# **APPENDIX G**

# **Section 47**

Outfall 011 - March 20 & 21, 2011

MECX Data Validation Report



# DATA VALIDATION REPORT

# **Boeing SSFL NPDES**

SAMPLE DELIVERY GROUP: IUC2187

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IUC2187
Project Manager: B. Kelly

Matrix: Water QC Level: IV

No. of Samples: 2 No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

| Client ID   | Laboratory ID | Sub-Laboratory<br>ID                    | Matrix | Collected          | Method                                                                                                                                                                              |
|-------------|---------------|-----------------------------------------|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outfall 011 | IUC2187-03    | N/A                                     | Water  | 3/21/2011<br>10:00 | 120.1                                                                                                                                                                               |
| Outfall 011 | IUC2187-03    | G1C230588-001,<br>994230,<br>S103142-01 | Water  |                    | 180.1, 200.7, 200.7 (diss), 245.1,<br>245.1 (Diss), 314.0, 625, 1613B,<br>8315M, 900.0 MOD, 901.1 MOD,<br>903.0 MOD, 904 MOD, 905 MOD,<br>906.0 MOD, ASTM 5174,<br>SM2340B, SM5310B |

### **II. Sample Management**

No anomalies were observed regarding sample management. The samples were received above the temperature limit at Truesdail and Eberline and the samples collected 3/21/2011 were received nominally above the temperature limit at TestAmerica-Irvine; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at Eberline, Truesdail, and TestAmerica-West Sacramento. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Project: SSFL NPDES
DATA VALIDATION REPORT SDG: IUC2187

### **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

### **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of standards used for the calibration was incorrect                    |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| Е         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| I         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

DATA VALIDATION REPORT SDG: SSFL NPDES SDG: IUC2187

### **Qualification Code Reference Table Cont.**

| D         | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р         | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ       | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *11, *111 | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

### III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 15, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and reporting limit for 1,2,3,4,6,7,8-HpCDD, total HpCDD and OCDD. The sample results between the EDL and the RL for 1,2,3,4,6,7,8-HpCDD and total HpCDD were qualified as nondetected, "U," at the level of contamination. The method blank concentration of OCDD was insufficient to qualify the associated sample result.

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613, and RPDs were within the laboratory control limit of ≤50%.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Results for individual isomers reported as EMPCs were qualified as estimated nondetects, "UJ," at the level of the EMPC. Totals including EMPCs were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

#### B. EPA METHOD 8315M—Hydrazines

Reviewed By: P. Meeks

Date Reviewed: April 14, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 8315M, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The hydrazine sample
  was derivitized within 28 days of collection and was analyzed within three days of
  derivitization.
- Calibration: Calibration criteria were met. The initial calibration r² values were ≥0.995. The ICV, CCV and QCS recoveries were within 85-115%.
- Blanks: Hydrazines were not detected in the method blank.

 Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG. Recoveries and RPDs were within laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - o Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Review of the sample, MS, and MSD chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibrations and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

### C. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: April 15, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: Not applicable to these methods.
- Calibration: Mercury initial calibration r<sup>2</sup> values were ≥0.995. The magnesium ending CCV was recovered at 114%; therefore, total magnesium in the sample was qualified as estimated, "J." All initial and all remaining continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. The boron 20 µg/L CRDL

recovery was 139%; therefore, total boron in the sample was qualified as estimated, "J." All remaining CRDL/CRI recoveries were within the control limits of 70-130%.

- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Recoveries were within 80-120%.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable to these methods.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The total boron concentration was nominally lower than the dissolved boron concentration.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

### D. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: April 15, 2011

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J." The remaining detector efficiencies were ≥20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The strontium recovery was nominally above the control limit; however, strontium was not detected in the sample. The remaining recoveries were within laboratory-established control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for all analytes. The RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.

A notation in the preparation log indicated that a portion of the aliquots were filtered and that the filtrate was dissolved and added back to the aliquot.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

### E. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin

Date Reviewed: April 15, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs and the ICV and continuing calibration RRFs were 0.05 for all target compounds. The initial calibration %RSDs were ≤35%, or r² values ≥0.995. The second source ICV had a %D above 20% for 1,2-diphenylhydrazine/azobenzene; therefore, the nondetected result for this compound was qualified as estimated, "UJ." The remaining ICV and CCV %Ds were ≤20%.
- Blanks: Butylbenzyl phthalate was detected in the method blank below the reporting limit at 0.74 µg/L. The sample result for butylbenzyl phthalate was qualified as nondetected, "U," at the reporting limit. The method blank had no other target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Benzidine was not recovered in the LCS or LCSD. The nondetected sample result for benzidine was rejected, "R." Remaining recoveries were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.

 Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Method accuracy and precision was evaluated based on LCS/LCSD results.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
   -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

### F. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: April 14, 2011

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC<sup>X</sup> Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 180.1, 314.0, and SM5310B, and the National Functional Guidelines for Inorganic Data Review (7/02).

Holding Times: The analytical holding times were met.

Calibration: Calibration criteria were met. Initial calibration r<sup>2</sup> values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. Perchlorate ICP-MS and ICCS recoveries were within 80-120% and 65-125%, respectively. The balance calibration logs were acceptable.

- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms IUC2187

| Analysis Metho   | d 900          |                 |           |          |                 |                  |                         |                     |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Sample Name      | Outfall 011 (C | Composite       | ) Matri   | х Туре:  | WATER           | \                | Validation Le           | vel: IV             |
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Gross Alpha      | 12587461       | 2.26            | 3         | 0.276    | pCi/L           | Jb               | J                       | C, DNQ              |
| Gross Beta       | 12587472       | 6.22            | 4         | 0.866    | pCi/L           |                  |                         |                     |
| Analysis Metho   | d 901.1        |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 011 (0 | Composite       | ) Matri   | x Type:  | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Cesium-137       | 10045973       | ND              | 20        | 3.25     | pCi/L           | U                | U                       |                     |
| Potassium-40     | 13966002       | ND              | 25        | 58.4     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | d 903.1        |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 011 (C | Composite       | ) Matri   | x Type:  | WATER           |                  | alidation Le            | vel: IV             |
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium-226       | 13982633       | 0.35            | 1         | 0.544    | pCi/L           | U                | U                       |                     |
| Analysis Metho   | d 904          |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 011 (0 | Composite       | ) Matri   | x Type:  | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier |                         | Validation<br>Notes |
| Radium-228       | 15262201       | 0.229           | 1         | 0.42     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | d 905          |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 011 (0 | Composite       | ) Matri   | x Type:  | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Strontium-90     | 10098972       | -0.018          | 2         | 0.625    | pCi/L           | U                | U                       |                     |

Tuesday, April 19, 2011 Page 1 of 8

# Analysis Method 906

| Sample Name          | Outfall 011 (0 | Composite       | Matri     | x Type:  | WATER           | V                | alidation Le            | vel: IV             |
|----------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:     | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Tritium              | 10028178       | -77.2           | 500       | 167      | pCi/L           | U                | U                       |                     |
| Analysis Metho       | od ASTN        | 15174-          | 91        |          |                 |                  |                         |                     |
| Sample Name          | Outfall 011 (0 | Composite       | Matri     | x Type:  | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name:     | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Uranium, Total       | NA             | 0.321           | 1         | 0.02     | pCi/L           | Jb               | J                       | DNQ                 |
| Analysis Metho       | od EPA         | 120.1           |           |          |                 |                  |                         |                     |
| Sample Name          | Outfall 011 (0 | Grab)           | Matri     | x Type:  | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name:     | IUC2187-01     | Sam             | ple Date: | 3/21/201 | 1 10:00:00 AM   | М                |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Specific Conductance | NA             | 89              | 1.0       | 1.0      | umhos/c         |                  |                         |                     |
| Analysis Metho       | od EPA         | 180.1           |           |          |                 |                  |                         |                     |
| Sample Name          | Outfall 011 (0 | Composite)      | Matri     | x Type:  | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name:     | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Turbidity            | Turb           | 97              | 5.0       | 0.20     | NTU             |                  |                         |                     |

Tuesday, April 19, 2011 Page 2 of 8

# Analysis Method EPA 200.7

| Sample Name      | Outfall 011 (C | Composite       | ) Matri   | x Type:  | Water           | Validation Level: IV |                         |                     |
|------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                      |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Arsenic          | 7440-38-2      | 8.9             | 10        | 7.0      | ug/l            | Ja                   | J                       | DNQ                 |
| Barium           | 7440-39-3      | 0.028           | 0.010     | 0.0060   | mg/l            |                      |                         |                     |
| Beryllium        | 7440-41-7      | ND              | 2.0       | 0.90     | ug/l            |                      | U                       |                     |
| Boron            | 7440-42-8      | 0.039           | 0.050     | 0.020    | mg/l            | Ja                   | J                       | C, DNQ              |
| Calcium          | 7440-70-2      | 10              | 0.10      | 0.050    | mg/l            |                      |                         |                     |
| Chromium         | 7440-47-3      | 5.9             | 5.0       | 2.0      | ug/l            |                      |                         |                     |
| Cobalt           | 7440-48-4      | 2.2             | 10        | 2.0      | ug/l            | Ja                   | J                       | DNQ                 |
| Iron             | 7439-89-6      | 3.6             | 0.040     | 0.015    | mg/l            |                      |                         |                     |
| Magnesium        | 7439-95-4      | 3.2             | 0.020     | 0.012    | mg/l            |                      | J                       | С                   |
| Manganese        | 7439-96-5      | 55              | 20        | 7.0      | ug/l            |                      |                         |                     |
| Nickel           | 7440-02-0      | 4.5             | 10        | 2.0      | ug/l            | Ja                   | J                       | DNQ                 |
| Vanadium         | 7440-62-2      | 7.3             | 10        | 3.0      | ug/l            | Ja                   | J                       | DNQ                 |
| Zinc             | 7440-66-6      | 28.4            | 20.0      | 6.00     | ug/l            |                      |                         |                     |

# Analysis Method EPA 200.7-Diss

| Sample Name      | Outfall 011 (C | Composite       | ) Matri   | ix Type: | Water           | Validation Level: IV |                         |                     |
|------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                      |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Arsenic          | 7440-38-2      | ND              | 10        | 7.0      | ug/l            |                      | U                       |                     |
| Barium           | 7440-39-3      | 0.017           | 0.010     | 0.0060   | mg/l            |                      |                         |                     |
| Beryllium        | 7440-41-7      | ND              | 2.0       | 0.90     | ug/l            |                      | U                       |                     |
| Boron            | 7440-42-8      | 0.044           | 0.050     | 0.020    | mg/l            | Ja                   | J                       | DNQ                 |
| Calcium          | 7440-70-2      | 9.4             | 0.10      | 0.050    | mg/l            |                      |                         |                     |
| Chromium         | 7440-47-3      | ND              | 5.0       | 2.0      | ug/l            |                      | U                       |                     |
| Cobalt           | 7440-48-4      | ND              | 10        | 2.0      | ug/l            |                      | U                       |                     |
| Iron             | 7439-89-6      | 0.059           | 0.040     | 0.015    | mg/l            |                      |                         |                     |
| Magnesium        | 7439-95-4      | 2.1             | 0.020     | 0.012    | mg/l            |                      |                         |                     |
| Manganese        | 7439-96-5      | ND              | 20        | 7.0      | ug/l            |                      | U                       |                     |
| Nickel           | 7440-02-0      | 2.2             | 10        | 2.0      | ug/l            | Ja                   | J                       | DNQ                 |
| Vanadium         | 7440-62-2      | ND              | 10        | 3.0      | ug/l            |                      | U                       |                     |
| Zinc             | 7440-66-6      | ND              | 20.0      | 6.00     | ug/l            |                      | U                       |                     |

Tuesday, April 19, 2011 Page 3 of 8

# Analysis Method EPA 245.1

| Sample Name      | Outfall 011 (C | Composite       | ) Matr    | ix Type: | Water           | V                | Validation Le           | evel: IV            |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20      | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | od EPA 2       | 245.1-L         | )iss      |          |                 |                  |                         |                     |
| Sample Name      | Outfall 011 (C | Composite       | ) Matr    | ix Type: | Water           | V                | alidation Le            | evel: IV            |
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20      | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | od EPA 3       | 314.0           |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 011 (C | Composite       | ) Matr    | ix Type: | Water           | V                | Validation Le           | evel: IV            |
| Lab Sample Name: | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Perchlorate      |                |                 |           |          |                 |                  |                         |                     |

Tuesday, April 19, 2011 Page 4 of 8

| Sample Name                       | Outfall 011 (0 | Composite       | ) Matri   | ix Type: | Water           | Validation Level: IV |                         |                     |
|-----------------------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name:                  | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                      |                         |                     |
| Analyte                           | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| 1,2,4-Trichlorobenzene            | 120-82-1       | ND              | 0.943     | 0.0943   | ug/l            |                      | U                       |                     |
| 1,2-Dichlorobenzene               | 95-50-1        | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| 1,2-<br>Diphenylhydrazine/Azobenz | 103-33-3       | ND              | 0.943     | 0.0943   | ug/l            | С                    | UJ                      | С                   |
| 1,3-Dichlorobenzene               | 541-73-1       | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| 1,4-Dichlorobenzene               | 106-46-7       | ND              | 0.472     | 0.189    | ug/l            |                      | U                       |                     |
| 2,4,6-Trichlorophenol             | 88-06-2        | ND              | 0.943     | 0.0943   | ug/l            |                      | U                       |                     |
| 2,4-Dichlorophenol                | 120-83-2       | ND              | 1.89      | 0.189    | ug/l            |                      | U                       |                     |
| 2,4-Dimethylphenol                | 105-67-9       | ND              | 1.89      | 0.283    | ug/l            |                      | U                       |                     |
| 2,4-Dinitrophenol                 | 51-28-5        | ND              | 4.72      | 0.849    | ug/l            |                      | U                       |                     |
| 2,4-Dinitrotoluene                | 121-14-2       | ND              | 4.72      | 0.189    | ug/l            |                      | U                       |                     |
| 2,6-Dinitrotoluene                | 606-20-2       | ND              | 4.72      | 0.0943   | ug/l            |                      | U                       |                     |
| 2-Chloronaphthalene               | 91-58-7        | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| 2-Chlorophenol                    | 95-57-8        | ND              | 0.943     | 0.189    | ug/l            |                      | U                       |                     |
| 2-Nitrophenol                     | 88-75-5        | ND              | 1.89      | 0.0943   | ug/l            |                      | U                       |                     |
| 3,3'-Dichlorobenzidine            | 91-94-1        | ND              | 4.72      | 4.72     | ug/l            |                      | U                       |                     |
| 4,6-Dinitro-2-methylphenol        | 534-52-1       | ND              | 4.72      | 0.189    | ug/l            |                      | U                       |                     |
| 4-Bromophenyl phenyl ether        | 101-55-3       | ND              | 0.943     | 0.0943   | ug/l            |                      | U                       |                     |
| 4-Chloro-3-methylphenol           | 59-50-7        | ND              | 1.89      | 0.189    | ug/l            |                      | U                       |                     |
| 4-Chlorophenyl phenyl ether       | 7005-72-3      | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| 4-Nitrophenol                     | 100-02-7       | ND              | 4.72      | 2.36     | ug/l            |                      | U                       |                     |
| Acenaphthene                      | 83-32-9        | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| Acenaphthylene                    | 208-96-8       | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| Anthracene                        | 120-12-7       | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| Benzidine                         | 92-87-5        | ND              | 4.72      | 4.72     | ug/l            | L6                   | R                       | L                   |
| Benzo(a)anthracene                | 56-55-3        | ND              | 4.72      | 0.0943   | ug/l            |                      | U                       |                     |
| Benzo(a)pyrene                    | 50-32-8        | ND              | 1.89      | 0.0943   | ug/l            |                      | U                       |                     |
| Benzo(b)fluoranthene              | 205-99-2       | ND              | 1.89      | 0.0943   | ug/l            |                      | U                       |                     |
| Benzo(g,h,i)perylene              | 191-24-2       | ND              | 4.72      | 0.0943   | ug/l            |                      | U                       |                     |
| Benzo(k)fluoranthene              | 207-08-9       | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| Bis(2-chloroethoxy)methane        | 111-91-1       | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| Bis(2-chloroethyl)ether           | 111-44-4       | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| Bis(2-chloroisopropyl)ether       | 108-60-1       | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| Bis(2-ethylhexyl)phthalate        | 117-81-7       | ND              | 4.72      | 1.60     | ug/l            |                      | U                       |                     |
| Butyl benzyl phthalate            | 85-68-7        | ND              | 4.72      | 0.660    | ug/l            | B, Ja                | U                       | В                   |
| Chrysene                          | 218-01-9       | ND              | 0.472     | 0.0943   | ug/l            |                      | U                       |                     |
| Tuesday April 10, 2011            |                |                 |           |          |                 |                      |                         | Dogo F of 9         |

Tuesday, April 19, 2011 Page 5 of 8

# Analysis Method EPA 625

| Dibenz(a,h)anthracene      | 53-70-3  | ND    | 0.472 | 0.0943 | ug/l |    | U |     |
|----------------------------|----------|-------|-------|--------|------|----|---|-----|
| Diethyl phthalate          | 84-66-2  | 0.302 | 0.943 | 0.0943 | ug/l | Ja | J | DNQ |
| Dimethyl phthalate         | 131-11-3 | ND    | 0.472 | 0.0943 | ug/l |    | U |     |
| Di-n-butyl phthalate       | 84-74-2  | 0.396 | 1.89  | 0.189  | ug/l | Ja | J | DNQ |
| Di-n-octyl phthalate       | 117-84-0 | ND    | 4.72  | 0.0943 | ug/l |    | U |     |
| Fluoranthene               | 206-44-0 | ND    | 0.472 | 0.0943 | ug/l |    | U |     |
| Fluorene                   | 86-73-7  | ND    | 0.472 | 0.0943 | ug/l |    | U |     |
| Hexachlorobenzene          | 118-74-1 | ND    | 0.943 | 0.0943 | ug/l |    | U |     |
| Hexachlorobutadiene        | 87-68-3  | ND    | 1.89  | 0.189  | ug/l |    | U |     |
| Hexachlorocyclopentadiene  | 77-47-4  | ND    | 4.72  | 0.0943 | ug/l |    | U |     |
| Hexachloroethane           | 67-72-1  | ND    | 2.83  | 0.189  | ug/l |    | U |     |
| Indeno(1,2,3-cd)pyrene     | 193-39-5 | ND    | 1.89  | 0.0943 | ug/l |    | U |     |
| Isophorone                 | 78-59-1  | ND    | 0.943 | 0.0943 | ug/l |    | U |     |
| Naphthalene                | 91-20-3  | ND    | 0.943 | 0.0943 | ug/l |    | U |     |
| Nitrobenzene               | 98-95-3  | ND    | 0.943 | 0.0943 | ug/l |    | U |     |
| N-Nitrosodimethylamine     | 62-75-9  | ND    | 1.89  | 0.0943 | ug/l |    | U |     |
| N-Nitroso-di-n-propylamine | 621-64-7 | ND    | 1.89  | 0.0943 | ug/l |    | U |     |
| N-Nitrosodiphenylamine     | 86-30-6  | ND    | 0.943 | 0.0943 | ug/l |    | U |     |
| Pentachlorophenol          | 87-86-5  | ND    | 1.89  | 0.0943 | ug/l |    | U |     |
| Phenanthrene               | 85-01-8  | ND    | 0.472 | 0.0943 | ug/l |    | U |     |
| Phenol                     | 108-95-2 | ND    | 0.943 | 0.283  | ug/l |    | U |     |
| Pyrene                     | 129-00-0 | ND    | 0.472 | 0.0943 | ug/l |    | U |     |

Tuesday, April 19, 2011 Page 6 of 8

# Analysis Method EPA-5 1613B

| Sample Name            | Outfall 011 (C | omposite        | ) Matri   | x Type:   | WATER           | 7                | alidation Le            | vel: IV             |
|------------------------|----------------|-----------------|-----------|-----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:       | IUC2187-03RE1  | Sam             | ple Date: | 3/20/2011 | 9:35:00 PM      |                  |                         |                     |
| Analyte                | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| 1,2,3,4,6,7,8-HpCDD    | 35822-46-9     | ND              | 0.00005   | 0.0000009 | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,4,6,7,8-HpCDF    | 67562-39-4     | 0.00002         | 0.00005   | 0.0000006 | ug/L            | J                | J                       | DNQ                 |
| 1,2,3,4,7,8,9-HpCDF    | 55673-89-7     | ND              | 0.00005   | 0.0000009 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,4,7,8-HxCDD      | 39227-28-6     | ND              | 0.00005   | 0.0000006 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,4,7,8-HxCDF      | 70648-26-9     | ND              | 0.00005   | 0.0000004 | ug/L            | J, Q             | UJ                      | *III                |
| ,2,3,6,7,8-HxCDD       | 57653-85-7     | ND              | 0.00005   | 0.0000006 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,6,7,8-HxCDF      | 57117-44-9     | ND              | 0.00005   | 0.0000003 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,7,8,9-HxCDD      | 19408-74-3     | 0.000001        | 0.00005   | 0.0000005 | ug/L            | J                | J                       | DNQ                 |
| 1,2,3,7,8,9-HxCDF      | 72918-21-9     | ND              | 0.00005   | 0.0000004 | ug/L            |                  | U                       |                     |
| 1,2,3,7,8-PeCDD        | 40321-76-4     | ND              | 0.00005   | 0.0000009 | ug/L            |                  | U                       |                     |
| 1,2,3,7,8-PeCDF        | 57117-41-6     | ND              | 0.00005   | 0.0000006 | ug/L            |                  | U                       |                     |
| 2,3,4,6,7,8-HxCDF      | 60851-34-5     | ND              | 0.00005   | 0.0000003 | ug/L            | J, Q             | UJ                      | *III                |
| 2,3,4,7,8-PeCDF        | 57117-31-4     | ND              | 0.00005   | 0.0000007 | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDD           | 1746-01-6      | ND              | 0.00001   | 0.0000008 | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDF           | 51207-31-9     | ND              | 0.00001   | 0.0000006 | ug/L            |                  | U                       |                     |
| OCDD                   | 3268-87-9      | 0.00043         | 0.0001    | 0.0000025 | ug/L            | Ba               |                         |                     |
| OCDF                   | 39001-02-0     | 0.000036        | 0.0001    | 0.0000011 | ug/L            | J                | J                       | DNQ                 |
| Total HpCDD            | 37871-00-4     | ND              | 0.00005   | 0.0000009 | ug/L            | J, Ba            | U                       | В                   |
| Total HpCDF            | 38998-75-3     | 0.000044        | 0.00005   | 0.0000007 | ug/L            | J, Q             | J                       | DNQ, *III           |
| Гotal HxCDD            | 34465-46-8     | 0.000011        | 0.00005   | 0.0000006 | ug/L            | J, Q             | J                       | DNQ, *III           |
| Гotal HxCDF            | 55684-94-1     | 0.000015        | 0.00005   | 0.0000004 | ug/L            | J, Q             | J                       | DNQ, *III           |
| Total PeCDD            | 36088-22-9     | ND              | 0.00005   | 0.0000009 | ug/L            |                  | U                       |                     |
| Total PeCDF            | 30402-15-4     | 0.000002        | 0.00005   | 0.0000007 | ug/L            | J                | J                       | DNQ                 |
| Total TCDD             | 41903-57-5     | 0.000003        | 0.00001   | 0.0000008 | ug/L            | J, Q             | J                       | DNQ, *III           |
| Γotal TCDF             | 55722-27-5     | ND              | 0.00001   | 0.0000006 | ug/L            |                  | U                       |                     |
| Analysis Metho         | od SM 25       | 540D            |           |           |                 |                  |                         |                     |
| Sample Name            | Outfall 011 (C | omposite        | ) Matri   | x Type:   | Water           |                  | Validation Le           | vel: IV             |
| Lab Sample Name:       | IUC2187-03     | Sam             | ple Date: | 3/20/2011 | 9:35:00 PM      |                  |                         |                     |
| Analyte                | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Suspended Solids | TSS            | 35              | 10        | 1.0       | mg/l            |                  |                         |                     |

Tuesday, April 19, 2011 Page 7 of 8

# Analysis Method SM2340B

| Sample Name          | Outfall 011 (C | Composite       | ) Matri   | ix Type: | Water           | V                | alidation Le            | vel: IV             |
|----------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:     | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Hardness (as CaCO3)  | NA             | 38              | 0.33      | 0.17     | mg/l            |                  |                         |                     |
| Analysis Metho       | od SM23        | 40B-D           | iss       |          |                 |                  |                         |                     |
| Sample Name          | Outfall 011 (0 | Composite       | ) Matr    | іх Туре: | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name:     | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Hardness as CaCO3    | NA             | 32              | 0.33      | 0.17     | mg/l            |                  |                         |                     |
| Analysis Metho       | od SM53        | 10B             |           |          |                 |                  |                         |                     |
| Sample Name          | Outfall 011 (0 | Composite       | ) Matr    | ix Type: | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name:     | IUC2187-03     | Sam             | ple Date: | 3/20/201 | 1 9:35:00 PM    |                  |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Organic Carbon | TOC            | 9.1             | 1.0       | 0.50     | mg/l            |                  |                         |                     |

Tuesday, April 19, 2011 Page 8 of 8



Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7003 (714) 730-6239 · FAX (714) 730-6462 · www.truesdall.com

Client:

Test America - Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614-5817

Attention:

Debby Wilson

Sample:

Water / 1 Sample

Project Name: Project Number: **IUC2187** IUC2187

Method Number:

EPA 8315 (Modified)

Investigation:

Hydrazines

REPORT

Laboratory No:

994230

Report Date:

March 25, 2011 March 20, 2011

Sampling Date:

March 22, 2011

Receiving Date: Extraction Date:

March 22, 2011

Analysis Date:

March 23, 2011

Units:

ug/L

Reported By: JS

**Analytical Results** 

| 7 iliai y iliai 1 too alto |                    |             |          |            |            |           |           |  |  |  |  |
|----------------------------|--------------------|-------------|----------|------------|------------|-----------|-----------|--|--|--|--|
|                            |                    | Sample      | Dilution | Monomethy! | u-Dimethyl | Hydrazine | Qualifier |  |  |  |  |
| Sample ID                  | Sample Description | Amount (mL) | Factor   | Hydrazine  | Hydrazine  | •         | Codes     |  |  |  |  |
| 709338-MB                  | Method Blank       | 100         | 1        | ND         | ND         | МÐ        | None      |  |  |  |  |
| 994230                     | IUC2187-03         | 100         | 1        | ND ()      | ND ()      | ND ()     | None      |  |  |  |  |
| MDL                        |                    |             |          | 1.77       | 1.13       | 0.439     |           |  |  |  |  |
| PQL                        |                    |             |          | 5.0        | 5.0        | 1.00      |           |  |  |  |  |
| Sample Reporting           | ng Limits          |             |          | 5.0        | 5.0        | 1.00      |           |  |  |  |  |

Note: Results based on detector #1 (UV=365nm) data.

LEVEL IV



Jeff Lee, Project Manager

Analytical Services, Truesdail Laboratories, Inc.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories.

# **APPENDIX G**

### Section 48

Outfall 011 – March 20 & 21, 2011
Test America Analytical Laboratory Report



#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Annual Outfall 011

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 03/20/11-03/21/11

Received: 03/21/11

Issued: 04/28/11 16:24

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag.

Revised report to include trichlorofluoromethane per client request.

| LABORATORY ID | CLIENT ID               | MATRIX |
|---------------|-------------------------|--------|
| IUC2187-01    | Outfall 011 (Grab)      | Water  |
| IUC2187-02    | Trip Blanks             | Water  |
| IUC2187-03    | Outfall 011 (Composite) | Water  |

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

**TestAmerica Irvine** 

Debby Wilson

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)**

| Analyte                                            | Method        | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |
|----------------------------------------------------|---------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|
| Sample ID: IUC2187-01 (Outfall 011 (Grab) - Water) |               |         |              | Sampled: 03/21/11  |                  |                    |         |                  |                    |  |
| Reporting Units: mg/l                              |               |         |              |                    |                  |                    |         |                  |                    |  |
| GRO (C4 - C12)                                     | EPA 8015 Mod. | 11C2911 | 0.025        | 0.10               | ND               | 1                  | FB      | 03/22/11         |                    |  |
| Surrogate: 4-BFB (FID) (65-140%)                   |               |         |              |                    | 97 %             |                    |         |                  |                    |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### EXTRACTABLE FUEL HYDROCARBONS (EPA 3510C/EPA 8015B)

| Analyte                                 | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-01 (Outfall 011 (Gra |           | Sample  | d: 03/21/11  |                    |                  |                    |         |                  |                    |
| Reporting Units: mg/l                   |           |         |              |                    |                  |                    |         |                  |                    |
| DRO (C13 - C28)                         | EPA 8015B | 11C3080 | 0.094        | 0.47               | ND               | 0.943              | CP      | 03/24/11         |                    |
| Surrogate: n-Octacosane (45-120%)       |           |         |              |                    | 83 %             |                    |         |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 618 Michillinda Avenue, Suite 200 Sampled: 03/20/11-03/21/11

Arcadia, CA 91007 Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                   | Method            | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|-------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-01 (Outfall 011 (Grab  | ) - Water) - cont |         |              |                    | Cample           | .d. 02/21/11       |         | -                |                    |
| Reporting Units: ug/l                     | y - watery - cont | •       |              |                    | Sample           | ed: 03/21/11       |         |                  |                    |
| Benzene                                   | EPA 624           | 11C3698 | 0.28         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Bromodichloromethane                      | EPA 624           | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Bromoform                                 | EPA 624           | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Bromomethane                              | EPA 624           | 11C3698 | 0.42         | 1.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Carbon tetrachloride                      | EPA 624           | 11C3698 | 0.28         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Chlorobenzene                             | EPA 624           | 11C3698 | 0.36         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Chloroethane                              | EPA 624           | 11C3698 | 0.40         | 1.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Chloroform                                | EPA 624           | 11C3698 | 0.33         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Chloromethane                             | EPA 624           | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Dibromochloromethane                      | EPA 624           | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,2-Dichlorobenzene                       | EPA 624           | 11C3698 | 0.32         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,3-Dichlorobenzene                       | EPA 624           | 11C3698 | 0.35         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,4-Dichlorobenzene                       | EPA 624           | 11C3698 | 0.37         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1-Dichloroethane                        | EPA 624           | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,2-Dichloroethane                        | EPA 624           | 11C3698 | 0.28         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1-Dichloroethene                        | EPA 624           | 11C3698 | 0.42         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| cis-1,2-Dichloroethene                    | EPA 624           | 11C3698 | 0.32         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| trans-1,2-Dichloroethene                  | EPA 624           | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,2-Dichloropropane                       | EPA 624           | 11C3698 | 0.35         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| cis-1,3-Dichloropropene                   | EPA 624           | 11C3698 | 0.22         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| trans-1,3-Dichloropropene                 | EPA 624           | 11C3698 | 0.32         | 0.50               | ND               | 1                  | SS      | 03/29/11         | L                  |
| 1,2-Dichloro-1,1,2-trifluoroethane        | EPA 624           | 11C3698 | 1.1          | 2.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Ethylbenzene                              | EPA 624           | 11C3698 | 0.25         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Methylene chloride                        | EPA 624           | 11C3698 | 0.95         | 1.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1,2,2-Tetrachloroethane                 | EPA 624           | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Tetrachloroethene                         | EPA 624           | 11C3698 | 0.32         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Toluene                                   | EPA 624           | 11C3698 | 0.36         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1,1-Trichloroethane                     | EPA 624           | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1,2-Trichloroethane                     | EPA 624           | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Trichloroethene                           | EPA 624           | 11C3698 | 0.26         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Trichlorofluoromethane                    | EPA 624           | 11C3698 | 0.34         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Trichlorotrifluoroethane (Freon 113)      | EPA 624           | 11C3698 | 0.50         | 5.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Vinyl chloride                            | EPA 624           | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Xylenes, Total                            | EPA 624           | 11C3698 | 0.90         | 1.5                | ND               | 1                  | SS      | 03/29/11         |                    |
| Cyclohexane                               | EPA 624           | 11C3698 | 0.40         | 1.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%) | )                 |         |              |                    | 90 %             |                    |         |                  |                    |
| Surrogate: Dibromoflyoromethane (80 120%) | ()                |         |              |                    | 00 %             |                    |         |                  |                    |

Surrogate: Dibromofluoromethane (80-120%)

99 %

Surrogate: Toluene-d8 (80-120%)

100 %

#### **TestAmerica Irvine**

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                   | Method  | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|---------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| ·                                         |         | Daten   | Limit        | Limit              | Result           | ractor             | Analyst | Analyzeu         | Quanners           |
| Sample ID: IUC2187-02 (Trip Blanks - Wa   | ater)   |         |              |                    | Sample           | ed: 03/21/11       | 1       |                  |                    |
| Reporting Units: ug/l                     |         |         |              |                    |                  |                    |         |                  |                    |
| Benzene                                   | EPA 624 | 11C3698 | 0.28         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Bromodichloromethane                      | EPA 624 | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Bromoform                                 | EPA 624 | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Bromomethane                              | EPA 624 | 11C3698 | 0.42         | 1.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Carbon tetrachloride                      | EPA 624 | 11C3698 | 0.28         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Chlorobenzene                             | EPA 624 | 11C3698 | 0.36         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Chloroethane                              | EPA 624 | 11C3698 | 0.40         | 1.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Chloroform                                | EPA 624 | 11C3698 | 0.33         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Chloromethane                             | EPA 624 | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Dibromochloromethane                      | EPA 624 | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,2-Dichlorobenzene                       | EPA 624 | 11C3698 | 0.32         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,3-Dichlorobenzene                       | EPA 624 | 11C3698 | 0.35         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,4-Dichlorobenzene                       | EPA 624 | 11C3698 | 0.37         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1-Dichloroethane                        | EPA 624 | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,2-Dichloroethane                        | EPA 624 | 11C3698 | 0.28         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1-Dichloroethene                        | EPA 624 | 11C3698 | 0.42         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| cis-1,2-Dichloroethene                    | EPA 624 | 11C3698 | 0.32         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| trans-1,2-Dichloroethene                  | EPA 624 | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,2-Dichloropropane                       | EPA 624 | 11C3698 | 0.35         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| cis-1,3-Dichloropropene                   | EPA 624 | 11C3698 | 0.22         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| trans-1,3-Dichloropropene                 | EPA 624 | 11C3698 | 0.32         | 0.50               | ND               | 1                  | SS      | 03/29/11         | L                  |
| 1,2-Dichloro-1,1,2-trifluoroethane        | EPA 624 | 11C3698 | 1.1          | 2.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Ethylbenzene                              | EPA 624 | 11C3698 | 0.25         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Methylene chloride                        | EPA 624 | 11C3698 | 0.95         | 1.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1,2,2-Tetrachloroethane                 | EPA 624 | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Tetrachloroethene                         | EPA 624 | 11C3698 | 0.32         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Toluene                                   | EPA 624 | 11C3698 | 0.36         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1,1-Trichloroethane                     | EPA 624 | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| 1,1,2-Trichloroethane                     | EPA 624 | 11C3698 | 0.30         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Trichloroethene                           | EPA 624 | 11C3698 | 0.26         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Trichlorofluoromethane                    | EPA 624 | 11C3698 | 0.34         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Trichlorotrifluoroethane (Freon 113)      | EPA 624 | 11C3698 | 0.50         | 5.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Vinyl chloride                            | EPA 624 | 11C3698 | 0.40         | 0.50               | ND               | 1                  | SS      | 03/29/11         |                    |
| Xylenes, Total                            | EPA 624 | 11C3698 | 0.90         | 1.5                | ND               | 1                  | SS      | 03/29/11         |                    |
| Cyclohexane                               | EPA 624 | 11C3698 | 0.40         | 1.0                | ND               | 1                  | SS      | 03/29/11         |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%) |         | 22.00   |              | • •                | 90 %             | -                  |         | ,                |                    |
| Surrogate: Dibromofluoromethane (80-120)  |         |         |              |                    | 97 %             |                    |         |                  |                    |

Surrogate: Dibromofluoromethane (80-120%)

Surrogate: Toluene-d8 (80-120%)

97 %

94 %

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

### **PURGEABLES-- GC/MS (EPA 624)**

| Analyte                                   | Method     | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-01 (Outfall 011 (Grab  | ) - Water) |         |              |                    | Sample           | ed: 03/21/11       | l       |                  |                    |
| Reporting Units: ug/l                     |            |         |              |                    |                  |                    |         |                  |                    |
| Acrolein                                  | EPA 624    | 11C2844 | 4.0          | 5.0                | ND               | 1                  | SS      | 03/22/11         |                    |
| Acrylonitrile                             | EPA 624    | 11C2844 | 1.2          | 2.0                | ND               | 1                  | SS      | 03/22/11         |                    |
| 2-Chloroethyl vinyl ether                 | EPA 624    | 11C2844 | 1.8          | 5.0                | ND               | 1                  | SS      | 03/22/11         |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%  | )          |         |              |                    | 91 %             |                    |         |                  |                    |
| Surrogate: Dibromofluoromethane (80-120%) | 6)         |         |              |                    | 108 %            |                    |         |                  |                    |
| Surrogate: Toluene-d8 (80-120%)           |            |         |              |                    | 103 %            |                    |         |                  |                    |
| Sample ID: IUC2187-02 (Trip Blanks - Wa   | ter)       |         |              |                    | Sample           | ed: 03/21/11       | L       |                  |                    |
| Reporting Units: ug/l                     |            |         |              |                    |                  |                    |         |                  |                    |
| Acrolein                                  | EPA 624    | 11C2844 | 4.0          | 5.0                | ND               | 1                  | SS      | 03/22/11         |                    |
| Acrylonitrile                             | EPA 624    | 11C2844 | 1.2          | 2.0                | ND               | 1                  | SS      | 03/22/11         |                    |
| 2-Chloroethyl vinyl ether                 | EPA 624    | 11C2844 | 1.8          | 5.0                | ND               | 1                  | SS      | 03/22/11         |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%  | )          |         |              |                    | 99 %             |                    |         |                  |                    |
| Surrogate: Dibromofluoromethane (80-120%) | 6)         |         |              |                    | 105 %            |                    |         |                  |                    |
| Surrogate: Toluene-d8 (80-120%)           |            |         |              |                    | 103 %            |                    |         |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### 1,4-DIOXANE BY GCMS - SINGLE ION MONITORING (SIM)

| Analyte                             | Method        | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------|---------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-03 (Outfall 011  |               |         |              | Sample             | d: 03/20/11      |                    |         |                  |                    |
| Reporting Units: ug/l               |               |         |              |                    |                  |                    |         |                  |                    |
| 1,4-Dioxane                         | EPA 8260B-SIM | 11C3016 | 1.0          | 2.0                | ND               | 1                  | GMK     | 03/23/11         |                    |
| Surrogate: Dibromofluoromethane (80 | -120%)        |         |              |                    | 93 %             |                    |         |                  |                    |



Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

|                                        |                  |            | MDL    | Reporting | Sample | Dilution |         | Date     | Data       |
|----------------------------------------|------------------|------------|--------|-----------|--------|----------|---------|----------|------------|
| Analyte                                | Method           | Batch      | Limit  | Limit     | Result | Factor   | Analyst | Analyzed | Qualifiers |
| Sample ID: IUC2187-03 (Outfall 011 (Co | mposite) - Water | r) - cont. |        |           |        |          |         |          |            |
| Reporting Units: ug/l                  |                  |            |        |           |        |          |         |          |            |
| Acenaphthene                           | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Acenaphthylene                         | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Anthracene                             | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Benzidine                              | EPA 625          | 11C3070    | 4.72   | 4.72      | ND     | 0.943    | LB      | 03/25/11 | L6         |
| Benzo(a)anthracene                     | EPA 625          | 11C3070    | 0.0943 | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |
| Benzo(a)pyrene                         | EPA 625          | 11C3070    | 0.0943 | 1.89      | ND     | 0.943    | LB      | 03/25/11 |            |
| Benzo(b)fluoranthene                   | EPA 625          | 11C3070    | 0.0943 | 1.89      | ND     | 0.943    | LB      | 03/25/11 |            |
| Benzo(g,h,i)perylene                   | EPA 625          | 11C3070    | 0.0943 | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |
| Benzo(k)fluoranthene                   | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| 4-Bromophenyl phenyl ether             | EPA 625          | 11C3070    | 0.0943 | 0.943     | ND     | 0.943    | LB      | 03/25/11 |            |
| Butyl benzyl phthalate                 | EPA 625          | 11C3070    | 0.660  | 4.72      | 0.811  | 0.943    | LB      | 03/25/11 | B, Ja      |
| 4-Chloro-3-methylphenol                | EPA 625          | 11C3070    | 0.189  | 1.89      | ND     | 0.943    | LB      | 03/25/11 |            |
| Bis(2-chloroethoxy)methane             | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Bis(2-chloroethyl)ether                | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Bis(2-chloroisopropyl)ether            | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Bis(2-ethylhexyl)phthalate             | EPA 625          | 11C3070    | 1.60   | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |
| 2-Chloronaphthalene                    | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| 2-Chlorophenol                         | EPA 625          | 11C3070    | 0.189  | 0.943     | ND     | 0.943    | LB      | 03/25/11 |            |
| 4-Chlorophenyl phenyl ether            | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Chrysene                               | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Dibenz(a,h)anthracene                  | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Di-n-butyl phthalate                   | EPA 625          | 11C3070    | 0.189  | 1.89      | 0.396  | 0.943    | LB      | 03/25/11 | Ja         |
| 1,2-Dichlorobenzene                    | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| 1,3-Dichlorobenzene                    | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| 1,4-Dichlorobenzene                    | EPA 625          | 11C3070    | 0.189  | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| 3,3'-Dichlorobenzidine                 | EPA 625          | 11C3070    | 4.72   | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |
| 2,4-Dichlorophenol                     | EPA 625          | 11C3070    | 0.189  | 1.89      | ND     | 0.943    | LB      | 03/25/11 |            |
| Diethyl phthalate                      | EPA 625          | 11C3070    | 0.0943 | 0.943     | 0.302  | 0.943    | LB      | 03/25/11 | Ja         |
| 2,4-Dimethylphenol                     | EPA 625          | 11C3070    | 0.283  | 1.89      | ND     | 0.943    | LB      | 03/25/11 |            |
| Dimethyl phthalate                     | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| 4,6-Dinitro-2-methylphenol             | EPA 625          | 11C3070    | 0.189  | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |
| 2,4-Dinitrophenol                      | EPA 625          | 11C3070    | 0.849  | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |
| 2,4-Dinitrotoluene                     | EPA 625          | 11C3070    | 0.189  | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |
| 2,6-Dinitrotoluene                     | EPA 625          | 11C3070    | 0.0943 | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |
| Di-n-octyl phthalate                   | EPA 625          | 11C3070    | 0.0943 | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |
| 1,2-Diphenylhydrazine/Azobenzene       | EPA 625          | 11C3070    | 0.0943 | 0.943     | ND     | 0.943    | LB      | 03/25/11 | C          |
| Fluoranthene                           | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Fluorene                               | EPA 625          | 11C3070    | 0.0943 | 0.472     | ND     | 0.943    | LB      | 03/25/11 |            |
| Hexachlorobenzene                      | EPA 625          | 11C3070    | 0.0943 | 0.943     | ND     | 0.943    | LB      | 03/25/11 |            |
| Hexachlorobutadiene                    | EPA 625          | 11C3070    | 0.189  | 1.89      | ND     | 0.943    | LB      | 03/25/11 |            |
| Hexachlorocyclopentadiene              | EPA 625          | 11C3070    | 0.0943 | 4.72      | ND     | 0.943    | LB      | 03/25/11 |            |

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                   | Method           | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |  |
|-------------------------------------------|------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|--|
| Sample ID: IUC2187-03 (Outfall 011 (Comp  | posite) - Water) | - cont. |              | Sampled: 03/20/11  |                  |                    |         |                  |                    |  |  |
| Reporting Units: ug/l                     |                  |         |              |                    | -                |                    |         |                  |                    |  |  |
| Hexachloroethane                          | EPA 625          | 11C3070 | 0.189        | 2.83               | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| Indeno(1,2,3-cd)pyrene                    | EPA 625          | 11C3070 | 0.0943       | 1.89               | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| Isophorone                                | EPA 625          | 11C3070 | 0.0943       | 0.943              | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| Naphthalene                               | EPA 625          | 11C3070 | 0.0943       | 0.943              | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| Nitrobenzene                              | EPA 625          | 11C3070 | 0.0943       | 0.943              | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| 2-Nitrophenol                             | EPA 625          | 11C3070 | 0.0943       | 1.89               | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| 4-Nitrophenol                             | EPA 625          | 11C3070 | 2.36         | 4.72               | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| N-Nitroso-di-n-propylamine                | EPA 625          | 11C3070 | 0.0943       | 1.89               | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| N-Nitrosodimethylamine                    | EPA 625          | 11C3070 | 0.0943       | 1.89               | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| N-Nitrosodiphenylamine                    | EPA 625          | 11C3070 | 0.0943       | 0.943              | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| Pentachlorophenol                         | EPA 625          | 11C3070 | 0.0943       | 1.89               | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| Phenanthrene                              | EPA 625          | 11C3070 | 0.0943       | 0.472              | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| Phenol                                    | EPA 625          | 11C3070 | 0.283        | 0.943              | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| Pyrene                                    | EPA 625          | 11C3070 | 0.0943       | 0.472              | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| 1,2,4-Trichlorobenzene                    | EPA 625          | 11C3070 | 0.0943       | 0.943              | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| 2,4,6-Trichlorophenol                     | EPA 625          | 11C3070 | 0.0943       | 0.943              | ND               | 0.943              | LB      | 03/25/11         |                    |  |  |
| Surrogate: 2,4,6-Tribromophenol (40-120%) |                  |         |              |                    | 88 %             |                    |         |                  |                    |  |  |
| Surrogate: 2-Fluorobiphenyl (50-120%)     |                  |         |              |                    | 75 %             |                    |         |                  |                    |  |  |
| Surrogate: 2-Fluorophenol (30-120%)       |                  |         |              |                    | 66 %             |                    |         |                  |                    |  |  |
| Surrogate: Nitrobenzene-d5 (45-120%)      |                  |         |              |                    | 74 %             |                    |         |                  |                    |  |  |
| Surrogate: Phenol-d6 (35-120%)            |                  |         |              |                    | 71 %             |                    |         |                  |                    |  |  |
| Surrogate: Terphenyl-d14 (50-125%)        |                  |         |              |                    | 87 %             |                    |         |                  |                    |  |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **ORGANOCHLORINE PESTICIDES (EPA 608)**

| Analyte                                   | Method           | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-03 (Outfall 011 (Com   | posite) - Water) | - cont. |              |                    | Sample           | ed: 03/20/11       | l       | •                |                    |
| Reporting Units: ug/l                     | , ,              |         |              |                    |                  |                    |         |                  |                    |
| 4,4'-DDD                                  | EPA 608          | 11C2988 | 0.0038       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         | C                  |
| 4,4'-DDE                                  | EPA 608          | 11C2988 | 0.0028       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         | C                  |
| 4,4'-DDT                                  | EPA 608          | 11C2988 | 0.0038       | 0.0094             | ND               | 0.943              | CN      | 03/24/11         |                    |
| Aldrin                                    | EPA 608          | 11C2988 | 0.0014       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         | C                  |
| alpha-BHC                                 | EPA 608          | 11C2988 | 0.0024       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         | C                  |
| beta-BHC                                  | EPA 608          | 11C2988 | 0.0038       | 0.0094             | ND               | 0.943              | CN      | 03/24/11         |                    |
| delta-BHC                                 | EPA 608          | 11C2988 | 0.0033       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         | C                  |
| Dieldrin                                  | EPA 608          | 11C2988 | 0.0019       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         | C                  |
| Endosulfan I                              | EPA 608          | 11C2988 | 0.0019       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         |                    |
| Endosulfan II                             | EPA 608          | 11C2988 | 0.0028       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         |                    |
| Endosulfan sulfate                        | EPA 608          | 11C2988 | 0.0028       | 0.0094             | ND               | 0.943              | CN      | 03/24/11         | C                  |
| Endrin                                    | EPA 608          | 11C2988 | 0.0019       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         | C                  |
| Endrin aldehyde                           | EPA 608          | 11C2988 | 0.0019       | 0.0094             | ND               | 0.943              | CN      | 03/24/11         |                    |
| gamma-BHC (Lindane)                       | EPA 608          | 11C2988 | 0.0028       | 0.019              | ND               | 0.943              | CN      | 03/24/11         | C                  |
| Heptachlor                                | EPA 608          | 11C2988 | 0.0028       | 0.0094             | ND               | 0.943              | CN      | 03/24/11         | C                  |
| Heptachlor epoxide                        | EPA 608          | 11C2988 | 0.0024       | 0.0047             | ND               | 0.943              | CN      | 03/24/11         |                    |
| Chlordane                                 | EPA 608          | 11C2988 | 0.075        | 0.094              | ND               | 0.943              | CN      | 03/24/11         |                    |
| Toxaphene                                 | EPA 608          | 11C2988 | 0.24         | 0.47               | ND               | 0.943              | CN      | 03/24/11         |                    |
| Surrogate: Decachlorobiphenyl (45-120%)   |                  |         |              |                    | 87 %             |                    |         |                  |                    |
| Surrogate: Tetrachloro-m-xylene (35-115%) |                  |         |              |                    | 65 %             |                    |         |                  |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Annual Outfall 011 Sampled: 03/20/11-03/21/11

Arcadia, CA 91007 Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

### **TOTAL PCBS (EPA 608)**

| Analyte                                                         | Method  | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |
|-----------------------------------------------------------------|---------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|
| Sample ID: IUC2187-03 (Outfall 011 (Composite) - Water) - cont. |         |         |              | Sampled: 03/20/11  |                  |                    |         |                  |                    |  |
| Reporting Units: ug/l                                           |         |         |              |                    |                  |                    |         |                  |                    |  |
| Aroclor 1016                                                    | EPA 608 | 11C2988 | 0.24         | 0.47               | ND               | 0.943              | JSM     | 03/23/11         |                    |  |
| Aroclor 1221                                                    | EPA 608 | 11C2988 | 0.24         | 0.47               | ND               | 0.943              | JSM     | 03/23/11         |                    |  |
| Aroclor 1232                                                    | EPA 608 | 11C2988 | 0.24         | 0.47               | ND               | 0.943              | JSM     | 03/23/11         |                    |  |
| Aroclor 1242                                                    | EPA 608 | 11C2988 | 0.24         | 0.47               | ND               | 0.943              | JSM     | 03/23/11         |                    |  |
| Aroclor 1248                                                    | EPA 608 | 11C2988 | 0.24         | 0.47               | ND               | 0.943              | JSM     | 03/23/11         |                    |  |
| Aroclor 1254                                                    | EPA 608 | 11C2988 | 0.24         | 0.47               | ND               | 0.943              | JSM     | 03/23/11         |                    |  |
| Aroclor 1260                                                    | EPA 608 | 11C2988 | 0.24         | 0.47               | ND               | 0.943              | JSM     | 03/23/11         |                    |  |
| Surrogate: Decachlorobiphenyl (45-120%)                         |         |         |              |                    | 95 %             |                    |         |                  |                    |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                                            | Method    | Batch   | MDL<br>Limit      | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|-----------|---------|-------------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-01 (Outfall 011 (Grab) - Water) |           |         | Sampled: 03/21/11 |                    |                  |                    |         |                  |                    |
| Reporting Units: mg/l                              |           |         |                   |                    |                  |                    |         |                  |                    |
| Hexane Extractable Material (Oil &                 | EPA 1664A | 11C3681 | 1.4               | 4.9                | ND               | 1                  | DA      | 03/29/11         |                    |
| Grease)                                            |           |         |                   |                    |                  |                    |         |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

#### **METALS**

|                                         |                   | 1       | VIL I A      | LS                 |                  |                    |         |                  |                    |
|-----------------------------------------|-------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                                 | Method            | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUC2187-03 (Outfall 011 (Con | nposite) - Water) |         |              |                    | Sample           | ed: 03/20/11       | 1       |                  |                    |
| Reporting Units: mg/l                   |                   |         |              |                    |                  |                    |         |                  |                    |
| Hardness (as CaCO3)                     | SM2340B           | [CALC]  |              | 0.33               | 38               | 1                  | LL      | 03/29/11         |                    |
| Barium                                  | EPA 200.7         | 11C3239 | 0.0060       | 0.010              | 0.028            | 1                  | DP      | 03/24/11         |                    |
| Boron                                   | EPA 200.7         | 11C3239 | 0.020        | 0.050              | 0.039            | 1                  | DP      | 03/24/11         | Ja                 |
| Calcium                                 | EPA 200.7         | 11C3239 | 0.050        | 0.10               | 10               | 1                  | DP      | 03/24/11         |                    |
| Iron                                    | EPA 200.7         | 11C3239 | 0.015        | 0.040              | 3.6              | 1                  | DP      | 03/24/11         |                    |
| Magnesium                               | EPA 200.7         | 11C3239 | 0.012        | 0.020              | 3.2              | 1                  | LL      | 03/29/11         |                    |
| Sample ID: IUC2187-03 (Outfall 011 (Con | nposite) - Water) |         |              |                    | Sample           | ed: 03/20/11       | l       |                  |                    |
| Reporting Units: ug/l                   |                   |         |              |                    |                  |                    |         |                  |                    |
| Mercury                                 | EPA 245.1         | 11C3102 | 0.10         | 0.20               | ND               | 1                  | DB      | 03/23/11         |                    |
| Arsenic                                 | EPA 200.7         | 11C3239 | 7.0          | 10                 | 8.9              | 1                  | DP      | 03/24/11         | Ja                 |
| Antimony                                | EPA 200.8         | 11C3768 | 0.30         | 2.0                | 0.81             | 1                  | kb1     | 03/29/11         | Ja                 |
| Beryllium                               | EPA 200.7         | 11C3239 | 0.90         | 2.0                | ND               | 1                  | DP      | 03/24/11         |                    |
| Chromium                                | EPA 200.7         | 11C3239 | 2.0          | 5.0                | 5.9              | 1                  | LL      | 03/29/11         |                    |
| Cobalt                                  | EPA 200.7         | 11C3239 | 2.0          | 10                 | 2.2              | 1                  | DP      | 03/24/11         | Ja                 |
| Manganese                               | EPA 200.7         | 11C3239 | 7.0          | 20                 | 55               | 1                  | DP      | 03/24/11         |                    |
| Nickel                                  | EPA 200.7         | 11C3239 | 2.0          | 10                 | 4.5              | 1                  | DP      | 03/24/11         | Ja                 |
| Cadmium                                 | EPA 200.8         | 11C3768 | 0.10         | 1.0                | 0.16             | 1                  | kb1     | 03/29/11         | Ja                 |
| Vanadium                                | EPA 200.7         | 11C3239 | 3.0          | 10                 | 7.3              | 1                  | DP      | 03/24/11         | Ja                 |
| Zinc                                    | EPA 200.7         | 11C3239 | 6.00         | 20.0               | 28.4             | 1                  | DP      | 03/24/11         |                    |
| Copper                                  | EPA 200.8         | 11C3768 | 0.500        | 2.00               | 5.15             | 1                  | kb1     | 03/29/11         |                    |
| Lead                                    | EPA 200.8         | 11C3768 | 0.20         | 1.0                | 3.5              | 1                  | kb1     | 03/29/11         |                    |
| Selenium                                | EPA 200.8         | 11C3768 | 0.50         | 2.0                | ND               | 1                  | kb1     | 03/29/11         |                    |
| Silver                                  | EPA 200.8         | 11C3768 | 0.10         | 1.0                | ND               | 1                  | kb1     | 03/29/11         |                    |
| Thallium                                | EPA 200.8         | 11C3768 | 0.20         | 1.0                | ND               | 1                  | kb1     | 03/29/11         |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

#### **DISSOLVED METALS**

|                                      |                     | 210001  |              |                    |                  |                    |         |                  |                    |
|--------------------------------------|---------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                              | Method              | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUC2187-03 (Outfall 011 ( | Composite) - Water) | - cont. |              |                    | Sample           | ed: 03/20/11       | 1       |                  |                    |
| Reporting Units: mg/l                | G1 (22 (27 7)       |         |              |                    |                  |                    |         | 00/00/44         |                    |
| Hardness as CaCO3                    | SM2340B-Diss        | [CALC]  |              | 0.33               | 32               | 1                  | DP      | 03/29/11         |                    |
| Barium                               | EPA 200.7-Diss      | 11C3776 | 0.0060       | 0.010              | 0.017            | 1                  | DP      | 03/29/11         |                    |
| Boron                                | EPA 200.7-Diss      | 11C3776 | 0.020        | 0.050              | 0.044            | 1                  | DP      | 03/29/11         | Ja                 |
| Calcium                              | EPA 200.7-Diss      | 11C3776 | 0.050        | 0.10               | 9.4              | 1                  | DP      | 03/29/11         |                    |
| Iron                                 | EPA 200.7-Diss      | 11C3776 | 0.015        | 0.040              | 0.059            | 1                  | DP      | 03/29/11         |                    |
| Magnesium                            | EPA 200.7-Diss      | 11C3776 | 0.012        | 0.020              | 2.1              | 1                  | DP      | 03/29/11         |                    |
| Sample ID: IUC2187-03 (Outfall 011 ( | Composite) - Water) |         |              |                    | Sample           | ed: 03/20/11       | 1       |                  |                    |
| Reporting Units: ug/l                |                     |         |              |                    |                  |                    |         |                  |                    |
| Mercury                              | EPA 245.1-Diss      | 11C3083 | 0.10         | 0.20               | ND               | 1                  | DB      | 03/23/11         |                    |
| Arsenic                              | EPA 200.7-Diss      | 11C3776 | 7.0          | 10                 | ND               | 1                  | DP      | 03/29/11         |                    |
| Antimony                             | EPA 200.8-Diss      | 11C3506 | 0.30         | 2.0                | 0.64             | 1                  | RDC     | 03/28/11         | Ja                 |
| Beryllium                            | EPA 200.7-Diss      | 11C3776 | 0.90         | 2.0                | ND               | 1                  | DP      | 03/29/11         |                    |
| Chromium                             | EPA 200.7-Diss      | 11C3776 | 2.0          | 5.0                | ND               | 1                  | DP      | 03/29/11         |                    |
| Cobalt                               | EPA 200.7-Diss      | 11C3776 | 2.0          | 10                 | ND               | 1                  | DP      | 03/29/11         |                    |
| Manganese                            | EPA 200.7-Diss      | 11C3776 | 7.0          | 20                 | ND               | 1                  | DP      | 03/29/11         |                    |
| Nickel                               | EPA 200.7-Diss      | 11C3776 | 2.0          | 10                 | 2.2              | 1                  | DP      | 03/29/11         | Ja                 |
| Cadmium                              | EPA 200.8-Diss      | 11C3506 | 0.10         | 1.0                | ND               | 1                  | RDC     | 03/28/11         |                    |
| Vanadium                             | EPA 200.7-Diss      | 11C3776 | 3.0          | 10                 | ND               | 1                  | DP      | 03/29/11         |                    |
| Zinc                                 | EPA 200.7-Diss      | 11C3776 | 6.00         | 20.0               | ND               | 1                  | DP      | 03/29/11         |                    |
| Copper                               | EPA 200.8-Diss      | 11C3506 | 0.500        | 2.00               | 2.32             | 1                  | RDC     | 03/28/11         |                    |
| Lead                                 | EPA 200.8-Diss      | 11C3506 | 0.20         | 1.0                | 0.35             | 1                  | RDC     | 03/28/11         | Ja                 |
| Selenium                             | EPA 200.8-Diss      | 11C3506 | 0.50         | 2.0                | ND               | 1                  | RDC     | 03/28/11         |                    |
| Silver                               | EPA 200.8-Diss      | 11C3506 | 0.10         | 1.0                | ND               | 1                  | kb1     | 03/29/11         |                    |
| Thallium                             | EPA 200.8-Diss      | 11C3506 | 0.20         | 1.0                | ND               | 1                  | RDC     | 03/28/11         |                    |
|                                      |                     |         |              |                    |                  | -                  |         |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

#### **DISSOLVED INORGANICS**

| Analyte                                | Method             | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|--------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-03 (Outfall 011 (Co | omposite) - Water) | - cont. |              |                    | Sample           | ed: 03/20/11       |         |                  |                    |
| Reporting Units: ug/l                  |                    |         |              |                    |                  |                    |         |                  |                    |
| Chromium VI                            | EPA 218.6          | 11C2890 | 0.250        | 1.00               | ND               | 1                  | MNS     | 03/22/11         | H3                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

#### **INORGANICS**

| Analyte                              | Method              | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|---------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-03 (Outfall 011 ( | Composite) - Water) | - cont. |              |                    | Sample           | ed: 03/20/1        | 1       |                  |                    |
| Reporting Units: mg/l                |                     |         |              |                    |                  |                    |         |                  |                    |
| Ammonia-N (Distilled)                | SM4500NH3-C         | 11C2967 | 0.500        | 0.500              | ND               | 1                  | TMK     | 03/22/11         |                    |
| <b>Biochemical Oxygen Demand</b>     | SM5210B             | 11C2910 | 0.50         | 2.0                | 2.0              | 1                  | XL      | 03/27/11         |                    |
| Chloride                             | EPA 300.0           | 11C2884 | 0.30         | 0.50               | 2.5              | 1                  | NN      | 03/22/11         |                    |
| Fluoride                             | SM 4500-F-C         | 11C2986 | 0.020        | 0.10               | 0.17             | 1                  | FZ      | 03/23/11         |                    |
| Nitrate-N                            | EPA 300.0           | 11C2884 | 0.060        | 0.11               | 0.44             | 1                  | NN      | 03/22/11         |                    |
| Nitrite-N                            | EPA 300.0           | 11C2884 | 0.090        | 0.15               | ND               | 1                  | NN      | 03/22/11         |                    |
| Nitrate/Nitrite-N                    | EPA 300.0           | 11C2884 | 0.15         | 0.26               | 0.52             | 1                  | NN      | 03/22/11         |                    |
| Sulfate                              | EPA 300.0           | 11C2884 | 0.30         | 0.50               | 4.4              | 1                  | NN      | 03/22/11         |                    |
| Surfactants (MBAS)                   | SM5540-C            | 11C2931 | 0.050        | 0.10               | ND               | 1                  | EL      | 03/22/11         |                    |
| <b>Total Dissolved Solids</b>        | SM2540C             | 11C2823 | 1.0          | 10                 | 83               | 1                  | MC      | 03/22/11         |                    |
| Total Organic Carbon                 | SM5310B             | 11C2985 | 0.50         | 1.0                | 9.1              | 1                  | FZ      | 03/23/11         |                    |
| <b>Total Suspended Solids</b>        | SM 2540D            | 11C2949 | 1.0          | 10                 | 35               | 1                  | DK1     | 03/22/11         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Annual Outfall 011 Sampled: 03/20/11-03/21/11

