CDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDI 2,3,4,7,8-PeCDI			J.B	13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,7,8-TCDF 13C-2,3,7,8-PcCDF		
1,23,67,8-HxC 1,23,46,7,8-HxG 1,23,46,7,8-Hx DCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDI 2,3,4,7,8-PeCDI	0		J,B	13C-1,23,6,7,8-HxCDD 13C-1,23,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PcCDF		
12,3,4,8,9-HxC 1,2,3,4,6,7,8-Hp 0,CDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDI 2,3,4,7,8-PeCDI	6		J.B	13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PcCDF		
1,2,3,4,6,7,8-Hp OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDI 2,3,4,7,8-PeCDI	0		J.B	13C-2,3,7,8-TCDE 13C-2,3,7,8-TCDE	72.4 23 - 140	
23,7,8-TCDF 12,3,7,8-PeCDI 2,3,4,7,8-PeCDI			B	13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	43.7 17-157	
1,3,7,8-TCDF 1,2,3,7,8-PeCDJ 2,3,4,7,8-PeCDJ		0.00000933 0.00000142 0.00000132		13C-1,2,3,7,8-PeCDF	72.4 24-169	
(,2,3,7,8-PeCD) 2,3,4,7,8-PeCD)		0.0000132		the same of the sa	79.3 24-185	
2,3,4,7,8-PeCDI		0.00000132		13C-2,3,4,7,8-PeCDF	79.9 21 - 178	
		100 Per 100 Pe		13C-1,2,3,4,7,8-HxCDF	74.2 26 - 152	
(,2,3,4,7,8-HxC	DF ND	0.000000795		13C-1,2,3,6,7,8-HxCDF	71.8 26-123	
1,2,3,6,7,8-HxCDF		0,000000762	A Committee of the Comm	13C-2,3,4,6,7,8-HxCDF	74.1 28 - 136	
2,3,4,6,7,8-HxCDF	DF	0.000000827		13C-1,2,3,7,8,9-HxCDF	73.5 29 - 147	
1,2,3,7,8,9-HxCDF	R A	C. CONT. LANG. AND CONT.		13C-1,2,3,4,6,7,8-HpCDF	66.9 28 - 143	-
1,2,3,4,6,7,8-HpCDF	PCDF	0.00000191		13C-1,2,3,4,7,8,9-HpCDF	73.5 26-138	
1,2,3,4,7,8,9-HpCDF	PCDF ND	0.0000181	The second secon	13C-OCDF	50,8 17 - 157	
OCDF	0.00000508	508	<u> </u>	CRS 37Cl-2,3,7,8-TCDD	90,6 35 - 197	
Totals				Footnotes		
Total TCDD	Q	0.00000.0	-	a. Sample specific estimated detection limit.		
Total PeCDD	2	0.00000131		b. Betimated maximum possible concentration.		
Total HxCDD	2	0.00000203	7	c. Method detection limit.		
Total HpCDD	0.0000186		В	d. Lower counted limit - upper control limit.		
Total TCDF	2	0.000000933				
OBLFCLF		U.MODULS?				
Total HoCDF	2 2	0.0000008/1				

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

		Package ID B4MT30
MEG	OX.	Task Order 1261.001D.01
1226	59 East Vassar Drive	SDG No. IPA1191
Auro	ora, CO 80014	No. of Analyses I
	Laboratory Del Mar A	nalytical Date: February 27, 2006
	Reviewer P. Meeks	Reviewer's Signature
	Analysis/Method Metals	P.Mes
	***************************************	kkk
ACT	TON ITEMS'	
•	Case Narrative	
	Deficiencies	
2.	Out of Scope	
	Analyses	
3.	Analyses Not Conducted	
4.	Missing Hardcopy	
	Deliverables	
5.	Incorrect Hardcopy	
	Deliverables	

6.	Deviations from Analysis	
	Protocol, e.g.,	Qualifications applied for detects below the reporting limit and blank detects.
	Holding Times	
	GC/MS Tune/Inst. Performance	
	Calibration	
	Method blanks	
	Surrogates Matrix Spike/Dup LCS	
	Field QC	
	Internal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
CON	MMENTS ⁶	
		neeting contract and/or method requirements.
b Di	fferences in protocol have been adopted I	by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 009

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IPA1191

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG:

Analysis:

NPDES IPA1191 Metals

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title:

Topanga Fire Surface Samples

MEC^X Project Number:

1261.001D.01

Sample Delivery Group:

IPA1191 P. Costa

Project Manager:

Sediment

Matrix:

Analysis:

Metals

QC Level:

Level IV

No. of Samples:

1 0

No. of Reanalyses/Dilutions:

P. Meeks

Reviewer: Date of Review:

February 27, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for ICP and ICP-MS Metals (DVP-5, Rev. 0), EPA Methods 200.8 and 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

B4MT30

Revision 0

Project:

NPDES

SDG: Analysis:

IPA1191 Metals

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 009	IPA1191-01	Water	200.8, 245.1

Project:

NPDES

DATA VALIDATION REPORT

SDG: Analysis:

Metals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ±2°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The method-specified tune criteria were met and no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP-MS metals and 80-120%. The laboratory analyzed reporting limit check standards in association with the sample in this SDG. No qualifications were required.

2.4 BLANKS

Cadmium was reported in method blank 6A16092-BLK1 at -0.028 µg/L; therefore, cadmium detected Outfall 009 was qualified as estimated, "J." No further qualifications were required.

B4MT30

3

Revision 0

Project: NPDES SDG: IPA1191 Analysis: Metals

DATA VALIDATION REPORT

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

No ICSA and ICSAB analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

Matrix spike analyses were performed on Outfall 009 for the ICP-MS analytes only. All recoveries were within the laboratory-established control limits of 70-130%. No mercury matrix spike analyses were performed association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Mercury method accuracy was evaluated based on LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

For the target analytes analyzed by ICP-MS, the internal standards were within the methodspecified control limits of 60-125%. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit

B4MT30 4 Revision 0

Project: NPDES SDG: IPA1191 Analysis: Metals

DATA VALIDATION REPORT

were qualified as estimated, "J," and denoted with "DNQ," in accordance with the NPDES permit. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

B4MT30 5 Revision 0

17461 Derian Ave., Soile 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-1297 1014 E. Cooley Dr., Suile A. Colton, CA 92324 (999) 370-4667 FAX (999) 370-1046 9464 Chesapeake Dr., Suite 805, San Diego, CA 92123 (658) 505-696 FAX (658) 505-6969 9830 South 51st St., Suite 8-120, Phoenix, AZ 65044 (480) 785-0043 FAX (480) 785-0651 2520 E. Sanset 8d. #3, Las Vogas, NV 89120 (702) 790-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

300 North Lake Avenue, Suite 1200

Report Number: IPA1191

Sampled: 01/14/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Received: 01/15/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	į.
Sample ID: IPA1191-01 (Outfall 00	99 - Water)								Rev	Que!
Reporting Units: ug/l									Qual	Code
Antimony	EPA 200.8	6A16092	0.050	2.0	0.54	1	01/16/06	01/17/06	I j	BOND
Cadmium	EPA 200.8	6A16092	0.025	1.0	0.048	1	01/16/06	01/17/06	↓ j	13,4
Copper	EPA 200.8	6A16092	0.25	2.0	3.1	1	01/16/06	01/17/06		and the second
Lead	EPA 200.8	6A16092	0.040	1.0	0.50	1	01/16/06	01/17/06	JJ	DNG
Mercury	EPA 245.1	6A17070	0.050	0.20	ND	1	01/17/06	01/17/06	V	
							Pr	n 2/27	1/06	n-97, n-m-paddddidd

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

Lever IV

APPENDIX G

Section 32

Outfall 009, January 14, 2006

AMEC Data Validation Reports

APPENDIX G

Section 33

Outfall 009, January 03, 2006 Del Mar Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project: LARWQCB Sample Splits

Outfall 009

Sampled: 01/03/06 Received: 01/03/06 Issued: 01/31/06 10:36

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 5°C, on ice and with chain of custody documentation.

HOLDING TIMES:

All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar

Analytical Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA:

All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS:

Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED:

Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION:

The analysis of EPA 413.1 was not performed due to insufficient sample volume.

LABORATORY ID

CLIENT ID

MATRIX

IPA0102-01

009 Split

Water

Reviewed By:

Del Mar Analytical, Irvine

Michile Chemberein

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

Attention: Bronwyn Kelly

Pasadena, CA 91101

CORRECTIVE ACTION REPORT

Department: Extractions

Date: 01/16/2006

Method: EPA 625

Matrix: Water

QC Batch: 6A08028

Identification and Definition of Problem:

The result for Dibenz(a,h)anthracene in the Method Blank for the batch was above the laboratory reporting limit.

Determination of the Cause of the Problem:

A definitive cause for the QC failure has not been determined.

Corrective Action Taken:

All positive results for Dibenz(a,h)anthracene are potentially biased high and can be considered estimates only.

Quality Assurance Approval;

Dave Dawes

Date: 01/19/2006 11:41 AM

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Pasadena, CA 91101

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

PURGEABLES BY GC/MS (EPA 624)

			MDL	Reporting	-	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IPA0102-01 (009 Split - Water)									
Reporting Units: ug/l									
Benzene	EPA 624	6A03022	0.28	2.0	ND	1	01/03/06	01/04/06	
Bromodichloromethane	EPA 624	6A03022	0.30	2.0	ND	1	01/03/06	01/04/06	
Bromoform	EPA 624	6A03022	0.32	5.0	ND	1	01/03/06	01/04/06	
Bromomethane	EPA 624	6A03022	0.42	5.0	ND	1	01/03/06	01/04/06	
Trichlorotrifluoroethane (Freon 113)	EPA 624	6A03022	1.2	5.0	ND	1	01/03/06	01/04/06	
Carbon tetrachloride	EPA 624	6A03022	0.28	5.0	ND	1	01/03/06	01/04/06	
Chlorobenzene	EPA 624	6A03022	0.36	2.0	ND	1	01/03/06	01/04/06	
Chloroethane	EPA 624	6A03022	0.33	5.0	ND	1	01/03/06	01/04/06	
Chloroform	EPA 624	6A03022	0.33	2.0	ND	l	01/03/06	01/04/06	
Chloromethane	EPA 624	6A03022	0.30	5.0	ND	1	01/03/06	01/04/06	
Dibromochloromethane	EPA 624	6A03022	0.28	2.0	ND	1	01/03/06	01/04/06	
1,2-Dichlorobenzene	EPA 624	6A03022	0.32	2.0	ND	1	01/03/06	01/04/06	
1,3-Dichlorobenzene	EPA 624	6A03022	0.35	2.0	ND	1	01/03/06	01/04/06	
1,4-Dichlorobenzene	EPA 624	6A03022	0.37	2.0	ND	1	01/03/06	01/04/06	
1,1-Dichloroethane	EPA 624	6A03022	0.27	2.0	ND	1	01/03/06	01/04/06	
1,2-Dichloroethane	EPA 624	6A03022	0.28	2.0	ND	1	01/03/06	01/04/06	
1,1-Dichloroethene	EPA 624	6A03022	0.32	3.0	ND	1	01/03/06	01/04/06	
trans-1,2-Dichloroethene	EPA 624	6A03022	0.27	2.0	ND	1	01/03/06	01/04/06	
1,2-Dichloropropane	EPA 624	6A03022	0.35	2.0	ND	1	01/03/06	01/04/06	
cis-1,3-Dichloropropene	EPA 624	6A03022	0.22	2.0	ND	1	01/03/06	01/04/06	
trans-1,3-Dichloropropene	EPA 624	6A03022	0.32	2.0	ND	1	01/03/06	01/04/06	
Ethylbenzene	EPA 624	6A03022	0.25	2.0	ND	1	01/03/06	01/04/06	
Methylene chloride	EPA 624	6A03022	0.51	5.0	ND	1	01/03/06	01/04/06	
1,1,2,2-Tetrachloroethane	EPA 624	6A03022	0.24	2.0	ND	1	01/03/06	01/04/06	L
Tetrachloroethene	EPA 624	6A03022	0.32	2.0	ND	1	01/03/06	01/04/06	
Toluene	EPA 624	6A03022	0.36	2.0	ND	1	01/03/06	01/04/06	
1,1,1-Trichloroethane	EPA 624	6A03022	0.30	2.0	ND	1	01/03/06	01/04/06	
1,1,2-Trichloroethane	EPA 624	6A03022	0.30	2.0	ND	1	01/03/06	01/04/06	
Trichloroethene	EPA 624	6A03022	0.26	5.0	ND	1	01/03/06	01/04/06	
Trichlorofluoromethane	EPA 624	6A03022	0.34	5.0	ND	1	01/03/06	01/04/06	
Vinyl chloride	EPA 624	6A03022	0.26	5.0	ND	1	01/03/06	01/04/06	
Xylenes, Total	EPA 624	6A03022	0.52	4.0	ND	1	01/03/06	01/04/06	
Surrogate: Dibromofluoromethane (80-120%)					109 %				
Surrogate: Toluene-d8 (80-120%)					109 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					102 %				

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Sampled: 01/03/06

Pasadena, CA 91101

Report Number: IPA0102

Received: 01/03/06

Attention: Bronwyn Kelly

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0102-01 (009 Split - W Reporting Units: ug/l	ater) - cont.								
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	6A03022	N/A	2.5	ND	1	01/03/06	01/04/06	
Cyclohexane	EPA 624 (MOD.)	6A03022	N/A	2.5	ND	1	01/03/06	01/04/06	

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Pasadena, CA 91101

Attention: Bronwyn Kelly

SEMI-VOL ORGANICS by GC/MS-CHEMICAL IONIZATION (EPA 3520C/1625C-CI MOD)

MDL Reporting Sample Dilution Data Qualifiers Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Sample ID: IPA0102-01 (009 Split - Water) - cont. Reporting Units: ug/l N-Nitrosodimethylamine EPA 1625C-CI Mod 6A08026 0.00019 0.0019 0.00045 0.943 01/08/06 01/10/06 B, J

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0102-01 (009 Split - W	ater) - cont.								
Reporting Units: ug/l	,								
Acenaphthene	EPA 625	6A08028	0.10	0.50	ND	1	01/08/06	01/11/06	
Acenaphthylene	EPA 625	6A08028	0.10	0.50	ND	1	01/08/06	01/11/06	
Aniline	EPA 625	6A08028	2.9	10	ND	1	01/08/06	01/11/06	
Anthracene	EPA 625	6A08028	0.083	0.50	ND	1	01/08/06	01/11/06	
Benzidine	EPA 625	6A08028	2.4	5.0	ND	1	01/08/06	01/11/06	C
Benzoic acid	EPA 625	6A08028	3.7	20	4.9	1	01/08/06	01/11/06	A-01, J
Benzo(a)anthracene	EPA 625	6A08028	0.038	5.0	0.32	1	01/08/06	01/11/06	J
Benzo(a)pyrene	EPA 625	6A08028	0.14	2.0	ND	1	01/08/06	01/11/06	
Benzo(b)fluoranthene	EPA 625	6A08028	0.050	2.0	ND	1	01/08/06	01/11/06	
Benzo(g,h,i)perylene	EPA 625	6A08028	0.059	5.0	ND	1	01/08/06	01/11/06	
Benzo(k)fluoranthene	EPA 625	6A08028	0.053	0.50	ND	1	01/08/06	01/11/06	
Benzyl alcohol	EPA 625	6A08028	0.21	5.0	ND	1	01/08/06	01/11/06	
Bis(2-chloroethoxy)methane	EPA 625	6A08028	0.072	0.50	ND	1	01/08/06	01/11/06	
Bis(2-chloroethyl)ether	EPA 625	6A08028	0.084	0.50	ND	l	01/08/06	01/11/06	
Bis(2-chloroisopropyl)ether	EPA 625	6A08028	0.11	0.50	ND	1	01/08/06	01/11/06	
Bis(2-ethylhexyl)phthalate	EPA 625	6A08028	1.1	5.0	2.4	1	01/08/06	01/11/06	B, J
4-Bromophenyl phenyl ether	EPA 625	6A08028	0.12	1.0	ND	1	01/08/06	01/11/06	
Butyl benzyl phthalate	EPA 625	6A08028	0.34	5.0	1.3	1	01/08/06	01/11/06	B, J
4-Chloroaniline	EPA 625	6A08028	0.20	2.0	ND	1	01/08/06	01/11/06	
2-Chloronaphthalene	EPA 625	6A08028	0.059	0.50	ND	1	01/08/06	01/11/06	
4-Chloro-3-methylphenol	EPA 625	6A08028	0.34	2.0	ND	1	01/08/06	01/11/06	
4-Chlorophenyl phenyl ether	EPA 625	6A08028	0.056	0.50	ND	1	01/08/06	01/11/06	
2-Chlorophenol	EPA 625	6A08028	0.12	1.0	ND	1	01/08/06	01/11/06	
Chrysene	EPA 625	6A08028	0.072	0.50	ND	1	01/08/06	01/11/06	
Dibenz(a,h)anthracene	EPA 625	6A08028	0.083	0.50	0.60	1	01/08/06	01/11/06	В
Dibenzofuran	EPA 625	6A08028	0.075	0.50	ND	l	01/08/06	01/11/06	
Di-n-butyl phthalate	EPA 625	6A08028	0.26	2.0	ND	1	01/08/06	01/11/06	
1,2-Dichlorobenzene	EPA 625	6A08028	0.11	0.50	ND	1	01/08/06	01/11/06	
1,3-Dichlorobenzene	EPA 625	6A08028	0.13	0.50	ND	1	01/08/06	01/11/06	
1,4-Dichlorobenzene	EPA 625	6A08028	0.050	0.50	ND	l	01/08/06	01/11/06	
3,3-Dichlorobenzidine	EPA 625	6A08028	0.93	5.0	ND	1	01/08/06	01/11/06	
2,4-Dichlorophenol	EPA 625	6A08028	0.21	2.0	ND	1	01/08/06	01/11/06	
Diethyl phthalate	EPA 625	6A08028	0.12	1.0	0.62	1	01/08/06	01/11/06	B, J
2,4-Dimethylphenol	EPA 625	6A08028	0.31	2.0	ND	1	01/08/06	01/11/06	
Dimethyl phthalate	EPA 625	6A08028	0.081	0.50	ND	1	01/08/06	01/11/06	
4,6-Dinitro-2-methylphenol	EPA 625	6A08028	0.38	5.0	ND	1	01/08/06	01/11/06	
2,4-Dinitrophenol	EPA 625	6A08028	2.7	5.0	ND	1	01/08/06	01/11/06	
2,4-Dinitrotoluene	EPA 625	6A08028	0.23	5.0	ND	1	01/08/06	01/11/06	
2,6-Dinitrotoluene	EPA 625	6A08028	0.24	5.0	ND	1	01/08/06	01/11/06	
Di-n-octyl phthalate	EPA 625	6A08028	0.17	5.0	ND	1	01/08/06	01/11/06	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	6A08028	0.087	1.0	ND	1	01/08/06	01/11/06	

Del Mar Analytical, Irvine

Michele Chamberlin

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06

Report Number: IPA0102 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0102-01 (009 Split - Water)	- cont.							•	
Reporting Units: ug/l	- 0000								
Fluoranthene	EPA 625	6A08028	0.089	0.50	ND	1	01/08/06	01/11/06	
Fluorene	EPA 625	6A08028	0.075	0.50	ND	l	01/08/06	01/11/06	
Hexachlorobenzene	EPA 625	6A08028	0.13	1.0	ND	1	01/08/06	01/11/06	
Hexachlorobutadiene	EPA 625	6A08028	0.38	2.0	ND	1	01/08/06	01/11/06	
Hexachlorocyclopentadiene	EPA 625	6A08028	1.8	5.0	ND	1	01/08/06	01/11/06	
Hexachloroethane	EPA 625	6A08028	0.51	3.0	ND	1	01/08/06	01/11/06	
Indeno(1,2,3-cd)pyrene	EPA 625	6A08028	0.19	2.0	ND	1	01/08/06	01/11/06	
Isophorone	EPA 625	6A08028	0.059	1.0	ND	1	01/08/06	01/11/06	C
2-Methylnaphthalene	EPA 625	6A08028	0.13	1.0	ND	1	01/08/06	01/11/06	
2-Methylphenol	EPA 625	6A08028	0.28	2.0	ND	1	01/08/06	01/11/06	
4-Methylphenol	EPA 625	6A08028	0.20	5.0	ND	1	01/08/06	01/11/06	
Naphthalene	EPA 625	6A08028	0.13	1.0	ND	1	01/08/06	01/11/06	
2-Nitroaniline	EPA 625	6A08028	0.18	5.0	ND	1	01/08/06	01/11/06	
3-Nitroaniline	EPA 625	6A08028	0.35	5.0	ND	1	01/08/06	01/11/06	
4-Nitroaniline	EPA 625	6A08028	0.49	5.0	ND	1	01/08/06	01/11/06	
Nitrobenzene	EPA 625	6A08028	0.10	1.0	ND	1	01/08/06	01/11/06	
2-Nitrophenol	EPA 625	6A08028	0.23	2.0	ND	1	01/08/06	01/11/06	
4-Nitrophenol	EPA 625	6A08028	0.73	5.0	ND	1	01/08/06	01/11/06	
N-Nitrosodimethylamine	EPA 625	6A08028	0.22	2.0	ND	1	01/08/06	01/11/06	
N-Nitroso-di-n-propylamine	EPA 625	6A08028	0.18	2.0	ND	1	01/08/06	01/11/06	
N-Nitrosodiphenylamine	EPA 625	6A08028	0.077	1.0	ND	1	01/08/06	01/11/06	
Pentachlorophenol	EPA 625	6A08028	0.78	2.0	ND	1	01/08/06	01/11/06	
Phenanthrene	EPA 625	6A08028	0.071	0.50	ND	1	01/08/06	01/11/06	
Phenol	EPA 625	6A08028	0.14	1.0	ND	1	01/08/06	01/11/06	
Pyrene	EPA 625	6A08028	0.059	0.50	ND	1	01/08/06	01/11/06	
1,2,4-Trichlorobenzene	EPA 625	6A08028	0.10	1.0	ND	1	01/08/06	01/11/06	
2,4,5-Trichlorophenol	EPA 625	6A08028	0.075	2.0	ND	1	01/08/06	01/11/06	
2,4,6-Trichlorophenol	EPA 625	6A08028	0.10	1.0	ND	1	01/08/06	01/11/06	
Surrogate: 2-Fluorophenol (35-120%)					60 %				
Surrogate: Phenol-d6 (45-120%)					71%				
Surrogate: 2,4,6-Tribromophenol (50-125%)					<i>78 %</i>				
Surrogate: Nitrobenzene-d5 (45-120%)					72 %				
Surrogate: 2-Fluorobiphenyl (45-120%)					71%				
Surrogate: Terphenyl-d14 (45-135%)					75 %				

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Pasadena, CA 91101

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0102-01 (009 Split - Water)	- cont.								
Reporting Units: ug/l									
Aroclor 1016	EPA 608	6A06049	0.20	1.0	ND	1	01/06/06	01/06/06	
Aroclor 1221	EPA 608	6A06049	0.10	1.0	ND	1	01/06/06	01/06/06	
Aroclor 1232	EPA 608	6A06049	0.25	1.0	ND	1	01/06/06	01/06/06	
Aroclor 1242	EPA 608	6A06049	0.25	1.0	ND	1	01/06/06	01/06/06	
Aroclor 1248	EPA 608	6A06049	0.25	1.0	ND	1	01/06/06	01/06/06	
Aroclor 1254	EPA 608	6A06049	0.25	1.0	ND	1	01/06/06	01/06/06	
Aroclor 1260	EPA 608	6A06049	0.40	1.0	ND	1	01/06/06	01/06/06	
Surrogate: Decachlorobiphenyl (45-120%)					85 %				

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Sampled: 01/03/06

Pasadena, CA 91101

Report Number: IPA0102

Received: 01/03/06

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0102-01 (009 Split - Water	-) - cont.								
Reporting Units: mg/l									
Barium	EPA 200.8	6A04091	0.00015	0.0010	0.041	1	01/04/06	01/06/06	
Boron	EPA 200.7	6A04092	0.0080	0.050	0.12	1	01/04/06	01/05/06	
Calcium	EPA 200.7	6A04092	0.040	0.10	39	1	01/04/06	01/05/06	
Magnesium	EPA 200.7	6A04092	0.0070	0.020	11	1	01/04/06	01/05/06	

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Pasadena, CA 91101

Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Attention: Bronwyn Kelly

METALS

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0102-01 (009 Split - V	Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8	6A04091	0.050	2.0	1.0	1	01/04/06	01/06/06	J, B
Arsenic	EPA 200.8	6A04091	0.50	1.0	1.8	l	01/04/06	01/06/06	
Beryllium	EPA 200.8	6A04091	0.075	0.50	0.085	1	01/04/06	01/09/06	J
Cadmium	EPA 200.8	6A04091	0.025	1.0	ND	1	01/04/06	01/06/06	
Chromium	EPA 200.7	6A04092	0.68	5.0	1.4	1	01/04/06	01/05/06	J
Cobalt	EPA 200.8	6A04091	0.035	1.0	0.27	1	01/04/06	01/06/06	J
Copper	EPA 200.8	6A04091	0.25	1.0	3.2	1	01/04/06	01/06/06	
Lead	EPA 200.8	6A04091	0.040	1.0	0.51	l	01/04/06	01/06/06	J
Mercury	EPA 245.1	6A04080	0.050	0.20	ND	1	01/04/06	01/04/06	
Molybdenum	EPA 200.8	6A04091	0.15	2.0	0.75	1	01/04/06	01/06/06	B, J
Nickel	EPA 200.8	6A04091	0.35	2.0	2.3	1	01/04/06	01/06/06	В
Selenium	EPA 200.8	6A04091	0.30	2.0	0.30	1	01/04/06	01/06/06	J
Silver	EPA 200.8	6A09086	0.025	1.0	ND	1	01/09/06	01/09/06	
Thallium	EPA 200.8	6A04091	0.15	1.0	ND	1	01/04/06	01/06/06	
Vanadium	EPA 200.8	6A04091	0.70	2.0	1.5	1	01/04/06	01/06/06	J
Zine	EPA 200.8	6A04091	1.0	10	6.5	1	01/04/06	01/06/06	J

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

Outfall 009

Pasadena, CA 91101

Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Attention: Bronwyn Kelly

300 North Lake Avenue, Suite 1200

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0102-01 (009 Split -	Water) - cont.								
Reporting Units: mg/l									
Ammonia-N (Distilled)	EPA 350.2	6A05098	0.30	0.50	ND	1	01/05/06	01/05/06	
Biochemical Oxygen Demand	EPA 405.1	6A04062	0.59	2.0	0.90	1	01/04/06	01/09/06	J
Fluoride	EPA 300.0	6A03051	0.10	0.50	0.29	1	01/03/06	01/03/06	J, B
Hardness (as CaCO3)	SM2340B	6A04092	1.0	1.0	140	1	01/04/06	01/05/06	
Nitrate/Nitrite-N	EPA 300.0	6A03051	0.072	0.26	2.7	1	01/03/06	01/03/06	
Sulfate	EPA 300.0	6A03051	0.18	0.50	52	1	01/03/06	01/03/06	
Surfactants (MBAS)	SM5540-C	6A03114	0.044	0.10	ND	1	01/03/06	01/03/06	
Total Dissolved Solids	SM2540C	6A04107	10	10	260	1	01/04/06	01/04/06	
Total Organic Carbon	EPA 415.1	6A06094	0.25	1.0	9.1	1	01/06/06	01/06/06	
Total Suspended Solids	EPA 160.2	6A06118	10	10	ND	1	01/06/06	01/06/06	

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 IPA0102 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IPA0102-01 (009 Split - Water) - cont.										
Reporting Units: ml/l/hr Total Settleable Solids	EPA 160.5	6A04072	0.10	0.10	ND	1	01/04/06	01/04/06		

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Received: 01/03/06

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0102-01 (009 Split - Water	r) - cont.								
Reporting Units: ug/l									
Total Cyanide	EPA 335.2	6A06111	2.2	5.0	3.4	1	01/06/06	01/09/06	J
Perchlorate	EPA 314.0	6A04078	0.80	4.0	ND	1	01/04/06	01/04/06	

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 er: IPA0102 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IPA0102-01 (009 Split - Water) - cont.										
Reporting Units: umhos/cm Specific Conductance	EPA 120.1	6A04105	1.0	1.0	420	1	01/04/06	01/04/06		

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 IPA0102 Received: 01/03/06

Pasadena, CA 91101

Report Number: IPA0102

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: 009 Split (IPA0102-01) - Water					
EPA 160.5	2	01/03/2006 13:25	01/03/2006 18:00	01/04/2006 09:18	01/04/2006 10:30
EPA 300.0	2	01/03/2006 13:25	01/03/2006 18:00	01/03/2006 20:30	01/03/2006 21:35
EPA 405.1	2	01/03/2006 13:25	01/03/2006 18:00	01/04/2006 10:15	01/09/2006 16:00
SM5540-C	2	01/03/2006 13:25	01/03/2006 18:00	01/03/2006 21:20	01/03/2006 22:46

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06

Attention: Bronwyn Kelly

Pasadena, CA 91101

Report Number: IPA0102 Received: 01/03/06

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03022 Extracted: 01/03/	<u>06</u>										
Blank Analyzed: 01/03/2006 (6A03022	-BLK1)										
Benzene	ND	2.0	0.28	ug/l							
Benzene	ND	1.0	0.28	ug/l							
Bromodichloromethane	ND	2.0	0.30	ug/l							
Bromoform	ND	5.0	0.32	ug/l							
Bromomethane	ND	5.0	0.42	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.2	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Carbon tetrachloride	ND	5.0	0.28	ug/l							
Chlorobenzene	ND	2.0	0.36	ug/l							
Chloroethane	ND	5.0	0.33	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
Chloromethane ·	ND	5.0	0.30	ug/l							
Dibromochloromethane	ND	2.0	0.28	ug/l							
1,2-Dichlorobenzene	ND	2.0	0.32	ug/l							
1,3-Dichlorobenzene	ND	2.0	0.35	ug/l							
1,4-Dichlorobenzene	ND	2.0	0.37	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,2-Dichloroethane	ND	2.0	0.28	ug/l							
1,1-Dichloroethene	ND	5.0	0.42	ug/l							
1,1-Dichloroethene	ND	3.0	0.42	ug/l							
trans-1,2-Dichloroethene	ND	2.0	0.27	ug/l							
1,2-Dichloropropane	ND	2.0	0.35	ug/l							
cis-1,3-Dichloropropene	ND	2.0	0.22	ug/l							
trans-1,3-Dichloropropene	ND	2.0	0.32	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Methylene chloride	ND	5.0	0.51	ug/Í							
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Toluene	ND	2.0	0.36	ug/l							
Toluene	ND	2.0	0.36	ug/l							

Del Mar Analytical, Irvine

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03022 Extracted: 01/03/0	<u>6</u>										
Blank Analyzed: 01/03/2006 (6A03022-1	91 1Z1\										
1.1,1-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/l ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
Trichloroethene	ND	2.0	0.26	ug/l							
Trichloroethene	ND	5.0	0.26	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	0.50	0.26	ug/l							
Vinyl chloride	ND	5.0	0.26	ug/i							
Xylenes, Total	ND	4.0	0.52	ug/l							
Xylenes, Total	ND	4.0	0.52	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.2	ug/l							
Surrogate: Dibromofluoromethane	26.3			ug/l	25.0		105	80-120			
Surrogate: Dibromofluoromethane	26.3			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	26.6			ug/l	25.0		106	80-120			•
Surrogate: Toluene-d8	26.6			ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.7			ug/l	25.0		103	80-120			
LCS Analyzed: 01/03/2006 (6A03022-BS	5 1)										
Benzene	23.2	1.0	0.28	ug/l	25.0		93	65-120			
Benzene	23.2	2.0	0.28	ug/l	25.0		93	70-120			
Bromodichloromethane	25.4	2.0	0.30	ug/l	25.0		102	65-135			
Bromoform	25.5	5.0	0.32	ug/l	25.0		102	50-130			
Bromomethane	21.8	5.0	0.42	ug/l	25.0		87	60-140			
Carbon tetrachloride	24.8	5.0	0.28	ug/l	25.0		99	70-140			
Carbon tetrachloride	24.8	0.50	0.28	ug/l	25.0		99	65-140			
Chlorobenzene	24,4	2.0	0.36	ug/l	25.0		98	70-125			
Chloroethane	21.6	5.0	0.33	ug/l	25.0		86	55-140			
Chloroform	23.6	2.0	0.33	ug/l	25.0		94	75-130			
Chloroform	23.6	2.0	0.33	ug/l	25.0		94	65-130			
Chloromethane	17.6	5.0	0.30	ug/l	25.0		70	40-140			
Dibromochloromethane	27.4	2.0	0.28	ug/l	25.0		110	65-140			
1,2-Dichlorobenzene	26.4	2.0	0.32	ug/l	25.0		106	70-120			
1,3-Dichlorobenzene	25.0	2.0	0.35	ug/l	25.0		100	70-125			

Del Mar Analytical, Irvine

Michele Chamberlin

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03022 Extracted: 01/0	3/06										
LCS Analyzed: 01/03/2006 (6A0302	2-BS1)										
1,4-Dichlorobenzene	23.5	2.0	0.37	ug/l	25.0		94	70-125			
1,1-Dichloroethane	23.0	2.0	0.27	ug/l	25.0		92	65-130			
1,1-Dichloroethane	23.0	2.0	0.27	ug/l	25.0		92	70-135			
1,2-Dichloroethane	25.9	0.50	0.28	ug/l	25.0		104	60-140			
1,2-Dichloroethane	25.9	2.0	0.28	ug/l	25.0		104	60-150			
1,1-Dichloroethene	22.4	5.0	0.42	ug/l	25.0		90	70-130			
1,1-Dichloroethene	22.4	3.0	0.32	ug/l	25.0		90	75-135			
trans-1,2-Dichloroethene	23.5	2.0	0.27	ug/l	25.0		94	65-130			
1,2-Dichloropropane	24.5	2.0	0.35	ug/l	25.0		98	65-125			
cis-1,3-Dichloropropene	26.4	2.0	0.22	ug/l	25.0		106	70-130			
trans-1,3-Dichloropropene	28.2	2.0	0.32	ug/l	25.0		113	65-130			
Ethylbenzene	25.0	2.0	0.25	ug/l	25.0		100	80-120			
Ethylbenzene	25.0	2.0	0.25	ug/l	25.0		100	70-125			
Methylene chloride	20.9	5.0	0.51	ug/l	25.0		84	60-130			
1,1,2,2-Tetrachloroethane	33.2	2.0	0.24	ug/l	25.0		133	55-130			L
Tetrachloroethene	24.2	2.0	0.32	ug/l	25.0		97	75-125			
Tetrachloroethene	24.2	2.0	0.32	ug/l	25.0		97	65-125			
Toluene	24.4	2.0	0.36	ug/l	25.0		98	75-120			
Toluene	24.4	2.0	0.36	ug/l	25.0		98	70-125			
1,1,1-Trichloroethane	23.3	2.0	0.30	ug/l	25.0		93	75-140			
1,1,1-Trichloroethane	23.3	2.0	0.30	ug/l	25.0		93	65-135			
1,1,2-Trichloroethane	26.4	2.0	0.30	ug/l	25.0		106	65-125			
1,1,2-Trichloroethane	26.4	2.0	0.30	ug/l	25.0		106	70-125			
Trichloroethene	25.2	5.0	0.26	ug/l	25.0		101	80-120			
Trichloroethene	25.2	2.0	0.26	ug/l	25.0		101	70-125			
Trichlorofluoromethane	20.4	5.0	0.34	ug/l	25.0		82	60-140			
Trichlorofluoromethane	20.4	5.0	0.34	ug/l	25.0		82	65-145			
Vinyl chloride	18.8	0.50	0.26	ug/l	25.0		75	50-130			
Vinyl chloride	18.8	5.0	0.26	ug/l	25.0		75	50-130			
Surrogate: Dibromofluoromethane	26.2			ug/l	25.0		105	80-120			
Surrogate: Dibromofluoromethane	26.2			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	26.8			ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	26.8			ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	26.0			ug/l	25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	26.0			ug/l	25.0		104	80-120			

Del Mar Analytical, Irvine Michele Chamberlin

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 6A03022 Extracted: 01/03/00	<u>5</u>										
Matrix Spike Analyzed: 01/04/2006 (6A0	3022-MS1)				Sou	rce: IOL	2210-06				
Benzene	23.0	2.0	0.28	ug/l	25.0	0.78	89	70-120			
Benzene	23.0	1.0	0.28	ug/l	25.0	0.78	89	60-125			
Bromodichloromethane	24.9	2.0	0.30	ug/l	25.0	ND	100	65-135			
Bromoform	25.0	5.0	0.32	ug/l	25.0	ND	100	50-135			
Bromomethane	21.4	5.0	0.42	ug/l	25.0	ND	86	50-145			
Carbon tetrachloride	23.9	0.50	0.28	ug/l	25.0	ND	96	65-140			
Carbon tetrachloride	23.9	5.0	0.28	ug/l	25.0	ND	96	70-145			
Chlorobenzene	24.4	2.0	0.36	ug/l	25.0	ND	98	70-125			
Chloroethane	21.7	5.0	0.33	ug/l	25.0	ND	87	50-140			
Chloroform	24.1	2.0	0.33	ug/l	25.0	ND	96	70-135			
Chloroform	24.1	2.0	0.33	ug/l	25.0	ND	96	65-135			
Chloromethane	17.7	5.0	0.30	ug/l	25.0	ND	71	35-140			
Dibromochloromethane	26.5	2.0	0.28	ug/l	25.0	ND	106	60-140			
1,2-Dichlorobenzene	25.1	2.0	0.32	ug/l	25.0	ND	100	70-125			
1,3-Dichlorobenzene	24.6	2.0	0.35	ug/l	25.0	ND	98	70-125			
1,4-Dichlorobenzene	23.0	2.0	0.37	ug/l	25.0	ND	92	70-125			
1,1-Dichloroethane	23.1	2.0	0.27	ug/l	25.0	ND	92	65-135			
1,1-Dichloroethane	23.1	2.0	0.27	ug/l	25.0	ND	92	60-130			
1,2-Dichloroethane	26.3	2.0	0.28	ug/l	25.0	ND	105	60-150			
1,2-Dichloroethane	26.3	0.50	0.28	ug/l	25.0	ND	105	60-140			
1,1-Dichloroethene	22.4	5.0	0.42	ug/l	25.0	ND	90	60-135			
1,1-Dichloroethene	22.4	3.0	0.32	ug/l	25.0	ND	90	65-140			
trans-1,2-Dichloroethene	23.7	2.0	0.27	ug/l	25.0	ND	95	60-135			
1,2-Dichloropropane	24.3	2.0	0.35	ug/l	25.0	ND	97	60-125			
cis-1,3-Dichloropropene	25.3	2.0	0.22	ug/l	25.0	ND	101	65-135			
trans-1,3-Dichloropropene	26.9	2.0	0.32	ug/l	25.0	ND	108	65-140			
Ethylbenzene	38.3	2.0	0.25	ug/l	25.0	16	89	70-130			
Ethylbenzene	38.3	2.0	0.25	ug/l	25.0	16	89	65-130			
Methylene chloride	21.6	5.0	0.51	ug/I	25.0	ND	86	55-130			
1,1,2,2-Tetrachioroethane	35.0	2.0	0.24	ug/l	25.0	ND	140	55-140			
Tetrachloroethene	23.3	2.0	0.32	ug/l	25.0	ND	93	70-130			
Tetrachloroethene	23.3	2.0	0.32	ug/l	25.0	ND	93	60-130			
Toluene	23.6	2.0	0.36	ug/l	25.0	ND	94	70-120			
Toluene	23.6	2.0	0.36	ug/l	25.0	ND	94	65-125			
1,1,1-Trichloroethane	23.8	2.0	0.30	ug/l	25.0	ND	95	65-140			
				-		_					

Del Mar Analytical, Irvine

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: LARWQCB Sample Splits

Outfall 009

Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 6A03022 Extracted: 01/03/06	<u>.</u>										
					~						
Matrix Spike Analyzed: 01/04/2006 (6A0	-			_		rce: IOL2					
1,1,1-Trichloroethane	23.8	2.0	0.30	ug/l	25.0	ND	95	75-140			
1,1,2-Trichloroethane	26.8	2.0	0.30	ug/l	25.0	ND	107	60-135			
1,1,2-Trichloroethane	26.8	2.0	0.30	ug/l	25.0	ND	107	60-130			
Trichloroethene	23.8	2.0	0.26	ug/l	25.0	ND	95	60-125			
Trichloroethene	23.8	5.0	0.26	ug/l	25.0	ND	95	70-125			
Trichlorofluoromethane	21.0	5.0	0.34	ug/l	25.0	ND	84	55-145			
Trichlorofluoromethane	21.0	5.0	0.34	ug/l	25.0	ND	84	55-145			
Vinyl chloride	18.7	0.50	0.26	ug/l	25.0	ND	75	40-135			
Vinyl chloride	18.7	5.0	0.26	ug/l	25.0	ND	75	40-135			
Surrogate: Dibromofluoromethane	27.5			ug/l	25.0		110	80-120			
Surrogate: Dibromofluoromethane	27.5			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	<i>26.7</i>			ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	26.7			ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	26.3			ug/l	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	26.3			ug/l	25.0		105	80-120			
Matrix Spike Dup Analyzed: 01/04/2006	(6A03022-M	SD1)			Sou	rce: IOL2	210-06				
Benzene	20.1	2.0	0.28	ug/l	25.0	0.78	77	70-120	13	20	
Benzene	20.1	1.0	0.28	ug/l	25.0	0.78	77	60-125	13	20	
Bromodichloromethane	21.1	2.0	0.30	ug/l	25.0	ND	84	65-135	17	20	
Bromoform	22.0	5.0	0.32	ug/l	25.0	ND	88	50-135	13	25	
Bromomethane	17.7	5.0	0.42	ug/l	25.0	ND	71	50-145	19	25	
Carbon tetrachloride	20.4	0.50	0.28	ug/l	25.0	ND	82	65-140	16	25	
Carbon tetrachloride	20.4	5.0	0.28	ug/l	25.0	ND	82	70-145	16	25	
Chlorobenzene	21.4	2.0	0.36	ug/l	25.0	ND	86	70-125	13	20	
Chloroethane	18.5	5.0	0.33	ug/l	25.0	ND	74	50-140	16	25	
Chloroform	19.7	2.0	0.33	ug/l	25.0	ND	79	70-135	20	20	
Chloroform	19.7	2.0	0.33	ug/l	25.0	ND	79	65-135	20	20	
Chloromethane	14.4	5.0	0.30	ug/I	25.0	ND	58	35-140	21	25	
Dibromochloromethane	23.6	2.0	0.28	ug/l	25.0	ND	94	60-140	12	25	
1,2-Dichlorobenzene	21.6	2.0	0.32	ug/l	25.0	ND	86	70-125	15	20	
1,3-Dichlorobenzene	21.0	2.0	0.35	ug/l	25.0	ND	84	70-125	16	20	
1,4-Dichlorobenzene	20.2	2.0	0.37	ug/l	25.0	ND	81	70-125	13	20	
1,1-Dichloroethane	19.2	2.0	0.27	ug/l	25.0	ND	77	65-135	18	20	
1,1-Dichloroethane	19.2	2.0	0.27	ug/l	25.0	ND	77	60-130	18	20	
1,2-Dichloroethane	22.1	2.0	0.28	ug/l	25.0	ND	88	60-150	17	20	

Del Mar Analytical, Irvine

Michele Chamberlin

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Pasadena, CA 91101 Attention: Bronwyn Kelly

Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A03022 Extracted: 01/03/06	<u>i</u>										
Matrix Spike Dup Analyzed: 01/04/2006	(6A03022-N	MSD1)			Sou	rce: IOL	2210-06				
1,2-Dichloroethane	22.1	0.50	0.28	ug/l	25.0	ND	88	60-140	17	20	
1,1-Dichloroethene	18.8	3.0	0.32	ug/l	25.0	ND	75	65-140	17	20	
1,1-Dichloroethene	18.8	5.0	0.42	ug/l	25.0	ND	75	60-135	17	20	
trans-1,2-Dichloroethene	19.4	2.0	0.27	ug/l	25.0	ND	78	60-135	20	20	
1,2-Dichloropropane	20.7	2.0	0.35	ug/l	25.0	ND	83	60-125	16	20	
cis-1,3-Dichloropropene	21.7	2.0	0.22	ug/l	25.0	ND	87	65-135	15	20	
trans-1,3-Dichloropropene	23.0	2.0	0.32	ug/l	25.0	ND	92	65-140	16	25	
Ethylbenzene	35.6	2.0	0.25	ug/l	25.0	16	78	70-130	7	20	
Ethylbenzene	35.6	2.0	0.25	ug/l	25.0	16	78	65-130	7	20	
Methylene chloride	16.3	5.0	0.51	ug/l	25.0	ND	65	55-130	28	20	R
1,1,2,2-Tetrachloroethane	30.7	2.0	0.24	ug/l	25.0	ND	123	55-140	13	30	
Tetrachloroethene	20.7	2.0	0.32	ug/l	25.0	ND	83	70-130	12	20	
Tetrachloroethene	20.7	2.0	0.32	ug/l	25.0	ND	83	60-130	12	20	
Toluene	20.5	2.0	0.36	ug/l	25.0	ND	82	65-125	14	20	
Toluene	20.5	2.0	0.36	ug/l	25.0	ND	82	70-120	14	20	
I,1,I-Trichloroethane	19.7	2.0	0.30	ug/l	25.0	ND	79	75-140	19	20	
1,1,1-Trichloroethane	19.7	2.0	0.30	ug/l	25.0	ND	79	65-140	19	20	
1,1,2-Trichloroethane	23.0	2.0	0.30	ug/l	25.0	ND	92	60-135	15	25	
1,1,2-Trichloroethane	23.0	2.0	0.30	ug/l	25.0	ND	92	60-130	15	25	
Trichloroethene	20.3	5.0	0.26	ug/l	25.0	ND	81	70-125	16	20	
Trichloroethene	20.3	2.0	0.26	ug/l	25.0	ND	81	60-125	16	20	
Trichlorofluoromethane	17.3	5.0	0.34	ug/l	25.0	ND	69	55-145	19	25	
Trichlorofluoromethane	17.3	5.0	0.34	ug/l	25.0	ND	69	55-145	19	25	
Vinyl chloride	15.7	5.0	0.26	ug/l	25.0	ND	63	40-135	17	30	
Vinyl chloride	15.7	0.50	0.26	ug/l	25.0	ND	63	40-135	17	30	
Surrogate: Dibromofluoromethane	26.3			ug/l	25.0		105	80-120			
Surrogate: Dibromofluoromethane	26.3			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	26.5			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	26.5			ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	26.7			ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	26.7			ug/l	25.0		107	80-120			

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Sampled: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Received: 01/03/06

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03022 Extracted: 01/03/0	<u>6</u>										
Blank Analyzed: 01/03/2006 (6A03022-	BLK1)										
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.5	N/A	ug/l							
Cyclohexane	ND	2.5	N/A	ug/l							

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Sampled: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Received: 01/03/06

METHOD BLANK/QC DATA

SEMI-VOL ORGANICS by GC/MS-CHEMICAL IONIZATION (EPA 3520C/1625C-CI MOD)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A08026 Extracted: 01/08/0	<u> 16</u>										
Blank Analyzed: 01/09/2006 (6A08026-	BLK1)										
N-Nitrosodimethylamine	0.000730	0.0020	0.00020	ug/l							J
LCS Analyzed: 01/09/2006 (6A08026-B	S1)										M-NR1
N-Nitrosodimethylamine	0.0105	0.0020	0.00020	ug/l	0.0100		105	70-130			
LCS Analyzed: 01/09/2006 (6A08026-B	S2)										
N-Nitrosodimethylamine	0.00226	0.0020	0.00020	ug/l	0.00200		113	70-130			
LCS Dup Analyzed: 01/09/2006 (6A080	26-BSD1)										
N-Nitrosodimethylamine	0.0112	0.0020	0.00020	ug/l	0.0100		112	70-130	6	20	

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A08028 Extracted: 01/0	8/06										
Blank Analyzed: 01/11/2006 (6A080	28-BLK1)										
Acenaphthene	ND	0.50	0.10	ug/l							
Acenaphthylene	ND	0.50	0.10	ug/l							
Aniline	ND	10	2.9	ug/l							
Anthracene	ND	0.50	0.083	ug/l							
Benzidine	ND	5.0	2.4	ug/l							
Benzoic acid	ND	20	3.7	ug/l							
Benzo(a)anthracene	ND	5.0	0.038	ug/l							
Benzo(a)pyrene	ND	2.0	0.14	ug/l							
Benzo(b)fluoranthene	ND	2.0	0.050	ug/l							
Benzo(g,h,i)perylene	ND	5.0	0.059	ug/l							
Benzo(k)fluoranthene	ND	0.50	0.053	ug/l							
Benzyl alcohol	ND	5.0	0.21	ug/l							
Bis(2-chloroethoxy)methane	ND	0.50	0.072	ug/l							
Bis(2-chloroethyl)ether	ND	0.50	0.084	ug/l							
Bis(2-chloroisopropyl)ether	ND	0.50	0.11	ug/l							
Bis(2-ethylhexyl)phthalate	2.00	5.0	1.1	ug/l							J
4-Bromophenyl phenyl ether	ND	1.0	0.12	ug/l							
Butyl benzyl phthalate	0.780	5.0	0.34	ug/l							J
4-Chloroaniline	ND	2.0	0.20	ug/l							
2-Chloronaphthalene	ND	0.50	0.059	ug/l							
4-Chloro-3-methylphenol	ND	2.0	0.34	ug/l							
4-Chlorophenyl phenyl ether	ND	0.50	0.056	ug/l							
2-Chlorophenol	ND	1.0	0.12	ug/l							
Chrysene	ND	0.50	0.072	ug/l							
Dibenz(a,h)anthracene	0.540	0.50	0.083	ug/l							В
Dibenzofuran	ND	0.50	0.075	ug/l							
Di-n-butyl phthalate	ND	2.0	0.26	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.11	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.13	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.050	ug/I							
3,3-Dichlorobenzidine	ND	5.0	0.93	ug/l							
2,4-Dichlorophenol	ND	2.0	0.21	ug/l							
Diethyl phthalate	0.540	1.0	0.12	ug/l							J
2,4-Dimethylphenol	ND	2.0	0.31	ug/l							
Dimethyl phthalate	ND	0.50	0.081	ug/l							

Del Mar Analytical, Irvine

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A08028 Extracted: 01/08	<u> 8/06</u>										
T	0 D7 T74										
Blank Analyzed: 01/11/2006 (6A0802	•										
4,6-Dinitro-2-methylphenol	ND	5.0	0.38	ug/l							
2,4-Dinitrophenol	ND	5.0	2.7	ug/l							
2,4-Dinitrotoluene	ND	5.0	0.23	ug/l							
2,6-Dinitrotoluene	ND	5.0	0.24	ug/l							
Di-n-octyl phthalate	ND	5.0	0.17	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	1.0	0.087	ug/l							
Fluoranthene	ND	0.50	0.089	ug/l							
Fluorene	ND	0.50	0.075	ug/l							
Hexachlorobenzene	ND	1.0	0.13	ug/l							
Hexachlorobutadiene	ND	2.0	0.38	ug/l							
Hexachlorocyclopentadiene	ND	5.0	1.8	ug/l							
Hexachloroethane	ND	3.0	0.51	ug/l							
Indeno(1,2,3-cd)pyrene	ND	2.0	0.19	ug/l							
Isophorone	ND	1.0	0.059	ug/l							
2-Methylnaphthalene	ND	1.0	0.13	ug/l							
2-Methylphenol	ND	2.0	0.28	ug/I							
4-Methylphenol	ND	5.0	0.20	ug/l							
Naphthalene	ND	1.0	0.13	ug/l							
2-Nitroaniline	ND	5.0	0.18	ug/l							
3-Nitroaniline	ND	5.0	0.35	ug/l							
4-Nitroaniline	ND	5.0	0.49	ug/l							
Nitrobenzene	ND	1.0	0.10	ug/l							
2-Nitrophenol	ND	2.0	0.23	ug/l							
4-Nitrophenol	ND	5.0	0.73	ug/l							
N-Nitrosodimethylamine	ND	2.0	0.22	ug/l							
N-Nitroso-di-n-propylamine	ND	2.0	0.18	ug/l							
N-Nitrosodiphenylamine	ND	1.0	0.077	ug/l							
Pentachlorophenol	ND	2.0	0.78	ug/I							
Phenanthrene	ND	0.50	0.071	ug/i							
Phenol	ND	1.0	0.14	ug/l							
Pyrene	ND	0.50	0.059	ug/l							
1,2,4-Trichlorobenzene	ND	1.0	0.10	ug/I							
2,4,5-Trichlorophenol	ND	2.0	0.075	ug/l							
2,4,6-Trichlorophenol	ND	1.0	0.10	ug/l							
Surrogate: 2-Fluorophenol	11.4			ug/l	20.0		57	35-120			
and a contract of the contract	3217			"O'	20.0		~ .				

Del Mar Analytical, Irvine Michele Chamberlin

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Project ID: LARWQCB Sample Splits

Outfall 009 Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Attention: Bronwyn Kelly

Pasadena, CA 91101

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 6A08028 Extracted: 01/08/00	6										
Baten. 0A00020 Extracted. 01/00/00	.										
Blank Analyzed: 01/11/2006 (6A08028-E	BLK1)										
Surrogate: Phenol-d6	12.6			ug/l	20.0		63	45-120			
Surrogate: 2,4,6-Tribromophenol	16.1			ug/l	20.0		80	50-125			
Surrogate: Nitrobenzene-d5	6.18			ug/l	10.0		62	45-120			
Surrogate: 2-Fluorobiphenyl	6.58			ug/l	10.0		66	45-120			
Surrogate: Terphenyl-d14	6.96			ug/l	10.0		70	45-135			
LCS Analyzed: 01/11/2006 (6A08028-BS	31)										M-NR1
Acenaphthene	7.62	0.50	0.10	ug/l	10.0		76	55-120			
Acenaphthylene	8.16	0.50	0.10	ug/l	10.0		82	55-120			
Aniline	6.36	10	2.9	ug/l	10.0		64	30-120			J
Anthracene	8.30	0.50	0.083	ug/l	10.0		83	60-120			
Benzidine	5.88	5.0	2.4	ug/l	10.0		59	20-180			
Benzoic acid	10.6	20	3.7	ug/l	10,0		106	30-125			J
Benzo(a)anthracene	8.58	5.0	0.038	ug/l	10.0		86	65-120			
Benzo(a)pyrene	8.80	2.0	0.14	ug/l	10.0		88	55-125			
Benzo(b)fluoranthene	8.38	2.0	0.050	ug/l	10.0		84	50-125			
Benzo(g,h,i)perylene	9.46	5.0	0.059	ug/l	10.0		95	35-160			
Benzo(k)fluoranthene	8.12	0.50	0.053	ug/l	10.0		81	50-125			
Benzyl alcohol	7.22	5.0	0.21	ug/l	10.0		72	40-130			
Bis(2-chloroethoxy)methane	7.22	0.50	0.072	ug/l	10.0		72	55-120			
Bis(2-chloroethyl)ether	6.66	0.50	0.084	ug/l	10.0		67	50-120			
Bis(2-chloroisopropyl)ether	6.98	0.50	0.11	ug/l	10.0		70	50-120			
Bis(2-ethylhexyl)phthalate	9.58	5.0	1.1	ug/l	10.0		96	65-125			
4-Bromophenyl phenyl ether	7.60	1.0	0.12	ug/l	10.0		76	55-125			
Butyl benzyl phthalate	9.00	5.0	0.34	ug/l	10.0		90	60-125			
4-Chloroaniline	6.32	2.0	0.20	ug/l	10.0		63	55-120			
2-Chloronaphthalene	7.04	0.50	0.059	ug/l	10.0		70	60-120			
4-Chloro-3-methylphenol	8.36	2.0	0.34	ug/Ī	10.0		84	60-120			
4-Chlorophenyl phenyl ether	7.82	0.50	0.056	ug/l	10.0		78	55-120			
2-Chlorophenol	6.94	1.0	0.12	ug/l	10.0		69	45-120			
Chrysene	8.28	0.50	0.072	ug/I	10.0		83	65-120			
Dibenz(a,h)anthracene	7.56	0.50	0.083	ug/l	10.0		76	40-160			
Dibenzofuran	7.32	0.50	0.075	ug/l	10.0		73	60-120			
Di-n-butyl phthalate	9.48	2.0	0.26	ug/l	10.0		95	65-125			
1,2-Dichlorobenzene	5.76	0.50	0.11	ug/l	10.0		58	40-120			
1,3-Dichlorobenzene	5.40	0.50	0.13	ug/l	10.0		54	40-120			

Del Mar Analytical, Irvine

Michele Chamberlin

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06

Report Number: IPA0102 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A08028 Extracted: 01/08/	/06										
LCS Analyzed: 01/11/2006 (6A08028-	BS1)										M-NR1
1,4-Dichlorobenzene	5.62	0.50	0.050	ug/l	10.0		56	40-120			
3,3-Dichlorobenzidine	9.16	5.0	0.93	ug/l	10.0		92	50-170			
2,4-Dichlorophenol	7.34	2.0	0.21	ug/l	10.0		73	55-120			
Diethyl phthalate	7.20	1.0	0.12	ug/l	10.0		72	60-120			
2,4-Dimethylphenol	4.88	2.0	0.31	ug/l	10.0		49	35-120			
Dimethyl phthalate	4.10	0.50	0.081	ug/l	10.0		41	30-120			
4,6-Dinitro-2-methylphenol	8.54	5.0	0.38	ug/l	10.0		85	55-120			
2,4-Dinitrophenol	9.22	5.0	2.7	ug/l	10.0		92	40-140			
2,4-Dinitrotoluene	7.76	5.0	0.23	ug/l	10.0		78	60-140			
2,6-Dinitrotoluene	8.26	5.0	0.24	ug/l	10.0		83	65-125			
Di-n-octyl phthalate	10.2	5.0	0.17	ug/l	10.0		102	60-130			
1,2-Diphenylhydrazine/Azobenzene	7.44	1.0	0.087	ug/l	10.0		74	60-120			
Fluoranthene	8.92	0.50	0.089	ug/l	10.0		89	55-125			
Fluorene	7.88	0.50	0.075	ug/l	10.0		79	60-120			
Hexachlorobenzene	7.38	1.0	0.13	ug/l	10.0		74	50-120			
Hexachlorobutadiene	6.14	2.0	0.38	ug/l	10.0		61	45-120			
Hexachlorocyclopentadiene	3.96	5.0	1.8	ug/l	10.0		40	10-130			J
Hexachloroethane	5.34	3.0	0.51	ug/l	10.0		53	40-120			
Indeno(1,2,3-cd)pyrene	8.50	2.0	0.19	ug/l	10.0		85	35-150			
Isophorone	9.18	1.0	0.059	ug/l	10.0		92	55-120			
2-Methylnaphthalene	7.38	1.0	0.13	ug/l	10.0		74	50-120			
2-Methylphenol	6.76	2.0	0.28	ug/l	10.0		68	45-120			
4-Methylphenol	6.82	5.0	0.20	ug/l	10.0		68	45-120			
Naphthalene	6.60	1.0	0.13	ug/l	10.0		66	50-120			
2-Nitroaniline	7.70	5.0	0.18	ug/l	10.0		77	60-130			
3-Nitroaniline	7.36	5.0	0.35	ug/l	10.0		74	50-140			
4-Nitroaniline	8.04	5.0	0.49	ug/l	10.0		80	45-160			
Nitrobenzene	6.98	1.0	0.10	ug/l	10.0		70	50-120			
2-Nitrophenol	7.08	2.0	0.23	ug/l	10.0		71	55-120			
4-Nitrophenol	9.56	5.0	0.73	ug/l	10.0		96	50-135			
N-Nitrosodimethylamine	6.32	2.0	0.22	ug/l	10.0		63	40-120			
N-Nitroso-di-n-propylamine	7.88	2.0	0.18	ug/l	10.0		79	50-120			
N-Nitrosodiphenylamine	7.88	1.0	0.077	ug/l	10.0		79	60-120			
Pentachlorophenol	10.1	2.0	0.78	ug/l	10.0		101	50-125			
Phenanthrene	8.00	0.50	0.071	ug/l	10.0		80	55-120			

Del Mar Analytical, Irvine

Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A08028 Extracted: 01/0	8/06										
LCS Analyzed: 01/11/2006 (6A08028	I-BS1)										M-NR1
Phenol	7.36	1.0	0.14	ug/l	10.0		74	45-120			
Pyrene	7.84	0.50	0.059	ug/l	10.0		78	50-120			
1,2,4-Trichlorobenzene	6.28	1.0	0.10	ug/l	10.0		63	50-120			
2,4,5-Trichlorophenol	8.02	2.0	0.075	ug/l	10.0		80	60-120			
2,4,6-Trichlorophenol	8.10	1.0	0.10	ug/l	10.0		81	60-120			
Surrogate: 2-Fluorophenol	12.9			ug/l	20.0		64	35-120			
Surrogate: Phenol-d6	14.1			ug/l	20.0		70	45-120			
Surrogate: 2,4,6-Tribromophenol	15.9			ug/l	20.0		80	50-125			
Surrogate: Nitrobenzene-d5	6.86			ug/l	10.0		69	45-120			
Surrogate: 2-Fluorobiphenyl	7.26			ug/l	10.0		73	45-120			
Surrogate: Terphenyl-d14	7.12			ug/l	10.0		71	45-135			
LCS Dup Analyzed: 01/11/2006 (6A0	8028-BSD1)										
Acenaphthene	6.82	0.50	0.10	ug/l	10.0		68	55-120	11	20	
Acenaphthylene	7.30	0.50	0.10	ug/l	10.0		73	55-120	11	20	
Aniline	6.06	10	2.9	ug/l	10.0		61	30-120	5	25	J
Anthracene	7.74	0.50	0.083	ug/l	10.0		77	60-120	7	20	
Benzidine	6.62	5.0	2.4	ug/l	10.0		66	20-180	12	35	
Benzoic acid	12.3	20	3.7	ug/I	10.0		123	30-125	15	30	J
Benzo(a)anthracene	8.12	5.0	0.038	ug/l	10.0		81	65-120	6	20	
Benzo(a)pyrene	8.48	2.0	0.14	ug/l	10.0		85	55-125	4	25	
Benzo(b)fluoranthene	7.98	2.0	0.050	ug/l	10.0		80	50-125	5	25	
Benzo(g,h,i)perylene	8.62	5.0	0.059	ug/I	10.0		86	35-160	9	25	
Benzo(k)fluoranthene	7.52	0.50	0.053	ug/l	10.0		75	50-125	8	20	
Benzyl alcohol	6.50	5.0	0.21	ug/l	10.0		65	40-130	10	20	
Bis(2-chloroethoxy)methane	6.66	0.50	0.072	ug/l	10.0		67	55-120	8	20	
Bis(2-chloroethyl)ether	6.02	0.50	0.084	ug/l	10.0		60	50-120	10	20	
Bis(2-chloroisopropyl)ether	6.28	0.50	0.11	ug/l	10.0		63	50-120	11	20	
Bis(2-ethylhexyl)phthalate	10.0	5.0	1.1	ug/l	10.0		100	65-125	4	20	
4-Bromophenyl phenyl ether	7,00	1.0	0.12	ug/l	10.0		70	55-125	8	25	
Butyl benzyl phthalate	8.88	5.0	0.34	ug/l	10.0		89	60-125	1	20	
4-Chloroaniline	5.86	2.0	0.20	ug/l	10.0		59	55-120	8	25	
2-Chloronaphthalene	6.34	0.50	0.059	ug/l	10.0		63	60-120	10	20	
4-Chloro-3-methylphenol	8.06	2.0	0.34	ug/I	10.0		81	60-120	4	25	
4-Chlorophenyl phenyl ether	7.12	0.50	0.056	ug/l	10.0		71	55-120	9	20	
2-Chlorophenol	6.44	1.0	0.12	ug/l	10.0		64	45-120	7	25	

Del Mar Analytical, Irvine

Michele Chamberlin

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Attention: Bronwyn Kelly

Pasadena, CA 91101

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte Result Limit MDL Units Level Result %REC Limits RPD Limit Qualific Batch: 6A08028 Extracted: 01/08/06 LCS Dup Applyand: 01/11/2006 (6A09028 PSD1)	ere
	W1.5
LCS Dun Analysed, 61/11/2666 (6A0629 DSD1)	
I CC Dun Analyzada 61/31/2664 (4A6629 DCD1)	
LCS Dup Analyzed: 01/11/2006 (6A08028-BSD1)	
Chrysene 7.84 0.50 0.072 ug/l 10.0 78 65-120 5 20	
Dibenz(a,h)anthracene 6.78 0.50 0.083 ug/l 10.0 68 40-160 11 25	
Dibenzofuran 6.54 0.50 0.075 ug/l 10.0 65 60-120 11 20	
Di-n-butyl phthalate 9.28 2.0 0.26 ug/l 10.0 93 65-125 2 20	
1,2-Dichlorobenzene 5.20 0.50 0.11 ug/l 10.0 52 40-120 10 25	
1,3-Dichlorobenzene 5.12 0.50 0.13 ug/l 10.0 51 40-120 5 25	
1,4-Dichlorobenzene 5.34 0.50 0.050 ug/l 10.0 53 40-120 5 25	
3,3-Dichlorobenzidine 8.84 5.0 0.93 ug/l 10.0 88 50-170 4 25	
2,4-Dichlorophenol 6.80 2.0 0.21 ug/l 10.0 68 55-120 8 20	
Diethyl phthalate 6.46 1.0 0.12 ug/l 10.0 65 60-120 11 20	
2,4-Dimethylphenol 5.44 2.0 0.31 ug/l 10.0 54 35-120 11 25	
Dimethyl phthalate 3.92 0.50 0.081 ug/l 10.0 39 30-120 4 20	
4,6-Dinitro-2-methylphenol 8.40 5.0 0.38 ug/l 10.0 84 55-120 2 25	
2,4-Dinitrophenol 9.02 5.0 2.7 ug/l 10.0 90 40-140 2 25	
2,4-Dinitrotoluene 7.16 5.0 0.23 ug/l 10.0 72 60-140 8 20	
2,6-Dinitrotoluene 7.20 5.0 0.24 ug/l 10.0 72 65-125 14 20	
Di-n-octyl phthalate 9.94 5.0 0.17 ug/l 10.0 99 60-130 3 20	
1,2-Diphenylhydrazine/Azobenzene 6.82 1.0 0.087 ug/l 10.0 68 60-120 9 25	
Fluoranthene 8.84 0.50 0.089 ug/l 10.0 88 55-125 1 20	
Fluorene 7.16 0.50 0.075 ug/l 10.0 72 60-120 10 20	
Hexachlorobenzene 6.98 1.0 0.13 ug/l 10.0 70 50-120 6 20	
Hexachlorobutadiene 5.58 2.0 0.38 ug/l 10.0 56 45-120 10 25	
Hexachlorocyclopentadiene 4.76 5.0 1.8 ug/l 10.0 48 10-130 18 30 J	
Hexachloroethane 5.06 3.0 0.51 ug/l 10.0 51 40-120 5 25	
Indeno(1,2,3-cd)pyrene 8.14 2.0 0.19 ug/l 10.0 81 35-150 4 25	
Isophorone 8.24 1.0 0.059 ug/l 10.0 82 55-120 11 20	
2-Methylnaphthalene 6.68 1.0 0.13 ug/l 10.0 67 50-120 10 20	
2-Methylphenol 6.22 2.0 0.28 ug/t 10.0 62 45-120 8 20	
4-Methylphenol 6.32 5.0 0.20 ug/l 10.0 63 45-120 8 20	
Naphthalene 5.98 1.0 0.13 ug/l 10.0 60 50-120 10 20	
2-Nitroaniline 7.30 5.0 0.18 ug/l 10.0 73 60-130 5 20	
3-Nitroaniline 6.70 5.0 0.35 ug/l 10.0 67 50-140 9 25	
4-Nitroaniline 7.40 5.0 0.49 ug/l 10.0 74 45-160 8 20	
Nitrobenzene 6.30 1.0 0.10 ug/l 10.0 63 50-120 10 25	
2-Nitrophenol 6.74 2.0 0.23 ug/l 10.0 67 55-120 5 25	

Del Mar Analytical, Irvine Michele Chamberlin

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

Outfall 009

300 North Lake Avenue, Suite 1200 Report Number: IPA0102

Sampled: 01/03/06 Received: 01/03/06

Attention: Bronwyn Kelly

Pasadena, CA 91101

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A08028 Extracted: 01/08/06	<u>-</u>										
LCS Dup Analyzed: 01/11/2006 (6A0802	8-BSD1)										
4-Nitrophenol	9.36	5.0	0.73	ug/l	10.0		94	50-135	2	25	
N-Nitrosodimethylamine	6.08	2.0	0.22	ug/l	10.0		61	40-120	4	20	
N-Nitroso-di-n-propylamine	6.96	2.0	0.18	ug/l	10.0		70	50-120	12	20	
N-Nitrosodiphenylamine	7.36	1.0	0.077	ug/l	10.0		74	60-120	7	20	
Pentachlorophenol	10.5	2.0	0.78	ug/l	10.0		105	50-125	4	25	
Phenanthrene	7.44	0.50	0.071	ug/l	10.0		74	55-120	7	20	
Phenol	6.74	1.0	0.14	ug/l	10.0		67	45-120	9	25	
Pyrene	7.38	0.50	0.059	ug/l	10.0		74	50-120	6	25	
1,2,4-Trichlorobenzene	5.70	0,1	0.10	ug/l	10.0		57	50-120	10	20	
2,4,5-Trichlorophenol	7.76	2.0	0.075	ug/l	10.0		78	60-120	3	20	
2,4,6-Trichlorophenol	7.98	1.0	0.10	ug/l	10.0		80	60-120	1	20	
Surrogate: 2-Fluorophenol	12.5			ug/l	20.0		62	35-120			
Surrogate: Phenol-d6	12.8			ug/l	20.0		64	45-120			
Surrogate: 2,4,6-Tribromophenol	15.8			ug/l	20.0		79	50-125			
Surrogate: Nitrobenzene-d5	6.34			ug/l	10.0		63	45-120			
Surrogate: 2-Fluorobiphenyl	6.40			ug/l	10.0		64	45-120			
Surrogate: Terphenyl-d14	6.68			ug/l	10.0		67	45-135			