Arcadia, CA 91007 Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

#### **INORGANICS**

| Analyte                                                                                                | Method              | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------------------------------------------------------------------------|---------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-01 (Outfall 011 (C                                                                  | Grab) - Water)      |         |              |                    | Sample           | ed: 03/21/11       | 1       |                  |                    |
| Reporting Units: ml/l                                                                                  |                     |         |              |                    |                  |                    |         |                  |                    |
| Total Settleable Solids                                                                                | SM2540F             | 11C2880 | 0.10         | 0.10               | ND               | 1                  | RRZ     | 03/22/11         |                    |
| Sample ID: IUC2187-03 (Outfall 011 (C<br>Reporting Units: NTU                                          | Composite) - Water) |         |              |                    | Sample           | ed: 03/20/11       | l       |                  |                    |
| Turbidity                                                                                              | EPA 180.1           | 11C2881 | 0.20         | 5.0                | 97               | 5                  | RRZ     | 03/22/11         |                    |
| Sample ID: IUC2187-03 (Outfall 011 (C                                                                  | Composite) - Water) |         |              |                    | Sample           | ed: 03/20/11       | 1       |                  |                    |
| Reporting Units: ug/l                                                                                  |                     |         |              |                    | _                |                    |         |                  |                    |
| Perchlorate                                                                                            | EPA 314.0           | 11C2871 | 0.90         | 1.0                | ND               | 1                  | mn      | 03/22/11         |                    |
| Total Cyanide                                                                                          | SM4500CN-E          | 11C3661 | 2.2          | 5.0                | ND               | 1                  | SLA     | 03/28/11         |                    |
| Sample ID: IUC2187-01 (Outfall 011 (Grab) - Water)  Reporting Units: umhos/cm @ 25C  Sampled: 03/21/11 |                     |         |              |                    |                  |                    |         |                  |                    |
| Specific Conductance                                                                                   | EPA 120.1           | 11C2825 | 1.0          | 1.0                | 89               | 1                  | MC      | 03/22/11         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

# COLIFORMS BY MULTIPLE TUBE FERMENTATION - MPN (SM9221/40 CFR 141.21(f)(6)(i))

| Analyte                               | Method                | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------|-----------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-01 (Outfall 011 (C | Grab) - Water) - cont |         |              |                    | Sample           | ed: 03/21/11       |         |                  |                    |
| Reporting Units: MPN/100 ml           |                       |         |              |                    |                  |                    |         |                  |                    |
| Fecal Coliform                        | SM9221 A,B,C,E        | 11C2797 | 2.00         | 2.00               | 300              | 1                  | AK      | 03/24/11         |                    |
| E. Coli                               | SM9221 A,B,C,E        | 11C2797 | 2.00         | 2.00               | 300              | 1                  | AK      | 03/24/11         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Annual Outfall 011 Sampled: 03/20/11-03/21/11

Arcadia, CA 91007 Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

|                                       |                         |       | 900          |                    |                  |                    |         |                  |                    |
|---------------------------------------|-------------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                               | Method                  | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|                                       |                         |       |              |                    |                  |                    |         |                  |                    |
| Sample ID: IUC2187-03 (Outfall 011 (C | Composite) - Water)     |       |              |                    | Sample           | ed: 03/20/11       | 1       |                  |                    |
| Sample ID: IUC2187-03 (Outfall 011 (O | Composite) - Water)     |       |              |                    | Sample           | ed: 03/20/11       |         |                  |                    |
| 1 (                                   | Somposite) - Water) 900 | 8681  | 0.276        | 3                  | Sample 2.26      | ed: 03/20/11       | l<br>LS | 03/31/11         | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Annual Outfall 011 Sampled: 03/20/11-03/21/11

Arcadia, CA 91007 Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

| $\Lambda \Lambda 1$ | 11 |
|---------------------|----|
| vIII                |    |
|                     |    |

|                                      |                    |           | / 0101       |                    |                  |                    |         |                  |                    |
|--------------------------------------|--------------------|-----------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                              | Method             | Batch     | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUC2187-03 (Outfall 011 ( | Composite) - Water | ) - cont. |              |                    | Sample           | ed: 03/20/11       | 1       |                  |                    |
| Reporting Units: pCi/L               |                    |           |              |                    |                  |                    |         |                  |                    |
| Cesium-137                           | 901.1              | 8681      | 3.25         | 20                 | ND               | 1                  | LS      | 03/31/11         | U                  |
| Potassium-40                         | 901.1              | 8681      | 58.4         | 25                 | ND               | 1                  | LS      | 03/31/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

903.1

| Analyte                                | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-03 (Outfall 011 (Co |        |       | Sample       | ed: 03/20/1        | 1                |                    |         |                  |                    |
| Reporting Units: pCi/L Radium-226      | 903.1  | 8681  | 0.544        | 1                  | 0.35             | 1                  | TM      | 04/05/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

|                                    |                       |           | 904          |                    |                  |                    |         |                  |                    |
|------------------------------------|-----------------------|-----------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                            | Method                | Batch     | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUC2187-03 (Outfall 01) | l (Composite) - Water | ) - cont. |              |                    | Sample           | ed: 03/20/11       | l       |                  |                    |
| Reporting Units: pCi/L             |                       |           |              |                    |                  |                    |         |                  |                    |
| Radium-228                         | 904                   | 8681      | 0.42         | 1                  | 0.229            | 1                  | LD      | 04/07/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

| $\mathbf{a}$ | ^ | _ |  |
|--------------|---|---|--|
| u            |   | • |  |
|              |   |   |  |

| Analyte                                 | Method           | Batch      | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------------|------------------|------------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-03 (Outfall 011 (Con | nposite) - Water | ·) - cont. |              |                    | Sample           | ed: 03/20/11       |         |                  |                    |
| Reporting Units: pCi/L                  |                  |            |              |                    |                  |                    |         |                  |                    |
| Strontium-90                            | 905              | 8681       | 0.625        | 2                  | -0.018           | 1                  | EMB     | 04/01/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011 Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

|                                   |                       |           | 906          |                    |                  |                    |         |                  |                    |
|-----------------------------------|-----------------------|-----------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                           | Method                | Batch     | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUC2187-03 (Outfall 01 | 1 (Composite) - Water | ) - cont. |              |                    | Sample           | ed: 03/20/11       | l       |                  |                    |
| Reporting Units: pCi/L            |                       |           |              |                    |                  |                    |         |                  |                    |
| Tritium                           | 906                   | 8681      | 167          | 500                | -77.2            | 1                  | WL      | 03/30/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

#### **ASTM-D5174**

| Analyte                                                         | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-03 (Outfall 011 (Composite) - Water) - cont. |        |       |              |                    | Sample           | ed: 03/20/11       | l       |                  |                    |
| Reporting Units: pCi/L<br>Uranium, Total                        | D5174  | 8681  | 0.02         | 1                  | 0.321            | 1                  | TAC     | 03/29/11         | Jb                 |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

#### EPA-5 1613Bx

| Analyte                                | Method               | Batch         | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|----------------------|---------------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUC2187-03RE1 (Outfall 0    | 011 (Composite) - Wa | ater) - cont. |              |                    | Sample           | d: 03/20/11        |         |                  |                    |
| Reporting Units: ug/L                  | ` ' '                | ,             |              |                    | эшири            | 00/20/11           |         |                  |                    |
| 1,2,3,4,6,7,8-HpCDD                    | EPA-5 1613B          | 1089421       | 0.0000009    | 6 0.00005          | 0.000041         | 0.99               | SO      | 04/05/11         | J, Ba              |
| 1,2,3,4,6,7,8-HpCDF                    | EPA-5 1613B          | 1089421       | 0.00000069   | 9 0.00005          | 0.00002          | 0.99               | SO      | 04/05/11         | J                  |
| 1,2,3,4,7,8,9-HpCDF                    | EPA-5 1613B          | 1089421       | 0.00000092   | 2 0.00005          | 0.0000011        | 0.99               | SO      | 04/05/11         | J, Q               |
| 1,2,3,4,7,8-HxCDD                      | EPA-5 1613B          | 1089421       | 0.00000069   | 9 0.00005          | 0.00000081       | 0.99               | SO      | 04/05/11         | J, Q               |
| 1,2,3,4,7,8-HxCDF                      | EPA-5 1613B          | 1089421       | 0.0000004    | 1 0.00005          | 0.00000088       | 0.99               | SO      | 04/05/11         | J, Q               |
| 1,2,3,6,7,8-HxCDD                      | EPA-5 1613B          | 1089421       | 0.0000006    | 5 0.00005          | 0.0000017        | 0.99               | SO      | 04/05/11         | J, Q               |
| 1,2,3,6,7,8-HxCDF                      | EPA-5 1613B          | 1089421       | 0.0000003    | 8 0.00005          | 0.00000076       | 0.99               | SO      | 04/05/11         | J, Q               |
| 1,2,3,7,8,9-HxCDD                      | EPA-5 1613B          | 1089421       | 0.0000005    | 8 0.00005          | 0.0000014        | 0.99               | SO      | 04/05/11         | J                  |
| 1,2,3,7,8,9-HxCDF                      | EPA-5 1613B          | 1089421       | 0.0000004    | 8 0.00005          | ND               | 0.99               | SO      | 04/05/11         |                    |
| 1,2,3,7,8-PeCDD                        | EPA-5 1613B          | 1089421       | 0.0000009    | 5 0.00005          | ND               | 0.99               | SO      | 04/05/11         |                    |
| 1,2,3,7,8-PeCDF                        | EPA-5 1613B          | 1089421       | 0.00000069   | 9 0.00005          | ND               | 0.99               | SO      | 04/05/11         |                    |
| 2,3,4,6,7,8-HxCDF                      | EPA-5 1613B          | 1089421       | 0.0000003    | 7 0.00005          | 0.00000072       | 0.99               | SO      | 04/05/11         | J, Q               |
| 2,3,4,7,8-PeCDF                        | EPA-5 1613B          | 1089421       | 0.00000072   | 2 0.00005          | ND               | 0.99               | SO      | 04/05/11         |                    |
| 2,3,7,8-TCDD                           | EPA-5 1613B          | 1089421       | 0.0000008    | 6 0.00001          | ND               | 0.99               | SO      | 04/05/11         |                    |
| 2,3,7,8-TCDF                           | EPA-5 1613B          | 1089421       | 0.0000006    | 7 0.00001          | ND               | 0.99               | SO      | 04/05/11         |                    |
| OCDD                                   | EPA-5 1613B          | 1089421       | 0.0000025    | 0.0001             | 0.00043          | 0.99               | SO      | 04/05/11         | Ba                 |
| OCDF                                   | EPA-5 1613B          | 1089421       | 0.0000011    | 0.0001             | 0.000036         | 0.99               | SO      | 04/05/11         | J                  |
| Total HpCDD                            | EPA-5 1613B          | 1089421       | 0.0000009    | 6 0.00005          | 0.00011          | 0.99               | SO      | 04/05/11         | J, Ba              |
| Total HpCDF                            | EPA-5 1613B          | 1089421       | 0.00000079   | 9 0.00005          | 0.000044         | 0.99               | SO      | 04/05/11         | J, Q               |
| Total HxCDD                            | EPA-5 1613B          | 1089421       | 0.0000006    | 3 0.00005          | 0.000011         | 0.99               | SO      | 04/05/11         | J, Q               |
| Total HxCDF                            | EPA-5 1613B          | 1089421       | 0.0000004    | 1 0.00005          | 0.000015         | 0.99               | SO      | 04/05/11         | J, Q               |
| Total PeCDD                            | EPA-5 1613B          | 1089421       | 0.0000009    | 5 0.00005          | ND               | 0.99               | SO      | 04/05/11         |                    |
| Total PeCDF                            | EPA-5 1613B          | 1089421       | 0.00000079   | 9 0.00005          | 0.0000025        | 0.99               | SO      | 04/05/11         | J                  |
| Total TCDD                             | EPA-5 1613B          | 1089421       | 0.0000008    | 6 0.00001          | 0.0000035        | 0.99               | SO      | 04/05/11         | J, Q               |
| Total TCDF                             | EPA-5 1613B          | 1089421       | 0.0000006    | 6 0.00001          | ND               | 0.99               | SO      | 04/05/11         |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2  | 23-140%)             |               |              |                    | 106 %            |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (2  | 28-143%)             |               |              |                    | 107 %            |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (2  | (6-138%)             |               |              |                    | 104 %            |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-  | -141%)               |               |              |                    | 118 %            |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-  | -152%)               |               |              |                    | 116 %            |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-  | -130%)               |               |              |                    | 118 %            |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-  | -123%)               |               |              |                    | 116 %            |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-  | -147%)               |               |              |                    | 118 %            |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDD (25-1)  |                      |               |              |                    | 116 %            |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDF (24-18  | 85%)                 |               |              |                    | 107 %            |                    |         |                  |                    |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-  | -136%)               |               |              |                    | 119 %            |                    |         |                  |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF (21-17) |                      |               |              |                    | 111 %            |                    |         |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDD (25-164%)  |                      |               |              |                    | 105 %            |                    |         |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDF (24-169%)  | <i>'</i>             |               |              |                    | 113 %            |                    |         |                  |                    |
| Surrogate: 13C-OCDD (17-157%)          |                      |               |              |                    | 119 %            |                    |         |                  |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-19   | 7%)                  |               |              |                    | 120 %            |                    |         |                  |                    |
| Tarthamania Imina                      |                      |               |              |                    |                  |                    |         |                  |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

#### SHORT HOLD TIME DETAIL REPORT

|                                             | Hold Time      | Date/Time        | Date/Time        | <b>Date/Time</b> | Date/Time        |
|---------------------------------------------|----------------|------------------|------------------|------------------|------------------|
|                                             | (in days)      | Sampled          | Received         | Extracted        | Analyzed         |
| Sample ID: Outfall 011 (Grab) (IUC2187-01)  | - Water        |                  |                  |                  |                  |
| EPA 624                                     | 3              | 03/21/2011 10:00 | 03/21/2011 14:32 | 03/22/2011 07:31 | 03/22/2011 13:17 |
| SM2540F                                     | 2              | 03/21/2011 10:00 | 03/21/2011 14:32 | 03/22/2011 08:38 | 03/22/2011 08:38 |
| SM9221 A,B,C,E                              | 0              | 03/21/2011 10:00 | 03/21/2011 14:32 | 03/21/2011 15:06 | 03/24/2011 10:56 |
| Sample ID: Trip Blanks (IUC2187-02) - Water | er             |                  |                  |                  |                  |
| EPA 624                                     | 3              | 03/21/2011 10:00 | 03/21/2011 14:32 | 03/22/2011 07:31 | 03/22/2011 13:46 |
| Sample ID: Outfall 011 (Composite) (IUC218  | 37-03) - Water |                  |                  |                  |                  |
| EPA 180.1                                   | 2              | 03/20/2011 21:35 | 03/21/2011 14:32 | 03/22/2011 11:00 | 03/22/2011 11:00 |
| EPA 218.6                                   | 1              | 03/20/2011 21:35 | 03/21/2011 14:32 | 03/22/2011 09:00 | 03/22/2011 10:08 |
| EPA 300.0                                   | 2              | 03/20/2011 21:35 | 03/21/2011 14:32 | 03/22/2011 11:00 | 03/22/2011 12:38 |
| Filtration                                  | 1              | 03/20/2011 21:35 | 03/21/2011 14:32 | 03/21/2011 23:30 | 03/21/2011 23:30 |
| SM5210B                                     | 2              | 03/20/2011 21:35 | 03/21/2011 14:32 | 03/22/2011 11:00 | 03/27/2011 12:30 |
| SM5540-C                                    | 2              | 03/20/2011 21:35 | 03/21/2011 14:32 | 03/22/2011 11:50 | 03/22/2011 12:59 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

### METHOD BLANK/QC DATA

### **VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)**

|                                        |            | Reporting |       |       | Spike  | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|-------|-------|--------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL   | Units | Level  | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C2911 Extracted: 03/22/11     | <u>1_</u>  |           |       |       |        |          |         |        |     |       |            |
| Plank Analyzad, 02/22/2011 (11C2011 F  | DI 1/1\    |           |       |       |        |          |         |        |     |       |            |
| Blank Analyzed: 03/22/2011 (11C2911-E  | SLKI)      |           |       |       |        |          |         |        |     |       |            |
| GRO (C4 - C12)                         | ND         | 0.10      | 0.025 | mg/l  |        |          |         |        |     |       |            |
| Surrogate: 4-BFB (FID)                 | 0.00939    |           |       | mg/l  | 0.0100 |          | 94      | 65-140 |     |       |            |
| LCS Analyzed: 03/22/2011 (11C2911-BS   | S1)        |           |       |       |        |          |         |        |     |       |            |
| GRO (C4 - C12)                         | 0.810      | 0.10      | 0.025 | mg/l  | 0.800  |          | 101     | 80-120 |     |       |            |
| Surrogate: 4-BFB (FID)                 | 0.0227     |           |       | mg/l  | 0.0100 |          | 227     | 65-140 |     |       | Z2         |
| Matrix Spike Analyzed: 03/22/2011 (110 | C2911-MS1) |           |       |       | Sou    | rce: IUC | 1894-07 |        |     |       |            |
| GRO (C4 - C12)                         | 0.270      | 0.10      | 0.025 | mg/l  | 0.220  | ND       | 123     | 65-140 |     |       |            |
| Surrogate: 4-BFB (FID)                 | 0.0116     |           |       | mg/l  | 0.0100 |          | 116     | 65-140 |     |       |            |
| Matrix Spike Dup Analyzed: 03/22/2011  | (11C2911-M | (SD1)     |       |       | Sou    | rce: IUC | 1894-07 |        |     |       |            |
| GRO (C4 - C12)                         | 0.253      | 0.10      | 0.025 | mg/l  | 0.220  | ND       | 115     | 65-140 | 6   | 20    |            |
| Surrogate: 4-BFB (FID)                 | 0.0106     |           |       | mg/l  | 0.0100 |          | 106     | 65-140 |     |       |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

### EXTRACTABLE FUEL HYDROCARBONS (EPA 3510C/EPA 8015B)

| Analyte                               | Result   | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------|----------|--------------------|------|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11C3080 Extracted: 03/23/11    | <u>_</u> |                    |      |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/23/2011 (11C3080-B | BLK1)    |                    |      |       |                |                  |      |                |     |              |                    |
| DRO (C13 - C28)                       | ND       | 0.50               | 0.10 | mg/l  |                |                  |      |                |     |              |                    |
| EFH (C10 - C28)                       | 0.00154  | NA                 | N/A  | mg/l  |                |                  |      |                |     |              |                    |
| Surrogate: n-Octacosane               | 0.166    |                    |      | mg/l  | 0.200          |                  | 83   | 45-120         |     |              |                    |
| LCS Analyzed: 03/23/2011 (11C3080-BS  | 1)       |                    |      |       |                |                  |      |                |     |              | MNR1               |
| EFH (C10 - C28)                       | 0.743    | NA                 | N/A  | mg/l  | 1.00           |                  | 74   | 40-115         |     |              |                    |
| Surrogate: n-Octacosane               | 0.172    |                    |      | mg/l  | 0.200          |                  | 86   | 45-120         |     |              |                    |
| LCS Dup Analyzed: 03/23/2011 (11C308  | 80-BSD1) |                    |      |       |                |                  |      |                |     |              |                    |
| EFH (C10 - C28)                       | 0.737    | NA                 | N/A  | mg/l  | 1.00           |                  | 74   | 40-115         | 0.9 | 25           |                    |
| Surrogate: n-Octacosane               | 0.173    |                    |      | mg/l  | 0.200          |                  | 87   | 45-120         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187 Received: 03/21/11

Sampled: 03/20/11-03/21/11

### METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                               | Result   | Reporting<br>Limit | MDL          | Units        | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------|----------|--------------------|--------------|--------------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11C3698 Extracted: 03/29/11    | <u>L</u> |                    |              |              |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/29/2011 (11C3698-B | T I/1)   |                    |              |              |                |                  |      |                |     |              |                    |
| Benzene                               |          | 0.50               | 0.20         | a/1          |                |                  |      |                |     |              |                    |
| Bromodichloromethane                  | ND<br>ND | 0.50<br>0.50       | 0.28<br>0.30 | ug/l<br>ug/l |                |                  |      |                |     |              |                    |
| Bromoform                             | ND<br>ND | 0.50               | 0.30         | ug/l         |                |                  |      |                |     |              |                    |
| Bromomethane                          | ND       | 1.0                | 0.40         | ug/l         |                |                  |      |                |     |              |                    |
| Carbon tetrachloride                  | ND       | 0.50               | 0.42         | ug/l         |                |                  |      |                |     |              |                    |
| Chlorobenzene                         | ND       | 0.50               | 0.26         | ug/l         |                |                  |      |                |     |              |                    |
| Chloroethane                          | ND       | 1.0                | 0.40         | ug/l         |                |                  |      |                |     |              |                    |
| Chloroform                            | ND       | 0.50               | 0.33         | ug/l         |                |                  |      |                |     |              |                    |
| Chloromethane                         | ND       | 0.50               | 0.40         | ug/l         |                |                  |      |                |     |              |                    |
| Dibromochloromethane                  | ND       | 0.50               | 0.40         | ug/l         |                |                  |      |                |     |              |                    |
| 1,2-Dichlorobenzene                   | ND       | 0.50               | 0.32         | ug/l         |                |                  |      |                |     |              |                    |
| 1,3-Dichlorobenzene                   | ND       | 0.50               | 0.35         | ug/l         |                |                  |      |                |     |              |                    |
| 1,4-Dichlorobenzene                   | ND       | 0.50               | 0.37         | ug/l         |                |                  |      |                |     |              |                    |
| 1,1-Dichloroethane                    | ND       | 0.50               | 0.40         | ug/l         |                |                  |      |                |     |              |                    |
| 1,2-Dichloroethane                    | ND       | 0.50               | 0.28         | ug/l         |                |                  |      |                |     |              |                    |
| 1,1-Dichloroethene                    | ND       | 0.50               | 0.42         | ug/l         |                |                  |      |                |     |              |                    |
| cis-1,2-Dichloroethene                | ND       | 0.50               | 0.32         | ug/l         |                |                  |      |                |     |              |                    |
| trans-1,2-Dichloroethene              | ND       | 0.50               | 0.30         | ug/l         |                |                  |      |                |     |              |                    |
| 1,2-Dichloropropane                   | ND       | 0.50               | 0.35         | ug/l         |                |                  |      |                |     |              |                    |
| cis-1,3-Dichloropropene               | ND       | 0.50               | 0.22         | ug/l         |                |                  |      |                |     |              |                    |
| trans-1,3-Dichloropropene             | ND       | 0.50               | 0.32         | ug/l         |                |                  |      |                |     |              |                    |
| 1,2-Dichloro-1,1,2-trifluoroethane    | ND       | 2.0                | 1.1          | ug/l         |                |                  |      |                |     |              |                    |
| Ethylbenzene                          | ND       | 0.50               | 0.25         | ug/1         |                |                  |      |                |     |              |                    |
| Methylene chloride                    | ND       | 1.0                | 0.95         | ug/1         |                |                  |      |                |     |              |                    |
| 1,1,2,2-Tetrachloroethane             | ND       | 0.50               | 0.30         | ug/l         |                |                  |      |                |     |              |                    |
| Tetrachloroethene                     | ND       | 0.50               | 0.32         | ug/l         |                |                  |      |                |     |              |                    |
| Toluene                               | ND       | 0.50               | 0.36         | ug/l         |                |                  |      |                |     |              |                    |
| 1,1,1-Trichloroethane                 | ND       | 0.50               | 0.30         | ug/l         |                |                  |      |                |     |              |                    |
| 1,1,2-Trichloroethane                 | ND       | 0.50               | 0.30         | ug/l         |                |                  |      |                |     |              |                    |
| Trichloroethene                       | ND       | 0.50               | 0.26         | ug/l         |                |                  |      |                |     |              |                    |
| Trichlorofluoromethane                | ND       | 0.50               | 0.34         | ug/1         |                |                  |      |                |     |              |                    |
| Trichlorotrifluoroethane (Freon 113)  | ND       | 5.0                | 0.50         | ug/1         |                |                  |      |                |     |              |                    |
| Vinyl chloride                        | ND       | 0.50               | 0.40         | ug/1         |                |                  |      |                |     |              |                    |
| Xylenes, Total                        | ND       | 1.5                | 0.90         | ug/l         |                |                  |      |                |     |              |                    |
| Cyclohexane                           | ND       | 1.0                | 0.40         | ug/l         |                |                  |      |                |     |              |                    |
|                                       |          |                    |              |              |                |                  |      |                |     |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Annual Outfall 011 Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                   | Result  | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC  | %REC   | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|---------|--------------------|------|-------|----------------|------------------|-------|--------|------|--------------|--------------------|
| ·                                         |         | Limit              | WIDE | Cints | Level          | Result           | /orec | Limits | KI D | Limit        | Quanners           |
| <b>Batch: 11C3698 Extracted: 03/29/11</b> | <u></u> |                    |      |       |                |                  |       |        |      |              |                    |
| Blank Analyzed: 03/29/2011 (11C3698-E     | BLK1)   |                    |      |       |                |                  |       |        |      |              |                    |
| Surrogate: 4-Bromofluorobenzene           | 22.3    |                    |      | ug/l  | 25.0           |                  | 89    | 80-120 |      |              |                    |
| Surrogate: Dibromofluoromethane           | 23.6    |                    |      | ug/l  | 25.0           |                  | 94    | 80-120 |      |              |                    |
| Surrogate: Toluene-d8                     | 24.7    |                    |      | ug/l  | 25.0           |                  | 99    | 80-120 |      |              |                    |
| LCS Analyzed: 03/29/2011 (11C3698-BS      | 51)     |                    |      |       |                |                  |       |        |      |              |                    |
| Benzene                                   | 27.1    | 0.50               | 0.28 | ug/l  | 25.0           |                  | 108   | 70-120 |      |              |                    |
| Bromodichloromethane                      | 29.5    | 0.50               | 0.30 | ug/l  | 25.0           |                  | 118   | 70-135 |      |              |                    |
| Bromoform                                 | 23.5    | 0.50               | 0.40 | ug/l  | 25.0           |                  | 94    | 55-130 |      |              |                    |
| Bromomethane                              | 26.4    | 1.0                | 0.42 | ug/l  | 25.0           |                  | 105   | 65-140 |      |              |                    |
| Carbon tetrachloride                      | 25.5    | 0.50               | 0.28 | ug/l  | 25.0           |                  | 102   | 65-140 |      |              |                    |
| Chlorobenzene                             | 27.5    | 0.50               | 0.36 | ug/l  | 25.0           |                  | 110   | 75-120 |      |              |                    |
| Chloroethane                              | 28.1    | 1.0                | 0.40 | ug/l  | 25.0           |                  | 112   | 60-140 |      |              |                    |
| Chloroform                                | 27.5    | 0.50               | 0.33 | ug/l  | 25.0           |                  | 110   | 70-130 |      |              |                    |
| Chloromethane                             | 24.1    | 0.50               | 0.40 | ug/l  | 25.0           |                  | 96    | 50-140 |      |              |                    |
| Dibromochloromethane                      | 25.4    | 0.50               | 0.40 | ug/l  | 25.0           |                  | 102   | 70-140 |      |              |                    |
| 1,2-Dichlorobenzene                       | 27.9    | 0.50               | 0.32 | ug/l  | 25.0           |                  | 112   | 75-120 |      |              |                    |
| 1,3-Dichlorobenzene                       | 27.7    | 0.50               | 0.35 | ug/l  | 25.0           |                  | 111   | 75-120 |      |              |                    |
| 1,4-Dichlorobenzene                       | 27.3    | 0.50               | 0.37 | ug/l  | 25.0           |                  | 109   | 75-120 |      |              |                    |
| 1,1-Dichloroethane                        | 27.4    | 0.50               | 0.40 | ug/l  | 25.0           |                  | 109   | 70-125 |      |              |                    |
| 1,2-Dichloroethane                        | 26.8    | 0.50               | 0.28 | ug/l  | 25.0           |                  | 107   | 60-140 |      |              |                    |
| 1,1-Dichloroethene                        | 26.5    | 0.50               | 0.42 | ug/l  | 25.0           |                  | 106   | 70-125 |      |              |                    |
| cis-1,2-Dichloroethene                    | 28.8    | 0.50               | 0.32 | ug/l  | 25.0           |                  | 115   | 70-125 |      |              |                    |
| trans-1,2-Dichloroethene                  | 28.0    | 0.50               | 0.30 | ug/l  | 25.0           |                  | 112   | 70-125 |      |              |                    |
| 1,2-Dichloropropane                       | 28.8    | 0.50               | 0.35 | ug/l  | 25.0           |                  | 115   | 70-125 |      |              |                    |
| cis-1,3-Dichloropropene                   | 30.4    | 0.50               | 0.22 | ug/l  | 25.0           |                  | 122   | 75-125 |      |              |                    |
| trans-1,3-Dichloropropene                 | 31.6    | 0.50               | 0.32 | ug/l  | 25.0           |                  | 126   | 70-125 |      |              | L                  |
| Ethylbenzene                              | 28.4    | 0.50               | 0.25 | ug/l  | 25.0           |                  | 114   | 75-125 |      |              |                    |
| Methylene chloride                        | 24.1    | 1.0                | 0.95 | ug/l  | 25.0           |                  | 96    | 55-130 |      |              |                    |
| 1,1,2,2-Tetrachloroethane                 | 27.0    | 0.50               | 0.30 | ug/l  | 25.0           |                  | 108   | 55-130 |      |              |                    |
| Tetrachloroethene                         | 27.7    | 0.50               | 0.32 | ug/l  | 25.0           |                  | 111   | 70-125 |      |              |                    |
| Toluene                                   | 28.5    | 0.50               | 0.36 | ug/l  | 25.0           |                  | 114   | 70-120 |      |              |                    |
| 1,1,1-Trichloroethane                     | 26.5    | 0.50               | 0.30 | ug/l  | 25.0           |                  | 106   | 65-135 |      |              |                    |
| 1,1,2-Trichloroethane                     | 29.0    | 0.50               | 0.30 | ug/l  | 25.0           |                  | 116   | 70-125 |      |              |                    |
| Trichloroethene                           | 27.8    | 0.50               | 0.26 | ug/l  | 25.0           |                  | 111   | 70-125 |      |              |                    |
| Trichlorofluoromethane                    | 26.8    | 0.50               | 0.34 | ug/l  | 25.0           |                  | 107   | 65-145 |      |              |                    |
| Vinyl chloride                            | 24.8    | 0.50               | 0.40 | ug/l  | 25.0           |                  | 99    | 55-135 |      |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187 Received: 03/21/11

Sampled: 03/20/11-03/21/11

# METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                   | Result     | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source   | %REC    | %REC   | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|------------|--------------------|------|-------|----------------|----------|---------|--------|------|--------------|--------------------|
| •                                         |            | Limit              | WIDE | Chits | Level          | resure   | /UKEC   | Limits | KI D | Limit        | Quamicis           |
| <b>Batch: 11C3698 Extracted: 03/29/11</b> | _          |                    |      |       |                |          |         |        |      |              |                    |
| LCS Analyzed: 03/29/2011 (11C3698-BS      | 51)        |                    |      |       |                |          |         |        |      |              |                    |
| Xylenes, Total                            | 88.2       | 1.5                | 0.90 | ug/l  | 75.0           |          | 118     | 70-125 |      |              |                    |
| Surrogate: 4-Bromofluorobenzene           | 24.4       |                    |      | ug/l  | 25.0           |          | 98      | 80-120 |      |              |                    |
| Surrogate: Dibromofluoromethane           | 25.6       |                    |      | ug/l  | 25.0           |          | 103     | 80-120 |      |              |                    |
| Surrogate: Toluene-d8                     | 25.1       |                    |      | ug/l  | 25.0           |          | 100     | 80-120 |      |              |                    |
| Matrix Spike Analyzed: 03/29/2011 (11C    | C3698-MS1) |                    |      |       | Sou            | rce: IUC | 2446-02 |        |      |              |                    |
| Benzene                                   | 22.8       | 0.50               | 0.28 | ug/l  | 25.0           | ND       | 91      | 65-125 |      |              |                    |
| Bromodichloromethane                      | 26.4       | 0.50               | 0.30 | ug/l  | 25.0           | ND       | 106     | 70-135 |      |              |                    |
| Bromoform                                 | 19.2       | 0.50               | 0.40 | ug/l  | 25.0           | ND       | 77      | 55-135 |      |              |                    |
| Bromomethane                              | 22.1       | 1.0                | 0.42 | ug/l  | 25.0           | ND       | 89      | 55-145 |      |              |                    |
| Carbon tetrachloride                      | 21.3       | 0.50               | 0.28 | ug/l  | 25.0           | ND       | 85      | 65-140 |      |              |                    |
| Chlorobenzene                             | 21.9       | 0.50               | 0.36 | ug/l  | 25.0           | ND       | 88      | 75-125 |      |              |                    |
| Chloroethane                              | 23.8       | 1.0                | 0.40 | ug/l  | 25.0           | ND       | 95      | 55-140 |      |              |                    |
| Chloroform                                | 24.0       | 0.50               | 0.33 | ug/l  | 25.0           | ND       | 96      | 65-135 |      |              |                    |
| Chloromethane                             | 20.2       | 0.50               | 0.40 | ug/l  | 25.0           | ND       | 81      | 45-145 |      |              |                    |
| Dibromochloromethane                      | 21.3       | 0.50               | 0.40 | ug/l  | 25.0           | ND       | 85      | 65-140 |      |              |                    |
| 1,2-Dichlorobenzene                       | 23.4       | 0.50               | 0.32 | ug/l  | 25.0           | ND       | 94      | 75-125 |      |              |                    |
| 1,3-Dichlorobenzene                       | 23.2       | 0.50               | 0.35 | ug/l  | 25.0           | ND       | 93      | 75-125 |      |              |                    |
| 1,4-Dichlorobenzene                       | 22.7       | 0.50               | 0.37 | ug/l  | 25.0           | ND       | 91      | 75-125 |      |              |                    |
| 1,1-Dichloroethane                        | 23.1       | 0.50               | 0.40 | ug/l  | 25.0           | ND       | 92      | 65-130 |      |              |                    |
| 1,2-Dichloroethane                        | 23.5       | 0.50               | 0.28 | ug/l  | 25.0           | ND       | 94      | 60-140 |      |              |                    |
| 1,1-Dichloroethene                        | 22.2       | 0.50               | 0.42 | ug/l  | 25.0           | 2.19     | 80      | 60-130 |      |              |                    |
| cis-1,2-Dichloroethene                    | 26.4       | 0.50               | 0.32 | ug/l  | 25.0           | 0.660    | 103     | 65-130 |      |              |                    |
| trans-1,2-Dichloroethene                  | 21.4       | 0.50               | 0.30 | ug/l  | 25.0           | ND       | 85      | 65-130 |      |              |                    |
| 1,2-Dichloropropane                       | 24.7       | 0.50               | 0.35 | ug/l  | 25.0           | ND       | 99      | 65-130 |      |              |                    |
| cis-1,3-Dichloropropene                   | 24.8       | 0.50               | 0.22 | ug/l  | 25.0           | ND       | 99      | 70-130 |      |              |                    |
| trans-1,3-Dichloropropene                 | 26.4       | 0.50               | 0.32 | ug/l  | 25.0           | ND       | 106     | 65-135 |      |              |                    |
| Ethylbenzene                              | 22.9       | 0.50               | 0.25 | ug/l  | 25.0           | ND       | 91      | 65-130 |      |              |                    |
| Methylene chloride                        | 20.3       | 1.0                | 0.95 | ug/l  | 25.0           | ND       | 81      | 50-135 |      |              |                    |
| 1,1,2,2-Tetrachloroethane                 | 21.9       | 0.50               | 0.30 | ug/l  | 25.0           | ND       | 88      | 55-135 |      |              |                    |
| Tetrachloroethene                         | 58.3       | 0.50               | 0.32 | ug/l  | 25.0           | 38.1     | 81      | 65-130 |      |              |                    |
| Toluene                                   | 23.9       | 0.50               | 0.36 | ug/l  | 25.0           | ND       | 96      | 70-125 |      |              |                    |
| 1,1,1-Trichloroethane                     | 23.2       | 0.50               | 0.30 | ug/l  | 25.0           | ND       | 93      | 65-140 |      |              |                    |
| 1,1,2-Trichloroethane                     | 24.9       | 0.50               | 0.30 | ug/l  | 25.0           | ND       | 100     | 65-130 |      |              |                    |
| Trichloroethene                           | 93.4       | 0.50               | 0.26 | ug/l  | 25.0           | 75.1     | 73      | 65-125 |      |              |                    |
| Trichlorofluoromethane                    | 22.0       | 0.50               | 0.34 | ug/l  | 25.0           | ND       | 88      | 60-145 |      |              |                    |
| TD 44 • T •                               |            |                    |      |       |                |          |         |        |      |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Spike

Source

Received: 03/21/11

Sampled: 03/20/11-03/21/11

RPD

Data

# METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

Reporting

| Analyte                              | Result        | Limit | MDL  | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
|--------------------------------------|---------------|-------|------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Batch: 11C3698 Extracted: 03/29/     | <u>′11</u>    |       |      |       |       |           |         |        |     |       |            |
| Matrix Spike Analyzed: 03/29/2011 (1 | 1C3698-MS1)   |       |      |       | Sou   | rce: IUC2 | 2446-02 |        |     |       |            |
| Vinyl chloride                       | 22.1          | 0.50  | 0.40 | ug/l  | 25.0  | ND        | 88      | 45-140 |     |       |            |
| Xylenes, Total                       | 67.2          | 1.5   | 0.90 | ug/1  | 75.0  | ND        | 90      | 60-130 |     |       |            |
| Surrogate: 4-Bromofluorobenzene      | 24.0          |       |      | ug/l  | 25.0  |           | 96      | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane      | 26.4          |       |      | ug/l  | 25.0  |           | 105     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                | 25.0          |       |      | ug/l  | 25.0  |           | 100     | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 03/29/20  | 11 (11C3698-M | SD1)  |      |       | Sou   | rce: IUC2 | 2446-02 |        |     |       |            |
| Benzene                              | 22.3          | 0.50  | 0.28 | ug/l  | 25.0  | ND        | 89      | 65-125 | 2   | 20    |            |
| Bromodichloromethane                 | 26.6          | 0.50  | 0.30 | ug/l  | 25.0  | ND        | 106     | 70-135 | 0.6 | 20    |            |
| Bromoform                            | 18.6          | 0.50  | 0.40 | ug/l  | 25.0  | ND        | 74      | 55-135 | 3   | 25    |            |
| Bromomethane                         | 22.9          | 1.0   | 0.42 | ug/l  | 25.0  | ND        | 92      | 55-145 | 4   | 25    |            |
| Carbon tetrachloride                 | 21.4          | 0.50  | 0.28 | ug/l  | 25.0  | ND        | 86      | 65-140 | 0.6 | 25    |            |
| Chlorobenzene                        | 22.6          | 0.50  | 0.36 | ug/1  | 25.0  | ND        | 91      | 75-125 | 3   | 20    |            |
| Chloroethane                         | 24.3          | 1.0   | 0.40 | ug/1  | 25.0  | ND        | 97      | 55-140 | 2   | 25    |            |
| Chloroform                           | 25.2          | 0.50  | 0.33 | ug/1  | 25.0  | ND        | 101     | 65-135 | 5   | 20    |            |
| Chloromethane                        | 21.6          | 0.50  | 0.40 | ug/1  | 25.0  | ND        | 86      | 45-145 | 7   | 25    |            |
| Dibromochloromethane                 | 20.7          | 0.50  | 0.40 | ug/l  | 25.0  | ND        | 83      | 65-140 | 3   | 25    |            |
| 1,2-Dichlorobenzene                  | 23.8          | 0.50  | 0.32 | ug/l  | 25.0  | ND        | 95      | 75-125 | 2   | 20    |            |
| 1,3-Dichlorobenzene                  | 23.7          | 0.50  | 0.35 | ug/l  | 25.0  | ND        | 95      | 75-125 | 2   | 20    |            |
| 1,4-Dichlorobenzene                  | 23.2          | 0.50  | 0.37 | ug/l  | 25.0  | ND        | 93      | 75-125 | 2   | 20    |            |
| 1,1-Dichloroethane                   | 24.2          | 0.50  | 0.40 | ug/l  | 25.0  | ND        | 97      | 65-130 | 5   | 20    |            |
| 1,2-Dichloroethane                   | 22.7          | 0.50  | 0.28 | ug/l  | 25.0  | ND        | 91      | 60-140 | 3   | 20    |            |
| 1,1-Dichloroethene                   | 22.1          | 0.50  | 0.42 | ug/l  | 25.0  | 2.19      | 79      | 60-130 | 0.5 | 20    |            |
| cis-1,2-Dichloroethene               | 27.6          | 0.50  | 0.32 | ug/l  | 25.0  | 0.660     | 108     | 65-130 | 4   | 20    |            |
| trans-1,2-Dichloroethene             | 23.2          | 0.50  | 0.30 | ug/l  | 25.0  | ND        | 93      | 65-130 | 8   | 20    |            |
| 1,2-Dichloropropane                  | 24.4          | 0.50  | 0.35 | ug/l  | 25.0  | ND        | 97      | 65-130 | 1   | 20    |            |
| cis-1,3-Dichloropropene              | 24.9          | 0.50  | 0.22 | ug/l  | 25.0  | ND        | 100     | 70-130 | 0.2 | 20    |            |
| trans-1,3-Dichloropropene            | 25.4          | 0.50  | 0.32 | ug/l  | 25.0  | ND        | 102     | 65-135 | 4   | 25    |            |
| Ethylbenzene                         | 22.6          | 0.50  | 0.25 | ug/l  | 25.0  | ND        | 90      | 65-130 | 1   | 20    |            |
| Methylene chloride                   | 21.1          | 1.0   | 0.95 | ug/l  | 25.0  | ND        | 84      | 50-135 | 4   | 20    |            |
| 1,1,2,2-Tetrachloroethane            | 21.3          | 0.50  | 0.30 | ug/l  | 25.0  | ND        | 85      | 55-135 | 3   | 30    |            |
| Tetrachloroethene                    | 55.9          | 0.50  | 0.32 | ug/l  | 25.0  | 38.1      | 71      | 65-130 | 4   | 20    |            |
| Toluene                              | 23.6          | 0.50  | 0.36 | ug/l  | 25.0  | ND        | 94      | 70-125 | 2   | 20    |            |
| 1,1,1-Trichloroethane                | 23.7          | 0.50  | 0.30 | ug/l  | 25.0  | ND        | 95      | 65-140 | 2   | 20    |            |
| 1,1,2-Trichloroethane                | 23.5          | 0.50  | 0.30 | ug/l  | 25.0  | ND        | 94      | 65-130 | 6   | 25    |            |
| Trichloroethene                      | 90.9          | 0.50  | 0.26 | ug/l  | 25.0  | 75.1      | 63      | 65-125 | 3   | 20    | M2         |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

|                                       |            | Reporting |      |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|---------------------------------------|------------|-----------|------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                               | Result     | Limit     | MDL  | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C3698 Extracted: 03/29/11    | _          |           |      |       |       |           |         |        |     |       |            |
| Matrix Spike Dup Analyzed: 03/29/2011 | (11C3698-M | SD1)      |      |       | Sou   | rce: IUC2 | 2446-02 |        |     |       |            |
| Trichlorofluoromethane                | 22.9       | 0.50      | 0.34 | ug/l  | 25.0  | ND        | 91      | 60-145 | 4   | 25    |            |
| Vinyl chloride                        | 22.7       | 0.50      | 0.40 | ug/l  | 25.0  | ND        | 91      | 45-140 | 3   | 30    |            |
| Xylenes, Total                        | 65.5       | 1.5       | 0.90 | ug/l  | 75.0  | ND        | 87      | 60-130 | 3   | 20    |            |
| Surrogate: 4-Bromofluorobenzene       | 22.9       |           |      | ug/l  | 25.0  |           | 92      | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane       | 27.3       |           |      | ug/l  | 25.0  |           | 109     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                 | 24.4       |           |      | ug/l  | 25.0  |           | 98      | 80-120 |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

### METHOD BLANK/QC DATA

### **PURGEABLES-- GC/MS (EPA 624)**

|                                        |            | Reporting |     |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|-----|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C2844 Extracted: 03/22/11     | <u>L</u>   |           |     |       |       |          |         |        |     |       |            |
|                                        |            |           |     |       |       |          |         |        |     |       |            |
| Blank Analyzed: 03/22/2011 (11C2844-B  | SLK1)      |           |     |       |       |          |         |        |     |       |            |
| Acrolein                               | ND         | 5.0       | 4.0 | ug/l  |       |          |         |        |     |       |            |
| Acrylonitrile                          | ND         | 2.0       | 1.2 | ug/l  |       |          |         |        |     |       |            |
| 2-Chloroethyl vinyl ether              | ND         | 5.0       | 1.8 | ug/l  |       |          |         |        |     |       |            |
| Surrogate: 4-Bromofluorobenzene        | 24.6       |           |     | ug/l  | 25.0  |          | 99      | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 24.9       |           |     | ug/l  | 25.0  |          | 100     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 25.6       |           |     | ug/l  | 25.0  |          | 102     | 80-120 |     |       |            |
| LCS Analyzed: 03/22/2011 (11C2844-BS   | 51)        |           |     |       |       |          |         |        |     |       |            |
| 2-Chloroethyl vinyl ether              | 24.7       | 5.0       | 1.8 | ug/l  | 25.0  |          | 99      | 25-170 |     |       |            |
| Surrogate: 4-Bromofluorobenzene        | 23.7       |           |     | ug/l  | 25.0  |          | 95      | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 25.6       |           |     | ug/l  | 25.0  |          | 103     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 25.6       |           |     | ug/l  | 25.0  |          | 102     | 80-120 |     |       |            |
| Matrix Spike Analyzed: 03/22/2011 (11C | 22844-MS1) |           |     |       | Sou   | rce: IUC | 1722-03 |        |     |       |            |
| 2-Chloroethyl vinyl ether              | 2.10       | 5.0       | 1.8 | ug/l  | 25.0  | ND       | 8       | 25-170 |     |       | M13, Ja    |
| Surrogate: 4-Bromofluorobenzene        | 25.1       |           |     | ug/l  | 25.0  |          | 100     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 26.1       |           |     | ug/l  | 25.0  |          | 105     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 25.4       |           |     | ug/l  | 25.0  |          | 102     | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 03/22/2011  | (11C2844-M | SD1)      |     |       | Sou   | rce: IUC | 1722-03 |        |     |       |            |
| 2-Chloroethyl vinyl ether              | 2.17       | 5.0       | 1.8 | ug/l  | 25.0  | ND       | 9       | 25-170 | 3   | 25    | M13, Ja    |
| Surrogate: 4-Bromofluorobenzene        | 25.6       |           |     | ug/l  | 25.0  |          | 102     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 26.6       |           |     | ug/l  | 25.0  |          | 106     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 25.7       |           |     | ug/l  | 25.0  |          | 103     | 80-120 |     |       |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

### METHOD BLANK/QC DATA

# 1,4-DIOXANE BY GCMS - SINGLE ION MONITORING (SIM)

| Analyte                                | Result     | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11C3016 Extracted: 03/23/11     | _          |                    |     |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/23/2011 (11C3016-B  | LK1)       |                    |     |       |                |                  |         |                |     |              |                    |
| 1,4-Dioxane                            | ND         | 2.0                | 1.0 | ug/l  |                |                  |         |                |     |              |                    |
| Surrogate: Dibromofluoromethane        | 0.860      |                    |     | ug/l  | 1.00           |                  | 86      | 80-120         |     |              |                    |
| LCS Analyzed: 03/23/2011 (11C3016-BS   | 1)         |                    |     |       |                |                  |         |                |     |              |                    |
| 1,4-Dioxane                            | 9.39       | 2.0                | 1.0 | ug/l  | 10.0           |                  | 94      | 70-125         |     |              |                    |
| Surrogate: Dibromofluoromethane        | 0.870      |                    |     | ug/l  | 1.00           |                  | 87      | 80-120         |     |              |                    |
| Matrix Spike Analyzed: 03/23/2011 (11C | 3016-MS1)  |                    |     |       | Sou            | rce: IUC         | 2241-01 |                |     |              |                    |
| 1,4-Dioxane                            | 9.35       | 2.0                | 1.0 | ug/l  | 10.0           | ND               | 94      | 70-130         |     |              |                    |
| Surrogate: Dibromofluoromethane        | 0.890      |                    |     | ug/l  | 1.00           |                  | 89      | 80-120         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/23/2011  | (11C3016-M | (SD1)              |     |       | Sou            | rce: IUC         | 2241-01 |                |     |              |                    |
| 1,4-Dioxane                            | 9.73       | 2.0                | 1.0 | ug/l  | 10.0           | ND               | 97      | 70-130         | 4   | 30           |                    |
| Surrogate: Dibromofluoromethane        | 0.900      |                    |     | ug/l  | 1.00           |                  | 90      | 80-120         |     |              |                    |



618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Report Number: IUC218
Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                               | Result       | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------|--------------|--------------------|-------|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11C3070 Extracted: 03/23/1     | 1            |                    |       |       |                |                  |      |                |     |              |                    |
|                                       | <del>-</del> |                    |       |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/25/2011 (11C3070-I | BLK1)        |                    |       |       |                |                  |      |                |     |              |                    |
| Acenaphthene                          | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Acenaphthylene                        | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Anthracene                            | ND           | 0.500              | 0.100 | ug/1  |                |                  |      |                |     |              |                    |
| Benzidine                             | ND           | 5.00               | 5.00  | ug/1  |                |                  |      |                |     |              |                    |
| Benzo(a)anthracene                    | ND           | 5.00               | 0.100 | ug/1  |                |                  |      |                |     |              |                    |
| Benzo(a)pyrene                        | ND           | 2.00               | 0.100 | ug/1  |                |                  |      |                |     |              |                    |
| Benzo(b)fluoranthene                  | ND           | 2.00               | 0.100 | ug/1  |                |                  |      |                |     |              |                    |
| Benzo(g,h,i)perylene                  | ND           | 5.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Benzo(k)fluoranthene                  | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 4-Bromophenyl phenyl ether            | ND           | 1.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Butyl benzyl phthalate                | 0.740        | 5.00               | 0.700 | ug/l  |                |                  |      |                |     |              | Ja                 |
| 4-Chloro-3-methylphenol               | ND           | 2.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| Bis(2-chloroethoxy)methane            | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Bis(2-chloroethyl)ether               | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Bis(2-chloroisopropyl)ether           | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Bis(2-ethylhexyl)phthalate            | ND           | 5.00               | 1.70  | ug/l  |                |                  |      |                |     |              |                    |
| 2-Chloronaphthalene                   | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 2-Chlorophenol                        | ND           | 1.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 4-Chlorophenyl phenyl ether           | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Chrysene                              | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Dibenz(a,h)anthracene                 | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Di-n-butyl phthalate                  | ND           | 2.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 1,2-Dichlorobenzene                   | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 1,3-Dichlorobenzene                   | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 1,4-Dichlorobenzene                   | ND           | 0.500              | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 3,3'-Dichlorobenzidine                | ND           | 5.00               | 5.00  | ug/l  |                |                  |      |                |     |              |                    |
| 2,4-Dichlorophenol                    | ND           | 2.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| Diethyl phthalate                     | ND           | 1.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 2,4-Dimethylphenol                    | ND           | 2.00               | 0.300 | ug/l  |                |                  |      |                |     |              |                    |
| Dimethyl phthalate                    | ND           | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 4,6-Dinitro-2-methylphenol            | ND           | 5.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 2,4-Dinitrophenol                     | ND           | 5.00               | 0.900 | ug/l  |                |                  |      |                |     |              |                    |
| 2,4-Dinitrotoluene                    | ND           | 5.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 2,6-Dinitrotoluene                    | ND           | 5.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Di-n-octyl phthalate                  | ND           | 5.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| -                                     |              |                    |       | -     |                |                  |      |                |     |              |                    |

#### **TestAmerica Irvine**



618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011 MWH-Pasadena/Boeing

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

|                                      |        | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|--------------------------------------|--------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                              | Result | Limit     | MDL   | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11C3070 Extracted: 03/23/1    | 1      |           |       |       |       |        |      |        |     |       |            |
|                                      |        |           |       |       |       |        |      |        |     |       |            |
| Blank Analyzed: 03/25/2011 (11C3070- | BLK1)  |           |       |       |       |        |      |        |     |       |            |
| 1,2-Diphenylhydrazine/Azobenzene     | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Fluoranthene                         | ND     | 0.500     | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Fluorene                             | ND     | 0.500     | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Hexachlorobenzene                    | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Hexachlorobutadiene                  | ND     | 2.00      | 0.200 | ug/l  |       |        |      |        |     |       |            |
| Hexachlorocyclopentadiene            | ND     | 5.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Hexachloroethane                     | ND     | 3.00      | 0.200 | ug/l  |       |        |      |        |     |       |            |
| Indeno(1,2,3-cd)pyrene               | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Isophorone                           | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Naphthalene                          | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Nitrobenzene                         | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| 2-Nitrophenol                        | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| 4-Nitrophenol                        | ND     | 5.00      | 2.50  | ug/l  |       |        |      |        |     |       |            |
| N-Nitroso-di-n-propylamine           | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| N-Nitrosodimethylamine               | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| N-Nitrosodiphenylamine               | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Pentachlorophenol                    | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Phenanthrene                         | ND     | 0.500     | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Phenol                               | ND     | 1.00      | 0.300 | ug/l  |       |        |      |        |     |       |            |
| Pyrene                               | ND     | 0.500     | 0.100 | ug/l  |       |        |      |        |     |       |            |
| 1,2,4-Trichlorobenzene               | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| 2,4,6-Trichlorophenol                | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Surrogate: 2,4,6-Tribromophenol      | 15.1   |           |       | ug/l  | 20.0  |        | 75   | 40-120 |     |       |            |
| Surrogate: 2-Fluorobiphenyl          | 7.92   |           |       | ug/l  | 10.0  |        | 79   | 50-120 |     |       |            |
| Surrogate: 2-Fluorophenol            | 15.1   |           |       | ug/l  | 20.0  |        | 76   | 30-120 |     |       |            |
| Surrogate: Nitrobenzene-d5           | 8.22   |           |       | ug/l  | 10.0  |        | 82   | 45-120 |     |       |            |
| Surrogate: Phenol-d6                 | 16.3   |           |       | ug/l  | 20.0  |        | 81   | 35-120 |     |       |            |
| Surrogate: Terphenyl-d14             | 9.64   |           |       | ug/l  | 10.0  |        | 96   | 50-125 |     |       |            |
|                                      |        |           |       |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

|                                     |        | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|-------------------------------------|--------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                             | Result | Limit     | MDL   | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11C3070 Extracted: 03/23/1   | 11     |           |       |       |       |        |      |        |     |       |            |
|                                     |        |           |       |       |       |        |      |        |     |       |            |
| LCS Analyzed: 03/25/2011 (11C3070-B | SS1)   |           |       |       |       |        |      |        |     |       | MNR1       |
| Acenaphthene                        | 7.90   | 0.500     | 0.100 | ug/l  | 10.0  |        | 79   | 60-120 |     |       |            |
| Acenaphthylene                      | 8.66   | 0.500     | 0.100 | ug/l  | 10.0  |        | 87   | 60-120 |     |       |            |
| Anthracene                          | 8.20   | 0.500     | 0.100 | ug/l  | 10.0  |        | 82   | 65-120 |     |       |            |
| Benzidine                           | ND     | 5.00      | 5.00  | ug/l  | 10.0  |        |      | 30-160 |     |       | L6         |
| Benzo(a)anthracene                  | 8.82   | 5.00      | 0.100 | ug/l  | 10.0  |        | 88   | 65-120 |     |       |            |
| Benzo(a)pyrene                      | 8.38   | 2.00      | 0.100 | ug/l  | 10.0  |        | 84   | 55-130 |     |       |            |
| Benzo(b)fluoranthene                | 8.94   | 2.00      | 0.100 | ug/l  | 10.0  |        | 89   | 55-125 |     |       |            |
| Benzo(g,h,i)perylene                | 10.1   | 5.00      | 0.100 | ug/l  | 10.0  |        | 101  | 45-135 |     |       |            |
| Benzo(k)fluoranthene                | 8.94   | 0.500     | 0.100 | ug/l  | 10.0  |        | 89   | 50-125 |     |       |            |
| 4-Bromophenyl phenyl ether          | 8.52   | 1.00      | 0.100 | ug/l  | 10.0  |        | 85   | 60-120 |     |       |            |
| Butyl benzyl phthalate              | 10.3   | 5.00      | 0.700 | ug/l  | 10.0  |        | 103  | 55-130 |     |       |            |
| 4-Chloro-3-methylphenol             | 7.48   | 2.00      | 0.200 | ug/l  | 10.0  |        | 75   | 60-120 |     |       |            |
| Bis(2-chloroethoxy)methane          | 7.72   | 0.500     | 0.100 | ug/l  | 10.0  |        | 77   | 55-120 |     |       |            |
| Bis(2-chloroethyl)ether             | 7.44   | 0.500     | 0.100 | ug/l  | 10.0  |        | 74   | 50-120 |     |       |            |
| Bis(2-chloroisopropyl)ether         | 7.34   | 0.500     | 0.100 | ug/l  | 10.0  |        | 73   | 45-120 |     |       |            |
| Bis(2-ethylhexyl)phthalate          | 8.60   | 5.00      | 1.70  | ug/l  | 10.0  |        | 86   | 65-130 |     |       |            |
| 2-Chloronaphthalene                 | 8.06   | 0.500     | 0.100 | ug/l  | 10.0  |        | 81   | 60-120 |     |       |            |
| 2-Chlorophenol                      | 6.86   | 1.00      | 0.200 | ug/l  | 10.0  |        | 69   | 45-120 |     |       |            |
| 4-Chlorophenyl phenyl ether         | 8.86   | 0.500     | 0.100 | ug/l  | 10.0  |        | 89   | 65-120 |     |       |            |
| Chrysene                            | 8.18   | 0.500     | 0.100 | ug/l  | 10.0  |        | 82   | 65-120 |     |       |            |
| Dibenz(a,h)anthracene               | 9.42   | 0.500     | 0.100 | ug/l  | 10.0  |        | 94   | 50-135 |     |       |            |
| Di-n-butyl phthalate                | 8.26   | 2.00      | 0.200 | ug/l  | 10.0  |        | 83   | 60-125 |     |       |            |
| 1,2-Dichlorobenzene                 | 6.36   | 0.500     | 0.100 | ug/l  | 10.0  |        | 64   | 40-120 |     |       |            |
| 1,3-Dichlorobenzene                 | 6.12   | 0.500     | 0.100 | ug/l  | 10.0  |        | 61   | 35-120 |     |       |            |
| 1,4-Dichlorobenzene                 | 6.34   | 0.500     | 0.200 | ug/l  | 10.0  |        | 63   | 35-120 |     |       |            |
| 3,3'-Dichlorobenzidine              | 6.34   | 5.00      | 5.00  | ug/l  | 10.0  |        | 63   | 45-135 |     |       |            |
| 2,4-Dichlorophenol                  | 6.54   | 2.00      | 0.200 | ug/l  | 10.0  |        | 65   | 55-120 |     |       |            |
| Diethyl phthalate                   | 8.90   | 1.00      | 0.100 | ug/l  | 10.0  |        | 89   | 55-120 |     |       |            |
| 2,4-Dimethylphenol                  | 6.44   | 2.00      | 0.300 | ug/l  | 10.0  |        | 64   | 40-120 |     |       |            |
| Dimethyl phthalate                  | 8.64   | 0.500     | 0.100 | ug/l  | 10.0  |        | 86   | 30-120 |     |       |            |
| 4,6-Dinitro-2-methylphenol          | 7.90   | 5.00      | 0.200 | ug/l  | 10.0  |        | 79   | 45-120 |     |       |            |
| 2,4-Dinitrophenol                   | 7.32   | 5.00      | 0.900 | ug/l  | 10.0  |        | 73   | 40-120 |     |       |            |
| 2,4-Dinitrotoluene                  | 8.64   | 5.00      | 0.200 | ug/l  | 10.0  |        | 86   | 65-120 |     |       |            |
| 2,6-Dinitrotoluene                  | 8.98   | 5.00      | 0.100 | ug/l  | 10.0  |        | 90   | 65-120 |     |       |            |
| Di-n-octyl phthalate                | 8.20   | 5.00      | 0.100 | ug/l  | 10.0  |        | 82   | 65-135 |     |       |            |
|                                     |        |           |       |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**



618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Report Number: IUC21 Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                          | Result       | Reporting<br>Limit | MDL   | Units        | Spike<br>Level | Source<br>Result |          | %REC             | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------------|--------------|--------------------|-------|--------------|----------------|------------------|----------|------------------|-----|--------------|--------------------|
| •                                                |              | Lillit             | MDL   | Units        | Level          | Result           | 70KEC    | Lillits          | KFD | Lillit       | Quanners           |
| <b>Batch:</b> 11C3070 Extracted: 03/23/11        | <u>=</u>     |                    |       |              |                |                  |          |                  |     |              |                    |
| LCC Analyzed, 02/25/2011 (11/22070 DC            | 1)           |                    |       |              |                |                  |          |                  |     |              | MNR1               |
| LCS Analyzed: 03/25/2011 (11C3070-BS             | 7.62         | 1.00               | 0.100 | /1           | 10.0           |                  | 76       | 60-120           |     |              | MINKI              |
| 1,2-Diphenylhydrazine/Azobenzene<br>Fluoranthene | 8.80         | 0.500              | 0.100 | ug/l         | 10.0           |                  | 76<br>88 | 60-120           |     |              |                    |
| Fluorene                                         | 8.98         | 0.500              | 0.100 | ug/l         | 10.0           |                  | 90       | 65-120           |     |              |                    |
| Hexachlorobenzene                                | 8.12         | 1.00               | 0.100 | ug/l<br>ug/l | 10.0           |                  | 81       | 60-120           |     |              |                    |
| Hexachlorobutadiene                              | 5.52         | 2.00               | 0.100 | ·            | 10.0           |                  | 55       | 40-120           |     |              |                    |
|                                                  | 5.14         | 5.00               | 0.200 | ug/l         | 10.0           |                  | 53<br>51 | 25-120           |     |              |                    |
| Hexachlorocyclopentadiene Hexachloroethane       | 5.42         | 3.00               | 0.100 | ug/l         | 10.0           |                  | 54       | 25-120<br>35-120 |     |              |                    |
|                                                  | 9.90         | 2.00               | 0.200 | ug/l         | 10.0           |                  | 99       | 45-135           |     |              |                    |
| Indeno(1,2,3-cd)pyrene Isophorone                | 9.90<br>8.34 | 1.00               | 0.100 | ug/l<br>ug/l | 10.0           |                  | 83       | 50-120           |     |              |                    |
| Naphthalene                                      | 7.14         | 1.00               | 0.100 | ·            | 10.0           |                  | 71       | 55-120           |     |              |                    |
| Nitrobenzene                                     | 7.14         | 1.00               | 0.100 | ug/l         | 10.0           |                  | 70       | 55-120           |     |              |                    |
| 2-Nitrophenol                                    | 7.02         | 2.00               | 0.100 | ug/l         | 10.0           |                  |          | 50-120           |     |              |                    |
| *                                                | 7.02<br>7.44 | 5.00               | 2.50  | ug/l         | 10.0           |                  | 70<br>74 | 45-120           |     |              |                    |
| 4-Nitrophenol                                    | 7.44         |                    | 0.100 | ug/l         | 10.0           |                  | 74<br>75 | 45-120           |     |              |                    |
| N-Nitroso-di-n-propylamine                       | 7.72         | 2.00               | 0.100 | ug/l         | 10.0           |                  | 75<br>77 |                  |     |              |                    |
| N-Nitrosodimethylamine                           |              | 2.00               |       | ug/l         |                |                  | 77       | 45-120           |     |              |                    |
| N-Nitrosodiphenylamine                           | 8.72         | 1.00               | 0.100 | ug/l         | 10.0           |                  | 87       | 60-120           |     |              |                    |
| Pentachlorophenol Phenanthrene                   | 6.24         | 2.00               | 0.100 | ug/l         | 10.0           |                  | 62       | 24-121           |     |              |                    |
| Phenol Phenol                                    | 8.28         | 0.500              | 0.100 | ug/l         | 10.0           |                  | 83       | 65-120           |     |              |                    |
|                                                  | 7.00         | 1.00               | 0.300 | ug/l         | 10.0           |                  | 70       | 40-120           |     |              |                    |
| Pyrene                                           | 8.82         | 0.500              | 0.100 | ug/l         | 10.0           |                  | 88       | 55-125           |     |              |                    |
| 1,2,4-Trichlorobenzene                           | 6.56         | 1.00               | 0.100 | ug/l         | 10.0           |                  | 66       | 45-120           |     |              |                    |
| 2,4,6-Trichlorophenol                            | 8.04         | 1.00               | 0.100 | ug/l         | 10.0           |                  | 80       | 55-120           |     |              |                    |
| Surrogate: 2,4,6-Tribromophenol                  | 16.7         |                    |       | ug/l         | 20.0           |                  | 84       | 40-120           |     |              |                    |
| Surrogate: 2-Fluorobiphenyl                      | 7.78         |                    |       | ug/l         | 10.0           |                  | 78       | 50-120           |     |              |                    |
| Surrogate: 2-Fluorophenol                        | 13.0         |                    |       | ug/l         | 20.0           |                  | 65       | 30-120           |     |              |                    |
| Surrogate: Nitrobenzene-d5                       | 7.26         |                    |       | ug/l         | 10.0           |                  | 73       | 45-120           |     |              |                    |
| Surrogate: Phenol-d6                             | 14.5         |                    |       | ug/l         | 20.0           |                  | 73       | 35-120           |     |              |                    |
| Surrogate: Terphenyl-d14                         | 8.72         |                    |       | ug/l         | 10.0           |                  | 87       | 50-125           |     |              |                    |