 $except\ in\ full,\ without\ written\ permission\ from\ Del\ Mar\ Analytical.$

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06 Received: 01/03/06

Attention: Bronwyn Kelly

300 North Lake Avenue, Suite 1200

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A06049 Extracted: 01/06/0	<u>6</u>										
Blank Analyzed: 01/06/2006 (6A06049-I	BLK1)										
Aroclor 1016	ND	1.0	0.20	ug/l							
Aroclor 1221	ND	1.0	0.10	ug/l							
Aroclor 1232	ND	1.0	0.25	ug/l							
Aroclor 1242	ND	1.0	0.25	ug/l							
Aroclor 1248	ND	1.0	0.25	ug/l							
Aroclor 1254	ND	1.0	0.25	ug/l							
Aroclor 1260	ND	1.0	0.40	ug/l							
Surrogate: Decachlorobiphenyl	0.468			ug/l	0.500		94	45-120			
LCS Analyzed: 01/06/2006 (6A06049-BS	(2)										M-NR1
Aroclor 1016	3.96	1.0	0.20	ug/l	4.00		99	45-115			
Aroclor 1260	3.95	1.0	0.40	ug/l	4.00		99	55-115			
Surrogate: Decachlorobiphenyl	0.451			ug/l	0.500		90	45-120			
LCS Dup Analyzed: 01/06/2006 (6A0604	9-BSD2)										
Aroclor 1016	3.70	1.0	0.20	ug/l	4.00		92	45-115	7	30	
Aroclor 1260	3.82	1.0	0.40	ug/l	4.00		96	55-115	3	25	
Surrogate: Decachlorobiphenyl	0.441			ug/l	0.500		88	45-120			

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Sampled: 01/03/06 Received: 01/03/06

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A04080 Extracted: 01/04/06	<u> </u>										
Blank Analyzed: 01/04/2006 (6A04080-B	LK1)										
Mercury	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/04/2006 (6A04080-BS	1)										
Mercury	8.40	0.20	0.050	ug/l	8.00		105	85-115			
Matrix Spike Analyzed: 01/04/2006 (6A0	4080-MS1)				Sou	rce: IPA(079-01				
Mercury	8.03	0.20	0.050	ug/l	8.00	ND	100	70-130			
Matrix Spike Dup Analyzed: 01/04/2006	(6A04080-M	SD1)			Sou	rce: IPA(079-01				
Mercury	8.17	0.20	0.050	ug/l	8.00	ND	102	70-130	2	20	
Batch: 6A04091 Extracted: 01/04/06	<u>.</u>										
Blank Analyzed: 01/05/2006-01/06/2006	(6A04091RT	K1)									
Antimony	0.242	2.0	0.18	ug/l							J
Arsenic	ND	1.0	0.50	ug/l							
Barium	0.000310	0.0010	0.00015	mg/l							J
Beryllium	ND	0.50	0.075	ug/l							
Cadmium	ND	1.0	0.015	ug/l							
Cobalt	ND	1.0	0.035	ug/l							
Copper	ND	1.0	0.25	ug/l							
Lead	ND	1.0	0.13	ug/l							
Molybdenum	0.394	2.0	0.15	ug/l							J
Nickel	1.06	2.0	0.35	ug/l							J
Selenium	ND	2.0	0.36	ug/l							
Thallium	0.0800	1.0	0.075	ug/l							J
Vanadium	ND	2.0	0.70	ug/l							
Zinc	ND	10	1.0	ug/l							

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06

Report Number: IPA0102 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A04091 Extracted: 01/04/06	<u>5</u>										
LCS Analyzed: 01/05/2006 (6A04091-BS	1)										
Antimony	86.9	2.0	0.18	ug/l	80.0		109	85-115			
Arsenic	84.2	1.0	0.50	ug/l	80.0		105	85-115			
Barium	0.0840	0.0010	0.00015	mg/l	0.0800		105	85-115			
Beryllium	79.6	0.50	0.075	ug/l	80.0		100	85-115			
Cadmium	83.4	1.0	0.015	ug/l	80.0		104	85-115			
Cobalt	88.5	1.0	0.035	ug/l	80.0		111	85-115			
Copper	90.3	1.0	0.25	ug/l	80.0		113	85-115			
Lead	86.8	1.0	0.13	ug/l	80.0		108	85-115			
Molybdenum	81.0	2.0	0.15	ug/l	80.0		101	85-115			
Nickel	88.7	2.0	0.35	ug/l	80.0		111	85-115			
Selenium	79.3	2.0	0.36	ug/l	80.0		99	85-115			
Thallium	87.3	1.0	0.075	ug/l	80.0		109	85-115			
Vanadium	81.7	2.0	0.70	ug/l	80.0		102	85-115			
Zinc	87.7	10	1.0	ug/l	80.0		110	85-115			
Matrix Spike Analyzed: 01/05/2006 (6A0	4091-MS1)				Sou	rce: IPA0	032-01				
Antimony	74.7	2.0	0.18	ug/l	80.0	0.24	93	70-130			
Arsenic	70.8	1.0	0.50	ug/l	80.0	ND	88	70-130			
Barium	0.0797	0.0010	0.00015	mg/l	0.0800	0.0060	92	70-130			
Beryllium	65.4	0.50	0.075	ug/I	80.0	ND	82	70-130			
Cadmium	70.2	1.0	0.015	ug/I	80.0	ND	88	70-130			
Cobalt	73.6	1.0	0.035	ug/l	80.0	0.25	92	70-130			
Copper	79.6	1.0	0.25	ug/l	80.0	7.7	90	70-130			
Lead	73.1	1.0	0.13	ug/l	80.0	4.1	86	70-130			
Molybdenum	71.4	2.0	0.15	ug/l	80.0	0.46	89	70-130			
Nickel	70.5	2.0	0.35	ug/l	80.0	ND	88	70-130			
Selenium	65.4	2.0	0.36	ug/l	80.0	1.1	80	70-130			
Thallium	70.0	1.0	0.075	ug/l	80.0	ND	88	70-130			
Vanadium	72.1	2.0	0.70	ug/l	80.0	0.76	89	70-130			
Zine	7 69	10	1.0	ug/l	80.0	730	49	70-130			M-HA

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06
Report Number: IPA0102 Received: 01/03/06

Attention: Bronwyn Kelly

Pasadena, CA 91101

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A04091 Extracted: 01/04/06	ó										
											
Matrix Spike Analyzed: 01/05/2006 (6A0	4091-MS2)				Sou	rce: IPA0	101-01				
Antimony	84.1	2.0	0.18	ug/l	80.0	0.64	104	70-130			
Arsenic	81.2	1.0	0.50	ug/l	80.0	1.9	99	70-130			
Barium	0.133	0.0010	0.00015	mg/l	0.0800	0.048	106	70-130			
Beryllium	77.9	0.50	0.075	ug/l	80.0	ND	97	70-130			
Cadmium	79.0	1.0	0.015	ug/l	80.0	0.034	99	70-130			
Cobalt	82.3	1.0	0.035	ug/l	80.0	0.39	102	70-130			
Copper	84.1	1.0	0.25	ug/l	80.0	8.5	94	70-130			
Lead	79.7	1.0	0.13	ug/l	80.0	0.50	99	70-130			
Molybdenum	82.2	2.0	0.15	ug/l	80.0	2.9	99	70-130			
Nickel	81.5	2.0	0.35	ug/l	0.08	0.80	101	70-130			
Selenium	77.1	2.0	0.36	ug/l	80.0	0.77	95	70-130			
Thallium	80.0	1.0	0.075	ug/l	80.0	ND	100	70-130			
Vanadium	82.7	2.0	0.70	ug/l	80.0	2.3	100	70-130			
Zinc	87.3	10	1.0	ug/l	80.0	9.7	97	70-130			
Matrix Spike Dup Analyzed: 01/05/2006	(6A04091-MS	SD1)			Sou	rce: IPA0	032-01				
Antimony	85.3	2.0	0.18	ug/l	80.0	0.24	106	70-130	13	20	
Arsenic	80.8	1.0	0.50	ug/l	80.0	ND	101	70-130	13	20	
Barium	0.0914	0.0010	0.00015	mg/l	0.0800	0.0060	107	70-130	14	20	
Beryllium	75.9	0.50	0.075	ug/l	80.0	ND	95	70-130	15	20	
Cadmium	79.0	1.0	0.015	ug/l	80.0	ND	99	70-130	12	20	
Cobalt	83.3	1.0	0.035	ug/l	80.0	0.25	104	70-130	12	20	
Copper	87.5	1.0	0.25	ug/l	80.0	7.7	100	70-130	9	20	
Lead	83.3	1.0	0.13	ug/l	80.0	4.1	99	70-130	13	20	
Molybdenum	81.4	2.0	0.15	ug/l	80.0	0.46	101	70-130	13	20	
Nickel	79.3	2.0	0.35	ug/l	80.0	ND	99	70-130	12	20	
Selenium	74.6	2.0	0.36	ug/l	80.0	1.1	92	70-130	13	20	
Thallium	79.9	1.0	0.075	ug/l	80.0	ND	100	70~130	13	20	
Vanadium	84.2	2.0	0.70	ug/l	80.0	0.76	104	70-130	15	20	
Zinc	795	10	1.0	ug/l	80.0	730	81	70-130	3	20	M-HA

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06

Attention: Bronwyn Kelly

Pasadena, CA 91101

Report Number: IPA0102 Received: 01/03/06

METHOD BLANK/QC DATA

METALS

		Reporting	;		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: 6A04092 Extracted: 01/	<u>/04/06</u>											
Blank Analyzed: 01/05/2006 (6A04	092-BLK1)											
Boron	ND	0.050	0.0080	mg/l								
Calcium	ND	0.10	0.040	mg/l								
Chromium	1.63	5.0	0.68	ug/l							J	
Magnesium	0.00930	0.020	0.0070	mg/l							J	
LCS Analyzed: 01/05/2006 (6A040)	92-BS1)											
Boron	0.469	0.050	0.0080	mg/l	0.500		94	85-115				
Calcium	2.54	0.10	0.040	mg/l	2.50		102	85-115				
Chromium	510	5.0	0.68	ug/l	500		102	85-115				
Magnesium	2.51	0.020	0.0070	mg/l	2.50		100	85-115				
Matrix Spike Analyzed: 01/05/2006	6 (6A04092-MS1)				Sou	rce: IPA0	101-01					
Boron	0.586	0.050	0.0080	mg/l	0.500	0.090	99	70-130				
Calcium	67.5	0.10	0.040	mg/l	2.50	65	100	70-130				
Chromium	505	5.0	0.68	ug/l	500	1.8	101	70-130				
Magnesium	20.0	0.020	0.0070	mg/l	2.50	18	80	70-130				
Matrix Spike Dup Analyzed: 01/05	/2006 (6A04092-M	(SD1)			2.50 102 85-115 500 102 85-115 2.50 100 85-115 Source: IPA0101-01 0.500 0.090 99 70-130 2.50 65 100 70-130 500 1.8 101 70-130 2.50 18 80 70-130 Source: IPA0101-01							
Boron	0.599	0.050	0.0080	mg/l	0.500	0.090	102	70-130	2	20		
Calcium	68.2	0.10	0.040	mg/l	2.50	65	128	70-130	1	20		
Magnesium	20.4	0.020	0.0070	mg/l	2.50	18	96	70-130	2	20		
Batch: 6A09086 Extracted: 01/	09/06											
Blank Analyzed: 01/09/2006 (6A090	086-BLK1)											
Silver	ND	1.0	0.089	ug/l								

Del Mar Analytical, Irvine Michele Chamberlin

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06
Report Number: IPA0102 Received: 01/03/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Analyte	resuit	Litter	MEDL	CHIIS	LICYCI	Resuit	/SICEC	Limits	KI D	Lann	Quantiers
Batch: 6A09086 Extracted: 01/09/06	-										
LCS Analyzed: 01/09/2006 (6A09086-BS)	ia.										
Silver	76.4	1.0	0.089	//	80.0		96	85-115			
Silver	70.4	1.0	0.069	ug/l	80.0		90	03-113			
Matrix Spike Analyzed: 01/09/2006 (6A0	9086-MS1)				Sou	rce: IPA0	492-04				
Silver	72.8	1.0	0.089	ug/l	80.0	ND	91	70-130			
Matrix Spike Analyzed: 01/09/2006 (6A0	9086-MS2)				Sou	rce: IPA0	451-01				
Silver	76.2	1.0	0.089	ug/l	80.0	ND	95	70-130			
Matrix Spike Dup Analyzed: 01/09/2006	(6A09086-M	SD1)			Sou	rce: IPA0	492-04				
Silver	74.0	1.0	0.089	ug/l	80.0	ND	92	70-130	2	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Report Number: IPA0102

Pasadena, CA 91101 Attention: Bronwyn Kelly Sampled: 01/03/06 Received: 01/03/06

METHOD BLANK/QC DATA

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03051 Extracted: 01/03/06											
Blank Analyzed: 01/03/2006 (6A03051-B)	LK1)										
Fluoride	0.198	0.50	0.10	mg/l							J
Nitrate/Nitrite-N	ND	0.26	0.072	mg/l							
Sulfate	ND	0.50	0.18	mg/l							
LCS Analyzed: 01/03/2006 (6A03051-BS1	1)										
Fluoride	4.76	0.50	0.10	mg/l	5.00		95	90-110			
Sulfate	9.83	0.50	0.18	mg/l	10.0		98	90-110			
Matrix Spike Analyzed: 01/03/2006 (6A0)	3051-MS1)				Sour	rce: IPA6	036-01				
Fluoride	50.8	5.0	1.0	mg/l	50.0	1.7	98	80-120			
Sulfate	342	5.0	1.8	mg/l	100	240	102	80-120			
Matrix Spike Dup Analyzed: 01/03/2006 (6A03051-MSI	D1)			Sour	ce: IPA0	036-01				
Fluoride	53.2	5.0	1.0	mg/l	50.0	1.7	103	80-120	5	20	
Sulfate	345	5.0	1.8	mg/l	100	240	105	80-120	1	20	
Batch: 6A03114 Extracted: 01/03/06											
	•										
Blank Analyzed: 01/03/2006 (6A03114-BI	.K1)										
Surfactants (MBAS)	ND	0.10	0.044	mg/l							
LCS Analyzed: 01/03/2006 (6A03114-BS1)										
Surfactants (MBAS)	0.275	0.10	0.044	mg/l	0.250		110	90-110			
Matrix Spike Analyzed: 01/03/2006 (6A03	114-MS1)				Sour	ce: IPA0	017-01				
Surfactants (MBAS)	0.377	0.10	0.044	mg/l	0.250	0.096	112	50-125			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

O/DEC

DDD

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: LARWQCB Sample Splits

Outfall 009

Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Snike Source

METHOD BLANK/QC DATA

INORGANICS

Donortina

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03114 Extracted: 01/03/0	<u>)6</u>										
					_						
Matrix Spike Dup Analyzed: 01/03/200	6 (6A03114-N	ISD1)			Sou	rce: IPA(9017-01				
Surfactants (MBAS)	0.342	0.10	0.044	mg/l	0.250	0.096	98	50-125	10	20	
Batch: 6A04062 Extracted: 01/04/6	<u>)6</u>										
Blank Analyzed: 01/09/2006 (6A04062-	BLK1)										
Biochemical Oxygen Demand	ND	2.0	0.59	mg/l							
LCS Analyzed: 01/09/2006 (6A04062-B	S1)										
Biochemical Oxygen Demand	216	100	30	mg/l	198		109	85-115			
LCS Dup Analyzed: 01/09/2006 (6A040	62-BSD1)										
Biochemical Oxygen Demand	200	100	30	mg/l	198		101	85-115	8	20	
Batch: 6A04078 Extracted: 01/04/0	<u> 16</u>										
Blank Analyzed: 01/04/2006 (6A04078-	BLK1)										
Perchlorate	ND	4.0	0.80	ug/l							
LCS Analyzed: 01/04/2006 (6A04078-B	Sn .										
Perchlorate	45.3	4.0	0.80	ug/l	50.0		91	85-115			
Matrix Spike Analyzed: 01/04/2006 (6A	.04078-MS1)				Son	rce: IPA0	121-01				
Perchlorate	48.9	4.0	0.80	ug/l	50.0	5.5	87	80-120			
			0.50	~~				00 120			
Matrix Spike Dup Analyzed: 01/04/200	6 (6A04078-M	SD1)			Sou	rce: IPA0	121-01				
Perchlorate	51.8	4.0	0.80	ug/l	50.0	5.5	93	80-120	6	20	

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, CoRon, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Sampled: 01/03/06

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102 Received: 01/03/06

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A04092 Extracted: 01/04/06											
Blank Analyzed: 01/05/2006 (6A04092-Bl Hardness (as CaCO3)	L K1) ND	1.0	1.0	mg/l							
Batch: 6A04105 Extracted: 01/04/06	•										
Duplicate Analyzed: 01/04/2006 (6A04105 Specific Conductance	5-DUP1) 839	1.0	1.0	umhos/cm	Soui	rce: IPA6	118-01		4	5	
Batch: 6A04107 Extracted: 01/04/06											
Blank Analyzed: 01/04/2006 (6A04107-BI	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/04/2006 (6A04107-BS1)										
Total Dissolved Solids	996	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/04/2006 (6A04107	'-DUP1)				Sour	ce: IPA0	094-06				
Total Dissolved Solids	956	10	10	mg/l		920			4	10	
Batch: 6A05098 Extracted: 01/05/06											
Blank Analyzed: 01/05/2006 (6A05098-BI	.K1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/I							
LCS Analyzed: 01/05/2006 (6A05098-BS1)										
Ammonia-N (Distilled)	10.9	0.50	0.30	mg/l	10.0		109	80-115			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0051 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Project ID: LARWQCB Sample Splits

Outfall 009

Sampled: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Received: 01/03/06

METHOD BLANK/QC DATA

]	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A05098 Extracted: 01/05/06	_										
Matrix Spike Analyzed: 01/05/2006 (6A0	5098-MS1)				Sou	rce: IOL2	2366-01				
Ammonia-N (Distilled)	11.5	0.50	0.30	mg/l	10.0	ND	115	70-120			
Matrix Spike Dup Analyzed: 01/05/2006	(6A05098-MSI	D1)			Sou	rce: IOL2	2366-01				
Ammonia-N (Distilled)	11.2	0.50	0.30	mg/l	10.0	ND	112	70-120	3	15	
Batch: 6A06094 Extracted: 01/06/06	<u>-</u>										
Blank Analyzed: 01/06/2006 (6A06094-Bl	LK1)										
Total Organic Carbon	ND	1.0	0.25	mg/l							
LCS Analyzed: 01/06/2006 (6A06094-BS1)										
Total Organic Carbon	9.66	1.0	0.25	mg/l	10.0		97	90-110			
Matrix Spike Analyzed: 01/06/2006 (6A06	6094-MS1)				Sou	rce: IPA0	097-06				
Total Organic Carbon	10.0	1.0	0.25	mg/l	5.00	5.7	86	80-120			
Matrix Spike Dup Analyzed: 01/06/2006 (6A06094-MSI) 1)			Sour	rce: IPA0	097-06				
Total Organic Carbon	10.1	1.0	0.25	mg/l	5.00	5.7	88	80-120	1	20	
Batch: 6A06111 Extracted: 01/06/06											
Blank Analyzed: 01/09/2006 (6A06111-BI	.K1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 01/09/2006 (6A06111-BS1)										
Total Cyanide	183	5.0	2.2	ug/l	200		92	90-110			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 T014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

METHOD BLANK/QC DATA

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A06111 Extracted: 01/06/06	_										
Matrix Spike Analyzed: 01/09/2006 (6A0	6111-MS1)				Sou	rce: IPA0	102-01				
Total Cyanide	211	5.0	2.2	ug/l	200	3.4	104	70-115			
Matrix Spike Dup Analyzed: 01/09/2006	(6A06111-MS	D1)			Sou	rce: IPA0	102-01				
Total Cyanide	213	5.0	2.2	ug/l	200	3.4	105	70-115	1	15	
Batch: 6A06118 Extracted: 01/06/06	-										
Blank Analyzed: 01/06/2006 (6A06118-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/06/2006 (6A06118-BS)	l)										
Total Suspended Solids	980	10	10	mg/l	1000		98	85-115			
Duplicate Analyzed: 01/06/2006 (6A0611)	8-DUP1)				Sou	rce: IPA0	396-01				
Total Suspended Solids	188	10	10	mg/l		180			4	10	

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 GAX (958) South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Compliance

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009 Sampled: 01/03/06 r: IPA0102 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IPA0102-01	624-Boeing 001/002 Q (Frl13+X)	1,1-Dichloroethene	ug/l	0	3.0	3.20
IPA0102-01	624-Boeing 001/002 Q (Fr113+X)	Trichloroethene	ug/l	0.21	5.0	5.00
IPA0102-01	625+NDMA, LL	2,4,6-Trichlorophenol	ug/l	0	1.0	6.50
IPA0102-01	625+NDMA, LL	2,4-Dinitrotoluene	ug/l	0	5.0	9.10
IPA0102-01	625+NDMA, LL	Bis(2-ethylhexyl)phthalate	ug/l	2.40	5.0	4.00
IPA0102-01	625+NDMA, LL	N-Nitrosodimethylamine	ug/l	0	2.0	8.10
IPA0102-01	625+NDMA, LL	Pentachlorophenol	ug/l	0.20	2.0	8.20
IPA0102-01	Antimony-200.8	Antimony	ug/l	1.00	2.0	6.00
IPA0102-01	Arsenic-200.8	Arsenic	ug/l	1.80	1.0	50
IPA0102-01	Barium-200.8	Barium	mg/l	0.041	0.0010	1.00
IPA0102-01	Beryllium-200.8	Beryllium	ug/l	0.085	0.50	4.00
IPA0102-01	BOD	Biochemical Oxygen Demand	mg/l	0.90	2.0	20
IPA0102-01	Boron-200.7	Boron	mg/l	0.12	0.050	1.00
IPA0102-01	Cadmium-200.8	Cadmium	ug/l	0.013	1.0	4.00
IPA0102-01	Chromium-200.7	Chromium	ug/l	1.40	5.0	8.10
IPA0102-01	Copper-200.8, 1ppb	Copper	ug/l	3.20	1.0	14
IPA0102-01	Cyanide-335.2 5ppb	Total Cyanide	ug/l	3.40	5.0	4.30
IPA0102-01	Fluoride-300.0	Fluoride	mg/l	0.29	0.50	1.60
IPA0102-01	Lead-200.8	Lead	ug/l	0.51	1.0	2.60
IPA0102-01	MBAS - SM5540-C	Surfactants (MBAS)	mg/l	0.042	0.10	0.50
IPA0102-01	Mercury - 245.1	Mercury	ug/l	0	0.20	0.20
IPA0102-01	NDMA-1625C Mod	N-Nitrosodimethylamine	ug/l	0.00045	0.0019	8.10
IPA0102-01	Nickel-200.8	Nickel	ug/l	2.30	2.0	35
IPA0102-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	2.70	0.26	10.00
IPA0102-01	Perchlorate 314.0	Perchlorate	ug/l	0	4.0	6.00
IPA0102-01	Selenium-200.8	Selenium	ug/l	0.30	2.0	4.10
IPA0102-01	Settleable Solids	Total Settleable Solids	ml/l/hr	0	0.10	0.100
IPA0102-01	Silver-200.8	Silver	ug/l	0	1.0	2.00
IPA0102-01	Sulfate-300.0	Sulfate	mg/l	52	0.50	250
IPA0102-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	260	10	850
IPA0102-01	Thallium-200.8	Thallium	ug/l	0.0030	1.0	2.00
IPA0102-01	TSS - EPA 160.2	Total Suspended Solids	mg/l	7.00	10	15
IPA0102-01	Zinc-200.8,LOW	Zinc	ug/l	6.50	10	54

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-8689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing Project ID: LARWQCB Sample Splits

 300 North Lake Avenue, Suite 1200
 Outfall 009
 Sampled: 01/03/06

 Pasadena, CA 91101
 Report Number: IPA0102
 Received: 01/03/06

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

A-01	Calibration Verification recovery was above the method control limit for this analyte.
В	Analyte was detected in the associated Method Blank.
С	Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
J	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
L	Laboratory Control Sample recovery was above the method control limits. Analyte not detected, data not impacted.
М-НА	Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
M-NR1	There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R	The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

ADDITIONAL COMMENTS

For TICs:

RPD

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPA/NIH library.

For 1,2-Diphenylhydrazine:

Relative Percent Difference

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

Outfall 009

Pasadena, CA 91101

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06 Report Number: IPA0102 Received: 01/03/06

Attention: Bronwyn Kelly

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
Calculation	Water	x	X
EDD + Level 4	Water		
EPA 120.1	Water	X	X
EPA 160.2	Water	X	X
EPA 160.5	Water	X	X
EPA 1625C-CI Mod	Water		
EPA 200.7	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	N/A	X
EPA 335.2	Water	X	X
EPA 350.2	Water		X
EPA 405.1	Water	X	X
EPA 415.1	Water	X	X
EPA 608	Water	X	X
EPA 624 (MOD.)	Water		X
EPA 624	Water	X	X
EPA 625	Water	X	X
EPA 900.0	Water		
EPA 905.0	Water		
EPA 906.0	Water		
SM2340B	Water	X	X
SM2540C	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Eberline Services

2030 Wright Avenue - Richmond, CA 94804

Gross Alpha Analysis Performed:

Samples: IPA0102-01

Analysis Performed: Gross Beta

Samples: IPA0102-01

Analysis Performed: Level 4 + EDD

Samples: IPA0102-01

Analysis Performed: Radium, Combined

Samples: IPA0102-01

Analysis Performed: Strontium 90

Del Mar Analytical, Irvine

Michele Chamberlin Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200 Outfall 009 Sampled: 01/03/06 Pasadena, CA 91101 Report Number: IPA0102 Received: 01/03/06

Attention: Bronwyn Kelly

Eberline Services

2030 Wright Avenue - Richmond, CA 94804

Samples: IPA0102-01
Analysis Performed: Tritium
Samples: IPA0102-01

# 805 Page 1 of 1		PT 0 TEME = 52 X	Comments								X	×		Ammeria -	MBAS		nd Time: (d	48 Hours 10 Days 72 Hours Normal Perchlorate Only 72 Hours. Metals Only 72 Hours. Sample Integrity (Check) Infact Onlice:
	ANALYSIS REQUIRED		777, C ASEN, PER PERSONAL PERSONAL PERS	ing Ing					X	×	×						525	0081 90
TODYFORM	2}	10 57 PES 219 PES 21 PE	91241 h	110 140 1501	X	X	X	×									Date/Time:	Date/Time: Sauly 1-3-06 Date/Time:
CHAIN OF CUS		多片		Preservative Bottle *													N	Received By Received By
	Project: Boeing	NACA Serie	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	# of Sampling Cont. Date/Time	1 /3/0x 13.20	7		~r	and the second s			7			>	AMARA MARINE MAR	Date/Time:	Date/Time:
Del Mar Analytical version 02/17/05	Iress.	rna renue, Suite 1200 101 Aichele Hamer	7 & ~ ~ P	Sample Container #	W Poly		7	, COAS	5.	を 2007 100 100 100 100 100 100 100	1 20 d	+	1 1	Solvino A	80% P	***************************************	6-3-0 Date/Time:	# 27 100
Del Mar Ar	Client Name/Address	MWH-Pasadena 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Del Mar Contact: Michele Harner	Project Manager:	Sample Si Description N	7481,00	DOGSPUT	ON SPLT	OD-SPLT	\mathbf{U}_{i}	37.87.18	日からに	mological in	からくでして	39952ri	304 SPUT		Reliperationed By	Relinquished By

March 21, 2006

Ms. Michele Chamberlin Project Manager Del Mar Analytical 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Del Mar Analytical Project No. IPA0102

Eberline Services NELAP Cert #01120CA (exp. 01/31/07)

Eberline Services Report R601023-8640

Dear Ms. Chamberlin:

Enclosed are Sr-90 reanalysis results for one water sample received as the above referenced Del Mar Analytical project. Results were originally reported on January 30, 2006. Only the Sr-90 results are changed, all other results are as reported January 30. The batch QC LCS, blank analysis, and sample duplicate analysis results were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as Sr-90, do not require a matrix spike analysis to be performed. The reported gross alpha/gross beta QC sample results are not relevant to this report.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

mas Mon

MCM/njv

Enclosure: Report

Eberline Services

ANALYSIS RESULTS

Client Sample ID	Lab Sample ID	Collected	Analyzed	Nuclide	Results ± 20	<u>Units</u>	MDA
IPA0102 -01	⊹640-001	01/03/06	01/20/06	GrossAlpha	0.888 ± 0.61	pCi/L	0.888
			01/20/06	Gross Beta	3.15 ± 0.69	pCi/L	0.976
			01/21/06	Ra-228	0.293 ± 0.28	pCi/L	0.684
			01/17/06	H-3	-43.1 ± 110	pCi/L	182
			01/20/06	Ra-226	0.191 ± 0.33	pCi/L	0.569
			03/08/06	Sr-90	0.206 ± 0.30	pCi/L	0.590

Report Date 03/21/06

Page 1

Eberline Services

QC RESULTS

Client DEL MAR ANAL SDG 8653 Contract PROJECT# IPB1818 Work Order R602147-)1 Matrix WATER Received Date 02/21/06

Lab									
	thun là do	Results	Units	Amount A	Added	MDA	Evaluat	cion	
Sample ID	Nuclide	NG3 W. C.	C A day but had						
LCS									
8653-002	GrossAlpha	9.32 ± 0.63	pCi/Smpl	10.3	2	0.306	91% red	covery	
	Gross Beta	9.96 ± 0.37	pCi/Smpl	9.8	3	0.271	101% re	scovery	7
	3r-90	11.2 ± 0.61	pCi/Smpl	10.8	3	0.229	104% re	≥covery	•
BLANK									
8653-003	GrossAlpha	-0.408 ± 0.18	pCi/Smpl	. N	4	0.376	<mda< td=""><td></td><td></td></mda<>		
	Gross Beta	0.080 ± 0.24	pCi/Smpl	. N	4	0.414	<mda< td=""><td></td><td></td></mda<>		
	3r-90	-0.073 ± 0.16	pCi/Smpl	L N	4	0.418	<mda< td=""><td></td><td></td></mda<>		
					ORIGINALS				
	DUPLICATES				<u> </u>		-	3σ	
Sample [D	Nuclide	Results ± 20	MDA S	Sample ID	Results ±			D (Tot)	
8653-004	GrossAlpha	0.122 ± 0.53	0.893 8	3653-001	$0.735 \pm 0.$.587 14		satis
	Gross Beta	6.92 ± 0.71	0.869		7.03 ± 0.				satis
	Sr-90	0.358 ± 0.39	0.771		0.317 ± 0.	.31 0	.594	- () satis
	SPIKED SAMPLE		L	ORI	GINAL SAMPI	LE	_		
	OTTROD SAMETE								
Sample ID	Nuclide	Results + 20	MDA	Sample ID	Results ±	<u>20 M</u>	<u>DA Ad</u>	ded 3	Recv
	GrossAlpha	74.0 ± 2.9	0.626	8653-001	0.735 ± 0	.45 0	.587 71	.4 ?	103
	Gross Beta	66.0 ± 1.7	0.891		7.03 ± 0	.74 0	.906 65	. 5 .	9 0
		· · · -	,						

Certified by April Report Date 03/21/06
Page 2

Del Mar Analytical

Date

Time

Received By

Released By

1014 E. Cooley Dr., Soile A. Colton, CA 92324

SHM Chesapeake Drive, Suite 805, San Diagn, CA 92123 Ph (619) 505-9556 Fax (619) 505-9689 5930 South 51st Simot, Guino 8-120, Phoenic, AZ 85044 Ph (490) 785-9843 Fax (450) 785-9851

SUBCONTRACT ORDER - PROJECT #IPA0102

SEND	NG LABORATORY:	RECEIVING LABORATORY:
Del Mar Analytical, Irvine	:	Eberline Services
17461 Derian Avenue, Sui		2030 Wright Avenue
Irvine, CA 92614		Richmond, CA 94804
Phone: (949) 261-1022		Phone :(510) 235-2633
Fax: (949) 261-1228		Fax: (510) 235-0438
Project Manager, Michele	<u> Chamberlin</u>	
Standard TAT is request	ed unless specific due date is rec	equested => Due Date: Initials:
Analysis	Expiration	Comments
Sample ID: IFA0102-01 W	-	
Gross Alpha-O	01/03/07 13:25	900.0, IF RESULT>15 pCi/L, run Radium 226 & 228
Gross Beta-O	01/03/07 13:25	900.0, IF RESULT>50 pCi/L, run Radium 226 & 228
Level 4 + EDD-OUT Radium, Combined-O	01/31/06 13:25 01/03/07 13:25	**LEVEL IV QC, ACCESS 7 EDD*** H OLD for Gross Aipha/Desa *esolt ; EPA 903.1 & 904.0
Strontium 90-0	01/03/07 13:25	905.0 MILL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tritium-O	01/03/07 13:25	906 Go Wold + analyte
Containers Supplied:		905.0 906 Go Wold + analyze MC /10/06
1 gai Poly (TPA0102-01M)		VC 110/0/
1 gal Poly (IPA0102-01N)		100
	SA	AMPLE INTEGRITY:
All containers insect: Yes	☐ No Sample labets/COC	Cagree:
Costudy Seals Present 🗀 Yes	☐ No Samples Preserved P	Properly: Yer No Samplex Received at (temp):
W. Ch		Alex beleen 01/05/06 09:20
elcased By	Date Time	Received By Date Time

Tunc

RICHMOND, CA LABORATORY SAMPLE RECEIPT CHECKLIST

- Clinant	DEL	. MX	R	City	INVINE # IPACIOZ	State	CA		
client: _		21050	6 9:20	0C NO =	# IPA0102				
Date/Tin	ne receive	My /c	TXM0 -		ys) 670 P.O. Recei	ved Yes] No[]		
Contain	er I.D. No.	<u> </u>	Kedn						
	_				PECTION	Yes [Y]	No[] N/A	[]	
7.			ipping contai	ine: intact : iner dated & si	unned?	Yes [X]			
2			mple contain		9.10	•	No[] N/A	[X]	
2				iers dated & s	igned?	Yes[]	No[] N/A	N 140	
4. E.	Maria da imana sere	mental :c:				Wet[]	Dry [X]		
ŝ.	Niumber 5	sainmes i	in shipping o	ontainer:	Sample Matrix _	<u>W</u>	······································		
7	Number o	f container	rs per sampli	e: <u> </u>	(Or see CoC	······································			
E			ect container		Yes [y] No				
9	Paperwor	k agrees w	vith samples'	?				'n	
10.	Samples i	nave: Ta	ape[] Ha	zard labels [] Rad labels [] App	ropnate sar	mple lade is [/	- J 1	
11.	Samples	are: in	good condit	ion [*] Le	aking [] Broken Co	ntainer []	MISSII IG (1	
12.				Not preserved	[\(\)] pH Preser	vative	····		
13.	Describe	any anomi	alies:						
. 4.4	Mar P M	notified (of any anomi	alies?	Yes [] No[]	Date			
14.			My	Dz	Yes [0	0	(0)		
15.					Customer Sample	<u> </u>			
	tomer ole No.	com	mR/hr	Wipe	No.	cpm	mR/hr	wipe	
	We derive a								
	i								
·									
								<u> </u>	
Í									
				A COLUMN TO THE				## The state of th	
			1	-				diavort	
			<u> </u>	3					
					A Pro etc. alesto				
ion Char	mber Ser. N	VC			Calibration date _				
Alpha M	eter Ser. N	O				Calibration date			
					rulli-mating states				

Form. SCP-02, 06-24-05

Page A3 of A14

"over 55 years of quality nuclear services"

.

APPENDIX G

Section 34

Outfall 009, January 03, 2006 AMEC Data Validation Reports

CONTRACT COMP	LIANCE SCREENING FORM FOR HARDCOPY DATA
MECX, LLC	Package ID B4 MT3)
12260 East Vassar Drive	Task Order [26]. 0010.0)
Suite 500	SDG No. IPA 0102
Lakewood, CO 80226	No. of Analyses
Laboratory Del M	
Reviewer R Med	Reyiewer's Signature
Analysis/Method Metal:	s P. Mo
ACTION ITEMS*	
. Case Narrative	
Deficiencies	
2. Out of Scope	
Analyses	
3. Analyses Not Conducted	
4. Missing Hardcopy	
Deliverables	
5. Incorrect Hardcopy	
Deliverables	
6. Deviations from Analysis	A 375 A 3 A 5 A 5
	Qualifications were assigned for the following:
Protocol, e.g.,	BE COS and hages less its in the blanks
Holding Times GC/MS Tune/Inst. Performance	D Detects below the reporting limit
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Internal Standard Performance	
Compound Identification	
Quantitation	
System Performance	*
OMMENTS ^b	
Subcontracted analytical laboratory is not me	ecting contract and/or method requirements.

b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 009 LARWQCB Sample Splits

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IPA0102

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

NPDES

SDG: Analysis: IPA0102 Metals

Task Order Title:

NPDES Sampling

MEC^X Project Number:

DATA VALIDATION REPORT

1261.001D.01

1. INTRODUCTION

Sample Delivery Group:

IPA0102

Project Manager.

P. Costa

Matrix:

Water

Analysis:

Metals

QC Level:

Level IV

No. of Samples:

1 0

No. of Reanalyses/Dilutions:

Reviewer:

P. Meeks

Date of Review:

February 18, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for ICP and ICP-MS Metals (DVP-5, Rev. 0), EPA Methods 200.7, 200.8, and 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

B4MT31

Revision 0

Project: NPDES SDG: IPA0102

DATA VALIDATION REPORT

SDG: IPA0102 Analysis: Metals

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 009	IPA0102-01	Water	200.7, 200.8, 245.1

Project: NPDES SDG: IPA0102 Analysis: Metals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4° C $\pm 2^{\circ}$ C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICP-MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The method-specified tune criteria were met and no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP and ICP-MS metals and 80-120% for mercury. The laboratory analyzed reporting limit check standards in association with the sample in this SDG and all recoveries were acceptable. No qualifications were required.

NPDES

SDG: Analysis: IPA0102 Metals

DATA VALIDATION REPORT

2.4 BLANKS

There were detects and negative results in the method blanks and CCBs associated ith the sample in this SDG:

Blank Detect	Affected Samples	Qualification
Chromium was detected in method blank 6A04092-BLK1 at 1.63 µg/L.	Outfall 009 Split	Chromium detected in the sample was qualified as estimated, "UJ."
Antimony was detected in method blank 6A04091-BLK1 at 0.242.	Outfall 009 Split	Antimony detected in the sample was qualified as estimated, "UJ."
Nickel was detected in method blank 6A04091-BLK1 at 1.06 µg/L	Outfall 009 Split	Nickel detected in the sample was qualified as estimated, "UJ."
Arsenic was detected in a bracketing CCB (01/06/06) at 0.581 µg/L	Outfall 009 Split	Arsenic detected in the sample was qualified as estimated, "UJ."
Silver was reported in a CCB (01/09/06) at -0.767 µg/L.	Outfall 009 Split	Nondetected silver in the sample was qualified as estimated, "UJ."

The laboratory reported molybdenum as detected in method blank 6A04091-BLK1 at $0.394 \, \mu g/L$; however, the method blank was not analyzed the same day that Outfall 009 Split was analyzed. The day Outfall 009 Split was analyzed, molybdenum was reported in both bracketing CCBs (01/06/06) at -0.334 and -0.356 $\, \mu g/L$, and was reported in the method blank at -0.519 $\, \mu g/L$. As the negative molybdenum results more accurately reflect the instrument conditions on the day Outfall 009 was analyzed, the reviewer qualified molybdenum detected in Outfall 009 Split as estimated, "J." No further qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP and ICP-MS analyses. For the ICP and ICP-MS analyses, all recoveries were acceptable. For the ICP-MS analyses there were some unspiked analytes detected in the ICSA and ICSAB; however, as none were detected above the applicable reporting limits, no qualifications were required. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP, ICP-MS, and mercury LCS recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

B4MT31

4

Revision 0

Project:	NPDES
SDG:	IPA0102
Annhain	8.6 . 4 1

DATA VALIDATION REPORT

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No matrix spike analyses were performed for the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP-MS, the ICP-MS internal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J," and denoted with "DNQ," in accordance with the NPDES permit. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

D4M131	ŧ		

NPDES

SDG: Analysis: IPA0102 Metals

DATA VALIDATION REPORT

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (838) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Suiset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Sampled: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Received: 01/03/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		A CONTRACTOR OF THE CONTRACTOR	Date Analyzed	Data Qualifiers	
Sample ID: IPA0102-01 (009 Sp Reporting Units: ug/l	lit - Water) - cont.								Par (Va)	(ode
Antimony	EPA 200.8	6A04091	0.050	2.0	1.0	1	01/04/06	01/06/06	OL Y B	В
Arsenic	EPA 200.8	6A04091	0.50	1.0	1.8	1	01/04/06	01/06/06	ີ່ ເມັ	B
Beryllium	EPA 200.8	6A04091	0.075	0.50	0.085	1	01/04/06	01/09/06	1.2	DNQ
Cadmium	EPA 200.8	6A04091	0.025	1.0	ND	1	01/04/06	01/06/06	ü	
Chromium	EPA 200.7	6A04092	0.68	5.0	1.4	1	01/04/06	01/05/06		В
Cobalt	EPA 200.8	6A04091	0.035	1.0	0.27	1	01/04/06	01/06/06	JJ	DNG
Copper	EPA 200.8	6A04091	0.25	1.0	3.2	1	01/04/06	01/06/06		
Lead	EPA 200.8	6A04091	0.040	1.0	0.51	1	01/04/06	01/06/06	JJ	DNQ
Mercury	EPA 245.1	6A04080	0.050	0.20	ND	1	01/04/06	01/04/06	u	
Molybdenum	EPA 200.8	6A04091	0.15	2.0	0.75	1	01/04/06	01/06/06		B, DNG
Nickel	EPA 200.8	6A04091	0.35	2.0	2.3	1	01/04/06	01/06/06	UT B	В
Selenium	EPA 200.8	6A04091	0.30	2.0	0.30	1	01/04/06	01/06/06	JJ	DNG
Silver	EPA 200.8	6A09086	0.025	1.0	ND	1	01/09/06	01/09/06	ರ್	В
Thallium	EPA 200.8	6A04091	0.15	1.0	ND	1	01/04/06	01/06/06	u	_
Vanadium	EPA 200.8	6A04091	0.70	2.0	1.5	1	01/04/06	01/06/06		DNG
Zinc	EPA 200.8	6A04091	1.0	10	6.5	1	01/04/06	01/06/06	τι	pna

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit			Date Extracted	Date Analyzed	Data Qualifie	ers
Sample ID: IPA0102-01 (009 Split - Reporting Units: mg/l	Water) - cont.								Qual	Qual Code
Barium	EPA 200.8	6A04091	0.00015	0.0010	0.041	1	01/04/06	01/06/06	***************************************	***************************************
Boron	EPA 200.7	6A04092	0.0080	0.050	0.12	1				
Calcium	EPA 200.7	6A04092	0.040	0.10	39	1	01/04/06	01/05/06		
Magnesium	EPA 200.7	6A04092	0.0070	0.020	11	1	01/04/06	01/05/06		

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

ME(×		Package ID:	B4ND1
12269 East Vassar Drive Aurora, CO 80014				1261,001D.01
			SDG No.:	
			3. 3. 3.	1
	Laboratory: Del Mar /		Date: Februa	
	Reviewer. L. Calvin		Reviewer's Si	
	Analysis/Method: NDMA by	Method 1625C		dirin.
ACT	TON ITEMS			
•	Case Narrative			
	Deficiencies			
2.	A			
2.	Out of Scope Analyses		·	
3.	Analyses Not Conducted			
•	substitution of the substitution of			
4.	Missing Hardcopy			
	Deliverables			
5.	Incorrect Hardcopy			
	Deliverables			
6.	Deviations from Analysis	Qualifications were assign	,	<u> </u>
	Protocol, e.g.,	-method blank contamina	tion	
	Holding Times			
	GC/MS Tune/Inst. Performance			
	Calibration			V
	Method blanks			
	Surrogates			
	Matrix Spike/Dup LCS			<u>,</u>
	Field QC			
	Internal Standard Performance			
	Compound Identification			
	Quantitation			
	System Performance			
<u> </u>	MMENTS*			

·				

DATA VALIDATION REPORT

NPDES Monitoring Program Outfall 009 LARWQCB Split Samples

ANALYSIS: NDMA

SAMPLE DELIVERY GROUP IPA0102

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

NPDES

SDG: Analysis: IPA0102 NDMA

Task Order Title:

NPDES

MEC^X Project Number:

DATA VALIDATION REPORT

1261.001D.01

1. INTRODUCTION

Sample Delivery Group:

IPA0102

Project Manager:

P. Costa

Matrix:

Water

Analysis:

NDMA

QC Level:

No. of Samples:

Level IV

1

No. of Reanalyses/Dilutions:

Reviewer:

L. Calvin

Date of Review:

February 18, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 1625C, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

1

34ND1

NPDES - 816

NPDES

SDG: Analysis: IPA0102 NDMA

DATA VALIDATION REPORT

Table 1. Sample Identification

			ALL PARTIES AND ALL PARTIES AN
Client ID	Laboratory ID	Matrix	COC Method
Outfall 009	IPA0102-01	Water	1625C

NPDES

SDG: Analysis: IPA0102 NDMA

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ±2°C at 5°C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly from the field to the laboratory, custody seals were not necessary. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 GC/MS TUNING

Tuning is not applicable for this analysis. No qualifications were required.

2.3 CALIBRATION

One nine-point initial calibration analyzed 01/03/06 was associated with the samples in this SDG. The %RSD for NDMA was ≤35%, and the ion abundance ratios were within the control limits. An initial calibration verification (ICV) was analyzed following the initial calibration, with a recovery for NDMA within the QC limits of 80-120%. The continuing calibration associated with the sample analyses also had a recovery within the QC limits of 80-120%. No qualifications were required.

2.4 BLANKS

One method blank (6A08026-BLK1) was extracted and analyzed with this SDG. Target compound NDMA was detected between the MDL and the reporting limit, at a concentration of 0.00078 µg/L. NDMA was also detected in the site sample between the MDL and the reporting

B4ND1

3

Revision 0

NPDES

SDG: Analysis:

NDMA

DATA VALIDATION REPORT

limit. The sample result was qualified as a nondetect, "U," at the reporting limit. Review of the method blank raw data indicated no false positive. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (6A08026-BS1/BSD1) and one low-level blank spike (6A08026-BS2) were extracted and analyzed with this SDG. All recoveries were within the QC limits of 70-130%. The RPD for the BS/BSD pair was within the QC limit of ≤20%. The recoveries were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on the blank spike and blank spike/blank spike duplicate results. No qualifications were required.

2.7 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.7.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples identified for this SDG. No qualifications were required.

2.7.2 Field Duplicates

There were no field duplicate samples identified for this SDG.

2.8 INTERNAL STANDARDS PERFORMANCE

The labeled internal standard area count was within the control limits of 20-150% of the internal standard area of the associated continuing calibration standard. No qualifications were required.

84ND1

4

Revision 0

Project:	NPDES
SDG:	IPA0102
Analysis:	NDMA

DATA VALIDATION REPORT

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for target compound NDMA by EPA Method 1625C. Review of the sample chromatogram, retention time, and ion profiles indicated no problems with target compound identification. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limit was supported by the low point of the initial calibration and the laboratory MDL. Results were reported in $\mu g/L$ (ppb). No qualifications were required.

17461 Undan Avo., Suite 100, Irvino, CA 92614 (949) 761-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 3/17-4667 FAX (909) 3/20-1046 9484 Checaponte Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (958) 501-9689 9630 South 51st St., Suite 8-120, Phaemir, AZ 65044 (480) 785-0043 FAX (480) 785-0185 2520 E. Summit Rd. #3, Las Voges, NV 89120 (702) 798-3620 (AX (707) 798-362)

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadeoa, CA 91101 Attention: Bronwyn Kelly Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

SEMI-VOL ORGANICS by GC/MS-CHEMICAL IONIZATION (EPA 3520C/1625C-C1 MOD)

Analyte

Method

I imit

MDL Reporting Sample Dilution Date Result Factor Extracted Analyzed Qualifiers

Sample ID: IPA0102-01 (009 Split - Water) - cont.

Reporting Units: ug/l N-Nitrosodimethylamine

EPA 1625C-CI Mod6A08026 0.00019 0.0019

0.00045 0.943 01/08/06 01/10/06

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

Thu results pertain only to the samples tested in the inhoratory. This report shall not be received in fall, without written permission from Del Mar Analytical. ^{ed.} IPA0102 <Page 5 of 45>

12

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MECX	Package ID B4PP4
12269 East Vassar Drive	Task Order 1261.001D.01
Aurora, CO 80014	SDG No. IPA0102
	No. of Analyses 1
Laboratory Del Mar Analytical	Date: February 17, 2006
Reviewer K. Shadowlight	Reviewer's Signature
Analysis/Method PCBs by Method 608	Kradist
ACTION ITEMS	
. Case Narrative	
Deficiencies	
2. Out of Scope Analyses	

3. Analyses Not Conducted	
4. Missing Hardcopy	
Deliverables	
5. Incorrect Hardcopy	
Deliverables	
6. Deviations from Analysis	
Protocol, e.g.,	
Holding Times	
GC/MS Tune/Inst. Performance	
Calibration	
Method blanks	
Surrogates Matrix Spike/Dup LCS	
Field QC	
Internal Standard Performance	
Compound Identification	
Quantitation	
System Performance	
COMMENTS ³ Acceptable as revi	ewed.
Subcontracted analytical laboratory is not meeting contract and/or met Differences in protocol have been adopted by the laboratory but no ac	

DATA VALIDATION REPORT

NPDES Monitoring Program Outfall 009 LARWQCB Split Samples

ANALYSIS: PCBs

SAMPLE DELIVERY GROUP: IPA0102

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

NPDES IPA0102

SDG: Analysis:

PCBs

1. INTRODUCTION

Task Order Title:

NPDES

MEC^X Project Number:

DATA VALIDATION REPORT

1261.001.01

Sample Delivery Group:

IPA0102

Project Manager:

P. Costa

Matrix:

Water

Analysis:

PCBs

QC Level:

Level IV

No. of Samples:

1

No. of Reanalyses/Dilutions:

Reviewer: K. Shadowlight

Date of Review:

February 17, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Volatile Organics (DVP-4, Rev. 2), EPA Method 608, and the National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: SDG: NPDES IPA0102

SUG: Analysis:

PCBs

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 009	IPA0102-01	Water	608

DATA VALIDATION REPORT

NPDES

DATA VALIDATION REPORT

SDG: Analysis:

IPA0102 **PCBs**

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ±2°C, at 5°C. According to the case narrative for this SDG, the sample was received intact and on ice. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for PCBs, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ±0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 **CALIBRATION**

2.3.1 **Analytical Sequence**

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

2.3.2 Initial Calibration

There was one initial calibration dated 12/23/05 associated with site sample in this SDG. The initial calibration consisted of six point calibrations for Aroclor 1016 and Aroclor 1260 on two analytical columns. The r² values of the individual Aroclor peaks for Aroclor 1016 and Aroclor

84PP4

Project:	NPDES
SDG:	IPA0102
.	

DATA VALIDATION REPORT

1260 were ≥0.995 on the primary column (Channel A) and the average %RSDs of the individual Aroclor peaks were ≤10% on the secondary column (Channel B). As there were no Aroclors detected in the sample and all results were reported from Channel A, the secondary column was not further evaluated. An ICV was analyzed immediately following the initial calibration and the %Ds for Aroclor 1016 and Aroclor 1260 were within the QC limits of ≤15% on the primary analytical column. A representative number of r² values and ICV %Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

Sample Outfall 009 was bracketed by two continuing calibrations. The %Ds for Aroclor 1016 and Aroclor 1260 were within the Method QC limit of ≤15% for both calibrations. The %Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of the analytical sequence. There was no evidence of cross-contamination in the instrument blank or sample. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (6A06049-BLK1) was extracted and analyzed with this SDG. There were no target compounds detected in the method blank. Review of the chromatograms for both channels showed no false negative. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (6A06049-BS2/BSD2) was extracted and analyzed with this SDG. The recoveries and RPDs for spiked compounds Aroclor 1016 and Aroclor 1260 were within the laboratory-established QC limits. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

Surrogate recoveries were within the laboratory-established QC limits for the sample in this SDG. The recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

84PP4

NPDES

SDG: Analysis:

IPA0102 PCBs

DATA VALIDATION REPORT

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision were based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on the water sample. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples identified for this SDG. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples identified for this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. No qualifications were required.

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 17401 Lorian river, sinte 160, invite, Cr. 32014 (949); 451-1612 FAX (949) 200-3737.
1014 E. Cooley Dr., Soite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1016
9484 Cherapenke Dr., Soite 803, San Diego, CA 92123 (858) 505-8596 FAX (858) 503-9689
9630 Soith S1st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Sunset Rd. #3, Las Vegas, NV 99120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Bocing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Attention: Bronwyn Kelly

Received: 01/03/06

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor			Data Qualifiers	i ~
Sample ID: IPA0102-01 (009 Split Reporting Units: ug/l	- Water) - cont.								Carlos Caras	اراند. مارد
Aroclor 1016	EPA 608	6A06049	0.20	1.0	ND	1	01/06/06	01/06/06	U.	
Aroclor 1221	EPA 608	6A06049	0.10	1.0	ND	1	01/06/06	01/06/06		
Aroclor 1232	EPA 608	5A06049	0.25	1.0	ND	1	01/06/06	01/06/06	· ·	
Aroclor 1242	EPA 608	6A06049	0.25	1.0	ND	1	01/06/06	01/06/06	ţ	
Aroclor 1248	EPA 608	6A06049	0.25	1.0	ND	1	01/06/06	01/06/06	•	
Aroclor 1254	EPA 608	6A06049	0.25	1.0	ND	1	01/06/06	01/06/06	:	
Arocior 1260	EPA 608	6A.06049	0.40	1.0	ND	1	01/06/06	01/06/06		
Surrogate: Decachlorobiphenyl (45-	120%)				85 %				V	

lever W-

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

	EC _x		Package ID: B4SV17
	269 East Vassar Drive		Task Order: 1261,001D,01
Aurora, CO 80014		,	SDG No.: IPA0102
		N	o. of Analyses: 1
	Laboratory: Del Mar.	Analytical	Date: February 18, 2008
	Reviewer: L. Calvin		Reviewer's Signatulie
	Analysis/Method: Semivol		Macdin
AC	TION (TEMS*		
	Case Narrative		
	Deficiencies		
2.	Out of Scope Analyses		
·			
3.	Analyses Not Conducted		
•			
4.	Missing Hardcopy		
	Deliverables		
5.	Incorrect Hardcopy		
	Deliverables		
6.	Deviations from Analysis	Qualifications were assigned	I for the following:
	Protocol, e.g.,	-continuing calibration %D o	
7.5	Holding Times		
	GCMS Tune/inst, Performance Celibration		ne MOL and the reporting limit
	Calibration Method blanks		
	Surrogatea		
	Metro: Spike/Dup LCS		
	Field OC		
	Internal Standard Performance		
	Compound Identification		
	Quantitation		
مت ه	System Performance		
CON	MEKTS		
-	The second secon		

DATA VALIDATION REPORT

NPDES Monitoring Program Outfall 009 LARWQCB Split Samples

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP IPA0102

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: NPDES IPA0102 SVOCs

DATA VALIDATION REPORT

SDG: Analysis:

1. INTRODUCTION

Task Order Title:

NPDES

MEC^X Project Number:

1261.001D.01

Sample Delivery Group:

IPA0102

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Semivolatiles

QC Level:

Reviewer:

Level IV

No. of Samples:

1

No. of Reanalyses/Dilutions:

0 L. Calvin

Date of Review:

February 18, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

NPDES - 832

Project: NPDES SDG: IPA0102 Analysis: SVOCs

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 009	IPA0102-01	Water	625

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4° C $\pm 2^{\circ}$ C at 5° C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly from the field to the laboratory, custody seals were not necessary. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes analyzed at the beginning of each daily analytical sequence met the abundance criteria specified in EPA Method 625. No qualifications were required.

2.3 CALIBRATION

One initial calibration was associated with the sample, dated 12/22/05. The average RRFs were ≥0.05 for all target compounds. The %RSDs were ≤35% for all target compounds. The continuing calibration associated with the samples in this SDG was dated 01/11/06. The RRFs for all target compounds were ≥0.05. The %Ds exceeded the QC limit of ≤20% for benzidine, benzoic acid, and isophorone. Results for the aforementioned compounds were qualified as estimated, "UJ," for nondetects, and "J," for detects in the site sample of this SDG. A representative number of average RRFs and %RSDs in the initial calibration and RRFs and %Ds in the continuing calibration were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

84SV17

Project:	NPDES
SDG:	IPA0102
Analysis:	SVOCs

DATA VALIDATION REPORT

2.4 BLANKS

One method blank (6A08028-BLK1) was extracted and analyzed with this SDG. Target compounds bis(2-ethylhexyl)phthalate, butylbenzylphthalate, and diethylphthalate were detected between the MDLs and the reporting limits, and dibenz(a,h)anthracene was detected above the reporting limit in the method blank. All of the aforementioned compounds were also detected in the site sample. Results for bis(2-ethylhexyl)phthalate, butylbenzylphthalate, and diethylphthalate were qualified as nondetects, "U," at the reporting limits. The result for dibenz(a,h)anthracene was qualified as an estimated nondetect, "UJ," and the reporting limit was raised to the level of contamination. Review of the method blank raw data indicated no false positives or false negatives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (6A08028-BS1/BSD1) was extracted and analyzed with this SDG. All recoveries and RPDs were within the laboratory-established QC limits. A representative number of recoveries were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

Surrogate recoveries for the sample were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

84SV17

Project: NPDES SDG: IPA0102 Analysis: SVOCs

DATA VALIDATION REPORT

2.8.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples identified for this SDG. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples identified for this SDG.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times for the sample were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any detects between the MDL and the reporting limit were qualified as estimated, "J," by the laboratory, and were annotated with the "DNQ" qualifier code by the reviewer. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

84SV17 5 Revision 0

17461 Lindin Ave., Suite 100, Irvine, CA 92614 1949) 761-1022 FAX (949): 260-3297 1014 F. Cooley Dr., Suite A, Cohon, CA 92324 (909) 370-4667 FAX (909) 370-1046 9464 Chesapeale Dr., Suite 805, San Diego, CA 92123 1838) 505-8546 FAX (858) 505-8669 9830 South 314 St., Suite 8-120, Phoenix, AZ 65044 1489) 785-0043 FAX (480) 785-0831 2520 E. Sumet 8d. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Passidens/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 9110)

Attention: Bronwyn Kelly

Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Keith M. Spiegelman

Sampled: 01/03/06

Received: 01/03/06

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

	ŧ.		MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IPA0102-01 (009 Split - Reporting Units: ag/l	Water) - cont.							á	and grade
Accouphtheac	EPA 625	6A08028	0.10	0.50	ND	1	01/08/06	01/11/06	4
Acceaphthylene	EPA 625	6A08028	0.10	0.50	NO	1	01/08/06	01/11/06	1
Antine	EPA 625	6A08028	2.9	10	ND	1	01/08/06		
Anthracene	EPA 625	6A08028	0.0X3	0.50	ND	1	01/08/06		
Benzidine	EPA 625	6A08028	2.4	5.0	ND	1	01/08/06	01/11/06	uotic re
Benzoic acid	EPA 625	6A08028	3.7	20	4.9	1	01/08/06		TAOI, IV DUG
Benzo(a)anthracene	EPA 625	6A08028	0.038	5.0	0.32	1	01/08/06		
Benzo(a)pyrene	EPA 625	6A08028	0.14	2.0	ND	1	01/08/06	01/11/06	ŭ l
Benzo(b)fluorantheue	EPA 625	6A08028	0.050	2.0	ND	1	01/08/06	01/11/06	1
Benzo(g,h,i)pcrylene	EPA 625	6A08028	0.059	5.0	ND	1	01/08/06		
Benzo(k)fluoranthene	EPA 625	6A08028	0.053	0.50	ND	1	01/08/06		
Benzyl alcohol	EPA 625	6A08028	0.21	5.0	ND	ī	01/08/06		
Bis(2-chloroethoxy)methane	EPA 625	6A08028	0.072	0.50	ND	i	01/08/06		
Bis(2-chloroethyl)cther	EPA 625	6AD8028	0.084	0.50	ND	ì	01/08/06	01/11/06	
Bis(2-chloroisopropyl)ether	EPA 625	6A08028	0.11	0.50	ND	î	01/08/06	01/11/06	
Bis(2-ethylhexyl)phthalate	EPA 625	6A08028	1.1	5.0	2 N		01/08/06	01/11/06	8.18
4-lifromophenyi phenyi ether	EPA 625	6A08028	0.12	1.0	ND	1	01/08/06	01/11/06	P, 2 P
Butyl benzyl phthalate	EPA 625	6A08028	0.34	5.0	الانحاز	-	01/08/06	01/11/06	B. J 18
4-Chlorouniling	EPA 625	6A08028	0.20	2.0	ND	1	01/08/06	01/11/06	P. 72
2-Chioronaphthalene	EPA 625	6A08028		0.50	ND	1	01/08/06	11.00	
4-Chloro-3-mothylphenol	EPA 625	6A08028	0.34	2.0	ND	1	01/08/06	01/11/06	
4-Chlorophonyl phenyl other	EPA 625	6A08028	0.056	0.50	ND	1	01/08/06	01/11/06	1)
2-Chlorophenol	EPA 625	6A08028	0.12	1.0	ND	1			
Chryscae	EPA 625	6A08028		0.50	ND	1	01/08/06	01/11/06	1.
Dibenz(a,h)anthracenc	EPA 625	6A08028	0.083	O.SO	ADD GO N		01/08/06	01/11/06	
Dibenzofuna	EPA 625	6A08028	0.075	0.50	ND	1			
Di-n-butyl phthalate	EPA 625	6A08028	0.073	2.0			01/08/06	01/11/06	L
1,2-Dichlorobenzene	EPA 625	6A08028		0.50	ND	1	01/08/06	01/11/06	1
1.3-Dichlorobenzene	EPA 625		0.11		ND	1	01/08/06	01/11/06	
1,4-Dichlorobenzene	EPA 625	6A08028 6A08028	0.13	0.50	ND	1	01/08/06	01/11/06	1 1
3.3-Dichlorobenzidine	EPA 625	6A08028		0.50	ND ND	1	01/08/06	01/11/06	
2,4-Dichlorophenol	EPA 625	6A08028	0.93 0.21	5.0		1	01/08/06		
Dietbył phthelate	EPA 625	6A08028		2.0	ND	1	01/08/06		
2,4-Directhylphenol	EPA 625		0.12	1.0	pat N		01/08/06	01/11/06	B, 1 35
Directly/ phthalate	EPA 625	6/108028	0.31	2.0	ND	1	01/08/06		1
4,6-Dipitro-2-methylphenol	EPA 625	6A08028 6A08028	***	0.50	ND	1	01/08/06	01/11/06	1 1
2,4-Dinitrophenol	EPA 625	6A08028	0.38	5.0	ND	1	01/08/06	01/11/06	
2,4-Dinitrotoluene	EPA 625		2.7	5.0	ND ND	1	01/08/06	01/11/06	
2,6-Dinitrotohuene	EPA 625 EPA 625	6A08028	0.23	5.0)	01/08/06	01/11/06	1 1
Di-n-octyl phthalate		6A08028	0.24	5.0	ND	I	01/08/06	01/11/06	1 1
1,2-Diphenylhydrazine/Azobenzene	EPA 625	6A08028	0.17	5.0	ND	ĭ	01/08/06	01/11/06	
	FPA 625	6A08028	0.087	1.0	ND	1	01/08/06	01/11/06	v
Del Mar Analytical, Irvine Michele Chamberlin				-	10	m1.0			*

Project Manager

The results partoin only to the samples used in the laboratory. This report shell no except in full, without written permission from Del Mar Analysical.

IPA0102 (Page 6 of 45>

17461 Derbin Ave., Salte 100, Irvina, CA 92614 (949) 261-1022 FAX (949): 260-3297 1074 E. Cookey Dr., Salte A. Cotton, CA 97324 (909) 376-4662 FAX (909): 370-1046 9184 Cheraptable Dr., Neitz 805, San Dingo, CA 92123 (858) 505-8596 FAX (938) 505-9689 9830 5048 5135 SA. Salte B-120, Paucelle, AZ 65044 (480) 785-0643 FAX (488) 785-0651 2520 C. Suntet Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Sampled: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0102

Received: 01/03/06

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

				Reporting		Dilution		Date	-)ata
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qu	glifiens
Sample ID: IPA0102-01 (009 Split - W Reporting Units: ug/l	zter) - cont.							4		grade
Fluorantheoc	EPA 625	6A08028	0.089	0.50	ND	1	01/08/06	01/11/06	΄.	
Fluorene	EPA 625	6A08028	0.075	0.50	ND	i	01/08/06	7 , 4 7	7	Į.
lexachiorobenzene	EPA 625	6A08028	0.13	1.0	ND	ì	01/08/06			
Hexachlorobutadiene	EPA 625	6A08028	0.38	2.0	ND	1	01/08/06	01/11/06	1	ļ
Hexachlorocyclopentadiene	EPA 625	6A08028	1.8	5.0	ND	1	01/08/06	01/11/06	ł	ŀ
Hexachloroethane	EPA 625	6A08028	0.51	3.0	ND	1	01/08/06	01/11/06		ì
Indeno(1,2,3-cd)pyrene	EPA 625	6A08028	0.19	2.0	ND .	1	01/08/06	01/11/06	٧	
Isophurone	EPA 625	6A08028	0.059	1.0	ND	1	01/08/06	01/11/06	W	CC
2-Mcthylnaphthalene	EPA 625	6A08028	0.13	1.0	ND	1	01/08/06	01/11/06	朲	l
2-Methylphenoi	EPA 625	6A08028	0.28	2.0	ND	1	01/08/06	01/11/06	1	
4-Methylphenol	EPA 625	6A08028	0.20	5.0	ND	ĭ	01/08/06	07/11/06		
Naphilialene	EPA 625	6A08028	0.13	1.0	ND	1	01/08/06	01/11/06	Ì	
2-Nimoaniline	EPA 625	6A08028	0.18	\$.0	ND	1	01/08/06	01/11/06	ł	
3-Nitroaniline	EPA 625	6A08028	0.35	5.0	ND	1	01/08/06	01/11/06		
4-Nitroaniline	EPA 625	6A08028	0.49	5.0	ND	1	01/08/06	01/11/06	1	
Nimbenzene	EPA 625	6A08028	0.10	1.0	ND	1	01/08/06	01/11/06	ı	
2-Nitrophenol	EPA 625	6A08028	0.23	2.0	ND	1	01/08/06		1	
4-Nurophenol	FPA 625	6A08028	0.73	5.0	ND	1	01/08/06	01/11/06		
N-Nitrosodimethylaminc	EPA 625	6A08028	0.22	2.0	ND	1	01/08/02		1	
N-Nitroso-di-n-propylamine	EPA 625	6A08028	0.18	2.0	ND	1			1	1
N-Nitrosodiphenylamine	EPA 625	6A08028	0.077	7	ND	Ĭ	01/08/06			
Pentachiorophenol	EPA 625	6A08028	0.78	2.0	ND	1	01/08/06	01/11/06		l
Phonanthrene	EPA 625	6A08028	0.071	0.50	ND	1	01/08/06			
Phenol	EPA 625	6A08028	0.14	1.0	ND	1	01/08/06		-8	
Pyrene	EPA 625	6A080Z8			ND	1	01/08/06			
1,2,4-Trichlorobenzene	EPA 625	6,408028	0.10	1.0	ND	1	01/08/06			ļ.
2,4,5-Trichlorophenol	EPA 625	6A08028	0.075		ND	1	01/08/06		2.7	
2,4,6-Trichlorophenol	EPA 625	6A08028	0.10	1.0	ND	i	01/08/06	01/11/06	4	ľ
Surrogate: 2-Fluorophenol (35-120%)					60 %					1
Surrogate: Phonol-d6 (45-120%)					71 %					
Surrogatu: 2,4,6-Tribromophenol (50					78 %					
Surrogate: Nitrobenzene-d5 (45-120%)					72 %					
Surrogate: 2-Fluorobiphenyl (45-1209	₽				71 %					
Surrogate: Terphanyl-d14 (45-135%)					75 34					

Del Mar Analytical, Irvine Michele Chamberlin Project Manager Level I

14

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

E(69 East Vassar Drive		Package ID: Task Order	1261.001D.01
1200	ora, CO 80014			IPA0102
\L	44, UV UW 17	M	o. of Analyses:	1
	Laboratory: Del Mar /		Date: Februs	in 18 2006
	Reviewer: L. Calvin		Reviewer's S	
	Analysis/Method: Volatiles		1347	alvin
	A larystations loc. Yours	Cy record CZ+		
VC1	TION ITEMS			
	Case Narrative	:		
	Deficiencies			
2.	Out of Scope Analyses			
				<u></u>
3.	Analyses Not Conducted			
4.	Missing Hardcopy			
	Deliverables			
5 .	Incorrect Hardcopy			
	Deliverables			
		A		
6.	Deviations from Analysis	Qualifications were assigne		`````````````````````````````````````
. : .	Protocol, e.g.,	-target compounds search	MOTOR AS IT, SWE	9 883 (1888)
	Holding Times			
	GC/MS Tune/Inst. Performance			
	Calibration			
	Method blanks			
	Surrogates Matrix Spike/Dup LCS		·	
	Field OC			
	Internal Standard Performance			
	Compound Identification			
	Quantitation			
	System Performance			
^~	MMENTS.			
w		1		
				

DATA VALIDATION REPORT

NPDES Monitoring Program Outfall 009 LARWQCB Split Samples

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IPA0102

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

VOCs

SDG: IPA0102 Analysis:

1. INTRODUCTION

Task Order Title:

NPDES

MEC^X Project Number:

1261.001.01

Sample Delivery Group:

IPA0102

Project Manager:

P. Costa

Matrix:

Water

Volatiles

Analysis:

QC Level:

Level IV

No. of Samples:

0

No. of Reanalyses/Dilutions:

L. Calvin

Reviewer: Date of Review:

February 17, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 624, and the National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

NPDES

SDG: Analysis: IPA0102 VOCs

.

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 009	IPA0102-01	Water	624

NPDES

DATA VALIDATION REPORT

SDG: Analysis:

VOCs

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory within the temperature limits of 4°C ±2°C, at 5°C. According to the case narrative for this SDG, the sample was received intact, on ice, and properly preserved. Information regarding lack of headspace in the VOA vials was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The BFB tune performed at the beginning of each daily analytical sequence met the abundance criteria specified in EPA Method 624. No qualifications were required.