#### **TestAmerica Irvine**

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Arcadia, CA 91007 Report Number: IUC2187
Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

|                                       |             | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|---------------------------------------|-------------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                               | Result      | Limit     | MDL   | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 11C3070 Extracted: 03/2</b> | 3/11        |           |       |       |       |        |      |        |     |       |            |
|                                       |             |           |       |       |       |        |      |        |     |       |            |
| LCS Dup Analyzed: 03/25/2011 (110     | C3070-BSD1) |           |       |       |       |        |      |        |     |       |            |
| Acenaphthene                          | 8.00        | 0.500     | 0.100 | ug/l  | 10.0  |        | 80   | 60-120 | 1   | 20    |            |
| Acenaphthylene                        | 8.78        | 0.500     | 0.100 | ug/l  | 10.0  |        | 88   | 60-120 | 1   | 20    |            |
| Anthracene                            | 8.34        | 0.500     | 0.100 | ug/1  | 10.0  |        | 83   | 65-120 | 2   | 20    |            |
| Benzidine                             | ND          | 5.00      | 5.00  | ug/1  | 10.0  |        |      | 30-160 |     | 35    | L6         |
| Benzo(a)anthracene                    | 9.04        | 5.00      | 0.100 | ug/1  | 10.0  |        | 90   | 65-120 | 2   | 20    |            |
| Benzo(a)pyrene                        | 8.42        | 2.00      | 0.100 | ug/1  | 10.0  |        | 84   | 55-130 | 0.5 | 25    |            |
| Benzo(b)fluoranthene                  | 8.80        | 2.00      | 0.100 | ug/l  | 10.0  |        | 88   | 55-125 | 2   | 25    |            |
| Benzo(g,h,i)perylene                  | 8.56        | 5.00      | 0.100 | ug/l  | 10.0  |        | 86   | 45-135 | 16  | 25    |            |
| Benzo(k)fluoranthene                  | 8.94        | 0.500     | 0.100 | ug/l  | 10.0  |        | 89   | 50-125 | 0   | 20    |            |
| 4-Bromophenyl phenyl ether            | 8.64        | 1.00      | 0.100 | ug/l  | 10.0  |        | 86   | 60-120 | 1   | 25    |            |
| Butyl benzyl phthalate                | 8.50        | 5.00      | 0.700 | ug/1  | 10.0  |        | 85   | 55-130 | 20  | 20    |            |
| 4-Chloro-3-methylphenol               | 7.34        | 2.00      | 0.200 | ug/l  | 10.0  |        | 73   | 60-120 | 2   | 25    |            |
| Bis(2-chloroethoxy)methane            | 7.96        | 0.500     | 0.100 | ug/l  | 10.0  |        | 80   | 55-120 | 3   | 20    |            |
| Bis(2-chloroethyl)ether               | 7.42        | 0.500     | 0.100 | ug/l  | 10.0  |        | 74   | 50-120 | 0.3 | 20    |            |
| Bis(2-chloroisopropyl)ether           | 7.36        | 0.500     | 0.100 | ug/l  | 10.0  |        | 74   | 45-120 | 0.3 | 20    |            |
| Bis(2-ethylhexyl)phthalate            | 8.74        | 5.00      | 1.70  | ug/l  | 10.0  |        | 87   | 65-130 | 2   | 20    |            |
| 2-Chloronaphthalene                   | 8.26        | 0.500     | 0.100 | ug/l  | 10.0  |        | 83   | 60-120 | 2   | 20    |            |
| 2-Chlorophenol                        | 7.20        | 1.00      | 0.200 | ug/l  | 10.0  |        | 72   | 45-120 | 5   | 25    |            |
| 4-Chlorophenyl phenyl ether           | 9.54        | 0.500     | 0.100 | ug/l  | 10.0  |        | 95   | 65-120 | 7   | 20    |            |
| Chrysene                              | 8.10        | 0.500     | 0.100 | ug/l  | 10.0  |        | 81   | 65-120 | 1   | 20    |            |
| Dibenz(a,h)anthracene                 | 8.46        | 0.500     | 0.100 | ug/l  | 10.0  |        | 85   | 50-135 | 11  | 25    |            |
| Di-n-butyl phthalate                  | 8.38        | 2.00      | 0.200 | ug/l  | 10.0  |        | 84   | 60-125 | 1   | 20    |            |
| 1,2-Dichlorobenzene                   | 6.74        | 0.500     | 0.100 | ug/l  | 10.0  |        | 67   | 40-120 | 6   | 25    |            |
| 1,3-Dichlorobenzene                   | 6.54        | 0.500     | 0.100 | ug/l  | 10.0  |        | 65   | 35-120 | 7   | 25    |            |
| 1,4-Dichlorobenzene                   | 6.62        | 0.500     | 0.200 | ug/l  | 10.0  |        | 66   | 35-120 | 4   | 25    |            |
| 3,3'-Dichlorobenzidine                | 7.28        | 5.00      | 5.00  | ug/l  | 10.0  |        | 73   | 45-135 | 14  | 25    |            |
| 2,4-Dichlorophenol                    | 7.40        | 2.00      | 0.200 | ug/l  | 10.0  |        | 74   | 55-120 | 12  | 20    |            |
| Diethyl phthalate                     | 8.98        | 1.00      | 0.100 | ug/l  | 10.0  |        | 90   | 55-120 | 0.9 | 30    |            |
| 2,4-Dimethylphenol                    | 7.14        | 2.00      | 0.300 | ug/l  | 10.0  |        | 71   | 40-120 | 10  | 25    |            |
| Dimethyl phthalate                    | 8.98        | 0.500     | 0.100 | ug/1  | 10.0  |        | 90   | 30-120 | 4   | 30    |            |
| 4,6-Dinitro-2-methylphenol            | 7.60        | 5.00      | 0.200 | ug/l  | 10.0  |        | 76   | 45-120 | 4   | 25    |            |
| 2,4-Dinitrophenol                     | 7.50        | 5.00      | 0.900 | ug/1  | 10.0  |        | 75   | 40-120 | 2   | 25    |            |
| 2,4-Dinitrotoluene                    | 9.02        | 5.00      | 0.200 | ug/l  | 10.0  |        | 90   | 65-120 | 4   | 20    |            |
| 2,6-Dinitrotoluene                    | 9.70        | 5.00      | 0.100 | ug/l  | 10.0  |        | 97   | 65-120 | 8   | 20    |            |
| Di-n-octyl phthalate                  | 8.00        | 5.00      | 0.100 | ug/l  | 10.0  |        | 80   | 65-135 | 2   | 20    |            |
|                                       |             |           |       |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Received: 03/21/11

Sampled: 03/20/11-03/21/11

# METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

|                                      |          | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|--------------------------------------|----------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                              | Result   | Limit     | MDL   | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11C3070 Extracted: 03/23/11   | [        |           |       |       |       |        |      |        |     |       |            |
|                                      |          |           |       |       |       |        |      |        |     |       |            |
| LCS Dup Analyzed: 03/25/2011 (11C307 | (0-BSD1) |           |       |       |       |        |      |        |     |       |            |
| 1,2-Diphenylhydrazine/Azobenzene     | 7.96     | 1.00      | 0.100 | ug/l  | 10.0  |        | 80   | 60-120 | 4   | 25    |            |
| Fluoranthene                         | 8.86     | 0.500     | 0.100 | ug/l  | 10.0  |        | 89   | 60-120 | 0.7 | 20    |            |
| Fluorene                             | 9.44     | 0.500     | 0.100 | ug/l  | 10.0  |        | 94   | 65-120 | 5   | 20    |            |
| Hexachlorobenzene                    | 8.18     | 1.00      | 0.100 | ug/l  | 10.0  |        | 82   | 60-120 | 0.7 | 20    |            |
| Hexachlorobutadiene                  | 6.24     | 2.00      | 0.200 | ug/l  | 10.0  |        | 62   | 40-120 | 12  | 25    |            |
| Hexachlorocyclopentadiene            | 6.60     | 5.00      | 0.100 | ug/l  | 10.0  |        | 66   | 25-120 | 25  | 30    |            |
| Hexachloroethane                     | 6.04     | 3.00      | 0.200 | ug/l  | 10.0  |        | 60   | 35-120 | 11  | 25    |            |
| Indeno(1,2,3-cd)pyrene               | 9.14     | 2.00      | 0.100 | ug/l  | 10.0  |        | 91   | 45-135 | 8   | 25    |            |
| Isophorone                           | 8.28     | 1.00      | 0.100 | ug/l  | 10.0  |        | 83   | 50-120 | 0.7 | 20    |            |
| Naphthalene                          | 7.38     | 1.00      | 0.100 | ug/l  | 10.0  |        | 74   | 55-120 | 3   | 20    |            |
| Nitrobenzene                         | 7.44     | 1.00      | 0.100 | ug/l  | 10.0  |        | 74   | 55-120 | 6   | 25    |            |
| 2-Nitrophenol                        | 7.22     | 2.00      | 0.100 | ug/l  | 10.0  |        | 72   | 50-120 | 3   | 25    |            |
| 4-Nitrophenol                        | 8.12     | 5.00      | 2.50  | ug/l  | 10.0  |        | 81   | 45-120 | 9   | 30    |            |
| N-Nitroso-di-n-propylamine           | 7.64     | 2.00      | 0.100 | ug/l  | 10.0  |        | 76   | 45-120 | 1   | 20    |            |
| N-Nitrosodimethylamine               | 7.70     | 2.00      | 0.100 | ug/l  | 10.0  |        | 77   | 45-120 | 0.3 | 20    |            |
| N-Nitrosodiphenylamine               | 8.92     | 1.00      | 0.100 | ug/l  | 10.0  |        | 89   | 60-120 | 2   | 20    |            |
| Pentachlorophenol                    | 6.20     | 2.00      | 0.100 | ug/l  | 10.0  |        | 62   | 24-121 | 0.6 | 25    |            |
| Phenanthrene                         | 8.14     | 0.500     | 0.100 | ug/l  | 10.0  |        | 81   | 65-120 | 2   | 20    |            |
| Phenol                               | 7.26     | 1.00      | 0.300 | ug/l  | 10.0  |        | 73   | 40-120 | 4   | 25    |            |
| Pyrene                               | 8.84     | 0.500     | 0.100 | ug/l  | 10.0  |        | 88   | 55-125 | 0.2 | 25    |            |
| 1,2,4-Trichlorobenzene               | 7.04     | 1.00      | 0.100 | ug/l  | 10.0  |        | 70   | 45-120 | 7   | 20    |            |
| 2,4,6-Trichlorophenol                | 8.02     | 1.00      | 0.100 | ug/l  | 10.0  |        | 80   | 55-120 | 0.2 | 30    |            |
| Surrogate: 2,4,6-Tribromophenol      | 16.9     |           |       | ug/l  | 20.0  |        | 84   | 40-120 |     |       |            |
| Surrogate: 2-Fluorobiphenyl          | 7.90     |           |       | ug/l  | 10.0  |        | 79   | 50-120 |     |       |            |
| Surrogate: 2-Fluorophenol            | 13.1     |           |       | ug/l  | 20.0  |        | 66   | 30-120 |     |       |            |
| Surrogate: Nitrobenzene-d5           | 7.72     |           |       | ug/l  | 10.0  |        | 77   | 45-120 |     |       |            |
| Surrogate: Phenol-d6                 | 15.4     |           |       | ug/l  | 20.0  |        | 77   | 35-120 |     |       |            |
| Surrogate: Terphenyl-d14             | 8.78     |           |       | ug/l  | 10.0  |        | 88   | 50-125 |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

RPD

Data

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Annual Outfall 011 Sampled: 03/20/11-03/21/11

Arcadia, CA 91007 Report Number: IUC2187 Received: 03/21/11

Reporting

Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### **ORGANOCHLORINE PESTICIDES (EPA 608)**

Spike

Source

| Analyte                               | Result   | Limit  | MDL    | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
|---------------------------------------|----------|--------|--------|-------|-------|--------|------|--------|-----|-------|------------|
| <b>Batch: 11C2988 Extracted: 03/2</b> | 3/11_    |        |        |       |       |        |      |        |     |       |            |
| Blank Analyzed: 03/23/2011 (11C298    | 88-BLK1) |        |        |       |       |        |      |        |     |       |            |
| 4,4'-DDD                              | ND       | 0.0050 | 0.0040 | ug/l  |       |        |      |        |     |       |            |
| 4,4'-DDE                              | ND       | 0.0050 | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| 4,4'-DDT                              | ND       | 0.010  | 0.0040 | ug/l  |       |        |      |        |     |       |            |
| Aldrin                                | ND       | 0.0050 | 0.0015 | ug/l  |       |        |      |        |     |       |            |
| alpha-BHC                             | ND       | 0.0050 | 0.0025 | ug/l  |       |        |      |        |     |       |            |
| beta-BHC                              | ND       | 0.010  | 0.0040 | ug/1  |       |        |      |        |     |       |            |
| delta-BHC                             | ND       | 0.0050 | 0.0035 | ug/l  |       |        |      |        |     |       |            |
| Dieldrin                              | ND       | 0.0050 | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| Endosulfan I                          | ND       | 0.0050 | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| Endosulfan II                         | ND       | 0.0050 | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| Endosulfan sulfate                    | ND       | 0.010  | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| Endrin                                | ND       | 0.0050 | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| Endrin aldehyde                       | ND       | 0.010  | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| gamma-BHC (Lindane)                   | ND       | 0.020  | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| Heptachlor                            | ND       | 0.010  | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| Heptachlor epoxide                    | ND       | 0.0050 | 0.0025 | ug/1  |       |        |      |        |     |       |            |
| Chlordane                             | ND       | 0.10   | 0.080  | ug/l  |       |        |      |        |     |       |            |
| Toxaphene                             | ND       | 0.50   | 0.25   | ug/1  |       |        |      |        |     |       |            |
| Surrogate: Decachlorobiphenyl         | 0.433    |        |        | ug/l  | 0.500 |        | 87   | 45-120 |     |       |            |
| Surrogate: Tetrachloro-m-xylene       | 0.371    |        |        | ug/l  | 0.500 |        | 74   | 35-115 |     |       |            |
| LCS Analyzed: 03/23/2011 (11C2988     | 3-BS1)   |        |        |       |       |        |      |        |     |       | MNR1       |
| 4,4'-DDD                              | 0.442    | 0.0050 | 0.0040 | ug/1  | 0.500 |        | 88   | 55-120 |     |       |            |
| 4,4'-DDE                              | 0.423    | 0.0050 | 0.0030 | ug/1  | 0.500 |        | 85   | 50-120 |     |       |            |
| 4,4'-DDT                              | 0.467    | 0.010  | 0.0040 | ug/l  | 0.500 |        | 93   | 55-120 |     |       |            |
| Aldrin                                | 0.386    | 0.0050 | 0.0015 | ug/l  | 0.500 |        | 77   | 40-115 |     |       |            |
| alpha-BHC                             | 0.398    | 0.0050 | 0.0025 | ug/l  | 0.500 |        | 80   | 45-115 |     |       |            |
| beta-BHC                              | 0.387    | 0.010  | 0.0040 | ug/l  | 0.500 |        | 77   | 55-115 |     |       |            |
| delta-BHC                             | 0.420    | 0.0050 | 0.0035 | ug/l  | 0.500 |        | 84   | 55-115 |     |       |            |
| Dieldrin                              | 0.438    | 0.0050 | 0.0020 | ug/l  | 0.500 |        | 88   | 55-115 |     |       |            |
| Endosulfan I                          | 0.396    | 0.0050 | 0.0020 | ug/l  | 0.500 |        | 79   | 55-115 |     |       |            |
| Endosulfan II                         | 0.435    | 0.0050 | 0.0030 | ug/l  | 0.500 |        | 87   | 55-120 |     |       |            |
| Endosulfan sulfate                    | 0.439    | 0.010  | 0.0030 | ug/l  | 0.500 |        | 88   | 60-120 |     |       |            |
| Endrin                                | 0.412    | 0.0050 | 0.0020 | ug/l  | 0.500 |        | 82   | 55-115 |     |       |            |
| Endrin aldehyde                       | 0.441    | 0.010  | 0.0020 | ug/1  | 0.500 |        | 88   | 50-120 |     |       |            |
| gamma-BHC (Lindane)                   | 0.391    | 0.020  | 0.0030 | ug/1  | 0.500 |        | 78   | 45-115 |     |       |            |
| Toot A moving Invine                  |          |        |        |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

# **ORGANOCHLORINE PESTICIDES (EPA 608)**

| Accelore                                  | D14     | Reporting | MDI    | T.T   | Spike | Source | 0/ DEC | %REC   | DDD | RPD   | Data       |
|-------------------------------------------|---------|-----------|--------|-------|-------|--------|--------|--------|-----|-------|------------|
| Analyte                                   | Result  | Limit     | MDL    | Units | Level | Result | %REC   | Limits | RPD | Limit | Qualifiers |
| <b>Batch:</b> 11C2988 Extracted: 03/23/11 | _       |           |        |       |       |        |        |        |     |       |            |
| L CG                                      | 4.      |           |        |       |       |        |        |        |     |       | MANDA      |
| LCS Analyzed: 03/23/2011 (11C2988-BS      |         |           |        |       |       |        |        |        |     |       | MNR1       |
| Heptachlor                                | 0.380   | 0.010     | 0.0030 | ug/l  | 0.500 |        | 76     | 45-115 |     |       |            |
| Heptachlor epoxide                        | 0.385   | 0.0050    | 0.0025 | ug/l  | 0.500 |        | 77     | 55-115 |     |       |            |
| Surrogate: Decachlorobiphenyl             | 0.446   |           |        | ug/l  | 0.500 |        | 89     | 45-120 |     |       |            |
| Surrogate: Tetrachloro-m-xylene           | 0.383   |           |        | ug/l  | 0.500 |        | 77     | 35-115 |     |       |            |
| LCS Dup Analyzed: 03/23/2011 (11C298      | 8-BSD1) |           |        |       |       |        |        |        |     |       |            |
| 4,4'-DDD                                  | 0.435   | 0.0050    | 0.0040 | ug/l  | 0.500 |        | 87     | 55-120 | 2   | 30    |            |
| 4,4'-DDE                                  | 0.418   | 0.0050    | 0.0030 | ug/l  | 0.500 |        | 84     | 50-120 | 1   | 30    |            |
| 4,4'-DDT                                  | 0.461   | 0.010     | 0.0040 | ug/l  | 0.500 |        | 92     | 55-120 | 1   | 30    |            |
| Aldrin                                    | 0.385   | 0.0050    | 0.0015 | ug/l  | 0.500 |        | 77     | 40-115 | 0.2 | 30    |            |
| alpha-BHC                                 | 0.398   | 0.0050    | 0.0025 | ug/l  | 0.500 |        | 80     | 45-115 | 0.1 | 30    |            |
| beta-BHC                                  | 0.382   | 0.010     | 0.0040 | ug/l  | 0.500 |        | 76     | 55-115 | 1   | 30    |            |
| delta-BHC                                 | 0.417   | 0.0050    | 0.0035 | ug/l  | 0.500 |        | 83     | 55-115 | 0.8 | 30    |            |
| Dieldrin                                  | 0.433   | 0.0050    | 0.0020 | ug/l  | 0.500 |        | 87     | 55-115 | 1   | 30    |            |
| Endosulfan I                              | 0.392   | 0.0050    | 0.0020 | ug/l  | 0.500 |        | 78     | 55-115 | 1   | 30    |            |
| Endosulfan II                             | 0.429   | 0.0050    | 0.0030 | ug/l  | 0.500 |        | 86     | 55-120 | 2   | 30    |            |
| Endosulfan sulfate                        | 0.430   | 0.010     | 0.0030 | ug/l  | 0.500 |        | 86     | 60-120 | 2   | 30    |            |
| Endrin                                    | 0.407   | 0.0050    | 0.0020 | ug/l  | 0.500 |        | 81     | 55-115 | 1   | 30    |            |
| Endrin aldehyde                           | 0.434   | 0.010     | 0.0020 | ug/l  | 0.500 |        | 87     | 50-120 | 1   | 30    |            |
| gamma-BHC (Lindane)                       | 0.390   | 0.020     | 0.0030 | ug/l  | 0.500 |        | 78     | 45-115 | 0.3 | 30    |            |
| Heptachlor                                | 0.380   | 0.010     | 0.0030 | ug/l  | 0.500 |        | 76     | 45-115 | 0.2 | 30    |            |
| Heptachlor epoxide                        | 0.379   | 0.0050    | 0.0025 | ug/l  | 0.500 |        | 76     | 55-115 | 1   | 30    |            |
| Surrogate: Decachlorobiphenyl             | 0.441   |           |        | ug/l  | 0.500 |        | 88     | 45-120 |     |       |            |
| Surrogate: Tetrachloro-m-xylene           | 0.384   |           |        | ug/l  | 0.500 |        | 77     | 35-115 |     |       |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

### METHOD BLANK/QC DATA

# **TOTAL PCBS (EPA 608)**

|                                       | <b>.</b> | Reporting | M    | ** *. | Spike | Source |      | %REC   | D.D.D. | RPD   | Data       |
|---------------------------------------|----------|-----------|------|-------|-------|--------|------|--------|--------|-------|------------|
| Analyte                               | Result   | Limit     | MDL  | Units | Level | Result | %REC | Limits | RPD    | Limit | Qualifiers |
| Batch: 11C2988 Extracted: 03/23/11    | _        |           |      |       |       |        |      |        |        |       |            |
|                                       |          |           |      |       |       |        |      |        |        |       |            |
| Blank Analyzed: 03/23/2011 (11C2988-B | LK1)     |           |      |       |       |        |      |        |        |       |            |
| Aroclor 1016                          | ND       | 0.50      | 0.25 | ug/l  |       |        |      |        |        |       |            |
| Aroclor 1221                          | ND       | 0.50      | 0.25 | ug/l  |       |        |      |        |        |       |            |
| Aroclor 1232                          | ND       | 0.50      | 0.25 | ug/l  |       |        |      |        |        |       |            |
| Aroclor 1242                          | ND       | 0.50      | 0.25 | ug/l  |       |        |      |        |        |       |            |
| Aroclor 1248                          | ND       | 0.50      | 0.25 | ug/l  |       |        |      |        |        |       |            |
| Aroclor 1254                          | ND       | 0.50      | 0.25 | ug/l  |       |        |      |        |        |       |            |
| Aroclor 1260                          | ND       | 0.50      | 0.25 | ug/l  |       |        |      |        |        |       |            |
| Surrogate: Decachlorobiphenyl         | 0.470    |           |      | ug/l  | 0.500 |        | 94   | 45-120 |        |       |            |
| LCS Analyzed: 03/23/2011 (11C2988-BS  | 2)       |           |      |       |       |        |      |        |        |       | MNR1       |
| Aroclor 1016                          | 3.49     | 0.50      | 0.25 | ug/l  | 4.00  |        | 87   | 50-115 |        |       |            |
| Aroclor 1260                          | 3.42     | 0.50      | 0.25 | ug/l  | 4.00  |        | 85   | 60-120 |        |       |            |
| Surrogate: Decachlorobiphenyl         | 0.509    |           |      | ug/l  | 0.500 |        | 102  | 45-120 |        |       |            |
| LCS Dup Analyzed: 03/23/2011 (11C298  | 8-BSD2)  |           |      |       |       |        |      |        |        |       |            |
| Aroclor 1016                          | 3.46     | 0.50      | 0.25 | ug/l  | 4.00  |        | 87   | 50-115 | 0.7    | 30    |            |
| Aroclor 1260                          | 3.38     | 0.50      | 0.25 | ug/l  | 4.00  |        | 84   | 60-120 | 1      | 25    |            |
| Surrogate: Decachlorobiphenyl         | 0.499    |           |      | ug/l  | 0.500 |        | 100  | 45-120 |        |       |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                                    | Result  | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------|---------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11C3681 Extracted: 03/29/11         | _       |                    |     |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/29/2011 (11C3681-Bl     | LK1)    |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | ND      | 5.0                | 1.4 | mg/l  |                |                  |      |                |     |              |                    |
| LCS Analyzed: 03/29/2011 (11C3681-BS)      | 1)      |                    |     |       |                |                  |      |                |     |              | MNR1               |
| Hexane Extractable Material (Oil & Grease) | 18.7    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 94   | 78-114         |     |              |                    |
| LCS Dup Analyzed: 03/29/2011 (11C368)      | 1-BSD1) |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 18.5    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 92   | 78-114         | 1   | 11           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

### METHOD BLANK/QC DATA

#### **METALS**

| Analyte                                              | Result   | Reporting<br>Limit | MDL        | Units        | Spike<br>Level     | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |  |
|------------------------------------------------------|----------|--------------------|------------|--------------|--------------------|------------------|------|----------------|-----|--------------|--------------------|--|
| Batch: 11C3102 Extracted: 03/23/11                   | <u>-</u> |                    |            |              |                    |                  |      |                |     |              |                    |  |
| Blank Analyzed: 03/23/2011 (11C3102-B                | LK1)     |                    |            |              |                    |                  |      |                |     |              |                    |  |
| Mercury                                              | ND       | 0.20               | 0.10       | ug/l         |                    |                  |      |                |     |              |                    |  |
| LCS Analyzed: 03/23/2011 (11C3102-BS                 | 1)       |                    |            |              |                    |                  |      |                |     |              |                    |  |
| Mercury                                              | 8.13     | 0.20               | 0.10       | ug/l         | 8.00               |                  | 102  | 85-115         |     |              |                    |  |
| Matrix Spike Analyzed: 03/23/2011 (11C3102-MS1)      |          |                    |            |              | Source: IUC2145-01 |                  |      |                |     |              |                    |  |
| Mercury                                              | 8.13     | 0.20               | 0.10       | ug/l         | 8.00               | ND               | 102  | 70-130         |     |              |                    |  |
| Matrix Spike Dup Analyzed: 03/23/2011 (11C3102-MSD1) |          |                    |            |              | Source: IUC2145-01 |                  |      |                |     |              |                    |  |
| Mercury                                              | 8.00     | 0.20               | 0.10       | ug/l         | 8.00               | ND               | 100  | 70-130         | 2   | 20           |                    |  |
| Batch: 11C3239 Extracted: 03/24/11                   | <u></u>  |                    |            |              |                    |                  |      |                |     |              |                    |  |
|                                                      |          |                    |            |              |                    |                  |      |                |     |              |                    |  |
| Blank Analyzed: 03/24/2011-03/25/2011 (              | •        | *                  |            |              |                    |                  |      |                |     |              |                    |  |
| Arsenic                                              | ND       | 10                 | 7.0        | ug/l         |                    |                  |      |                |     |              |                    |  |
| Barium                                               | ND       | 0.010              | 0.0060     | mg/l         |                    |                  |      |                |     |              |                    |  |
| Beryllium                                            | ND       | 2.0                | 0.90       | ug/l         |                    |                  |      |                |     |              |                    |  |
| Boron                                                | ND       | 0.050              | 0.020      | mg/l         |                    |                  |      |                |     |              |                    |  |
| Clarations                                           | ND       | 0.10               | 0.050      | mg/1         |                    |                  |      |                |     |              |                    |  |
| Chromium<br>Cobalt                                   | ND       | 5.0<br>10          | 2.0<br>2.0 | ug/l         |                    |                  |      |                |     |              |                    |  |
|                                                      | ND<br>ND | 0.040              | 0.015      | ug/1         |                    |                  |      |                |     |              |                    |  |
| Iron<br>Magnesium                                    | ND<br>ND | 0.040              | 0.013      | mg/l         |                    |                  |      |                |     |              |                    |  |
| •                                                    | ND<br>ND |                    | 7.0        | mg/l         |                    |                  |      |                |     |              |                    |  |
| Manganese<br>Nickel                                  | ND<br>ND | 20<br>10           | 2.0        | ug/l<br>ug/l |                    |                  |      |                |     |              |                    |  |
| Vanadium                                             | ND<br>ND | 10                 | 3.0        | ug/1<br>ug/l |                    |                  |      |                |     |              |                    |  |
| Zinc                                                 | ND<br>ND | 20.0               | 6.00       | ug/l         |                    |                  |      |                |     |              |                    |  |
| Ziiic                                                | IND      | 20.0               | 0.00       | ug/1         |                    |                  |      |                |     |              |                    |  |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

#### **METALS**

|                                                            |             | Reporting |        |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|------------------------------------------------------------|-------------|-----------|--------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                                    | Result      | Limit     | MDL    | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C3239 Extracted: 03/24/11                         | _           |           |        |       |       |          |         |        |     |       |            |
|                                                            |             |           |        |       |       |          |         |        |     |       |            |
| LCS Analyzed: 03/24/2011-03/25/2011 (1                     | 1C3239-BS1) |           |        |       |       |          |         |        |     |       |            |
| Arsenic                                                    | 544         | 10        | 7.0    | ug/l  | 500   |          | 109     | 85-115 |     |       |            |
| Barium                                                     | 0.538       | 0.010     | 0.0060 | mg/l  | 0.500 |          | 108     | 85-115 |     |       |            |
| Beryllium                                                  | 516         | 2.0       | 0.90   | ug/l  | 500   |          | 103     | 85-115 |     |       |            |
| Boron                                                      | 0.540       | 0.050     | 0.020  | mg/l  | 0.500 |          | 108     | 85-115 |     |       |            |
| Calcium                                                    | 2.71        | 0.10      | 0.050  | mg/l  | 2.50  |          | 108     | 85-115 |     |       |            |
| Chromium                                                   | 545         | 5.0       | 2.0    | ug/l  | 500   |          | 109     | 85-115 |     |       |            |
| Cobalt                                                     | 524         | 10        | 2.0    | ug/l  | 500   |          | 105     | 85-115 |     |       |            |
| Iron                                                       | 0.532       | 0.040     | 0.015  | mg/l  | 0.500 |          | 106     | 85-115 |     |       |            |
| Magnesium                                                  | 2.48        | 0.020     | 0.012  | mg/l  | 2.50  |          | 99      | 85-115 |     |       |            |
| Manganese                                                  | 530         | 20        | 7.0    | ug/l  | 500   |          | 106     | 85-115 |     |       |            |
| Nickel                                                     | 544         | 10        | 2.0    | ug/l  | 500   |          | 109     | 85-115 |     |       |            |
| Vanadium                                                   | 516         | 10        | 3.0    | ug/l  | 500   |          | 103     | 85-115 |     |       |            |
| Zinc                                                       | 541         | 20.0      | 6.00   | ug/l  | 500   |          | 108     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 03/24/2011-03/25/2011 (11C3239-MS1) |             |           |        |       | Sou   | rce: IUC | 2091-01 |        |     |       |            |
| Arsenic                                                    | 544         | 10        | 7.0    | ug/l  | 500   | ND       | 109     | 70-130 |     |       |            |
| Barium                                                     | 0.560       | 0.010     | 0.0060 | mg/l  | 0.500 | 0.0272   | 106     | 70-130 |     |       |            |
| Beryllium                                                  | 522         | 2.0       | 0.90   | ug/l  | 500   | ND       | 104     | 70-130 |     |       |            |
| Boron                                                      | 0.668       | 0.050     | 0.020  | mg/l  | 0.500 | 0.124    | 109     | 70-130 |     |       |            |
| Calcium                                                    | 19.5        | 0.10      | 0.050  | mg/l  | 2.50  | 17.2     | 91      | 70-130 |     |       | MHA        |
| Chromium                                                   | 536         | 5.0       | 2.0    | ug/l  | 500   | ND       | 107     | 70-130 |     |       |            |
| Cobalt                                                     | 513         | 10        | 2.0    | ug/l  | 500   | ND       | 103     | 70-130 |     |       |            |
| Iron                                                       | 0.604       | 0.040     | 0.015  | mg/l  | 0.500 | 0.0782   | 105     | 70-130 |     |       |            |
| Magnesium                                                  | 10.0        | 0.020     | 0.012  | mg/l  | 2.50  | 7.60     | 96      | 70-130 |     |       |            |
| Manganese                                                  | 546         | 20        | 7.0    | ug/l  | 500   | 18.7     | 106     | 70-130 |     |       |            |
| Nickel                                                     | 527         | 10        | 2.0    | ug/l  | 500   | 2.10     | 105     | 70-130 |     |       |            |
| Vanadium                                                   | 516         | 10        | 3.0    | ug/l  | 500   | ND       | 103     | 70-130 |     |       |            |
| Zinc                                                       | 538         | 20.0      | 6.00   | ug/l  | 500   | ND       | 108     | 70-130 |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

## **METALS**

|                                        |                | Reporting |        |       | Spike | Source   |         | %REC   |       | RPD   | Data       |
|----------------------------------------|----------------|-----------|--------|-------|-------|----------|---------|--------|-------|-------|------------|
| Analyte                                | Result         | Limit     | MDL    | Units | Level | Result   | %REC    | Limits | RPD   | Limit | Qualifiers |
| Batch: 11C3239 Extracted: 03/24/11     |                |           |        |       |       |          |         |        |       |       |            |
|                                        | _              |           |        |       |       |          |         |        |       |       |            |
| Matrix Spike Analyzed: 03/24/2011 (11C | 3239-MS2)      |           |        |       | Sou   | rce: IUC | 2091-02 |        |       |       |            |
| Arsenic                                | 539            | 10        | 7.0    | ug/l  | 500   | ND       | 108     | 70-130 |       |       |            |
| Barium                                 | 0.532          | 0.010     | 0.0060 | mg/l  | 0.500 | ND       | 106     | 70-130 |       |       |            |
| Beryllium                              | 514            | 2.0       | 0.90   | ug/l  | 500   | ND       | 103     | 70-130 |       |       |            |
| Boron                                  | 0.643          | 0.050     | 0.020  | mg/l  | 0.500 | 0.113    | 106     | 70-130 |       |       |            |
| Calcium                                | 3.15           | 0.10      | 0.050  | mg/l  | 2.50  | 0.476    | 107     | 70-130 |       |       |            |
| Chromium                               | 546            | 5.0       | 2.0    | ug/l  | 500   | ND       | 109     | 70-130 |       |       |            |
| Cobalt                                 | 515            | 10        | 2.0    | ug/l  | 500   | ND       | 103     | 70-130 |       |       |            |
| Iron                                   | 0.529          | 0.040     | 0.015  | mg/l  | 0.500 | ND       | 106     | 70-130 |       |       |            |
| Magnesium                              | 3.16           | 0.020     | 0.012  | mg/l  | 2.50  | 0.265    | 116     | 70-130 |       |       |            |
| Manganese                              | 534            | 20        | 7.0    | ug/l  | 500   | ND       | 107     | 70-130 |       |       |            |
| Nickel                                 | 525            | 10        | 2.0    | ug/l  | 500   | ND       | 105     | 70-130 |       |       |            |
| Vanadium                               | 513            | 10        | 3.0    | ug/l  | 500   | ND       | 103     | 70-130 |       |       |            |
| Zinc                                   | 528            | 20.0      | 6.00   | ug/l  | 500   | ND       | 106     | 70-130 |       |       |            |
| Matrix Spike Dup Analyzed: 03/24/2011- | -03/25/2011 (1 | 1C3239-M  | SD1)   |       | Sou   | rce: IUC | 2091-01 |        |       |       |            |
| Arsenic                                | 547            | 10        | 7.0    | ug/l  | 500   | ND       | 109     | 70-130 | 0.5   | 20    |            |
| Barium                                 | 0.555          | 0.010     | 0.0060 | mg/l  | 0.500 | 0.0272   | 106     | 70-130 | 0.9   | 20    |            |
| Beryllium                              | 523            | 2.0       | 0.90   | ug/l  | 500   | ND       | 105     | 70-130 | 0.3   | 20    |            |
| Boron                                  | 0.661          | 0.050     | 0.020  | mg/l  | 0.500 | 0.124    | 107     | 70-130 | 1     | 20    |            |
| Calcium                                | 19.3           | 0.10      | 0.050  | mg/l  | 2.50  | 17.2     | 83      | 70-130 | 1     | 20    | MHA        |
| Chromium                               | 537            | 5.0       | 2.0    | ug/l  | 500   | ND       | 107     | 70-130 | 0.2   | 20    |            |
| Cobalt                                 | 515            | 10        | 2.0    | ug/l  | 500   | ND       | 103     | 70-130 | 0.4   | 20    |            |
| Iron                                   | 0.604          | 0.040     | 0.015  | mg/l  | 0.500 | 0.0782   | 105     | 70-130 | 0.007 | 20    |            |
| Magnesium                              | 9.74           | 0.020     | 0.012  | mg/l  | 2.50  | 7.60     | 86      | 70-130 | 3     | 20    |            |
| Manganese                              | 546            | 20        | 7.0    | ug/l  | 500   | 18.7     | 105     | 70-130 | 0.03  | 20    |            |
| Nickel                                 | 522            | 10        | 2.0    | ug/l  | 500   | 2.10     | 104     | 70-130 | 0.9   | 20    |            |
| Vanadium                               | 517            | 10        | 3.0    | ug/l  | 500   | ND       | 103     | 70-130 | 0.2   | 20    |            |
| Zinc                                   | 537            | 20.0      | 6.00   | ug/l  | 500   | ND       | 107     | 70-130 | 0.2   | 20    |            |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

## **METALS**

|                                        |            | Reporting |       |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|-------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL   | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C3768 Extracted: 03/29/1      | 1_         |           |       |       |       |          |         |        |     |       |            |
| Blank Analyzed: 03/29/2011 (11C3768-   | BLK1)      |           |       |       |       |          |         |        |     |       |            |
| Antimony                               | ND         | 2.0       | 0.30  | ug/l  |       |          |         |        |     |       |            |
| Cadmium                                | ND         | 1.0       | 0.10  | ug/l  |       |          |         |        |     |       |            |
| Copper                                 | ND         | 2.00      | 0.500 | ug/l  |       |          |         |        |     |       |            |
| Lead                                   | ND         | 1.0       | 0.20  | ug/l  |       |          |         |        |     |       |            |
| Selenium                               | ND         | 2.0       | 0.50  | ug/l  |       |          |         |        |     |       |            |
| Silver                                 | ND         | 1.0       | 0.10  | ug/l  |       |          |         |        |     |       |            |
| Thallium                               | ND         | 1.0       | 0.20  | ug/l  |       |          |         |        |     |       |            |
| LCS Analyzed: 03/29/2011 (11C3768-B    | S1)        |           |       |       |       |          |         |        |     |       |            |
| Antimony                               | 81.0       | 2.0       | 0.30  | ug/l  | 80.0  |          | 101     | 85-115 |     |       |            |
| Cadmium                                | 82.1       | 1.0       | 0.10  | ug/l  | 80.0  |          | 103     | 85-115 |     |       |            |
| Copper                                 | 83.4       | 2.00      | 0.500 | ug/l  | 80.0  |          | 104     | 85-115 |     |       |            |
| Lead                                   | 84.2       | 1.0       | 0.20  | ug/l  | 80.0  |          | 105     | 85-115 |     |       |            |
| Selenium                               | 82.7       | 2.0       | 0.50  | ug/l  | 80.0  |          | 103     | 85-115 |     |       |            |
| Silver                                 | 82.6       | 1.0       | 0.10  | ug/l  | 80.0  |          | 103     | 85-115 |     |       |            |
| Thallium                               | 83.4       | 1.0       | 0.20  | ug/l  | 80.0  |          | 104     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 03/29/2011 (110 | C3768-MS1) |           |       |       | Sou   | rce: IUC | 2664-05 |        |     |       |            |
| Antimony                               | 83.6       | 2.0       | 0.30  | ug/l  | 80.0  | 1.30     | 103     | 70-130 |     |       |            |
| Cadmium                                | 78.1       | 1.0       | 0.10  | ug/l  | 80.0  | 0.109    | 97      | 70-130 |     |       |            |
| Copper                                 | 77.0       | 2.00      | 0.500 | ug/l  | 80.0  | 5.33     | 90      | 70-130 |     |       |            |
| Lead                                   | 80.2       | 1.0       | 0.20  | ug/l  | 80.0  | 1.17     | 99      | 70-130 |     |       |            |
| Selenium                               | 120        | 2.0       | 0.50  | ug/l  | 80.0  | 42.6     | 96      | 70-130 |     |       |            |
| Silver                                 | 79.8       | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 100     | 70-130 |     |       |            |
| Thallium                               | 79.0       | 1.0       | 0.20  | ug/l  | 80.0  | ND       | 99      | 70-130 |     |       |            |
| Matrix Spike Analyzed: 03/29/2011 (110 | C3768-MS2) |           |       |       | Sou   | rce: IUC | 2664-06 |        |     |       |            |
| Antimony                               | 84.4       | 2.0       | 0.30  | ug/l  | 80.0  | 1.45     | 104     | 70-130 |     |       |            |
| Cadmium                                | 77.3       | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 97      | 70-130 |     |       |            |
| Copper                                 | 79.4       | 2.00      | 0.500 | ug/l  | 80.0  | 29.1     | 63      | 70-130 |     |       | M2         |
| Lead                                   | 79.5       | 1.0       | 0.20  | ug/l  | 80.0  | 1.02     | 98      | 70-130 |     |       |            |
| Selenium                               | 105        | 2.0       | 0.50  | ug/l  | 80.0  | 29.5     | 94      | 70-130 |     |       |            |
| Silver                                 | 79.5       | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 99      | 70-130 |     |       |            |
| Thallium                               | 78.8       | 1.0       | 0.20  | ug/l  | 80.0  | ND       | 98      | 70-130 |     |       |            |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

### **METALS**

|                                       |            | Reporting |       |       | Spike | Source   |         | %REC   |      | RPD   | Data       |
|---------------------------------------|------------|-----------|-------|-------|-------|----------|---------|--------|------|-------|------------|
| Analyte                               | Result     | Limit     | MDL   | Units | Level | Result   | %REC    | Limits | RPD  | Limit | Qualifiers |
| Batch: 11C3768 Extracted: 03/29/11    | <u>L</u>   |           |       |       |       |          |         |        |      |       |            |
| Matrix Spike Dup Analyzed: 03/29/2011 | (11C3768-M | SD1)      |       |       | Sou   | rce: IUC | 2664-05 |        |      |       |            |
| Antimony                              | 84.2       | 2.0       | 0.30  | ug/l  | 80.0  | 1.30     | 104     | 70-130 | 0.7  | 20    |            |
| Cadmium                               | 77.6       | 1.0       | 0.10  | ug/l  | 80.0  | 0.109    | 97      | 70-130 | 0.7  | 20    |            |
| Copper                                | 77.9       | 2.00      | 0.500 | ug/l  | 80.0  | 5.33     | 91      | 70-130 | 1    | 20    |            |
| Lead                                  | 80.5       | 1.0       | 0.20  | ug/l  | 80.0  | 1.17     | 99      | 70-130 | 0.3  | 20    |            |
| Selenium                              | 118        | 2.0       | 0.50  | ug/l  | 80.0  | 42.6     | 94      | 70-130 | 2    | 20    |            |
| Silver                                | 79.8       | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 100     | 70-130 | 0.02 | 20    |            |
| Thallium                              | 78.6       | 1.0       | 0.20  | ug/l  | 80.0  | ND       | 98      | 70-130 | 0.5  | 20    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

## **DISSOLVED METALS**

|                                        |             | Reporting |       |       | Spike | Source   |         | %REC           |     | RPD   | Data       |
|----------------------------------------|-------------|-----------|-------|-------|-------|----------|---------|----------------|-----|-------|------------|
| Analyte                                | Result      | Limit     | MDL   | Units | Level | Result   | %REC    | Limits         | RPD | Limit | Qualifiers |
| Batch: 11C3083 Extracted: 03/23/11     |             |           |       |       |       |          |         |                |     |       |            |
|                                        | <b>=</b>    |           |       |       |       |          |         |                |     |       |            |
| Blank Analyzed: 03/23/2011 (11C3083-B  | LK1)        |           |       |       |       |          |         |                |     |       |            |
| Mercury                                | ND          | 0.20      | 0.10  | ug/l  |       |          |         |                |     |       |            |
| LCS Analyzed: 03/23/2011 (11C3083-BS   | 1)          |           |       |       |       |          |         |                |     |       |            |
| Mercury                                | 7.87        | 0.20      | 0.10  | ug/l  | 8.00  |          | 98      | 85-115         |     |       |            |
| •                                      |             |           |       | Ü     | ~     | ****     |         |                |     |       |            |
| Matrix Spike Analyzed: 03/23/2011 (11C | ,           | 0.00      | 0.40  |       |       | rce: IUC |         | <b>5</b> 0.420 |     |       |            |
| Mercury                                | 7.77        | 0.20      | 0.10  | ug/l  | 8.00  | ND       | 97      | 70-130         |     |       |            |
| Matrix Spike Dup Analyzed: 03/23/2011  | (11C3083-M  | SD1)      |       |       | Sou   | rce: IUC | 2139-03 |                |     |       |            |
| Mercury                                | 7.76        | 0.20      | 0.10  | ug/l  | 8.00  | ND       | 97      | 70-130         | 0.2 | 20    |            |
| Batch: 11C3506 Extracted: 03/26/11     |             |           |       |       |       |          |         |                |     |       |            |
|                                        | <b>=</b>    |           |       |       |       |          |         |                |     |       |            |
| Blank Analyzed: 03/28/2011-03/29/2011  | (11C3506-BL | K1)       |       |       |       |          |         |                |     |       |            |
| Antimony                               | ND          | 2.0       | 0.30  | ug/l  |       |          |         |                |     |       |            |
| Cadmium                                | ND          | 1.0       | 0.10  | ug/l  |       |          |         |                |     |       |            |
| Copper                                 | ND          | 2.00      | 0.500 | ug/l  |       |          |         |                |     |       |            |
| Lead                                   | ND          | 1.0       | 0.20  | ug/l  |       |          |         |                |     |       |            |
| Selenium                               | ND          | 2.0       | 0.50  | ug/l  |       |          |         |                |     |       |            |
| Silver                                 | ND          | 1.0       | 0.10  | ug/l  |       |          |         |                |     |       |            |
| Thallium                               | ND          | 1.0       | 0.20  | ug/l  |       |          |         |                |     |       |            |
| LCS Analyzed: 03/28/2011-03/29/2011 (1 | 1C3506-BS1) | ı         |       |       |       |          |         |                |     |       |            |
| Antimony                               | 80.1        | 2.0       | 0.30  | ug/l  | 80.0  |          | 100     | 85-115         |     |       |            |
| Cadmium                                | 79.3        | 1.0       | 0.10  | ug/l  | 80.0  |          | 99      | 85-115         |     |       |            |
| Copper                                 | 84.1        | 2.00      | 0.500 | ug/l  | 80.0  |          | 105     | 85-115         |     |       |            |
| Lead                                   | 78.6        | 1.0       | 0.20  | ug/l  | 80.0  |          | 98      | 85-115         |     |       |            |
| Selenium                               | 79.7        | 2.0       | 0.50  | ug/l  | 80.0  |          | 100     | 85-115         |     |       |            |
| Silver                                 | 79.5        | 1.0       | 0.10  | ug/l  | 80.0  |          | 99      | 85-115         |     |       |            |
| Thallium                               | 78.5        | 1.0       | 0.20  | ug/l  | 80.0  |          | 98      | 85-115         |     |       |            |

### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

## **DISSOLVED METALS**

|                                        |               | Reporting |       |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|---------------|-----------|-------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result        | Limit     | MDL   | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C3506 Extracted: 03/26/11     |               |           |       |       |       |          |         |        |     |       |            |
|                                        |               |           |       |       |       |          |         |        |     |       |            |
| Matrix Spike Analyzed: 03/28/2011-03/2 | 9/2011 (11C3  | 506-MS1)  |       |       | Sou   | rce: IUC | 2142-02 |        |     |       |            |
| Antimony                               | 78.6          | 2.0       | 0.30  | ug/l  | 80.0  | 0.723    | 97      | 70-130 |     |       |            |
| Cadmium                                | 77.2          | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 96      | 70-130 |     |       |            |
| Copper                                 | 83.9          | 2.00      | 0.500 | ug/l  | 80.0  | 1.96     | 102     | 70-130 |     |       |            |
| Lead                                   | 76.8          | 1.0       | 0.20  | ug/l  | 80.0  | 0.555    | 95      | 70-130 |     |       |            |
| Selenium                               | 74.2          | 2.0       | 0.50  | ug/l  | 80.0  | ND       | 93      | 70-130 |     |       |            |
| Silver                                 | 77.7          | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 97      | 70-130 |     |       |            |
| Thallium                               | 74.8          | 1.0       | 0.20  | ug/l  | 80.0  | ND       | 94      | 70-130 |     |       |            |
| Matrix Spike Analyzed: 03/28/2011-03/2 | 9/2011 (11C3  | 506-MS2)  |       |       | Sou   | rce: IUC | 2141-02 |        |     |       |            |
| Antimony                               | 78.7          | 2.0       | 0.30  | ug/l  | 80.0  | ND       | 98      | 70-130 |     |       |            |
| Cadmium                                | 77.0          | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 96      | 70-130 |     |       |            |
| Copper                                 | 83.9          | 2.00      | 0.500 | ug/l  | 80.0  | 2.04     | 102     | 70-130 |     |       |            |
| Lead                                   | 76.2          | 1.0       | 0.20  | ug/l  | 80.0  | ND       | 95      | 70-130 |     |       |            |
| Selenium                               | 73.3          | 2.0       | 0.50  | ug/l  | 80.0  | ND       | 92      | 70-130 |     |       |            |
| Silver                                 | 79.0          | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 99      | 70-130 |     |       |            |
| Thallium                               | 75.5          | 1.0       | 0.20  | ug/l  | 80.0  | ND       | 94      | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 03/28/2011  | -03/29/2011 ( | 11C3506-M | SD1)  |       | Sou   | rce: IUC | 2142-02 |        |     |       |            |
| Antimony                               | 79.8          | 2.0       | 0.30  | ug/l  | 80.0  | 0.723    | 99      | 70-130 | 2   | 20    |            |
| Cadmium                                | 78.2          | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 98      | 70-130 | 1   | 20    |            |
| Copper                                 | 84.8          | 2.00      | 0.500 | ug/l  | 80.0  | 1.96     | 104     | 70-130 | 1   | 20    |            |
| Lead                                   | 76.6          | 1.0       | 0.20  | ug/l  | 80.0  | 0.555    | 95      | 70-130 | 0.3 | 20    |            |
| Selenium                               | 73.5          | 2.0       | 0.50  | ug/l  | 80.0  | ND       | 92      | 70-130 | 1   | 20    |            |
| Silver                                 | 78.1          | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 98      | 70-130 | 0.6 | 20    |            |
| Thallium                               | 75.2          | 1.0       | 0.20  | ug/l  | 80.0  | ND       | 94      | 70-130 | 0.5 | 20    |            |
| D. 4.1. 11.02556 E. 44.1.02/20/11      |               |           |       |       |       |          |         |        |     |       |            |

## Batch: 11C3776 Extracted: 03/29/11

### Blank Analyzed: 03/29/2011 (11C3776-BLK1)

| Arsenic   | ND | 10    | 7.0    | ug/l |
|-----------|----|-------|--------|------|
| Barium    | ND | 0.010 | 0.0060 | mg/l |
| Beryllium | ND | 2.0   | 0.90   | ug/l |
| Boron     | ND | 0.050 | 0.020  | mg/l |
| Calcium   | ND | 0.10  | 0.050  | mg/l |
| Chromium  | ND | 5.0   | 2.0    | ug/l |
| Cobalt    | ND | 10    | 2.0    | ug/l |
| Iron      | ND | 0.040 | 0.015  | mg/1 |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

## **DISSOLVED METALS**

|                                        |            | Reporting |        |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|--------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL    | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C3776 Extracted: 03/29/11     | [          |           |        |       |       |          |         |        |     |       |            |
|                                        | _          |           |        |       |       |          |         |        |     |       |            |
| Blank Analyzed: 03/29/2011 (11C3776-B  | BLK1)      |           |        |       |       |          |         |        |     |       |            |
| Magnesium                              | ND         | 0.020     | 0.012  | mg/l  |       |          |         |        |     |       |            |
| Manganese                              | ND         | 20        | 7.0    | ug/l  |       |          |         |        |     |       |            |
| Nickel                                 | ND         | 10        | 2.0    | ug/l  |       |          |         |        |     |       |            |
| Vanadium                               | ND         | 10        | 3.0    | ug/l  |       |          |         |        |     |       |            |
| Zinc                                   | ND         | 20.0      | 6.00   | ug/l  |       |          |         |        |     |       |            |
| LCS Analyzed: 03/29/2011 (11C3776-BS   | 51)        |           |        |       |       |          |         |        |     |       |            |
| Arsenic                                | 529        | 10        | 7.0    | ug/l  | 500   |          | 106     | 85-115 |     |       |            |
| Barium                                 | 0.509      | 0.010     | 0.0060 | mg/l  | 0.500 |          | 102     | 85-115 |     |       |            |
| Beryllium                              | 504        | 2.0       | 0.90   | ug/l  | 500   |          | 101     | 85-115 |     |       |            |
| Boron                                  | 0.517      | 0.050     | 0.020  | mg/l  | 0.500 |          | 103     | 85-115 |     |       |            |
| Calcium                                | 2.58       | 0.10      | 0.050  | mg/l  | 2.50  |          | 103     | 85-115 |     |       |            |
| Chromium                               | 540        | 5.0       | 2.0    | ug/l  | 500   |          | 108     | 85-115 |     |       |            |
| Cobalt                                 | 477        | 10        | 2.0    | ug/l  | 500   |          | 95      | 85-115 |     |       |            |
| Iron                                   | 0.504      | 0.040     | 0.015  | mg/l  | 0.500 |          | 101     | 85-115 |     |       |            |
| Magnesium                              | 2.58       | 0.020     | 0.012  | mg/l  | 2.50  |          | 103     | 85-115 |     |       |            |
| Manganese                              | 518        | 20        | 7.0    | ug/l  | 500   |          | 104     | 85-115 |     |       |            |
| Nickel                                 | 503        | 10        | 2.0    | ug/l  | 500   |          | 101     | 85-115 |     |       |            |
| Vanadium                               | 498        | 10        | 3.0    | ug/l  | 500   |          | 100     | 85-115 |     |       |            |
| Zinc                                   | 514        | 20.0      | 6.00   | ug/l  | 500   |          | 103     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 03/29/2011 (110 | C3776-MS1) |           |        |       | Sou   | rce: IUC | 2464-02 |        |     |       |            |
| Arsenic                                | 533        | 10        | 7.0    | ug/l  | 500   | 7.60     | 105     | 70-130 |     |       |            |
| Barium                                 | 0.587      | 0.010     | 0.0060 | mg/l  | 0.500 | 0.0778   | 102     | 70-130 |     |       |            |
| Beryllium                              | 509        | 2.0       | 0.90   | ug/l  | 500   | ND       | 102     | 70-130 |     |       |            |
| Boron                                  | 0.565      | 0.050     | 0.020  | mg/l  | 0.500 | 0.0421   | 105     | 70-130 |     |       |            |
| Calcium                                | 34.8       | 0.10      | 0.050  | mg/l  | 2.50  | 32.3     | 102     | 70-130 |     |       | MHA        |
| Chromium                               | 538        | 5.0       | 2.0    | ug/l  | 500   | 7.12     | 106     | 70-130 |     |       |            |
| Cobalt                                 | 474        | 10        | 2.0    | ug/l  | 500   | ND       | 95      | 70-130 |     |       |            |
| Iron                                   | 0.505      | 0.040     | 0.015  | mg/l  | 0.500 | ND       | 101     | 70-130 |     |       |            |
| Magnesium                              | 24.0       | 0.020     | 0.012  | mg/l  | 2.50  | 21.0     | 120     | 70-130 |     |       | MHA        |
| Manganese                              | 515        | 20        | 7.0    | ug/l  | 500   | ND       | 103     | 70-130 |     |       |            |
| Nickel                                 | 502        | 10        | 2.0    | ug/l  | 500   | 2.22     | 100     | 70-130 |     |       |            |
| Vanadium                               | 511        | 10        | 3.0    | ug/l  | 500   | 10.6     | 100     | 70-130 |     |       |            |
| Zinc                                   | 518        | 20.0      | 6.00   | ug/l  | 500   | ND       | 104     | 70-130 |     |       |            |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

## **DISSOLVED METALS**

|                                      |              | Reporting |        |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|--------------------------------------|--------------|-----------|--------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                              | Result       | Limit     | MDL    | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C3776 Extracted: 03/29/1    | 1            |           |        |       |       |          |         |        |     |       |            |
|                                      |              |           |        |       |       |          |         |        |     |       |            |
| Matrix Spike Dup Analyzed: 03/29/201 | 1 (11C3776-N | ASD1)     |        |       | Sou   | rce: IUC | 2464-02 |        |     |       |            |
| Arsenic                              | 540          | 10        | 7.0    | ug/l  | 500   | 7.60     | 106     | 70-130 | 1   | 20    |            |
| Barium                               | 0.594        | 0.010     | 0.0060 | mg/l  | 0.500 | 0.0778   | 103     | 70-130 | 1   | 20    |            |
| Beryllium                            | 517          | 2.0       | 0.90   | ug/l  | 500   | ND       | 103     | 70-130 | 1   | 20    |            |
| Boron                                | 0.573        | 0.050     | 0.020  | mg/l  | 0.500 | 0.0421   | 106     | 70-130 | 1   | 20    |            |
| Calcium                              | 35.4         | 0.10      | 0.050  | mg/l  | 2.50  | 32.3     | 124     | 70-130 | 2   | 20    | MHA        |
| Chromium                             | 550          | 5.0       | 2.0    | ug/l  | 500   | 7.12     | 109     | 70-130 | 2   | 20    |            |
| Cobalt                               | 481          | 10        | 2.0    | ug/l  | 500   | ND       | 96      | 70-130 | 1   | 20    |            |
| Iron                                 | 0.511        | 0.040     | 0.015  | mg/l  | 0.500 | ND       | 102     | 70-130 | 1   | 20    |            |
| Magnesium                            | 23.5         | 0.020     | 0.012  | mg/l  | 2.50  | 21.0     | 99      | 70-130 | 2   | 20    | MHA        |
| Manganese                            | 522          | 20        | 7.0    | ug/l  | 500   | ND       | 104     | 70-130 | 1   | 20    |            |
| Nickel                               | 503          | 10        | 2.0    | ug/l  | 500   | 2.22     | 100     | 70-130 | 0.3 | 20    |            |
| Vanadium                             | 518          | 10        | 3.0    | ug/l  | 500   | 10.6     | 102     | 70-130 | 1   | 20    |            |
| Zinc                                 | 527          | 20.0      | 6.00   | ug/l  | 500   | ND       | 105     | 70-130 | 2   | 20    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

## **DISSOLVED INORGANICS**

| Analyte                                | Result     | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11C2890 Extracted: 03/22/11     | <u>-</u>   |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/22/2011 (11C2890-B  | LK1)       |                    |       |       |                |                  |         |                |     |              |                    |
| Chromium VI                            | ND         | 1.00               | 0.250 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/22/2011 (11C2890-BS   | 1)         |                    |       |       |                |                  |         |                |     |              |                    |
| Chromium VI                            | 48.0       | 1.00               | 0.250 | ug/l  | 50.0           |                  | 96      | 90-110         |     |              |                    |
| Matrix Spike Analyzed: 03/22/2011 (11C | 2890-MS1)  |                    |       |       | Sou            | rce: IUC         | 2187-01 |                |     |              |                    |
| Chromium VI                            | 47.9       | 1.00               | 0.250 | ug/l  | 50.0           | ND               | 96      | 90-110         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/22/2011  | (11C2890-M | SD1)               |       |       | Sou            | rce: IUC         | 2187-01 |                |     |              |                    |
| Chromium VI                            | 48.1       | 1.00               | 0.250 | ug/l  | 50.0           | ND               | 96      | 90-110         | 0.4 | 10           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

## **INORGANICS**

| Analyte                                | Result  | Reporting<br>Limit | MDL  | Units      | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|---------|--------------------|------|------------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11C2823 Extracted: 03/22/11     | _       |                    |      |            |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/22/2011 (11C2823-B  | LK1)    |                    |      |            |                |                  |         |                |     |              |                    |
| Total Dissolved Solids                 | ND      | 10                 | 1.0  | mg/l       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/22/2011 (11C2823-BS   | 1)      |                    |      |            |                |                  |         |                |     |              |                    |
| Total Dissolved Solids                 | 998     | 10                 | 1.0  | mg/l       | 1000           |                  | 100     | 90-110         |     |              |                    |
| Duplicate Analyzed: 03/22/2011 (11C282 | 3-DUP1) |                    |      |            | Sou            | rce: IUC         | 2198-02 |                |     |              |                    |
| Total Dissolved Solids                 | 509     | 10                 | 1.0  | mg/l       |                | 513              |         |                | 0.8 | 10           |                    |
| Batch: 11C2825 Extracted: 03/22/11     | _       |                    |      |            |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/22/2011 (11C2825-B  | LK1)    |                    |      |            |                |                  |         |                |     |              |                    |
| Specific Conductance                   | ND      | 1.0                | 1.0  | hos/cm @ 2 |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/22/2011 (11C2825-BS   | 1)      |                    |      |            |                |                  |         |                |     |              |                    |
| Specific Conductance                   | 1390    | 1.0                | 1.0  | hos/cm @ 2 | 1410           |                  | 99      | 90-110         |     |              |                    |
| Duplicate Analyzed: 03/22/2011 (11C282 | 5-DUP1) |                    |      |            | Sou            | rce: IUC         | 2205-01 |                |     |              |                    |
| Specific Conductance                   | 49.4    | 1.0                | 1.0  | hos/cm @ 2 |                | 49.0             |         |                | 0.8 | 5            |                    |
| Batch: 11C2871 Extracted: 03/22/11     | _       |                    |      |            |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/22/2011 (11C2871-B  | LK1)    |                    |      |            |                |                  |         |                |     |              |                    |
| Perchlorate                            | ND      | 1.0                | 0.90 | ug/l       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/22/2011 (11C2871-BS   | 1)      |                    |      |            |                |                  |         |                |     |              |                    |
| Perchlorate                            | 26.0    | 1.0                | 0.90 | ug/l       | 25.0           |                  | 104     | 85-115         |     |              |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