2.3 CALIBRATION

Two initial calibrations were associated with the sample in this SDG, dated 12/21/05 (Freon 113 only) and 12/29/05 (all remaining target compounds). The average RRFs were ≥ 0.05 and the %RSDs were $\leq 35\%$ for all target compounds listed on the sample summary forms. The continuing calibrations associated with the sample in this SDG were dated 01/03/06. The RRFs for all target compounds were ≥ 0.05 and all %Ds were within the QC limit of $\leq 20\%$. A representative number of average RRFs and %RSDs in the initial calibrations and RRFs and %Ds in the continuing calibrations were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

2.4 BLANKS

One method blank (6A03022-BLK1) was analyzed with this SDG. No target compounds were detected in the method blank. Review of the method blank raw data indicated no false negatives. No qualifications were required.

Project: **NPDES** SDG: IPA0102 **VOCs**

DATA VALIDATION REPORT

Analysis:

BLANK SPIKES AND LABORATORY CONTROL SAMPLES 2.5

One blank spike (6A03022-BS1) was analyzed with this SDG. The recoveries within the laboratory-established QC limits, with the exception of a recovery above the QC limits for 1,1,2,2tetrachloroethane. As 1,1,2,2-tetrachloroethane was not detected in the sample of this SDG, no qualification was necessary. Target compounds 1,2-dichloro-1,1,2-trifluoroethane and cyclohexane were not included in the blank spike (see section 2.10). A representative number of recoveries were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

Surrogate recoveries were within the laboratory QC limits of 80-120% for this SDG. representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy was based on the blank spike results. No qualifications were required.

2.8 **FIELD QC SAMPLES**

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

There was no trip blank sample associated with the sample in this SDG; however, as there were no sample detects, evaluation of possible trip blank contamination was not necessary. No qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples identified for this SDG. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples identified for this SDG.

Project: NPDES SDG: IPA0102 Analysis: VOCs

DATA VALIDATION REPORT

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for volatile target compounds by EPA Method 624. For two of the requested target compounds, 1,2-dichloro-1,1,2-triflloroethane and cyclohexane, only a TIC search was performed. Calibration was performed for 1,2-dichloro-1,1,2-triflloroethane but was not utilized, and no calibration was performed for cyclohexane. Neither compound was identified in the site sample. Nondetect results for both compounds were qualified as estimated, "UJ," in the site sample. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG; however, a TIC search was performed for two requested target compounds, 1,2-dichloro-1,1,2-trifluoroethane and cyclohexane (see section 2.10). No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

17461 Dinfan Ave., Sulta 100, Invinc, CA 92614 (949) 261-1022 FAX (949) 260-1297
1014 E. Cardey Dr., Sulta A. Cohon, CA 92224 (909) 370-4667 FAX (909) 370-1046
9464 Chesapanhr Dr., Sulta 805, San Eliego, CA 92123 (838) 505-8596 FAX (858) 505-8669
9030 South 514 Sc., Sulta B-120, Mauritix, AZ 85044 (480) 785-0943 FAX (480) 785-0851
2526 E. Sunset Rd. #3, Las Vegas, NV 89120 (202) 798-3620 FAX (702) 296-3621

MWH-Pasadena/Bocing

300 North Lake Avenne, Suite 1200

Pasadega, CA 91101 Attention: Bronwyn Kelly Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting				Date	Dain
•	*****	PARCH	LAMIT	Limit	Result	Factor	Extracted	Analyzed (Qualifierx
Sample ID: IPA0102-01 (009 Split - Reporting Units: ug/l	Water)							01/04/06	al grade
Benzene	FPA 624	6A03022	0.28	2.0	ND	1	01/03/06	DIMANE	100
Bromodichloromethans	EPA 624	6A03022	0.30	2.0	ND	î	01/03/06	01/04/06	<u>የ</u>
Bromoform	EPA 624	6A03022	0.32	5.0	ND	ī	01/03/06	01/04/06	1
Bromomethane	LPA 624	6A03022	0.42	5.0	ND	ī	01/03/06	01/04/06	
Trichlorosrifisoroschune (Preca 113)	EPA 624	6A03022	1.2	5.0	ND	1	01/03/06	01/04/06	
Carbon Ictrachloride	EPA 624	6A03022	0.28	5.0	ND	i	01/03/06	01/04/06	
Chlorobenzene	EPA 624	6A03022	0.36	2.0	ND	i	01/03/06	01/04/06	
Chloroethane	EPA 624	6A03022	0.33	5.0	ND	i	01/03/06		
Chioroform	EPA 624	6A03022	0.33	2.0	ND	i	01/03/06	01/04/06	
Chloromethane	EPA 624	6A03022	0.30	5.0	ND	î	01/03/06	01/04/06	
Dibromochloromethane	EPA 624	6A03022	0.28	2.0	ND	î	01/03/06	01/04/06	
1,2-Dichlorobenzene	EPA 624	6A03022	0.32	2.0	ND	i	01/03/06	01/04/06	
1,3-Dichlorobenzene	EPA 624	6A03022	0.35	2.0	ND	i		01/04/06	
1,4-Dichlorohenzene	EPA 624	6A03022	0.37	2.0	ND	î	01/03/06	01/04/06	
1,1-Dichloroethane	EPA 624	6A03022	0.27	2.0	ND	î	01/03/06	01/04/06	
1,2-Dichloroethanc	EPA 624	6A03022	0.28	2.0	ND	î	01/03/06	01/04/06	
1,1-Dichlorocthene	EPA 624	6A03022	0.32	3.0	ND	i	01/03/06		
trans-1,2-Dichloroethene	EPA 624	6A03022	0.27	2.0	ND	1	01/03/06	01/04/06 01/04/06	
1,2-Dichloropropane	EPA 624	6A03022	0.35	2.0	ND	i	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01/04/06	
cis-1,3-Dichloropropene	EPA 624	6A03022	0.22	2.0	ND	i	THE RESERVE THE PROPERTY.	01/04/06	
trans-1,3-Dichloropropene	EPA 624	6A03022	0.32	2.0	ND	ì		01/04/06	1
Ethylbenzene	EPA 624	6A03022	0.25	2.0	ND	1			1
Methylene chloride	EPA 624	6A03022	0.51	5.0	ND	i		01/04/06	
1.1.2.2-Tetrachicenethane	EPA 624	6A03022	0.24	2.0	ND	1		01/04/06	_
Tetrachloroethene	EPA 624	6A03022	0.32	2.0	ND	1		01/04/06	L
Toluene	EPA 624	6A03022	0.36	2.0	ND	1		01/04/06	į
1,1-Trichloroethane	EPA 624	6A03022	0.30	2.0	מא	1		01/04/06	-
1,1,2-Trichloroethane	EPA 624	6A03022	0.30	2.0	ND	Ī		01/04/06	j
Trichlorocinene	EPA 624	6A03022	0.26	5.0	ND	1		01/04/06	.
Trichlerofluoromethane	EPA 624	6A03022	0.34	5.0	ND				
Vinyl chloride	EPA 624	6A03022	0.26	5.0	ND			01/04/06	
Xylenes, Total	EPA 624	6A03022	0.52	4.0	ND	1		01/04/06	,
Surrogate: Dibromofluoromethane (80)	120%)		-rungeau	-2445	109 %	-#	0.1103100	OTTONION A	
Surrogate: Toluene-d8 (80-120%)	-				109 %				
Surrogate: 4-Itromofluorobenzene (80-	120%)				102 %				

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced.

IPA0102 < Page 3 of 45>

10

17461 Derian Ave., Suite 100, ItVine, CA 92614 (949) 261-1022 FAX (949) 260-3297
1014 E. Cooley Ot., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
9464 Chesspeairr Dr., Suite 805, San Diego, CA 92173 (858) 505-8396 FAX (856) 505-9689
9030 South 5193 St., Suite 8-120, Promite, AZ 83044 (460: 785-004) FAX (480) 785-0651
2520 E. Sunset Rd. #3, Las Vogas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Roceived: 01/03/06

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit				Date Analyzed	Data Qualificite
Sample ID: IPA0102-01 (009 Splin Reporting Units: ug/l	•								yal quality
1,2-Dichioro-1,1,2-trifluoroethanc	EPA 624 (MOD.)	6A03022	NΑ	2.5	ND	1	01/03/06	01/04/06	NT *10
Cyclohexanc	EPA 624 (MOD.)	6A03022	N/A	2.5	ND	1	01/03/06	*	

Del Mar Analytical, Irvine Michele Chamberlin Project Manager Leve II

The results periain only in the samples tested in the laboratory. This report shall not be reproduced, cxcept in full, without written permission from Del Mar Analytical. IPAG102 < Page 4 of 45>

11

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA MECX, LLC Package ID <u>B4WC22</u> 12260 East Vassar Drive Task Order <u>1261.001D.01</u> Suite 500 SDG No. IPA0102 Lakewood, CO 80226 No. of Analyses 1 Laboratory Del Mar - Irvine Date: February 17, 2006 Reviews Signature A Reviewer E. Wessling Analysis/Method General Minerals **ACTION ITEMS*** Case Narrative Deficiencies 2. Out of Scope Analyses 3. Analyses Not Conducted 4. Missing Hardcopy Deliverables 5. Incorrect Hardcopy **Deliverables** 6. Deviations from Analysis Qualifications were assigned for the following: Protocol, e.g., - estimated values between the RL and MDL **Holding Times** GC/MS Tune/Inst. Performance Calibration Method blanks Surrogates Matrix Spike/Dup LCS Field QC Internal Standard Performance Compound Identification Quantitation System Performance COMMENTS^b Subcontracted analytical laboratory is not meeting contract and/or method requirements. b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 009 LARWQCB Splits

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUP: IPA0102

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

NPDES

DATA VALIDATION REPORT

SDG: IPA0102 Analysis:

Gen. Min.

1. INTRODUCTION

Task Order Title:

NPDES Sampling

MEC^X Project Number:

1261.001D.01

Sample Delivery Group:

IPA0102

Project Manager:

P. Costa

Matrix:

Water

Analysis:

General Minerals

QC Level:

Level IV

No. of Samples:

No. of Reanalyses/Dilutions:

Reviewer:

E. Wessling

Date of Review:

February 17, 2006

The sample listed in Table 1 was validated based on the guidelines outlined in the MECX Data Validation Procedure for General Minerals (DVP-6, Rev. 0), USEPA Methods for Chemical Analysis of Water and Wastes Methods 120.1, 160.5, 335.2, 350.2, 405.1, and 415.1, and Standard Methods for the Examination of Water and Wastewater Method SM5540-C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form Is as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

NPDES

SDG: Analysis: IPA0102 Gen. Min.

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 009	IPA0102-01	Water	General Minerals

NPDES

DATA VALIDATION REPORT

SDG: Analysis: IPA0102 Gen. Min.

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4° C \pm 2° C. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and all analyses presented in this SDG. As the sample was couriered directly from the field to the laboratory, custody seals were not necessary.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analysis. All samples were analyzed within the method specified holding times. No qualifications were required.

2.2 CALIBRATION

For all applicable analyses, the initial calibration correlation coefficients were ≥0.995 and the ICV and CCV recoveries were within the control limits of 90-110%. No qualifications were required.

2.3 BLANKS

There were no detects in the method blanks or CCBs associated with the sample analyses. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The reported LCS recoveries were within the laboratory-established control limits. No qualifications were required.

B4WC22

3

Revision 0

Project: SDG: **NPDES**

DATA VALIDATION REPORT

Analysis:

IPA0102 Gen. Min.

2.5 LABORATORY DUPLICATES

Duplicate analyses were performed on Outfall 009 for total cyanide only. The RPD was less than the laboratory control limit of \leq 20%. No qualifications were required.

2.6 MATRIX SPIKES

MS/MSD analysis was performed in association with the total cyanide analysis on the Outfall 009 sample. Assessment was made with respect to this criterion for total cyanide only. The total cyanide recoveries were within QC limits (70-115%); therefore, no qualifications were required. Evaluation of method accuracy was based on LCS results for all other analyses. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Results reported by the laboratory between the MDL and reporting limit were qualified as estimated "J" values and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No further qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (838) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0853 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Sampled: 01/03/06

Pasadena, CA 91101

Report Number: IPA0102

Received: 01/03/06

INORGANICS

A CAROLATECO										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data I Qualifier	1.5
Sample ID: IPA0102-01 (009 Split Reporting Units: mg/i	- Water) - cont.								and a	654
Ammonia-N (Distilled)	EPA 350.2	6A05098	0.30	0.50	ND	1	01/05/06	01/05/06	u	
Biochemical Oxygen Demand	EPA 405.1	6A04062	0.59	2.0	0.90	1	01/04/06	01/09/06	1 1	DWG
Fluoride 🚁	EPA. 300.0	6A03051	0.10	0.50	0.29	1	01/03/06	01/03/06	-	
Hardness (as CaCO3) 🔭	SM2340B	6A04092	1.0	1.0	140	1	01/04/06	01/05/06		•
Nitrate/Nitrite-N 💝	EPA 300.0	6A03051	0.072	0.26	2.7	1	01/03/06	01/03/06		
Sulfate 💸	EPA 300.0	6A03051	0.18	0.50	52	1	01/03/06	01/03/06		
Surfactants (MBAS)	SM5540-C	6A03114	0.044	0.10	ND	1	01/03/06	01/03/06	u	;
Total Dissolved Solids	SM2540C	6A04107	10	10	260	1	01/04/06	01/04/06		1
Total Organic Carbon	EPA 415.1	6A06094	0.25	1.0	9.1	1	01/06/06	01/06/06		-
Total Suspended Solids	EPA 160.2	6A06118	10	10	ND	1	01/06/06	01/06/06	×	ron tory designate

* analysis not valuables

LEVEL IV

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Analyte

Attention: Bronwyn Kelly

Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Batch

Sampled: 01/03/06

Received: 01/03/06

INORGANICS

Limit Limit

MDL Reporting Sample Dilution Date

Date

Data Result Factor Extracted Analyzed Qualifiers

Sample ID: IPA0102-01 (009 Split - Water) - cont.

Reporting Units: ml/l/hr

Total Settleable Solids

EPA 160.5

Method

6A04072 0.10

0.10

ND

01/04/06 01/04/06

(24.4

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st SL, Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Project ID: LARWQCB Sample Splits

Outfall 009

Report Number: IPA0102

Sampled: 01/03/06

Received: 01/03/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit				Date Analyzed	Data Qualifiers	Service.
Sample ID: IPA0102-01 (009 Sp Reporting Units: ug/l	olit - Water) - cont.				4				1200 J	
Total Cyanide Perchlorate	EPA 335.2 EPA 314.0	6A06111 6A04078	2.2 0.80	5.0 4.0	3.4 ND	1	01/06/06 01/04/06	01/09/06 01/04/06	17	DNG

17461 Derian Ave., Suite 100, Irvîne, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0653 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: LARWQCB Sample Splits

300 North Lake Avenue, Suite 1200

Outfall 009

Sampled: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly

Report Number: IPA0102

Received: 01/03/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		,	-	Data Qualifiers	
Sample ID: IPA0102-01 (009 Split - Reporting Units: umbos/em	Water) - cont.							•	Revo	Coax
Specific Conductance	EPA 120.1	6A04105	1.0	1.0	420	1	01/04/06	01/04/06	The state of the s	,

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

APPENDIX G

Section 35

Outfall 010, January 02, 2006

Del Mar Analytical Laboratory Report

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project: Routine Outfall 010

Sampled: 01/02/06 Received: 01/02/06

Issued: 01/16/06 14:56

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED:

Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

CLIENT ID

MATRIX

IPA0016-01

Outfall 010

Water

Reviewed By:

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

any Windham

Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-659 FAX (858) 505-689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0831 2520 E. Suitse Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX 702) 798-3620

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0016

Sampled: 01/02/06 Received: 01/02/06

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0016-01 (Outfall 010 -	Water)								
Reporting Units: ug/l									
Antimony	EPA 200.8	6A04084	0.050	2.0	0.47	1	01/04/06	01/05/06	B, J
Cadmium	EPA 200.8	6A04084	0.025	1.0	0.042	1	01/04/06	01/05/06	J
Copper	EPA 200.8	6A04084	0.25	2.0	3.2	1	01/04/06	01/05/06	В
Lead	EPA 200.8	6A04084	0.040	1.0	1.1	1	01/04/06	01/05/06	
Mercury	EPA 245.1	6A03072	0.050	0.20	ND	1	01/03/06	01/03/06	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0016

Sampled: 01/02/06

Received: 01/02/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0016-01 (Outfall 010	- Water) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	6A03053	0.15	0.50	10	1	01/03/06	01/03/06	
Nitrate/Nitrite-N	EPA 300.0	6A03053	0.080	0.15	0.44	1	01/03/06	01/03/06	
Oil & Grease	EPA 413.1	6A06048	0.90	4.8	1.9	1	01/06/06	01/06/06	J
Sulfate	EPA 300.0	6A03053	0.45	0.50	7.2	1	01/03/06	01/03/06	
Total Dissolved Solids	SM2540C	6A03093	10	10	130	1	01/03/06	01/03/06	
Total Suspended Solids	EPA 160.2	6A05110	10	10	21	1	01/05/06	01/05/06	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0016

Sampled: 01/02/06 Received: 01/02/06

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 010 (IPA0016-01) - Wate	Hold Time	Date/Time	Date/Time	Date/Time	Date/Time
	(in days)	Sampled	Received	Extracted	Analyzed
EPA 300.0	2	01/02/2006 08:45	01/02/2006 13:30	01/03/2006 09:00	01/03/2006 09:10

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0016

Sampled: 01/02/06 Received: 01/02/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

METALS

Blank Analyzed: 01/03/2006 (6A03072-BLK1)			Reporting			Spike	Source		%REC		RPD	Data
Blank Analyzed: 01/03/2006 (6A03072-BLK1) ND	Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Mercury ND 0.20 0.063 ug/l	Batch: 6A03072 Extracted: 01/03/06	_										
Mercury ND 0.20 0.063 ug/l												
Matrix Spike Analyzed: 01/03/2006 (6A03072-MS1)	Blank Analyzed: 01/03/2006 (6A03072-B	LK1)										
Mercury 7.95 0.00 0.063 ug/l 8.00 99 85-115 Matrix Spike Analyzed: 01/03/2006 (6A03072-MS1) Source: IOL2-IT-01 Matrix Spike Dup Analyzed: 01/03/2006 (6A03072-MS1) Source: IOL2-IT-01 Matrix Spike Dup Analyzed: 01/03/2006 (6A03072-MS1) Source: IOL2-IT-01 Matrix Spike Dup Analyzed: 01/03/2006 (6A04084-BSLK) Substitution of the Colspan="8">Source: IOL2-IT-01 Batch: 6A04084 Extracted: 01/04/05 Batch: 6A04084-BSLK) Antimony 0.162 2.0 0.050 ug/l	Mercury	ND	0.20	0.063	ug/l							
Mercury 7.95 0.00 0.063 ug/l 8.00 99 85-115 Matrix Spike Analyzed: 01/03/2006 (6A03072-MS1) Source: IOL2-IT-01 Matrix Spike Dup Analyzed: 01/03/2006 (6A03072-MS1) Source: IOL2-IT-01 Matrix Spike Dup Analyzed: 01/03/2006 (6A03072-MS1) Source: IOL2-IT-01 Matrix Spike Dup Analyzed: 01/03/2006 (6A04084-BSLK) Substitution of the Colspan="8">Source: IOL2-IT-01 Batch: 6A04084 Extracted: 01/04/05 Batch: 6A04084-BSLK) Antimony 0.162 2.0 0.050 ug/l	LCS Analyzed: 01/03/2006 (6A03072-RS	n										
Matrix Spike Analyzed: 01/03/2006 (6A03072-MS1) Source: IOL2617-01 Matrix Spike Dup Analyzed: 01/03/2006 (6A03072-MSD1) Source: IOL2617-01 Matrix Spike Dup Analyzed: 01/03/2006 (6A03072-MSD1) Source: IOL2617-01 Mercury 8.00 0.063 ug/l 8.00 ND 10.0 70-130 1 20 0.063 ug/l 8.04 00.050 ND 1.0 0.025 ug/l	• ,	•	0.20	0.063	110/1	8.00		99	85-115			
Matrix Spike Dup Analyzed: 01/03/2006 (6A03072-MSD1)	•		V.W. 0	01002	-5.				05 115			
Matrix Spike Dup Analyzed: 01/03/2006 (6A03072-MSD1) Source: IOL 2617-01 Mercury 8.00 0.20 0.063 ug/l 8.00 ND 100 70-130 1 20 Blank Analyzed: 01/05/2006 (6A04084-BLK1) Antimony 0.162 2.0 0.050 ug/l	• • •	_										
Mercury 8.00 0.20 0.063 ug/l 8.00 ND 100 70-130 1 20	Mercury	7.95	0.20	0.063	ug/l	8.00	ND	99	70-130			
Blank Analyzed: 01/05/2006 (6A04084-BLKI)	Matrix Spike Dup Analyzed: 01/03/2006	(6A03072-MSI	D1)			Sou	rce: IOL2	2617-01				
Blank Analyzed: 01/05/2006 (6A04084-BLK1)	Mercury	8.00	0.20	0.063	ug/l	8.00	ND	100	70-130	1	20	
Blank Analyzed: 01/05/2006 (6A04084-BLK1)	Batch: 6404084 Fytracted: 01/04/06											
Antimony 0.162 2.0 0.050 ug/l	Battan Olivioor Davidetta, Vilonoo	-										
Cadmium ND 1.0 0.025 ug/l Copper 0.321 2.0 0.25 ug/l Lead ND 1.0 0.040 ug/l LCS Analyzed: 01/05/2006 (6A04084-BS1) Antimony 78.5 2.0 0.050 ug/l 80.0 98 85-115 Cadmium 80.2 1.0 0.025 ug/l 80.0 100 85-115 Copper 80.8 2.0 0.25 ug/l 80.0 101 85-115 Lead 78.3 1.0 0.040 ug/l 80.0 101 85-115 Matrix Spike Analyzed: 01/05/2006 (6A04084-MS1) Source: IOL2694-49 Matrix Spike Analyzed: 01/05/2006 (6A04084-MS1) Source: IOL2694-49 Antimony 78.2 2.0 0.050 ug/l 80.0 0.26 97 70-130 Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 <td>Blank Analyzed: 01/05/2006 (6A04084-B</td> <td>LK1)</td> <td></td>	Blank Analyzed: 01/05/2006 (6A04084-B	LK1)										
Copper	Antimony	0.162	2.0	0.050	ug/l							J
Lead ND 1.0 0.040 ug/l LCS Analyzed: 01/05/2006 (6A04084-BS1) Antimony 78.5 2.0 0.050 ug/l 80.0 98 85-115 Cadmium 80.2 1.0 0.025 ug/l 80.0 101 85-115 Copper 80.8 2.0 0.25 ug/l 80.0 101 85-115 Lead 78.3 1.0 0.040 ug/l 80.0 98 85-115 Matrix Spike Analyzed: 01/05/2006 (6A04084-MS1) Source: IOL2694-49 Antimony 78.2 2.0 0.050 ug/l 80.0 0.26 97 70-130 Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	Cadmium	ND	1.0	0.025	ug/l							
LCS Analyzed: 01/05/2006 (6A04084-BS1) Antimony 78.5 2.0 0.050 ug/l 80.0 98 85-115 Cadmium 80.2 1.0 0.025 ug/l 80.0 100 85-115 Copper 80.8 2.0 0.25 ug/l 80.0 101 85-115 Lead 78.3 1.0 0.040 ug/l 80.0 98 85-115 Matrix Spike Analyzed: 01/05/2006 (6A04084-MS1) Antimony 78.2 2.0 0.050 ug/l 80.0 0.26 97 70-130 Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	Copper	0.321	2.0	0.25	ug/l							J
Antimony 78.5 2.0 0.050 ug/l 80.0 98 85-115 Cadmium 80.2 1.0 0.025 ug/l 80.0 100 85-115 Copper 80.8 2.0 0.25 ug/l 80.0 101 85-115 Lead 78.3 1.0 0.040 ug/l 80.0 98 85-115 Matrix Spike Analyzed: 01/05/2006 (6A04084-MS1) Source: IOL2694-49 Antimony 78.2 2.0 0.050 ug/l 80.0 0.26 97 70-130 Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	Lead	ND	1.0	0.040	ug/l							
Cadmium 80.2 1.0 0.025 ug/l 80.0 100 85-115 Copper 80.8 2.0 0.25 ug/l 80.0 101 85-115 Lead 78.3 1.0 0.040 ug/l 80.0 98 85-115 Matrix Spike Analyzed: 01/05/2006 (6A04084-MS1) Source: IOL2694-49 Antimony 78.2 2.0 0.050 ug/l 80.0 0.26 97 70-130 Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	LCS Analyzed: 01/05/2006 (6A04084-BS)	l)										
Copper 80.8 2.0 0.25 ug/l 80.0 101 85-115 Lead 78.3 1.0 0.040 ug/l 80.0 98 85-115 Matrix Spike Analyzed: 01/05/2006 (6A04084-MS1) Source: IOL2694-49 Antimony 78.2 2.0 0.050 ug/l 80.0 0.26 97 70-130 Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	Antimony	78.5	2.0	0.050	ug/l	80.0		98	85-115			
Lead 78.3 1.0 0.040 ug/l 80.0 98 85-115 Matrix Spike Analyzed: 01/05/2006 (6A04084-MS1) Source: IOL2694-49 Antimony 78.2 2.0 0.050 ug/l 80.0 0.26 97 70-130 Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	Cadmium	80.2	1.0	0.025	ug/l	80.0		100	85-115			
Matrix Spike Analyzed: 01/05/2006 (6A04084-MS1) Source: IOL2694-49 Antimony 78.2 2.0 0.050 ug/l 80.0 0.26 97 70-130 Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	Соррег	80.8	2.0	0.25	ug/l	80.0		101	85-115			
Antimony 78.2 2.0 0.050 ug/l 80.0 0.26 97 70-130 Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	Lead	78.3	1.0	0.040	ug/l	80.0		98	85-115			
Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	Matrix Spike Analyzed: 01/05/2006 (6A04	1084-MS1)				Sour	ce: IOL2	694-49				
Cadmium 76.0 1.0 0.025 ug/l 80.0 ND 95 70-130 Copper 102 2.0 0.25 ug/l 80.0 23 99 70-130	Antimony	78.2	2.0	0.050	ug/l	80.0	0.26	97	70-130			
	Cadmium	76.0	1.0	0.025	_	80.0		95	70-130			
Lead 84.3 1.0 0.040 ug/l 80.0 2.7 102 70-130	Copper	102	2.0	0.25	ug/l	80.0	23	99	70-130			
	Lead	84.3	1.0	0.040	ug/l	80.0	2.7	102	70-130			

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Report Number: IPA0016

Sampled: 01/02/06

Received: 01/02/06

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Oualifiers
Batch: 6A04084 Extracted: 01/04/06		*ASSESSED		Cinto	Devel	recourt	/ U	AJAMATA	141 1	Dimit	Quantities
Makein Cuite Ameliana Astronyono (CAG					C	¥OT ′	2604 50				
Matrix Spike Analyzed: 01/05/2006 (6A0	4084-MS2)				50u	rce: IOL	6094-3 0				
Antimony	80.0	2.0	0.050	ug/l	80.0	0.094	100	70-130			
Cadmium	76.2	1.0	0.025	ug/l	80.0	ND	95	70-130			
Copper	101	2.0	0.25	ug/l	80.0	18	104	70-130			
Lead	87.5	1.0	0.040	ug/l	80.0	1.8	107	70-130			
Matrix Spike Dup Analyzed: 01/05/2006	(6A04084-M	SD1)			Sou	rce: IOL2	2694-49				
Antimony	76.7	2.0	0.050	ug/l	80.0	0.26	96	70-130	2	20	
Cadmium	76.1	1.0	0.025	ug/l	80.0	ND	95	70-130	0	20	
Copper	101	2.0	0.25	ug/l	80.0	23	98	70-130	I	20	
Lead	83.9	1.0	0.040	ug/l	80.0	2.7	102	70-130	1	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 305-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0016

Sampled: 01/02/06 Received: 01/02/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03053 Extracted: 01/03/06	_										
	-										
Blank Analyzed: 01/03/2006 (6A03053-B	LK1)										
Chloride	ND	0.50	0.26	mg/l							
Nitrate/Nitrite-N	ND	0.15	0.080	mg/l							
Sulfate	ND	0.50	0.18	mg/l							
LCS Analyzed: 01/03/2006 (6A03053-BS)	i)										
Chloride	4.97	0.50	0.26	mg/l	5.00		99	90-110			
Sulfate	10.2	0.50	0.18	mg/l	10.0		102	90-110			
Matrix Spike Analyzed: 01/03/2006 (6A0)	3053-MS1)				Sour	rce: IPA0	016-01				
Chloride	15.1	0.50	0.26	mg/l	5.00	10	102	80-120			
Sulfate	17.5	0.50	0.18	mg/l	10.0	7.2	103	80-120			
Matrix Spike Dup Analyzed: 01/03/2006	(6A03053-MSI	D 1)			Soui	rce: IPA0	016-01				
Chloride	15.1	0.50	0.26	mg/l	5.00	10	102	80-120	0	20	
Sulfate	17.4	0.50	0.18	mg/l	10.0	7.2	102	80-120	1	20	
Batch: 6A03093 Extracted: 01/03/06											
	•										
Blank Analyzed: 01/03/2006 (6A03093-BI	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/03/2006 (6A03093-BS1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/03/2006 (6A03093	-DUP1)				Sour	ce: IPA0	005-01				
Total Dissolved Solids	981	10	10	mg/l		980			0	10	

Del Mar Analytical, Irvine

Amy Windham For Michele Chamberlin

Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IPA0016

Attention: Bronwyn Kelly

Sampled: 01/02/06 Received: 01/02/06

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A05110 Extracted: 01/05/06	Ĺ										
Blank Analyzed: 01/05/2006 (6A05110-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/05/2006 (6A05110-BS	1)										
Total Suspended Solids	965	10	10	mg/l	1000		96	85-115			
Duplicate Analyzed: 01/05/2006 (6A0511	0-DUP1)				Sou	rce: IPA0	025-01				
Total Suspended Solids	382	10	10	mg/l		380			I	10	
Batch: 6A06048 Extracted: 01/06/06	_										
Blank Analyzed: 01/06/2006 (6A06048-B	LK1)										
Oil & Grease	ND	5.0	0.94	mg/I							
LCS Analyzed: 01/06/2006 (6A06048-BS	1)										M-NR1
Oil & Grease	19.2	5.0	0.94	mg/l	20.0		96	65-120			
LCS Dup Analyzed: 01/06/2006 (6A0604	8-BSD1)										
Oil & Grease	19.6	5.0	0.94	mg/l	20.0		98	65-120	2	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 01/02/06 Pasadena, CA 91101 Report Number: IPA0016 Received: 01/02/06

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IPA0016-01	413.1 Oil and Grease	Oil & Grease	mg/l	1.90	4.8	15
IPA0016-01	Chloride - 300.0	Chloride	mg/l	10.00	0.50	150
IPA0016-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.44	0.15	10.00
IPA0016-01	Sulfate-300.0	Sulfate	mg/l	7.20	0.50	250
IPA0016-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	130	10	850

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 503-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200

Sampled: 01/02/06 Pasadena, CA 91101 Received: 01/02/06 Report Number: IPA0016

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

В Analyte was detected in the associated Method Blank.

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Sampled: 01/02/06

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0016 Received: 01/02/06

Attention: Bronwyn Kelly

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 160.2	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IPA0016-01

Analysis Performed: EDD + Level 4

Samples: IPA0016-01

Series Name / Address	/Adrires	Client Mamo/Address: Project		Project						The state of the s	ANALY	ANAL TOID RECOINED	1		
	} •	ś		Boeing-SSFL NPDES	DES	L	:s		1.					Field readings:	
MWH-Pasadena 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101	adena ce Avenu a 91101	e, Suite 12	8	Stormwater at Building 203	ulding 203		e Meta gl							Temp = 5.5.	'3 '3
Project Manager: Bronwyn Kelly Sampler: (2 2 75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ager. B	ger. Bronwyn Ke Ergenes	<u>≥</u>	Phone Number: (626) 568-8691 Fax Number: (626) 568-6515			il Recoverabli Cd, Cu, Pb, H	O (and all co Grease (EP	SO4, NO3+N	SST ,			/ 12	to some	
	Sample	Container	A O	Sampling Date/Time	Preservative	Bottle *	stoT ,d2								
Outfall 010	X X	Poly-1L	-	20-20-06	HNO3	44	×	1	_				***************************************		
Outfall 010-	3	Poly-1L	-		HNO3	æ	×		_						
Outfall 010	8	Glass-	7		None	2A, 2B		×				1			ALEXANDER OF THE PROPERTY OF T
Outfall 010	*	Glass	2	The state of the s	亨	3A, 3B			×						
Outfall 010	×	Poly-500	7	2,02.0	None	4A, 4B			×		_				Average of the feet of the fee
Outfall 010	3	Poly-500	2	20.10.10	None	5A, 5B				×					
Reinquished By Reinquished By Reinquished By Reinquished By	Serves Serves Sed By	The state of the s		Date/Time:	Received By Received By Received By			DateTime: DateTime:		1 1 1 1 5 1		3 .	Turn arour 24 Hours 72 Hours Perchlora Perchlora	Turn around Time: (check) 24 Hours 10 Days 42 Hours 10 Days 72 Hours Normal Perchlorate Only 72 Hours	
		abelian and the second					<u> </u>	20 2		200			Sample a	Sample integrity (Check) Intact On los:	H

January 17, 2006

Alta Project I.D.: 27128

Ms. Michele Chamberlin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on January 04, 2006 under your Project Name "IPA0016". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely.

Martha M. Maier

Director of HRMS Services

Series IN ACCOMPANY

Alta Analytical Lal oratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test mestuds. This report should not be reproduced except in full without the written approval—of ALTA.

Section I: Sample Inventory Report

Date Received:

1/4/2006

Alta Lab. ID

Client Sample ID

27128-001

IPA0016-01

SECTION II

Page 3 of 225

Method Blank				EPA Method 1613
Matrix: Aqueous	QC Batch No.:	7632	Lab Sample: 0-MB001	
Sample Size: 1.00 L	Date Extracted:	8-Jan-06	Date Analyzed DB-5: 11-Jan-06	Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	a pr	EMPC ^b Qualifiers	Labeled Standard	%R LCL-UCL ^d Qualifiers
2,3,7,8-TCDD ND	0.00000671		IS 13C-2.3.7.8-TCDD	84.0 25 - 164
1,2,3,7,8-PeCDD ND	0.000000560		13C-1,2,3,7,8-PeCDD	78.7 25 - 181
1,2,3,4,7,8-HxCDD ND	0.00000149		13C-1,2,3,4,7,8-HxCDD	81.9 32 - 141
1,2,3,6,7,8-HxCDD ND	0.00000147		13C-1,2,3,6,7,8-HxCDD	74.4 28 - 1.30
1,2,3,7,8,9-HxCDD ND	0.00000145		13C-1,2,3,4,6,7,8-HpCDD	75.6 23 - 140
1,2,3,4,6,7,8-HpCDD ND	0.00000146		13C-0CDD	40.1 17 - 157
OCDD	0.00000535		13C-2,3,7,8-TCDF	82.6 24 - 169
2,3,7,8-TCDF ND	0.000000546		13C-1,2,3,7,8-PeCDF	65.3 24 - 185
1,2,3,7,8-PeCDF ND	0.00000112		13C-2,3,4,7,8-PeCDF	71.3 21 - 178
2,3,4,7,8-PeCDF ND	0.000000885		13C-1,2,3,4,7,8-HxCDF	73.7 26 - 152
1,2,3,4,7,8-HxCDF ND	0.000000511		13C-1,2,3,6,7,8-HxCDF	70.0 26 - 123
1,2,3,6,7,8-HxCDF ND	0.000000518		13C-2,3,4,6,7,8-HxCDF	78.0 28 - 136
2,3,4,6,7,8-HxCDF ND	0.000000522		13C-1,2,3,7,8,9-HxCDF	79.2 29 - 147
1,2,3,7,8,9-HxCDF ND	0.000000675		13C-1,2,3,4,6,7,8-HpCDF	64.7 28 - 143
1,2,3,4,6,7,8-HpCDF ND	0.000000764		13C-1,2,3,4,7,8,9-HpCDF	76.3 26 - 138
1,2,3,4,7,8,9-HpCDF ND	0.000000622			17
OCDF	0.00000360		CRS 37Cl-2,3,7,8-TCDD	88.7 35 - 197
Totals			Footnotes	
Total TCDD ND	0.000000671		a. Sample specific estimated detection limit.	
	•		b. Estimated maximum possible concentration.	
Total HXCDU	0.00000147		c. Meinod detection limit.	w
	0.00000140		ti. LOWEI CORRUS IRRIR " Upper Correct Imm.	
Total Pacing ND	0.00000340			
-	0.00000053	2. 2. 2.		
•	0.000000692			
Analyst: JMH			Approved By: Martha M. Maier	Aaier 17-Jan-2006 11:16

Project 27128

OPR Results					EPA	EPA Method 1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	7632 8-Jan-06	Lab Sample: 0-OPR001 Date Analyzed DB-5: 11-Jan-06	Date Analyzed DB-225:	d DB-225: NA
Analyte	Spike Conc.	Spike Conc. Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	TCL-UCL
7.3.7.8-TCDD	10.0	8.44	6.7 - 15.8	IS 13C-2,3,7,8-TCDD	66.2	25 - 164
1,2,3,7,8-PeCDD	20.0	48.8	35 - 71	13C-1,2,3,7,8-PeCDD	70.5	25 - 181
1,2,3,4,7,8-HxCDD	20.0	48.8	35-82	13C-1,2,3,4,7,8-HxCDD	68.7	32 - 141
1,2,3,6,7,8-HxCDD	50.0	46.7	38 - 67	13C-1,2,3,6,7,8-HxCDD	65.6	28 - 130
1,2,3,7,8,9-HxCDD	20.0	48.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	70.6	23 - 140
1,2,3,4,6,7,8-HpCDD	20.0	47.2	35 - 70	13C-0CDD	49.9	17 - 157
OCDD	100	95.4	78 - 144	13C-2,3,7,8-TCDF	62.9	24 - 169
2,3,7,8-TCDF	10.0	9.58	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	63.1	24 - 185
1,2,3,7,8-PeCDF	20.0	46.6	40 - 67	13C-2,3,4,7,8-PeCDF	64.2	21 - 178
2,3,4,7,8-PeCDF	20.0	48.4	34 - 80	13C-1,2,3,4,7,8-HxCDF	65.4	26 - 152
1,2,3,4,7,8-HxCDF	20.0	47.6	36 - 67	13C-1,2,3,6,7,8-HxCDF	63.8	26 - 123
1,2,3,6,7,8-HxCDF	50.0	48.7	42 - 65	13C-2,3,4,6,7,8-HxCDF	6.79	28 - 136
2,3,4,6,7,8-HxCDF	50.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	70.4	29 - 147
1,2,3,7,8,9-HxCDF	50.0	47.3	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	63.1	28 - 143
1,2,3,4,6,7,8-HpCDF	20.0	48.5		13C-1,2,3,4,7,8,9-HpCDF	1.07	26 - 138
1,2,3,4,7,8,9-HpCDF	20.0	48.4	39 - 69	13C-OCDF	56.4	17-157
OCDF	100	2.6	63 - 170	CRS 37CI-2,3,7,8-TCDD	81.7	35 - 197

Approved By: Martha M. Maier 17-Jan-2006 11:16

Analyst: JMH

Sample 1D: IPA0016-01	16-01							EPA M	EPA Method 1613
Client Data			Sample Data		Laboratory Data				
	Del Mar Analytical, Irvine		Matríx;	Aqueous	Lab Sample:	27128-001	Date Received:	eived:	4-Jan-06
Project: 17A(010 Date Collected: 2-Jan-06	9		Sample Size:	1.02 L	`	7632	Date Extracted:	acted:	8-Jan-06
Time Collected: 0845					Date Analyzed DB-5:	11-Jan-06	Date Anal	Date Analyzed DB-225:	ž
Analyte Co	Conc. (ug/L)	Df. a	EMPCb	Qualifiers	Labeled Standard		%R	rcr-ncr _q	Oualifiers
2.3,7,8-TCDD	QN	0.000000711			LS 13C-2,3,7,8-TCDD		76.4	25 - 164	
1,2,3,7,8-PeCDD	QN	0.00000111	_		13C-1,2,3,7,8-PeCDD	Q	80.8	25 - 181	_
1,2,3,4,7,8-HxCDD	Q	0.00000178			13C-1,2,3,4,7,8-HxCDD	CDD	80.3	32 - 141	
1,2,3,6,7,8-HxCDD	QN.	0.00000188	~		13C-1,2,3,6,7,8-HxCDD	CDD	9.92	28 - 130	
1,2,3,7,8,9-HxCDD	Ð	0.00000179	cr.		13C-1,2,3,4,6,7,8-HpCDD	pCDD	81.9	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000518				13C-OCDD		60.1	17 - 157	
ОСОО	0.000485		÷		13C-2,3,7,8-TCDF		75.6	24 - 169	
2,3,7,8-TCDF	QN	0.000000065	65		13C-1,2,3,7,8-PeCDF	Ŧ	74.3	24 - 185	
1,2,3,7,8-PeCDF	R	0.00000219	0		13C-2,3,4,7,8-PeCDF	<u>u</u>	74.0	21 - 178	
2,3,4,7,8-PeCDF	Q.	0.00000189	6		13C-1,2,3,4,7,8-HxCDF	CDF	75.4	26 - 152	
1,2,3,4,7,8-HxCDF	Q	0.00000136	9		13C-1,2,3,6,7,8-HxCDF	CDF	71.3	26 - 123	
1,2,3,6,7,8-HxCDF	QN	0.00000136	9		13C-2,3,4,6,7,8-HxCDF	CDF	77.8	28 - 136	
2,3,4,6,7,8-HxCDF	Q	0.00000146	. 9		13C-1,2,3,7,8,9-HxCDF	CDF	9.08	29 - 147	
1,2,3,7,8,9-HxCDF	QN	0.00000195	5		13C-1,2,3,4,6,7,8-HpCDF	pCDF	73.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.0000158			-	13C-1,2,3,4,7,8,9-HpCDF	pCDF	81.4	26 - 138	
1,2,3,4,7,8,9-HpCDF	QN	0.00000770	0	,	13C-OCDF		0.79	17 - 157	
OCDF	0.000154				CRS 37Cl-2,3,7,8-TCDD		78.3	35 - 197	
Totals					Footnotes				
Total TCDD	QN	0.000000711	111	1	a. Sample specific estimated detection limit.	tection limit.			
Total PeCDD	Ę	0.00000104	4		b. Estimated maximum possible concentration.	concentration.			
Total HxCDD	0.00000640				c. Method detection limit.				
Total HpCDD	0.000112				d. Lower control limit - upper control limit.	ontrol limit.	÷		
Total TCDF	ON ON	0.000000967	19						
Total PeCDF	S	0.00000204	4						
Total HxCDF	QN	0.00000152	2						
Total HpCDF	0.0000409								
Analyst: JMH					Approved By:	Martha M. Maier		17-Jan-2006 11:16	

APPENDIX

Page 7 of 225

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

I Chemical interference

J The amount detected is below the Lower Calibration Limit of the instrument.

See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEO Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E 87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

1 L Amber (IPA0016-01C) 1 L Amber (IPA0016-01D) 17461 Derian Ave. Suite 100, Irvina, CA 92614 1014 E. Cooley Dr., Suite A. Cotton, CA 92324

Ph (909) 370-4657 Ph (619) 505-9596

Ph (949) 261-1022 Fax (949) 261-1228 Fax (909) 370-1046

Ph (702) 798-3620

SUBCONTRACT ORDER - PROJECT # IPA0016

Del Mar Analytical, Irv 17461 Derian Avenue. Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Miche	Suite 100	RECEIVING Alta Analytical - SUB 1104 Windfield Way El Dorado Hills, CA 95762 Phone :(916) 933-1640 Fax: (916) 673-0106	27128
Standard TAT is requ	ested unless specific due date is rec	quested ⇒ Due Date:	Initials:
Analysis	Expiration	Comments	
Sample ID: IPA0016-01 1613-Dioxin-HR-Alta EDD + Level 4	Water Sampled: 01/02/06 08:- 01/09/06 08:45 01/30/06 08:45	Instant Notication J flags,17 congeners,no TEQ,ug/L,su Excel EDD email to pm,Include Std l	
Containers Supplied:			

	 	·		SAMPL	e integri	ΓY:		
All containers intact Custody Seals Prese	 	□ No □ No)	-	le labels/COC agree: es Preserved Properly	Yes	□ No	Samples Received On Ice:: E	l Yes 🖸 No
(4	(UI)		1/3/06		Better	raiX	Benedict 4 1/4/0	6 0935
Released By	1		Date	Time	Received By	,	Daté / /	Time
Released By			Date	Time	Received By	7	Date	Time
Project 27128								Pa pa gl0 p6 23 5

SAMPLE LOG-IN CHECKLIST

Alta Project #:	27	28
Auta Fivjeoum.		

Samples Arrival:	Date/Time	no 093	Initials:	IB	Location: WR -	· Y
Logged In:	Date/Time	142	Initials:	B	Location: WR	-8
Delivered By:	FedEx	UPS	Cal	DHL	Hand Delivered	Other
Preservation:	Ice	Blu	ie Ice	Dry I	ce N	one
Temp °C		Time: 🕜	950		Thermometer II	D: DT-20

					YES	NO	NA
Adequate Sample Volume Received?		*			V/		
Holding Time Acceptable?					V	Ì	
Shipping Container(s) Intact?					V		
Shipping Custody Seals Intact?					V	<u> </u>	
Shipping Documen:ation Present?					. 1/		
	47	103 4	172		1/		
Sample Container Intact?					V	<u> </u>	
Sample Custody Seals Intact?			ļ	✓			
Chain of Custody / Sample Documer		1	ļ.,,	<u> </u>			
COC Anomaly/Sample Acceptance F			/				
If Chlorinated or Drinking Water Sam				V			
Na ₂ S ₂ O ₃ Preservation Documented?			coc		nple ainer	No	one
Shipping Container	Alta	(Client)	Retain	(Re	turn)	Dis	pose

Comments:

.

APPENDIX G

Section 36

Outfall 010, January 02, 2006 AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

			Package ID	B4MT4
ME	D ^X		Task Order	1261.001 D .01
1226	69 East Vassar Drive		SDG No.	IPA0016
Auro	ora, CO 80014		No. of Analyses	1
	Laboratory Del Mar Ar	nalytical	Date: Februa	ary 3, 2006
	Reviewer P. Meeks		Reviewer	ignature
	Analysis/Method Metals		- p. mes	7
AC1	TON ITEMS*			
-	Case Narrative			
	Deficiencies			
2.	Out of Scope			
	Analyses			
			· · · · · · · · · · · · · · · · · · ·	
3.	Analyses Not Conducted			
4.	Missing Hardcopy			
	Deliverables			

	<u></u>			
5.	Incorrect Hardcopy			
	Deliverables			
	,		 	<u> </u>
6.	Deviations from Analysis	Qualification applied for a	atimam: datacted in	the method blank
Ο.	• •	Analytes detected below th	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Protocol, e.g., Holding Times	Analytes detected below in	ie reporting mair we	or quantica as estimateat.
	GC/MS Tune/Inst. Performance			······································
	Calibration			
	Method blanks			
	Surrogates			
	Matrix Spike/Dup LCS		·	
	Field QC			· · · · · · · · · · · · · · · · · · ·
	Internal Standard Performance			
	Compound Identification			and the first of t
	Quantitation			
	System Performance			
CO	MMENTS ^b			
* St	bcontracted analytical laboratory is not n	necting contract and/or method requir	rements.	

^b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 010

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IPA0016

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG:

NPDES IPA0016

Analysis:

Metals

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title:

NPDES Sampling

MEC^X Project Number:

1261.001D.01

Sample Delivery Group:

IPA0016

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Metals

QC Level:

Level IV

No. of Samples:

1 0

No. of Reanalyses/Dilutions:

Reviewer: Date of Review: P. Meeks February 3, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for ICP-MS Metals (DVP-5, Rev. 0), EPA Methods 200.8 and 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

84MT4

Revision 0

Project:

NPDES

SDG: Analysis: IPA0016 Metals

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 010	IPA0016-01	Water	200.8, 245.1

Project:

NPDES

SDG: Analysis: IPA0016 Metals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4° C $\pm 2^{\circ}$ C. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The method specified tune criteria were met and no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP-MS metals and 80-120% for mercury. The laboratory analyzed reporting limit check standards in association with the sample in this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

Antimony was detected in method blank 6A03072-BLK1 at 0.162 μ g/L; therefore, antimony detected in Outfall 010 was qualified as an estimated nondetect, "UJ." The remaining method blank and CCB results were nondetects at the reporting limit or were at concentrations insufficient to qualify the site sample. No further qualifications were required.

B4MT4 3 Revision 0

Project:

NPDES

DATA VALIDATION REPORT A

SDG: Analysis:

Metals

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Antimony and lead, which are not present in the ICSA or ICSAB, were detected in both the ICSA and the ICSAB; however, as the wastewater method (EPA SW-846 6020) lists no known interferents for lead or antimony, no qualifications were required. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP-MS, the ICP-MS internal standards were within established control limits. No qualifications were required.

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No

B4MT4 4

Revision 0

Project: NPDES SDG: IPA0016 Analysis: Metals

DATA VALIDATION REPORT

transcription errors or calculation errors were noted. Cadmium detected below the reporting limit was qualified as estimated, "J," and annotated with "DNQ," in accordance with the requirements of the NPDES permit. No further qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

B4MT4 5 Revision 0

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9464 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0016

Sampled: 01/02/06

Received: 01/02/06

METALS

			***	بيدسد						
Analyte	Method	Batch	MDL Limit	Reporting Limit			Date Extracted	Date	Data Ouelifia	rs
Analyte	Methon	Daten	Lillie	LARIEL	Wesair	r actor	EAU acteu	Amaryzeu	Quantie	iar
Sample ID: IPA0016-01 (Outfall Reporting Units: ug/l	010 - Water)								Rev Quel	Code
Antimony	EPA 200.8	6A04084	0.050	2.0	0.47	1	01/04/06	01/05/06	OJ B, J	3
Cadmium	EPA 200.8	6A04084	0.025	1.0	0.042	1	01/04/06	01/05/06	21	DNG
Copper	EPA 200.8	6A04084	0.25	2.0	3.2	1	01/04/06	01/05/06	В	
Lead	EPA 200.8	6A04084	0.040	1.0	1.1	1	01/04/06	01/05/06		apera seria
Mercury	EPA 245.1	6A03072	0.050	0.20	ND	1	01/03/06	01/03/06	U	de la constitución de la constit

LEVEL W

Del Mar Analytical, Irvine Amy Windham For Michele Chamberlin Project Manager

	CONTRACT COMPI	JANCE SCREENING FORM FOR HARDCOPY DATA
ME	CX, LLC	Package ID <u>B4DF4</u>
1226	50 East Vassar Drive	Task Order <u>1261.001.01</u>
Suit	e 500	SDG No. IPA0016
Lake	ewood, CO 80226	No. of Analyses 1
	Laboratory Alta Analy	tical Date: February 3, 2006
	Reviewer E. Wesslin	
	Analysis/Method Dioxins/Fu	
	<u> </u>	
ACT	'ION ITEMS'	
•	Case Narrative	
	Deficiencies	
2.	Out of Scope	
	Analyses	
	A RABORY WALL	
3.	Analyses Not Conducted	
4.	Missing Hardcopy	
	Deliverables	
5.	Incorrect Hardcopy	
	Deliverables	
6.	Deviations from Analysis	Qualifications were assigned for the following:
-	Protocol, e.g.,	estimated values between the RL and the MDL
	Holding Times	
	GC/MS Tune/Inst. Performance	
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS	
	Field QC	
	Internal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
COI	MMENTS)	
	<u>, , , , , , , , , , , , , , , , , , , </u>	
a St	becontracted analytical laboratory is not n	neeting contract and/or method requirements.
bD	ifferences in protocol have been adopted I	by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 010

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IPA0016

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG: Analysis: TTF IPA0016 D/F

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title:

NPDES

Contract Task Order:

1261.001.01

Sample Delivery Group:

IPA0016

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Dioxins/Furans

QC Level:

Level IV

No. of Samples:

1

No. of Reanalyses/Dilutions:

·

Reviewer

E. Wessling

Date of Review:

February 2, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

TTF

DATA VALIDATION REPORT

Project: SDG: IPA0016 Analysis: D/F

Table 1. Sample Identification

Sample ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 010	IPA0016-01	27128-001	Water	1613

Project: Analysis:

TTF IPA0016

DATA VALIDATION REPORT

SDG:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical within the temperature limits of 4°C ±2°C. The sample was shipped to Alta for dioxin/furan analysis and was received within the temperature limits of 4°C ±2°C or slightly below. As the sample was not noted to be damaged or frozen, no qualifications were required. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. Custody seals were present on the coolers from Del Mar to Alta; however not sample custody seals were present. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

RADEA

2

Revision 0

Project: TTF SDG: IPA0016 Analysis: D/F

DATA VALIDATION REPORT

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 12/30/2005 on instrument VG-7. The calibration consisted of six concentration level standards (CS1 through CS6) analyzed to verify instrument linearity. The initial calibrations were acceptable with $RSDs \le 20\%$ for the 16 native compounds (calibration by isotope dilution) and $\le 35\%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-7632-MB001) was extracted and analyzed with the sample in this SDG. No compounds were reported in the method blank associated with the site sample. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (0-7632-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. A review of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

B4DF4 4 Revision 0

Project: SDG: TTF

SDG: Analysis: IPA0016 D/F

DATA VALIDATION REPORT

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG. No qualification was required.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. No qualifications were required.

Name Project: Project: Date Co Time Co Date	t. Ollected: Ollected:		-		•	A A SUM A SUM A A B CA			
		Del Mar Analytical, Irvine IPA0016		Matrix.	Aqueous	Lab Sample:	27128-001	Date Received	4-Jan-06
	THE REAL PROPERTY AND PERSONS ASSESSED.	2-Jan-06 0845		Sample Size:	1.02 L	QC Batch No.: Date Analyzed DB-5:	7632 11-Jan-06	Date Extracted: Date Analyzed DB-225:	8-Jan-06 NA
<u>a - a - a</u>	Analyte	Conc. (ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard		%R LCL-UCL ^d	d Oualiffers
444	2,3,7,8-TCDD	ND	0.000000711			IS 13C-2,3,7,8-TCDD		76.4 25 - 164	
3 4 4	1,2,3,7,8-PeCDD	2	4			13C-1,2,3,7,8-PeCDD	^		
7.4	3,4,7,8-HxCDL	1,2,3,4,7,8-HxCDD	0.00000178			13C-1,2,3,4,7,8-HxCDD		80.3 32 - 141	
**************************************	1,2,3,6,7,8-ttxCDD	2		0.00000188	Communication of the communica	13C-1,2,3,6,7,8-HxCDD		:	\$3 3
	1234678 H2CDD					2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		24.	
<u> </u>	OCDD	0.000485				13C-23.7.8-TCDF		75.6 24 169	
2,3,	2,3,7,8-TCDF	5 :				13C-1,2,3,7,8-PeCDF	à		v.ii
1.2	1,2,3,7,8-PeCDF	2	0.00000219			13C2,3,4,7,8-PeCDF		74.0 21-178	
23,	2,3,4,7,8-PeCDF		0.00000189			13C-1,2,3,4,7,8-HxCDF		75.4 26-152	
KÝ AT	1,2,3,4,7,8-HXCDF	a	0.00000136			13C-1,2,3,6,7,8-HxCDF		71.3 26 - 123	
7.7	1,2,3,6,7,8-HxCDF	2	10-	70 mm - 10 mm		13C-2,3,4,6,7,8-11xCDF		77.8 28-136	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c	4,0,7,8-HXCUF		: 12			13C 2,3,7,8,9-HXCDF		29 - 147	
	1,2,3,7,8,9-HXCDF	ON COOLEGE	0.0000		8	13C-1,2,3,4,6,7,8-HpCDF		73.2 28 - 143	
1 C	1.2.3.4.7.8.0.14.0.2.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		O MOOUD			13C OCDE		20-158	
· 통	OCDE		. 44		145,4 1	CRS 37CF-2.3,7,8-TCDD 78.3	×	78.3 35 4197	
Totals	ais					Footnotes		Andrea de la companya de la company	And Annie (Annie Annie Ann
Total	Total TCDD Total PeCDD	Q Q	0.00000711			a. Sample specific estimated detection limit. b. Estimated they imain possible concentration	stection limit.		erio antidia reservata de la constante de la c
ğ		0.00000640		i i		c. Method detection limit.			
5 5	Total TCDF	ZTT00000	7960000000	."		d. Lower confrol limit - upper control limit.	South of limit.	:	
Tota	Total PeCDF	QN	0.00000204						
75	Total HxCDF	2	0.00000152			ü			
101	I offail HIPCDF	0.0000409			**************************************			han yaldus an da da aanaa	P TO THE PROPERTY OF THE PARTY

Project 27128

NPDES 1678

APPENDIX G

Section 37

Outfall 011, January 03, 2006

Del Mar Analytical Laboratory Report

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project: Quarterly Outfall 011

Sampled: 01/03/06 Received: 01/03/06 Issued: 01/26/06 14:44

NELAP #01108CA California ELAP#1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 9°C, on ice and with chain of custody documentation.

HOLDING TIMES:

All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar

Analytical Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA:

All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS:

Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED:

Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION:

Insufficient sample volume was used in the dilutions for the BOD analysis. The result reported is an

estimated value of the concentration.

LABORATORY ID

CLIENT ID

MATRIX

IPA0103-01

Outfall 011

Water

Reviewed By:

Del Mar Analytical, Irvine

Michele Chamberlin

Michele Chamberlin Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

CORRECTIVE ACTION REPORT

Department: Extractions

Date: 01/18/2006

Method: EPA 625

Matrix: Water

QC Batch: 6A09061

Identification and Definition of Problem:

The percent recovery for the "L2"-qualified analytes in the Blank Spike Duplicate sample was below QC acceptance limits.

Determination of the Cause of the Problem:

A definitive cause for the QC failure has not been determined.

Corrective Action Taken:

All results reported for affected analytes are potentially biased low and can be considered estimates only.

Quality Assurance Approval:

Thong Vu

Date: 01/24/2006 05:18 PM

awah

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06 Pasadena, CA 91101 Report Number: IPA0103 Received: 01/03/06

Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date	Data Qualifiers
Anaiyic	Method	Datta	THREE	MINIT	Resuit	racior	Extracted	Analyzed	Quanners
Sample ID: IPA0103-01 (Outfall 011 - Water	er)								
Reporting Units: ug/l									
Benzene	EPA 624	6A05005	0.28	2.0	ND	1	01/05/06	01/05/06	
Trichlorotrifluoroethane (Freon 113)	EPA 624	6A05005	1.2	5.0	ND	1	01/05/06	01/05/06	
Carbon tetrachloride	EPA 624	6A05005	0.28	5.0	ND	1	01/05/06	01/05/06	
Chloroform	EPA 624	6A05005	0.33	2.0	ND	1	01/05/06	01/05/06	
1,1-Dichloroethane	EPA 624	6A05005	0.27	2.0	ND	1	01/05/06	01/05/06	
1,2-Dichloroethane	EPA 624	6A05005	0.28	2.0	ND	1	01/05/06	01/05/06	
1,1-Dichloroethene	EPA 624	6A05005	0.42	3.0	ND	1	01/05/06	01/05/06	
Ethylbenzene	EPA 624	6A05005	0.25	2.0	ND	1	01/05/06	01/05/06	
Tetrachloroethene	EPA 624	6A05005	0.32	2.0	ND	1	01/05/06	01/05/06	
Toluene	EPA 624	6A05005	0.36	2.0	ND	1	01/05/06	01/05/06	
1,1,1-Trichloroethane	EPA 624	6A05005	0.30	2.0	ND	1	01/05/06	01/05/06	
1,1,2-Trichloroethane	EPA 624	6A05005	0.30	2.0	ND	1	01/05/06	01/05/06	
Trichloroethene	EPA 624	6A05005	0.26	5.0	ND	1	01/05/06	01/05/06	
Trichlorofluoromethane	EPA 624	6A05005	0.34	5.0	ND	1	01/05/06	01/05/06	
Vinyl chloride	EPA 624	6A05005	0.26	5.0	ND	1	01/05/06	01/05/06	
Xylenes, Total	EPA 624	6A05005	0.52	4.0	ND	1	01/05/06	01/05/06	
Surrogate: Dibromofluoromethane (80-120%))				110 %				
Surrogate: Toluene-d8 (80-120%)					103 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					104 %				

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06 Pasadena, CA 91101 Report Number: IPA0103 Received: 01/03/06

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0103-01 (Outfall 011 - Water	er) - cont.								
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	6A09061	1.1	5.0	2.2	1	01/09/06	01/12/06	B, J
2,4-Dinitrotoluene	EPA 625	6A09061	0.23	9.0	ND	1	01/09/06	01/12/06	L2
N-Nitrosodimethylamine	EPA 625	6A09061	0.22	8.0	ND	1	01/09/06	01/12/06	
Pentachlorophenol	EPA 625	6A09061	0.78	8.0	ND	1	01/09/06	01/12/06	L2
2,4,6-Trichlorophenol	EPA 625	6A09061	0.10	6.0	ND	1	01/09/06	01/12/06	
Surrogate: 2-Fluorophenol (30-120%)					61%				
Surrogate: Phenol-d6 (35-120%)					73 %				
Surrogate: 2,4,6-Tribromophenol (45-120%)					84 %				
Surrogate: Nitrobenzene-d5 (45-120%)					81 %				
Surrogate: 2-Fluorobiphenyl (45-120%)					73 %				
Surrogate: Terphenyl-d14 (45-120%)					74 %				

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-8689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0103-01 (Outfall 011 - Water	r) - cont.								
Reporting Units: ug/l									
alpha-BHC	EPA 608	6A07025	0.00095	0.0095	ND	0.952	01/07/06	01/09/06	
Surrogate: Decachlorobiphenyl (45-120%)					69 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					57 %				

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-869 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

METALS

		*	******	~~					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0103-01 (Outfall 011	- Water) - cont.								
Reporting Units: ug/l									
Copper	EPA 200.8	6A04084	0.49	2.0	8.3	1	01/04/06	01/05/06	
Lead	EPA 200.8	6A04084	0.13	1.0	8.8	1	01/04/06	01/05/06	
Mercury	EPA 245.1	6A04080	0.063	0.20	ND	1	01/04/06	01/04/06	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06 Pasadena, CA 91101 Report Number: IPA0103 Received: 01/03/06

Attention: Bronwyn Kelly

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0103-01 (Outfall 011	- Water) - cont.								
Reporting Units: mg/l									
Ammonia-N (Distilled)	EPA 350.2	6A05098	0.30	0.50	ND	1	01/05/06	01/05/06	
Biochemical Oxygen Demand	EPA 405.1	6A05070	0.59	2.0	2.7	1	01/05/06	01/10/06	K
Chloride	EPA 300.0	6A03051	0.26	0.50	24	1	01/03/06	01/03/06	
Total Cyanide	EPA 335.2	6A06111	0.0022	0.0050	ND	1	01/06/06	01/09/06	
Nitrate/Nitrite-N	EPA 300.0	6A03051	0.080	0.15	1.5	1	01/03/06	01/03/06	
Oil & Grease	EPA 413.1	6A09050	0.99	5.3	2.7	1	01/09/06	01/09/06	J
Sulfate	EPA 300.0	6A03051	0.18	0.50	41	1	01/03/06	01/03/06	
Surfactants (MBAS)	EPA 425.1	6A03114	0.044	0.10	ND	1	01/03/06	01/03/06	
Total Dissolved Solids	EPA 160.1	6A04107	10	10	220	1	01/04/06	01/04/06	
Total Suspended Solids	EPA 160.2	6A06118	10	10	48	l	01/06/06	01/06/06	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06 Pasadena, CA 91101 Report Number: IPA0103 Received: 01/03/06

Attention: Bronwyn Kelly

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0103-01 (Outfall 011 - Wa	ter) - cont.								
Reporting Units: ml/l/hr Total Settleable Solids	EPA 160.5	6A04072	0.10	0.10	0.50	1	01/04/06	01/04/06	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Coiton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0103-01 (Outfall 011 - W Reporting Units: NTU Turbidity	ater) - cont. EPA 180.1	6A04071	0.20	5.0	72	5	01/04/06	01/04/06	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 83044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06 Pasadena, CA 91101 Report Number: IPA0103 Received: 01/03/06

Attention: Bronwyn Kelly

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPA0103-01 (Outfall 011 - Was	ter) - cont.								
Reporting Units: ug/l									
Perchlorate	EPA 314.0	6A04078	0.80	4.0	ND	1	01/04/06	01/04/06	

17461 Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: IPA0103-01 (Outfall 011 - Wa	ter) - cont.								
Reporting Units: umhos/cm Specific Conductance	EPA 120.1	6A04105	1.0	1.0	380	1	01/04/06	01/04/06	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Project ID: Quarterly Outfall 011 MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06 Report Number: IPA0103 Received: 01/03/06 Pasadena, CA 91101

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 011 (IPA0103-01) - Wate	Hold Time (in days) r	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 160.5	2	01/03/2006 08:45	01/03/2006 18:00	01/04/2006 09:18	01/04/2006 10:30
EPA 180.1	2	01/03/2006 08:45	01/03/2006 18:00	01/04/2006 14:30	01/04/2006 16:00
EPA 300.0	2	01/03/2006 08:45	01/03/2006 18:00	01/03/2006 20:30	01/03/2006 21:51
EPA 405.1	2	01/03/2006 08:45	01/03/2006 18:00	01/05/2006 08:15	01/10/2006 08:30
EPA 425.1	2	01/03/2006 08:45	01/03/2006 18:00	01/03/2006 21:20	01/03/2006 22:46

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly

Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A05005 Extracted: 01/05	5/06										
Blank Analyzed: 01/05/2006 (6A0500	5-BLK1)										
Benzene	ND	2.0	0.28	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.2	ug/l							
Carbon tetrachloride	ND	5.0	0.28	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,2-Dichloroethane	ND	2.0	0.28	ug/l							
1,1-Dichloroethene	ND	3.0	0.42	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Toluene	ND	2.0	0.36	ug/l							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
Trichloroethene	ND	5.0	0.26	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	5.0	0.26	ug/l							
Xylenes, Total	ND	4.0	0.52	ug/l							
Surrogate: Dibromofluoromethane	26.1			ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	25.8			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.2			ug/l	25.0		101	80-120			
LCS Analyzed: 01/05/2006 (6A05005-	·BS1)										
Benzene	24.6	2.0	0.28	ug/l	25.0		98	65-120			
Carbon tetrachloride	25.1	5.0	0.28	ug/l	25.0		100	65-140			
Chloroform	24.2	2.0	0.33	ug/l	25.0		97	65-130			
1,1-Dichloroethane	24.4	2.0	0.27	ug/l	25.0		98	65-130			
1,2-Dichloroethane	23.3	2.0	0.28	ug/l	25.0		93	60-140			
1,1-Dichloroethene	23.8	3.0	0.42	ug/l	25.0		95	70-130			
Ethylbenzene	25.9	2.0	0.25	ug/i	25.0		104	70-125			
Tetrachloroethene	24.3	2.0	0.32	ug/l	25.0		97	65-125			
Toluene	24.1	2.0	0.36	ug/l	25.0		96	70-125			
1,1,1-Trichloroethane	24.5	2.0	0.30	ug/l	25.0		98	65-135			
1,1,2-Trichloroethane	22.1	2.0	0.30	ug/l	25.0		88	65-125			
Trichloroethene	25.4	5.0	0.26	ug/l	25.0		102	70-125			
Trichlorofluoromethane	20.5	5.0	0.34	ug/l	25.0		82	60-140			
Vinyl chloride	19.4	5.0	0.26	ug/l	25.0		78	50-130			
Surrogate: Dibromofluoromethane	26.1			ug/l	25.0		104	80-120			

Del Mar Analytical, Irvine

Michele Chamberlin

Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689
9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 011

Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A05005 Extracted: 01/05/06	_										
LCS Analyzed: 01/05/2006 (6A05005-BS)	l)										
Surrogate: Toluene-d8	26.0			ug/l	25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	25.9			ug/l	25.0		104	80-120			
Matrix Spike Analyzed: 01/05/2006 (6A0:	5005-MS1)				Sour	rce: IPA0	009-01				
Benzene	22.4	2.0	0.28	ug/l	25.0	ND	90	60-125			
Carbon tetrachloride	23.5	5.0	0.28	ug/l	25.0	ND	94	65-140			
Chloroform	23.1	2.0	0.33	ug/l	25.0	ND	92	65-135			
1,1-Dichloroethane	23.0	2.0	0.27	ug/l	25.0	ND	92	60-130			
1,2-Dichloroethane	21.2	2.0	0.28	ug/l	25.0	ND	85	60-140			
1,1-Dichloroethene	22.2	3.0	0.42	ug/l	25.0	ND	89	60-135			
Ethylbenzene	24.6	2.0	0.25	ug/l	25.0	ND	98	65-130			
Tetrachloroethene	22.5	2.0	0.32	ug/l	25.0	ND	90	60-130			
Toluene	22.1	2.0	0.36	ug/l	25.0	ND	88	65-125			
1,1,1-Trichloroethane	23.6	2.0	0.30	ug/l	25.0	ND	94	65-140			
1,1,2-Trichloroethane	19.7	2.0	0.30	ug/l	25.0	ND	79	60-130			
Trichloroethene	22.7	5.0	0.26	ug/l	25.0	ND	91	60-125			
Trichlorofluoromethane	20.0	5.0	0.34	ug/l	25.0	ND	80	55-145			
Vinyl chloride	18.3	5.0	0.26	ug/l	25.0	ND	73	40-135			
Surrogate: Dibromofluoromethane	27.3			ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	26.1			ug/l	25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	26.8			ug/l	25.0		107	80-120			
Matrix Spike Dup Analyzed: 01/05/2006 (6A05005-MSE	1)			Sour	ce: IPA00	009-01				
Benzene	22.0	2.0	0.28	ug/l	25.0	ND	88	60-125	2	20	
Carbon tetrachloride	22.4	5.0	0.28	ug/l	25.0	ND	90	65-140	5	25	
Chloroform	22.0	2.0	0.33	ug/I	25.0	ND	88	65-135	5	20	
1,1-Dichloroethane	22.0	2.0	0.27	ug/l	25.0	ND	88	60-130	4	20	
1,2-Dichloroethane	20.5	2.0	0.28	ug/l	25.0	ND	82	60-140	3	20	
1,1-Dichloroethene	21.5	3.0	0.42	ug/l	25.0	ND	86	60-135	3	20	
Ethylbenzene	23.5	2.0	0.25	ug/l	25.0	ND	94	65-130	5	20	
Tetrachloroethene	21.7	2.0	0.32	ug/l	25.0	ND	87	60-130	4	20	
Toluene	21.9	2.0	0.36	ug/l	25.0	ND	88	65-125	1	20	
1,1,1-Trichloroethane	22.2	2.0	0.30	ug/I	25.0	ND	89	65-140	6	20	
1,1,2-Trichloroethane	20.1	2.0	0.30	ug/I	25.0	ND	80	60-130	2	25	
Trichloroethene	21.6	5.0	0.26	ug/l	25.0	ND	86	60-125	5	20	
Trichlorofluoromethane	18.4	5.0	0.34	ug/l	25.0	ND	74	55-145	8	25	