## **INORGANICS**

|                                               |            | Reporting |       |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|-----------------------------------------------|------------|-----------|-------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                       | Result     | Limit     | MDL   | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C2871 Extracted: 03/22/11            | <u>L</u>   |           |       |       |       |          |         |        |     |       |            |
|                                               |            |           |       |       |       |          |         |        |     |       |            |
| Matrix Spike Analyzed: 03/22/2011 (110        | ,          |           |       |       |       | rce: IUC |         |        |     |       |            |
| Perchlorate                                   | 26.1       | 1.0       | 0.90  | ug/l  | 25.0  | ND       | 104     | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 03/22/2011         | (11C2871-M | ISD1)     |       |       | Sou   | rce: IUC | 2009-01 |        |     |       |            |
| Perchlorate                                   | 26.3       | 1.0       | 0.90  | ug/l  | 25.0  | ND       | 105     | 80-120 | 0.6 | 20    |            |
| Batch: 11C2881 Extracted: 03/22/1             | <u>L</u>   |           |       |       |       |          |         |        |     |       |            |
| Blank Analyzed: 03/22/2011 (11C2881-E         | BLK1)      |           |       |       |       |          |         |        |     |       |            |
| Turbidity                                     | ND         | 1.0       | 0.040 | NTU   |       |          |         |        |     |       |            |
| <b>Duplicate Analyzed: 03/22/2011 (11C288</b> | 81-DUP1)   |           |       |       | Sou   | rce: IUC | 2139-03 |        |     |       |            |
| Turbidity                                     | 29.9       | 1.0       | 0.040 | NTU   |       | 29.9     |         |        | 0   | 20    |            |
| <b>Duplicate Analyzed: 03/22/2011 (11C288</b> | 81-DUP2)   |           |       |       | Sou   | rce: IUC | 2220-12 |        |     |       |            |
| Turbidity                                     | 0.280      | 1.0       | 0.040 | NTU   |       | 0.270    |         |        | 4   | 20    | Ja         |
| Batch: 11C2884 Extracted: 03/22/11            | <u>L</u>   |           |       |       |       |          |         |        |     |       |            |
| Blank Analyzed: 03/22/2011 (11C2884-E         | BLK1)      |           |       |       |       |          |         |        |     |       |            |
| Chloride                                      | ND         | 0.50      | 0.30  | mg/l  |       |          |         |        |     |       |            |
| Nitrate-N                                     | ND         | 0.11      | 0.060 | mg/l  |       |          |         |        |     |       |            |
| Nitrite-N                                     | ND         | 0.15      | 0.090 | mg/l  |       |          |         |        |     |       |            |
| Nitrate/Nitrite-N                             | ND         | 0.26      | 0.15  | mg/l  |       |          |         |        |     |       |            |
| Sulfate                                       | ND         | 0.50      | 0.30  | mg/l  |       |          |         |        |     |       |            |
| LCS Analyzed: 03/22/2011 (11C2884-BS          | 1)         |           |       |       |       |          |         |        |     |       |            |
| Chloride                                      | 4.94       | 0.50      | 0.30  | mg/l  | 5.00  |          | 99      | 90-110 |     |       | M-3        |
| Nitrate-N                                     | 1.12       | 0.11      | 0.060 | mg/l  | 1.13  |          | 99      | 90-110 |     |       |            |
| Nitrite-N                                     | 1.43       | 0.15      | 0.090 | mg/l  | 1.52  |          | 94      | 90-110 |     |       |            |
| Sulfate                                       | 9.96       | 0.50      | 0.30  | mg/l  | 10.0  |          | 100     | 90-110 |     |       |            |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

## **INORGANICS**

| Analyte                                | Result     | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11C2884 Extracted: 03/22/11     |            |                    |       |       |                |                  |         |                |     |              |                    |
|                                        |            |                    |       |       |                |                  |         |                |     |              |                    |
| Matrix Spike Analyzed: 03/22/2011 (11C | 2884-MS1)  |                    |       |       | Sou            | rce: IUC2        | 2181-03 |                |     |              |                    |
| Chloride                               | 7.84       | 0.50               | 0.30  | mg/l  | 5.00           | 3.16             | 94      | 80-120         |     |              |                    |
| Nitrate-N                              | 1.55       | 0.11               | 0.060 | mg/l  | 1.13           | 0.453            | 97      | 80-120         |     |              |                    |
| Nitrite-N                              | 1.41       | 0.15               | 0.090 | mg/l  | 1.52           | ND               | 93      | 80-120         |     |              |                    |
| Sulfate                                | 13.8       | 0.50               | 0.30  | mg/l  | 10.0           | 4.18             | 96      | 80-120         |     |              |                    |
| Matrix Spike Analyzed: 03/22/2011 (11C | 2884-MS2)  |                    |       |       | Sou            | rce: IUC2        | 2320-01 |                |     |              |                    |
| Nitrate-N                              | 3.76       | 0.22               | 0.12  | mg/l  | 1.13           | 2.81             | 84      | 80-120         |     |              |                    |
| Nitrite-N                              | 1.67       | 0.30               | 0.18  | mg/l  | 1.52           | ND               | 110     | 80-120         |     |              |                    |
| Sulfate                                | 48.2       | 1.0                | 0.60  | mg/l  | 10.0           | 38.8             | 95      | 80-120         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/22/2011  | (11C2884-M | SD1)               |       |       | Sou            | rce: IUC2        | 2181-03 |                |     |              |                    |
| Chloride                               | 8.21       | 0.50               | 0.30  | mg/l  | 5.00           | 3.16             | 101     | 80-120         | 5   | 20           |                    |
| Nitrate-N                              | 1.59       | 0.11               | 0.060 | mg/l  | 1.13           | 0.453            | 101     | 80-120         | 3   | 20           |                    |
| Nitrite-N                              | 1.50       | 0.15               | 0.090 | mg/l  | 1.52           | ND               | 99      | 80-120         | 6   | 20           |                    |
| Sulfate                                | 14.3       | 0.50               | 0.30  | mg/l  | 10.0           | 4.18             | 101     | 80-120         | 4   | 20           |                    |
| Batch: 11C2910 Extracted: 03/22/11     | _          |                    |       |       |                |                  |         |                |     |              |                    |
|                                        |            |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/27/2011 (11C2910-B  | LK1)       |                    |       |       |                |                  |         |                |     |              |                    |
| Biochemical Oxygen Demand              | ND         | 2.0                | 0.50  | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/27/2011 (11C2910-BS   | 1)         |                    |       |       |                |                  |         |                |     |              |                    |
| Biochemical Oxygen Demand              | 198        | 100                | 25    | mg/l  | 198            |                  | 100     | 85-115         |     |              |                    |
| LCS Dup Analyzed: 03/27/2011 (11C2910  | 0-BSD1)    |                    |       |       |                |                  |         |                |     |              |                    |
| Biochemical Oxygen Demand              | 206        | 100                | 25    | mg/l  | 198            |                  | 104     | 85-115         | 3   | 20           |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

## **INORGANICS**

| Analyte                                | Result        | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|---------------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11C2931 Extracted: 03/22/11     | <del>_</del>  |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/22/2011 (11C2931-B  | LK1)          |                    |       |       |                |                  |         |                |     |              |                    |
| Surfactants (MBAS)                     | ND            | 0.10               | 0.050 | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/22/2011 (11C2931-BS   | 1)            |                    |       |       |                |                  |         |                |     |              |                    |
| Surfactants (MBAS)                     | 0.250         | 0.10               | 0.050 | mg/l  | 0.250          |                  | 100     | 90-110         |     |              |                    |
| Matrix Spike Analyzed: 03/22/2011 (11C | 2931-MS1)     |                    |       |       | Sou            | rce: IUC         | 2139-03 |                |     |              |                    |
| Surfactants (MBAS)                     | 0.244         | 0.10               | 0.050 | mg/l  | 0.250          | ND               | 98      | 50-125         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/22/2011  | (11C2931-M    | SD1)               |       |       | Sou            | rce: IUC         | 2139-03 |                |     |              |                    |
| Surfactants (MBAS)                     | 0.262         | 0.10               | 0.050 | mg/l  | 0.250          | ND               | 105     | 50-125         | 7   | 20           |                    |
| Batch: 11C2949 Extracted: 03/22/11     | _             |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/22/2011 (11C2949-B  | LK1)          |                    |       |       |                |                  |         |                |     |              |                    |
| Total Suspended Solids                 | ND            | 10                 | 1.0   | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/22/2011 (11C2949-BS   | 1)            |                    |       |       |                |                  |         |                |     |              |                    |
| Total Suspended Solids                 | 1000          | 10                 | 1.0   | mg/l  | 1000           |                  | 100     | 85-115         |     |              |                    |
| Duplicate Analyzed: 03/22/2011 (11C294 | 9-DUP1)       |                    |       |       | Sou            | rce: IUC         | 2184-03 |                |     |              |                    |
| Total Suspended Solids                 | 36.0          | 10                 | 1.0   | mg/l  |                | 37.0             |         |                | 3   | 10           |                    |
| Batch: 11C2967 Extracted: 03/22/11     | _             |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/22/2011 (11C2967-B  | I <b>K</b> 1) |                    |       |       |                |                  |         |                |     |              |                    |
| Ammonia-N (Distilled)                  | ND            | 0.500              | 0.500 | mg/l  |                |                  |         |                |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

## **INORGANICS**

| Analyte                                | Result     | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11C2967 Extracted: 03/22/11     | _          |                    |       |       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/22/2011 (11C2967-BS   | n          |                    |       |       |                |                  |         |                |     |              |                    |
| Ammonia-N (Distilled)                  | 9.80       | 0.500              | 0.500 | mg/l  | 10.0           |                  | 98      | 80-115         |     |              |                    |
| Matrix Spike Analyzed: 03/22/2011 (11C | 2967-MS1)  |                    |       |       | Sou            | rce: IUC         | 2139-03 |                |     |              |                    |
| Ammonia-N (Distilled)                  | 9.80       | 0.500              | 0.500 | mg/l  | 10.0           | ND               | 98      | 70-120         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/22/2011  | (11C2967-M | SD1)               |       |       | Sou            | rce: IUC         | 2139-03 |                |     |              |                    |
| Ammonia-N (Distilled)                  | 9.80       | 0.500              | 0.500 | mg/l  | 10.0           | ND               | 98      | 70-120         | 0   | 15           |                    |
| Batch: 11C2985 Extracted: 03/23/11     | =.         |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/23/2011 (11C2985-B  | LK1)       |                    |       |       |                |                  |         |                |     |              |                    |
| Total Organic Carbon                   | ND         | 1.0                | 0.50  | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/23/2011 (11C2985-BS   | 1)         |                    |       |       |                |                  |         |                |     |              |                    |
| Total Organic Carbon                   | 10.4       | 1.0                | 0.50  | mg/l  | 10.0           |                  | 104     | 90-110         |     |              |                    |
| Matrix Spike Analyzed: 03/23/2011 (11C | 2985-MS1)  |                    |       |       | Sou            | rce: IUC         | 2188-02 |                |     |              |                    |
| Total Organic Carbon                   | 11.1       | 1.0                | 0.50  | mg/l  | 5.00           | 6.08             | 100     | 80-120         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/23/2011  | (11C2985-M | SD1)               |       |       | Sou            | rce: IUC         | 2188-02 |                |     |              |                    |
| Total Organic Carbon                   | 11.3       | 1.0                | 0.50  | mg/l  | 5.00           | 6.08             | 105     | 80-120         | 2   | 20           |                    |
| Batch: 11C2986 Extracted: 03/23/11     | _          |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/23/2011 (11C2986-B  | LK1)       |                    |       |       |                |                  |         |                |     |              |                    |
| Fluoride                               | ND         | 0.10               | 0.020 | mg/l  |                |                  |         |                |     |              |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

## **INORGANICS**

|                                        |             | Reporting |       |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|----------------------------------------|-------------|-----------|-------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                | Result      | Limit     | MDL   | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C2986 Extracted: 03/23/11     | _           |           |       |       |       |           |         |        |     |       |            |
| V CC A                                 | 15          |           |       |       |       |           |         |        |     |       |            |
| LCS Analyzed: 03/23/2011 (11C2986-BS)  | •           |           |       |       |       |           |         |        |     |       |            |
| Fluoride                               | 1.07        | 0.10      | 0.020 | mg/l  | 1.00  |           | 107     | 90-110 |     |       |            |
| Matrix Spike Analyzed: 03/23/2011 (11C | 2986-MS1)   |           |       |       | Sou   | rce: IUC2 | 2105-01 |        |     |       |            |
| Fluoride                               | 1.29        | 0.10      | 0.020 | mg/l  | 1.00  | 0.336     | 95      | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 03/23/2011  | (11C2986-MS | SD1)      |       |       | Sou   | rce: IUC2 | 2105-01 |        |     |       |            |
| Fluoride                               | 1.33        | 0.10      | 0.020 | mg/l  | 1.00  | 0.336     | 99      | 80-120 | 3   | 20    |            |
| Batch: 11C3661 Extracted: 03/28/11     | _           |           |       |       |       |           |         |        |     |       |            |
| Blank Analyzed: 03/28/2011 (11C3661-B  | LK1)        |           |       |       |       |           |         |        |     |       |            |
| Total Cyanide                          | ND          | 5.0       | 2.2   | ug/l  |       |           |         |        |     |       |            |
| LCS Analyzed: 03/28/2011 (11C3661-BS)  | 1)          |           |       |       |       |           |         |        |     |       |            |
| Total Cyanide                          | 180         | 5.0       | 2.2   | ug/l  | 196   |           | 92      | 90-110 |     |       |            |
| Matrix Spike Analyzed: 03/28/2011 (11C | 3661-MS1)   |           |       |       | Sou   | rce: IUC2 | 2031-01 |        |     |       |            |
| Total Cyanide                          | 193         | 5.0       | 2.2   | ug/l  | 196   | ND        | 98      | 70-115 |     |       |            |
| Matrix Spike Dup Analyzed: 03/28/2011  | (11C3661-MS | SD1)      |       |       | Sou   | rce: IUC2 | 2031-01 |        |     |       |            |
| Total Cyanide                          | 192         | 5.0       | 2.2   | ug/l  | 196   | ND        | 98      | 70-115 | 0.7 | 15    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

| Analyte                                        | Result | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------------|--------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 8681 Extracted: 03/31/11                |        |                    |       |       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/31/2011 (S103143-02)          |        |                    |       |       | Sou            | rce:             |         |                |     |              |                    |
| Gross Alpha                                    | 122    | 3                  | 1.21  | pCi/L | 101            |                  | 121     | 70-130         |     |              |                    |
| Gross Beta                                     | 83.8   | 4                  | 3.06  | pCi/L | 87.1           |                  | 96      | 70-130         |     |              |                    |
| Blank Analyzed: 03/31/2011 (S103143-03         | )      |                    |       |       | Sou            | rce:             |         |                |     |              |                    |
| Gross Alpha                                    | 0.261  | 3                  | 1.85  | pCi/L |                |                  |         | -              |     |              | U                  |
| Gross Beta                                     | -0.333 | 4                  | 2.4   | pCi/L |                |                  |         | -              |     |              | U                  |
| <b>Duplicate Analyzed: 03/31/2011 (S103143</b> | 3-04)  |                    |       |       | Sou            | rce: IUC         | 2187-03 |                |     |              |                    |
| Gross Alpha                                    | 1.94   | 3                  | 0.434 | pCi/L |                | 2.26             |         | -              | 15  |              | Jb                 |
| Gross Beta                                     | 6.74   | 4                  | 0.831 | pCi/L |                | 6.22             |         | -              | 8   |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

## 901.1

| Analyte                                 | Result | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|--------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 8681 Extracted: 03/24/11         |        |                    |      |       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/31/2011 (S103143-02)   |        |                    |      |       | Sou            | rce:             |         |                |     |              |                    |
| Cobalt-60                               | 123    | 10                 | 2.5  | pCi/L | 124            |                  | 99      | 80-120         |     |              |                    |
| Cesium-137                              | 118    | 20                 | 3.18 | pCi/L | 110            |                  | 107     | 80-120         |     |              |                    |
| Blank Analyzed: 03/31/2011 (S103143-03  | )      |                    |      |       | Sou            | rce:             |         |                |     |              |                    |
| Cesium-137                              | ND     | 20                 | 2.34 | pCi/L |                |                  |         | -              |     |              | U                  |
| Potassium-40                            | ND     | 25                 | 47.4 | pCi/L |                |                  |         | -              |     |              | U                  |
| Duplicate Analyzed: 03/31/2011 (S103143 | 3-04)  |                    |      |       | Sou            | rce: IUC         | 2187-03 |                |     |              |                    |
| Cesium-134                              | ND     | 20                 | 3.68 | pCi/L |                |                  |         | -              | 0   |              | U                  |
| Cesium-137                              | ND     | 20                 | 1.17 | pCi/L |                | 0                |         | -              | 0   |              | U                  |
| Potassium-40                            | ND     | 25                 | 15.8 | pCi/L |                | 0                |         | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

## 903.1

| Analyte                                 | Result | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|--------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 8681 Extracted: 04/05/11         |        |                    |       |       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 04/05/2011 (S103143-02)   |        |                    |       |       | Sou            | rce:             |         |                |     |              |                    |
| Radium-226                              | 49     | 1                  | 0.859 | pCi/L | 55.7           |                  | 88      | 80-120         |     |              |                    |
| Blank Analyzed: 04/05/2011 (S103143-03  | )      |                    |       |       | Sou            | rce:             |         |                |     |              |                    |
| Radium-226                              | 0.031  | 1                  | 0.8   | pCi/L |                |                  |         | -              |     |              | U                  |
| Duplicate Analyzed: 04/05/2011 (S103143 | 3-04)  |                    |       |       | Sou            | rce: IUC         | 2187-03 |                |     |              |                    |
| Radium-226                              | 0.283  | 1                  | 0.711 | pCi/L |                | 0.35             |         | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

| Analyte Batch: 8681 Extracted: 04/07/11                   | Result | Reporting<br>Limit | MDL   | Units | Spike<br>Level    | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------------------------|--------|--------------------|-------|-------|-------------------|------------------|---------|----------------|-----|--------------|--------------------|
| LCS Analyzed: 04/07/2011 (S103143-02) Radium-228          | 3.92   | 1                  | 0.432 | pCi/L | <b>Sou</b> i 5.01 | rce:             | 78      | 60-140         |     |              |                    |
| Blank Analyzed: 04/07/2011 (S103143-03 Radium-228         | -0.153 | 1                  | 0.434 | pCi/L | Soui              | rce:             |         | -              |     |              | U                  |
| <b>Duplicate Analyzed: 04/07/2011 (S103143</b> Radium-228 | 0.235  | 1                  | 0.402 | pCi/L | Soui              | 0.229            | 2187-03 | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

| Analyte  Batch: 8681 Extracted: 04/01/11                       | Result                | Reporting<br>Limit | MDL   | Units | Spike<br>Level    | Source<br>Result    | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------------------------------|-----------------------|--------------------|-------|-------|-------------------|---------------------|---------|----------------|-----|--------------|--------------------|
| LCS Analyzed: 04/01/2011 (S103143-02)<br>Strontium-90          | 19.7                  | 2                  | 0.576 | pCi/L | <b>Sou</b> : 17.4 | rce:                | 113     | 80-120         |     |              |                    |
| Blank Analyzed: 04/01/2011 (S103143-03 Strontium-90            | 0.045                 | 2                  | 0.468 | pCi/L | Sour              | rce:                |         | -              |     |              | U                  |
| <b>Duplicate Analyzed: 04/01/2011 (S103143</b><br>Strontium-90 | <b>3-04)</b><br>0.078 | 2                  | 0.717 | pCi/L | Sour              | rce: IUC2<br>-0.018 | 2187-03 | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

| Analyte  Batch: 8681 Extracted: 03/30/11                | Result               | Reporting<br>Limit | MDL | Units | Spike<br>Level    | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------------------------|----------------------|--------------------|-----|-------|-------------------|------------------|---------|----------------|-----|--------------|--------------------|
| LCS Analyzed: 03/30/2011 (S103143-02) Tritium           | 2150                 | 500                | 166 | pCi/L | <b>Sou</b> 1 2350 | rce:             | 91      | 80-120         |     |              |                    |
| <b>Blank Analyzed: 03/30/2011 (S103143-03</b> ) Tritium | -30.1                | 500                | 163 | pCi/L | Sour              | rce:             |         | -              |     |              | U                  |
| <b>Duplicate Analyzed: 03/30/2011 (S103143</b> Tritium  | <b>-04)</b><br>-10.9 | 500                | 168 | pCi/L | Sour              | -77.2            | 2187-03 | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

# METHOD BLANK/QC DATA

### **ASTM-D5174**

| Analyte  Batch: 8681 Extracted: 03/29/11                      | Result             | Reporting<br>Limit | MDL   | Units | Spike<br>Level    | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------------------------------|--------------------|--------------------|-------|-------|-------------------|------------------|---------|----------------|-----|--------------|--------------------|
| LCS Analyzed: 03/29/2011 (S103143-02)<br>Uranium, Total       | 55.3               | 1                  | 0.205 | pCi/L | <b>Sou</b> : 56.5 | rce:             | 98      | 80-120         |     |              |                    |
| Blank Analyzed: 03/29/2011 (S103143-03 Uranium, Total         | )<br>ND            | 1                  | 0.02  | pCi/L | Sou               | rce:             |         | -              |     |              | U                  |
| <b>Duplicate Analyzed: 03/29/2011 (S103143</b> Uranium, Total | <b>3-04)</b> 0.292 | 1                  | 0.02  | pCi/L | Sou               | 0.321            | 2187-03 | -              | 9   |              | Jb                 |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Reporting

Sampled: 03/20/11-03/21/11

RPD

Data

Received: 03/21/11

# METHOD BLANK/QC DATA

### EPA-5 1613Bx

Spike

Source

|                                    |            | Reportin | g          |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|------------------------------------|------------|----------|------------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                            | Result     | Limit    | MDL        | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 1089421 Extracted: 03/3     | 0/11       |          |            |       |       |        |      |        |     |       |            |
|                                    |            |          |            |       |       |        |      |        |     |       |            |
| Blank Analyzed: 04/04/2011 (G1C3   | 00000421B) |          |            |       | Sou   | irce:  |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 1e-006     | 0.00005  | 0.00000076 | ug/L  |       |        |      | -      |     |       | J, Q       |
| 1,2,3,4,6,7,8-HpCDF                | ND         | 0.00005  | 0.00000052 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | ND         | 0.00005  | 0.00000067 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,7,8-HxCDD                  | ND         | 0.00005  | 0.0000007  | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | ND         | 0.00005  | 0.00000038 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,6,7,8-HxCDD                  | ND         | 0.00005  | 0.00000065 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | ND         | 0.00005  | 0.00000035 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8,9-HxCDD                  | ND         | 0.00005  | 0.00000059 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | ND         | 0.00005  | 0.00000043 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8-PeCDD                    | ND         | 0.00005  | 0.00000075 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8-PeCDF                    | ND         | 0.00005  | 0.0000006  | ug/L  |       |        |      | -      |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | ND         | 0.00005  | 0.00000034 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,4,7,8-PeCDF                    | ND         | 0.00005  | 0.00000062 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,7,8-TCDD                       | ND         | 0.00001  | 0.00000084 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,7,8-TCDF                       | ND         | 0.00001  | 0.00000057 | ug/L  |       |        |      | -      |     |       |            |
| OCDD                               | 3.4e-006   | 0.0001   | 0.00000078 | ug/L  |       |        |      | -      |     |       | J          |
| OCDF                               | ND         | 0.0001   | 0.00000064 | ug/L  |       |        |      | -      |     |       |            |
| Total HpCDD                        | 2.2e-006   | 0.00005  | 0.00000076 | ug/L  |       |        |      | -      |     |       | J, Q       |
| Total HpCDF                        | ND         | 0.00005  | 0.00000052 | ug/L  |       |        |      | -      |     |       |            |
| Total HxCDD                        | ND         | 0.00005  | 0.00000059 | ug/L  |       |        |      | -      |     |       |            |
| Total HxCDF                        | ND         | 0.00005  | 0.00000034 | ug/L  |       |        |      | -      |     |       |            |
| Total PeCDD                        | ND         | 0.00005  | 0.00000075 | ug/L  |       |        |      | -      |     |       |            |
| Total PeCDF                        | ND         | 0.00005  | 0.0000006  | ug/L  |       |        |      | -      |     |       |            |
| Total TCDD                         | ND         | 0.00001  | 0.00000084 | ug/L  |       |        |      | -      |     |       |            |
| Total TCDF                         | ND         | 0.00001  | 0.00000057 | ug/L  |       |        |      | -      |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.0024     |          |            | ug/L  | 0.002 |        | 120  | 23-140 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.0023     |          |            | ug/L  | 0.002 |        | 117  | 28-143 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.0024     |          |            | ug/L  | 0.002 |        | 120  | 26-138 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.0026     |          |            | ug/L  | 0.002 |        | 129  | 32-141 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.0025     |          |            | ug/L  | 0.002 |        | 123  | 26-152 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.0024     |          |            | ug/L  | 0.002 |        | 122  | 28-130 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.0024     |          |            | ug/L  | 0.002 |        | 118  | 26-123 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.0025     |          |            | ug/L  | 0.002 |        | 126  | 29-147 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.0027     |          |            | ug/L  | 0.002 |        | 133  | 25-181 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.0024     |          |            | ug/L  | 0.002 |        | 121  | 24-185 |     |       |            |
|                                    |            |          |            |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Reporting

Sampled: 03/20/11-03/21/11

RPD

Data

Received: 03/21/11

# METHOD BLANK/QC DATA

### EPA-5 1613Bx

Spike

Source

| Analyte                            | Result     | Limit   | MDL        | Units | Level  | Result | %REC | Limits | RPD | Limit | Qualifiers |
|------------------------------------|------------|---------|------------|-------|--------|--------|------|--------|-----|-------|------------|
| Batch: 1089421 Extracted: 03/30/   | <u>/11</u> |         |            |       |        |        |      |        |     |       |            |
| Blank Analyzed: 04/04/2011 (G1C300 | 0000421B)  |         |            |       | Sou    | ırce:  |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.0025     |         |            | ug/L  | 0.002  |        | 124  | 28-136 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.0025     |         |            | ug/L  | 0.002  |        | 126  | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.0024     |         |            | ug/L  | 0.002  |        | 119  | 25-164 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.0026     |         |            | ug/L  | 0.002  |        | 129  | 24-169 |     |       |            |
| Surrogate: 13C-OCDD                | 0.0055     |         |            | ug/L  | 0.004  |        | 138  | 17-157 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.001      |         |            | ug/L  | 0.0008 |        | 128  | 35-197 |     |       |            |
| LCS Analyzed: 04/05/2011 (G1C3000  | 00421C)    |         |            |       | Sou    | ırce:  |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.00113    | 0.00005 | 0.0000065  | ug/L  | 0.001  |        | 113  | 70-140 |     |       | Ва         |
| 1,2,3,4,6,7,8-HpCDF                | 0.00119    | 0.00005 | 0.0000062  | ug/L  | 0.001  |        | 119  | 82-122 |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | 0.00119    | 0.00005 | 0.0000086  | ug/L  | 0.001  |        | 119  | 78-138 |     |       |            |
| 1,2,3,4,7,8-HxCDD                  | 0.00109    | 0.00005 | 0.00000042 | ug/L  | 0.001  |        | 109  | 70-164 |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | 0.00108    | 0.00005 | 0.000005   | ug/L  | 0.001  |        | 108  | 72-134 |     |       |            |
| 1,2,3,6,7,8-HxCDD                  | 0.0011     | 0.00005 | 0.00000039 | ug/L  | 0.001  |        | 110  | 76-134 |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | 0.00114    | 0.00005 | 0.0000048  | ug/L  | 0.001  |        | 114  | 84-130 |     |       |            |
| 1,2,3,7,8,9-HxCDD                  | 0.00114    | 0.00005 | 0.00000035 | ug/L  | 0.001  |        | 114  | 64-162 |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | 0.00105    | 0.00005 | 0.0000057  | ug/L  | 0.001  |        | 105  | 78-130 |     |       |            |
| 1,2,3,7,8-PeCDD                    | 0.00104    | 0.00005 | 0.0000019  | ug/L  | 0.001  |        | 104  | 70-142 |     |       |            |
| 1,2,3,7,8-PeCDF                    | 0.00117    | 0.00005 | 0.0000015  | ug/L  | 0.001  |        | 117  | 80-134 |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | 0.00112    | 0.00005 | 0.0000046  | ug/L  | 0.001  |        | 112  | 70-156 |     |       |            |
| 2,3,4,7,8-PeCDF                    | 0.00112    | 0.00005 | 0.0000015  | ug/L  | 0.001  |        | 112  | 68-160 |     |       |            |
| 2,3,7,8-TCDD                       | 0.000242   | 0.00001 | 0.00000093 | ug/L  | 0.0002 |        | 121  | 67-158 |     |       |            |
| 2,3,7,8-TCDF                       | 0.000251   | 0.00001 | 0.00000065 | ug/L  | 0.0002 |        | 126  | 75-158 |     |       |            |
| OCDD                               | 0.00211    | 0.0001  | 0.0000082  | ug/L  | 0.002  |        | 106  | 78-144 |     |       | Ва         |
| OCDF                               | 0.00215    | 0.0001  | 0.0000085  | ug/L  | 0.002  |        | 108  | 63-170 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00237    |         |            | ug/L  | 0.002  |        | 118  | 26-166 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.0024     |         |            | ug/L  | 0.002  |        | 120  | 21-158 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.00238    |         |            | ug/L  | 0.002  |        | 119  | 20-186 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00265    |         |            | ug/L  | 0.002  |        | 132  | 21-193 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00264    |         |            | ug/L  | 0.002  |        | 132  | 19-202 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00254    |         |            | ug/L  | 0.002  |        | 127  | 25-163 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00247    |         |            | ug/L  | 0.002  |        | 123  | 21-159 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.00266    |         |            | ug/L  | 0.002  |        | 133  | 17-205 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.0027     |         |            | ug/L  | 0.002  |        | 135  | 21-227 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00245    |         |            | ug/L  | 0.002  |        | 122  | 21-192 |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00262    |         |            | ug/L  | 0.002  |        | 131  | 22-176 |     |       |            |

### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187 Received

Spike

Source

Received: 03/21/11

Sampled: 03/20/11-03/21/11

RPD

Data

# METHOD BLANK/QC DATA

## EPA-5 1613Bx

Reporting

| Analyte                            | Result       | Limit   | MDL        | Units | Level  | Result | %REC | Limits | RPD  | Limit | Qualifiers |
|------------------------------------|--------------|---------|------------|-------|--------|--------|------|--------|------|-------|------------|
| Batch: 1089421 Extracted: 03/30    | /11          |         |            |       |        |        |      |        |      |       |            |
|                                    |              |         |            |       |        |        |      |        |      |       |            |
| LCS Analyzed: 04/05/2011 (G1C3000  | 000421C)     |         |            |       | Sou    | rce:   |      |        |      |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.00256      |         |            | ug/L  | 0.002  |        | 128  | 13-328 |      |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.00245      |         |            | ug/L  | 0.002  |        | 123  | 20-175 |      |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.00271      |         |            | ug/L  | 0.002  |        | 136  | 22-152 |      |       |            |
| Surrogate: 13C-OCDD                | 0.00537      |         |            | ug/L  | 0.004  |        | 134  | 13-199 |      |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.00104      |         |            | ug/L  | 0.0008 |        | 130  | 31-191 |      |       |            |
| LCS Dup Analyzed: 04/05/2011 (G1C  | C300000421L) |         |            |       | Sou    | rce:   |      |        |      |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.00115      | 0.00005 | 0.0000064  | ug/L  | 0.001  |        | 115  | 70-140 | 2.1  | 50    | Ва         |
| 1,2,3,4,6,7,8-HpCDF                | 0.00119      | 0.00005 | 0.0000075  | ug/L  | 0.001  |        | 119  | 82-122 | 0.27 | 50    |            |
| 1,2,3,4,7,8,9-HpCDF                | 0.00119      | 0.00005 | 0.0000098  | ug/L  | 0.001  |        | 119  | 78-138 | 0.28 | 50    |            |
| 1,2,3,4,7,8-HxCDD                  | 0.00109      | 0.00005 | 0.00000046 | ug/L  | 0.001  |        | 109  | 70-164 | 0.41 | 50    |            |
| 1,2,3,4,7,8-HxCDF                  | 0.00111      | 0.00005 | 0.0000057  | ug/L  | 0.001  |        | 111  | 72-134 | 2.6  | 50    |            |
| 1,2,3,6,7,8-HxCDD                  | 0.00111      | 0.00005 | 0.00000043 | ug/L  | 0.001  |        | 111  | 76-134 | 0.38 | 50    |            |
| 1,2,3,6,7,8-HxCDF                  | 0.00112      | 0.00005 | 0.0000053  | ug/L  | 0.001  |        | 112  | 84-130 | 1.6  | 50    |            |
| 1,2,3,7,8,9-HxCDD                  | 0.00115      | 0.00005 | 0.00000039 | ug/L  | 0.001  |        | 115  | 64-162 | 0.38 | 50    |            |
| 1,2,3,7,8,9-HxCDF                  | 0.00104      | 0.00005 | 0.0000063  | ug/L  | 0.001  |        | 104  | 78-130 | 0.74 | 50    |            |
| 1,2,3,7,8-PeCDD                    | 0.00106      | 0.00005 | 0.0000015  | ug/L  | 0.001  |        | 106  | 70-142 | 1.9  | 50    |            |
| 1,2,3,7,8-PeCDF                    | 0.00115      | 0.00005 | 0.0000017  | ug/L  | 0.001  |        | 115  | 80-134 | 1.7  | 50    |            |
| 2,3,4,6,7,8-HxCDF                  | 0.00104      | 0.00005 | 0.0000052  | ug/L  | 0.001  |        | 104  | 70-156 | 8    | 50    |            |
| 2,3,4,7,8-PeCDF                    | 0.00113      | 0.00005 | 0.0000018  | ug/L  | 0.001  |        | 113  | 68-160 | 0.9  | 50    |            |
| 2,3,7,8-TCDD                       | 0.000241     | 0.00001 | 0.00000096 | ug/L  | 0.0002 |        | 120  | 67-158 | 0.69 | 50    |            |
| 2,3,7,8-TCDF                       | 0.000246     | 0.00001 | 0.00000072 | ug/L  | 0.0002 |        | 123  | 75-158 | 2.3  | 50    |            |
| OCDD                               | 0.00215      | 0.0001  | 0.000008   | ug/L  | 0.002  |        | 107  | 78-144 | 1.6  | 50    | Ва         |
| OCDF                               | 0.00217      | 0.0001  | 0.0000055  | ug/L  | 0.002  |        | 109  | 63-170 | 0.87 | 50    |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00228      |         |            | ug/L  | 0.002  |        | 114  | 26-166 |      |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.0023       |         |            | ug/L  | 0.002  |        | 115  | 21-158 |      |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.00235      |         |            | ug/L  | 0.002  |        | 117  | 20-186 |      |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00246      |         |            | ug/L  | 0.002  |        | 123  | 21-193 |      |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.0024       |         |            | ug/L  | 0.002  |        | 120  | 19-202 |      |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00247      |         |            | ug/L  | 0.002  |        | 124  | 25-163 |      |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00238      |         |            | ug/L  | 0.002  |        | 119  | 21-159 |      |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.00257      |         |            | ug/L  | 0.002  |        | 129  | 17-205 |      |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.0026       |         |            | ug/L  | 0.002  |        | 130  | 21-227 |      |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00243      |         |            | ug/L  | 0.002  |        | 122  | 21-192 |      |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.0025       |         |            | ug/L  | 0.002  |        | 125  | 22-176 |      |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.00247      |         |            | ug/L  | 0.002  |        | 123  | 13-328 |      |       |            |
|                                    |              |         |            |       |        |        |      |        |      |       |            |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Sampled: 03/20/11-03/21/11

Received: 03/21/11

## METHOD BLANK/QC DATA

### EPA-5 1613Bx

| Analyte                             | Result    | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------|-----------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 1089421 Extracted: 03/30/11  | <u>-</u>  |                    |     |       |                |                  |      |                |     |              |                    |
| LCS Dup Analyzed: 04/05/2011 (G1C30 | 0000421L) |                    |     |       | Sou            | rce:             |      |                |     |              |                    |
| Surrogate: 13C-2,3,7,8-TCDD         | 0.00236   |                    |     | ug/L  | 0.002          |                  | 118  | 20-175         |     |              |                    |
| Surrogate: 13C-2,3,7,8-TCDF         | 0.00256   |                    |     | ug/L  | 0.002          |                  | 128  | 22-152         |     |              |                    |
| Surrogate: 13C-OCDD                 | 0.00529   |                    |     | ug/L  | 0.004          |                  | 132  | 13-199         |     |              |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD       | 0.00102   |                    |     | ug/L  | 0.0008         |                  | 127  | 31-191         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Annual Outfall 011 Sampled: 03/20/11-03/21/11

Arcadia, CA 91007 Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

## **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|            |                             |                                          |       |        |      | Compliance |
|------------|-----------------------------|------------------------------------------|-------|--------|------|------------|
| LabNumber  | Analysis                    | Analyte                                  | Units | Result | MRL  | Limit      |
| IUC2187-01 | 1664-HEM                    | Hexane Extractable Material (Oil & Greas | mg/l  | 0      | 4.9  | 15         |
| IUC2187-01 | 624-Reg-X-2+c12DCE, LOW     | 1,1-Dichloroethene                       | ug/l  | 0      | 0.50 | 6          |
| IUC2187-01 | 624-Reg-X-2+c12DCE, LOW     | 1,2-Dichloroethane                       | ug/l  | 0.12   | 0.50 | 0.5        |
| IUC2187-01 | 624-Reg-X-2+c12DCE, LOW     | Trichloroethene                          | ug/l  | 0      | 0.50 | 5          |
| IUC2187-01 | Settleable Solids - SM2540F | Total Settleable Solids                  | ml/l  | 0      | 0.10 | 0.3        |

## **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|            |                         |                    |       |        |      | Compliance |
|------------|-------------------------|--------------------|-------|--------|------|------------|
| LabNumber  | Analysis                | Analyte            | Units | Result | MRL  | Limit      |
| IUC2187-02 | 624-Reg-X-2+c12DCE, LOW | 1,1-Dichloroethene | ug/l  | 0      | 0.50 | 6          |
| IUC2187-02 | 624-Reg-X-2+c12DCE, LOW | 1,2-Dichloroethane | ug/l  | 0.13   | 0.50 | 0.5        |
| IUC2187-02 | 624-Reg-X-2+c12DCE, LOW | Trichloroethene    | ug/l  | 0      | 0.50 | 5          |

## **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

| LabNumber  | Analysis                       | Analyte                    | Units | Result | MRL    | Compliance<br>Limit |
|------------|--------------------------------|----------------------------|-------|--------|--------|---------------------|
| IUC2187-03 | 608-Pesticides (LL)            | alpha-BHC                  | ug/l  | 0      | 0.0047 | 0.03                |
| IUC2187-03 | 625+NDMA, LL                   | 2,4,6-Trichlorophenol      | ug/l  | 0      | 0.943  | 13                  |
| IUC2187-03 | 625+NDMA, LL                   | 2,4-Dinitrotoluene         | ug/l  | 0      | 4.72   | 18                  |
| IUC2187-03 | 625+NDMA, LL                   | Bis(2-ethylhexyl)phthalate | ug/l  | 0.36   | 4.72   | 4                   |
| IUC2187-03 | 625+NDMA, LL                   | N-Nitrosodimethylamine     | ug/l  | 0      | 1.89   | 16                  |
| IUC2187-03 | 625+NDMA, LL                   | Pentachlorophenol          | ug/l  | 0      | 1.89   | 16.5                |
| IUC2187-03 | Ammonia-N, Titr 4500NH3-C (w/o | di:Ammonia-N (Distilled)   | mg/l  | 0      | 0.500  | 10.1                |
| IUC2187-03 | Antimony-200.8                 | Antimony                   | ug/l  | 0.81   | 2.0    | 6                   |
| IUC2187-03 | Arsenic-200.7                  | Arsenic                    | ug/l  | 8.93   | 10     | 10                  |
| IUC2187-03 | Barium-200.7                   | Barium                     | mg/l  | 0.028  | 0.010  | 1                   |
| IUC2187-03 | Beryllium-200.7                | Beryllium                  | ug/l  | 0.44   | 2.0    | 4                   |
| IUC2187-03 | BOD - SM5210B                  | Biochemical Oxygen Demand  | mg/l  | 1.97   | 2.0    | 30                  |
| IUC2187-03 | Cadmium-200.8                  | Cadmium                    | ug/l  | 0.16   | 1.0    | 3.1                 |
| IUC2187-03 | Chloride - 300.0               | Chloride                   | mg/l  | 2.51   | 0.50   | 150                 |
| IUC2187-03 | Chromium VI-218.6              | Chromium VI                | ug/l  | 0      | 1.00   | 16                  |
| IUC2187-03 | Copper-200.8                   | Copper                     | ug/l  | 5.15   | 2.00   | 14                  |
| IUC2187-03 | Cyanide, Total-4500CN-E (5ppb) | Total Cyanide              | ug/l  | -1     | 5.0    | 8.5                 |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

|                               | a Avenue, Suite 200           | Project ID: Annual Outfall 011 Annual Outfall 011 |                     | Sampled: 03/20/11-03/21/11<br>Received: 03/21/11 |                      |                  |  |  |  |  |
|-------------------------------|-------------------------------|---------------------------------------------------|---------------------|--------------------------------------------------|----------------------|------------------|--|--|--|--|
| Arcadia, CA 91 Attention: Bro |                               | Report Number: IUC2187                            |                     | Recei                                            | ved: 03/21/11        |                  |  |  |  |  |
| IUC2187-03                    | Fluoride SM4500F,C            | Fluoride                                          | ma/1                | 0.17                                             | 0.10                 | 1.6              |  |  |  |  |
| IUC2187-03                    | Iron-200.7                    | Iron                                              | mg/l<br><b>mg/l</b> | 3.59                                             | 0.10<br><b>0.040</b> | 0.3              |  |  |  |  |
| IUC2187-03                    | Lead-200.8                    | Lead                                              | 0                   | 3.49                                             | 1.0                  | 5.2              |  |  |  |  |
| IUC2187-03                    |                               |                                                   | ug/l                | 5.49<br>55                                       | 20                   | 5.2<br><b>50</b> |  |  |  |  |
|                               | Manganese-200.7               | Manganese                                         | ug/l                |                                                  |                      |                  |  |  |  |  |
| IUC2187-03                    | MBAS - SM5540C                | Surfactants (MBAS)                                | mg/l                | 0.033                                            | 0.10                 | 0.5              |  |  |  |  |
| IUC2187-03                    | Mercury - 245.1               | Mercury                                           | ug/l                | 0                                                | 0.20                 | 0.1              |  |  |  |  |
| IUC2187-03                    | Nickel-200.7                  | Nickel                                            | ug/l                | 4.50                                             | 10                   | 96               |  |  |  |  |
| IUC2187-03                    | Nitrate-N, 300.0              | Nitrate-N                                         | mg/l                | 0.44                                             | 0.11                 | 8                |  |  |  |  |
| IUC2187-03                    | Nitrite-N, 300.0              | Nitrite-N                                         | mg/l                | 0.081                                            | 0.15                 | 1                |  |  |  |  |
| IUC2187-03                    | Nitrogen, NO3+NO2 -N EPA 300. | 0 Nitrate/Nitrite-N                               | mg/l                | 0.52                                             | 0.26                 | 8                |  |  |  |  |
| IUC2187-03                    | Perchlorate 314.0 (1ppb IC6)  | Perchlorate                                       | ug/l                | 0.20                                             | 1.0                  | 6                |  |  |  |  |
| IUC2187-03                    | Selenium-200.8                | Selenium                                          | ug/l                | 0.41                                             | 2.0                  | 5                |  |  |  |  |
| IUC2187-03                    | Silver-200.8                  | Silver                                            | ug/l                | 0.049                                            | 1.0                  | 4.1              |  |  |  |  |
| IUC2187-03                    | Sulfate-300.0                 | Sulfate                                           | mg/l                | 4.40                                             | 0.50                 | 300              |  |  |  |  |
| IUC2187-03                    | TDS - SM2540C                 | Total Dissolved Solids                            | mg/l                | 83                                               | 10                   | 950              |  |  |  |  |
| IUC2187-03                    | Thallium-200.8                | Thallium                                          | ug/l                | 0.025                                            | 1.0                  | 2                |  |  |  |  |
| IUC2187-03                    | TSS - SM2540D                 | Total Suspended Solids                            | mg/l                | 35                                               | 10                   | 45               |  |  |  |  |
| IUC2187-03                    | Zinc-200.7                    | Zinc                                              | •                   | 28                                               | 20.0                 | 119              |  |  |  |  |
|                               |                               |                                                   | ug/l                |                                                  |                      |                  |  |  |  |  |

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|                  |          |         |       |        |     | Compliance |
|------------------|----------|---------|-------|--------|-----|------------|
| <b>LabNumber</b> | Analysis | Analyte | Units | Result | MRL | Limit      |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Annual Outfall 011 Sampled: 03/20/11-03/21/11

Arcadia, CA 91007 Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

## DATA QUALIFIERS AND DEFINITIONS

| <b>B</b> Analyte was detected in the associated | Method Blank. |
|-------------------------------------------------|---------------|
|-------------------------------------------------|---------------|

- **Ba** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- H3 Sample was received and analyzed past holding time.
- J Estimated result. Result is less than the reporting limit.
- Ja Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- L6 Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration.
- M13 The sample spiked had a pH of less than 2. 2-Chloroethylvinylether degrades under acidic conditions.
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **Q** Estimated maximum possible concentration (EMPC).
- U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.
- **Z2** Surrogate recovery was above the acceptance limits. Data not impacted.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

### **ADDITIONAL COMMENTS**

### For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

#### For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.

#### For Extractable Fuel Hydrocarbons (EFH, DRO, ORO):

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Annual Outfall 011

Report Number: IUC2187

Received: 03/21/11

Sampled: 03/20/11-03/21/11

## **Certification Summary**

#### **TestAmerica Irvine**

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EDD + Level 4  | Water  | N/A   | N/A        |
| EPA 120.1      | Water  | X     | X          |
| EPA 1664A      | Water  | X     | X          |
| EPA 180.1      | Water  | X     | N/A        |
| EPA 200.7-Diss | Water  | X     | N/A        |
| EPA 200.7      | Water  | X     | N/A        |
| EPA 200.8-Diss | Water  | X     | N/A        |
| EPA 200.8      | Water  | X     | N/A        |
| EPA 218.6      | Water  | X     | X          |
| EPA 245.1-Diss | Water  | X     | N/A        |
| EPA 245.1      | Water  | X     | N/A        |
| EPA 300.0      | Water  | X     | N/A        |
| EPA 314.0      | Water  | X     | N/A        |
| EPA 608        | Water  | X     | X          |
| EPA 624        | Water  | X     | X          |
| EPA 625        | Water  | X     | X          |
| EPA 8015 Mod.  | Water  | X     | X          |
| EPA 8015B      | Water  | X     | X          |
| EPA 8260B-SIM  | Water  | X     | X          |
| Filtration     | Water  | N/A   | N/A        |
| SM 2540D       | Water  | X     | X          |
| SM 4500-F-C    | Water  | X     | N/A        |
| SM2340B-Diss   | Water  |       |            |
| SM2340B        | Water  | X     | N/A        |
| SM2540C        | Water  | X     | N/A        |
| SM2540F        | Water  | X     | X          |
| SM4500CN-E     | Water  | X     | N/A        |
| SM4500NH3-C    | Water  | X     | X          |
| SM5210B        | Water  | X     | X          |
| SM5310B        | Water  | X     | X          |
| SM5540-C       | Water  | X     | N/A        |
| SM9221 A,B,C,E | Water  |       |            |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

## **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IUC2187-03

Analysis Performed: Bioassay-Acute 96hr

Samples: IUC2187-01

Analysis Performed: Level 4 Data Package

Samples: IUC2187-01



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Annual Outfall 011 Sampled: 03/20/11-03/21/11

Arcadia, CA 91007 Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

#### **Eberline Services - SUB**

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: IUC2187-03

Analysis Performed: Gross Alpha

Samples: IUC2187-03

Analysis Performed: Gross Beta

Samples: IUC2187-03

Analysis Performed: Level 4 Data Package

Samples: IUC2187-03

Analysis Performed: Radium, Combined

Samples: IUC2187-03

Analysis Performed: Strontium 90

Samples: IUC2187-03

Analysis Performed: Tritium

Samples: IUC2187-03

Analysis Performed: Uranium, Combined

Samples: IUC2187-03

Method Performed: 900

Samples: IUC2187-03

Method Performed: 901.1

Samples: IUC2187-03

Method Performed: 903.1

Samples: IUC2187-03

Method Performed: 904

Samples: IUC2187-03

Method Performed: 905

Samples: IUC2187-03

Method Performed: 906

Samples: IUC2187-03

Method Performed: D5174

Samples: IUC2187-03

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

Annual Outfall 011 Sampled: 03/20/11-03/21/11

Report Number: IUC2187 Received: 03/21/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: IUC2187-03RE1

### Truesdail Laboratories-SUB California Cert #1237

14201 Franklin Avenue - Tustin, CA 92680 Analysis Performed: Hydrazine Samples: IUC2187-03

#### **TestAmerica Irvine**

EUC2187

| Client Name/A                                 |                  |                   |               | Project:                       |                 |              |                       | -                      |                    |                   |              |                         |            |                        | AN.                     | ALYSI                | SREC           | UIRE               |       | 0 •     | -                     |                                                                  |
|-----------------------------------------------|------------------|-------------------|---------------|--------------------------------|-----------------|--------------|-----------------------|------------------------|--------------------|-------------------|--------------|-------------------------|------------|------------------------|-------------------------|----------------------|----------------|--------------------|-------|---------|-----------------------|------------------------------------------------------------------|
| MWH-Arcad<br>618 Michillinda<br>Arcadia, CA 9 | a Ave, S         | uite 200          |               | Boeing-<br>Annual<br>GRAB      |                 |              |                       | , Freon                |                    | į                 |              |                         |            |                        |                         |                      |                |                    |       |         |                       | Field readings:<br>(Log in and include in<br>report Temp and pH) |
| Test America                                  | Contact:         | : Debby Wils      | son           |                                |                 |              | i                     | + Freon 113, F<br>+ PP | :VE                |                   |              | HEM)                    |            |                        | 223)                    |                      |                |                    |       |         |                       | Temp °F = 5 © @  pH = 7, 6  DO = 9,12 mc/L  Total Posidual       |
| Project Manag                                 | ger: Bro         | nwyn Kelly        |               | Phone I                        |                 |              |                       | xylenes<br>rexane      | 4+2C               |                   |              | 364-F                   |            | fuel                   | SM92                    |                      |                |                    |       |         |                       | Total Residual Chlorine =                                        |
| Sampler: R                                    | ,                |                   |               | (626) 56<br>Fax Nu<br>(626) 56 | mber:<br>68-651 |              |                       | 524 +<br>Cyclol        | VOCs 624 +A+A+2CVE | Settleable Solids | Conductivity | Oil & Grease (1664-HEM) | 8015 - gas | 8015 - diesel/jet fuel | Fecal coliform (SM9223) | coli (SM9223)        | Acute Toxicity |                    |       |         |                       | Time of readings<br>= ノの・みを                                      |
| Sample<br>Description                         | Sample<br>Matrix | Container<br>Type | # of<br>Cont. | Sam<br>Date/                   |                 | Preservative | Bottle #              | VOCs (                 | VOC                | Settle            | Conc         | Oii &                   | 8015       | 8015                   | Feca                    | ы<br>В               | Acute          |                    |       |         |                       | Comments                                                         |
| Outfall 011                                   | W                | VOAs              | 5             | 3.7                            | 1-J2V<br>00     | HCI          | 1A, 1B, 1C,<br>1D, 1E | Х                      |                    |                   |              |                         |            |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011                                   | w                | VOAs              | 3             |                                |                 | None         | 2A, 2B, 2C            |                        | Х                  |                   |              |                         |            |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011                                   | W                | 1L Poly           | 1             |                                |                 | None         | 3                     |                        |                    | х                 |              |                         |            |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011                                   | w                | 500 mL Poly       | 2             |                                |                 | None         | 4A, 4B                |                        |                    |                   | Х            |                         |            |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011                                   | w                | 1L Amber          | 2             |                                |                 | HCI          | 5A, 5B                |                        |                    |                   |              | Х                       |            |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| Trip Blanks                                   | w                | VOAs              | 3             |                                |                 | HCI          | 6A, 6B, 6C            | х                      |                    |                   |              |                         |            |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| Trip Blanks                                   | w                | VOAs              | 3             | 1                              |                 | None         | 7A, 7B, 7C            |                        | Х                  |                   |              |                         |            |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011                                   | w                | VOAs              | 1             |                                |                 | HCI          | 8A                    |                        |                    |                   |              |                         | х          |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011 Dup                               | w                | VOAs              | 2             |                                |                 | HCI          | 8B, 8C                |                        |                    |                   |              |                         | х          |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011                                   | w                | 1L Amber          | 1             |                                |                 | None         | 9A                    |                        |                    |                   |              |                         |            | х                      |                         |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011 Dup                               | w                | 1L Amber          | 1             |                                |                 | None         | 9B                    |                        |                    |                   |              |                         |            | х                      |                         |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011                                   | w                | 125mL Poly        | 1             |                                |                 | Na2S2O3      | 10                    |                        |                    |                   |              |                         |            |                        | ×                       |                      |                |                    |       |         |                       |                                                                  |
| Outfall 011                                   | W                | 125mL Poly        | 1             | A                              |                 | Na2S2O3      | 11                    |                        |                    |                   |              |                         |            |                        |                         | х                    |                |                    |       |         |                       |                                                                  |
| Outfall 011                                   | W                | 1 Gal Cube        | z             | 3,3.                           | · )0 4          | None         | 12                    |                        |                    |                   |              |                         |            |                        |                         |                      | Х              |                    |       |         |                       |                                                                  |
|                                               | Thos             | se Samples        | aro t         | bo Grah                        | Portic          | n of Outfa   | II 011 for th         | s storn                | 2 01/0             | nt C              | `omn         | noito                   |            | los v                  | rill fol                | <br>                 |                | to bo              | 2424  | to thi  |                       | ( order                                                          |
| Relinquished By                               | Tiles            |                   | ate/Tir       | ne:                            | 3-2/            |              | Received By           | is stori               | ii eve             |                   |              |                         |            |                        |                         | e: (Chec             |                | to be              | auueu | to till | S WOII                | Corder.                                                          |
| Vin                                           | Buis             |                   |               |                                |                 |              |                       |                        |                    | יון <i>וטו</i>    | 40           | 1                       |            | 72 Hour:<br>5 Day:     |                         |                      |                | 10 Day:<br>Normal: |       | _       |                       |                                                                  |
| Relinquished By                               | <u> </u>         | Di                | ate/Tir       | me:                            | VI.             | 1347         | Received By           | 1/                     | 1.2                | 2                 | Date/T       | ime:                    | _          |                        |                         |                      |                |                    |       |         |                       |                                                                  |
| 1                                             | \                |                   |               | 3-41                           | •. [[ 1         | 1432         | Received By           | 13/                    | . Os               | •                 | 3/2          | /11                     |            |                        |                         | : (Check)<br>On Ice: | *              |                    |       |         |                       |                                                                  |
| Relinquished By                               | <del>/</del>     | Di                | ate/Tir       | ne:                            |                 |              | Received By           | <u>v</u> • · (         | , ~ (              |                   | Date/T       | ime:                    |            |                        |                         |                      |                |                    |       |         |                       |                                                                  |
|                                               | •                |                   |               |                                |                 |              |                       |                        |                    |                   |              |                         |            |                        |                         | nts: (Che            | -              |                    |       | NPDES   | Level IV <sup>.</sup> | ×                                                                |
|                                               |                  |                   |               |                                |                 |              |                       |                        |                    |                   |              |                         |            |                        | U. IV                   | , reaei              |                |                    |       | 520     |                       |                                                                  |

1710 1710

451KJO)

| Client Name/A                              | ddress:          |                   |               | Project:                                                                                                                                                              |              |                                       |                                                                                                                                     |                          |                                 |                    |                                                                                         |                      | -                   | ANAI              | YSIS                              | REQUI                                                                                 | RED              |       |      |          |
|--------------------------------------------|------------------|-------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|--------------------|-----------------------------------------------------------------------------------------|----------------------|---------------------|-------------------|-----------------------------------|---------------------------------------------------------------------------------------|------------------|-------|------|----------|
| MWH-Arcad                                  | -                |                   |               | Boeing-SSFL N                                                                                                                                                         |              |                                       | - <u>=</u>                                                                                                                          |                          |                                 |                    |                                                                                         |                      |                     |                   |                                   | (5)                                                                                   |                  |       |      |          |
| 618 Michillinda                            |                  | uite 200          |               | Annual Outfal                                                                                                                                                         | 011<br> -    | 11                                    | 9, B                                                                                                                                |                          |                                 |                    |                                                                                         |                      |                     |                   |                                   | s 62                                                                                  |                  |       |      |          |
| Arcadia, CA 9                              | 1007             |                   |               | COMPOSITE                                                                                                                                                             | 1110         | ()                                    | e, H                                                                                                                                |                          |                                 |                    | ate                                                                                     |                      |                     |                   | ď                                 | 2-<br>/0C                                                                             |                  |       | ł    |          |
| Test America                               | Contact:         | Debby Wils        | son .         |                                                                                                                                                                       |              |                                       | Total Recoverable Metals: Cu, Pb, Hg, B,<br>Ba, Fe, Mn, Sb, As, Be, Cd, Ni, Se, Ag, Tl,<br>Zn, Co, V, Hardness as CaCO <sub>3</sub> | ers)                     |                                 |                    | CI <sup>-</sup> , SO <sub>4</sub> , NO <sub>3</sub> +NO <sub>2</sub> -N, F, Perchlorate |                      | :                   |                   | Alpha BHC (608) + Pesticides + PP | 2,4,6 TCP, 2,4 Dinitrotoluene, Bis(2-ethylhexyl)phthalate, NDMA, PCP (SVOCs 625) + PP | 9                |       |      |          |
|                                            |                  |                   |               |                                                                                                                                                                       |              |                                       | Meta<br>, Be<br>ss as                                                                                                               | gene                     | <u>ට</u>                        | <u></u>            | ν,                                                                                      |                      | S                   |                   | Pes                               | ND ND                                                                                 |                  |       |      | Comments |
| Project Manag                              |                  |                   |               | Phone Numbe                                                                                                                                                           |              |                                       | able<br>, As<br>dnes                                                                                                                | con                      | ees                             | BAS                | NO                                                                                      | e-N                  | , TS                | 50.2              | + (8)                             | ate Din                                                                               |                  |       |      |          |
| Sampler: R                                 | ck K             | BANDO.            | n             | (626) 568-669 <sup>-</sup><br>Fax Number:                                                                                                                             |              |                                       | sovera<br>In, St<br>', Har                                                                                                          | TCDD (and all congeners) | BOD <sub>5</sub> (20 degrees C) | Surfactants (MBAS) | NO3+                                                                                    | Nitrate-N, Nitrite-N | Turbidity, TDS, TSS | Ammonia-N (350.2) | ງອ) ວ <u>າ</u>                    | P, 2,4<br>)phtha                                                                      |                  |       |      |          |
|                                            |                  |                   |               | (626) 568-651                                                                                                                                                         | 5            |                                       | 7.6, Z                                                                                                                              | D (a                     | ' <sub>s</sub> (2(              | actar              | ,<br>50                                                                                 | te-N                 | idity,              | nonis             | a<br>H                            | D Ex                                                                                  |                  |       |      |          |
| Sample<br>Description                      | Sample<br>Matrix | Container<br>Type | # of<br>Cont. | Sampling<br>Date/Time                                                                                                                                                 | Preservative | Bottle #                              | Tota<br>Ba, F<br>Zn, (                                                                                                              | тср                      | вор                             | Surf               | <u>C</u> .                                                                              | Nitra                | Turb                | Amn               | Alph                              | 2,4,6<br>ethyli<br>+ PP                                                               |                  |       |      |          |
| Outfall 011                                | W                | 1L Poly           | 1             | 3/35                                                                                                                                                                  | HNO₃         | 13A                                   | х                                                                                                                                   |                          |                                 |                    |                                                                                         |                      |                     |                   |                                   |                                                                                       |                  |       |      |          |
| Outfall 011 Dup                            | w                | 1L Poly           | 1             |                                                                                                                                                                       | HNO₃         | 13B                                   | ×                                                                                                                                   |                          |                                 |                    |                                                                                         |                      |                     |                   |                                   |                                                                                       |                  |       |      |          |
| Outfall 011                                | w                | 1L Amber          | 2             |                                                                                                                                                                       | None         | 14A, 14B                              |                                                                                                                                     | Х                        |                                 |                    |                                                                                         |                      |                     |                   |                                   |                                                                                       |                  |       |      |          |
| Outfall 011                                | w                | 1L Poly           | 1             |                                                                                                                                                                       | None         | 15                                    |                                                                                                                                     |                          | Х                               |                    |                                                                                         |                      |                     |                   |                                   |                                                                                       |                  |       |      |          |
| Outfall 011                                | w                | 500 mL Poly       | 2             |                                                                                                                                                                       | None         | 16A, 16B                              |                                                                                                                                     |                          |                                 | х                  |                                                                                         |                      |                     |                   |                                   |                                                                                       |                  |       |      |          |
| Outfall 011                                | W                | 500 mL Poly       | 2             |                                                                                                                                                                       | None         | 17A, 17B                              |                                                                                                                                     |                          |                                 |                    | х                                                                                       |                      |                     |                   |                                   |                                                                                       |                  |       |      |          |
| Outfall 011                                | w                | 500 mL Poly       | 1             | 1                                                                                                                                                                     | None         | 18                                    |                                                                                                                                     |                          |                                 |                    |                                                                                         | х                    |                     |                   |                                   |                                                                                       |                  |       |      |          |
| Outfall 011                                | W                | 500 mL Poly       | 2             | 1                                                                                                                                                                     | None         | 19A, 19B                              |                                                                                                                                     |                          |                                 |                    |                                                                                         |                      | х                   |                   |                                   |                                                                                       |                  |       |      |          |
| Outfall 011                                | W                | 500 mL Poly       | 1             |                                                                                                                                                                       | H₂SO₄        | 20                                    |                                                                                                                                     |                          |                                 |                    |                                                                                         |                      |                     | Х                 |                                   |                                                                                       |                  |       |      |          |
| Outfall 011                                | w                | 1L Amber          | 2             | 4                                                                                                                                                                     | None         | 21A, 21B                              |                                                                                                                                     |                          |                                 |                    |                                                                                         |                      |                     |                   | Х                                 |                                                                                       |                  |       |      |          |
| Outfall 011                                | w                | 1L Amber          | 2             | 3-20-3011                                                                                                                                                             | None         | 22A, 22B                              |                                                                                                                                     |                          |                                 |                    |                                                                                         |                      |                     |                   |                                   | Х                                                                                     |                  |       |      |          |
|                                            |                  |                   |               | •                                                                                                                                                                     |              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                     |                          |                                 |                    |                                                                                         |                      |                     |                   |                                   |                                                                                       |                  |       |      | -        |
|                                            |                  |                   |               | COC Page 2                                                                                                                                                            | of 3 and P   | age 3 of 3                            | are the o                                                                                                                           | omn                      | nsite                           | samr               | les f                                                                                   | or Ou                | tfall (             | )11 fc            | r this                            | s storm 4                                                                             | vent             |       |      |          |
|                                            |                  |                   |               |                                                                                                                                                                       |              |                                       |                                                                                                                                     |                          |                                 |                    |                                                                                         |                      |                     |                   |                                   |                                                                                       |                  | nt.   | <br> |          |
| Relinquished By                            |                  | D                 |               | These must be added to the same work order for COC Page 1 of 3 for Outfall 011 for the same event.  Time: 3-2/-23 // Received By Date/Time: Turn-around time: (Check) |              |                                       |                                                                                                                                     |                          |                                 |                    |                                                                                         |                      |                     |                   |                                   |                                                                                       |                  |       |      |          |
| Sin 15                                     | me.              |                   |               | 24 Hour:                                                                                                                                                              |              |                                       |                                                                                                                                     |                          |                                 |                    |                                                                                         |                      |                     | _                 |                                   |                                                                                       |                  |       |      |          |
| Relinquished By                            |                  | D                 | ate/Ti        | me: 3-21/1                                                                                                                                                            |              | Received B                            | у                                                                                                                                   | 1)                       |                                 | Date/              | Time:                                                                                   | <del> + ,</del>      |                     |                   | ł                                 |                                                                                       |                  |       |      |          |
| Etai.                                      | \ \\ \.          | Mor               |               | NA.                                                                                                                                                                   | 5            | 6                                     |                                                                                                                                     | <b>/</b>                 | V                               |                    | 1                                                                                       |                      |                     |                   | Sample<br>Intact:                 | e Integrity: (C                                                                       | heck)<br>On Ice: | .y. u |      |          |
| Relinquished By                            |                  | <u>, 73 - 10</u>  | ate/Ti        | me:                                                                                                                                                                   | -            | Received B                            | y ) /                                                                                                                               |                          | $\overrightarrow{}$             | pate/              |                                                                                         | T                    |                     |                   | 1                                 |                                                                                       |                  |       |      |          |
| No Level IV: All Level IV: NPDES Level IV: |                  |                   |               |                                                                                                                                                                       |              |                                       |                                                                                                                                     |                          |                                 | v:                 |                                                                                         |                      |                     |                   |                                   |                                                                                       |                  |       |      |          |