Del Mar Analytical, IrvineMichele Chamberlin

Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A05005 Extracted: 01/05/0	<u>)6</u>										
Matrix Spike Dup Analyzed: 01/05/200	6 (6405005_M	ISD1)			Son	rce: IPA(1000_01				
* * *	•	•									
Vinyl chloride	17.3	5.0	0.26	ug/l	25.0	ND	69	40-135	6	30	
Surrogate: Dibromosluoromethane	26.6			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	26.2			ug/l	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0103

Attention: Bronwyn Kelly

Sampled: 01/03/06 Received: 01/03/06

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A09061 Extracted: 01/09/0	<u> 16</u>										
Blank Analyzed: 01/11/2006 (6A09061-	BLK1)										
Bis(2-ethylhexyl)phthalate	2.20	5.0	1.1	ug/l							J
2,4-Dinitrotoluene	ND	9.0	0.23	ug/l							
N-Nitrosodimethylamine	ND	8.0	0.22	ug/l							
Pentachlorophenol	ND	8.0	0.78	ug/l							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug/l							
Surrogate: 2-Fluorophenol	12.7			ug/l	20.0		64	30-120			
Surrogate: Phenol-d6	15.4			ug/l	20.0		77	35-120			
Surrogate: 2,4,6-Tribromophenol	17.5			ug/l	20.0		88	45-120			
Surrogate: Nitrobenzene-d5	8.74			ug/l	10.0		87	45-120			
Surrogate: 2-Fluorobiphenyl	8.20			ug/l	10.0		82	45-120			
Surrogate: Terphenyl-d14	7.84			ug/l	10.0		<i>78</i>	45-120			
LCS Analyzed: 01/11/2006 (6A09061-B	S1)										M-NR1
Bis(2-ethylhexyl)phthalate	9.16	5.0	1.1	ug/l	10.0		92	60-130			
2,4-Dinitrotoluene	7.54	9.0	0.23	ug/l	10.0		75	60-120			J
N-Nitrosodimethylamine	6.72	8.0	0.22	ug/l	10.0		67	40-120			J
Pentachlorophenol	10.3	8.0	0.78	ug/l	10.0		103	50-120			
2,4,6-Trichlorophenol	7.32	6.0	0.10	ug/l	10.0		73	60-120			
Surrogate: 2-Fluorophenol	11.7			ug/l	20.0		58	30-120			
Surrogate: Phenol-d6	13.8			ug/l	20.0		69	35-120			
Surrogate: 2,4,6-Tribromophenol	16.3			ug/l	20.0		82	45-120			
Surrogate: Nitrobenzene-d5	7.76			ug/l	10.0		78	45-120			
Surrogate: 2-Fluorobiphenyl	7.22			ug/l	10.0		72	45-120			
Surrogate: Terphenyl-d14	6.74			ug/l	10.0		67	45-120			
LCS Dup Analyzed: 01/11/2006 (6A0906	51-BSD1)										
Bis(2-ethylhexyl)phthalate	7.56	5.0	1.1	ug/l	10.0		76	60-130	19	20	
2,4-Dinitrotoluene	5.86	9.0	0.23	ug/l	10.0		59	60-120	25	20	J, R-2, L2
N-Nitrosodimethylamine	5.38	8.0	0.22	ug/l	10.0		54	40-120	22	20	J, R-7
Pentachlorophenol	3.02	8.0	0.78	ug/l	10.0		30	50-120	109	25	J, L2, R-2
2,4,6-Trichlorophenol	6.24	6.0	0.10	ug/l	10.0		62	60-120	16	20	
Surrogate: 2-Fluorophenol	9.70			ug/l	20.0		48	30-120			
Surrogate: Phenol-d6	11.4			ug/l	20.0		57	35-120			
Surrogate: 2,4,6-Tribromophenol	14.0			ug/l	20.0		70	45-120			
Surrogate: Nitrobenzene-d5	6.04			ug/l	10.0		60	45-120			
Surrogate: 2-Fluorobiphenyl	5.76			ug/l	10.0		58	45-120			

Del Mar Analytical, Irvine

Michele Chamberlin Project Manager

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A09061 Extracted: 01/09/00	<u>5</u>										

LCS Dup Analyzed: 01/11/2006 (6A09061-BSD1)

Surrogate: Terphenyl-d14 10.0 53 45-120

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-859 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A07025 Extracted: 01/07/06	<u></u>										
Blank Analyzed: 01/09/2006 (6A07025-B	LK1)										
alpha-BHC	ND	0.010	0.0010	ug/l							
Surrogate: Decachlorobiphenyl	0.435			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.373			ug/l	0.500		75	35-115			
LCS Analyzed: 01/09/2006 (6A07025-BS)	1)										M-NR1
alpha-BHC	0.433	0.010	0.0010	ug/l	0.500		87	45-120			
Surrogate: Decachlorobiphenyl	0.446			ug/l	0.500		89	45-120			
Surrogate: Tetrachloro-m-xylene	0.369			ug/l	0.500		74	35-115			
LCS Dup Analyzed: 01/09/2006 (6A07025	S-BSD1)										
alpha-BHC	0.426	0.010	0.0010	ug/l	0.500		85	45-120	2	30	
Surrogate: Decachlorobiphenyl	0.460			ug/l	0.500		92	45-120			
Surrogate: Tetrachloro-m-xylene	0.373			ug/l	0.500		75	35-115			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 011

Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A04080 Extracted: 01/04/06	-										
Blank Analyzed: 01/04/2006 (6A04080-Bl	LK1)										
Mercury	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/04/2006 (6A04080-BS1	1)										
Mercury	8.40	0.20	0.050	ug/l	8.00		105	85-115			
Matrix Spike Analyzed: 01/04/2006 (6A04	(080-MS1)				Sou	rce: IPA0	079-01				
Mercury	8.03	0.20	0.050	ug/l	8.00	ND	100	70-130			
Matrix Spike Dup Analyzed: 01/04/2006 ((6A04080-MS	D 1)			Sour	rce: IPA0	079-01				
Mercury	8.17	0.20	0.050	ug/l	8.00	ND	102	70-130	2	20	
Batch: 6A04084 Extracted: 01/04/06											
Blank Analyzed: 01/05/2006 (6A04084-BI	LK1)										
Copper	0.321	2.0	0.25	ug/l							J
Lead	ND	1.0	0.040	ug/l							
LCS Analyzed: 01/05/2006 (6A04084-BS1)										
Copper	80.8	2.0	0.25	ug/l	80.0		101	85-115			
Lead	78.3	1.0	0.040	ug/i	80.0		98	85-115			
Matrix Spike Analyzed: 01/05/2006 (6A04	084-MS1)				Sour	ce: IOL2	694-49				
Copper	102	2.0	0.25	ug/l	80.0	23	99	70-130			
Lead	84.3	1.0	0.040	ug/l	80.0	2.7	102	70-130			
Matrix Spike Analyzed: 01/05/2006 (6A04	084-MS2)				Sour	ce: IOL2	694-50				
Copper	101	2.0	0.25	ug/l	80.0	18	104	70-130			
Lead	87.5	1.0	0.040	ug/l	80.0	1.8	107	70-130			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A04084 Extracted: 01/04/06	<u>5</u>										
Matrix Spike Dup Analyzed: 01/05/2006	(6A04084-M	SD1)			Sou	rce: IOL	2694-49				
Copper	101	2.0	0.25	ug/l	80.0	23	98	70-130	1	20	
Lead	83.9	1.0	0.040	ug/l	80.0	2.7	102	70-130	1	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06 Received: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0103

METHOD BLANK/QC DATA

Amalasta	30 u 14	Reporting	MDI	T T 14	Spike	Source	4/1010-0	%REC	***	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A03051 Extracted: 01/03/06	•										
Plank Applyard, 01/02/2006 (64 02051 D)	(121)										
Blank Analyzed: 01/03/2006 (6A03051-Bl Chloride	•	0.00	0.00	68							
	ND	0.50	0.26	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.072	mg/l							
Sulfate	ND	0.50	0.18	mg/l							
LCS Analyzed: 01/03/2006 (6A03051-BS1	.)										
Chloride	4.91	0.50	0.26	mg/l	5.00		98	90-110			M-3
Sulfate	9.83	0.50	0.18	mg/l	10.0		98	90-110			
Matrix Spike Analyzed: 01/03/2006 (6A03	8051-MS1)				Sour	rce: IPA0	036-01				
Sulfate	342	5.0	1.8	mg/l	100	240	102	80-120			
Matrix Spike Dup Analyzed: 01/03/2006 (6A03051-MS	D 1)			Sour	rce: IPA0	036-01				
Sulfate	345	5.0	1.8	mg/l	100	240	105	80-120	1	20	
Batch: 6A03114 Extracted: 01/03/06											
Blank Analyzed: 01/03/2006 (6A03114-BI	.K1)										
Surfactants (MBAS)	ND	0.10	0.044	mg/l							
LCS Analyzed: 01/03/2006 (6A03114-BS1)										
Surfactants (MBAS)	0.275	0.10	0.044	mg/I	0.250		110	90-110			
Matrix Spike Analyzed: 01/03/2006 (6A03	114-MS1)				Sour	ce: IPA0	017-01				
Surfactants (MBAS)	0.377	0.10	0.044	mg/l	0.250	0.096	112	50-125			
Matrix Spike Dup Analyzed: 01/03/2006 (6A03114-MS	D 1)			Sour	ce: IPA0	017-01				
Surfactants (MBAS)	0.342	0.10	0.044	mg/l	0.250	0.096	98	50-125	10	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunser Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

METHOD BLANK/QC DATA

INORGANICS

]	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 6A04071 Extracted: 01/04/06											
Blank Analyzed: 01/04/2006 (6A04071-Bl	LK1)										
Turbidity	ND	1.0	0.040	NTU							
Duplicate Analyzed: 01/04/2006 (6A0407)	I-DUP1)				Sou	rce: IPA0	017-01				
Turbidity	55.5	5.0	0.20	NTU		56			1	20	
Batch: 6A04078 Extracted: 01/04/06											
Blank Analyzed: 01/04/2006 (6A04078-BI	LK1)										
Perchlorate	ND	4.0	0.80	ug/l							
LCS Analyzed: 01/04/2006 (6A04078-BS1)										
Perchlorate	45.3	4.0	0.80	ug/l	50.0		91	85-115			
Matrix Spike Analyzed: 01/04/2006 (6A04	1078-MS1)				Sour	ce: IPA0	121-01				
Perchlorate	48.9	4.0	0.80	ug/l	50.0	5.5	87	80-120			
Matrix Spike Dup Analyzed: 01/04/2006 (6A04078-MSD	1)			Sour	ce: IPA0	121-01				
Perchlorate	51.8	4.0	0.80	ug/l	50.0	5.5	93	80-120	6	20	
Batch: 6A04105 Extracted: 01/04/06											
Duplicate Analyzed: 01/04/2006 (6A04105	-DUP1)				Sour	ce: IPA0	118-01				
Specific Conductance	839	1.0	1.0	umhos/cm		810			4	5	
Batch: 6A04107 Extracted: 01/04/06											
Blank Analyzed: 01/04/2006 (6A04107-BL	.K1)										
Total Dissolved Solids	ND	10	10	mg/l							

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-859 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0031 FAX (480) 785-0031 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 011

Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A04107 Extracted: 01/04/06	-										
LCS Analyzed: 01/04/2006 (6A04107-BS	1)										
Total Dissolved Solids	996	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/04/2006 (6A0410	7-DUP1)				Sou	rce: IPA0	094-06				
Total Dissolved Solids	956	10	10	mg/l		920			4	10	
Batch: 6A05070 Extracted: 01/05/06	-										
Blank Analyzed: 01/10/2006 (6A05070-B	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.59	mg/l							
LCS Analyzed: 01/10/2006 (6A05070-BS)	1)										
Biochemical Oxygen Demand	212	100	30	mg/l	198		107	85-115			
LCS Dup Analyzed: 01/10/2006 (6A05070)-BSD1)										
Biochemical Oxygen Demand	208	100	30	mg/l	198		105	85-115	2	20	
Batch: 6A05098 Extracted: 01/05/06	•										
Blank Analyzed: 01/05/2006 (6A05098-Bl	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							
LCS Analyzed: 01/05/2006 (6A05098-BS1)										
Ammonia-N (Distilled)	10.9	0.50	0.30	mg/l	10.0		109	80-115			
Matrix Spike Analyzed: 01/05/2006 (6A05	5098-MS1)				Sour	ce: IOL2	366-01				
Ammonia-N (Distilled)	11.5	0.50	0.30	mg/l	10.0	ND	115	70-120			

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chresapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-8689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200 Pasadena, CA 91101

Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 6A05098 Extracted: 01/05/06	•										
Matrix Spike Dup Analyzed: 01/05/2006 (Ammonia-N (Distilled)	(6A05098-MS 11.2	D1) 0.50	0.30	mg/l	Sou 10.0	rce: IOL2 ND	2 366-01	70-120	3	15	
Batch: 6A06111 Extracted: 01/06/06	•										
Blank Analyzed: 01/09/2006 (6A06111-Bl	LK1)										
Total Cyanide	ND	0.0050	0.0022	mg/l							
LCS Analyzed: 01/09/2006 (6A06111-BS1)										
Total Cyanide	0.183	0.0050	0.0022	mg/l	0.200		92	90-110			
Matrix Spike Analyzed: 01/09/2006 (6A06	5111-MS1)				Sou	rce: IPA0	102-01				
Total Cyanide	0.211	0.0050	0.0022	mg/l	0.200	0.0034	104	70-115			
Matrix Spike Dup Analyzed: 01/09/2006 (6A06111-MS	D1)			Sou	rce: IPA0	102-01				
Total Cyanide	0.213	0.0050	0.0022	mg/l	0.200	0.0034	105	70-115	1	15	
Batch: 6A06118 Extracted: 01/06/06											
Blank Analyzed: 01/06/2006 (6A06118-BI	.K1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/06/2006 (6A06118-BS1)										
Total Suspended Solids	980	10	10	mg/l	1000		98	85-115			
Duplicate Analyzed: 01/06/2006 (6A06118	8-DUP1)				Sour	ce: IPA0	396-01				
Total Suspended Solids	188	10	10	mg/l		180			4	10	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (858) 505-8689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0041 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

METHOD BLANK/QC DATA

Analyte Batch: 6A09050 Extracted: 01/09/06	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 01/09/2006 (6A09050-B Oil & Grease	LK1) ND	5.0	0.94	mg/l							
LCS Analyzed: 01/09/2006 (6A09050-BS Oil & Grease	1) 19.1	5.0	0.94	mg/l	20.0		96	65-120			M-NR1
LCS Dup Analyzed: 01/09/2006 (6A0905) Oil & Grease	0-BSD1) 19.0	5.0	0,94	mg/l	20.0		95	65-120	1	20	

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-856 FAX (888) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

K The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2 mg/l.

Therefore the reported result is an estimated value only.

L2 Laboratory Control Sample recovery was below method control limits.

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

R-2 The RPD exceeded the method control limit.

R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Sampled: 01/03/06

Attention: Bronwyn Kelly

Report Number: IPA0103 Received: 01/03/06

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
1613A/1613B	Water		
EDD + Level 4	Water		
EPA 120.1	Water	X	X
EPA 160.1	Water	X	X
EPA 160.2	Water	X	X
EPA 160.5	Water	X	X
EPA 180.1	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	N/A	x
EPA 335.2	Water	X	X
EPA 350.2	Water		X
EPA 405.1	Water	X	X
EPA 413.1	Water	X	X
EPA 425.1	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	x	x

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IPA0103-01

Analysis Performed: EDD + Level 4

Samples: IPA0103-01

CHAIN OF CUSTODY FORM Page 1 of 1

202

Comments Temp = 57.5 Field readings: 214 receion Done Nomal 10 Days Sample Integrity. (Check) Intact On Ice: Turn around Time: (check) 5 Days pentachlorophenol (EPA 625) Perchlorate Only 72 Hours, ethylhexyl)phthalate, NDMA Metals Only 72 Hours_ × Dinitrotoluene, Bis(2-2,4,6 Trichlorophenol, 2,4 × (A1808) OHB BrigiA ANALYSIS REQUIRED 24 Hours 48 Hours 72 Hours × M-SINOMIMA Conductivity × Turbidity, TSS, Perchlorate × 1800 CF' 804' NO3+NO5-N' 525 × Surfactants (MBAS) BOD5(20 degrees C) Cyanide (total recoverable) × × Oil & Grease (EPA 413.1) 1/3/06 TCDD (and all congeners) Date/Time Date/Time Ett noe143 × × VOCs 624 + xylenes + Settleable Solids >< Total Rebverable Metals: Cu, Pb, Hg, × 13A, 13B 12A, 12B 14A, 14B, 10A, 10B 3A,3B,3C 5A, 5B 8A,8B 9A,9B 4A,4B *--₹ <u>8</u> Bottle Received By Received By Preservative H2S04 N O None None Sone HN03 HNO3 Zone None None None None None 걸 皇 ᄗ Boeing-SSFL NPDES Quarterly Outfail 011 SES Fax Number: (626) 568-6515 52 Perimeter Pond (626) 568-6691 Phone Number Sampling Date/Time Date/Time: 01-03 ch 2/QC Date/Time Date/Time: Del Mar Analytical version 02/17/05 **Project**: Co# Project Manager: Bronwyn Kelly 300 North Lake Avenue, Suite 1200 Sampler. R & Barresc 1L Amber 1L. Amber Sample Container
Matrix Type 1L Amber 1L Amber Poly-500 Poly-500 Poly-500 Poly-500 Poly-500 Poly-11 Poly-1 Poly-1L Poly-1L VOAs VOAs E Client Name/Address MWH-Pasadena Pasadena, CA 91101 š ₹ ₹ ₹ \$ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ Relinquished By Relinquished By Description Outfall 011 Outfall 011-Outfall 011 Outfall 011 Outfall 011 Outfall 011 Trip Blank Outfall 011 Sample

NPDES - 927

January 17, 2006

Alta Project I.D.: 27141

Ms. Michele Chamberlin
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Chamberlin,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on January 05, 2006 under your Project Name "IPA0103". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier

Director of HRMS Services

Alta Analytical Laboratory certifies that the report havein meets all the requirements set forth by NELAC for those applicable test meetods. This report should not be reproduced except in full without the written approval—of ALTA.

Section I: Sample Inventory Report

Date Received:

1/5/2006

Alta Lab. ID

Client Sample ID

27141-001

IPA0103-01

SECTION II

Project 27141 Page 3 of 282

Method Blank					EPA Method 1613
Matrix: Aqueous		QC Batch No.:	7632	Lab Sample: 0-MB001	
Sample Size: 1,00 L		Date Extracted:	: 8-Jan-06	Date Analyzed DB-5: 11-Jan-06	Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	ng/L)	DIT a	EMPC b Qualifiers	Labeled Standard	%R LCL-UCL ^d Oualifiers
2,3.7,8-TCDD	QN	0,000000671		IS 13C-2,3,7,8-TCDD	84.0 25 - 164
1,2,3,7,8-PeCDD	Q	0.000000560		13C-1,2,3,7,8-PeCDD	78.7 25 - 181
1,2,3,4,7,8-HxCDD	Ę	0.00000149		13C-1,2,3,4,7,8-HxCDD	81.9 32 - 141
1,2,3,6,7,8-HxCDD	N	0.00000147		13C-1,2,3,6,7,8-HxCDD	74.4 28 - 130
1,2,3,7,8,9-HxCDD	Ð	0.00000145		13C-1,2,3,4,6,7,8-HpCDD	75.6 23 - 140
1,2,3,4,6,7,8-HpCDD	Q	0.00000146		13C-OCDD	40.1 17 - 157
ocdd	Ð	0.00000535		13C-2,3,7,8-TCDF	82.6 24 - 169
2,3,7,8-TCDF	Q	0.000000546		13C-1,2,3,7,8-PeCDF	65.3 24 - 185
1,2,3,7,8-PeCDF	£	0.00000112	\$ () A	13C-2,3,4,7,8-PeCDF	71.3 21 - 178
2,3,4,7,8-PeCDF	Q	0.000000885		13C-1,2,3,4,7,8-HxCDF	73.7 26 - 152
1,2,3,4,7,8-HxCDF	Ð	0.000000511		13C-1,2,3,6,7,8-HxCDF	70.0 26 - 123
1,2,3,6,7,8-HxCDF	S	0.000000518		13C-2,3,4,6,7,8-HxCDF	78.0 28 - 136
2,3,4,6,7,8-HxCDF	£	0.000000522		13C-1,2,3,7,8,9-HxCDF	79.2 29 - 147
1,2,3,7,8,9-HxCDF	NO	0.000000675		13C-1,2,3,4,6,7,8-HpCDF	64.7 28 - 143
1,2,3,4,6,7,8-HpCDF	2	0.000000764		13C-1,2,3,4,7,8,9-HpCDF	76.3 26 - 138
1,2,3,4,7,8,9-HpCDF	2	0.000000622		13C-OCDF	49.6 17 - 157
OCDF	Q	0.00000360		CRS 37CI-2,3,7,8-TCDD	88.7 35 - 197
Totals				Footnotes	
Total TCDD	S	0.000000671		a. Sample specific estimated detection limit.	
Total PeCDD		0.000000560		b. Estimated maximum possible concentration.	
Total HxCDD	Q.	0.00000147	-	c. Method detection limit.	
Total HpCDD	Ð	0.00000146		d. Lower control limit - upper control limit.	
Total TCDF	R	0.000000546			
Total PeCDF	2	0.000000997			
Total HxCDF	R	0.000000553			
Total HpCDF	QN	0.000000692			
Analyst: JMH				Approved By: Martha M. Maier	laier 17-Jan-2006 09:11

Project 27141

OPR Results						EPA	EPA Method 1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	7632 8-Jan-06	Lab Sample: 0-OPR001 Date Analyzed DB-5: 11-Jan-06	0-OPR001 5: 11-Jan-06	Date Analyzed DB-225;	1 DB-225; NA
Analyte	Spike Conc.	Spike Conc. Conc. (ng/mL)	OPR Limits	Labeled Standard	ırd	%R	ICF-NCT
2,3,7,8-TCDD	10.0	8.44	6.7 - 15.8	IS 13C-2,3,7,8-TCDD	DD	66.2	25 - 164
1,2,3,7,8-PeCDD	50.0	48.8	35 - 71		eCDD	70.5	25 - 181
1,2,3,4,7,8-HxCDD	50.0	48.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	HxCDD	68.7	32 - 141
1,2,3,6,7,8-HxCDD	50.0	46.7	38 - 67	13C-1,2,3,6,7,8-HxCDD	-HxCDD	9:59	28 - 130
1,2,3,7,8,9-HxCDD	20.0	48.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	8-HpCDD	70.6	23 - 140
1,2,3,4,6,7,8-HpCDD	50.0	47.2	35 - 70	13C-OCDD		49.9	17 - 157
ОСДД	100	95.4	78 - 144	13C-2,3,7,8-TCDF	DF	67.9	24 - 169
2,3,7,8-TCDF	10.0	9.58	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	eCDF	63.1	24 - 185
1,2,3,7,8-PeCDF	50.0	46.6	40 - 67	13C-2,3,4,7,8-PeCDF	eCDF	64.2	21 - 178
2,3,4,7,8-PeCDF	50.0	48.4	34 - 80	13C-1,2,3,4,7,8-HxCDF	-HxCDF	65.4	26 - 152
1,2,3,4,7,8-HxCDF	50.0	47.6	36 - 67	13C-1,2,3,6,7,8-HxCDF	-HxCDF	63.8	26 - 123
1,2,3,6,7,8-HxCDF	20.0	48.7	42 - 65	13C-2,3,4,6,7,8-HxCDF	-HxCDF	6.1.9	28 - 136
2,3,4,6,7,8-HxCDF	20.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	-HxCDF	70.4	29 - 147
1,2,3,7,8,9-HxCDF	20.0	47.3	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	63.1	28 - 143
1,2,3,4,6,7,8-HpCDF	20.0	48.5	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	,9-HpCDF	70.1	26 - 138
1,2,3,4,7,8,9-HpCDF	20.0	48.4	39 - 69	13C-OCDF		56.4	17 - 157
OCDF	100	7.76	63 - 170	CRS 37CI-2,3,7,8-TCDD	CDD	81.7	35 - 197

Approved By: Martha M. Maier 17-Jan-2006 09:11

Analyst: JMH

Del Mar Analytical, Irvine	Sample Data Matrix: Sample Size: Sample Size: O0000964 O.0000134 O.00000138 O.0000138 O.00000138 O.000000138 O.000000138 O.00000138 O.00000138 O.000000138 O.00000000138 O.000000138 O.00000000000000000000000000000000000	ueous 0 L Ialiffers	Lab Sample: 27141-001 OC Batch No. 7632 Date Analyzed DB-5: 12-Jan-06 Labeled Standard Labeled Standard 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	Date Received: Date Extracted: Date Analyzed DB-225: %R LCL-UCL ^d 79.8 25 - 164 80.9 25 - 181 82.2 32 - 141 75.2 28 - 130 78.3 23 - 140 48.2 17 - 157	5-Jan-06 8-Jan-06 NA Oualifiers
Del Mar Analytical, Irvine	a EMPC ^b 00000964 00000144 00000981	o L initifiers j	C Batch No. Labeled Standard 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-Hx 13C-1,2,3,4,7,8-Hx 13C-1,2,3,4,6,7,8-H 13C-2,3,7,8-TCDF 13C-2,3,4,6,7,8-H 13C-2,3,7,8-PECI 13C-2,3,4,7,8-PECI 13C-2,3,4,7,8-PECI 13C-2,3,4,7,8-PECI 13C-2,3,4,7,8-PECI	DB-225: -UCL ^d -164 -181 -141 -130 -157	5-Jan-06 8-Jan-06 NA Oualifiers
ected: 3-Jan-06 lected: 0845 TCDD ND ND 7,8-HxCDD ND 7,8-HxCDD 0.0000441 8,9-HxCDD 0.0000441 8,9-FCDF ND 8-PeCDF ND 7,8-HxCDF ND 7,8-H	a EMPC ^b 00000964 0000144 0.00000138	ol. J	C Batch No. Labeled Standard 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-Hxt 13C-1,2,3,4,7,8-Hxt 13C-1,2,3,4,6,7,8-Hxt 13C-0CDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCD 13C-2,3,7,8-PeCD 13C-2,3,7,8-PeCD 13C-2,3,4,7,8-PeCD 13C-2,3,4,7,8-PeCD	DB-225: -UCL ^d -164 -181 -130 -130 -157	8-Jan-06 NA Oualifiers
E Conc. (ug/L) I TCDD ND ND 7,8-HxCDD ND 0.0000441 7,8-HxCDD 0.0000313 6,7,8-HpCDD 0.000949 TCDF ND 8-PeCDF ND 7,8-HxCDF ND ND 7,8-HxCDF ND 7,8-HpCDF ND 7,8-HpCD	a EMPC ^b 00000964 0000144 0.00000139 00000981	J		LCL-UCL ^d 8 25-164 9 25-181 2 32-141 2 28-130 3 23-140	Oualiffers
R-PeCDD ND (1.8-PeCDD ND (1.8-PeCDD ND (1.8-PeCDD 0.0000041) (1.8-PeCDF ND (1.8-PecDF (1.8-PecDF ND (1.8-PecDF (1.8-Pe		ا س اسا			
8-PeCDD ND 7,8-HxCDD 0.00000441 0.00000441 0.00000441 0.00000343 0.0000349 0.000949 0.000949 0.000949 0.000949 0.000949 0.000949 0.000949 0.000949 0.000949 0.000949 0.0000949 0.0000949 0.0000949 0.0000949 0.0000949 0.0000949 0.0000949 0.0000949 0.0000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000930 0.00000949 0.00000930 0.00000949 0.00000930 0.00000949 0.00000949 0.00000930 0.00000949 0.00000930 0.00000949 0.00000930 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.0000949 0.0000949 0.0000949 0.0000949 0.0000949 0.00000949 0.00000949 0.000000949 0.000000949 0.000000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.000000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.000000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000949 0.00000000949 0.00		הייל בייל	13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF		
7,8-HxCDD ND 0.0000041 8,9-HxCDD 0.0000041 6,7,8-HpCDD 0.000100 6,7,8-HpCDD 0.000100 7,8-HxCDF ND	1774	وده وس <u>ا</u>	13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-IIpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF		
7,8-HxCDD 0.00000441 8,9-HxCDD 0.00000313 6,7,8-HpCDD 0.000949 TCDF ND 8-PeCDF ND ND 1,7,8-HxCDF ND ND ND 1,8-HxCDF ND ND ND 1,8-HxCDF ND	.000000981	פייל בייל	13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF		
8,9-HxCDD 0.00000313 6,7,8-HpCDD 0.000100 0.000949 TCDF ND 8-PeCDF ND ND 7,8-HxCDF ND	.00000081)	13C-1,2,3,4,6,7,8-IIpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF		
6,7,8-HpCDD 0.000100 TCDF ND 8-PeCDF ND ND 7,8-HxCDF ND ND 7,8-HxCDF ND ND 7,8-HxCDF ND ND 7,8-HxCDF ND ND ND 8,9-HxCDF ND	.000000981		13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF		
0.000949 8-PeCDF ND 7,8-HxCDF ND 7,8-HxCDF ND 7,8-HxCDF ND 8,9-HxCDF ND 8,9-HxCDF ND 6,7,8-HpCDF 0.00000230 0.0000761	.00000081		13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF		
ND	,000000981		13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	79.1 24 - 169	
ND	,00000138		13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	81.9 24 - 185	
ND ND ND NP NP NP NP NP CDF 0.00000230 ND ND ND ND ND ND ND ND ND			13C-1,2,3,4,7,8-HxCDF	82.1 21 - 178	
OF ND OF ND OF ND OF ND OF ND OF 0.0000183 CDF 0.0000761 ND ND ND	0.00000126			77.2 26 - 152	
ND ND ND NF 0.0000183 0.0000761 ND ND	0.00000104		13C-1,2,3,6,7,8-HxCDF	76.2 26 123	
ND ND 0.0000183 0.00000230 ND ND	0.000000978		13C-2,3,4,6,7,8-HxCDF	78.7 28 - 136	
ND 9F 0.0000183 0.00000230 ND ND	0.00000107		13C-1,2,3,7,8,9-HxCDF	80.8 29 - 147	
6,7,8-HpCDF 0.0000183 7,8,9-HpCDF 0.00000230 0.0000761 CDD ND CCDD	0.00000139		13C-1,2,3,4,6,7,8-HpCDF	70.0 28 - 143	
7,8,9-HpCDF 0.00000230 0.0000761 CDD ND CCDD ND		—	13C-1,2,3,4,7,8,9-HpCDF	79.6 26-138	
CDD ND CCDD ND N		, —,	13C-OCDF	57.3 17 - 157	
DN QN			CRS 37CI-2,3,7,8-TCDD	85.2 35-197	
NO NO NO NO NO NO NO NO NO NO NO NO NO N			Footnotes		
00000000000000000000000000000000000000	0.00000964		Sample specific estimated detection limit. Estimated maximum possible concentration.		
IOIZI FIXCUD	0.0000356		c. Method detection limit.		
0.000210			d. Lower control limit - upper control limit.		
QN	0.000000981				-
Total PeCDF 0.00000227	0,00000426				•
Total HxCDF 0.0000146	0.0000162				
Total HpCDF 0.0000615			And the second s		

Analyst: JMH

Approved By: Martha M. Maier 17-Jan-2006 09:11

APPENDIX

Page 7 of 282

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

E The reported value exceeds the calibration range of the instrument.

H The signal-to-noise ratio is greater than 10:1.

I Chemical interference

The amount detected is below the Lower Calibration Limit of the instrument.

See Cover Letter

Conc. Concentration

DL Sample-specific estimated Detection Limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit - concentrations that corresponds to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California - NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

Released By

Project 27141

SUBCONTRACT ORDER - PROJECT # IPA0103

SENDIN	G LABORATORY:		B	RECEIVING LABORAT	ORY:
Del Mar Analytical, Irvine			Alta Analytical	27	F 14-1
7461 Derian Avenue. Suite	100		1104 Windfield W	ay	141 0°C
rvine, CA 92614	•		El Dorado Hills, C	A 95762	101
Phone: (949) 261-1022			Phone :(916) 933-	10.0	$U \subset \mathcal{U}$
fax: (949) 261-1228			Fax: (916) 673-01	06	
Project Manager: Michele Ch	namberlon .				
Standard TAT is requested	unless specific du	e date is requested	⇒ Due Date:		Initials:
Analysis	Expiration		Comments		
Sample ID: IPA0103-01 Was 1613-Dioxin-HR-Alta EDD + Level 4	ter Sampled: 01/10/06 08:45 01/31/06 08:45	01/03/06 08:45	J flags,17 congeners,no Excel EDD email to pur	TEQ.ug/L,sub=Alta ,Include Std logs for Lvl IV	,
Containers Supplied: 1 L Amber (IPA0103-01G) 1 L Amber (IPA0103-01H)			***		•
•		•			
	•				
			· .		
				•	
					·
				•	
				•	
•			•	•	
				· ·	
				•	
		SAMPLE	INTEGRITY:		
All containers intact: Yes	□ No Si	ample labels/COC agree:	☐ Yes ☐ No	Samples Received On Ice::	☐ Yes ☐ No
Custody Seals Present: Yes		amples Preserved Properly:	☐ Yes ☐ No	Samples Received at (temp):	****
	1.4.6				
		1.700	Bettina H.	Benedict 1/2	166 0905
Released Rv	Date	Time	Received By	Date	Time ·

Received By

Date

Time

Time

Pagagiolo6282

Date

SAMPLE LOG-IN CHECKLIST

Alta Project #: 27/4/

Samples Arrival:	Date/Time	0985	Initials	31B	Location: WR-2)-
Logged In:	Date/Time 1/5/06	1045	Initials	SIB	Location: WK	2-2-
Delivered By:	FedEx	UPS	Cal	DHL	Hand Delivered	Other
Preservation:	Ice	Blu	e Ice	Dry I	lce None	
Temp °C 0°		Time: 09	15	· ·	Thermometer I	D: DT-20

					YES	NO	NA
Adequate Sample Volume Received	?	•			· /		
Holding Time Acceptable?					V	٠	
Shipping Container(s) Intact?					V_		
Shipping Custody Seals Intact?					V		
Shipping Documentation Present?					W		
Airbill Trk# 79°	14 803	32418	14		V		
Sample Container Intact?					V		
Sample Custody Seals Intact?							V
Chain of Custody / Sample Documentation Present?							
COC Anomaly/Sample Acceptance F	orm con	npleted?				√ .	
If Chlorinated or Drinking Water Sam	iples, Ac	ceptable P	reservation?				V
Na ₂ S ₂ O ₃ Preservation Documented?			coc	San Cont	nple ainer	No	ne
Shipping Container	Alta	Client	Retain	Æe1	turn	Disp	ose

Comments:

APPENDIX G

Section 38

Outfall 011, January 03, 2006 AMEC Data Validation Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MEC*	Package ID <u>B4PP3</u>
12269 East Vassar Drive	Task Order 1261,001D.01
Aurora, CO 80014	SDG No. IPA0103
	No. of Analyses 1
Laboratory Del Mar Analytical	Date: February 16, 2006
Reviewer K. Shadowlight	Reviewer's Signature
Analysis/Method Pesticides by Method 608	
ACTION ITEMS ^a	
. Case Narrative	
Deficiencies	
2. Out of Scope Analyses	
**restrict Annual orbit commence or the control of	
3. Analyses Not Conducted	
gruppy projection to appropriate control and the control and t	
4. Missing Hardcopy	
Deliverables	
5. Incorrect Hardcopy	
Deliverables	
And Anthony of the fine form of the Anthony of the	
6. Deviations from Analysis	
Protocol, e.g.,	
Holding Times	
GC/MS Tune/Inst. Performance	
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Internal Standard Performance	
Compound Identification Quantifation	
System Performance	
COMMENTS ⁶ Acceptable as review	
* Subcontracted analytical laboratory is not meeting contract and/or met	hod requirements.
³ Differences in restants have been adented by the laboratory but no ac	

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 011

ANALYSIS: PESTICIDES

SAMPLE DELIVERY GROUP: IPA0103

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

NPDES

SDG:

IPA0103

Analysis:

Pesticides

1. INTRODUCTION

Task Order Title:

NPDES

MEC^X Project Number:

DATA VALIDATION REPORT

1261.001.01

Sample Delivery Group:

IPA0103

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Pesticides

QC Level:

Level IV

No. of Samples:

1

No. of Reanalyses/Dilutions:

Reviewer:

K. Shadowlight

Date of Review:

February 16, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Volatile Organics (DVP-4, Rev. 2), EPA Method 608, and the National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

NPDES

SDG: Analysis:

IPA0103 Pesticides

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 011	IPA0103-01	Water	608

NPDES

SDG: Analysis: IPA0103 Pesticides

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory above the temperature limits of 4°C ±2°C, at 9°C. Due to the nonvolatile nature of the analyte, no qualification was required for the elevated temperature. According to the case narrative for this SDG, the sample was received intact and on ice. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with the breakdown for individual components (4,4-DDT and endrin) ≤20% and for the total ≤30%, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

NPDES

SDG: Analysis: IPA0103 Pesticides

DATA VALIDATION REPORT

2.3.2 Initial Calibration

There was one initial calibration dated 12/29/05 associated with site sample in this SDG. The initial calibration consisted of six point calibrations for all pesticide target compounds on two analytical columns. The laboratory provided an overlay of the sample chromatogram and the pesticide standard for identification purposes. For this SDG, alpha-BHC was the only target compound of interest. The %RSD for alpha-BHC was within the EPA Method 608 QC limit of ≤10% on the primary analytical column (Channel A) and the r² value was ≥0.995 on the secondary column (Channel B). As alpha-BHC was not detected in the sample and all results were reported from Channel A, the secondary column was not further evaluated. An ICV was analyzed immediately following the initial calibration and the %D for target compound alpha-BHC was within the QC limits of ≤15% on the primary analytical column. The %RSD and ICV %D were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

Sample Outfall 011 was bracketed by two continuing calibrations. The %Ds for alpha-BHC were within the Method QC limit of ≤15% for both calibrations. The %Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of the analytical sequence. There was no evidence of cross-contamination in the instrument blank or sample. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (6A07025-BLK1) was extracted and analyzed with this SDG. Target compound alpha-BHC was not detected in the method blank. Review of the chromatograms for both channels showed no false negative. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (6A07025-BS1/BSD1) was extracted and analyzed with this SDG. The recoveries for alpha-BHC were within the laboratory-established QC limits and the RPD was ≤30%. The recoveries and RPD for alpha-BHC were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

Project: **NPDES** SDG:

DATA VALIDATION REPORT

IPA0103 Analysis: **Pesticides**

2.6 SURROGATE RECOVERY

Surrogate recoveries were within the laboratory-established QC limits for the sample in this SDG. The recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision were based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on the water sample. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples identified for this SDG. qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples identified for this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for pesticide target compound alpha-BHC by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

NPDES

SDG: Analysis: IPA0103 Pesticides

DATA VALIDATION REPORT

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. No qualifications were required.

B4PP3

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. ∉3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

Attention: Bronwyn Kelly

Analyte

ORGANOCHLORINE PESTICIDES (EPA 608)

MDL Reporting Sample Dilution Date Data

Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: IPA0103-01 (Outfall 011 - Water) - cont.

Reporting Units: ug/l

alpha-BHC EPA 608

Surrogate: Decachlorobiphenyl (45-120%)

Surrogate: Tetrachloro-m-xylene (35-115%)

4 608 6A07025 0.00095 0.0095

ND 0.952 69 %

0.952 01/07/06 01/09/06

57%

Del Mar Analytical, Irvine Michele Chamberlin Project Manager LevelI

	CONTRACT COMP	LIANCE SCREENING FORM FOR HARDCOPY DATA
ME	CX, LLC	Package ID BUMTIU
122	60 East Vassar Drive	Task Order 1261.0010,01
Suit	e 500	SDG No. IPA 0103
Lak	ewood, CO 80226	No. of Analyses
	Laboratory De M	ar Analytical Date: February 17, 2006
	Reviewer P. Muk	Reviewer's Signature
	Analysis/Method Metal	
ACI	TION ITEMS ⁴	
	Case Narrative	
•	Deficiencies	
2.	Out of Scope	
	Analyses	
	Anaryses	
3.	Analyses Not Conducted	
э.	Analyses Not Conducted	
A	365	
4.	Missing Hardcopy Deliverables	
	Denverables	
~	Y	
5.	Incorrect Hardcopy	
	Deliverables	
~		0.350
6.	Deviations from Analysis	Qualifications were assigned for the following:
	Protocol, e.g.,	
	Holding Times	
	GC/MS Tune/Inst. Performance	
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS	
	Field QC	
	Internal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
CON	MMENTS ^b	Acceptable as reviewed
······································		***************************************
	*	neeting confract and/or method requirements. by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 011

ANALYSIS: METALS

SAMPLE DELIVERY GROUP IPA0103

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG:

NPDES IPA0103

Analysis:

Metals

1. INTRODUCTION

Task Order Title:

NPDES Sampling

MEC^X Project Number:

DATA VALIDATION REPORT

1261.001D.01

Sample Delivery Group:

IPA0103

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Metals

QC Level:

Level IV

No. of Samples:

1

No. of Reanalyses/Dilutions:

0 P. Meeks

Reviewer: Date of Review:

February 17, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for ICP-MS Metals (DVP-5, Rev. 0), EPA Methods 200.8 and 245.1, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

B4MT14

Revision 0

NPDES

SDG: Analysis: IPA0103 Metals

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 011	IPA0103-01	Water	200.8, 245.1

NPDES

SDG: Analysis IPA0103 Metals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory above the temperature limits of 4° C $\pm 2^{\circ}$ C, at 9° C; however, due to the nonvolatile nature of the analytes, no qualifications were required. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data documented that the sample analyses were performed within the specified holding times of six months for the ICP-MS metals and 28-days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

The method-specified tune criteria were met and no qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110% for ICP-MS metals and 80-120% for mercury. The laboratory analyzed reporting limit check standards in association with the sample in this SDG and all recoveries were acceptable. No qualifications were required.

2.4 BLANKS

The method blank and CCB results were nondetects at the reporting limit or were at concentrations insufficient to qualify the site sample. No qualifications were required.

B4MT14

3

Revision 0

Project: NPDES SDG: IPA0103 Analysis: Metals

DATA VALIDATION REPORT

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Lead, which is not present in the ICSA or ICSAB, was detected in both the ICSA and the ICSAB; however, as the wastewater method (EPA SW-846 6020) lists no known interferents for lead, no qualifications were required. The recoveries were within the control limits and no qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP-MS and mercury LCS recoveries were within the laboratory-established control limits of 85-115%. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results. No qualifications were required.

2.9 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.10 INTERNAL STANDARDS PERFORMANCE

For the target compounds analyzed by ICP-MS, the ICP-MS internal standards were within established control limits. No qualifications were required.

B4MT14

Project: SDG: NPDES

DATA VALIDATION REPORT

SDG: IPA0103 Analysis: Metals

2.11 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.12 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.12.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.12.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Report Number: IPA0103

Sampled: 01/03/06

Pasadena, CA 91101 Attention: Bronwyn Kelly Received: 01/03/06

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	-		Date Extracted	Date Analyzed	Data Qualifi	
Sample ID: IPA0103-01 (Outfall 011 Reporting Units: ug/l	- Water) - cont.								Rew Qual	Code
Copper	EPA 200.8	6A04084	0.49	2.0	8.3	1	01/04/06	01/05/06		
Lead	EPA 200.8	6A04084	0.13	1.0	8.8	1	01/04/06	01/05/06		
Mercury	EPA 245.1	6A04080	0.063	0.20	ND	1	01/04/06	01/04/06	U	l

LEVEL IV

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MECX

	C^		Package ID B4PC3
12269 East Vassar Drive			Task Order 1261.001D.01
Au	rora, CO 80014		SDG No. IPA0103
		N	lo. of Analyses 1
	Laboratory Del Mar A	nalytical	Date: February 18, 2006
	Reviewer K. Shadov		Reviewer's Signature
,	Analysis/Method Perchlorat	es by Method 314	- KSchadzect
			8
AC	TION ITEMS		
	Case Narrative		
	Deficiencies		
2.	Out of Scope Analyses		
3.	Analyses Not Conducted		
· ·			
4.	Missing Hardcopy		
	Deliverables		
<i>E</i>			
5.	Incorrect Hardcopy Deliverables		
	Deliverables		
6.	Deviations from Analysis		
.	Protocol, e.g.,		
	Holding Times		
	GC/MS Tune/Inst. Performance		
	Calibration		
	Method blanks		
	Surrogates		
	Matrix Spike/Oup LCS		
	Field QC		
	Internal Standard Performance		
	Compound Identification		
	Quantitation		
	System Performance		
COL	MENTS ³	Acceptable as reviewed	

·······			

	bcontracted analytical laboratory is not n		

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 011

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUP: IPA0103

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

NPDES

SDG: Analysis: IPA0103 Perch.

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title:

NPDES

MEC^X Project Number:

1261.001D.01

Sample Delivery Group:

IPA0103

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Perchlorate

QC Level:

Level IV

No. of Samples:

1

No. of Reanalyses/Dilutions:

K. Shadowlight

Reviewer: Date of Review:

February 18, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Perchlorate (DVP-14, Rev. 0), USEPA Methods for Chemical Analysis of Water and Wastes Methods 314.0, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form Is as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: NPDES SDG: IPA0103 Analysis: Perch.

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 011	IPA0103-01	Water	314.0

Project: SDG: NPDES

Analysis:

IPA0103 Perch.

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of 4° C \pm 2° C. The analysis does not require preservation and no preservation was noted by the field. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and analysis presented in this SDG. As the sample was couriered directly from the site to the laboratory, custody seals were not necessary. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the date of analysis. The 28-day analytical holding time for perchlorate was met. No qualifications were required.

2.2 CALIBRATION

The initial calibration correlation coefficients were ≥ 0.995. The ICV, ICCS, and CCVs had acceptable recoveries within the control limits of 90-110%. The IPC-MA was recovered within the method control limits of 80-120%. No qualifications were required.

2.3 BLANKS

There were no detects in the associated method blank or CCBs. Raw data was reviewed to verify the blank data. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recovery was within the method-established control limits of 85-115%. Raw data was reviewed to verify the values reported for the LCS recovery. No qualifications were required.

3

B4PC3

Revision 0

NPDES

DATA VALIDATION REPORT

SDG: Analysis: IPA0103 Perch.

2.5 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion.

2.6 MATRIX SPIKES

No MS/MSD analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was based on LCS results. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample result reported on the Form I was verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A., Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011

Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

INORGANICS

MDL Reporting Sample Dilution Date Analyte Method Limit Limit Result Factor Extracted Analyzed Qualifiers Batch Sample ID: IPA0103-01 (Outfall 011 - Water) - cont.

Reporting Units: ug/i

Perchlorate

EPA 314.0

6A04078 0.80

4.0

ND

01/04/06 01/04/06 LL

level III

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

en de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya del companya

MEC ^X	P	ackage ID B4SV4					
12269 East Vassar Drive		ask Order 1261.001D.01					
Aurora, CO 80014	SDG No. IPA0103						
	No. of	Analyses 1					
Laboratory Del Mar An		Date: February 16, 2006					
Reviewer K. Shadowl	Reviewer's Signature,						
Analysis/Method Semivolatile		Shadrut					
We send the challenge and the character of the character	J						
ACTION ITEMS*							
Case Narrative							
Deficiencies							
2. Out of Scope Analyses							
3. Analyses Not Conducted							
	ikk dali kaka kati pinininining ilining kipining kati pining kati pining kati panahan kati panahan kati panahan						
4. Missing Hardcopy							
Deliverables							
5. Incorrect Hardcopy							
Deliverables							
6. Deviations from Analysis	Qualification were assigned	Seath a Sellandia					
· ·	-Method blank contamination						
Protocol, e.g., Holding Times	-Method blank contamination -RPD outliers in the BS/BSI						
GC/MS Tune/Inst. Performance	-RFU dutilets in the 65/65						
Calibration	ad the shallow in the state of						
Method blanks							
Surrogates							
Matrix Spike/Dup LCS							
Field QC	ek da dinamana nya mpanja nya nya						
Internal Standard Performance							
Compound Identification							
Quantitation							
System Performance							
COMMENTS							
H 1995-hard Barbar de Amerika da palagun de managam da							
	$q^{\frac{1}{2}} e^{-\frac{1}{2}(\frac{1}{2} + \frac{1}{2} + $						
 Subcontracted analytical laboratory is not meeting contract and/or method requirements. Differences in protocol have been adopted by the laboratory but no action against the laboratory is required. 							

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 011

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP IPA0103

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project:

NPDES

SDG: Analysis: IPA0103 **SVOCs**

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title:

NPDES

MEC^X Project Number:

1261.001.01

Sample Delivery Group:

IPA0103

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Semivolatiles

QC Level:

Level IV

No. of Samples:

1

0

No. of Reanalyses/Dilutions:

Reviewer:

K. Shadowlight

Date of Review:

February 16, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: NPDES SDG: IPA0103 Analysis: SVOCs

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 011	IPA0103-01	Water	625

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory above the temperature limits of 4° C $\pm 2^{\circ}$ C at 9° C. Due to the nonvolatile nature of the analytes, no qualification was required for the elevated temperature. No other sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly from the field to the laboratory, custody seals were not necessary. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tune performed at the beginning of each daily analytical sequence met the abundance criteria specified in EPA Method 625. No qualifications were required.

2.3 CALIBRATION

One initial calibration was associated with the sample, dated 12/29/05. The average RRFs were ≥ 0.05 for all target compounds. The %RSDs were $\leq 35\%$ or r^2 values ≥ 0.995 for all target compounds listed on the sample summary report. The continuing calibration associated with the sample in this SDG was dated 01/05/06. The RRFs for all target compounds were ≥ 0.05 and the %Ds were $\leq 20\%$. A representative number of average RRFs and %RSDs in the initial calibration and RRFs and %Ds in the continuing calibration were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

B45V4

Project: NPDES SDG: IPA0103 Analysis: SVOCs

DATA VALIDATION REPORT

2.4 BLANKS

One method blank (6A09061-BLK1) was extracted and analyzed with this SDG. Target compounds bis(2-ethylhexyl)phthalate was detected between the MDL and the reporting limit in the method blank. Target compound bis(2-ethylhexyl)phthalate was also detected in the site sample. The result for bis(2-ethylhexyl)phthalate, was qualified as a nondetect, "U," at the reporting limit. Review of the method blank raw data indicated no false positives or false negatives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (6A09061-BS1/BSD1) was extracted and analyzed with this SDG. The recoveries for 2,4-dinitrotoluene and pentachlorophenol were below QC limits but ≥10% in the blank spike duplicate only. The RPDs for 2,4-dinitrotoluene, n-nitrosodimethylamine, and pentachlorophenol exceeded the QC limit of 20%; therefore, the nondetect results for the aforementioned target compounds were qualified as estimated, "UJ," in the site sample. The remaining recoveries and RPDs were within the laboratory-established QC limits. A representative number of recoveries were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

2.6 SURROGATE RECOVERY

Surrogate recoveries for the sample were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

B4SV4 4 Revision 0

Project:	NPDES
SDG:	IPA0103
Annhinin	SIMOCA

DATA VALIDATION REPORT

2.8.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples identified for this SDG. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples identified for this SDG.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times for the sample were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for five semivolatile target compounds by EPA Method 625. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

ion	0	i	
į	OΠ	on 0	ion 0

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st SL, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101 Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Data Analyzed Qualifie	rs
Sample ID: IPA0103-01 (Outfall 01) Reporting Units: ug/l	- Water) - cont	•						E tral	Que
Bis(2-ethylhexyl)phthalate	EPA 625	6A09061	1.1	5.0	2.2	MO 1	01/09/06	01/12/06 (S, B, J	В
2,4-Dinitrotoluene	EPA 625	6A09061	0.23	9.0	ND	1	01/09/06	01/12/06 4J L2	×- 5
N-Nitrosodimethylamine	EPA 625	6A09061	0.22	8.0	ND	1	01/09/06	01/12/06	1
Pentachlorophenol	EPA 625	6A09061	0.78	8.0	ND	1	01/09/06	01/12/06 - L2	\downarrow
2,4,6-Trichlorophenol	EPA 625	6A09061	0.10	6.0	ND	1	01/09/06	01/12/06 CL	
Surrogate: 2-Fluorophenol (30-120%))				61 %				
Surrogate: Phenol-d6 (35-120%)					73 %				The second of th
Surrogate: 2,4,6-Tribromophenol (45-	120%)				84 %				Ť
Surrogate: Nitrobenzene-d5 (45-120%	6)				81%				
Surrogate: 2-Fluorobiphenyl (45-120)	%)				73 %				
Surrogate: Terphenyl-d14 (45-120%)					74 %				

level III.
Ks or/16/06

Del Mar Analytical, Irvine Michele Chamberlin Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MECX

MECX		Package ID B4VO14
12269 East Vassar [Orive	Task Order 1261.001D.01
Aurora, CO 80014		SDG No. IPA0103
		No. of Analyses 1
Laboratory I	Del Mar Analytical	Date: February 16, 2006
Reviewer	K. Shadowlight	Reviewer's Signature
Analysis/Method	Volatiles by Method 624	KShader It
XVVA		
ACTION ITEMS		
. Case Narrative		
Deficiencie s		
Out of Scope An	alyses	
Marchinia of improved policina control of the contr		
3. Analyses Not Co	nducted	
A RAI on The on A Section Assessment		
4. Missing Hardcop Deliverables	1 y	
Jenverabies		
5. Incorrect Hardco	teriorina di managana di managan d Managan di managan d	
Deliverables	Compared to a communication of the communication of	
6. Deviations from	Analysis Sample was rece	eived above temperature limits and all results were
Protocol, e.g.,	qualified as estim	
Holding Times		
GC/MS Tune/Inst. F	Performance	
Calibration		
Method blanks		
Surrogates		
Matrix Spike/Dup Lo	<u> </u>	
Field QC		
Internal Standard P		
Compound Identific	ation	
Quantitation System Performand		
COMMENTS		
and the second of the second o		
der Jerfer folk formische seine verstenn man den die im Arte versche bestätzte bestätzte bestätzt werden der d		
	rendialis (han arramentus fortunias dapit firm fakik (djan), illuglingapp (M), illigunjup (dipulus (dipulus indexis) a (dapit baka) adalah ada	
والمراجعة والمرا		
* Subcontracted analytical la	boratory is not meeting contract and/or m	nethod requirements.
	e been adopted by the laboratory but no	

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 011

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IPA0103

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG:

NPDES

Analysis:

IPA0103 VOCs

1. INTRODUCTION

Task Order Title:

NPDES

MEC^X Project Number:

1261.001.01

Sample Delivery Group:

DATA VALIDATION REPORT

IPA0103

Project Manager:

P. Costa Water

Matrix:

Volatiles

Analysis:

QC Level:

Level IV

No. of Samples:

1

No. of Reanalyses/Dilutions:

K. Shadowlight Reviewer:

Date of Review:

February 16, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 624, and the National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: NPDES SDG: IPA0103

SDG: I Analysis: VOCs

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 011	IPA0103-01	Water	624

Project: NPDES SDG: IPA0103 Analysis: VOCs

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory above the temperature limits of 4°C ±2°C, at 9°C. According to the case narrative for this SDG, the sample was received intact, on ice, and properly preserved. Because the sample was shipped via courier direct to the laboratory on ice and received the day of sampling, the sample had not had sufficient time to cool to the appropriate temperature. No qualification was deemed necessary by the reviewer. Information regarding lack of headspace in the VOA vials was not provided. No further qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The BFB tune performed at the beginning of each daily analytical sequence met the abundance criteria specified in EPA Method 624. No qualifications were required.

2.3 CALIBRATION

Two initial calibrations were associated with the sample in this SDG, dated 10/19/05 (Freon 113 only) and 12/29/05. The average RRFs were ≥0.05 for all target compounds. The %RSDs were ≤35% for the target compounds listed on the sample summary forms. The continuing calibration associated with the sample in this SDG was dated 01/05/05. The RRFs for all target compounds were ≥0.05 and all %Ds were within the QC limit of ≤20%. A representative number of average RRFs and %RSDs in the initial calibration and RRFs and %Ds in the continuing calibration were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (6A05005-BLK1) was analyzed with this SDG. No target compounds were detected in the method blank. Review of the method blank raw data indicated no false negatives. No qualifications were required.

B4V014 3 Revision 0

Project: NPDES SDG: IPA0103 Analysis: VOCs

DATA VALIDATION REPORT

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (6A05005-BS1) was analyzed with this SDG. The recoveries for the blank spike were within the laboratory-established QC limits. A representative number of recoveries were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

Surrogate recoveries were within the laboratory QC limits of 80-120% for this SDG. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy was based on the blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

According to a notation on the COC, a trip blank was not received by the laboratory for the sample in this SDG; therefore, possible trip blank contamination could not be assessed by the reviewer. No qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples identified for this SDG. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples identified for this SDG.

Project: NPDES SDG: IPA0103 Analysis: VOCs

DATA VALIDATION REPORT

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for volatile target compounds by EPA Method 624. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

PURGEABLES BY GC/MS (EPA 624)

			MDL	Reporting	Sample			Date	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifi	
Sample ID: IPA0103-01 (Outfall 011 Reporting Units: ug/l	- Water)									
Benzene	EPA 624	6A05005	0.28	2.0	ND	1	01/05/06	01/05/06	ų	The state of the s
Trichlorotrifluoroethane (Freon 113)	EPA 624	6A05005	1.2	5.0	ND	1	01/05/06	01/05/06	***************************************	×. (0.600 ppg)
Carbon tetrachloride	EPA 624	6A05005	0.28	5.0	ND	1	01/05/06	01/05/06		3000 PM
Chloroform	EPA 624	6A05005	0.33	2.0	ND	1	01/05/06	01/05/06	24	a-xvovanis.
1,1-Dichloroethane	EPA 624	6A05005	0.27	2.0	ND	1	01/05/06	01/05/06	CAN AND AND AND AND AND AND AND AND AND A	ACT-TOTAL CONTRACTOR C
1,2-Dichloroethane	EPA 624	6A05005	0.28	2.0	ND	1	01/05/06	01/05/06	and the second	Pyrot sanger
1,1-Dichloroethene	EPA 624	6A05005	0.42	3.0	ND	1	01/05/06	01/05/06	applica estim	ALTONO PART OF THE
Ethylbenzene	EPA 624	6A05005	.0.25	2.0	ND	1	01/05/06	01/05/06		anacopolica de la compansa de la com
Tetrachloroethene	EPA 624	6A05005	0.32	2.0	ND	1	01/05/06	01/05/06	_D arjimensish	e de la company
Toluene	EPA 624	6A05005	0.36	2.0	ND	1	01/05/06	01/05/06	• Activity	n n n n n n n n n n n n n n n n n n n
1,1,1-Trichloroethane	EPA 624	6A05005	0.30	2.0	ND	1	01/05/06	01/05/06	4000	фермониция (
1,1,2-Trichloroethane	EPA 624	6A05005	0.30	2.0	ND	1	01/05/06	01/05/06	- Anna Aire	aucosoppide.
Trichloroethene	EPA 624	6A05005	0.26	5.0	ND	1	01/05/06	01/05/06	Security Sec	
Trichlorofluoromethane	EPA 624	6A05005	0.34	5.0	ND	1	01/05/06	01/05/06	90	o de la constante de la consta
Vinyl chloride	EPA 624	6A05005	0.26	5.0	ND	1	01/05/06	01/05/06	The same of the sa	AMilane
Xylenes, Total	EPA 624	6A05005	0.52	4.0	ND	1	01/05/06	01/05/06	4	n de la company
Surrogate: Dibromofluoromethane (8)	0-120%)				110%					ì
Surrogate: Toluene-d8 (80-120%)					103 %					
Surrogate: 4-Bromoftuorobenzene (80	0-120%)				104 %					

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA MECX, LLC Package ID <u>B4WC6</u> 12260 East Vassar Drive Task Order 1261.001D.01 SDG No. IPA0103 Suite 500 Lakewood, CO 80226 No. of Analyses 1 Laboratory Del Mar - Irvine Date: February 17, 2006 Reviewer's Signature Reviewer E. Wessling Analysis/Method General Minerals **ACTION ITEMS*** Case Narrative Deficiencies 2. Out of Scope Analyses 3. Analyses Not Conducted 4. Missing Hardcopy **Deliverables** 5. Incorrect Hardcopy **Deliverables** 6. Deviations from Analysis Qualifications were assigned for the following: - results between the RL and the MDL were estimated Protocol, e.g., - BOD results did not meet method specific oxygen depletion criterion **Holding Times** GC/MS Tune/Inst. Performance - CCV for conductivity Calibration - negative blank for MBAS Method blanks Surrogates Matrix Spike/Dup LCS Field QC Internal Standard Performance Compound Identification Quantitation System Performance COMMENTS^b Subcontracted analytical laboratory is not meeting contract and/or method requirements.

Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Sampling Outfall 011

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUP: IPA0103

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title: NPDES Sampling MEC^x Project Number: 1261.001D.01

Sample Delivery Group: IPA0103

Project Manager: P. Costa Matrix: Water

Analysis: General Minerals

QC Level: Level IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Reviewer: E. Wessling

Date of Review: February 17, 2006

The sample listed in Table 1 was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), USEPA Methods for Chemical Analysis of Water and Wastes Methods 120.1, 160.1, 160.2, 160.5, 180.1, 300.0, 335.2, 350.2, 405.1, and 413.1 and Standard Methods for the Examination of Water and Wastewater Method SM2550-C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form Is as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

B4WC6 1 Revision 0

DATA VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID	Matrix	COC Method
Outfall 011	IPA0103-01	Water	General Minerals

DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory above the temperature limits of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$; however the sample was shipped direct to the laboratory on ice and had not yet cooled to the specified temperature. No qualifications were deemed necessary by the reviewer. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and all analyses presented in this SDG. As the sample was couriered directly from the field to the laboratory, custody seals were not necessary.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analysis. All samples were analyzed within the method specified holding times. No qualifications were required.

2.2 CALIBRATION

For all applicable analyses, the initial calibration correlation coefficients were ≥0.995 and the ICV and CCV recoveries were within the control limits of 90-110%, with the exception of conductivity. The CCV was below the control limit and the sample result was qualified as estimated, "J." For those methods requiring weight determinations, balance calibration logs were reviewed and found to be acceptable. No further qualifications were required.

2.3 BLANKS

There were no detects in the method blanks or CCBs associated with the sample analyses. The blanks in the MBAS analysis associated with sample Outfall 011 demonstrated negative results. The MBAS result for Outfall 011 was therefore qualified as an estimated nondetect, "UJ." Raw data was reviewed to verify the blank data. No further qualifications were required.

B4WC6 3 Revision 0

DATA VALIDATION REPORT

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The reported LCS recoveries were within the laboratory-established control limits. No LCS recovery was listed for nitrate; however, the reviewer checked the raw data and found that nitrate was spiked into the LCS and was recovered acceptably. No qualifications were required.

2.5 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion. No qualifications were required.

2.6 MATRIX SPIKES

No MS/MSD analyses were performed in association with this SDG; therefore, no assessment was made with respect to this criterion. Evaluation of method accuracy was based on LCS results. No qualifications were required.

2.7 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. Sample Outfall 011 did not meet the BOD method specified oxygen depletion rate; therefore, the sample result was qualified as estimated, "J." Results reported by the laboratory between the MDL and reporting limit were qualified as estimated, "J," and annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

B4WC6 4 Revision 0

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Pasadena, CA 91101

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06

Report Number: IPA0103

Received: 01/03/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	-		Tourist .
Sample ID: IPA0103-01 (Outfall 011 Reporting Units: mg/l	- Water) - cont.								and	G: 88
Ammonia-N (Distilled)	EPA 350.2	6A05098	0.30	0.50	ND	1	01/05/06	01/05/06	Ų.	
Biochemical Oxygen Demand	EPA 405.1	6A05070	0.59	2.0	2.7	1	01/05/06	01/10/06	J K	* t
Chloride	EPA 300.0	6A03051	0.26	0.50	24	1	01/03/06	01/03/06		
Total Cyanide	EPA 335.2	6A06111	0.0022	0.0050	ND	I	01/06/06	01/09/06	Ú	
Nitrate/Nitrite-N	EPA 300.0	6A03051	0.080	0.15	1.5	1	01/03/06	01/03/06		
Oil & Grease	EPA 413.1	6A09050	0.99	5.3	2.7	1	01/09/06	01/09/06	$\rightarrow y$	BURK
Sulfate	EPA 300.0	6A03051	0.18	0.50	41	1	01/03/06	01/03/06	,	1
Surfactants (MBAS)	EPA 425.1	6A03114	0.044	0.10	ND	1	01/03/06	01/03/06	L 1	13
Total Dissolved Solids	EPA 160.1	6A04107	10	10	220	1	01/04/06	01/04/06	•	
Total Suspended Solids	EPA 160.2	6A06118	10	10	48	1	01/06/06	01/06/06		

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (838) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Pasadena, CA 91101

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Sampled: 01/03/06

Report Number: IPA0103

Received: 01/03/06

INORGANICS

MDL Reporting Sample Dilution Date Date Analyte Result Factor Extracted Analyzed Qualifiers Method Batch Limit Sample ID: IPA0103-01 (Outfall 011 - Water) - cont. Reporting Units: mi/l/hr **Total Settleable Solids** EPA 160.5 6A04072 0.10 0.10 0.50 01/04/06 01/04/06

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 266-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

Pasadena, CA 91101

Project ID: Quarterly Outfall 011

300 North Lake Avenue, Suite 1200

Report Number: IPA0103

Sampled: 01/03/06 Received: 01/03/06

Attention: Bronwyn Kelly

INORGANICS

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: IPA0103-01 (Outfall 011 - Water) - cont.

Reporting Units: NTU

Turbidity EPA 180.1 6A04071 0.20 5.0 72 5 01/04/06 01/04/06

17461 Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949): 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200

Pasadena, CA 91101

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011

Report Number: IPA0103

Sampled: 01/03/06

Received: 01/03/06

INORGANICS

MDL Reporting Sample Dilution Date Result Factor Extracted Analyzed Qualifiers Analyte Method Limit Batch Limit Sample ID: IPA0103-01 (Outfall 011 - Water) - cont. Reporting Units: umhos/cm 01/04/06 01/04/06 Specific Conductance EPA 120.1 6A04105

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

MEC ^X	Package ID B4DF11
12269 East Vassar Drive	Task Order 1261.001D.01
Aurora, CO 80014	SDG No. IPA0103
,	No. of Analyses 1
Laboratory Alta	Date: February 14, 2006
Reviewer K. Shadow	
Analysis/Method Dioxin/Fura	
ACTION ITEMS	
. Case Narrative	
Deficiencies	
2. Out of Scope Analyses	
3. Analyses Not Conducted	
4. Missing Hardcopy Deliverables	
Deliverables	
5. Incorrect Hardcopy	
Deliverables	
6. Deviations from Analysis	Detects below the laboratory lower calibration level were qualified
Protocol, e.g.,	as estimated.
Holding Times	Qualification was assigned for an EMPC.
GC/MS Tune/Inst. Performance	
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Internal Standard Performance	
Compound Identification Quantitation	
System Performance COMMENTS ^b	
Man Man Andrews (大変なない Andrews Andre	
² Subcontracted analytical laboratory is not	meeting contract and/or method requirements.
t	by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Monitoring Program Routine Outfall 011

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUP: IPA0103

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

Project: SDG:

NPDES IPA0103 D/F

DATA VALIDATION REPORT

Analysis:

1. INTRODUCTION

Task Order Title:

NPDES

Contract Task Order:

1261.001.01

Sample Delivery Group:

IPA0103

Project Manager:

P. Costa

Matrix:

Water

Analysis:

Dioxins/Furans

QC Level:

Level IV

No. of Samples:

No. of Reanalyses/Dilutions:

O

1

Reviewer:

K. Shadowlight

Date of Review:

February 14, 2006

The samples listed in Table 1 were validated based on the guidelines outlined in the MECX Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT

Project: SDG: Analysis:

NPDES IPA0103 D/F

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 011	IPA0103-01	27141-001	Water	1613

Analysis

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical above the temperature limits of 4°C ±2°C; at 9°C. Due to the nonvolatile nature of dioxin/furans, no qualifications were required for the elevated temperature. The sample was shipped to Alta for dioxin/furan analysis and was received below the temperature limits at 0°C. As the sample was not noted to be damaged or frozen, no qualifications were required. According to the case narrative and laboratory login sheet, the sample was received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were legible and signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the samples were couriered directly to Del Mar Analytical-Irvine, custody seals were not required. Custody seals were present on the coolers from Del Mar to Alta; however no sample custody seals were present. The Client ID was added to the sample result summary by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 **INSTRUMENT PERFORMANCE**

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%. No qualifications were required.

Project: NPDES SDG: IPA0103 Analysis: D/F

DATA VALIDATION REPORT

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000. No qualifications were required.

2.3 CALIBRATION

2.3.1 Initial Calibration

The initial calibration was analyzed 12/30/2005 on instrument VG-7. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of %RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of %Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standard instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0-7632-MB001) was extracted and analyzed with the sample in this SDG. No compounds were reported in the method blank associated with the site sample. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (0-7632-OPR001) was extracted and analyzed with the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. A review of the raw data and chromatograms indicated no transcription or calculation errors. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Revision 0

Project: NPDES SDG: IPA0103 Analysis: D/F

DATA VALIDATION REPORT

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no field blank or equipment rinsate identified. No qualifications of the site samples were required.

2.7.2 Field Duplicates

No field duplicates were identified in association with the sample in this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," by the laboratory. These "J" values were annotated with the qualification code of "DNQ" to comply with the reporting requirements of the NPDES permit. Any reported estimated maximum possible concentration (EMPC) was qualified as an estimated nondetect, "UJ." No further qualifications were required.