3/2/11/

| Client Name/A   | Address:  |              |         | Projec |          |              |                  |               |                      |                                                                                                                                                                                                           |               |                      |                  | ANAL                                                                                               | YSIS          | REQ               | JIREI    | D        |               |        |         | <u> </u>                                             |
|-----------------|-----------|--------------|---------|--------|----------|--------------|------------------|---------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|------------------|----------------------------------------------------------------------------------------------------|---------------|-------------------|----------|----------|---------------|--------|---------|------------------------------------------------------|
| MWH-Arcad       | dia       |              |         |        | -SSFL I  |              |                  | _             |                      | Gross Alpha(900.0), Gross Beta(900.0),<br>Tritium (H-3) (906.0), Sr-90 (905.0), Total<br>Combined Radium 226 (903.0 or 903.1) &<br>Radium 228 (904.0), Uranium (908.0), K-<br>40, CS-137 (901.0 or 901.1) |               |                      |                  | e, c,                                                                                              |               |                   |          |          |               |        |         |                                                      |
| 618 Michillind  |           | uite 200     |         | Annua  | al Outfa | 011<br>      | .,,              |               |                      | 0),<br>1),<br>1, K                                                                                                                                                                                        |               |                      |                  | B, Ba,<br>TI, Zn,                                                                                  |               |                   |          |          |               |        |         | İ                                                    |
| Arcadia, CA 9   | 91007     |              |         | COME   | POSITE   | - H16        | <i>l.</i> †      |               |                      | 00.(<br>), T.<br>903.<br>8.0                                                                                                                                                                              |               |                      |                  | u.g.                                                                                               |               |                   |          |          |               |        |         |                                                      |
|                 |           | 5 11 1477    |         | İ      |          |              |                  |               |                      | a(9)<br>5.0<br>or 9<br>(90                                                                                                                                                                                |               |                      |                  | , Hg,                                                                                              |               |                   |          |          |               |        |         |                                                      |
| Test America    | Contact   | Debby Wil    | son     | 1      |          |              |                  |               |                      | Bet<br>(90<br>3.0<br>um                                                                                                                                                                                   |               |                      |                  | Pb,<br>Se,                                                                                         |               |                   |          |          |               |        |         |                                                      |
|                 |           |              |         |        |          |              |                  |               |                      | 88<br>-90<br>(90;<br>anii                                                                                                                                                                                 |               |                      |                  | Ω,<br>So Si,                                                                                       |               |                   |          |          |               |        |         |                                                      |
|                 |           |              |         |        |          |              |                  |               | _                    | 26. 26. U. 09.                                                                                                                                                                                            |               | пe                   |                  | Sd,<br>Cd,                                                                                         |               |                   |          |          |               |        |         | Comments                                             |
| Project Manag   | ger: Bro  | nwyn Kelly   |         | Phone  | Numbe    | r:           |                  |               | Total Organic Carbon | 0),<br>m 2<br>4:0)                                                                                                                                                                                        |               | Monomethyl Hydrazine |                  | Total Dissolved Metals: Cu,<br>Fe, Mn, Sb, As, Be, Cd, Ni,<br>Co, V, Hardness as CaCO <sub>3</sub> |               |                   |          |          |               |        |         |                                                      |
|                 | =         | _            |         | (626)  | 568-669  | 1            |                  |               | Ca                   | 900<br>(906<br>(904)                                                                                                                                                                                      |               | 1yd                  | ίt               | ed N<br>S, E                                                                                       | _             |                   |          |          |               |        |         |                                                      |
| Sampler: Ric    | EBA.      | MAGA         |         | , ,    | umber:   |              |                  | ē             | nic                  | na(9<br>-3) (-3) (-3) (-3) (-3) (-3) (-3) (-3) (                                                                                                                                                          |               | J-J-                 | χic              | olve<br>c, A                                                                                       | 8.6)          |                   |          |          |               |        | 1       |                                                      |
|                 |           | , ,          |         |        | 568-651  | 5            |                  | 1,4-Dioxane   | rge                  | APP                                                                                                                                                                                                       |               | heth                 | Chronic Toxicity | iss.<br>'St<br>Har                                                                                 | Cr (VI) (218. | ں ا               |          |          |               |        |         |                                                      |
| Sample          | Sample    | Container    | # of    |        | npling   |              |                  | Ä             | alC                  | SS<br>jum<br>mbi<br>diur<br>CS                                                                                                                                                                            | PCBs          | non                  | oni              | <u>_</u> <u>a</u> <u>p</u> ≥                                                                       | Ŝ             | jë                |          |          |               |        |         |                                                      |
| Description     | Matrix    | Туре         | Cont.   | Date   | e/Time   | Preservative | Bottle #         | 1,4           | Tot                  | Grc<br>Cor<br>Rad<br>40,                                                                                                                                                                                  | PC            | Mo                   | -G               | S, F, E                                                                                            | ່ວັ           | Cyanide           |          |          |               |        | l       | ,                                                    |
| Outfall 011     | w         | VOAs         | 3       | 21     | 35       | HCI          | 23A, 23B,<br>23C | х             |                      |                                                                                                                                                                                                           |               |                      |                  |                                                                                                    |               |                   |          |          |               |        |         |                                                      |
| Outfall 011     | w         | 250 mL Glass | 1       | \ \    |          | HCI          | 24               |               | х                    |                                                                                                                                                                                                           |               |                      |                  |                                                                                                    |               |                   |          |          |               |        |         |                                                      |
| Outfall 011     | w         | 2.5 Gal Cube | 1       |        |          | None         | 25A              |               |                      | ×                                                                                                                                                                                                         |               |                      |                  |                                                                                                    |               |                   |          |          |               |        |         | Unfiltered and unpreserved                           |
|                 | .,        | 500 mL Amber | 1       | ļ      |          | None         | 25B              |               |                      | ^                                                                                                                                                                                                         |               |                      |                  |                                                                                                    |               |                   |          |          |               |        |         | analysis                                             |
| Outfall 011     | w         | 1L Amber     | 2       |        |          | None         | 26A, 26B         |               | İ                    |                                                                                                                                                                                                           | Х             |                      |                  |                                                                                                    |               |                   |          |          |               |        |         |                                                      |
| Outfall 011     | w         | 1L Amber     | 2       |        |          | None         | 27A, 27B         |               |                      |                                                                                                                                                                                                           |               | Х                    |                  |                                                                                                    |               |                   |          |          |               |        |         |                                                      |
| Outfall 011     | w         | 1 Gal Cube   | 1       |        |          | None         | 28               |               |                      |                                                                                                                                                                                                           |               |                      | ×                |                                                                                                    |               | ,                 |          |          |               |        |         | Only test if first or second rain events of the year |
| Outfall 011     | w         | 1L Poly      | 1       |        |          | None         | 29               |               |                      |                                                                                                                                                                                                           |               |                      |                  | х                                                                                                  |               |                   |          |          |               |        |         | Filter w/in 24hrs of receipt at lab                  |
| Outfall 011     | w         | 500 mL Poly  | 1       | 1      |          | None         | 30               |               |                      |                                                                                                                                                                                                           |               |                      |                  |                                                                                                    | х             |                   |          |          |               |        |         |                                                      |
| Outfall 011     | w         | 500 mL Poly  | 1       | 3.3    | 0.2011   | NaOH         | 31               |               |                      |                                                                                                                                                                                                           |               |                      |                  |                                                                                                    |               | х                 |          |          |               |        |         |                                                      |
|                 |           |              |         |        |          |              |                  |               |                      |                                                                                                                                                                                                           |               |                      |                  |                                                                                                    |               |                   |          |          |               |        |         |                                                      |
|                 |           |              |         |        |          |              |                  |               |                      |                                                                                                                                                                                                           |               |                      |                  |                                                                                                    |               |                   |          |          |               |        |         |                                                      |
|                 |           |              |         |        | 200 =    |              |                  |               |                      |                                                                                                                                                                                                           | L             |                      |                  |                                                                                                    | L             | L                 |          | <u> </u> |               |        |         |                                                      |
|                 |           |              |         |        |          |              |                  |               |                      | e composite s                                                                                                                                                                                             |               |                      |                  |                                                                                                    |               |                   |          |          |               |        |         |                                                      |
| Relinquished By |           |              | )ate/Ti | I No   | ese mus  | t be added   | Received B       | me v          | ork o                | order for COC I                                                                                                                                                                                           | age           | 1 01 3               | or (             | Outfall 011                                                                                        | tor           |                   |          | ne: (Che |               |        |         |                                                      |
|                 | Run       | _            |         |        |          |              |                  |               |                      | Date/T                                                                                                                                                                                                    | <sup></sup> ጋ | -1-1-                | W                |                                                                                                    |               | 1                 |          | -        | -             | 10 Day |         |                                                      |
| Relinquished By |           |              |         |        | 150.7    | n0)          | in the S         | , J.          |                      | · ·                                                                                                                                                                                                       |               |                      | 8C;              |                                                                                                    |               | 48 Hou            | r:       | 5 Day:   | " <del></del> | Norma  | y:      | <del>_</del>                                         |
| Relinquished By |           | Ċ            | Date/Ti | ime:   | X 2 1 .  | <i>) /</i>   | Received By      | ,             | 7                    | Date/T                                                                                                                                                                                                    | me:           | 1                    | , , , ,          |                                                                                                    |               | 1                 |          |          |               |        |         | _                                                    |
|                 |           |              |         | -      | ), }\/   | ``           |                  |               | ,                    |                                                                                                                                                                                                           |               |                      |                  |                                                                                                    |               | Sample            | Integrit | y: (Chec | ck)           | 4      |         |                                                      |
| Relinquished By | · / · / · | שניטג        |         |        | 32.      | .\<          |                  |               | L                    |                                                                                                                                                                                                           |               |                      |                  |                                                                                                    |               | Sample<br>Intact: |          | On Ice:  |               | /      |         |                                                      |
| Relinquished By | / )       |              | ate/Ti  | ime:   |          | 1            | Received         | $'$ $\bar{A}$ |                      | Date/T                                                                                                                                                                                                    | me:           | 1                    | 22               |                                                                                                    |               |                   |          |          |               |        |         |                                                      |
|                 |           |              |         |        |          | \            | , J              | QQP           | pool                 | y 5/3                                                                                                                                                                                                     | 191           |                      | 00               | 2:15                                                                                               |               |                   |          | ents: (C |               | NPDF!  | S Level | IV: —                                                |
|                 |           |              |         |        |          |              |                  |               |                      |                                                                                                                                                                                                           |               |                      |                  |                                                                                                    |               |                   |          | 2001     |               | 02.    |         | ··· <u></u>                                          |

## LABORATORY REPORT

Date: March 28, 2011

Client: TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

**Laboratory No.:** A-11032107-001/002

Sample I.D.: IUC2187-01, 03 (Outfall 011)

Sample Control: The samples were received by ATL chilled, within the recommended hold time and

with the chain of custody record attached. Testing conducted on only one sample per client instruction (rain runoff sample) for the acute (grab) and chronic (composite)

samples.

Date Sampled: 03/21/11 10:00 (acute), 03/20/11 21:35 (chronic) Date Received: 03/22/11 10:05 (acute), 03/21/11 20:10 (chronic)

Temp. Received: 1.7°C (acute), 5.7°C (chronic)

Chlorine (TRC): 0.0 mg/l

Date Tested: 03/22/11 to 03/28/11

Sample Analysis: The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0). Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

## **Result Summary:**

| Acute:          | Survival | <u>TUa</u> |
|-----------------|----------|------------|
| Fathead Minnow: | 100%     | 0.0        |
| Chronic:        | NOEC     | TUc        |

Ceriodaphnia Survival: 100% 1.0 Ceriodaphnia Reproduction: 100% 1.0

**Quality Control:** Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

#### FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0



Lab No.: A-11032107-001

Client/ID: TestAmerica IUC2187-01

Start Date: 03/22/2011

#### TEST SUMMARY

Species: Pimephales promelas.

Age: (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Control water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture.

Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C.

Number of fish per chamber: 10.

QA/QC No.: RT-110301.

#### TEST DATA

|         |         | °C   | DO   | pН   | # D | ead     | Analyst & Time |
|---------|---------|------|------|------|-----|---------|----------------|
|         |         |      | БО   | pri  | Α   | В       | of Readings    |
| DUTIAL  | Control | 26.2 | 9-1  | 80   | U   | 0       |                |
| INITIAL | 100%    | 201  | 9.6  | 7.2  | C   | <u></u> | 1100           |
| 2411    | Control | 203  | 8-6  | 7-9  | 0   | 0       | 2              |
| 24 Hr   | 100%    | 20.2 | 8-9  | 7-8  | 0   | 0       | 110            |
| 40.11.  | Control | 19-8 | 8-2  | 7-8  | 0   |         | 1              |
| 48 Hr   | 100%    | 19-8 | 8.9  | 7.7  | 0   | 0       | 1030           |
|         | Control | 20-1 | 8-7  | 79   | 0   | 0       | 2              |
| Renewal | 100%    | 20.1 | 8-9  | 7-9  | 0   | 0       | 1030           |
|         | Control | 20.0 | 8,7  | 7. % | 0   | 0       | 7              |
| 72 Hr   | 100%    | 20.0 | 8.8  | 7, 7 | 0   | 0       | 1170           |
| 2677    | Control | 20.3 | 7.9  | 7.7  | 0   | G       | 2              |
| 96 Hr   | 100%    | 20,3 | 7. 7 | 7.5  | 0   | 0       | -1130          |

| <u> </u> |   |   |    | -4-  |  |
|----------|---|---|----|------|--|
| Uα       | m | m | eı | nts: |  |

Sample as received: Chlorine: 0.0 mg/l; pH: 2.7 Conductivity: 96 umho; Temp: 1.7°C; DO: 9.7 mg/l; Alkalinity: 3 mg/l; Hardness: 34 mg/l; NH<sub>3</sub>-N: 0.3 mg/l.

Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No Control: Alkalinity: 6 mg/l; Hardness: 66 mg/l; Conductivity: 336 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O<sub>2</sub>

#### RESULTS

Percent Survival In:



## CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

#### CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0



Lab No.: A-11032107-001 Date Tested: 03/22/11 to 03/28/11

Client/ID: Test America – IUC2187-03 (Outfall 011)

#### **TEST SUMMARY**

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia. Source: In-laboratory culture. Age: < 24 hrs; all released within 8 hrs. Food: .1 ml YTC, algae per day.

Age: < 24 hrs; all released within 8 hrs. Food: .1 ml YTC, algae per day. Test vessel size: 30 ml. Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 6 days.

QA/QC Batch No.: RT-110308. Statistics: ToxCalc computer program.

#### **RESULTS SUMMARY**

| Sample Concentration | Percent Survival               | Mean Number of Young<br>Per Female |
|----------------------|--------------------------------|------------------------------------|
| Control              | 100%                           | 21.5                               |
| 100% Sample          | 100%                           | 23.9                               |
| Sample not st        | atistically significantly less | s than Control.                    |

#### **CHRONIC TOXICITY**

| Survival NOEC     | 100% |
|-------------------|------|
| Survival TUc      | 1.0  |
| Reproduction NOEC | 100% |
| Reproduction TUc  | 1.0  |

#### QA/QC TEST ACCEPTABILITY

| Parameter                                                                               | Result                                                 |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------|
| Control survival ≥80%                                                                   | Pass (100% survival)                                   |
| ≥15 young per surviving control female                                                  | Pass (21.5 young)                                      |
| ≥60% surviving controls had 3 broods                                                    | Pass (80% with 3 broods)                               |
| PMSD < 47% for reproduction; if > 47% and no toxicity at IWC, the test must be repeated | Pass (PMSD = 20.9%)                                    |
| Statistically significantly different concentrations relative difference > 13%          | Pass (no concentration significantly different)        |
| Concentration response relationship acceptable                                          | Pass (no significant response at concentration tested) |

|              |           |        | Cerioda   | phnia Sur | vival and  | Reprodu   | uction Tes       | t-Surviv | al Day 6   |                     |
|--------------|-----------|--------|-----------|-----------|------------|-----------|------------------|----------|------------|---------------------|
| Start Date:  | 3/22/2011 | 08:00  | Test ID:  | 11032107  | 0          |           | Sample ID        | );       | Outfall 01 | 1                   |
| End Date:    | 3/28/2011 | 09:00  | Lab ID:   | CAATL-Ac  | uatic Test | ting Labs | Sample Ty        | /pe:     | SRW2-Ind   | lustrial stormwater |
| Sample Date: | 3/20/2011 | 21:35  | Protocol: | FWCH EP   | Α          |           | <b>Test Spec</b> | ies:     | CD-Cerioo  | laphnia dubia       |
| Comments:    |           |        |           |           |            |           |                  |          |            |                     |
| Conc-%       | 1         | 2      | 3         | 4         | 5          | 6         | 7                | -8       | 9          | 10                  |
| D-Contro     | 1.0000    | 1.0000 | 1.0000    | 1.0000    | 1.0000     | 1.0000    | 1.0000           | 1.0000   | 1.0000     | 1.0000              |
| D-Contro     |           |        |           |           |            |           |                  |          |            |                     |

|           | _      |        |      | Not  |       |    | Fisher's | 1-Tailed | Iso    | tonic  |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-%    | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Mean   | N-Mean |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 1.0000 | 1.0000 |
| 100       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 1.0000 | 1.0000 |

| Hypothesis '  | Test (1-tail, 0 | 0.05) | NOEC | LOEC | ChV        | TU          |                  |                  |                                                   | •             |     |  |
|---------------|-----------------|-------|------|------|------------|-------------|------------------|------------------|---------------------------------------------------|---------------|-----|--|
| Fisher's Exac | ct Test         |       | 100  | >100 |            | 1           |                  |                  |                                                   |               |     |  |
| Treatments v  | s D-Control     |       |      |      |            |             |                  |                  |                                                   |               |     |  |
|               |                 |       |      |      | ar Interpo | lation (200 | Resam            | ples)            |                                                   |               |     |  |
| Point         | %               | SD    | 95%  | CL   | Skew       |             |                  |                  |                                                   |               |     |  |
| IC05          | >100            |       |      |      |            |             |                  |                  |                                                   |               |     |  |
| IC10          | >100            |       |      |      |            |             |                  |                  |                                                   |               |     |  |
| IC15          | >100            |       |      |      |            |             | 1.0 <sub>T</sub> |                  |                                                   |               |     |  |
| IC20          | >100            |       |      |      |            |             | 0.9              |                  |                                                   |               |     |  |
| IC25          | >100            |       |      |      |            |             | - 1              |                  |                                                   |               |     |  |
| IC40          | >100            |       |      |      |            |             | 0.8 -            |                  |                                                   |               | 1   |  |
| IC50          | >100            |       |      |      |            |             | 0.7              |                  |                                                   |               |     |  |
|               |                 |       |      |      |            |             |                  |                  |                                                   |               |     |  |
|               |                 |       |      |      |            |             | <b>8</b> 0.6 1   |                  |                                                   |               |     |  |
|               |                 |       |      |      |            |             | Response 9.0     |                  |                                                   |               |     |  |
|               |                 |       |      |      |            |             | <b>ॐ</b> ₁₄ 1    |                  |                                                   |               |     |  |
|               |                 |       |      |      |            |             |                  |                  |                                                   |               |     |  |
|               |                 |       |      |      |            |             | 0.3 -            |                  |                                                   |               |     |  |
|               |                 |       |      |      |            |             | 0.2              |                  |                                                   |               |     |  |
|               |                 |       |      |      |            |             | 0.1              |                  |                                                   |               |     |  |
|               |                 |       |      |      |            |             | 0.0              | <del>, , ,</del> | <del>, , , , , , , , , , , , , , , , , , , </del> | <del> •</del> |     |  |
|               |                 |       |      |      |            |             | C                | )                | 50                                                | 100           | 150 |  |
|               |                 |       |      |      |            |             |                  |                  | Do                                                | se %          |     |  |

Reviewed by:

|              |           |        | Cerioda   | phnia Su | rvival and | Reprodu   | uction Tes | t-Repro | duction    |                     |
|--------------|-----------|--------|-----------|----------|------------|-----------|------------|---------|------------|---------------------|
| Start Date:  | 3/22/2011 | 08:00  | Test ID:  | 11032107 | 0          |           | Sample ID  | );      | Outfall 01 | 1                   |
| End Date:    | 3/28/2011 | 09:00  | Lab ID:   | CAATL-Aq | uatic Test | ting Labs | Sample Ty  | ype:    | SRW2-Ind   | lustrial stormwater |
| Sample Date: | 3/20/2011 | 21:35  | Protocol: | FWCH EP  | Α          |           | Test Spec  | ies:    | CD-Cerioo  | laphnia dubia       |
| Comments:    |           |        |           |          |            |           |            |         |            |                     |
| Conc-%       | 1         | 2      | 3         | 4        | 5          | 6         | 7          | 8       | 9          | 10                  |
| D-Control    | 12.000    | 24.000 | 14.000    | 21.000   | 24.000     | 23.000    | 24.000     | 28.000  | 25.000     | 20.000              |
| 100          | 13.000    | 25.000 | 28.000    | 26.000   | 12.000     | 30.000    | 29.000     | 27.000  | 28.000     | 21.000              |

|           |        |        |        | Transform | n: Untrans | sformed |    | Rank   | 1-Tailed | Iso    | tonic  |
|-----------|--------|--------|--------|-----------|------------|---------|----|--------|----------|--------|--------|
| Conc-%    | Mean   | N-Mean | Mean   | Min       | Max        | CV%     | N  | Sum    | Critical | Mean   | N-Mean |
| D-Control | 21.500 | 1.0000 | 21.500 | 12.000    | 28.000     | 23.230  | 10 |        |          | 22.700 | 1.0000 |
| 100       | 23.900 | 1,1116 | 23.900 | 12.000    | 30.000     | 27.220  | 10 | 125.50 | 82.00    | 22.700 | 1.0000 |

| Auxiliary Tests                                                   | Statistic | Critical | Skew Kurt       |
|-------------------------------------------------------------------|-----------|----------|-----------------|
| Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05) | 0.85055   | 0.905    | -1.0995 0.04344 |
| F-Test indicates equal variances (p = 0.44)                       | 1.69666   | 6.54109  |                 |
| 1 - Test indicates equal variances (p = 0.44)                     | 1.03000   | 0.04103  |                 |

Hypothesis Test (1-tail, 0.05)

| _     |      |    | Lir    | near Interpolation | n (200 Re | samples) |                      |                      |             |
|-------|------|----|--------|--------------------|-----------|----------|----------------------|----------------------|-------------|
| Point | %    | SD | 95% CL | Skew               | ,         |          |                      |                      |             |
| IC05  | >100 |    |        |                    |           |          |                      |                      |             |
| IC10  | >100 |    |        |                    |           |          |                      |                      |             |
| IC15  | >100 |    |        |                    |           | 1.0      |                      |                      |             |
| IC20  | >100 |    |        |                    |           | 0.9      |                      |                      |             |
| IC25  | >100 |    |        |                    |           | 0.8      |                      |                      |             |
| IC40  | >100 |    |        |                    |           | 4        |                      |                      | \ \         |
| IC50  | >100 |    |        |                    |           | 0.7      |                      |                      |             |
|       |      |    |        |                    | 4         | 0.6      |                      |                      | 1           |
|       |      |    |        |                    | JSE       | 0.5      |                      |                      |             |
|       |      |    |        |                    | ō         | 0.4      |                      |                      | l l         |
|       |      |    |        |                    | Response  | 0.3      |                      |                      |             |
|       |      |    |        |                    | œ         | 0.2      |                      |                      |             |
|       |      |    |        |                    |           | - 4      |                      |                      |             |
|       |      |    |        |                    |           | 0.1 -    |                      |                      |             |
|       |      |    |        |                    |           | 0.0      | ••••                 | <b>→</b>             | 1           |
|       |      |    |        |                    |           | -0.1     |                      |                      |             |
|       |      |    |        |                    |           | -0.2     | <del>, , , , ,</del> | <del>, , , , ,</del> | <del></del> |
|       |      |    |        |                    |           | n        | 50                   | 100                  | 150         |

Dose %

Page 1

#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet



Lab No.: A-11032107-001

Client ID: TestAmerica - Outfall 0|1 Start Date: 03/22/2011

|            |                       | DAY I                                |                           | DA   | Y 2  | D      | AY 3          | DA       | Y 4           | DA    | 7 5                                          | D/       | 4Y 6     | DA                         | XY 7      |
|------------|-----------------------|--------------------------------------|---------------------------|------|------|--------|---------------|----------|---------------|-------|----------------------------------------------|----------|----------|----------------------------|-----------|
|            |                       |                                      | 24hr                      | 0 hr | 24hr | 0 hr   | 24hr          | 0 hr     | 2 <b>4</b> hr | 0 þ√  | 24hr                                         | 0 hr     | 24hr     | 0 hr                       | 24hr      |
| Analyst In | nitials:              | WY)                                  | ~[                        | 1/4  |      | 1      | 1//           |          | - h           | - 1   | 1/                                           | 1/2      | M        |                            |           |
| Time of Re | adings:               | 00000                                | ga                        | ogai | SOW  | 09N    | Bu            | 080      | 168W          | 083U  | qu                                           | gw       | 090      | -                          |           |
|            | DO                    | 9-08                                 | 5-9                       | 9-1  | 8,7  | 9-1    | 8,1           | 8,3      | 80            | 8-4   | 8.6                                          | 8-9      | 8.7      |                            |           |
| Control    | pН                    | 8-1 8                                | 51                        | 8.1  | 8.1  | 8.0    | 8.0           | 81       | 80            | 8-1   | 8-1                                          | 8-0      | 8-1      |                            | _         |
|            | Temp                  | 2422                                 | 1-3                       | 24-3 | 24.1 | 24.7   | 24.4          | 243      | 24,2          | 24.3  | 244                                          | 24-2     | 24.4     |                            |           |
|            | DO                    | 9-60                                 | 1-1                       | 4-6  | 8.6  | 9.7    | 8.7           | 98       | 86            | 9-9   | 8,6                                          | 8.4      | 8.2      | ~                          |           |
| 100%       | pН                    | 7,2 8                                | 500                       | 7-2  | 80   | 7.2    | 8.1           | 7.3      | 8.0           | 7-2   | 8-0                                          | 76       | 80       |                            |           |
|            | Тетр                  | 24-512                               | 4.4                       | 24.5 | 24,4 | 245    | 24.5          | 24.2     | 24.2          | 24,2  | 24.2                                         | 246      | 21.2     | _                          |           |
|            | Additional Parameters |                                      |                           |      |      |        |               | Cor      | itrol         |       | <u> </u>                                     |          | 100% Sam | ple                        |           |
|            | Conductivity (umohms) |                                      |                           |      |      |        |               | 33       | 9             |       |                                              |          | 114      |                            |           |
|            | All                   | Alkalinity (mg/l CaCO <sub>3</sub> ) |                           |      |      |        |               | 65       | s'            |       |                                              |          | 34       |                            |           |
|            | На                    | Hardness (mg/I CaCO <sub>3</sub> )   |                           |      |      |        |               | 98       | 2             |       |                                              |          | 38       |                            |           |
|            | Ал                    | nmonia (mg/l                         | (mg/l NH <sub>3</sub> -N) |      |      |        |               |          | 2_            |       |                                              |          | 2-(      |                            |           |
|            |                       |                                      |                           |      |      | So     | urce of Ne    | onates   |               |       |                                              |          |          |                            |           |
| Rep        | licate:               | A                                    |                           | В    | С    |        | 0 E F G       |          |               |       |                                              |          | I        |                            | ı         |
| Broo       | od ID:                | 11                                   | -                         | 2B   | 3    |        | 30            | 2:0      | 118           | _ 2   | 6                                            | 2H       | 21       | <u>-   2</u>               | <u>25</u> |
| Sample     |                       | Day                                  |                           |      |      | Number | of Young      | Produced |               |       |                                              | tal Live | No. Live | e A                        | nalyst    |
|            |                       | Day                                  | A                         | В    | С    | D      | E F           | G        | н             | 1 ,   | <u>.                                    </u> | Young    | Adults   | Į.                         | nitials   |
|            |                       | I                                    | ں                         | 0    | 0    | 00     | ) 0           | 0        | 0             | 4     | <u> </u>                                     | Ō        | 112      |                            | W_        |
|            |                       | 2                                    | <u> </u>                  | 10   |      | 0 0    | $\frac{2}{2}$ | , 0      | 9             | 00    |                                              | 0        | 10       |                            |           |
|            |                       | 3                                    | 0                         | 3    | 0    | 00     | _   (         |          | 3             | // (  | $\overline{}$                                | 6        | 10       |                            | W-        |
| Control    |                       | 4                                    | 14                        | 0    | 3    | 4      | 3 6           |          | 9             | 44    |                                              | 37       | 10       |                            |           |
|            |                       | 6                                    | 8                         |      | 10/1 |        | 9<br>5 11     | 12       | 16            | / (   |                                              | 19       | 10       |                            | M-        |
|            |                       | 7                                    | -                         |      | -    | · 1    | - 1 -         |          | -             |       | _                                            |          |          | $\parallel \not \parallel$ |           |
|            |                       | Total                                | 12                        | 24   | 14 - | 21 2   | 4 23          | 24       | 28            | 25 2  | 0 2                                          | 15       | 10       |                            | W_        |
|            |                       | l                                    | C                         | ) Ô  | 0    |        | 0 0           |          | 0             | 0 0   | )                                            | 0        | 10       |                            | W         |
|            |                       | 2                                    | 0                         | 10   | 0    | 00     | 10            | 10       | U             | 00    | 2                                            | 0        | 10       |                            | M         |
|            |                       | 3                                    | 0                         | 1 4  | 3    | 3      | 00            | 3        | 5             | 00    | 1                                            | 8        | 10       | 1                          | M         |
|            |                       | 4                                    | 15                        | 0    | C    | 0      | 45            | U        | 0             | 44    |                                              | 27       | iv       |                            | W         |
| 100%       |                       |                                      |                           | 6    | 9    | 7 (    | 8 8           | 9        | 7             | 8/    |                                              | 69       | 10       |                            | M         |
| 100%       |                       | 5                                    | 14                        |      |      |        |               |          |               |       |                                              |          |          |                            |           |
| 100%       |                       | 6                                    | 8                         | 15   | 16   | 161    | 2/10          | 17       | 15            | 16 10 | 2   1                                        | 30       | 10       |                            | M         |
| 100%       |                       |                                      | 8 -                       |      | -    |        | 231           | _        | 271           | 16 10 | <u> </u>                                     | 30       | /V<br>   | 1                          | W AM      |

Circled fourth brood not used in statistical analysis. 7th day only used if <60% of the surviving control females have produced their third brood.



# CHAIN OF CUSTODY

### Subcontract Order - TestAmerica Irvine (IUC2187)

| SENDING LABORATORY:                                       |                                              | RECEIVING LAB                                     | BORATORY:                            |  |  |  |  |  |  |
|-----------------------------------------------------------|----------------------------------------------|---------------------------------------------------|--------------------------------------|--|--|--|--|--|--|
| TestAmerica Irvine                                        |                                              | Aquatic Testing                                   | g Laboratories-SUB                   |  |  |  |  |  |  |
| 17461 Derian Avenue, Su                                   | ite 100                                      | 4350 Transport Street, Unit 107                   |                                      |  |  |  |  |  |  |
| frvine, CA 92614                                          |                                              | Ventura, CA 93                                    | 3003                                 |  |  |  |  |  |  |
| Phone: (949) 261-1022                                     | •                                            | Phone :(805) 65                                   | 50-0546                              |  |  |  |  |  |  |
| Fax: (949) 260-3297                                       |                                              | Fax: (805) 650                                    |                                      |  |  |  |  |  |  |
| Project Manager: Debby V                                  | Vilson                                       | Project Location<br>Receipt Tempera               | n: California                        |  |  |  |  |  |  |
| Standard TAT is requested                                 | l unless specific due                        | date is requested. ⇒ Due Date:                    | Initials:                            |  |  |  |  |  |  |
| Standard TAT is requested<br>Analysis                     | l unless specific due<br>Units               | date is requested. ≕> Due Date:<br>Expires        | Initials: Comments                   |  |  |  |  |  |  |
| Analysis                                                  | Units                                        | Expires                                           |                                      |  |  |  |  |  |  |
| Analysis                                                  | Units                                        | Expires                                           | Comments                             |  |  |  |  |  |  |
| Analysis                                                  | Units                                        | Expires                                           | 0:00 FH minnow, EPA/821-R02-012, Sui |  |  |  |  |  |  |
| Analysis<br>Sample ID: IUC2187-01 (Ou                     | Units<br>tfall 011 (Grab) - Wa<br>% Survival | ter) Sampled: 03/21/11 10                         | Comments<br>0:00                     |  |  |  |  |  |  |
| Analysis  Sample ID: IUC2187-01 (Our  Bioassay-Acute 96hr | Units<br>tfall 011 (Grab) - Wa<br>% Survival | Expires  ter) Sampled: 03/21/11 10 03/22/11 22:00 | 0:00 FH minnow, EPA/821-R02-012, Sui |  |  |  |  |  |  |

Sample ID: IUC2187-03 (Outfall 011 (Composite) - Water) Sampled: 03/20/11 21:35 Bioassay-7 dy Chrmic --N/A 03/22/11-09:35 Cerro, EPA/821-R02-013, Sub to AgTox Gontainers Supplied: ed Poly (AB)

Released By

Page 3 of 3

| Client Name/A                   | ddress:    |              |              | Projec |          |              |            |                                                  |                      |                                                                                                                                                                                                       |          |                      |                  | ANAL                                                                                               | YSIS          | REQL    | JIRE     | D        |          |          |          |                                                      |
|---------------------------------|------------|--------------|--------------|--------|----------|--------------|------------|--------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|------------------|----------------------------------------------------------------------------------------------------|---------------|---------|----------|----------|----------|----------|----------|------------------------------------------------------|
| MWH-Arcad                       | lia        |              | Į            | _      | -SSFL N  |              |            |                                                  |                      | - oŏ . t                                                                                                                                                                                              |          |                      |                  | Ba.<br>Zn.                                                                                         |               |         |          |          |          |          |          |                                                      |
| 618 Michillinda                 | a Ave, Si  | uite 200     |              | Annua  | I Outfal | 1011         | .,,        |                                                  |                      |                                                                                                                                                                                                       |          | 1                    |                  | 8, 8<br>Tl, Z                                                                                      |               |         |          |          |          |          |          |                                                      |
| Arcadia, CA 9                   | 11007      |              |              | COMP   | OSITE    | - H16        | 1.7        |                                                  |                      | 00.<br>7.08<br>8.0                                                                                                                                                                                    | İ        |                      |                  |                                                                                                    |               |         |          |          |          |          |          |                                                      |
|                                 |            |              |              |        |          |              | i          | -                                                |                      | 9(9)<br>90 (30)                                                                                                                                                                                       |          |                      |                  | . Ag.                                                                                              |               |         |          |          |          | 1        |          | 1                                                    |
| Test America                    | Contact:   | Debby Wils   | son          |        |          |              |            |                                                  |                      | 3.0 (30)                                                                                                                                                                                              |          |                      | '                | 9. S.                                                                                              |               | i       |          | ĺ        |          |          |          |                                                      |
|                                 |            |              |              |        |          |              |            | - 1                                              |                      | ss  <br>90<br>900<br>900<br>aniu                                                                                                                                                                      |          |                      |                  | JZ S                                                                                               | )             |         |          |          |          |          |          |                                                      |
|                                 |            |              |              |        |          |              |            | İ                                                | _                    | 05 S                                                                                                                                                                                                  |          | ے<br>ا               |                  | S C C                                                                                              |               |         |          |          |          |          |          | Comments                                             |
| Project Manag                   | ser. Bro   | nwwn Kelly   |              | Phone  | Numbe    | г.           |            |                                                  | Total Organic Carbon | Gross Alpha(900.0). Gross Beta(900.0),<br>Tritum (H-3) (906.0), Sr-90 (905.0), Total<br>Combined Radum 226 (903.0 or 903.1) &<br>Radum 228 (904.0) Uranium (908.0), K-<br>40, CS-137 (901.0 or 901.1) |          | Monomethy! Hydrazine |                  | Total Dissolved Metals: Cu,<br>Fe, Mn, Sb, As, Be, Cd, Ni,<br>Co, V, Hardness as CaCO <sub>3</sub> | Ì             |         |          |          |          |          |          |                                                      |
|                                 | 301. 010   | -            |              | 1      | 568-669  |              |            | l                                                | ပိ                   | 906<br>906<br>906<br>906<br>906<br>906                                                                                                                                                                |          | ξ                    | ₹.               | SSS SSS                                                                                            |               |         |          |          |          |          |          |                                                      |
| Sampler: Pic                    | F120       | raz a        |              | ( ,    | umber:   | •            |            | ē                                                | ၁င                   | 3) (5) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9                                                                                                                                             |          | <u>-</u>             | Xic              | d A A                                                                                              | 8.6)          | '       |          |          |          | )        |          |                                                      |
| Sampler. P.                     | 12 12 1. 1 | 1101         |              | 1 -    | 568-651  | <b>E</b>     |            | 1.4-Dioxane                                      | иgа                  | 4 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2                                                                                                                                                             |          | <u></u>              | Chronic Toxicity | SSS                                                                                                | Cr (VI) (218. | ω l     |          |          |          |          |          |                                                      |
| Sample                          | Sample     | Container    |              |        | npling   | J            |            | Õ                                                | 0<br>m               | SS /<br>um<br>hubir                                                                                                                                                                                   | 8        | Po                   | ĕ                | <u>@</u> ≥ >                                                                                       | <del>S</del>  | Cyanide |          |          |          |          |          |                                                      |
| Description                     | Matrix     | Type         | # of<br>Cont |        | e/Time   | Preservative | Bottle #   | 1.4                                              | Tota                 | Gro<br>Cor<br>Rac<br>40                                                                                                                                                                               | PCBs     | Σ̈́                  | Š                | S F G                                                                                              | ું            | Č       |          |          |          |          |          |                                                      |
| 0.05-11.044                     | 744        | 1/04-        |              |        | 2011     | нсі          | 23A, 23B,  | Х                                                |                      |                                                                                                                                                                                                       |          |                      |                  |                                                                                                    |               |         |          |          |          |          |          |                                                      |
| Outfall 011                     | W          | VQAs         | 3            | 21     | 35       |              | 23C        | ^                                                | <u> </u>             |                                                                                                                                                                                                       | <u> </u> |                      |                  |                                                                                                    | ļ             |         |          | _        | <u> </u> |          | <u> </u> |                                                      |
| Outfall 011                     | W          | 250 mL Glass | í            |        |          | HCI          | 24         |                                                  | x                    |                                                                                                                                                                                                       |          |                      |                  |                                                                                                    |               |         |          |          |          |          |          |                                                      |
| Outfall 011                     | w          | 2 5 Gal Cube | 1            |        | }        | None         | 25A        |                                                  |                      | ×                                                                                                                                                                                                     |          |                      |                  |                                                                                                    |               |         |          | !        |          |          |          | Unfiltered and unpreserved                           |
| Outlandin                       | VV         | 500 mL Amber | 1            | ]      | ļ        | None         | 25B        |                                                  |                      | ^                                                                                                                                                                                                     |          |                      |                  |                                                                                                    | <u> </u>      |         |          |          |          |          |          | analysis                                             |
| Outfall 011                     | W          | 1L Amber     | 2            |        |          | None         | 26A. 26B   |                                                  |                      |                                                                                                                                                                                                       | х        |                      |                  |                                                                                                    |               |         |          |          |          |          |          |                                                      |
| Outfall 011                     | W          | 1L Amber     | 2            |        |          | None         | 27A 278    |                                                  |                      |                                                                                                                                                                                                       |          | ×                    |                  |                                                                                                    |               |         |          |          |          |          |          |                                                      |
| Outfall 011                     | w          | 1 Gal Cube   | 1            |        |          | None         | 28         |                                                  |                      |                                                                                                                                                                                                       |          |                      | х                |                                                                                                    |               |         |          |          |          |          |          | Only test if first or second rain events of the year |
| Outfall 011                     | w          | 1L Poly      | 1            |        |          | None         | 29         |                                                  |                      |                                                                                                                                                                                                       |          |                      |                  | х                                                                                                  |               |         |          |          |          |          |          | Filter wiin 24hrs of receipt at lab                  |
| Outfall 011                     | W          | 500 mL Poly  | ı            | 1      | -        | None         | 30         |                                                  | ļ                    |                                                                                                                                                                                                       |          |                      |                  |                                                                                                    | ×             |         |          |          |          | <u> </u> |          |                                                      |
| Outfall 011                     | w          | 500 mL Poly  | 1            | 3.     | 10:2011  | NaOH         | 31         | <del>                                     </del> |                      |                                                                                                                                                                                                       |          |                      |                  |                                                                                                    | _             | X       |          |          |          |          |          |                                                      |
|                                 |            |              |              |        |          |              |            |                                                  |                      |                                                                                                                                                                                                       |          |                      | 1                | 1                                                                                                  |               |         |          |          |          |          |          |                                                      |
|                                 | 1          |              | †            |        |          |              | 1          |                                                  |                      |                                                                                                                                                                                                       |          |                      |                  |                                                                                                    | 1             |         |          |          |          |          |          |                                                      |
|                                 |            |              |              |        |          |              |            |                                                  |                      |                                                                                                                                                                                                       |          |                      |                  |                                                                                                    |               |         |          |          |          |          |          |                                                      |
|                                 |            |              |              |        |          |              |            |                                                  |                      | he composite s                                                                                                                                                                                        |          |                      |                  |                                                                                                    |               |         |          |          |          |          |          |                                                      |
|                                 |            |              |              | Th     | ese mu   | st be adde   | d to the s | ame v                                            | work                 | order for COC                                                                                                                                                                                         | Page     | 1 of :               | 3 for            | Outfall 01                                                                                         | 1 for         | the sa  | ıme e    | event    |          |          |          |                                                      |
| Relinquished By                 | 6          |              | Date/T       | ime    | 3-2/-    | 2011         | Received 8 | У                                                |                      | Date/1                                                                                                                                                                                                | lime .   | 1-41                 | , C              |                                                                                                    |               | Turn-a  | round to | me (Ch   | eck)     |          |          |                                                      |
| Vin                             | Bur        | >            |              |        |          | ,            |            | į                                                |                      |                                                                                                                                                                                                       |          |                      |                  |                                                                                                    |               | 24 Hou  | ·        | 72 Hou   | Jr       | _ 10 Day | r        |                                                      |
| ( CE                            |            |              |              |        | 10       | ~~ )         | J. W.      | 2                                                | 1                    | ∾ .                                                                                                                                                                                                   |          | . 5                  | 14               |                                                                                                    |               | 48 Hou  | r        | 5 Day.   | 7        | Norma    | ıl       |                                                      |
| Relinquished By                 |            |              | Date/T       | íme:/\ | <u>`</u> |              | Received 8 | Y/                                               | //                   | Date/1                                                                                                                                                                                                | Time:    |                      |                  | 1 1                                                                                                |               | 1       |          |          |          |          |          |                                                      |
| h 1 .                           |            |              |              | .و     | 1 -/ L   | \            | $  / \nu$  | //                                               | /1/                  | h Au                                                                                                                                                                                                  |          |                      | 5-7              | 217 1                                                                                              | ,             | Sample  | integn   | ty (Che  | ck)      |          |          |                                                      |
| V VM                            | un d       | J V 7000     | 4            |        | 00.      | 6            | 114        | /~                                               | N                    | 1 -7/1/                                                                                                                                                                                               | _        |                      | -                | 21-11                                                                                              | ()            | Intact  |          | On ice   |          |          |          |                                                      |
| Relinquished By Relinquished By | 101        | 1-17-        | Date/T       | îme:   | 0        | . ( )        | Received 8 | y                                                |                      | Date/                                                                                                                                                                                                 | rime:    |                      |                  |                                                                                                    | <del>-</del>  | 1       |          |          |          |          |          |                                                      |
| , ,                             |            | \            |              |        |          |              | <i>//</i>  |                                                  | 0                    | 7                                                                                                                                                                                                     |          |                      |                  |                                                                                                    |               | Data R  | equiren  | nenis (C | Check)   |          |          |                                                      |
|                                 |            |              |              |        |          |              | 7          |                                                  |                      |                                                                                                                                                                                                       |          |                      |                  |                                                                                                    |               | No Lev  | ei IV    | All Lev  | ei IV _  | NPOÈ     | S Level  | ıv <u>t</u>                                          |



# REFERENCE TOXICANT DATA



# Fathead Minnow Acute Toxicity Test Reference Toxicant Data

#### FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS



QA/QC Batch No.: RT-110301

**TEST SUMMARY** 

Species: Pimephales promelas.

Age: <u>I O</u> days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF. Source: In-lab culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs. Test chamber: 600 ml beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

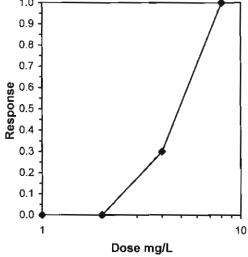
#### **TEST DATA**

|            |      | INITIAL     |     |      |             | 24 Hr   |     |     |             |     | 48 Hr   |               |          |
|------------|------|-------------|-----|------|-------------|---------|-----|-----|-------------|-----|---------|---------------|----------|
|            |      | IMITIAL     |     |      |             |         |     |     |             |     |         |               |          |
| Date/Time: | 3-1  | 3-1-11 1000 |     |      | 3-2-11 0930 |         |     |     | 3-3-11 1000 |     |         |               | )        |
| Analyst:   | ge_  |             |     | M    |             |         |     | gr. |             |     |         |               |          |
|            | °C   | DO          |     | °C   | DO          | -11     | # D | ead | °C          | DO. |         | # D           | ead      |
|            | ٠,   | DO          | рΉ  | 1    | DO          | pH<br>_ | A   | В   |             | DO  | рН      | A             | В        |
| Control    | 20.2 | 9-1         | 8-1 | 20-1 | 8-3         | 7-9     | 0   | 0   | 20.3        | 8.3 | 29      | 0             | 6        |
| 1.0 mg/l   | 20.2 | 9.2         | 81  | 20.1 | 8.1         | 7-9     | 0   | 0   | 20.4        | 7-8 | 7-8     | 0             | 0        |
| 2.0 mg/l   | 20.2 | 4.3         | 8-0 | 200  | 84          | 7.9     | 0   | 0   | 204         | 7-9 | 28      | $\mathcal{C}$ | 0        |
| 4.0 mg/l   | 20.2 | 9.2         | 8-1 | 14.9 | 8.3         | 7-9     | 2   | 0   | 20.4        | 7-7 | ر<br>بر | 0             | 3        |
| 8.0 mg/l   | Z6.Z | 9.2         | 81  | 199  | 8-2         | 7-8     | 10  | 10  |             |     | _       | -             | <u> </u> |

|            | R    | ENEWA | \L   |      |      | 72 Hr |     |     |      |      | 96 Hr |     |     |
|------------|------|-------|------|------|------|-------|-----|-----|------|------|-------|-----|-----|
| Date/Time: | 3-3  | 3-11  | 1000 | 3-   | 4-11 |       | 100 | U   | 3~   | 5-11 |       | 103 | U   |
| Analyst:   |      |       |      | J    |      |       |     |     |      |      |       |     |     |
|            | °C   | DO    | pН   | €    | DO   | .u    | # Ɗ | ead | °C   | DO   | рH    | # D | ead |
|            |      |       | pri  |      | 00   | pН    | Α   | В   |      |      |       | Α   | В   |
| Control    | 205  | 83    | 80   | 20-6 | 8.0  | 7.8   | 0   | 0   | 20-4 | 7.6  | 7.8   | 0   | 0   |
| 1.0 mg/l   | 205  | 8.4   | 80   | 20-5 | 8-1  | 28    | 0   | 0   | 20.3 | 8.3  | 29    | 0   | 0   |
| 2.0 mg/l   | 205  | 86    | 8.0  | 20-4 | 8.1  | 20    | 0   | 0   | 20.3 | 8-4  | 7.9   | 0   | 0   |
| 4.0 mg/l   | 20.5 | 8,7   | 8.0  | 204  | 81   | 28    | O   | 0   | 203  | 8.4  | 7,9   | 0   | /   |
| 8.0 mg/l   | _    | _     |      |      | _    |       |     |     |      |      |       |     |     |

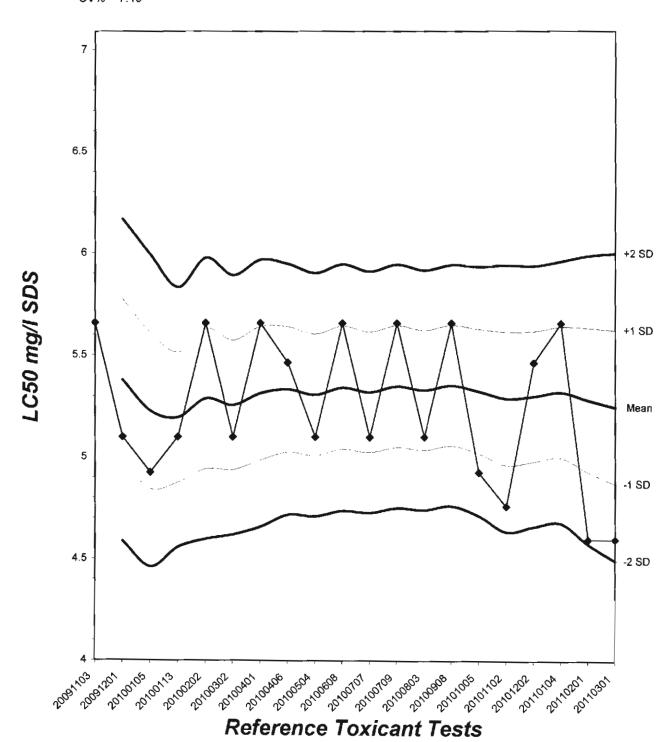
Comments: Control: Alkalinity: 70 mg/l; Hardness: 92 mg/l; Conductivity: 349 umho. SDS: Alkalinity: 7/ mg/l; Hardness: 92 mg/l; Conductivity: 340 umho.

Concentration-response relationship acceptable? (see attached computer analysis):


(Yes (response curve normal)

No (dose interrupted indicated or non-normal)

|              |          |        |           | Acute Fish Test-96         | Hr Survival   |                            |
|--------------|----------|--------|-----------|----------------------------|---------------|----------------------------|
| Start Date:  | 3/1/2011 | 10:00  | Test ID:  | RT110301                   | Sample ID:    | REF-Ref Toxicant           |
| End Date:    | 3/5/2011 | 10:30  | Lab ID:   | CAATL-Aquatic Testing Labs | Sample Type:  | SDS-Sodium dodecyl sulfate |
| Sample Date: | 3/1/2011 |        | Protocol: | ACUTE-EPA-821-R-02-012     | Test Species: | PP-Pimephales promelas     |
| Comments:    |          |        |           |                            |               |                            |
| Conc-mg/L    | 1        | 2      |           |                            |               |                            |
| D-Control    | 1,0000   | 1.0000 |           |                            |               |                            |
| 1            | 1.0000   | 1.0000 |           |                            |               |                            |
| 2            | 1.0000   | 1.0000 |           |                            |               |                            |
| 4            | 0.8000   | 0.6000 |           |                            |               |                            |
| 8            | 0.0000   | 0.0000 |           |                            |               |                            |


|           | Transform: Arcsin Square Root |        |        |        |        |        |   | Number | Total  |
|-----------|-------------------------------|--------|--------|--------|--------|--------|---|--------|--------|
| Conc-mg/L | Mean                          | N-Mean | Mean   | Min    | Max    | CV%    | N | Resp   | Number |
| D-Control | 1.0000                        | 1.0000 | 1.4120 | 1.4120 | 1.4120 | 0.000  | 2 | 0      | 20     |
| 1         | 1.0000                        | 1.0000 | 1.4120 | 1.4120 | 1.4120 | 0.000  | 2 | 0      | 20     |
| 2         | 1.0000                        | 1.0000 | 1.4120 | 1.4120 | 1.4120 | 0.000  | 2 | 0      | 20     |
| 4         | 0.7000                        | 0.7000 | 0.9966 | 0.8861 | 1.1071 | 15.685 | 2 | 6      | 20     |
| 8         | 0.0000                        | 0.0000 | 0.1588 | 0.1588 | 0.1588 | 0.000  | 2 | 20     | 20     |

| Normality of the data set cannot be  |           | Statistic            | Critical | Skew        | Kurt |
|--------------------------------------|-----------|----------------------|----------|-------------|------|
| Normality of the data set carrier be | confirmed |                      |          |             |      |
| Equality of variance cannot be con   | firmed    |                      |          |             |      |
|                                      | Trim      | imed Spearman-Karber |          |             |      |
| Trim Level EC50 95%                  | CL        | _                    |          |             |      |
| 0.0% 4.5948 3.9863                   | 5.2961    |                      |          |             |      |
| 5.0% 4.6576 3.9704                   | 5.4637    |                      |          |             |      |
| 10.0% <b>4</b> .7177 3.9185          | 5.6800    | 1.0 —                |          | <del></del> |      |
| 20.0% 4.8227 3.6460                  | 6.3792    | 2.1                  |          | /           |      |
| Auto-0.0% 4.5948 3.9863              | 5.2961    | 0.9                  |          | /           |      |
|                                      |           | 0.8 -                |          | /           |      |



# Fathead Minnow Acute Laboratory Control Chart

CV% = 7.19



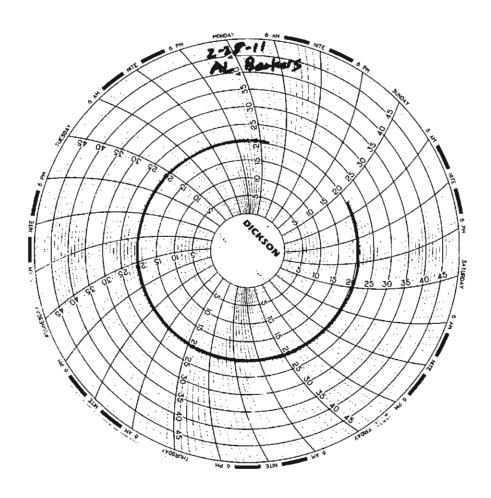
#### **TEST ORGANISM LOG**



# FATHEAD MINNOW - LARVAL (Pimephales promelas)

| QA/QC BATCH NO.: RT 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOURCE: In-Lab Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DATE HATCHED: $\gamma - 19 - 1/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APPROXIMATE QUANTITY: 3 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GENERAL APPEARANCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| # MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DATE USED IN LAB:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVERAGE FISH WEIGHT: Occob gm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LOADING LIMITS: 0.65 gm/liter @ 20°C, 0.40 gm/liter @ 25°C  Approximately 1000 fish per 10 liters limit if held overnight for acclimation without filtration @ 20°C for fish with a mean weight of 0.006 gm.  Approximately 650 fish per 10 liters limit if held overnight for acclimation without filtration @ 25°C for fish with a mean weight of 0.006 gm.  200 ml test solution volume = 0.013 gm mean fish weight limit @ 20°C; 0.008 @ 25°C 250 ml test solution volume = 0.016 gm mean fish weight limit @ 20°C; 0.010 @ 25°C |
| ACCLIMATION WATER QUALITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Temp.: 20-7 °C pH: 3, / Ammonia: 60- mg/l NH <sub>3</sub> -N                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DO: 9-/ mg/l Alkalinity: 20 mg/l Hardness: 92 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

READINGS RECORDED BY:




# Test Temperature Chart

Test No: RT-110301

Date Tested: 03/01/11 to 03/05/11

Acceptable Range: 20+/- 1°C





# Ceriodaphnia dubia Chronic Toxicity Test Reference Toxicant Data

#### CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

#### **REFERENCE TOXICANT - NaCl**



QA/QC Batch No.: RT-110308 Date Tested: 03/08/11 to 03/14/11

#### **TEST SUMMARY**

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

#### RESULTS SUMMARY

| Sample Concentration | Percent Surv | ival | Mean Numb<br>Young Per F |    |
|----------------------|--------------|------|--------------------------|----|
| Control              | 100%         |      | 22.5                     |    |
| 0.25 g/l             | 100%         |      | 23.7                     |    |
| 0.5 g/l              | 100%         |      | 22.9                     |    |
| 1.0 g/l              | 100%         |      | 12.0                     | *  |
| 2.0 g/l              | 90%          |      | 3.9                      | *  |
| 4.0 g/l              | 0%           | *    | 0                        | ** |

<sup>\*</sup> Statistically significantly less than control at P = 0.05 level

\*\* Reproduction data from concentrations greater than survival NOEC are

excluded from statistical analysis.

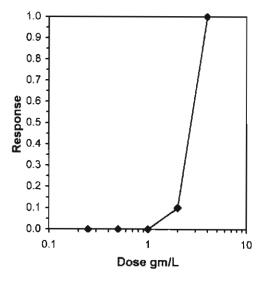
#### **CHRONIC TOXICITY**

| Survival LC50     | 2.6 g/l   |
|-------------------|-----------|
| Reproduction IC25 | 0.70 mg/l |

#### QA/QC TEST ACCEPTABILITY

| Parameter                                        | Result                                                    |
|--------------------------------------------------|-----------------------------------------------------------|
| Control survival ≥80%                            | Pass (100% Survival)                                      |
| ≥15 young per surviving control female           | Pass (22.5 young)                                         |
| ≥60% surviving controls had 3 broods             | Pass (100% with 3 broods)                                 |
| PMSD <47% for reproduction                       | Pass (PMSD = 12.5%)                                       |
| Stat. sig. diff. conc. relative difference > 13% | Pass (Stat. sig. diff. conc. Relative difference = 46.7%) |
| Concentration response relationship acceptable   | Pass (Response curve normal)                              |

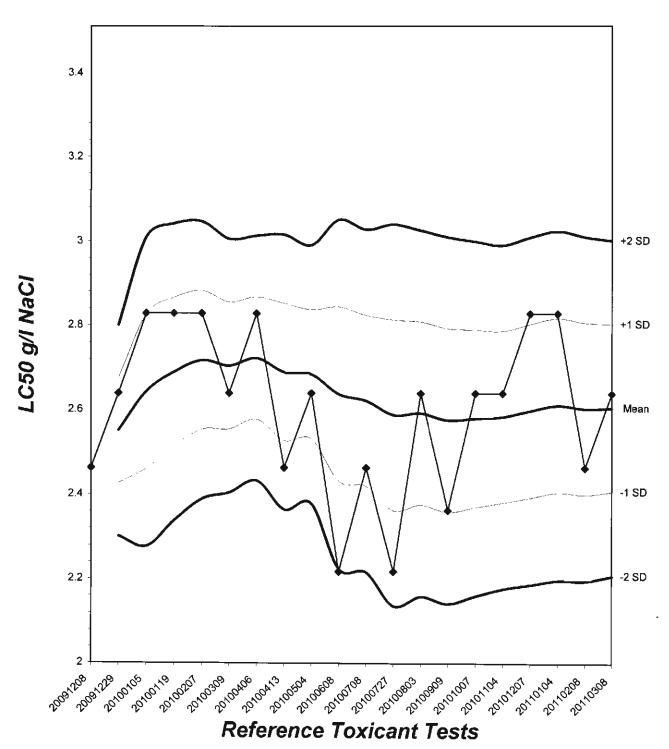
|              |            |        | Cerioda   | aphnia Sui | rvival and | Reprodu   | ction Tes | t-Surviv | al Day 6  |               |
|--------------|------------|--------|-----------|------------|------------|-----------|-----------|----------|-----------|---------------|
| Start Date:  | 3/8/2011 1 | 14:00  | Test ID:  | RT110308   | c          |           | Sample iD | );       | REF-Ref 7 | oxicant       |
| End Date:    | 3/14/2011  | 14:00  | Lab ID:   | CAATL-Ac   | uatic Tes  | ting Labs | Sample Ty | /pe:     | NACL-Soc  | lium chloride |
| Sample Date: | 3/8/2011   |        | Protocol: | FWCH EP    | Α          | •         | Test Spec | ies:     | CD-Cerioo | laphnia dubia |
| Comments:    |            |        |           |            |            |           |           |          |           |               |
| Conc-gm/L    | 1          | 2      | 3         | 4          | 5          | 6         | 7         | 8        | 9         | 10            |
| B-Control    | 1.0000     | 1.0000 | 1,0000    | 1.0000     | 1.0000     | 1.0000    | 1.0000    | 1.0000   | 1.0000    | 1.0000        |
| 0.25         | 1.0000     | 1.0000 | 1.0000    | 1.0000     | 1.0000     | 1.0000    | 1.0000    | 1.0000   | 1.0000    | 1.0000        |
| 0.5          | 1.0000     | 1.0000 | 1.0000    | 1.0000     | 1.0000     | 1.0000    | 1.0000    | 1.0000   | 1.0000    | 1.0000        |
| 1            | 1.0000     | 1.0000 | 1.0000    | 1.0000     | 1.0000     | 1.0000    | 1.0000    | 1.0000   | 1.0000    | 1.0000        |
| 2            | 1.0000     | 0.0000 | 1.0000    | 1.0000     | 1.0000     | 1,0000    | 1.0000    | 1.0000   | 1.0000    | 1.0000        |
| 4            | 0.0000     | 0.0000 | 0.0000    | 0.0000     | 0.0000     | 0.0000    | 0.0000    | 0.0000   | 0.0000    | 0.0000        |


|           |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Number | Total  |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-gm/L | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Resp   | Number |
| B-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 0      | 10     |
| 0.25      | 1,0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 0.5       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 1         | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 2         | 0.9000 | 0.9000 | 1    | 9    | 10    | 10 | 0.5000   | 0.0500   | 1      | 10     |
| 4         | 0.0000 | 0.0000 | 10   | 0    | 10    | 10 |          |          | 10     | 10     |

| Hypothesis Test (1-tail, 0.05) | NOEC | LOEC | ChV     | ΤU |  |
|--------------------------------|------|------|---------|----|--|
| Fisher's Exact Test            | 2    | 4    | 2.82843 |    |  |

Treatments vs B-Control

| Trimmed Spearman-Karber | Trimmed | Spearma | an-Karber |
|-------------------------|---------|---------|-----------|
|-------------------------|---------|---------|-----------|


| Trim Level | EC50   | 95%    | CL     |   |
|------------|--------|--------|--------|---|
| 0.0%       | 2.6390 | 2.3138 | 3.0099 | Т |
| 5.0%       | 2.6984 | 2.2899 | 3.1798 |   |
| 10.0%      | 2.7216 | 2.5094 | 2.9517 |   |
| 20.0%      | 2.7216 | 2.5094 | 2.9517 |   |
| Auto-0.0%  | 2.6390 | 2.3138 | 3.0099 | _ |

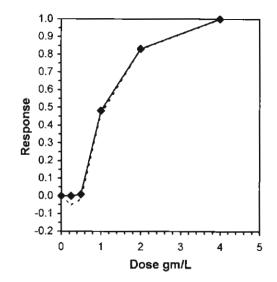


Reviewed by:

## Ceriodaphnia Chronic Survival Laboratory Control Chart

CV% = 7.62

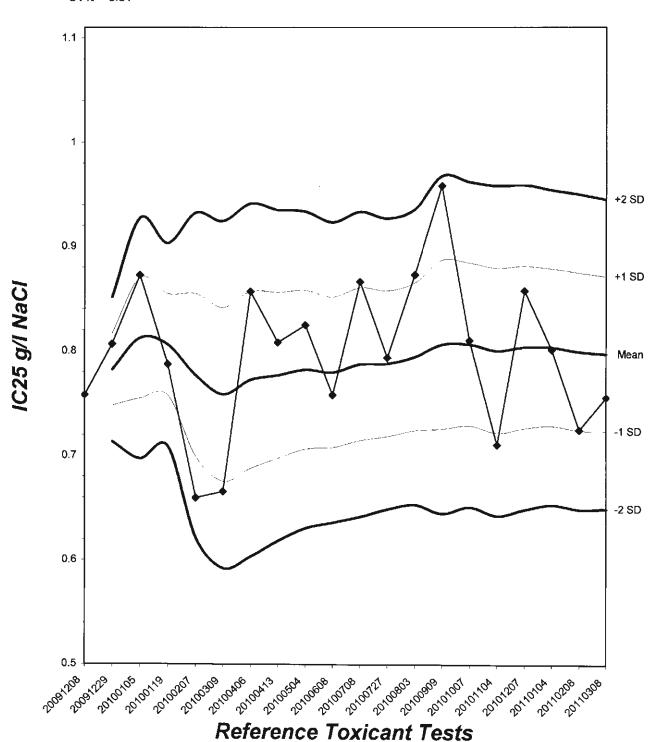



|              |            |        | Cerioda   | Ceriodaphnia Survival and Reproduction Test-Reproduction |            |           |           |           |                      |          |  |  |  |  |  |
|--------------|------------|--------|-----------|----------------------------------------------------------|------------|-----------|-----------|-----------|----------------------|----------|--|--|--|--|--|
| Start Date:  | 3/8/2011 1 | 4:00   | Test ID:  | RT110308                                                 | 3c         |           | Sample ID | );        | REF-Ref              | Toxicant |  |  |  |  |  |
| End Date:    | 3/14/2011  | 14:00  | Lab ID:   | CAATL-A                                                  | quatic Tes | ting Labs | Sample Ty | /pe:      | NACL-Sodium chloride |          |  |  |  |  |  |
| Sample Date: | 3/8/2011   |        | Protocol: | <b>FWCH EP</b>                                           | PA         |           | Test Spec | CD-Cerioo | laphnia dubia        |          |  |  |  |  |  |
| Comments:    |            |        |           |                                                          |            |           | _         |           |                      |          |  |  |  |  |  |
| Conc-gm/L    | 1          | 2      | 3         | 4                                                        | 5          | 6         | 7         | 8         | 9                    | 10       |  |  |  |  |  |
| B-Control    | 24.000     | 24.000 | 19.000    | 23.000                                                   | 23.000     | 24.000    | 21.000    | 25.000    | 21.000               | 21.000   |  |  |  |  |  |
| 0.25         | 24.000     | 24.000 | 21.000    | 22.000                                                   | 23.000     | 25.000    | 24.000    | 24.000    | 24.000               | 26.000   |  |  |  |  |  |
| 0.5          | 25.000     | 23.000 | 20.000    | 24.000                                                   | 23.000     | 27.000    | 22.000    | 21.000    | 20.000               | 24.000   |  |  |  |  |  |
| 1            | 14.000     | 7.000  | 8.000     | 19.000                                                   | 9.000      | 23.000    | 10.000    | 8.000     | 12.000               | 10.000   |  |  |  |  |  |
| 2            | 3.000      | 3.000  | 3.000     | 5.000                                                    | 5.000      | 3.000     | 2.000     | 6.000     | 6.000                | 3.000    |  |  |  |  |  |
| 4            | 0.000      | 0.000  | 0.000     | 0.000                                                    | 0.000      | 0.000     | 0.000     | 0.000     | 0.000                | 0.000    |  |  |  |  |  |

|           |        |        |        | Transform | n: Untran | sformed |    | Rank   | 1-Tailed | Isotonic |        |  |
|-----------|--------|--------|--------|-----------|-----------|---------|----|--------|----------|----------|--------|--|
| Conc-gm/L | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | N  | Sum    | Critical | Mean     | N-Mean |  |
| B-Control | 22.500 | 1.0000 | 22,500 | 19.000    | 25.000    | 8.446   | 10 |        |          | 23.100   | 1,0000 |  |
| 0.25      | 23.700 | 1.0533 | 23.700 | 21.000    | 26.000    | 5.984   | 10 | 123.50 | 76.00    | 23.100   | 1.0000 |  |
| 0.5       | 22.900 | 1.0178 | 22.900 | 20.000    | 27.000    | 9.754   | 10 | 108.00 | 76.00    | 22.900   | 0.9913 |  |
| *1        | 12.000 | 0.5333 | 12.000 | 7.000     | 23.000    | 43.744  | 10 | 60.50  | 76.00    | 12.000   | 0.5195 |  |
| *2        | 3.900  | 0.1733 | 3.900  | 2.000     | 6.000     | 37.157  | 10 | 55.00  | 76.00    | 3.900    | 0.1688 |  |
| 4         | 0.000  | 0.0000 | 0.000  | 0.000     | 0.000     | 0.000   | 10 |        |          | 0.000    | 0.0000 |  |

| Auxiliary Tests                   |                          |            |                |    | Statistic | Critical | Skew    | Kurt   |
|-----------------------------------|--------------------------|------------|----------------|----|-----------|----------|---------|--------|
| Shapiro-Wilk's Test indicates nor | n-normal dis             | stribution | $(p \le 0.05)$ |    | 0.90573   | 0.947    | 1.46249 | 4.8782 |
| Bartlett's Test indicates unequal | variances ( <sub>l</sub> | 0 = 8.08E  | -05)           |    | 23.9758   | 13.2767  |         |        |
| Hypothesis Test (1-tail, 0.05)    | NOEC                     | LOEC       | ChV            | TU |           |          |         | -      |
| Steel's Many-One Rank Test        | 0.5                      | 1          | 0.70711        |    |           |          |         |        |
|                                   |                          |            |                |    |           |          |         |        |

Treatments vs B-Control


|       |        |        |        | Linea  | ar Interpolat | ion (200 Resamples) |
|-------|--------|--------|--------|--------|---------------|---------------------|
| Point | gm/L   | SD     | 95%    | CL     | Skew          |                     |
| IC05  | 0.5438 | 0.0300 | 0.4449 | 0.5664 | -1.9652       |                     |
| IC10  | 0.5968 | 0.0241 | 0.5421 | 0.6337 | -0.3174       |                     |
| IC15  | 0.6498 | 0.0276 | 0.5962 | 0.7005 | 0,2620        | 1.0                 |
| IC20  | 0.7028 | 0.0325 | 0.6466 | 0.7696 | 0.5751        | 0.9                 |
| IC25  | 0.7557 | 0.0383 | 0.6958 | 0.8374 | 0.7146        | 4                   |
| IC40  | 0,9147 | 0.0625 | 0.8295 | 1.0702 | 1.0671        | 0.8                 |
| IC50  | 1.0556 | 0.1119 | 0.9137 | 1.2926 | 0.6361        | 0.7                 |



Reviewed by:

# Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 9.31



#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

#### Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-110308

Start Date: 03/08/2011

|              |       |               |        | NT.                  |     | . of W   |           | מ  |    |    |    | Total         | No.            |                     |
|--------------|-------|---------------|--------|----------------------|-----|----------|-----------|----|----|----|----|---------------|----------------|---------------------|
| Sample       | Day   | A             | В      | C                    | D   | e of Yo  | oung<br>F | G  | H  | I  | J  | Live<br>Young | Live<br>Adults | Analyst<br>Initials |
| <del> </del> | 1     | 0             | 0      | 0                    | 0   | 0        | 0         | 0  | 0  | 0  | C  | 0             | 10             | h                   |
|              | 2     | 0             | 0      | 0                    | 0   | 0        | 0         | 0  | 0  | 0  | 0  | 0             | 10             | 2                   |
|              | 3     | 3             | 4      | U                    | 4   | U        | 4         | 4  | 0  | Μ  | 0  | 22            | 10             | m                   |
| 0 . 1        | 4     | 7             | 0      | 3                    | 0   | 5        | 8         | 7  | U  | 0  | 3  | 37            | 10             | Im                  |
| Control      | 5     | 14            | $\cap$ | 6                    | 7   | 7        | 0         | 0  | 6  | フ  | 8  | 62            | (0             | In                  |
|              | 6     | 0             | B      | 10                   | 12  | 11       | 12        | 10 | 15 | 11 | 10 | 104           | W              | 1/2                 |
|              | 7     | _             |        | _                    | _   | _        |           | -  | )  | į  |    | 1             |                | 1                   |
|              | Total | 24            | 24     | 19                   | 23  | 23       | 24        | 21 | ×  | 2( | 21 | 225           | (1)            |                     |
|              | 1     |               | 0      | 0                    | 0   | 0        | 0         | 0  | 0  |    | 0  | O             | 10             | 2                   |
|              | 2     | 6             | 0      | C                    | 0   | <i>C</i> | 6         | 0  | 0  | d  | 0  | 0             | 10             | 1                   |
|              | 3     | 4             | 4      | 0                    | 3   | 0        | 4         | 5  | O  | 3  | 4  | 27            | 10             |                     |
| 0.25 ~/1     | 4     | 2             | U      | 4                    | 0   | 5        | 7         | 0  | 3  | 0  | 2  | 33            | 10             | 1 h                 |
| 0.25 g/l     | 5     | 13            | 6      | 7                    | フ   | フ        | 0         | つ  | 6  | フ  | 15 | 75            | 10             | h                   |
|              | 6     | U             | 14     | 10                   | 12  |          | 14        | 12 | 15 | 14 | 0  | 102           | 10             | h                   |
|              | 7     | 1             | ţ      |                      |     | 1        |           | )  | )  | _  |    |               |                | 7                   |
|              | Total | 24            | 24     | al                   | 22  | 13       | 25        | 24 | 24 | 24 | 26 | 237           | ID             |                     |
|              | 1     | $\mathcal{C}$ | 0      | 0                    | 0   | J        | 0         | C  | 0  | d  | C  | 0             | 10             | 2                   |
|              | 2     | 0             | 0      | C                    | 0   | Ú        | C         | Ò  | 0  | 0  | 0  | O             | 10             |                     |
|              | 3     | U             | 0      | C                    | 3   | 3        | 0         | 0  | 0  | 3  | 3  | 16            | 10             | 1                   |
| 0.5 - //     | 4     | 7             | 3      | 4                    | 0   | 0        | 4         | 5  | 4  | 0  | 7  | 34            | 10             | 6                   |
| 0.5 g/l      | 5     | 14            | 7      | 6                    | 7   | [>       | 8         | 7  | 7  | 6  | 14 | 83            | 10             | 1                   |
|              | 6     | 0             | 13     | 10                   | 14  | 13       | 15        | 10 | 10 | 11 |    | 91.           | 10             | h                   |
|              | 7     |               |        | J                    | _   | 1        | }         |    |    |    | (  | - 10          |                |                     |
|              | Total | 25            | 23     | $\gamma \mathcal{U}$ | 24. | 73       | 27        | 22 | 71 | 20 | 24 | 2701          | IV             | 1                   |

Circled fourth brood not used in statistical analysis.

<sup>7</sup>th day only used if <60% of the surviving control females have produced their third brood.

#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

#### Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-110308

Start Date: 03/08/2011

|         |       |               |   | Nı | ımbe    | r of Y   | oung] | Produ     | ced |               |               | Total         | No.            | Analyst  |
|---------|-------|---------------|---|----|---------|----------|-------|-----------|-----|---------------|---------------|---------------|----------------|----------|
| Sample  | Day   | A             | В | С  | D       | E        | F     | G         | Н   | I             | J             | Live<br>Young | Live<br>Adults | Initials |
|         | 1     | $\mathcal{C}$ | 0 | 0  | 0       | C        | 0     | C         | 0   | C             | 0             | 0             | 10             | R        |
|         | 2     | 0             | 0 | 0  | 0       | 0        | 0     | 0         | C   |               | $\mathcal{C}$ | 0             | 10             | A        |
|         | 3     | 3             | 0 | 0  | 4       | 0        | 3     | کے        | 0   | C             | $\mathcal{O}$ | 13            | 10             | 2        |
| 1.0.0/1 | 4     | 5             | 3 | 2_ | 0       | 3        | 6     | 7         | 3   | ے             | 3             | 34            | 10             | h        |
| 1.0 g/l | 5     | U             | 4 | 0  | 5       | 6        | 0     | 0         | 5   | 4             | 7             | 37            | 10             | 1 li     |
|         | 6     | 0             | 0 | 6  | 10      | 0        | 14    | D         | 0   | 6             | 0             | 36            | 10             |          |
|         | 7     | -             | } | -  | ĵ       | -        | J     | í         | J   | )             | )             | )             | )              | -        |
|         | Total | 14            | 7 | 8  | (4      | 9        | 23    | 10        | S   | 12            | 10            | 12.0          | 10             | 1        |
|         | 1     | Ò             | Ò | 0  | 0       | 0        | 0     | 0         | C   | 0             | C             | 0             | 10             | 1_       |
|         | 2     | 0             | C | 0  | 0       | 0        | 0     | 0         | 0   | $\mathcal{C}$ | 0             | 0             | 10             | 1        |
|         | 3     | 0             | 3 | 0  | 0       | 0        | 0     | 0         | 0   | 2             | 0             | 5             | 10             | 1_       |
| 2.0 - 1 | 4     | 3             | 0 | 0  | ک       | 2,       | 0     | 0         | _3  | 0             | _3            | 13            | 10             | h        |
| 2.0 g/l | 5     |               | 0 | 3  | 0       | 0        | 3     | 0         | 0   | 4             | 0             | 10            | 10             | 1        |
|         | 6     | U             | X | 0  | 3       | 3        | 0     | 2         | 3   | 0             | 0             | 11            | 9              | M        |
|         | 7     | \             | _ | _  | }       | }        | 1     | )         | J   | _             | _             | _             |                | _        |
|         | Total | 3             | 3 | 3  | 5       | 5        | 3     | 2         | 6   | b             | 3             | 39            | 9              | 1        |
|         | 1     | X             | × | X  | $\prec$ | $\times$ | X.    | X         | X   | $\times$      | ×             | 0             | 0              | 2        |
|         | 2     |               | - | _  | 1       | 1        | )     | )         | -   | _             | _             | )             | -              |          |
|         | 3     | (             | _ |    | 1       |          | J     | 1         | _   | _             | _             |               |                |          |
| 40-4    | 4     | 1             | ) | _  | _       | -,-      | )     | }         | _   |               | _             |               | (              |          |
| 4.0 g/l | 5     | 1             | ) |    |         |          | )     | -         |     |               | -             |               |                |          |
|         | 6     | 1             | ) | _  |         |          | }     | )         |     | (             | _             | _             | _              |          |
|         | 7     | _             |   | _  |         |          |       | }         |     | _             |               |               |                |          |
|         | Total | 0             | 0 | 0  | 0       | 0        | C     | $\subset$ | 0   | 0             | C             |               | C              |          |

Circled fourth brood not used in statistical analysis.

<sup>7</sup>th day only used if <60% of the surviving control females have produced their third brood.

#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

#### Reference Toxicant - NaCl Water Chemistries Raw Data Sheet



QA/QC No.: RT-110308

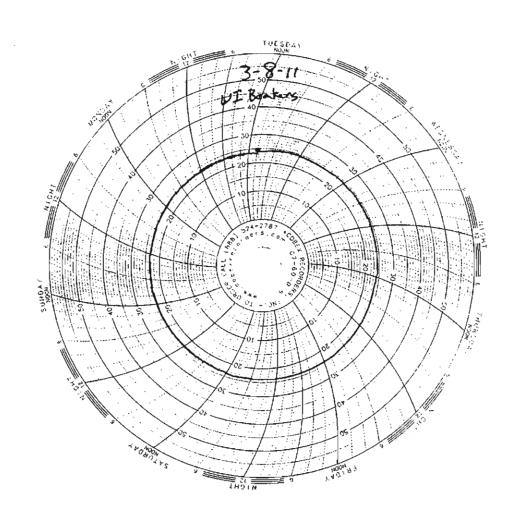
Start Date: 03/08/2011

|           |          | DA      | Y 1   | DA                     | Y 2        | DA        | Y 3        | DA       | Y 4     | DA      | Y 5    | DA       | Y 6   | DA      | Y 7   |
|-----------|----------|---------|-------|------------------------|------------|-----------|------------|----------|---------|---------|--------|----------|-------|---------|-------|
|           |          | Initial | Final | Initial                | Final      | Initial   | Final      | Initial  | Final   | Initial | Final  | Initial  | Final | [nitial | Final |
| Analyst ( | nitials: | W       | FA    | <i>\(\rightarrow\)</i> | .h         | 1         | <b>/</b> - | 1        | m       |         | -7     | 2        | 1     |         | _     |
| Time of R | eadings: | 14n     | 3~    | 32                     | 334        | 1330      | BW         | 300      | 1330    | 1330    | م دور  | 630      | MW    |         |       |
|           | DO       | 8.9     | 8.6   | 7,8                    | 7-9        | 8.1       | 7/8        | 8.7      | 8.2     | 8.8     | 8,5    | 8,4      | 8.2   | _       |       |
| Control   | pН       | 7.9     | 8-1   | 84                     | 8-1        | 51        | 7.1        | 5-0      | 8-1     | 80      | 8,1    | 80       | 7.9   | _       | _     |
|           | Temp     | 25,5    | 25,2  | <i>0510</i>            | 25.3       | 256       | 15.2       | 255      | 244     | 25.0    | 24.4   | 24.7     | 24.2  |         |       |
|           | DO       | 9.5     | 8.6   | 8.2                    | 7.9        | 86        | 8,1        | 8.8      | 82      | 9.0     | 8.4    | 8:7      | 8-5   |         | _     |
| 0.25 g/l  | рН       | 8 V     | 88    | 8.1                    | 5-1        | 8.1       | 79         | 8-1      | 8.1     | 8.1     | g, l   | 8,1      | 7.9   |         |       |
|           | Temp     | 25,3    | 256   | 25.0                   | 25-4       | 256       | 24.9       | 256      | 244     | 25-2    | 24.5   | 24.8     | 24.4  | _       | _     |
| · · ·     | DO       | 9.1     | 8.9   | 8.3                    | 80         | 86        | 8.2        | 8-4      | 8,2     | 8-9     | 8:3    | 8,5      | 8.0   | 1       | 1     |
| 0.5 g/l   | рН       | 8,0     | 8.1   | 81                     | 8.1        | 81        | 7-9        | 8.1      | 8-1     | 91      | 8.1    | 8:1      | 79    |         |       |
|           | Temp     | 253     | 25.7  | 24.9                   | <b>%</b> 3 | 256       | 25.1       | 25.4     | 24.4    | 254     | 24. 3  | 25,0     | 246   |         |       |
|           | DO       | 8.9     | 8,9   | 8.7                    | 8-2        | 8.3       | 8.2        | 8.3      | 8.4     | 9-1     | 8;3    | 8.8      | 8.3   |         |       |
| 1.0 g/l   | pН       | 8,1     | 8.1   | 81                     | 8-1        | 8.1       | 29         | 8.1      | 80      | 81      | 8,1    | 8:1      | 29    |         | _     |
|           | Temp     | 25-5    | 255   | 24,7                   | 25.3       | 255       | 251        | 255      | 24.)    | 25-4    | 24:7   | 24,7     | 24-4  |         |       |
|           | DO       | 8.8     | 89    | 8.9                    | 8.0        | 8-1       | 8,2        | 8,4,     | 8.4     | 8,6     | 8.1    | 8,7      | 8-5   | _       | _     |
| 2.0 g/l   | pН       | 50      | 81    | 8.1                    | 8.1        | 80        | 79         | 8- U     | 8.0     | 8-0     | 8,0    | 800      | 7-9   | 1       |       |
|           | Temp     | 254     | 25.5  | 24.6                   | 25.3       | 25-6      | × 2        | 25-6     | 24,2    | 253     | 24.3   | 24.7     | 245   |         | _     |
|           | DO       | 8.8     | 8.8   | _                      |            |           |            | _        |         |         |        |          |       |         |       |
| 4.0 g/l   | pН       | 8.0     | 80    |                        |            | _         | _          |          |         | ~       |        | -        | ^     | _       |       |
|           | Temp     | DS-6    | 25.2  |                        |            |           |            |          |         |         |        |          |       |         |       |
|           | D:       | ecolvec | Ovvae | n (DO)                 | reading    | re are in | ma/1 (     | 7 · Tamı | arotura | (Tomp)  | readin | an ara i | . 00  |         |       |

Dissolved Oxygen (DO) readings are in mg/l O2; Temperature (Temp) readings are in °C.

|                                    |       | Control |       | High Concentration |       |       |  |  |
|------------------------------------|-------|---------|-------|--------------------|-------|-------|--|--|
| Additional Parameters              | Day 1 | Day 3   | Day 5 | Day 1              | Day 3 | Day 5 |  |  |
| Conductivity (µS)                  | 344   | 352     | 340   | 80.20              | 2870  | 4060  |  |  |
| Alkalinity (mg/l CaCO3)            | 64    | 65      | 66    | 64                 | 65    | 68    |  |  |
| Hardness (mg/l CaCO <sub>3</sub> ) | 92    | 92      | 92    | 93                 | 92    | 93    |  |  |

|            | Source of Neonates             |    |    |    |    |    |    |      |    |    |  |  |  |
|------------|--------------------------------|----|----|----|----|----|----|------|----|----|--|--|--|
| Replicate: | Replicate: A B C D E F G H I J |    |    |    |    |    |    |      |    |    |  |  |  |
| Brood ID:  | 13                             | 33 | 30 | 10 | 3E | 1F | 39 | 31-1 | II | 25 |  |  |  |




# Test Temperature Chart

Test No: RT-110308

Date Tested: 03/08/11 to 03/14/11

Acceptable Range: 25+/- 1°C





EBERLINE ANALYTICAL CORPORATION
2930 Wright Avenue
Richmood, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Tell Free (800) 841-5487
www.eherlineservices.com

April 12, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine IUC2187

Eberline Analytical Report S103143-8681

Sample Delivery Group 8681

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for one water sample received under Test America Job No. IUC2187. The sample was received on March 23, 2011.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

N. Joseph Verville

Client Services Manager

NJV/jag

Enclosure: Level IV CLP-like Data Package CD

#### Case Narrative, page 1

April 12, 2011

#### 1.0 General Comments

Sample delivery group 8681 consists of the analytical results and supporting documentation for one water sample. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

#### 2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

#### 3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 20 error (Total):

| Analysis      | Method Error |
|---------------|--------------|
| Gross alpha   | 20.6%        |
| Gross beta    | 11.0%        |
| Tritium       | 10.0%        |
| Sr-90         | 10.4%        |
| Ra-226        | 16.4%        |
| Ra-228        | 10.4%        |
| Uranium,Total |              |
| Gamma Spec.   | 7.0%         |

#### Case Narrative, page 2

April 12, 2011

#### 4.0 Analysis Notes

- 4.1 Gross Alpha/Gross Beta Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4 Radium-226 Analysis** –No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy No problems were encountered during the processing of the samples. All quality control sample results were within required control limits. The gamma spectroscopy planchets were counted for sufficient time to meet the required Cs-137 detection limit of 20 pCi/L. As a consequence of keying to the Cs-137 RDL, the detection limits for K-40 were not achieved for the sample.

#### 5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

| n Pen Ce                | 4/12/11 |
|-------------------------|---------|
| N. Joseph Verville      | Date    |
| Client Services Manager |         |

SDG <u>8681</u>
Contact <u>N. Joseph Verville</u>

Client <u>Test America, Inc.</u> Contract <u>IUC2187</u>

#### SUMMARY DATA SECTION

| TABLE OF            | СО | N T | E N | T S |    |
|---------------------|----|-----|-----|-----|----|
| About this section  |    |     |     |     | 1  |
| Sample Summaries    | •  |     |     |     | 3  |
| Prep Batch Summary  |    |     |     |     | 5  |
| Work Summary        |    |     |     |     | 6  |
| Method Blanks       |    |     |     |     | 8  |
| Lab Control Samples |    |     |     | •   | 9  |
| Duplicates          |    |     |     |     | 10 |
| Data Sheets         |    |     |     |     | 11 |
| Method Summaries    |    |     |     | •   | 12 |
| Report Guides       |    |     |     |     | 20 |
| End of Section      |    |     |     |     | 34 |
|                     |    |     |     |     |    |

Prepared by

Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06Report date 04/11/11

SDG 8681

SDG <u>8681</u> Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUC2187</u>

#### ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

#### SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

#### PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

#### WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

#### METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

#### LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1
SUMMARY DATA SECTION

Page 1

Lab id <u>EAS</u> Protocol <u>TA</u>

Version Ver 1.0

Form <u>DVD-RG</u> Version <u>3.06</u>

Report date 04/11/11

SDG 8681

SDG 8681

Contact N. Joseph Verville

GUIDE, cont.

Client Test America, Inc.
Contract IUC2187

#### ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

#### MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

#### DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

#### METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

#### REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 2

SDG 8681

SDG 8681
Contact N. Joseph Verville

#### LAB SAMPLE SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2187</u>

| LAB<br>SAMPLE ID | CLIENT SAMPLE ID       | LOCATION      | MATRIX | rever | SAS NO | CHAIN OF<br>CUSTODY | COLLECTED      |
|------------------|------------------------|---------------|--------|-------|--------|---------------------|----------------|
| S103143-01       | IUC2187-03             | Boeing - SSFL | WATER  |       |        | IUC2187             | 03/20/11 21:35 |
| S103143-02       | Lab Control Sample     |               | WATER  |       |        |                     |                |
| S103143-03       | Method Blank           |               | WATER  |       |        |                     |                |
| S103143-04       | Duplicate (S103143-01) | Boeing - SSFL | WATER  |       |        |                     | 03/20/11 21:35 |

LAB SUMMARY
Page 1
SUMMARY DATA SECTION
Page 3

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LS</u>

Version <u>3.06</u>

Report date <u>04/11/11</u>

SDG 8681

| SDG     | 86 | 81     |          |
|---------|----|--------|----------|
| Contact | N. | Joseph | Verville |

#### QC SUMMARY

Client Test America, Inc.
Contract IUC2187

| QC BATCH | CHAIN OF<br>CUSTODY | CLIENT SAMPLE ID                   | MATRIX         | %<br>MOIST | SAMPLE<br>AMOUNT | BASIS<br>AMOUNT | DAYS S   | - | LAB<br>SAMPLE ID         | DEPARTMENT<br>SAMPLE ID |
|----------|---------------------|------------------------------------|----------------|------------|------------------|-----------------|----------|---|--------------------------|-------------------------|
| 8681     | IUC2187             | IUC2187-03                         | WATER          |            | 10.0 L           |                 | 03/23/11 | 3 | \$103143-01              | 8681-001                |
|          |                     | Method Blank<br>Lab Control Sample | WATER<br>WATER |            |                  |                 |          |   | S103143-03<br>S103143-02 | 8681-003<br>8681-002    |
|          |                     | Duplicate (S103143-01)             | WATER          |            | 10.0 L           |                 | 03/23/11 | 3 | S103143-04               | 8681-004                |

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

SDG 8681

SDG 8681
Contact N. Joseph Verville

#### PREP BATCH SUMMARY

Client Test America, Inc.

Contract IUC2187

|       |           |                         | PREPARATION | PREPARATION ERROR |        |      | PLANCHETS ANALYZED |       |     |                  |       |  |
|-------|-----------|-------------------------|-------------|-------------------|--------|------|--------------------|-------|-----|------------------|-------|--|
| TEST  | MATRIX    | METHOD                  | BATCH       | 2σ %              | CLIENT | MORE | RE                 | BLANK | LCS | DUP/ORIG MS/ORIG | FIERS |  |
| Beta  | Counting  |                         |             |                   |        |      |                    |       |     |                  |       |  |
| AC    | WATER     | Radium-228 in Water     | 7281-071    | 10.4              | 1      |      |                    | 1     | 1   | 1/1              |       |  |
| SR    | WATER     | Strontium-90 in Water   | 7281-071    | 10.4              | 1      |      |                    | 1     | 1   | 1/1              |       |  |
| Gas I | roportion | al Counting             |             |                   |        |      |                    |       |     |                  |       |  |
| 80A   | WATER     | Gross Alpha in Water    | 7281-071    | 20.6              | 1      |      |                    | 1     | 1   | 1/1              |       |  |
| 80B   | WATER     | Gross Beta in Water     | 7281-071    | 11.0              | 1      |      |                    | 1     | 1   | 1/1              |       |  |
| Gamma | Spectros  | сору                    |             |                   |        |      |                    |       |     |                  |       |  |
| GAM   | WATER     | Gamma Emitters in Water | 7281-071    | 7.0               | 1      |      |                    | 1     | 1   | 1/1              |       |  |
| Kinet | ic Phosph | orimetry, ug            |             |                   |        |      |                    |       |     |                  |       |  |
| U_T   | WATER     | Uranium, Total          | 7281-071    |                   | 1      |      |                    | 1     | 1   | 1/1              |       |  |
| Liqui | d Scintil | lation Counting .       |             |                   |        |      |                    |       |     |                  |       |  |
| H     | WATER     | Tritium in Water        | 7281-071    | 10.0              | 1      |      |                    | 1     | 1   | 1/1              |       |  |
| Rador | Counting  |                         |             |                   |        |      |                    |       |     |                  |       |  |
| RA    | WATER     | Radium-226 in Water     | 7281-071    | 16.4              | 1      |      |                    | 1     | 1   | 1/1              |       |  |

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY

Page 1

SUMMARY DATA SECTION

Page 5

SDG 8681

SDG 8681
Contact N. Joseph Verville

#### LAB WORK SUMMARY

Client Test America, Inc.
Contract IUC2187

| LAB SAMPLE<br>COLLECTED<br>RECEIVED | CLIENT SAMPLE ID LOCATION CUSTODY SAS no | MATRIX | PLANCHET | TEST   | SUF- | ANALYZED | REVIEWED | BY  | METHOD                  |
|-------------------------------------|------------------------------------------|--------|----------|--------|------|----------|----------|-----|-------------------------|
| S103143-01                          | IUC2187-03                               |        | 8681-001 | 80A/80 |      | 03/31/11 | 04/01/11 | MWT | Gross Alpha in Water    |
| 03/20/11                            | Boeing - SSFL                            | WATER  | 8681-001 | 80B/80 |      | 03/31/11 | 04/01/11 | MWT | Gross Beta in Water     |
| 03/23/11                            | IUC2187                                  |        | 8681-001 | AC     |      | 04/07/11 | 04/08/11 | MWT | Radium-228 in Water     |
|                                     |                                          |        | 8681-001 | GAM    |      | 03/31/11 | 04/04/11 | MWT | Gamma Emitters in Water |
|                                     |                                          |        | 8681-001 | Н      |      | 03/30/11 | 04/04/11 | BW  | Tritium in Water        |
|                                     |                                          |        | 8681-001 | RA     |      | 04/05/11 | 04/06/11 | BW  | Radium-226 in Water     |
|                                     |                                          |        | 8681-001 | SR     |      | 04/01/11 | 04/08/11 | MWT | Strontium-90 in Water   |
|                                     |                                          |        | 8681-001 | U_T    |      | 03/29/11 | 03/29/11 | BW  | Uranium, Total          |
| S103143-02                          | Lab Control Sample                       |        | 8681-002 | 80A/80 |      | 03/31/11 | 04/01/11 | MWT | Gross Alpha in Water    |
|                                     |                                          | WATER  | 8681-002 | 08/808 |      | 03/31/11 | 04/01/11 | MWT | Gross Beta in Water     |
|                                     |                                          |        | 8681-002 | AC     |      | 04/07/11 | 04/08/11 | MWT | Radium-228 in Water     |
|                                     |                                          |        | 8681-002 | GAM    |      | 03/31/11 | 04/04/11 | MWT | Gamma Emitters in Water |
|                                     |                                          |        | 8681-002 | н      |      | 03/30/11 | 04/04/11 | BW  | Tritium in Water        |
|                                     |                                          | •      | 8681-002 | RA     |      | 04/05/11 | 04/06/11 | BW  | Radium-226 in Water     |
|                                     |                                          |        | 8681-002 | SR     |      | 04/01/11 | 04/08/11 | MWT | Strontium-90 in Water   |
|                                     |                                          |        | 8681-002 | U_T    |      | 03/29/11 | 03/29/11 | BW  | Uranium, Total          |
| \$103143-03                         | Method Blank                             |        | 8681-003 | 80A/80 | ,    | 03/31/11 | 04/01/11 | MWT | Gross Alpha in Water    |
|                                     |                                          | WATER  | 8681-003 | 80B/80 |      | 03/31/11 | 04/01/11 | TWM | Gross Beta in Water     |
|                                     |                                          |        | 8681-003 | AC     |      | 04/07/11 | 04/08/11 | MWT | Radium-228 in Water     |
|                                     |                                          |        | 8681-003 | GAM    |      | 03/31/11 | 04/04/11 | MWT | Gamma Emitters in Water |
|                                     |                                          |        | 8681-003 | H      |      | 03/30/11 | 04/04/11 | BW  | Tritium in Water        |
|                                     |                                          |        | 8681-003 | RA     |      | 04/05/11 | 04/06/11 | BW  | Radium-226 in Water     |
|                                     |                                          |        | 8681-003 | SR     |      | 04/01/11 | 04/08/11 | MWT | Strontium-90 in Water   |
|                                     |                                          |        | 8681-003 | U_T    |      | 03/29/11 | 03/29/11 | BW  | Uranium, Total          |
| S103143-04                          | Duplicate (S103143-01)                   |        | 8681-004 | 80A/80 |      | 03/31/11 | 04/01/11 | TWM | Gross Alpha in Water    |
| 03/20/11                            | Boeing - SSFL                            | WATER  | 8681-004 | 808/80 |      | 03/31/11 | 04/01/11 | MWT | Gross Beta in Water     |
| 03/23/11                            |                                          |        | 8681-004 | AC     |      | 04/07/11 | 04/08/11 | MWT | Radium-228 in Water     |
|                                     |                                          |        | 8681-004 | GAM    |      | 03/31/11 | 04/04/11 | MWT | Gamma Emitters in Water |
|                                     |                                          |        | 8681-004 | H      |      | 03/30/11 | 04/04/11 | BW  | Tritium in Water        |
|                                     |                                          |        | 8681-004 | RA     |      | 04/05/11 | 04/06/11 | BW  | Radium-226 in Water     |
|                                     |                                          |        | 8681-004 | SR     |      | 04/01/11 | 04/08/11 | TWM | Strontium-90 in Water   |
|                                     |                                          |        | 8681-004 | U_T    |      | 03/29/11 | 03/29/11 | BW  | Uranium, Total          |

WORK SUMMARY
Page 1
SUMMARY DATA SECTION
Page 6

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 04/11/11

SDG 8681

SDG 8681
Contact N. Joseph Verville

#### WORK SUMMARY, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUC2187</u>

| TEST        | SAS no | COUNT                   | SOF | TESTS<br>REFERENCE | ВЧ | SAMPLE TYPE CLIENT MORE | RE | BLANK | LCS | DUP SPIKE | TOTAL |
|-------------|--------|-------------------------|-----|--------------------|----|-------------------------|----|-------|-----|-----------|-------|
|             |        |                         |     |                    |    |                         |    |       |     |           |       |
| 80A/80      |        | Gross Alpha in Water    |     | 900.0              |    | 1                       |    | 1     | 1   | 1         | 4     |
| 80B/80      |        | Gross Beta in Water     |     | 900.0              |    | 1                       |    | 1     | 1   | 1         | 4     |
| AC          |        | Radium-228 in Water     |     | 904.0              |    | 1                       |    | 1     | 1   | 1         | 4     |
| GAM         |        | Gamma Emitters in Water |     | 901.1              |    | 1                       |    | 1     | 1   | 1         | 4     |
| н           |        | Tritium in Water        |     | 906.0              |    | ı                       |    | 1     | 1   | 1         | 4     |
| RA          |        | Radium-226 in Water     |     | 903.1              |    | 1                       |    | 1     | 1   | 1         | 4     |
| SR          |        | Strontium-90 in Water   |     | 905.0              |    | ı                       |    | 1     | 1   | 1         | 4     |
| <b>U_</b> T |        | Uranium, Total          |     | D5174              |    | 1.                      |    | 1     | 1   | 1         | 4     |
| TOTALS      |        | 49-10                   |     |                    |    | 8                       | •  | 8     | 8   | 8         | 32    |

WORK SUMMARY
Page 2
SUMMARY DATA SECTION
Page 7

Report date 04/11/11

8681-003

#### METHOD BLANK

Method Blank

| SDG <u>8681</u><br>Contact <u>N. Joseph Verville</u>           | Client<br>Contract                  | Test America, Inc.  IUC2187 |  |
|----------------------------------------------------------------|-------------------------------------|-----------------------------|--|
| Lab sample id <u>S103143-03</u> Dept sample id <u>8681-003</u> | Client sample id<br>Material/Matrix |                             |  |

| ANALYTE        | CAS NO   | RESULT<br>pCi/L | 20 ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST |
|----------------|----------|-----------------|-------------------|--------------|--------------|-----------------|------|
| Gross Alpha    | 12587461 | 0.261           | 0.90              | 1.85         | 3.00         | U               | A08  |
| Gross Beta     | 12587472 | -0.333          | 1.4               | 2.40         | 4.00         | U               | 80B  |
| Tritium        | 10028178 | -30.1           | 95                | 163          | 500          | U               | Н    |
| Radium-226     | 13982633 | 0.031           | 0.43              | 0.800        | 1.00         | U               | RA   |
| Radium-228     | 15262201 | -0.153          | 0.16              | 0.434        | 1.00         | U               | AC   |
| Strontium-90   | 10098972 | 0.045           | 0.24              | 0.468        | 2.00         | U               | SR   |
| Uranium, Total |          | 0               | 0.009             | 0.020        | 1.00         | U               | U_T  |
| Potassium-40   | 13966002 | U               |                   | 47.4         | 25.0         | U               | GAM  |
| Cesium-137     | 10045973 | Ū               |                   | 2.34         | 20.0         | Ŭ               | GAM  |

QC-BLANK #77925

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 04/11/11

SDG 8681

8681-002

#### LAB CONTROL SAMPLE

Lab Control Sample

SDG 8681 Contact N. Joseph Verville Client Test America, Inc.

Contract IUC2187

Lab sample id <u>\$103143-02</u>

Dept sample id 8681-002

Client sample id Lab Control Sample Material/Matrix \_\_\_\_\_

WATER

| ANALYTE        | RESULT<br>pCi/L | 20 ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST | ADDED<br>pCi/L | 20 ERR<br>pCi/L | REC<br>% | 20 LMTS<br>(TOTAL) | PROTOCOL |
|----------------|-----------------|-------------------|--------------|--------------|-----------------|------|----------------|-----------------|----------|--------------------|----------|
| Gross Alpha    | 122             | 6.6               | 1.21         | 3.00         |                 | 80A  | 101            | 4.0             | 121      | 74-126             | 70~130   |
| Gross Beta     | 83.8            | 3.7               | 3.06         | 4.00         |                 | 80B  | 87.1           | 3.5             | 96       | 88-112             | 70-130   |
| Tritium        | 2150            | 150               | 166          | 500          |                 | H    | 2350           | 94              | 91       | 88-112             | 80-120   |
| Radium-226     | 49.0            | 2.5               | 0.859        | 1.00         |                 | RA   | 55.7           | 2.2             | 88       | 84-116             | 80-120   |
| Radium-228     | 3.92            | 0.34              | 0.432        | 1.00         |                 | AC   | 5.01           | 0.20            | 78       | 89-111             | 60-140   |
| Strontium-90   | 19.7            | 1.4               | 0.576        | 2.00         |                 | SR   | 17.4           | 0.70            | 113      | 85-115             | 80-120   |
| Uranium, Total | 55.3            | 6.6               | 0.205        | 1.00         |                 | U_T  | 56.5           | 2.3             | 98       | 88-112             | 80-120   |
| Cobalt-60      | 123             | 5.2               | 2.50         | 10.0         |                 | GAM  | 124            | 5.0             | 99       | 91-109             | 80~120   |
| Cesium-137     | 118             | 4.8               | 3.18         | 20.0         |                 | GAM  | 110            | 4.4             | 107      | 90-110             | 80-120   |

|--|

LAB CONTROL SAMPLES Page 1 SUMMARY DATA SECTION Page 9

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LCS Version 3.06 Report date <u>04/11/11</u>

SDG 8681

8681-004

IUC2187-03

#### DUPLICATE

SDG 8681

Contact N. Joseph Verville

DUPLICATE

Lab sample id <u>S103143-04</u>
Dept sample id <u>8681-004</u>

ORIGINAL

Lab sample id <u>S103143-01</u>

Dept sample id 8681-001

Received 03/23/11

Client Test America, Inc.

Contract IUC2187

Client sample id <u>IUC2187-03</u>

Location/Matrix Boeing - SSFL WATER

Collected/Volume 03/20/11 21:35 10.0 L

Chain of custody id IUC2187

|                | DUPLICATE | 20 ERR  | MDA   | $\mathtt{RDL}$ | QUALI~ |      | ORIGINAL | 2σ ERR  | MDA   | QUALI~ | RPD | 3σ  | DER |
|----------------|-----------|---------|-------|----------------|--------|------|----------|---------|-------|--------|-----|-----|-----|
| ANALYTE        | pCi/L     | (COUNT) | pCi/L | pCi/L          | FIERS  | TEST | pCi/L    | (COUNT) | pCi/L | FIERS  | *   | TOT | o   |
| Gross Alpha    | 1.94      | 0.48    | 0.434 | 3.00           | J      | 80A  | 2.26     | 0.46    | 0.276 | J      | 15  | 65  | 0.7 |
| Gross Beta     | 6.74      | 0.70    | 0.831 | 4.00           |        | 80B  | 6.22     | 0.70    | 0.866 |        | 8   | 33  | 0.7 |
| Tritium        | -10.9     | 99      | 168   | 500            | U      | н    | -77.2    | 96      | 167   | U      | -   |     | 1.0 |
| Radium-226     | 0.283     | 0.42    | 0.711 | 1.00           | U      | RA   | 0.350    | 0.34    | 0.544 | σ      | -   |     | 0.2 |
| Radium-228     | 0.235     | 0.38    | 0.402 | 1.00           | U      | AC   | 0.229    | 0.32    | 0.420 | Ü      | ~   |     | 0   |
| Strontium-90   | 0.078     | 0.32    | 0.717 | 2.00           | U      | SR   | -0.018   | 0.26    | 0.625 | ט      | -   |     | 0.5 |
| Uranium, Total | 0.292     | 0.034   | 0.020 | 1.00           | J      | u_T  | 0.321    | 0.18    | 0.020 | J      | 9   | 90  | 0.3 |
| Potassium-40   | U         |         | 15.8  | 25.0           | U      | GAM  | ū        |         | 58.4  | U      | -   |     | 1.4 |
| Cesium-134     | υ         |         | 3.68  | 20.0           | U      | GAM  | σ        |         |       | J      | 0   | 213 | 0   |
| Cesium-137     | Ū         |         | 1.17  | 20.0           | O      | GAM  | Ü        |         | 3,25  | U      | -   |     | 1.2 |

QC-DUP#1 77926

DUPLICATES
Page 1
SUMMARY DATA SECTION
Page 10

Lab id EAS

Protocol TA

Version Ver 1.0
Form DVD-DUP

Version 3.06

Report date <u>04/11/11</u>

8681-001

#### DATA SHEET

IUC2187-03

|                                             | 8681<br>N. Joseph Verville | Client<br>Contract                                                           | Test America, Inc. IUC2187             |       |
|---------------------------------------------|----------------------------|------------------------------------------------------------------------------|----------------------------------------|-------|
| Lab sample id<br>Dept sample id<br>Received | 8681-001<br>03/23/11       | Client sample id<br>Location/Matrix<br>Collected/Volume<br>ain of custody id | Boeing - SSFL<br>03/20/11 21:35 10.0 L | WATER |

| ANALYTE        | CAS NO   | RESULT<br>pCi/L | 2o ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST |
|----------------|----------|-----------------|-------------------|--------------|--------------|-----------------|------|
| Gross Alpha    | 12587461 | 2.26            | 0.46              | 0.276        | 3.00         | J               | 80A  |
| Gross Beta     | 12587472 | 6.22            | 0.70              | 0.866        | 4.00         |                 | 80B  |
| Tritium        | 10028178 | -77.2           | 96                | 167          | 500          | Ū               | H    |
| Radium-226     | 13982633 | 0.350           | 0.34              | 0.544        | 1.00         | U               | RA   |
| Radium-228     | 15262201 | 0.229           | 0.32              | 0.420        | 1.00         | U               | AC   |
| Strontium-90   | 10098972 | -0.018          | 0.26              | 0.625        | 2.00         | U               | SR   |
| Uranium, Total |          | 0.321           | 0.18              | 0.020        | 1.00         | J               | UТ   |
| Potassium-40   | 13966002 | U               |                   | 58.4         | 25.0         | U               | GAM  |
| Cesium-137     | 10045973 | U               |                   | 3.25         | 20.0         | Ū               | GAM  |

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

SDG 8681

Test AC Matrix WATER

SDG 8681

Contact N. Joseph Verville

#### LAB METHOD SUMMARY

Client <u>Test America</u>, <u>Inc.</u>
Contract <u>IUC2187</u>

RADIUM-228 IN WATER BETA COUNTING

#### RESULTS

| SAMPLE ID TEST    | PIX PLANCHET | CLIENT SAMPLE ID       | Radium-228 |
|-------------------|--------------|------------------------|------------|
| Preparation batch | 7281-071     |                        |            |
| S103143-01        | 8681-001     | IUC2187-03             | ប          |
| S103143-02        | 8681-002     | Lab Control Sample     | ok         |
| S103143-03        | 8681-003     | Method Blank           | U          |
| S103143-04        | 8681-004     | Duplicate (S103143-01) | - U        |

#### METHOD PERFORMANCE

| LAB                                     | RAW SUF-                       | MDA       | ALIQ    | PREP  | DILU-    | ALETD | EFF  | COUNT  | FWHM | DRIFT | DAYS |          | ANAL- |          |
|-----------------------------------------|--------------------------------|-----------|---------|-------|----------|-------|------|--------|------|-------|------|----------|-------|----------|
| SAMPLE ID                               | TEST FIX CLIENT SAMPLE ID      | pCi/L     | L       | FAC   | TION     | *     | *    | min    | ke∀  | KeV   | HELD | PREPARED | YZED  | DETECTOR |
| • • • • • • • • • • • • • • • • • • • • |                                |           |         |       |          |       |      |        |      |       |      |          |       |          |
| Preparation                             | batch 7281-071 20 prep error 1 | 0.4 % Rei | ference | Lab N | loteboo! | k No. | 7281 | pg. 73 | L    |       |      |          |       |          |
| S103143-01                              | IUC2187-03                     | 0.420     | 1.80    |       |          | 89    |      | 150    |      |       | 18   | 04/07/11 | 04/07 | GRB-229  |
| S103143-02                              | Lab Control Sample             | 0.432     | 1.80    |       |          | 80    |      | 150    |      |       |      | 04/07/11 | 04/07 | GRB-230  |
| S103143-03                              | Method Blank                   | 0.434     | 1.80    |       |          | 89    |      | 150    |      |       |      | 04/07/11 | 04/07 | GRB-231  |
| S103143-04                              | Duplicate (S103143-01)         | 0.402     | 1.80    |       |          | 88    |      | 150    |      |       | 18   | 04/07/11 | 04/07 | GRB-232  |
|                                         |                                |           |         |       |          |       |      |        |      |       |      |          |       |          |
| Nominal val                             | ues and limits from method     | 1.00      | 1.80    |       |          | 30-10 | 5    | 50     |      |       | 180  |          |       |          |

| PROCEDURES | REFERENCE | 904.0                                            |
|------------|-----------|--------------------------------------------------|
|            | DWP-894   | Sequential Separation of Actinium-228 and        |
|            |           | Radium-226 in Drinking Water (>1 Liter Aliquot), |
|            |           | rev 5                                            |

AVERAGES ± 2 SD MDA 0.422 ± 0.029
FOR 4 SAMPLES YIELD 86 ± 9

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 12

Lab id EAS

Report date <u>04/11/11</u>

SDG 8681

Test SR Matrix WATER
SDG 8681
Contact N. Joseph Verville

#### LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2187</u>

STRONTIUM-90 IN WATER
BETA COUNTING

RESULTS

RAW SUF-LAB SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Strontium-90 Preparation batch 7281-071 S103143-01 8681-001 IUC2187-03 S103143-02 8681-002 Lab Control Sample ok 8681-003 Method Blank U S103143-03 S103143-04 8681-004 Duplicate (S103143-01) Nominal values and limits from method RDLs (pCi/L) 2.00

METHOD PERFORMANCE

| LAB         | RAW SUF-                       | MDA      | ALIQ    | PREP  | DILU-    | AIETD  | EFF  | COUNT  | FWHM | DRIFT | DAYS |          | ANAL- |          |
|-------------|--------------------------------|----------|---------|-------|----------|--------|------|--------|------|-------|------|----------|-------|----------|
| SAMPLE ID   | TEST FIX CLIENT SAMPLE ID      | pCi/L    | L       | FAC   | TION     | *      | *    | min    | keV  | KeV   | HELD | PREPARED | YZED  | DETECTOR |
|             |                                |          |         |       |          |        |      |        |      |       |      |          |       |          |
| Preparation | batch 7281-071 20 prep error 1 | 0.4 % Re | ference | Lab N | loteboo! | k No.  | 7281 | pg, 71 | L    |       |      |          |       |          |
| S103143-01  | IUC2187~03                     | 0.625    | 0.500   |       |          | 86     |      | 50     |      |       | 12   | 04/01/11 | 04/01 | GRB-228  |
| \$103143-02 | Lab Control Sample             | 0.576    | 0.500   |       |          | 94     |      | 50     |      |       |      | 04/01/11 | 04/01 | GRB-232  |
| S103143-03  | Method Blank                   | 0.468    | 0.500   |       |          | 85     |      | 100    |      |       |      | 04/01/11 | 04/01 | GRB-231  |
| S103143-04  | Duplicate (S103143-01)         | 0.717    | 0.500   |       |          | 83     |      | 50     |      |       | 12   | 04/01/11 | 04/01 | GRB-204  |
|             |                                |          |         |       |          |        |      |        |      |       |      |          |       |          |
| Nominal val | ues and limits from method     | 2.00     | 0.500   |       |          | 30-109 | 5    | 50     |      |       | 180  |          |       |          |

PROCEDURES REFERENCE 905.0 .

DWP-380 Strontium in Drinking Water, rev 8

AVERAGES ± 2 SD MDA 0.596 ± 0.207

FOR 4 SAMPLES YIELD 87 ± 10

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 13

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-LMS

Version 3.06

Report date <u>04/11/11</u>

SDG 8681

Test <u>80A</u> Matrix <u>WATER</u>

SDG <u>8681</u>

Contact <u>N. Jdseph Verville</u>

#### LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2187</u>

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

#### RESULTS

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX | PLANCHET | CLIENT SAMPLE ID       | Gross Alpha |  |
|------------------|----------------------|----------|------------------------|-------------|--|
| Preparation      | batch 728            | 1-071    |                        |             |  |
| S103143-01       | 80                   | 8681-001 | IUC2187-03             | 2.26 J      |  |
| 9103143-02       | 80                   | 8681-002 | Lab Control Sample     | ok          |  |
| 5103143-03       | 80                   | 8681-003 | Method Blank           | U           |  |
|                  | 80                   | 8681-004 | Duplicate (S103143-01) | ok J        |  |

#### METHOD PERFORMANCE

| LAB         | RAW SUF-   |                        | MDA      | ALIQ    | PREP  | DILU-   | RESID | EFF  | COUNT  | FWHM | DRIFT | DAYS |          | ANAL- |          |
|-------------|------------|------------------------|----------|---------|-------|---------|-------|------|--------|------|-------|------|----------|-------|----------|
| SAMPLE ID   | TEST FIX   | CLIENT SAMPLE ID       | pCi/L    | L       | FAC   | TION    | wg    | ş    | min    | keV  | KeV   | HELD | PREPARED | ASED  | DETECTOR |
| Preparation | batch 728  | 1-071 20 prep error 20 | ).6 % Re | ference | Lab N | oteboo! | k No. | 7281 | pg. 71 | L    |       |      |          |       |          |
| S103143-01  | 80         | IUC2187-03             | 0.276    | 0.300   |       |         | 27    |      | 400    |      |       | 11   | 03/31/11 | 03/31 | GRB-101  |
| S103143-02  | 80         | Lab Control Sample     | 1.21     | 0.100   |       |         | 60    |      | 400    |      |       |      | 03/31/11 | 03/31 | GRB-103  |
| S103143-03  | 80         | Method Blank           | 1.85     | 0.100   |       |         | 60    |      | 400    |      |       |      | 03/31/11 | 03/31 | GRB-104  |
| \$103143-04 | 80         | Duplicate (S103143-01) | 0.434    | 0.300   |       |         | 26    |      | 400    |      |       | 11   | 03/31/11 | 03/31 | GRB-109  |
|             |            |                        |          |         |       |         |       |      |        |      |       |      |          |       |          |
| Nominal val | ues and li | mits from method       | 3.00     | 0.100   |       |         | 0-20  | 0    | 100    |      |       | 180  |          |       |          |

| PROCEDURES | REFERENCE | 900.0                                         |
|------------|-----------|-----------------------------------------------|
|            | DWP-121   | Gross Alpha and Gross Beta in Drinking Water, |
|            |           | rev 10                                        |

| AVERAGES ± 2 SD | MDA     | 0.942 | ± | 1.46 |
|-----------------|---------|-------|---|------|
| FOR 4 SAMPLES   | RESIDUE | 43    | ± | 39   |

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 14

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>04/11/11</u>

Lab id EAS

SDG 8681

Test 80B Matrix WATER

SDG <u>8681</u>

Contact N. Joseph Verville

#### LAB METHOD SUMMARY

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>IUC2187</u>

#### RESULTS

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX | PLANCHET | CLIENT SAMPLE ID       | Gross Beta |  |
|------------------|----------------------|----------|------------------------|------------|--|
| Preparation      | batch 728            | 1-071    | _                      |            |  |
| S103143-01       | 80                   | 8681-001 | IUC2187-03             | 6.22       |  |
| S103143-02       | 80                   | 8681-002 | Lab Control Sample     | ok         |  |
| S103143-03       | 80                   | 8681-003 | Method Blank           | υ          |  |
|                  | 80                   | 8681-004 | Duplicate (S103143-01) | ok         |  |

#### METHOD PERFORMANCE

| LAB<br>SAMPLE ID | RAW SUF-   | CLIENT SAMPLE ID       | MDA<br>pCi/L | ALIQ<br>L | PREP<br>FAC |          | RESID<br>mg | EFF<br>% |       | FWHM<br>keV |         | PREPARED | ANAL-<br>YZED | DETECTOR |
|------------------|------------|------------------------|--------------|-----------|-------------|----------|-------------|----------|-------|-------------|---------|----------|---------------|----------|
| Preparation      | batch 728  | 1-071 20 prep error 1  | .1.0 % Re    | ference   | Lab M       | Noteboo! | k No.       | 7281     | pg. 7 | L           |         |          |               |          |
| S103143-01       | 80         | IUC2187-03             | 0.866        | 0.300     |             |          | 27          |          | 400   |             | 11      | 03/31/11 | 03/31         | GRB-101  |
| \$103143-02      | 80         | Lab Control Sample     | 3.06         | 0.100     |             |          | 60          |          | 400   |             |         | 03/31/11 | 03/31         | GRB-103  |
| S103143-03       | 80         | Method Blank           | 2.40         | 0.100     |             |          | 60          |          | 400   |             |         | 03/31/11 | 03/31         | GRB-104  |
| S103143-04       | 80         | Duplicate (S103143-01) | 0.831        | 0.300     |             |          | 26          | `        | 400   |             | 11      | 03/31/11 | 03/31         | GRB-109  |
| Nominal val      | ues and li | mits from method       | 4.00         | 0.100     |             |          | 0-20        | 0        | 100   |             | <br>180 |          |               |          |

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,
rev 10

AVERAGES ± 2 SD MDA 1.79 ± 2.24

FOR 4 SAMPLES RESIDUE 43 ± 39

METHOD SUMMARIES

Page 4

SUMMARY DATA SECTION

Page 15

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>04/11/11</u>

 Lab id EAS

 Protocol TA

 Version Ver 1.0

SDG 8681

Test GAM Matrix WATER

SDG 8681

Contact N. Joseph Verville

#### LAB METHOD SUMMARY

Client Test America, Inc.
Contract IUC2187

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

#### RESULTS

| SAMPLE ID TEST    | FIX PLANCHET | CLIENT SAMPLE ID       | Cobalt-60 | Cesium-1 | 137 |
|-------------------|--------------|------------------------|-----------|----------|-----|
| Preparation batch | 1 7281-071   |                        |           |          |     |
| \$103143-01       | 8681-001     | IUC2187-03             |           | U        |     |
| S103143-02        | 8681-002     | Lab Control Sample     | ok        | ok       |     |
| S103143-03        | 8681-003     | Method Blank           |           | Ü        |     |
| S103143-04        | 8681-004     | Duplicate (S103143-01) |           | -        | Ū   |

#### METHOD PERFORMANCE

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX CLIENT SAMPLE ID | MDA<br>pCi/L | ALIQ<br>L | PREP  | DILU-<br>TION | *     |      |        | FWHM<br>keV |     | PREPARED | ANAL-<br>YZED | DETECTOR |
|------------------|---------------------------------------|--------------|-----------|-------|---------------|-------|------|--------|-------------|-----|----------|---------------|----------|
| Preparation      | batch 7281-071 20 prep error 7        | .0 % Refe    | erence    | Lab N | oteboo        | c No. | 7281 | pg. 71 | L           |     |          |               |          |
| S103143-01       | IUC2187-03                            |              | 2.00      |       |               |       |      | 401    |             | 11  | 03/24/11 | 03/31         | MB,05,00 |
| S103143-02       | Lab Control Sample                    |              | 2.00      |       |               |       |      | 401    |             |     | 03/24/11 | 03/31         | MB,08,00 |
| S103143-03       | Method Blank                          |              | 2.00      |       |               |       |      | 621    |             |     | 03/24/11 | 03/31         | MB,05,00 |
| \$103143-04      | Duplicate (S103143-01)                |              | 2.00      |       |               |       |      | 596    |             | 11  | 03/24/11 | 03/31         | MB,08,00 |
| Nominal val      | ues and limits from method            | 6.00         | 2.00      |       |               |       |      | 400    |             | 180 |          |               |          |

| PROCEDURES | REFERENCE | 901.1                       |                       |
|------------|-----------|-----------------------------|-----------------------|
|            | DWP-100   | Preparation of Drinking Wat | ter Samples for Gamma |
|            |           | Spectroscopy, rev 5         |                       |

METHOD SUMMARIES

Page 5
SUMMARY DATA SECTION

Page 16

Report date <u>04/11/11</u>

SDG 8681

| Test    | <u>u t</u> | Matrix   | WATER   |
|---------|------------|----------|---------|
| SDG     | 8681       | _        |         |
| Contact | N. Jo      | oseph Ve | erville |

#### LAB METHOD SUMMARY

Client Test America, Inc.
Contract IUC2187

URANIUM, TOTAL
KINETIC PHOSPHORIMETRY, UG

RESULTS

| LAB         | RAW SUF-          |                        | Uranium, |  |
|-------------|-------------------|------------------------|----------|--|
| SAMPLE ID   | TEST FIX PLANCHET | CLIENT SAMPLE ID       | Total    |  |
| Preparation | batch 7281-071    | _                      |          |  |
| S103143-01  | 8681-001          | IUC2187-03             | 0.321 J  |  |
| S103143-02  | 8681-002          | Lab Control Sample     | ok       |  |
| S103143-03  | 8681-003          | Method Blank           | υ        |  |
| S103143-04  | 8681-004          | Duplicate (S103143-01) | ok J     |  |

#### METHOD PERFORMANCE

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX CLIENT SAMPLE ID | MDA<br>pCi/L | ALIQ<br>L | PREP<br>FAC | TION    | *<br>Alerd  | EFF<br>% | COUNT<br>min | FWHM<br>keV |     | PREPARED | ANAL-<br>YZED | DETECTOR |
|------------------|---------------------------------------|--------------|-----------|-------------|---------|-------------|----------|--------------|-------------|-----|----------|---------------|----------|
| Dranaration      | a batch 7281-071 20 prep error        | Re           | ference   | Lab N       | oteboo! | c No.       | 7281     | ng. 7        | 1           |     |          |               |          |
| S103143-01       | IUC2187-03                            | 0.020        |           |             | .000000 |             | , 201    | 23. 7.       | -           | 9   | 03/29/11 | 03/29         | KPA-001  |
| S103143-02       | Lab Control Sample                    | 0.205        | 0.0200    |             |         |             |          |              |             |     | 03/29/11 | 03/29         | KPA-001  |
| S103143-03       | Method Blank                          | 0.020        | 0.0200    |             |         |             |          |              |             |     | 03/29/11 | 03/29         | KPA-001  |
| S103143-04       | Duplicate (S103143-01)                | 0.020        | 0.0200    |             |         |             |          |              |             | 9   | 03/29/11 | 03/29         | KPA-001  |
|                  | -122/1                                |              |           |             |         | <del></del> |          |              |             |     |          |               |          |
| Nominal val      | ues and limits from method            | 1.00         | 0.0200    |             |         |             |          |              |             | 180 |          |               |          |

| PROCEDURES REFERENCE D5174 | AVERAGES ± 2 SD   | MDA 0.066 ± 0.185 |
|----------------------------|-------------------|-------------------|
|                            | <br>FOR 4 SAMPLES | YIELD ±           |

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 17

Report date <u>04/11/11</u>

SDG 8681

Test H Matrix WATER

SDG 8681

Contact N. Joseph Verville

#### LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2187</u>

TRITIUM IN WATER

#### RESULTS

| SAMPLE ID TEST, I | YIX PLANCHET |                        |     |
|-------------------|--------------|------------------------|-----|
| Preparation batch | 7281-071     |                        |     |
| S103143-01        | 8681-001     | IUC2187-03             | υ   |
| S103143-02        | 8681-002     | Lab Control Sample     | ok  |
| S103143-03        | 8681-003     | Method Blank           | σ   |
| S103143-04        | 8681-004     | Duplicate (S103143-01) | - U |

#### METHOD PERFORMANCE

| LAB<br>SAMPLÈ ID | RAW SUF-<br>TEST FIX CLIENT SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MDA<br>pCi/L | ALIQ      | PREP<br>FAC |          | YIELD |      |        |   |     | PREPARED | ANAL- | DETECTOR |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------------|----------|-------|------|--------|---|-----|----------|-------|----------|
| Preparation      | batch 7281-071 20 prep error 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 %        | Reference | Lab         | Notebool | k No. | 7281 | pg. 71 | ı |     |          |       |          |
| S103143-01       | IUC2187-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 167          | 0.0100    |             |          | 100   |      | 150    |   | 10  | 03/30/11 | 03/30 | LSC-004  |
| S103143-02       | Lab Control Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 166          | 0.100     |             |          | 10    |      | 150    |   |     | 03/30/11 | 03/30 | LSC-004  |
| S103143-03       | Method Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 163          | 0.100     |             |          | 10    |      | 150    |   |     | 03/30/11 | 03/30 | LSC-004  |
| S103143-04       | Duplicate (S103143-01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 168          | 0.0100    |             |          | 100   |      | 150    |   | 10  | 03/30/11 | 03/30 | LSC-004  |
|                  | - AMMINITED TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE |              |           |             |          |       |      |        |   |     |          |       |          |
| Nominal val      | ues and limits from method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500          | 0.0100    |             |          |       |      | 100    |   | 180 |          |       |          |

| PROCEDURES | REFERENCE | 906.0                                            |
|------------|-----------|--------------------------------------------------|
|            | DWP-212   | Tritium in Drinking Water by Distillation, rev 8 |

| AVERAGES ± 2 SD | MDA   | 166 | ± | 4.32 |
|-----------------|-------|-----|---|------|
| FOR 4 SAMPLES   | AIETD | 55  | ± | 104  |

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 18

Report date <u>04/11/11</u>

Lab id EAS

SDG 8681

Test RA Matrix WATER
SDG 8681

Contact N. Joseph Verville

#### LAB METHOD SUMMARY

RADIUM-226 IN WATER RADON COUNTING Client Test America, Inc.
Contract IUC2187

#### RESULTS

| LAB         | RAW SUF-  |          |                         |            |  |
|-------------|-----------|----------|-------------------------|------------|--|
| SAMPLE ID   | TEST FIX  | PLANCHET | CLIENT SAMPLE ID        | Radium-226 |  |
| Preparation | batch 728 | 1-071    |                         |            |  |
| S103143-01  |           | 8681-001 | IUC2187-03              | υ          |  |
| S103143-02  |           | 8681-002 | Lab Control Sample      | ok         |  |
| S103143-03  |           | 8681-003 | Method Blank            | ט          |  |
| S103143-04  |           | 8681-004 | Duplicate (\$103143-01) | - U        |  |

#### METHOD PERFORMANCE

| LAB         | RAW SUF-   |          |          |          |      | MDA   | ALIQ      | PREP | DILU-   | YIELD | EFF  | COUNT  | FWHM | DRIFT | DAYS |          | ANAL- |          |
|-------------|------------|----------|----------|----------|------|-------|-----------|------|---------|-------|------|--------|------|-------|------|----------|-------|----------|
| SAMPLE ID   | TEST FIX   | CLIENT   | SAMPLE   | αD       | ,    | pCi/L | L         | FAC  | TION    | *     | *    | min    | keV  | KeV   | HELD | PREPARED | YZED  | DETECTOR |
|             |            |          |          |          |      |       |           |      |         |       |      |        |      |       |      |          |       |          |
| Preparation | batch 728  | 1-071    | 20 pi    | rep erro | r 16 | .4 %  | Reference | Lab  | мосероо | K No. | 7281 | pg. 7. | Ļ    |       |      |          |       |          |
| S103143-01  |            | IUC2187  | 7-03     |          |      | 0.54  | 4 0.100   |      |         | 100   |      | 90     |      |       | 16   | 04/05/11 | 04/05 | RN-012   |
| \$103143-02 |            | Lab Cor  | ntrol Sa | ample    |      | 0.85  | 9 0.100   |      |         | 100   |      | 90     |      |       |      | 04/05/11 | 04/05 | RN-009   |
| S103143-03  |            | Method   | Blank    |          |      | 0.80  | 0 0.100   |      |         | 100   |      | 90     |      |       |      | 04/05/11 | 04/05 | RN-010   |
| S103143-04  |            | Duplica  | ate (S1  | 03143-01 | )    | 0.71  | 1 0.100   |      |         | 100   |      | 90     |      |       | 16   | 04/05/11 | 04/05 | RN-015   |
|             | - HWISHT   |          |          |          |      |       |           |      |         |       |      |        |      |       |      |          |       |          |
| Nominal val | ues and li | mits fro | om metho | od       |      | 1.00  | 0.100     |      |         |       |      | 100    |      |       | 180  |          |       |          |
|             |            |          |          |          |      |       |           |      |         |       |      |        |      |       |      |          |       |          |

| PROCEDURES | REFERENCE | 903.1                                     | l |
|------------|-----------|-------------------------------------------|---|
|            | DWP-881A  | Ra-226 Screening in Drinking Water, rev 6 | l |

| AVERAGES ± 2 SD | MDA 0.728 ± 0.274 |  |
|-----------------|-------------------|--|
| FOR 4 SAMPLES   | YIELD 100 ± 0     |  |

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 19

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

Lab id EAS

Version 3.06

Report date 04/11/11

SDG 8681

SDG <u>8681</u> Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUC2187</u>

#### SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- \* LAB SAMPLE ID is the lab's primary identification for a sample.
- \* DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- \* CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- \* QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
  - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- \* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES
Page 1
SUMMARY DATA SECTION
Page 20

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version Ver 1.0 Form DVD-RG

Version 3.06

Report date 04/11/11

SDG 8681

SDG 8681
Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>.
Contract <u>IUC</u>2187

#### PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- \* The preparation batches are shown in the same order as the Method Summary Reports are printed.
- \* Only analyses of planchets relevant to the SDG are included.
- \* Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- \* The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 21

SDG 8681

SDG 8681 Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUC2187</u>

#### WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- \* TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- \* SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- \* The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- \* PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- \* For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- \* The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 22

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/11

SDG 8681

SDG 8681 Contact N. Joseph Verville

#### REPORT GUIDE

Client Test America, Inc. Contract IUC2187

#### DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- \* TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- \* The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- \* ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- \* A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- \* When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES Page 4 SUMMARY DATA SECTION Page 23

Lab id EAS Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date <u>04</u>/11/11

SDG 8681

SDG 8681 Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract IUC2187

#### DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- \* An MDA is underlined if it is bigger than its RDL.
- \* An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 24

SDG 8681

SDG 8681
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUC2187</u>

#### DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- \* A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- \* When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 25

Lab id EAS
Protocol TA
Version Ver 1.0

Version <u>Ver 1.0</u> Form <u>DVD-RG</u>

Version 3.06

Report date 04/11/11

SDG 8681

SDG <u>8681</u>
Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUC2187</u>

#### LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- \* All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- \* An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- \* REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- \* The first, computed limits for the recovery reflect:
  - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- \* The second limits are protocol defined upper and lower QC limits for the recovery.
- \* The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION
Page 26

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 04/11/11

SDG 8681

SDG 8681
Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America</u>, <u>Inc.</u> Contract IUC2187

#### DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

\* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

\* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

\* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- \* The second limit for the RPD is the larger of:
  - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 27

SDG 8681

SDG 8681
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUC2187</u>

#### DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- \* The RPD is underlined if it is greater than either limit.
- \* If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

\* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 28

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-RG
Version 3.06

Report date 04/11/11

SDG 8681

SDG <u>8681</u>
Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract IUC2187

#### MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

\* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

\* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- \* REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- \* The first, computed limits for the recovery reflect:
  - The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- \* The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 29

SDG 8681

SDG 8681
Contact N. Joseph Verville

GUIDE, cont.

Client Test America, Inc.
Contract IUC2187

#### MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

\* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 30

SDG 8681

SDG 8681
Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract IUC2187

#### METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

\* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

\* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

\* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- \* Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- \* Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 31

SDG 8681

SDG <u>8681</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract IUC2187

#### METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- \* Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- \* If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- \* Aliquots are underlined if less than the nominal value specified for the method.
- \* Prepareation factors are underlined if greater than the nominal value specified for the method.
- \* Dilution factors are underlined if greater than the nominal value specified for the method.
- \* Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- \* Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- \* Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- \* Count times are underlined if less than the nominal value

REPORT GUIDES

Page 13

SUMMARY DATA SECTION

Page 32

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/11

SDG 8681

SDG <u>8681</u> Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract <u>IUC2187</u>

#### METHOD SUMMARY

specified for the method.

- \* Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- \* Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- \* Days Held are underlined if greater than the holding time specified in the protocol.
- \* Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1÷3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 33

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form DVD-RG

Version 3.06

Report date <u>04/11/11</u>

SDG 8681

SDG 8681
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUC2187</u>

#### METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 34

Lab id <u>EAS</u> Protocol <u>TA</u>

Version Ver 1.0

Form <u>DVD-RG</u> Version <u>3.06</u>

Report date 04/11/11

#### Subcontract Order - TestAmerica Irvine (IUC2187)

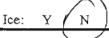
2681

#### SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297


Project Manager: Debby Wilson

#### RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438

Project Location: California

Receipt Temperature:



Standard TAT is requested unless specific due date is requested. => Due Date: \_\_ Initials: Analysis Expires Comments Sample ID: IUC2187-03 (Outfall 011 (Composite) - Water) Sampled: 03/20/11 21:35 Gamma Spec-O pCi/L 03/19/12 21:35 Out eberline, k-40 and cs-137 only, DO NOT FILTER! Gross Alpha-O Out eberline, Boeing permit, DO NOT pCi/L 09/16/11 21:35 FILTER! Gross Beta-O pCi/L 09/16/11 21:35 Out eberline, Boeing permit, DO NOT FILTER! Level 4 Data Package - Out N/A 04/17/11 21:35 Radium, Combined-O Out eberline Boeing permit, DO NOT pCi/L 03/19/12 21:35 FILTER! Strontium 90-0 pCi/L 03/19/12 21:35 Out eberline Boeing permit, DO NOT FILTER! Tritium-O pCi/L 03/19/12 21:35 Out eberline, Boeing permit, DO NOT FILTER! Uranium, Combined-O pCi/L 03/19/12 21:35 Out eberline, Boeing permit, DO NOT FILTER! Containers Supplied: 2.5 gal Poly (V) 500 mL Amber (W)

Released By Date/Time

Date/Time

Released By

Received By
Received By

Date/Time 09 20

By \ Date/fim

Page 1 of 1

with high the call the the companies which is a companies of the companies of the companies of

# RICHMOND, CA LABORATORY SAMPLE RECEIPT CHECKLIST

| Client: TEST AUETUCA City /WINE State CA  Date/Time received 07/23 11 09 20 COC No. 23 / UC 2187                        |   |
|-------------------------------------------------------------------------------------------------------------------------|---|
| Date/Time received 07/23 11 09 30 COC No 43   UC 218 /                                                                  | - |
| Container I.D. No. Contest Requested TAT (Days) STD P.D. Received Yes [] No []                                          |   |
| INSPECTION                                                                                                              |   |
| 1. Custody seals on shipping container intact? Yes [\( \) No [ ] N/A [ ]                                                |   |
| 2. Custody seals on shipping container dated & signed? Yes [ No [ ] N/A [ ]                                             |   |
| 3. Custody seals on sample containers intact? Yes [ ] No [ ] N/A [ X ]                                                  |   |
| 4. Custody seals on sample containers dated & signed? Yes [ ] No [ ] N/A [ > ]                                          |   |
| 5. Packing material is: Wet [ ] Dry [ X ]                                                                               |   |
| 6. Number of samples in shipping container: Sample Matrix                                                               | _ |
| 7. Number of containers per sample:(Or see CoC)                                                                         |   |
| B. Samples are in correct container Yes [+] No [ ]                                                                      |   |
| 9. Paperwork agrees with samples? Yes [ No [ ]                                                                          |   |
| 10. Samples have: Tape [ ] Hazard labels [ ] Rad labels [ ] Appropriate sample labels [X]                               |   |
| 11. Samples are: In good condition [ ] Leaking [ ] Broken Container [ ] Missing [ ]                                     |   |
| 12. Samples are: Preserved [K] Not preserved [K] pH CHN/APreservative TNO3                                              | - |
| 13. Describe any anomalies:                                                                                             |   |
|                                                                                                                         |   |
|                                                                                                                         |   |
|                                                                                                                         | _ |
| 14. Was P.M. notified of any anomalies? Yes [ ] No [ ] Date                                                             |   |
| 15. Inspected by Date: 03/23/4 Time: 030                                                                                |   |
| Customer Bets/Gamma ion Chamber Customer Bets/Gamma ion Chamber Sample No. cpm mR/hr wipe                               |   |
| IVC.2187 LGD                                                                                                            |   |
| 1002107 2000                                                                                                            |   |
|                                                                                                                         |   |
|                                                                                                                         |   |
|                                                                                                                         |   |
|                                                                                                                         |   |
|                                                                                                                         |   |
|                                                                                                                         |   |
|                                                                                                                         |   |
|                                                                                                                         | _ |
|                                                                                                                         |   |
|                                                                                                                         |   |
|                                                                                                                         |   |
| ton Chamber Ser. No Calibration date                                                                                    | • |
| Alpha Meter Ser. No.  Beta/Gamma Meter Ser. No.  Calibration date  Calibration date  Calibration date  Calibration date |   |



14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

# **Test America**

**Laboratory Number: 994230** 

Hydrazines by EPA 8315M

Project Name: IUC2187-03 (Outfall 011 (Composite) - Water)
Project Number: IUC2187-03 (Outfall 011 (Composite) - Water)



Prepared for:

Debby Wilson Test America 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Prepared by:

Truesdail Laboratories, Inc. Tustin, CA 92780

March 31, 2011



# **Table of Contents**

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

## **TLI Laboratory Level IV Data Package**

Laboratory Number: 994230

Project Name: IUC2187-03 (Outfall 011 (Composite) - Water)

| <u>ITEM</u>                                    | SECTION |
|------------------------------------------------|---------|
| REPORTS                                        | 1.0     |
| Samples Cross Reference                        |         |
| Case Narrative                                 |         |
| Results Summary                                |         |
| Sample Analytical Results                      |         |
| QA/QC reports                                  |         |
| Qualifier Codes and Definitions                |         |
| SAMPLE CHECK-IN RECORDS                        | 2.0     |
| Chain of Custody                               |         |
| Sample Integrity and Analysis Discrepancy Form |         |
| Internal Chain of Custody                      |         |
| DATA PACKAGE                                   | 3.0     |
| OC Batch 709338                                |         |



14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

# Section 1.0

# **REPORTS**

**Samples Cross Reference** 

**Case Narrative** 

**Results Summary** 

Sample Analytical Results
QA/QC reports
Qualifier Codes and Definitions

# TRUESDAIL LABORATORIES, INC.

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

March 31, 2011

Client:

Test America

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Attention:

Debby Wilson

Project Name:

IUC2187-03 (Outfall 011 (Composite) - Water)

Date Received:

3/22/2011

Project Number: IUC2187-03 (Outfall 011 (Composite) - Water)

Truesdail Project:

994230

#### Samples Cross-reference

| <u>Truesdail ID</u> | Client ID               | <u>Matrix</u> | Date Sampled | <u>Time Sampled</u> | Analysis Requested      |
|---------------------|-------------------------|---------------|--------------|---------------------|-------------------------|
|                     | IUC2187-03 (Outfall 011 |               |              |                     |                         |
| 994230-01           | (Composite) - Water)    | Water         | 03/20/11     | 21:35               | Hydrazines by EPA 8315M |

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Quality Control/Quality Assurance Manager

Jeff Lee

Project Manager

### TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING



Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client:

March 31, 2011

Test America

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Attention:

Debby Wilson

Project Name:

IUC2187-03 (Outfall 011 (Composite) - Water)

Date Received:

03/22/11

Project Number:

IUC2187-03 (Outfall 011 (Composite) - Water)

Truesdail Project:

994230

#### **Case Narrative**

Sample Receipt

The samples were received at 5.0 °C and in good condition. They were kept in a refrigerator until analysis. Thereafter, they are being kept in ambient storage for an additional 2 months before disposal. Any anomalies would be noted in the "Comments"

section.

Analysis

The analysis was performed as requested on the chain-of-custody.

Quality Control

The analytical results for each batch of samples performed include one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one set of matrix spike/matrix spike duplicate (MS/MSD), and a reagent blank (Method blank). Any exceptions or problems would be noted in the "Comments" section.

Comments

Matrix spike and matrix spike duplicate were done on 994230-1 as the method

requirement per batch of 20 samples.

All quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or

nonconformance events occurred during the course of analysis.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

K.R.P. Iyer

Quality Control/Quality Assurance Manager

Jeff Lee

Project Manager

# TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING



Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Test America - Irvine Client:

17461 Derian Avenue, Suite 100

Irvine, CA 92614-5817

**Debby Wilson** Attention:

Water / 1 Sample IUC2187 Sample: Project Name:

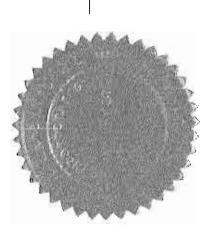
EPA 8315 (Modified) **IUC2187** Project Number: Method Number:

Hydrazines Investigation:

REPORT

March 25, 2011 994230 Laboratory No: Report Date: March 20, 2011 March 22, 2011 Sampling Date: Receiving Date:

March 22, 2011 March 23, 2011 Extraction Date: Analysis Date:


µg/L JS Units:

Reported By:

# Analytical Results

|                         |                    | Sample      | Dilution | Monomethyl | u-Dimethyl | Hydrazine | Qualifier |
|-------------------------|--------------------|-------------|----------|------------|------------|-----------|-----------|
| Sample ID               | Sample Description | Amount (mL) | Factor   | Hydrazine  | Hydrazine  |           | Codes     |
| 709338-MB               | Method Blank       | 100         | 1        | QN         | QN         | QN        | None      |
| 994230                  | IUC2187-03         | 100         | 1        | QN         | ND         | QN        | None      |
| MDL                     |                    |             |          | 1.77       | 1.13       | 0.439     |           |
| Pol                     |                    |             |          | 5.0        | 5.0        | 1.00      |           |
| Sample Reporting Limits | g Limits           |             |          | 5.0        | 5.0        | 1.00      |           |

Note: Results based on detector #1 (UV≈365nm) data.



Analytical Services, Truesdail Laboratories, Inc. Jeff Lee, Project Manager

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

# TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Test America - Irvine Client:

17461 Derian Avenue, Suite 100

Irvine, CA 92614-5817

Debby Wilson Client Contact:

Water / 1 Sample Sample:

EPA 8315 (Modified) UC2187 Method Number: Project Number:

Run Batch No.:

Hydrazines

Investigation:

Extraction: 5494; Analysis: 699

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.tuesdail.com

709338 994230 QC Lab. No.: Project Lab. No.:

994230 Spiked Sample ID:

March 22, 2011 March 25, 2011 March 20, 2011 Sampling Date: Receiving Date: Report Date:

March 22, 2011 March 23, 2011 Extraction Date: Analysis Date:

S Reported By:

# Quality Control/Quality Assurance Calibration Report

|                      | ΙCΛ          |                           |          |         |      | acs                  |              |              |          |     |
|----------------------|--------------|---------------------------|----------|---------|------|----------------------|--------------|--------------|----------|-----|
| Parameter            | Theoretical  | Measured                  | Percent  | Control | Flag | Parameter            | Theoretical  | Measured     | Percent  | Con |
|                      | Value (ug/L) | Value (ug/L) Value (ug/L) | Recovery | Limits  |      |                      | Value (ug/L) | Value (ug/L) | Recovery | Ë   |
| Monomethy! Hydrazine | 25.0         | 24.0                      | 96.2     | 85-115  | PASS | Monomethyl Hydrazine | 50.0         | 50.3         | 101      | 85  |
| u-Dimethyl Hydrazine | 25.0         | 24.0                      | 95.8     | 85-115  | PASS | u-Dimethyl Hydrazine | 50.0         | 50.1         | 100      | 85- |
| Hydrazine            | 5.0          | 4.57                      | 91.4     | 85-115  | PASS | Hydrazine            | 10.0         | 10.4         | 104      | 85- |
|                      |              |                           |          |         |      |                      |              |              |          |     |

PASS PASS PASS

5-115

5-115

5-115

Flag

introf

mits

# Quality Control/Quality Assurance Spikes Report CVM/VM

|        |           | Flag          |           | PASS                 | PASS                 | PASS      |      |      |  |
|--------|-----------|---------------|-----------|----------------------|----------------------|-----------|------|------|--|
|        | MS/       | MSD           | RPD       | 12.2%                | 8.30%                | 10.5%     |      |      |  |
|        | ent       | Recovery (%)  | overy (%) |                      | MSD                  | 77.5      | 8.06 | 92.7 |  |
|        | Percent   | Recove        | MS        |                      | 83.6                 | ١ ١       |      |      |  |
|        | -         | tion          | Sample    | 38.7 0.00            | 0.00                 | 00.0      |      |      |  |
| Q      | Recovered | Concentration | MSD       | 38.7                 | 42.4                 | 9.27      |      |      |  |
| MS/MSD | æ         | ပိ            | MS        | 34.3                 | 41.8                 | 8.34      |      |      |  |
|        | Control   | Limits        | % Rec.    | 50-150               | 50-150               | 50-150    |      |      |  |
|        | Cor       | Ę             |           | 20                   | 20                   |           |      |      |  |
|        |           | Flag          |           | PASS                 | PASS                 | PASS      |      |      |  |
|        | rcs/      | TCSD          | RPD       |                      | 0.28%                |           |      |      |  |
|        | ent       | ery (%)       | CSD       | 97.3                 | 102                  | 97.7      |      |      |  |
|        | Percent   | Recovery (%)  | CS        | 8.66                 | 101                  | 101       |      |      |  |
|        |           | ת             | MB        | 0.0                  | 0.0                  | 0.0       |      |      |  |
| SD     | Recovered | Concentration | LCS LCSD  | 48.7                 | 50.8                 | 9.77      |      |      |  |
| CS/CSD | _         | ပိ            | CCS       | 49.9                 | 50.7                 | 10.1      |      |      |  |
| ĭ      | Spiked    | Conc.         | ug/L      | 50.0                 | 50.0                 | 10.0      |      |      |  |
|        |           |               | Parameter | Monomethyl Hydrazine | u-Dimethyl Hydrazine | Hydrazine |      |      |  |

50-150

50-150

20

% Rec. 50-150

۵% 8 20

Control Limits

Accuracy

Note: Results based on detector #1 (UV=365nm) data.

Analytical Services, Truesdail Laboratories, Inc. Jeff Lee, Project Manager

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

# TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING



14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Established 1931

17461 Derian Avenue, Suite 100 Test America Client:

Irvine, CA 92614

IUC2187-03 (Outfall 011 (Composite) - Water) Debby Wilson Project Name: Attention:

8315 (Modified) Method Number:

Hydrazines Investigation:

छ

March 31, 2011 March 20, 2011 March 22, 2011 March 23, 2011

994230

Laboratory No: Report Date: Sampling Date: Receiving Date: Analysis Date: Reported By:

# Qualifier Codes and Definitions

# Definition Code

Method Detection Limit

Practical Quantitation Limit PQL

Not Detected: Analyte is not detected at or above the method detection limit.

initial Calibration Verification: First source calibration standard run at a mid-level spike prior to samples. Not Applicable

Method Blank: Reagent water extracted and run with each batch of 20 samples to demonstrate that all analytes are not detected from the extraction process. Quality Control Standard: Second source calibration standard run at a mid-level spike after all samples. ND N/A ICV QCS MB LCS (D) MS (D) RPD

Laboratory Control Spike: Second source standard spiked into blank matrix and extracted and run with each batch of 20 samples (run in duplicate).

Matrix Spike: Second source standard spiked into sample matrix and extracted and run with each batch of 20 samples (run in duplicate).

Relative Percent Difference: A calculated value of the deviation between the spikes and spike duplicates to measure precision.

J-flags: Any result found between the MDL and the PQL will be reported with a "J" attached.

Pass if within Control Limits; otherwise "Fail"

Flag

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

# Section 2.0

# SAMPLE CHECK-IN RECORDS

Chain of Custody

Sample Integrity and Analysis Discrepancy Form

Internal Chain of Custody

# Subcontract Order - TestAmerica Irvine (IUC2187)

RECEIVING LABORATORY:

| TestAmerica Irvine    |                             | Truesdail Labor                 | atories      |                                                   |
|-----------------------|-----------------------------|---------------------------------|--------------|---------------------------------------------------|
| 17461 Derian Avenue   | . Suite 100                 | 14201 Franklin                  | Avenue       |                                                   |
| Irvine, CA 92614      |                             | Tustin, CA 9268                 | 0            | Pac'd = 03/22/11                                  |
| Phone: (949) 261-102  | 2                           | Phone :(714) 73                 | 0-6239       | Rec'd 03/2 <b>2</b> /11<br>s5d <b>9 9 4 2 3 0</b> |
| Fax: (949) 260-3297   |                             | Fax: (714) 730-6                | 3462         | 5500 0 0 0                                        |
| Project Manager: Debl | oy Wilson                   | Project Location                | : California |                                                   |
|                       |                             | Receipt Temperat                | ure:°C       | Ice: Y / N                                        |
| Standard TAT is reque | estea uniess specific due c | late is requested. => Due Date: | Initi        | ials:                                             |
| Analysis              | Units                       | Expires                         | Commer       | nts                                               |
| Sample ID: IUC2187-03 | (Outfall 011 (Composite)    | - Water) Sampled: 03/20/11 21   | :35_         |                                                   |
| Hydrazine-OUT         | ug/l                        | 03/23/11 21:35                  |              | esdail for<br>hylhydrazine, J flags               |
| Containers Supplied:  |                             |                                 |              |                                                   |
| 1 L Amber (AA)        | 11 Amher (7)                |                                 |              |                                                   |

# For Sample Conditions See Form Attached

SENDING LABORATORY:

Released By

Received By



# Sample Integrity & Analysis Discrepancy Form

| Clien | t: 18st America                                                                               | Lab # 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>423</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date  | Delivered: <u>⊘3</u> / <u>22</u> /11 Time: <u>⊱√S</u> By: □Mail □Field                        | l Service 🏃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.    | Was a Chain of Custody received and signed?                                                   | ⊠Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.    | Does Customer require an acknowledgement of the COC?                                          | □Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ⊠N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.    | Are there any special requirements or notes on the COC?                                       | □Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\boxtimes N/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.    | If a letter was sent with the COC, does it match the COC?                                     | □Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\boxtimes N/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.    | Were all requested analyses understood and acceptable?                                        | ⊠Yes <b>□</b> No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.    | Were samples received in a chilled condition?<br>Temperature (if yes)? & . ! ∘ C              | ØYes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.    | Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?                  | ⊠Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.    | Were sample custody seals intact?                                                             | □Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ⊠N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9.    | Does the number of samples received agree with COC?                                           | ⊠Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\square N/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10.   | Did sample labels correspond with the client ID's?                                            | ⊠Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\square N/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11.   | Did sample labels indicate proper preservation?  Preserved by: □Truesdail Lab □Client         | □Yes \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12.   | Were samples pH checked? pH =                                                                 | □Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )ZN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13.   | Were all analyses within holding time at time of receipt? If not, notify the Project Manager. | ⊠Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14.   | Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH ☑ Std        | ⊠Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15.   | Sample Matrix: □Liquid □Drinking Water □Ground Water □Solid □Wipe □Paint □Solid □Oth          | - /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16.   | Comments:                                                                                     | alker and an an area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17.   | Sample Check-In completed by Truesdail Log-In/Receiving                                       | Marine State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of th | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |



Pages: 001-062

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

# Section 3.0 Data Package

# QC Batch 709338

Cross Reference Table
Calibration Data Retention Time Window
Sample Raw Data
Extraction Chronicle

Extraction Sample Log

Organic Standard Preparation Logbook

Daily Sample Log

Sample Queue

Peak Responses

Multipoint Calibration

Samples and QC chromatograms

# Truesdail Laboratories, Inc.

Client:

Test America - Irvine

Laboratory Number: 994230
Batch QA/QC Number: 709338
Instrument Batch #: 699
Extraction Batch #: 5494

Cross-Reference of field sample number to laboratory sample number & Sample queue description

| #  | Name         | Description                                                                          | File Name | DF |
|----|--------------|--------------------------------------------------------------------------------------|-----------|----|
| 1  | MP BLANK 1   | Mobile Phase blank consisting of 50:50 water:acetonitrile                            | MR112301  | 1  |
| 2  | 709338-Std 1 | Hydrazine standard #1 with a spike amount of MMH:UDMH:Hydrazine=5:5:1ug/L            | MR112302  | 1  |
| 3  | 709338-Std 2 | Hydrazine standard #2 with a spike amount of MMH:UDMH:Hydrazine=10:10:2ug/L          | MR112303  | 1  |
| 4  | 709338-Std 3 | Hydrazine standard #3 with a spike amount of MMH:UDMH:Hydrazine=25:25:5ug/L          | MR112304  | 1  |
| 5  | 709338-Std 4 | Hydrazine standard #4 with a spike amount of MMH:UDMH:Hydrazine=50:50:10ug/L         | MR112305  | 1  |
| 6  | 709338-Std 5 | Hydrazine standard #5 with a spike amount of MMH:UDMH:Hydrazine100:100:20ug/L        | MR112306  | 1  |
| 7  | ICV @ 25ppb  | Initial Calibration verification using the Hydrazines standard #3                    | MR112307  | 1  |
| 8  | 709338-LCS   | Lab control spike with a spike amount of MMH:UDMH:Hydrazine= 50:50:10 ug/L           | MR112308  | 1  |
| 9  | 709338-LCSD  | Lab control spike duplicate with a spike amount of MMH:UDMH:Hydrazine= 50:50:10 ug/L | MR112309  | 1  |
| 10 | 709338-MB    | Method blank of the extraction batch # 5494                                          | MR112310  | 1  |
| 11 | 994230       | IUC2187                                                                              | MR112311  | 1  |
| 12 | 994231       | IUC2181                                                                              | MR112312  | 1  |
| 13 | 994230 MS    | IUC2187-03 with a spike amount of MMH:UDMH:Hydrazine=50;50;10ug/L                    | MR112313  | 1  |
| 14 | 994230 MSD   | IUC2187-03 with a spike amount of MMH:UDMH:Hydrazine=50:50:10ug/L                    | MR112314  | 1  |
| 15 | 709338 QCS   | QCS 2nd source with a spike amount of MMH:UDMH:Hydrazine= 50:50:10 ug/L              | MR112315  | 1  |
| 16 | MP BLANK 2   | Mobile Phase blank consisting of 50:50 water:acetonitrile                            | MR112316  | 1  |

Truesdail Laboratories, Inc.

# Calibration Data Retention Time Windows

QC Report No. Laboratory No. Extrt. Batch No: 709338

Intr. Batch No.: Matrix:

994230 5494

699 Water Date Prepared:

Date Extracted:

March 22, 2011 March 22, 2011

Date Analyzed: Date Reported: March 23, 2011 March 25, 2011

Analyst

JS

# Calibration Data

# Standard Preparation Information

| Lab ID: W0110322<br>Exp. Date: 3/29/2011 | 01            |        | Cor    | centration, | ug/L   |        |
|------------------------------------------|---------------|--------|--------|-------------|--------|--------|
| Analytes                                 | Conc. (ug/mL) | Std #1 | Std #2 | Std #3      | Std #4 | Std #5 |
| Monomethyl Hydrazine                     | 100           | 5.00   | 10.0   | 25.0        | 50.0   | 100    |
| Unsymmetrical Dimethyl Hydrazine         | 100           | 5.00   | 10.0   | 25,0        | 50.0   | 100    |
| Hydrazine                                | 20.0          | 1,00   | 2.00   | 5.00        | 10.0   | 20,0   |

### Calibration Curve Information

|                                  |        |          |        | R      | esponse, Ar | ea     |        |
|----------------------------------|--------|----------|--------|--------|-------------|--------|--------|
| Analytes                         | ₽²     | RF % RSD | Std #1 | Std #2 | Std #3      | Std #4 | Std #5 |
| Monomethyl Hydrazine             | 0,9992 | 18.7%    | 17123  | 23558  | 53007       | 107472 | 203465 |
| Unsymmetrical Dimethyl Hydrazine | 0.9987 | 19.0%    | 11800  | 17863  | 36512       | 76666  | 142688 |
| Hydrazine                        | 0.9990 | 17.8%    | 7353   | 10493  | 22990       | 48106  | 90900  |

Acceptance Limit: >0.995 <20%

# Retention Time Windows (min)

| Detectors   | Analytes  | Std.#1 | Std.#3 | Std.# 5 | ICV    | LCS    | LCSD   | acs      | Avg. RT | Width |
|-------------|-----------|--------|--------|---------|--------|--------|--------|----------|---------|-------|
|             | MMH       | 6,608  | 6,533  | 6,533   | 6,525  | 6,508  | 6,492  | 6,492    | 6.527   | 0.119 |
| UV#1 365 nm | UDMH      | 11,525 | 11.475 | 11.483  | 11.458 | 11.458 | 11.450 | 11.442   | 11.470  | 0.084 |
|             | Hydrazine | 15,483 | 15.408 | 15.442  | 15.375 | 15.375 | 15.375 | . 15.383 | 15.406  | 0.126 |
|             | ммн       | 6.700  | 6.608  | 6.542   | 6.592  | 6.567  | 6.550  | 6.558    | 6.588   | 0.164 |
| UV#2 322 nm | UDMH      | 11.592 | 11.533 | 11.542  | 11.517 | 11.517 | 11.508 | 11.500   | 11.530  | 0.093 |
|             | Hydrazine | 15.567 | 15,475 | 15.500  | 15.450 | 15.442 | 15.425 | 15.442   | 15.472  | 0.147 |

# Retention Time Windows

| Parameter  | IM    | νΗ    | UD     | МН     | Hydr   | azine  |
|------------|-------|-------|--------|--------|--------|--------|
| Faidiletei | UV #1 | UV #2 | UV #1  | UV #2  | UV #1  | UV #2  |
| Upper      | 6,646 | 6,752 | 11.554 | 11.622 | 15.532 | 15,618 |
| Lower      | 6.408 | 6,424 | 11.386 | 11.437 | 15.280 | 15.325 |

ICV - Initial Calibration Verification

Formulas:

CCV - Continuous Calibration Verification

RF % RSD = 100% \* Stdev(Response Factor) / Average(Response Factor)

RT - Retention Time

Response Factor = Concentration / Response

%D - Percent Difference

R2 = ( Covar(Concentration, Response) / ( Stdevp(Concentration) \* Stdevp(Response) ) )2

# Truesdail Laboratories, Inc.

# Sample Raw Data

Laboratory No.:

994230

QC Report No:

709338

Client:

Test America - Irvine

Extrt. Batch No: Intr. Batch No.:

5494 699

Matrix/Samples:

Water / 1 Sample

Date Sampled: March 20, 2011

Date Received: March 22, 2011

Date Extracted: March 22, 2011 Date Analyzed: March 23, 2011

Date Reported: March 25, 2011

Analyst JS

# Sample Information

|             | Volum   | e (mL) |    |                      |                        |
|-------------|---------|--------|----|----------------------|------------------------|
| Sample ID   |         |        | DF | Date & Time Analyzed | Chromatography File ID |
|             | Initial | Final  |    |                      |                        |
| 709338-LCS  | 100     | 5      | 1  | 3/23/2011 12:10      | MR112308               |
| 709338-LCSD | 100     | 5      | 1  | 3/23/2011 12:36      | MR112309               |
| 709338-MB   | 100     | 5      | 1  | 3/23/2011 13:01      | MR112310               |
| 994230      | 100     | 5      | 1  | 3/23/2011 13:27      | MR112311               |
| 994231      | 100     | 5      | 1  | 3/23/2011 13:52      | MR112312               |
| 994230 MS   | 100     | 5      | 1  | 3/23/2011 14:17      | MR112313               |
| 994230 MSD  | 100     | 5      | 1  | 3/23/2011 14:43      | MR112314               |
| 709338 QCS  | 100     | 5      | 1  | 3/23/2011 15:08      | MR112315               |

# Retention Time

| Sample ID   | M     | MH    | UE     | MH     | Hydi   | razine |
|-------------|-------|-------|--------|--------|--------|--------|
| Sample ID   | UV #1 | UV #2 | UV #1  | UV #2  | UV #1  | UV #2  |
| 709338-LCS  | 6,508 | 6,567 | 11.458 | 11.517 | 15,375 | 15.442 |
| 709338-LCSD | 6.492 | 6.550 | 11.450 | 11.508 | 15.375 | 15.425 |
| 709338-MB   | NĐ    | ND    | ND     | ND     | ND     | ND     |
| 994230      | ND    | ND    | ND     | ND     | ND     | NO     |
| 994231      | ND    | ND    | ND     | ND     | ND     | ND     |
| 994230 MS   | 6,508 | 6,567 | 11.433 | 11.492 | 15.383 | 15.442 |
| 994230 MSD  | 6.492 | 6.542 | 11.442 | 11.500 | 15.375 | 15,433 |
| 709338 QCS  | 6.492 | 6,558 | 11.442 | 11.500 | 15.383 | 15.442 |

DF = Dilution Factor

RT = Retention Time

ND = Not Detected

### **EXTRACTION CHRONICLE**

Method #: Matrix:

8315M Liquid Ext. Chemist: Jeff Spiked by: Jeff

Extraction Information

Ext. Batch #; Date Extracted:

5494 3/22/11

5 pH: Start Time: 3:00 PM

Ext. Solvt: Lot ID: Final Solvt:

DCM 49296 Acetonitrile

Date Finished: Ext. Method:

3/23/11

Stop Time: NA

CU602

Orbital Shaker@200rpm

Method #: 8315M

Lot ID:

Spike Information

Matrix Spike:

Hydrazine Standard 1st Source

WO11032201

Matrix Spike: Standard ID:

Hydrazine Standard 2nd Source WO11032202

Standard ID: Conc. (ug/mL)

100/100/20

Conc. (ug/ml.):

100/100/20

(MMH/UDMH/Hyd.)

(MMH/UDMH/Hyd.)

Exp. Date:

3/29/11

Exp. Date:

3/29/11

1st. Source( Aldrich)

2nd, Source (Chem Service)

Sample Information

| _            |                    | Samp    | ole Informati | on     |          |            |           |
|--------------|--------------------|---------|---------------|--------|----------|------------|-----------|
| Sample ID    | Client             | Sample  | Date          | Sample | Standard | Matrix     | Final     |
| Sample 1D    | Olleri             | Date    | Received      | (mL)   | Source   | Spike (uL) | Vol. (mL) |
| 709338-MB    | Method Blank       | 3/22/11 | 3/22/11       | 100    |          |            | 5         |
| 709338-Std 1 | QC-Cal             | 3/22/11 | 3/22/11       | 100    | 1st      | 5          | 5         |
| 709338-Std 2 | QC-Cal             | 3/22/11 | 3/22/11       | 100    | 1st      | 10         | 5         |
| 709338-Std 3 | QC-Cal             | 3/22/11 | 3/22/11       | 100    | 1st      | 25         | 5         |
| 709338-Std 4 | QC-Cal             | 3/22/11 | 3/22/11       | 100    | 1st      | 50         | 5         |
| 709338-Std 5 | QC-Cal             | 3/22/11 | 3/22/11       | 100    | 1st      | 100        | 5         |
| 709338-LCS   | QC                 | 3/22/11 | 3/22/11       | 100    | 2nd      | 50         | 5 .       |
| 709338-LCSD  | QC                 | 3/22/11 | 3/22/11       | 100    | 2nd      | 50         | 5         |
| 994230       | TestAmerica-Irvine | 3/20/11 | 3/22/11       | 100    |          |            | 5         |
| 994231       | TestAmerica-Irvine | 3/20/11 | 3/22/11       | 100    |          |            | 5         |
| 994230 MS    | TestAmerica-Irvine | 3/20/11 | 3/22/11       | 100    | 2nd      | 50         | 5         |
| 994230 MSD   | TestAmerica-Irvine | 3/20/11 | 3/22/11       | 100    | 2nd      | 50         | 5         |
| 709338 QCS   | QC                 | 2/22/11 | 2/22/11       | 100    | 2nd      | 50         | 5         |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              | -                  |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            | •         |
|              | •                  |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |
|              |                    |         |               |        |          |            |           |

# Truesdail Laboratories Inc. EXTRACTION SAMPLE LOG

| METHOD #                       | # 8315m                                                                           |                   | BATCH#      | 5494            |              |
|--------------------------------|-----------------------------------------------------------------------------------|-------------------|-------------|-----------------|--------------|
| Matrix (DW, WW, S, c           |                                                                                   | swes.             | Start Date: | 3-22-1          | <u> </u>     |
| LAB. ID.#                      | CLIENT                                                                            | INIT. VOLWEIGHT   | FINAL VOL.  | SURROG.(√)      | LCS/MS (     |
| 709338-Mb                      | METHER BLANK                                                                      | 100 m.c           | 5 mil       | · ils           |              |
| 709338 -5001                   | BC-CAL.                                                                           | /                 | 1           |                 | 5 cul 15     |
| 2                              |                                                                                   |                   |             |                 | 10           |
| 3                              |                                                                                   |                   |             |                 | 25           |
| . 4                            |                                                                                   |                   |             |                 | 50           |
| 5                              |                                                                                   |                   | •           |                 | 100 1        |
| 709338- LCS                    | &C .                                                                              |                   |             |                 | Soulan       |
| 1-4050                         | <u> </u>                                                                          | <u> </u>          | 1.          | 9               | 4            |
| 994230                         | TESTAMELICA FROME                                                                 | Cosml             | Sml         | M4              | - S          |
| 994231                         |                                                                                   |                   |             |                 | .,           |
| 994230 MS                      | :                                                                                 |                   |             |                 | So alons     |
| J. MSD                         |                                                                                   | 4                 | . 0         | +               | 4            |
| 709338-Des                     | · OC                                                                              | 100ml             | Sml.        | MA :            | Soulans      |
|                                |                                                                                   |                   |             |                 |              |
|                                |                                                                                   |                   |             |                 | 16           |
|                                | 3-22-11 05                                                                        | · .               |             |                 | 1            |
|                                |                                                                                   |                   | ,           |                 |              |
| EXTRACTION SOLVEN              | TS. CHECK WHA                                                                     | T APPLIES AND INC | ICATE MANUF | ACTURER/LO      | TID,         |
| MeCl <sub>2</sub> Manuf./Lot I | D.: 49296 Acetone Manuf                                                           | f./Lot ID.:       | E           | thyl Acetate Ma | nuf./Lot ID; |
| Hexane Manuf./Lot              | Ether Manuf./Lo                                                                   | ot.ID.:           |             | ther ACN        |              |
| 1ST SOURCE                     | AME (S), LCS/MS NAME, AND ID NUMBE<br>ALDRICH WOLLO3 2201<br>Offen Sewick Wollo32 | c 100 1 /m        | ( EXP. 3    | 29-11           |              |
| *DW=Drinking Water; WV         | V=Waste  Water, S=Solid/Soil                                                      |                   | ,           |                 |              |
| EXTRACTION CHEMIST             | (PRINT NAME):                                                                     | EFFS.             |             | · .             |              |

# ORGANIC STANDARD PREPARATION LOGBOOK

| STANDARD ID.  | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LAB ID.     | INI. CONC. | AMT. USED | FINAL VOL. | FINAL CONG                     |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-----------|------------|--------------------------------|
| E011012501    | 625 Suprobors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - maximum.  |            |           |            |                                |
| DATE PREP.:   | B/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0031950     | 5000 mll   | im (      | SOM        | 100 13/11                      |
| 1-25-11       | Acro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0031949     | 7500. W/M  | †         | . +        | 150 4/12                       |
| ANALYST:      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |             | -          |           |            | e in manufacture in the second |
| 73.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |           |            |                                |
| EXP. DATE:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | · -        | . ,       |            | मन्यमूर                        |
| 7-25-11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |           |            | - maga-in-                     |
| SOLVENT:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-25-11     | -          |           |            | 3.00                           |
| North         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>75</b> . |            |           |            | Single-                        |
| SOLV. LOT ID: | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |            |           | . ,        |                                |
|               | . /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | ,          |           |            | x                              |
|               | . /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |            |           |            |                                |
| PESTEK        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |            |           |            |                                |

|               |                | , ,     | ,                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Marie     |
|---------------|----------------|---------|---------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| STANDARD ID.  | COMPOUND       | LAB ID. | INI. CONC.                            | AMT. USED | FINAL VOL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FINAL CONC. |
| 5011020201    | Hypearines 180 |         |                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| DATE PREP :   | mmH            | 0031151 | 0.8669/2                              | 46,20     | 8m (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5000 W/nl.  |
| 2-2-11        | 4 pm H         | 0031152 | 0.79/9/w                              | 50,6 LL   | , ].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5000 1      |
| ANALYST:      | HYDRAZINE.     | 0031150 | 1.021 3/W                             | 7.8gml    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000 +      |
| 05.           | <u> </u>       |         |                                       |           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| EXP. DATE:    |                | ·       | /                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| 4-2-11.       |                |         | · · · · · · · · · · · · · · · · · · · |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| SOLVENT:      |                |         | . ,                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| tro           |                | /2.2    | 11                                    |           | manage magastaphologic graph of the stage makes the graph of the stage makes the graph of the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the stage makes the | No. 1       |
| SOLV. LOT ID: |                |         |                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| ·Ma           |                |         |                                       | 16        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| 1SI Source    |                |         |                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| ANDRUA        |                |         |                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |

# TRUESDAIL LABORATORIES INC.

# ORGANIC STANDARD PREPARATION LOGBOOK

| STANDARD ID.            | COMPOUND      | LAB ID. | INI. CONC. | AMT. USED | FINAL VOL. | FINAL CONC |
|-------------------------|---------------|---------|------------|-----------|------------|------------|
| S011010202              | Hypanines 2mm |         |            |           | _          |            |
| DATE PREP.:             | mm H          | 0031153 | 0.8669/1   | 46.2 ul   | 8ml        | 5000 6/n   |
| 2-2-11                  | NOM H.        | 0631157 | 0.7919/2   | 50,6 M    |            | 5100       |
| ANALYST:                | Hyprazars.    | 0031154 | 1.0219/al  | 7.84 ul   |            | 1000 +     |
| J-5,                    | ÷             |         | ,          | ,         |            |            |
| EXP. DATE:              |               |         |            |           |            | 1          |
| 4-2-11                  |               |         |            |           | •          |            |
| SOLVENT:                |               | 12.2    | -11        |           |            | -          |
| Hro.                    |               |         |            |           |            |            |
| SOLV, LOT ID:           |               |         | ,          |           |            |            |
| Ma.                     | /             |         |            |           | , .,,      |            |
| 2m Surg                 |               |         | ,          |           |            |            |
| 2m Svapez<br>Offen Ster | 45            | -       | Į.         | _         |            |            |

| •                     | <u> </u>        |                                        | . <u> </u> | <u> </u>  |            |                                        |
|-----------------------|-----------------|----------------------------------------|------------|-----------|------------|----------------------------------------|
| STANDARD ID           | . COMPOUND      | LAB ID.                                | INI. CONC. | AMT. USED | FINAL VOL. | FINAL CONC.                            |
| W011020203            | HYDRAZINES STO. | 5011020201                             | 5000 Wh    | Ivon      | 10mL       | 100 y/ml                               |
| DATE PREP.:           |                 |                                        |            | x.        |            |                                        |
| 2-2-11                |                 | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |            |           |            |                                        |
| ANALYST:              |                 |                                        |            |           |            |                                        |
| V5,                   |                 |                                        |            |           |            | ,                                      |
| EXP. DATE:            | . ,             | 12-2-11                                |            |           |            |                                        |
| 2-9-11.               |                 | <i></i>                                |            |           |            |                                        |
| SOLVENT:              |                 | ,                                      | · ,        |           |            | · · · · · ·                            |
| Hro                   | /               |                                        |            |           |            | * ************************************ |
| SOLV. LOT ID:         |                 |                                        |            | . ,       | ·          |                                        |
| MA                    |                 |                                        |            | . *       |            |                                        |
| 15 Sou RUE<br>ALDZICH |                 | ,                                      |            |           |            |                                        |
| ADECH                 |                 |                                        |            |           |            |                                        |

# TRUESDAIL LABORATORIES INC.

# ORGANIC STANDARD PREPARATION LOGBOOK

| STANDARD ID.  | COMPOUND        | LAB ID. | INI. CONC. | AMT: USED | FINAL VOL. | FINAL CONC. |
|---------------|-----------------|---------|------------|-----------|------------|-------------|
| T A 1971 1    | HYDRAZ, 255 IST |         | 5000 W/W   |           |            | 100 w/nl    |
| DATE PREP.:   |                 |         |            |           |            |             |
| 3-22-11       |                 |         |            | ·         |            |             |
| ANALYST:      |                 | -/      | ,          |           |            |             |
| (F)           |                 | / .     |            |           | ,          |             |
| EXP. DATE:    |                 |         |            | ·         |            |             |
| 3-29-11       |                 | 3-22-1  | 10         |           |            |             |
| SOLVENT:      |                 | 7       |            |           |            |             |
| H20           |                 | /       |            |           |            |             |
| SOLV. LOT ID; |                 |         |            |           |            |             |
| M             |                 |         |            |           |            |             |
| ALDIZELL      | /               | ~~~     |            |           |            |             |
|               | 1               |         | 1          |           |            |             |
|               |                 |         |            |           |            |             |

| STANDARD ID.   | COMPOUND      | LAB ID.  | INI. CONC. | AMT. USED | FINAL VOL. | FINAL CONC. |
|----------------|---------------|----------|------------|-----------|------------|-------------|
|                | HYDRAZINES 2- |          | 5000 4/M   |           | lome       | 100 m/hl    |
| DATE PREP.:    |               |          | 7000       |           |            |             |
| 3-22-11        |               |          | -/         |           |            |             |
| ANALYST:       |               |          |            |           |            | 3,          |
| B,             |               |          | •          |           | ,          |             |
| EXP. DATE:     |               |          |            |           |            | <u> </u>    |
| 3.29-11        |               | / 3-2    | 22-11      |           |            |             |
| SOLVENT:       |               |          | B          |           | ·          |             |
| Hzo            |               | <u> </u> | - [        |           |            |             |
| SOLV. LOT ID:  |               | -        |            |           | `          |             |
| MA             |               |          |            | ·         |            |             |
| CHM<br>SERVICE |               |          |            |           |            |             |
| SERVICE        | - L           |          |            |           |            |             |

# Truesdail Laboratories , Inc.

# Shimadzu HPLC #1

|                    |                                       | DAII V  | SAMPLE LO         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|--------------------|---------------------------------------|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Date Analyzed:     | 3-23-                                 | //      | OAMII EE EO       | Start Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|                    | · · · · · · · · · · · · · · · · · · · | Marian  |                   | Stop Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| •                  | 8315                                  | m       | •                 | SCORE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE |                                       |
|                    | +4DRAZI                               | NES     | Liano             | Inst. Batch No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 699                                   |
| Sample ID          | Dil. Factor                           | Me      | thod No.          | Notes (se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e below)*                             |
| MP BYANK 1         | 7                                     | MRII    | 2301              | INST. BLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nk.                                   |
| 709338-STO1        |                                       | 1       | 2                 | WOH250 WOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11.<br>103.2201 a 5 P.P.             |
| 2                  |                                       |         | 3.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    |
| 3                  |                                       | , ,     | 4                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                    |
| 4                  | _                                     |         | <u>s-</u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                    |
| \$ 5               |                                       |         | . 6               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 1.                                |
| ECVC 25886         | -                                     |         | 7                 | STD. #3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125 PB6                               |
| 709338-145         |                                       |         | €                 | W011032202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c SoulL                               |
| 1-600              | ,                                     |         | · G               | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| JMB                |                                       | •       | 10                | Menton Bh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne.                                   |
| 994230             |                                       | ,       | . /1              | IUC2187-0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                     |
| 994231             |                                       | ·       | 1.2.              | IUC2181-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| 994230 MS          |                                       |         | 13                | Iuc2187-03m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | se sig/L                              |
| . + msp            |                                       | •       | 14                | J m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |
| 709338-665         |                                       |         | 15                | CCS Soupe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E & 50005                             |
| MP BLANEZ          | <u> </u>                              |         | J. 1.L.           | INST. B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sark.                                 |
|                    | ' · -                                 |         | · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                    | , •                                   |         | ./                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                    |                                       | ,       | /.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                                     |
|                    |                                       |         | 3-73-             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                    |                                       |         |                   | (F).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                     |
|                    |                                       |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                    | . 4                                   | •       | ,                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                    | Daily I                               | nstrume | nt Maintena       | nce Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·.                                    |
| 15 Source          |                                       |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lund Exe.                             |
| 2ND Source         |                                       | •       |                   | . 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Int FXP: 3-29-1                       |
| PLICAN             |                                       |         | · lian            | <i>d</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| SEA                | Sich Wi                               | 0110327 | 02 2 100          | suful TRO.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29-11                                 |
| Analyst (Print Nar |                                       | TEFF    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                     |

\*Enter what applies: Client, Standard ID., Quality Control (LCS/MS)

# BASELINE 810 METHOD REPORT

Printed: 23-MAR-2011 16:07

# EPA8315M, ODS COL, SHIMADZU LC/UV

| Sample Queue |

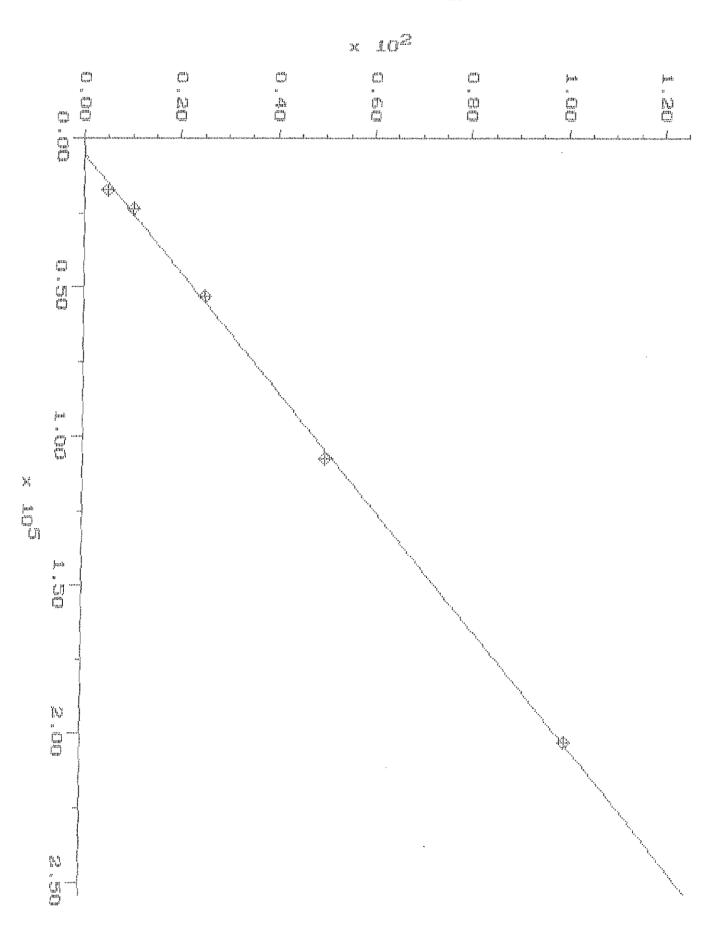
# Queue Parameters

File Path: C:\MAX\DATA1\8315M Raw Sample Weight: 1.000 Starting Index: 1 Volume of Extract: 1.000

# Stripchart Parameters

Scaling: Use x- and y-axis limits x-Axis limits: 0.0-12288

Peak Labels: Names, retention times y-Axis limits: 0.1037-0.001000


Regions: 2 Options: baselines, starts/ends, maxima

# Sample Queue Table

| 1_8        | ! Name         | Type Source File Name Index Inj. Vol | une ;  | Amount | Dilution |
|------------|----------------|--------------------------------------|--------|--------|----------|
| <u> </u>   | HP BLANK 1     | ONKN  DISK   MR112301   1            | 1      |        | !<br>!   |
| 1_2        | 709338-Std 1   | STND  DISK   MR112302   2            | !      |        | 1        |
| :_3        | 709338-Std 2   | STND  DISK   MR112303   3            | 1      |        | 1        |
| 4          | 1 709338-Std 3 | STND; DISK   MR112304   4            | i      |        | ļ<br>(   |
| <u> </u> 5 | 1 709338-Std 4 | STND  DISK   MR112305   5            | - 1    |        | 1        |
| 1_6        | ; 709338-Std 5 | STND; DISK   MR112306   6            | 1      |        | 1        |
| 1_7        | 1CV @ 25ppb    | ONKN; DISK; WRI12307; 7;             | l<br>! |        | ł        |
| 1 8        | 709338-LCS     | ONKN                                 | -      |        | 1        |
| <u> </u>   | 1 709338-LCSD  | UNKN                                 | ł<br>I |        | 1        |
| 10         | ¦ 709338-MB    | UNKN  DISK   MR112310   10           | t<br>t |        | I<br>L   |
| 11         | 994230         | UNKN  DISK   MR112011   11           | !      |        | I<br>I   |
| 1 12       | 994231         | UNKN  DISK   MR112312   12           | 1      |        | l<br>    |
| 13         | 994230 MS .    | UNKN; DISK                           | I F    |        | l<br>I   |
| 14         | 994230 MSD     | UNKN  DISK   MR112314   14           | 1      |        | 1        |
| 15         | 709338 QCS     | UNKN  DISK   MR112315   15           | i<br>I |        | i<br>(   |
| 1 16       | HP BLANK 2     | UNKN  DISK   MR112316   16           | 1      |        | <br>     |

# Standard Concentrations

|        |            |        |              |        |              |        |              |   |              |     |              | _      |
|--------|------------|--------|--------------|--------|--------------|--------|--------------|---|--------------|-----|--------------|--------|
| 1      | Component  | 1      | 709338-Std 1 | Į.     | 709338-Std 2 | !      | 709338-Std 3 | l | 709338-Std 4 | 1   | 709338-Std 5 |        |
| ļ      | HWH        | 1      | 5.000E+00    | ļ      | 1.000E+01    | l<br>L | 2.500E+01    | ı | 5.000E+01    | . ! | 1.000E+02    | _ 1    |
| I      | *KHH       | l<br>L | 5.000E+00    | 1      | 1.000E+01    | _      | 2.500E+01    | Ł | 5.000E+01    | j   | 1.000E+02    |        |
| ţ      | ODKH       | i      | 5.000E+00    | Į<br>Į | 1.000E+01    | 1      | 2.500E+01    | į | 5.000E+01    | ļ   | 1.000E+02    | _ [    |
| I<br>E | *ODMH      | \$<br> | 5.000E+00    | l<br>L | 1.000E+01    | i      | 2,500E+01    | 1 | 5.000E+01    | İ   | 1.000E+02    | 1      |
| ţ      | Hydrazine  | 1      | 1.000E+00    | ţ      | 2.000E+00    | į.     | 5.000E+00    | Ĺ | 1.000E+01    | l   | 2.000E+01    | -!     |
| E      | *Hydrazine | 1      | 1.000E+00    | 1      | 2.000E+00    | ļ      | 5.000E+00    | ļ | 1.000E+01    | 1   | 2.000E+01    | <br> - |



# MMH Calibration Report

Printed: 23-MAR-2011 16:08:12

Quant Basis: Area

Rejection Tolerance: None

Internal Standard: None

Curve Type: Linear

Weighting: None

Forced Through Origin: No

Y-axis Label: Concentration

Corr. Coef. (r): 0.9996185 Coef. of Determination (r<sup>2</sup>): 0.9992372

Equation: Conc = -2.665280E+00 + 5.025055E-04 # R

| Sample       | File Name | <u>Valid</u> | Concentration | Response      | Calc'd Concentration | % Deviation | Response Factor |
|--------------|-----------|--------------|---------------|---------------|----------------------|-------------|-----------------|
| 709338-Std 1 | MR112302  | у            | 5.000000E+00  | 1.7122689E+04 | 5.938965E+00         | -1.58E+01   | 2.920102E-04    |
| 709338-Std 2 | WR112303  | Y            | 1.000000E+01  | 2.3558314E+04 | 9.172902E+00         | 9.02E+00    | 4,244786E-04    |
| 709338-Std 3 | MR112304  | Y            | 2.500000E+01  | 5.3007031E+04 | 2.397104E+01         | 4.29E+00    | 4.716355E-04    |
| 709338-Std 4 | MR112305  | Y            | 5.000000E+01  | 1.0747237E+05 | 5.134017E+01         | -2.61E+00   | 4.652358E-04    |
| 709338-Std 5 | HR112306  | Y            | 1.000000E+02  | 2.0346486E+05 | 9.957692E+01         | 4.25E-01    | 4.914854E-04    |



Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro

# UDMH Calibration Report

Printed: 25-MAR-2011 12:41:33

Quant Basis: Area

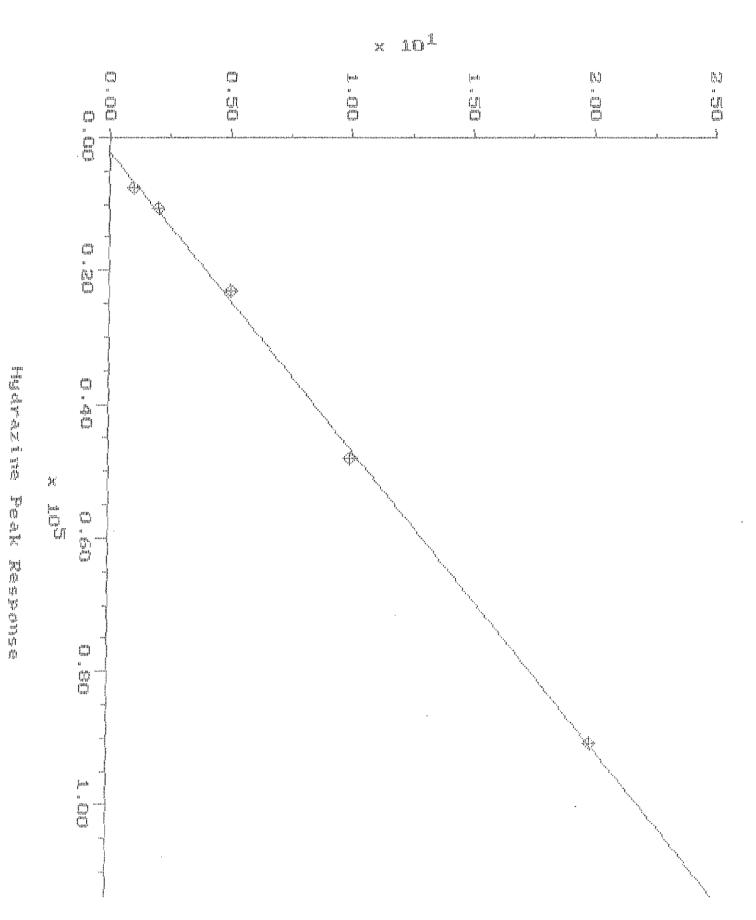
Rejection Tolerance: None

Internal Standard: None

Curve Type: Linear

Y-axis Label: Concentration

Weighting: None


Forced Through Origin: No

Corr. Coef. (r): 0.9993441

Coef. of Determination (r2): 0.9986887

Equation: Conc = -2.928306E+00 + 7.167084E-04 # R

| Sample       | File Name | Valid | Concentration_ | Response      | Calc'd Concentration | % Deviation | Response Factor |
|--------------|-----------|-------|----------------|---------------|----------------------|-------------|-----------------|
| 709338-Std 1 | HR112J02  | Y     | 5,000000B+00   | 1.1800112E+04 | 5.528934E+00         | -9.57E+00   | 4.237248E-04    |
| 709338-Std 2 | MR112303  | Y     | 1.000000E+01   | 1.7862836E+04 | 9.8741398+00         | 1.27E+00    | 5.598215E-04    |
| 709338-Std 3 | MR 112304 | Y     | 2.500000E+01   | 3.6512371E+04 | 2.324042E+01         | 7.57E+00    | 6.846994E-04    |
| 709338-Std 4 | MR112305  | Y     | 5.000000E+01   | 7.6666328E+04 | 5.201910E+01         | -3.88E+00   | 6.521768E-04    |
| 709338-Std 5 | MR 112306 | Y     | 1.000000E+02   | 1.4268803E+05 | 9.933741E+01         | 6.67E-01    | 7.008296E-04    |



# Hydrazine Calibration Report

Printed: 23-MAR-2011 16:08:28

Quant Basis: Area

Rejection Tolerance: None

Internal Standard: None

Curve Type: Linear

Weighting: None

Forced Through Origin: No

Y-axis Label: Concentration

Corr. Coef. (r): 0.9994765 Coef. of Determination (r<sup>2</sup>): 0.9989533

Equation: Conc = -4.576690E-01 + 2.240206E-04 # R

| Sample       | File Name | Valid | Concentration | Response      | Calc'd Concentration | % Deviation | Response Factor |
|--------------|-----------|-------|---------------|---------------|----------------------|-------------|-----------------|
| 709338-Std 1 | MR112302  | Y     | 1.000000E+00  | 7.3526064E+03 | 1.189466E+00         | -1.59B+01   | 1.360062E-04    |
| 709338-Std 2 | MR112303  | Y     | 2.000000E+00  | 1.0492535E+04 | 1.892875E+00         | 5.66E+00    | 1.906117B-04    |
| 709338-Std 3 | MR112304  | Y     | 5.000000E+00  | 2.2990490E+04 | 4.692675B+00         | 6.55E+00    | 2.174812E-04    |
| 709338-Std 4 | MR112305  | Y     | 1.000000E+01  | 4.8106031E+04 | 1.031907E+01         | -3.09E+00   | 2.078741E-04    |
| 709338-Std 5 | MR112306  | Y     | 2.000000E+01  | 9.0900461B+04 | 1.990591E+01         | 4.73E-01    | 2.200209E-04    |

# BASELINE 810 CUSTOM REPORT

Printed: 23-MAR-2011 16:57:08

SAMPLE: MP BLANK I

₹1 in Method: EPA8315M,ODS COL,SHIMADZU LC/UV

Acquired: 23-MAR-2011 9:11

Rate: 2.0 points/sec Duration: 24.900 minutes

Operator: JS

DETECTOR: UV #1 365

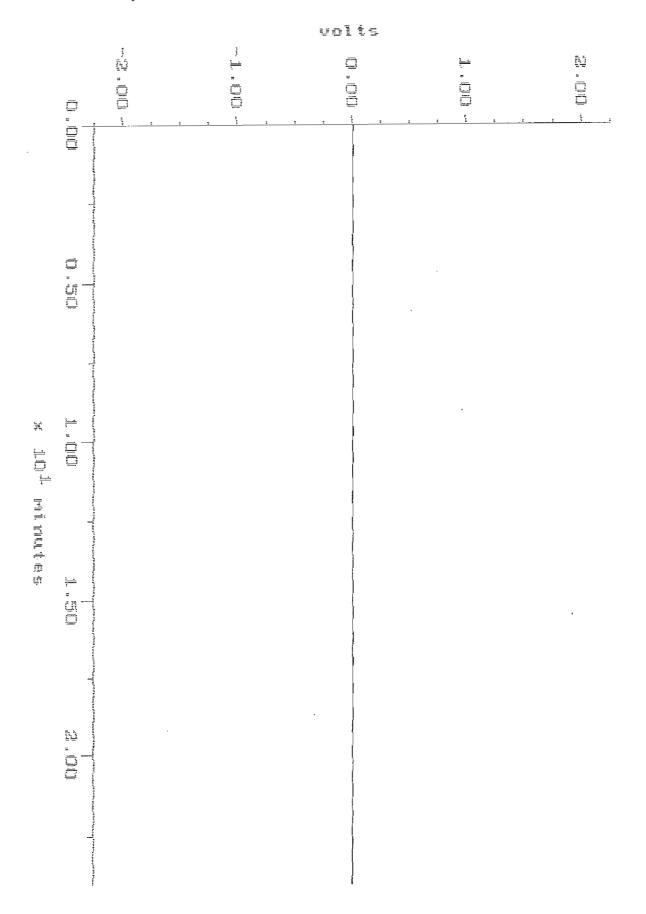
Type: UNKN

Instrument: Shimadzu 6A

Filename: MR112301

lader: 1

| PK <b>‡</b> | ID#       | Component Name | Retention Time<br>( minutes ] | Peak Area         | Sample Conc.<br>( ug/L ) |
|-------------|-----------|----------------|-------------------------------|-------------------|--------------------------|
| 1<br>2<br>3 |           |                | 1.733<br>5.367<br>21.950      | 915<br>651<br>720 |                          |
| TOTAL       |           |                |                               | 2286              | 0.0000                   |
| DETECTOR: * | UV #2 322 |                |                               |                   |                          |


| ₽ <b>К</b> ∦ | ID# | Component Name | Retention Time<br>( minutes | Peak Area | Sample Conc.<br>( ug/L ) |
|--------------|-----|----------------|-----------------------------|-----------|--------------------------|
|              |     |                |                             |           |                          |
|              |     |                |                             |           |                          |
| TOTAL        |     |                |                             | 0         | 0.0000                   |

Filename: MR112301 Operator: JS 
 Sample:
 MP BLANK 1
 Channel:
 8V \$1 365

 Acquired:
 23-MAR-111
 9:11
 Method:
 C:\MAX\DATA1\HYD-699
 401 ts 1.73 I SI \_ 5.37 ) ---21.95

Channel: UV #1 365

Sample: MP BLANK 1 Channel: \*UV #2 322 Filename: MR112301
Acquired: 23-MAR-111 9:11 Nethod: C:\WAX\DATA1\HYD-699 Operator: J8



# BASELINE 810 CUSTOM REPORT

Printed: 25-MAR-2011 12:32:39

Type: STND Instrument: Shimadzu 6A

Filename: WR112302

Index: 2

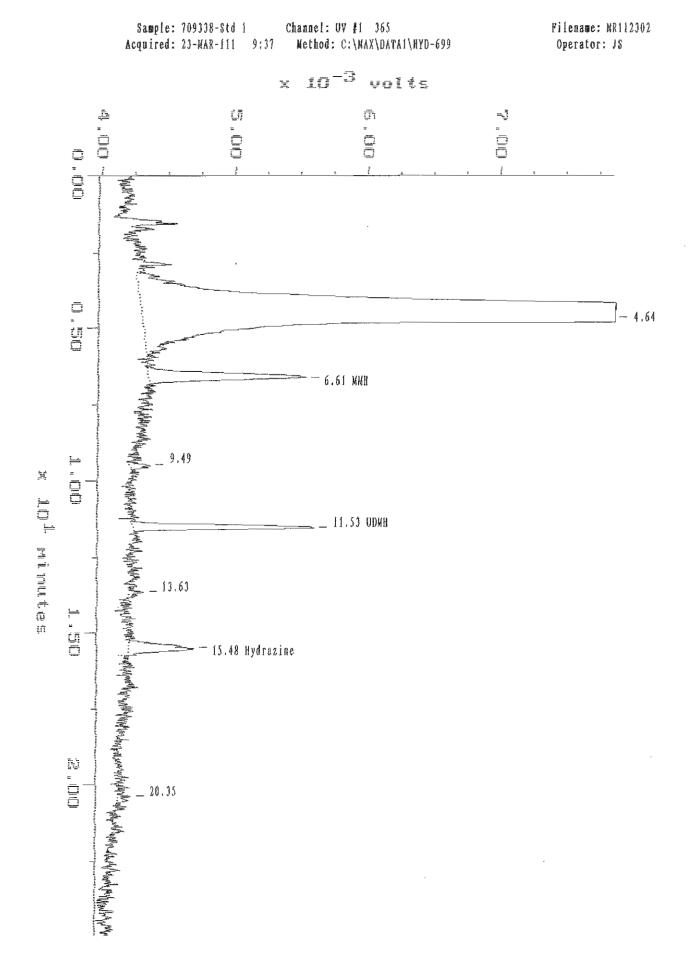
SAMPLE: 709338-Std 1

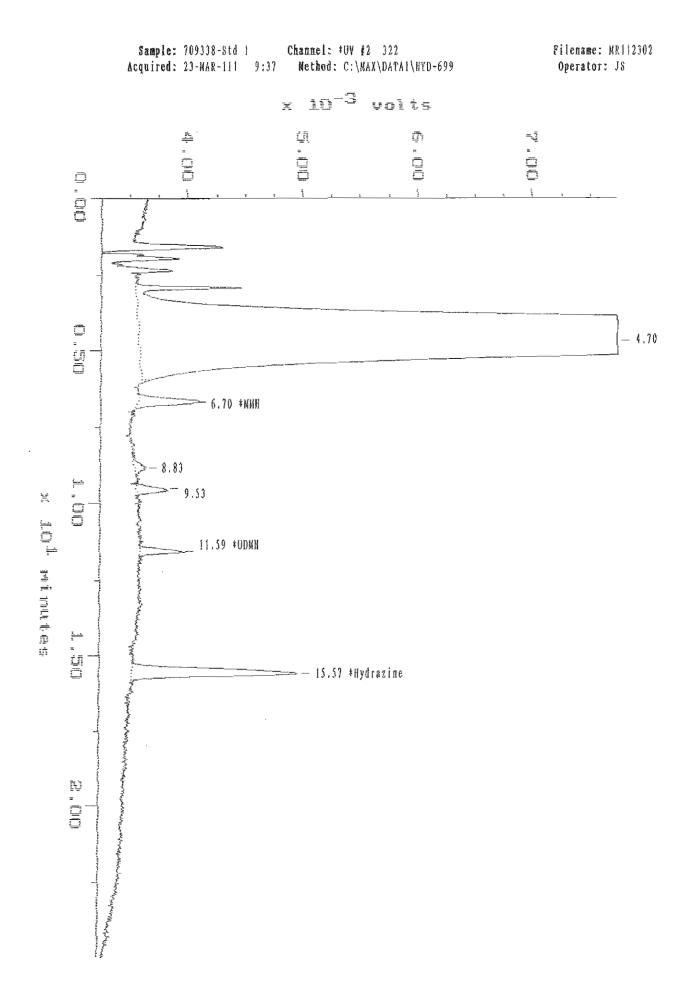
\$2 in Method: EPA8315M,ODS COL,SHIMADZU LC/UV

Acquired: 23-MAR-2011 9:37

Rate: 2.0 points/sec

Duration: 24.900 minutes


Operator: JS


DETECTOR: UV #1 365

| PXF               | ID⊭ | Component Hame | Retention Time ( minutes ) | Peak Area | Sample Conc.<br>[ ng/L ] |
|-------------------|-----|----------------|----------------------------|-----------|--------------------------|
| dates have nature |     |                |                            |           |                          |
| 1                 |     |                | 4.642                      | 605042    |                          |
| 2                 | 1   | мин            | 6.608                      | 17123     | 5.0000                   |
| 3                 |     |                | 9.492                      | 1160      |                          |
| 4                 | 3   | ODMH           | 11,525                     | 11800     | 5.0000                   |
| 5                 |     |                | 13.625                     | 1678      |                          |
| 6                 | 5   | Hydrazine      | 15.483                     | 7353      | 1.0000                   |
| 7                 | -   | •              | 20.350                     | 1527      |                          |
|                   |     |                |                            |           |                          |
| TOTAL             |     |                |                            | 645682    | . 11.0000                |

DETECTOR: #UV #2 322

| ЬK∯   | ID\$ | Component Hame | Retention Time<br>(minutes)                                     | Peak Area | Sample Conc. ( ng/L ) |
|-------|------|----------------|-----------------------------------------------------------------|-----------|-----------------------|
|       |      | M145           | and the same that the last last the same that the same that the |           |                       |
| 1     |      |                | 4.700                                                           | 3984855   |                       |
| 2     | 2    | * 11411        | 6.700                                                           | 7619      | 5.0000                |
| 3     |      |                | 8.825                                                           | 1143      |                       |
| 4     |      |                | 9.533                                                           | 3026      |                       |
| 5     | 4    | *UDMR          | 11.592                                                          | 3601      | 5,0000                |
| б     | 6    | *Hydrazine     | 15.567                                                          | 23155     | 1.0000                |
| TOTAL |      |                |                                                                 | 4023400   | 11.0000               |





# BASELINE 810 CUSTOM REPORT

Printed: 23-MAR-2011 16:58:40

SAMPLE: 709338-Std 2

#3 in Method: EPA8315M, ODS COL, SHIMADZU LC/UV

Acquired: 23-MAR-2011 10:02

Rate: 2.0 points/sec Duration: 24.900 minutes

Operator: JS

DETECTOR: UV #1 365

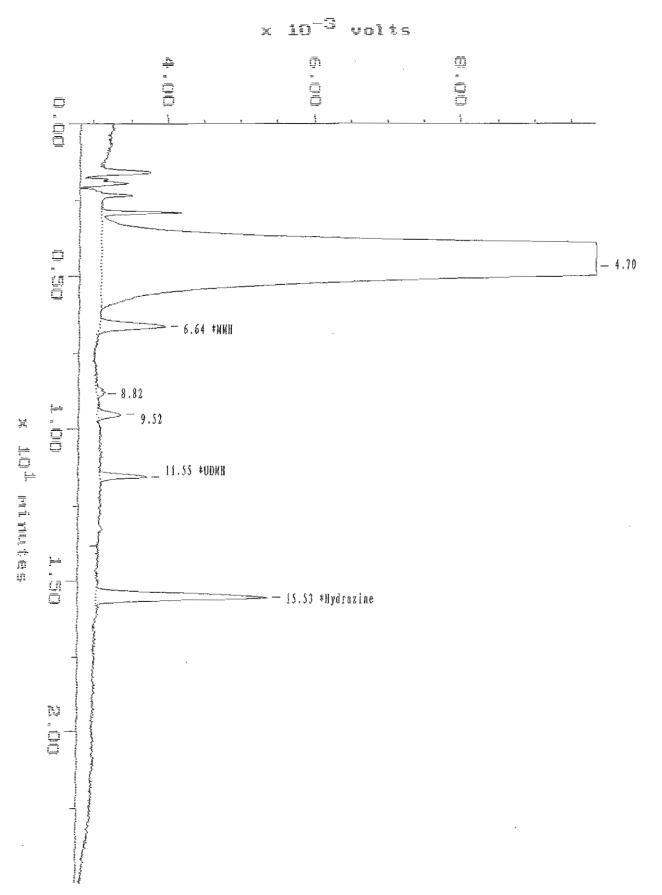
Type: STND COL,SHIMADZU LC/UV Instrument: Shimadzu 6A

Instrument: Shimadzu Filename: MR112303

Index: 1

| PK <b>‡</b> | ID‡            | Component Name | Retention Time ( | Peak Area | Sample Conc.<br>( ug/L ) |
|-------------|----------------|----------------|------------------|-----------|--------------------------|
|             | tone thin Prof |                |                  |           |                          |
| 1           |                |                | 4,633            | 660287    |                          |
| 2           | 1              | ини            | 6,558            | 23558     | 10.0000                  |
| 3           |                |                | 8.317            | 1380      |                          |
| 4           | 3              | UDMH           | 11,492           | 17863     | 10.0000                  |
| 5           | 5              | Hydrazine      | 15.450           | 10493     | 2.0000                   |
| TOTAL       |                |                |                  | 713580    | 22.0000                  |

DETECTOR: #UV #2 322


| ₽K₽   | ID# | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
| NA    |     |                |                               |           |                          |
| 1     |     |                | 4.700                         | 4425741   |                          |
| 2     | 2   | \$ <b> </b>    | 6.642                         | 12655     | 10.0000                  |
| 3     |     |                | 8.817                         | 1212      |                          |
| 4     |     |                | 9.517                         | 3473      |                          |
| 5     | 4   | \$CDMH         | 11.550                        | 5707      | 19.0600                  |
| б     | 6   | *Hydrazine     | 15.525                        | 34296     | 2.0000                   |
| TOTAL |     |                |                               | 4483084   | 22.0000                  |

Operator: JS 11-3 volts -4.636.56 NNH 8.32 e all minutees top are haplied. I hapliet for the foreign all general fighters set. . I have the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and the foreign and \_ 11.49 UDMH 50 — 15.45 Hydrazine 

Filename: MR112303

 Sample:
 709338-Std
 2
 Channel:
 +UV #2 322
 Filename:
 MR112303

 Acquired:
 23-MAR-111 10:02
 Method:
 C:\MAX\DATAI\HYD-699
 Operator:
 JS



# BASELINE 810 CUSTOM REPORT

Printed: 23-MAR-2011 16:59:26

SAMPLE: 709338-Std 3

#4 in Method: EPA8315M,ODS COL,SHIMADZU LC/UV

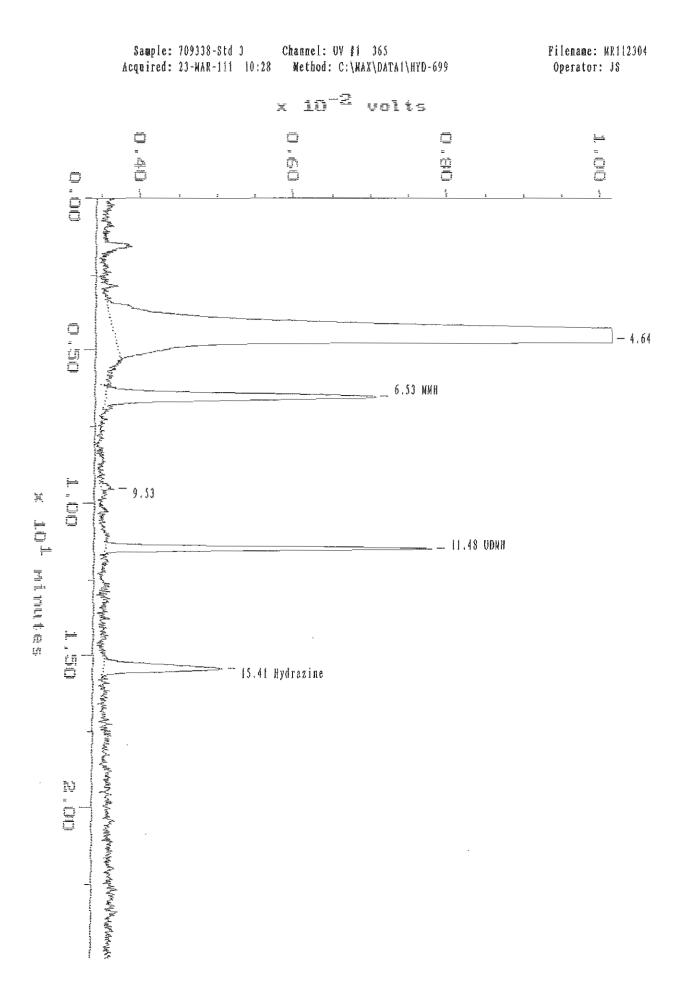
Acquired: 23-MAR-2011 10:28 Rate: 2.0 points/sec

Duration: 24.900 minutes

Operator: JS

DETECTOR: UV #1 365

Type: STND


Instrument: Shimadzu 6A Filename: MR112304

Index: 4

| PK#   | ID# | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
|       |     |                | and the fire the property of  |           |                          |
| 1     |     |                | 4,642                         | 598719    |                          |
| 2     | 1   | ИМИ            | 6.533                         | 53007     | 25.0000                  |
| 3     |     |                | 9.533                         | 8801      |                          |
| 4     | 3   | HMDO           | 11.475                        | 36512     | 25.0000                  |
| 5     | 5   | Hydrazine      | 15.408                        | 22990     | 5.0000                   |
| TOTAL |     |                |                               | 712317    | 55.0000                  |

DETECTOR: #UV #2 322

| PK#   | ID# | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>{ ug/L }                                      |
|-------|-----|----------------|-------------------------------|-----------|---------------------------------------------------------------|
|       |     |                | 4.700                         | 4040104   | that have the have then this play this thin the best than any |
| I     |     |                |                               |           |                                                               |
| 2     | 2   | *HMH           | 6.608                         | 25942     | 25.0000                                                       |
| 3     |     |                | 8.792                         | 982       |                                                               |
| 4     |     |                | 9.525                         | 3318      |                                                               |
| 5     | 4   | *UDMH          | 11.533                        | 11514     | 25.0000                                                       |
| 6     | б   | *hydrazine     | 15.475                        | 70736     | 5.0000                                                        |
| JATOT |     |                |                               | 4152596   | 55.0000                                                       |



Filename: MR112304 Operator: JS x lo<sup>-2</sup> volts - 4.70 6.61 #MHH 8.79 9.53 

\_ 11.53 \*UDMH

# BASELINE 810 CUSTOM REPORT

Printed: 23-MAR-2011 17:00:11

SAMPLE: 709338-Std 4

#5 in Method: EPA8315M,ODS COL,SHIMADZU EC/UV

Acquired: 23-MAR-2011 10:53 Rate: 2.0 points/sec

Duration: 24.900 minutes

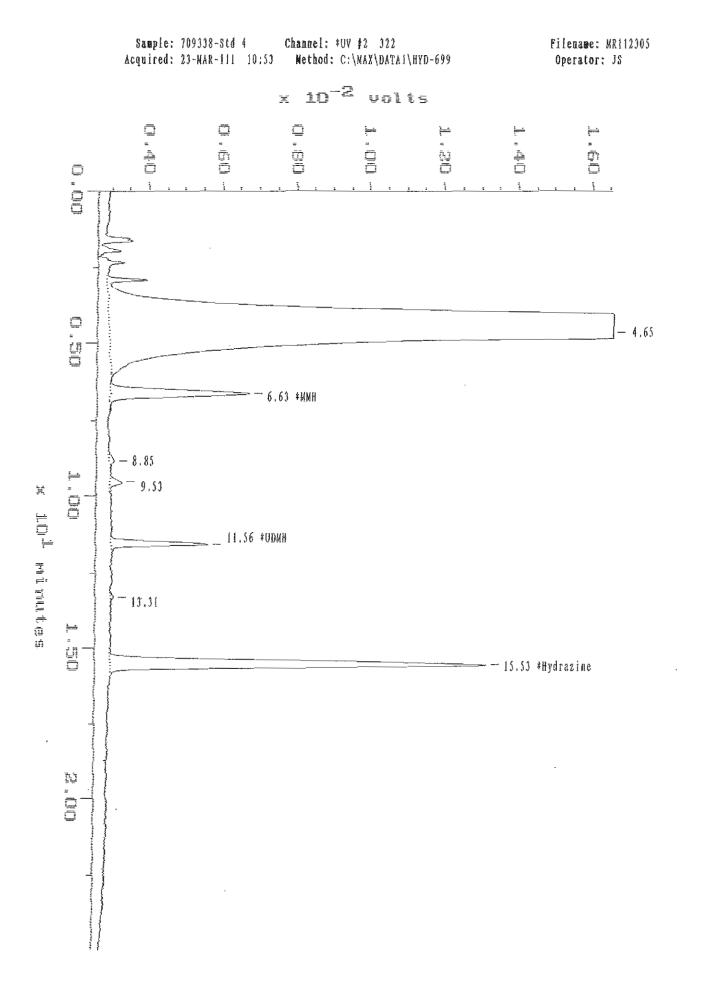
Operator: JS

DETECTOR: UV #1 365

Type: STND

Instrument: Shimadzu 6A Filename: MR112305

Index: 5


| ₽K₽              | ID‡   | Component Name           | Retention Time { minutes }         | Peak Area                          | Sample Conc.<br>( ug/L )      |
|------------------|-------|--------------------------|------------------------------------|------------------------------------|-------------------------------|
| 1<br>2<br>3<br>4 | 1 3 5 | MMB<br>ODMH<br>Hydrazine | 4.592<br>6.567<br>11.500<br>15.467 | 688989<br>107472<br>76666<br>48106 | 50.0000<br>50.0000<br>10.0000 |
| TOTAL            |       |                          |                                    | 921234                             | 110,0000                      |

| DETECTOR: #U     | V #2 322 |                |                               | 5*        |                       |
|------------------|----------|----------------|-------------------------------|-----------|-----------------------|
| br. <del>t</del> | īD\$     | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc. ( ug/L ) |
|                  |          |                |                               |           |                       |
| ĺ                |          |                | 4.650                         | 4600221   |                       |
| 2                | 2        | * 14 M B       | 6.625                         | 54594     | 50.0000               |
| ĵ                |          |                | 8.850                         | 1823      |                       |
| 4                |          |                | 9,525                         | 3820      |                       |
| 5                | 4        | *UDMH          | 11.558                        | 23600     | 50.0000               |
| 6                |          |                | 13.308                        | 660       |                       |
| 7                | 6        | *Hydrazine     | 15.525                        | 151151    | 10.0000               |
| TOTAL            |          |                |                               | 4835871   | 110.0000              |

030

 
 Sample:
 709338-Std 4
 Channel:
 UV #1 365

 Acquired:
 23-MAR-111 10:53
 Method:
 C:\MAX\DATA1\HYD-699
 Filename: MR112305 Operator: JS volts  $\Box$  - 4.59 6.57 MNA - 15,47 Hydrazine



Printed: 23-MAR-2011 17:00:57

SAMPLE: 709338-Std 5

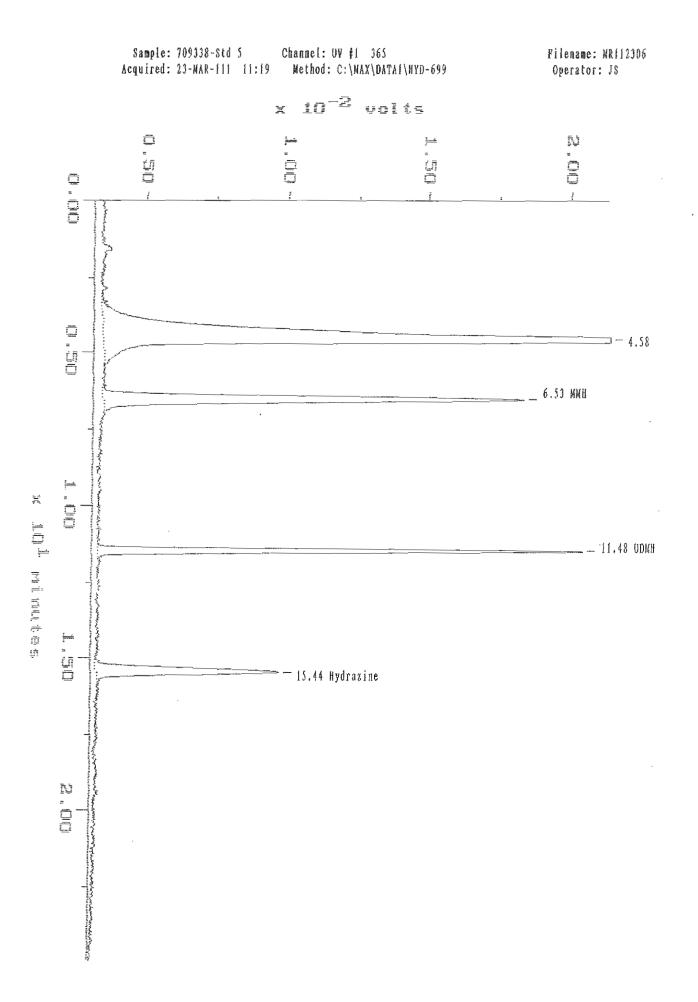
\$6 in Method: EPA8315M,ODS COL,SHIMADZU LC/UV

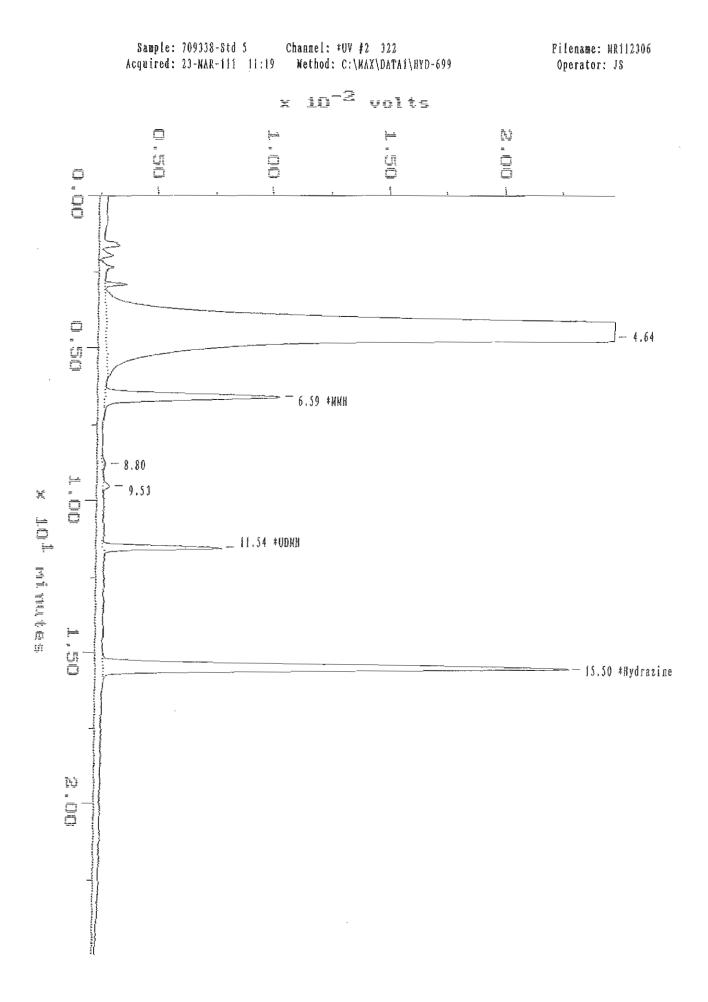
Acquired: 23-MAR-2011 11:19

Rate: 2.0 points/sec Duration: 24.900 minutes

Operator: JS

DETECTOR: UV #1 365


Type: STND Instrument: Shimadzu 6A Filename: WR112306


Filename: MR112306 Index: 6

| PK#   | ID₽ | Component Name | Retention Time (minutes) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|--------------------------|-----------|--------------------------|
|       | -   |                |                          |           |                          |
| 1     |     |                | 4.583                    | 581429    |                          |
| 2     | 1   | имв            | 6.533                    | 203465    | 100.0000                 |
| 3     | . 3 | ODMH           | 11.483                   | 142688    | 100.0000                 |
| 4     | 5   | Hydrazine      | 15.442                   | 90900     | 20.0000                  |
| TOTAL |     |                |                          | 1018482   | 220,0000                 |

DETECTOR: \*UV #2 322

| PK#   | ID≩ | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
|       |     |                |                               |           |                          |
| i     |     |                | 4.642                         | 3870677   |                          |
| 2     | 2   | *MMH           | 6.592                         | 103391    | 100.0000                 |
| 3     |     |                | 8.800                         | 1282      |                          |
| 4     |     |                | 9,525                         | 3178      |                          |
| 5     | 4   | *NDNH          | 11.542                        | 43521     | 100.0000                 |
| б     | 6   | *Hydrazine     | 15.500                        | 287125    | 20.0000                  |
| TOTAL |     |                |                               | 4309173   | 220.0000                 |



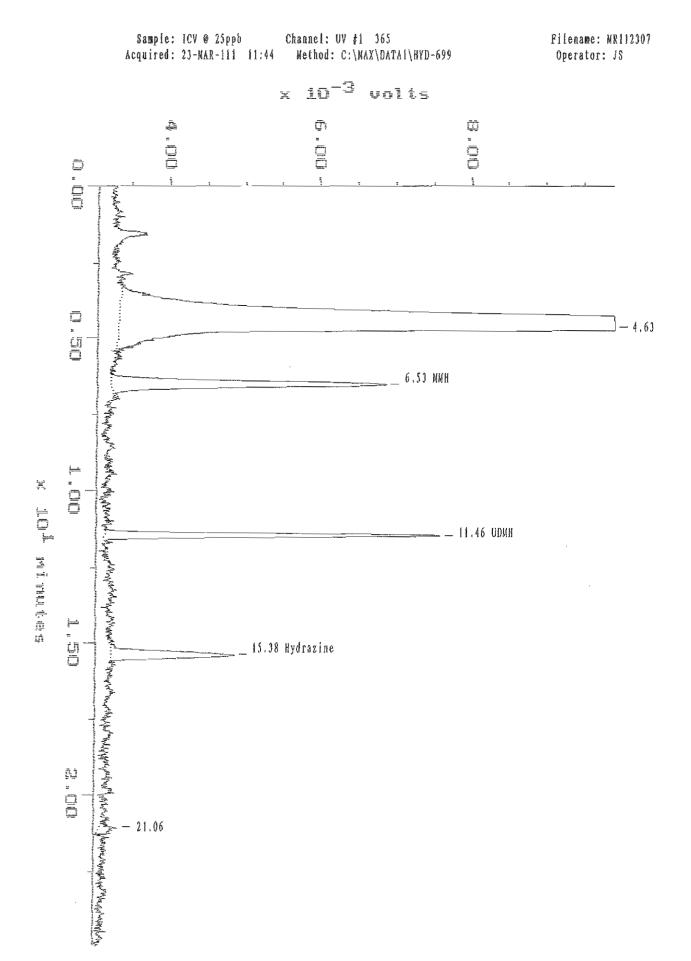


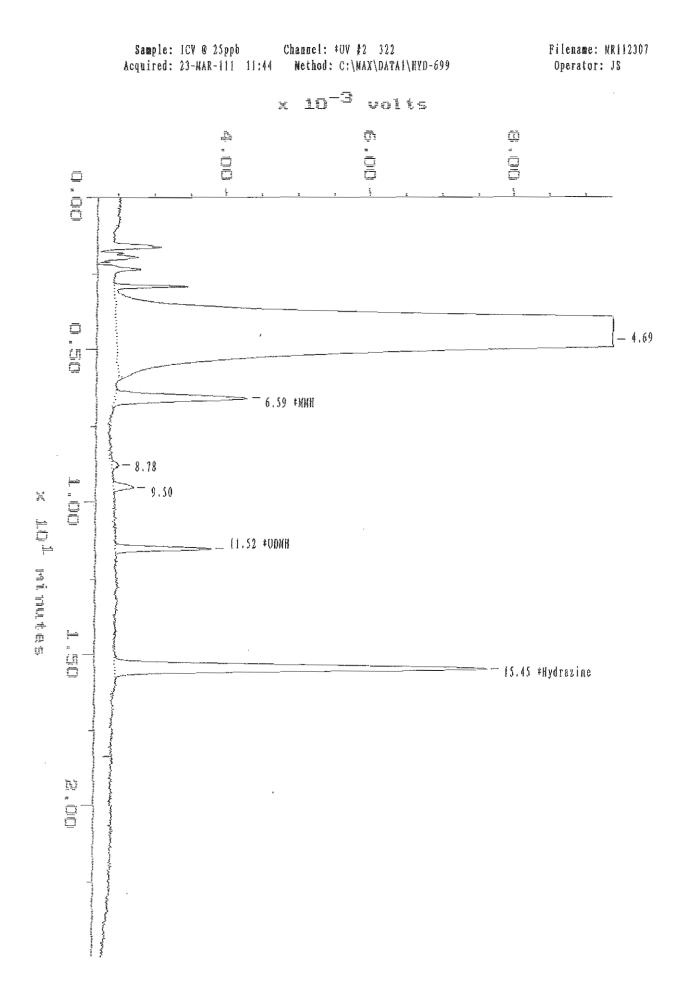
Printed: 23-MAR-2011 17:01:44

SAMPLE: ICV @ 25ppb

Operator: JS

DETECTOR: UV #1 365


Type: UXKN Instrument: Shimadzu 6A ₹7 in Method: EPA8315M,ODS COL,SHIMADZU LC/UV Acquired: 23-MAR-2011 11:44 Filename: MR112307 Rate: 2.0 points/sec Index: 7


Duration: 24.900 minutes

| PK#   | ID∦ | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
|       |     |                |                               |           |                          |
| 1     |     |                | 4.625                         | 615800    |                          |
| 2     | 1   | нин            | 6.525                         | 53151     | 24.0432                  |
| 3     | 3   | ODMH           | 11.458                        | 37714     | 23.9575                  |
| 4     | 5   | Hydrazine      | 15.375                        | 22444     | 4.5703                   |
| \$    |     | •              | 21.058                        | 3528      |                          |
| TOTAL |     |                |                               | 732637    | 52.5710                  |

DETECTOR: #UV #2 322

| ₽K₫   | ID# | Component Name | Retention Time ( minutes )                 | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|--------------------------------------------|-----------|--------------------------|
|       |     |                | and the Market West Court and the state of |           |                          |
| 1     |     |                | 4.692                                      | 4076771   |                          |
| 2     | 2   | *###           | 6.592                                      | 26258     | 23.6506                  |
| 3     |     |                | 8,783                                      | 1252      |                          |
| 4     |     |                | 9.500                                      | 3136      |                          |
| 5     | 4   | *UDHH          | 11.517                                     | 11648     | 23.9858                  |
| 6     | 6   | *Hydrazine     | 15.450                                     | 73319     | 4.7631                   |
|       |     |                |                                            |           |                          |
| TOTAL |     |                |                                            | 4192384   | 52.3995                  |





Printed: 23-MAR-2011 17:02:30

Type; UNKN

Instrument: Shimadzu 6A

Filename: MR112308

Index: 8

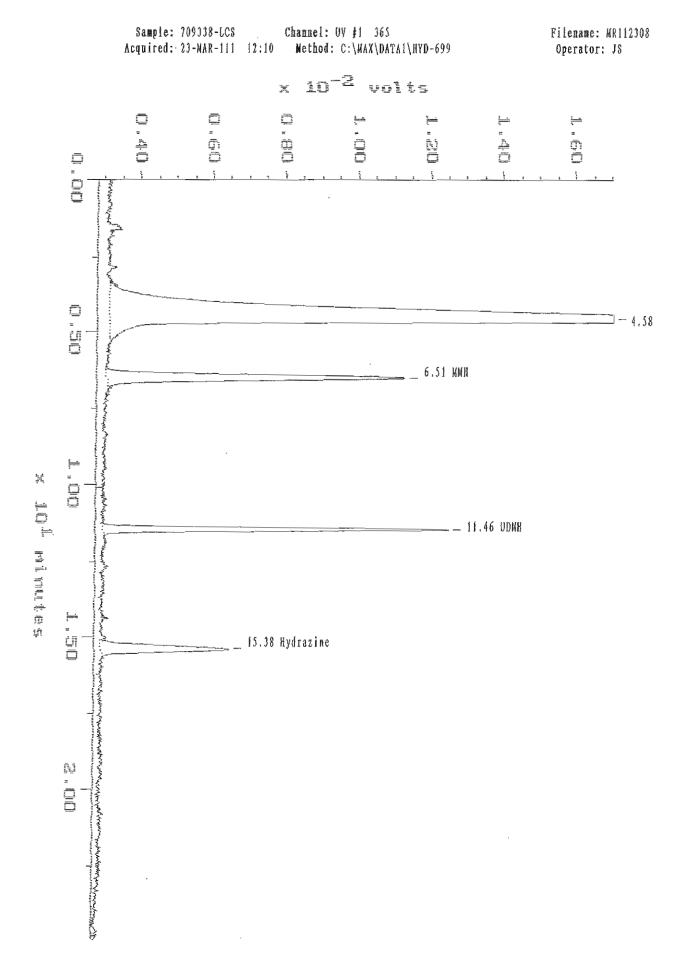
SAMPLE: 709338-LCS

#8 in Method: BPA8315M, ODS COL, SHIMADZU LC/UV

Acquired: 23-MAR-2011 12:10 Rate: 2.0 points/sec

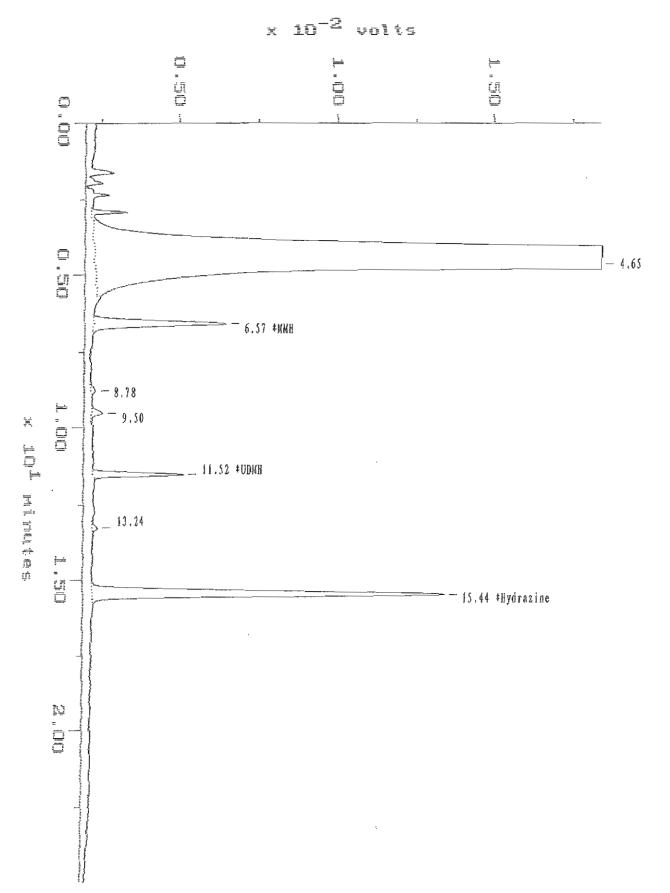
Duration: 24,900 minutes

Operator: JS


DETECTOR: UV #1 365

| PK# | ID‡ | Component Name | Retention Time { minutes } | Peak Area | Sample Conc.<br>{ ug/L } |
|-----|-----|----------------|----------------------------|-----------|--------------------------|
|     |     |                |                            |           |                          |
| 1   |     |                | 4.583                      | 684644    |                          |
| 2   | 1   | ним            | 6.508                      | 104650    | 49.9218                  |
| 3   | 3   | ODMH           | 11.458                     | 74878     | 50.6671                  |
| 4   | 5   | Hydrazine      | 15.375                     | 46937     | 10.0572                  |
| \L  |     |                |                            | 911109    | 110.6461                 |

DETECTOR: \*UV #2 322


TATAL

| PK#   | IDF | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
|       |     |                |                               |           |                          |
| í     |     |                | 4.650                         | 4525296   |                          |
| 2     | 2   | *#KH           | 6,567                         | 53228     | 50.1894                  |
| 3     |     |                | 8.775                         | 1404      |                          |
| 4     |     |                | 9.500                         | 3709      |                          |
| 5     | 4   | *UDHI          | 11.517                        | 23011     | 50.7909                  |
| б     |     |                | 13.242                        | 1306      |                          |
| 1     | 6   | *Hydrazine     | 15.442                        | 148147    | 10.0736                  |
|       |     |                |                               |           |                          |
| TOTAL |     |                |                               | 4756100   | 111.0539                 |



 Sample:
 709338-LCS
 Channel:
 \*UV \$2 322
 Filename:
 MR112308

 Acquired:
 23-MAR-111
 12:10
 Method:
 C:\MAX\DATAI\HYD-699
 Operator:
 JS



Printed: 23-MAR-2011 17:03:16

SAMPLE: 709338-LCSD

19 in Method: EPA8315M,ODS COL,SHIMADZU LC/UV

Acquired: 23-MAR-2011 12:36

Rate: 2.0 points/sec Duration: 24.900 minutes

Operator: JS

DETECTOR: UV #1 365

Type: UNKN Instrument: Shimadzu 6A Filename: HR1[2309

Index: 9

| ₽¥≇   | ID# | Component Name | Retention Time ( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|----------------------------|-----------|--------------------------|
|       |     |                |                            |           |                          |
| ĺ     |     |                | 4.575                      | 661101    |                          |
| 2     | 1   | HMH            | 6,492                      | 102149    | 48.6650                  |
| 3     | Ĵ   | ODMI           | 11,450                     | 75078     | 50,8108                  |
| 4     | 5   | Hydrazine      | 15,375                     | 45670     | 9,7733                   |
| TOTAL |     |                |                            | 883998    | 109.2491                 |

DETECTOR: \*UV #2 322

| PK#   | ID# | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ng/L ) |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
| ,     |     |                |                               | 100001    |                          |
| 1     |     |                | 4.633                         | 4399814   |                          |
| 2     | 2   | #WMH           | 6,550                         | 51826     | 48.8097                  |
| Ĵ     |     |                | 8.717                         | 1184      |                          |
| 4     |     |                | 9,458                         | 3452      |                          |
| 5     | 4   | *UDMH          | 11.508                        | 22616     | 49.8594                  |
| 6     |     |                | 12.742                        | 620       |                          |
| 7     |     |                | 13.267                        | 1629      |                          |
| 8     | 6   | *Hydrazine     | 15.425                        | 145146    | 9.8607                   |
|       |     |                |                               |           |                          |
| TOTAL |     |                |                               | 4626287   | 108.5297                 |

Acquired: 23-MAR-111 12:36 Method: C:\MAX\DATA1\HYD-699 Operator: JS 10-2 velts <sup>□</sup> - 4.58 6.49 MMH 15.38 Hydrazine 

Channel: UV #1 365

Filename: MR112309

Sample: 709338-LCSD

Operator: JS uolis - 4.63 6,55 \*MMH 8.72 \_ 9.46 \_ 11.51 #ODWH 12.74 \_ 13.27 ——— 15.43 ‡Hydrazine 

Filename: MR112309

Printed: 23-MAR-2011 17:04:03

SAMPLE: 709338-WB

\$10 in Method: EPA8315M,ODS COL,SHIMADZU LC/UV

Acquired: 23-MAR-2011 13:01 Rate: 2.0 points/sec

Duration: 24.900 minutes

Operator: JS

DETECTOR: UV #1 365

Type: UNKN Instrument: Shimadzu 6A Filename: MR112310

Index: 10

| P <b>K</b> ‡ | ID₽ | Component Name | Retention Time<br>( winutes ) | Peak Area | Sample Conc.<br>( og/L ) |
|--------------|-----|----------------|-------------------------------|-----------|--------------------------|
|              |     |                | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~     |           |                          |
| 1            |     |                | 4.608                         | 726135    | ,                        |
|              |     |                |                               |           |                          |
| TOTAL        |     |                |                               | 726135    | 0.0000                   |
|              |     |                |                               |           |                          |

DETECTOR: \$UV #2 322

| PK#   | ID# | Совропецт Наше | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>{ ug/L } |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
|       |     |                | ~~~~~~                        |           | ~~~~~~                   |
| 1     |     |                | 4.675                         | 4772582   |                          |
| 2     |     |                | 8.775                         | 1477      |                          |
| 3     |     |                | 9.483                         | 3948      |                          |
| 4     |     |                | 13.225                        | 1516      |                          |
|       |     |                |                               |           |                          |
| TOTAL |     |                |                               | 4779524   | 0.0000                   |

Pilename: MR112310 Operator: JS volts ]- 4.61 x 101 ringes 

Filename: MR112310 Operator: JS x 10<sup>-3</sup> volts - 4.68 - 8.78 \_ 9.48 y 101 Pitched \_ 13.23 1.50

Printed: 23-MAR-2011 17:04:49

SAMPLE: 994230

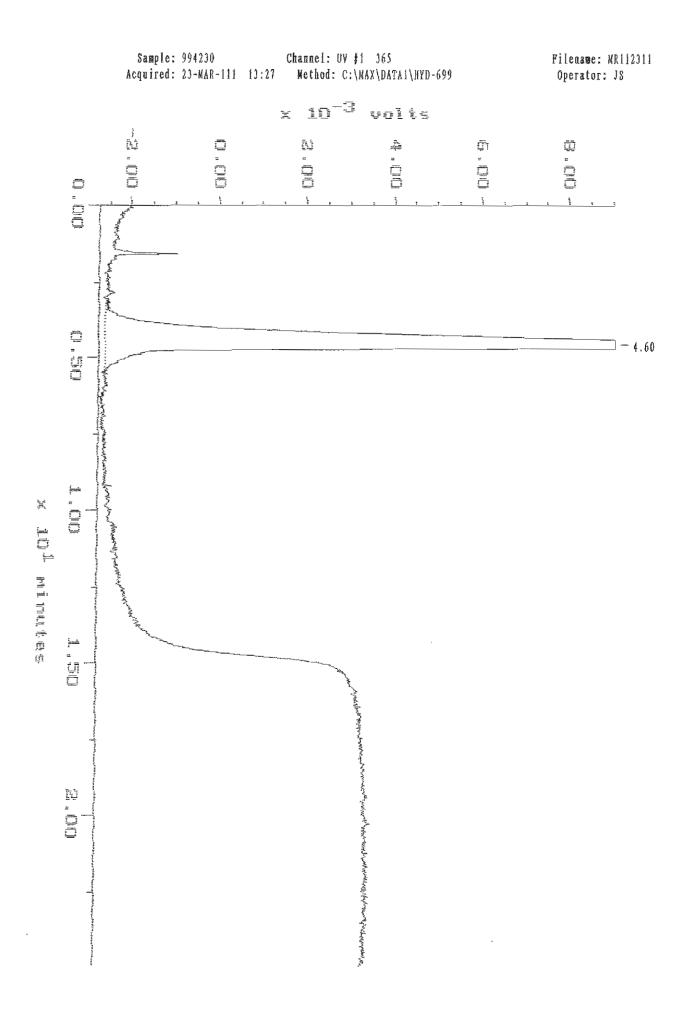
#11 in Method: EPA8315M,ODS COL,SHIMADZU LC/UV

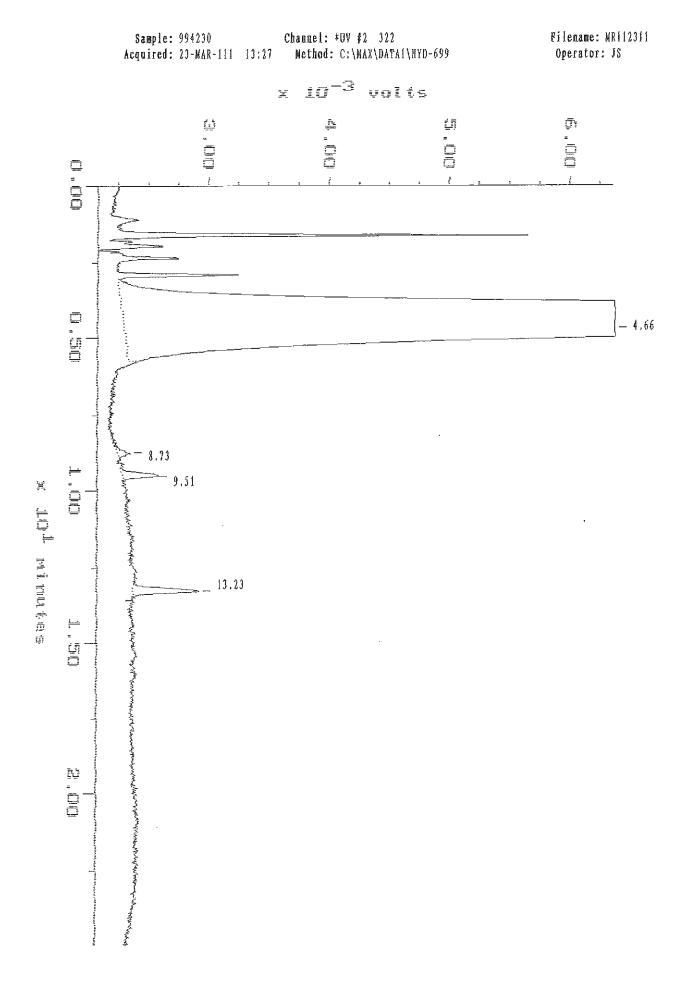
Acquired: 23-MAR-2011 13:27

Rate: 2.0 points/sec Duration: 24.900 minutes

Operator: JS

DETECTOR: UV #1 365


Type: UNKN Instrument: Shimadzu 6A Filename: MRI12311


Index: 11

| PK≱   | ID∦ | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
|       |     |                | ************                  |           |                          |
| 1     |     |                | 4.600                         | 627561    |                          |
|       |     |                |                               | *******   |                          |
| TOTAL |     |                |                               | 627561    | 0.0000                   |

DETECTOR: #UV 12 322

| PK#   | ID# | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L )                |
|-------|-----|----------------|-------------------------------|-----------|-----------------------------------------|
|       |     |                | ***                           |           | *************************************** |
| Í     |     |                | 4,658                         | 4077892   |                                         |
| 2     |     |                | 8.733                         | 1184      |                                         |
| 3     |     |                | 9.508                         | 2989      |                                         |
| 4     |     |                | 13.233                        | 5985      |                                         |
|       |     |                |                               |           |                                         |
| TOTAL |     |                |                               | 4088050   | 0,0000                                  |





Printed: 23-MAR-2011 17:06:21

SAMPLE: 994230 NS

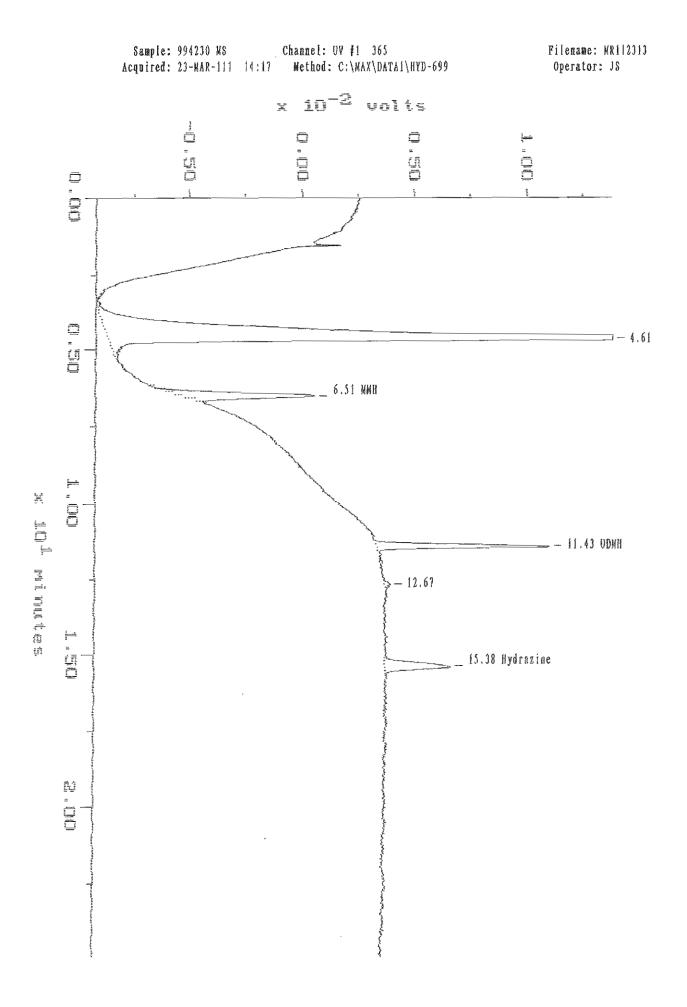
#13 in Method: BPA8315M, ODS COL, SHIMADZU LC/UV

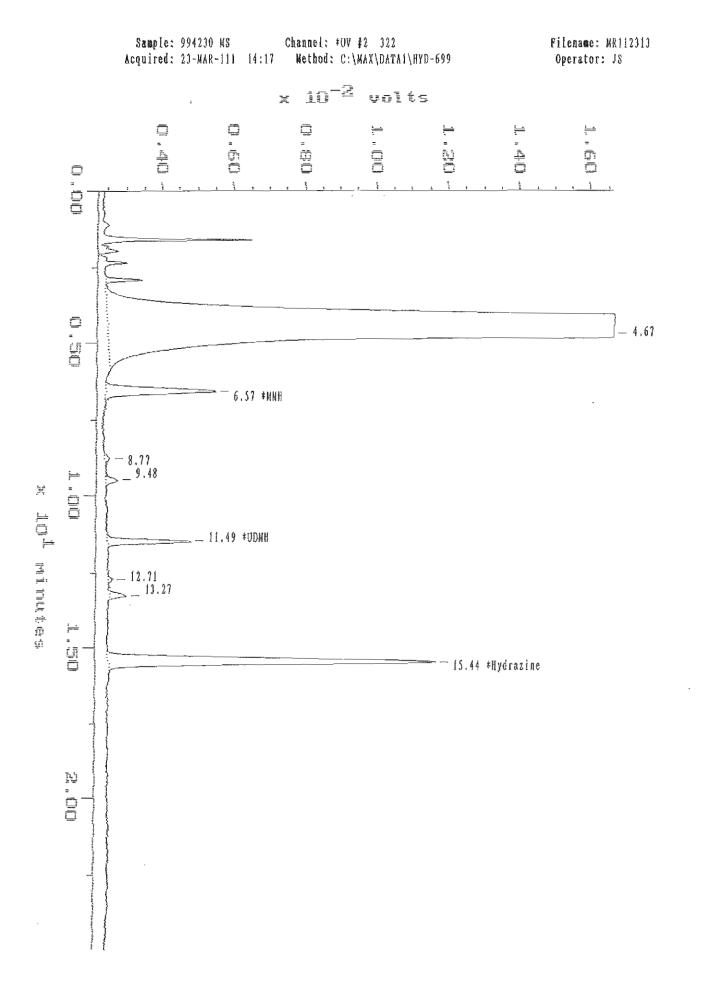
Acquired: 23-MAR-2011 14:17

Rate: 2.0 points/sec Duration: 24.900 minutes

Operator: JS

DETECTOR: UV #1 365


Type: UNKN Instrument: Shimadzu 6A Filename: MR[12313


Index: 13

| PK#   | ID‡ | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
|       |     |                |                               |           |                          |
| . 1   |     |                | 4.608                         | 629040    |                          |
| 2     | 1   | MMH            | 6.508                         | 73538     | 34.2877                  |
| 3     | 3   | UDMH           | 11.433                        | 62511     | 41.7785                  |
| 4     |     |                | 12.667                        | 2143      |                          |
| 5     | 5   | Hydrazine      | 15.383                        | 39264     | 8.3383                   |
| TOTAL |     |                |                               | 806495    | 84.4046                  |

DETECTOR: \*UV #2 322

| PK#    | ID# | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc. ( ug/L ) |
|--------|-----|----------------|-------------------------------|-----------|-----------------------|
|        |     |                |                               |           |                       |
| 1      |     |                | 4.667                         | 4266761   |                       |
| 2      | 2   | HMM*           | 6.567                         | 39420     | 36.6023               |
| 3      |     |                | 8.767                         | 1523      |                       |
| 4      |     |                | 9.483                         | 3257      |                       |
| 5      | 4   | #MDU#          | 11.492                        | 19711     | 43,0065               |
| 6      |     |                | 12.708                        | 860 .     |                       |
| 7      |     |                | 13.267                        | 4711      |                       |
| 8      | б   | *Hydrazine     | 15.442                        | 127678    | 8.6209                |
| 1 ለምስም |     |                |                               | 4463921   | 88,2298               |
| LATOT  |     |                |                               | 4403921   | 88.2298               |





Printed: 23-MAR-2011 17:07:08

Type: UNKN

Filename: MR112314 Index: 14

Instrument: Shimadzu 6A

SAMPLE: 994230 MSD

#14 in Method: EPA8315M,ODS COL,SHIMADZU LC/OV

Acquired: 23-MAR-2011 14:43 Rate: 2.0 points/sec

Duration: 24,900 minutes

Operator: JS

DETECTOR: UV #1 365

| PK♣   | IDŧ | Сомронент Наме | Retention Time<br>( minutes ) | Peak Area | Sample Conc. ( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|-----------------------|
|       | ==- |                |                               |           |                       |
| Í     |     |                | 4.600                         | 689092    |                       |
| 2     | 1   | нии            | 6,492                         | 82396     | 38.7390               |
| 3     | 3   | ODNA           | 11,442                        | 67545     | 45.3966               |
| 4     |     |                | 12.683                        | 1027      |                       |
| 5     |     |                | 13.208                        | 1273      |                       |
| 6     |     |                | 13.825                        | 1040      |                       |
| ì     | 5   | Hydrazine      | 15.375                        | 43401     | 9.2651                |
| TOTAL |     |                |                               | 885774    | 93.4007               |

DETECTOR: \*UV #2 322

| PK₽   | ID#             | Component Name                                 | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----------------|------------------------------------------------|-------------------------------|-----------|--------------------------|
|       | the board bloom | way from 1000 1000 1000 1000 1000 1000 1000 10 | 1 (50                         | 1552100   |                          |
| 1     |                 |                                                | 4.658                         | 4553400   |                          |
| 2     | 2               | * H H H                                        | 6.542                         | 41659     | 38.8056                  |
| 3     |                 |                                                | 8.750                         | 1231      |                          |
| 4     |                 |                                                | 8.758                         | 36        |                          |
| 5     |                 |                                                | 9.483                         | 3607      |                          |
| 6     | 4               | *UDNH                                          | 11.500                        | 20898     | 45.8056                  |
| 7     |                 |                                                | 12.742                        | 1196      |                          |
| 8     |                 |                                                | 13.258                        | 6126      |                          |
| 9     | 6               | *Hydrazine                                     | 15.433                        | 135793    | . 9.1969                 |
| TOTAL |                 |                                                |                               | 4763946   | 93.8082                  |

Channel: UV \$1 365
Wethod: C:\MAX\DATA1\HYD-699 Filename: MR112314 Sample: 994230 MSD Operator: JS Acquired: 23-MAR-111 14:43 11-1 volts ] — 4.60 6.49 MNH -12.68 -13.21- 13.83 1.50 15.38 Hydrazine 2.90

Filename: MR112314 Operator: JS 10<sup>-2</sup> valts - 4.66 6.54 \*HHH = 8.75 = 9.48 e 101 Pinces 11.50 \*UDMH 12.74 \_\_ 13.26 -- 15.43 \*Hydrazine

Printed: 23-MAR-2011 17:07:56

Type: UNKN

Instrument: Shimadzu 6A

Filename: MR112315

· Index: 15

SAMPLE: 709338 QCS

\$15 in Method: EPA8315M,ODS COL,SHIMADZU LC/UV

Acquired: 23-MAR-2011 15:08

Rate: 2.0 points/sec

Duration: 24.900 minutes

Operator: J8

DETECTOR: UV #1 365

| βK≹   | 101 | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc. ( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|-----------------------|
|       |     |                |                               |           |                       |
| 1     |     |                | 4.567                         | 674393    |                       |
| 2     | 1   | MMH            | 6,492                         | 105488    | 50.3430               |
| ĵ     | 3   | UDMH           | 11.442                        | 74097     | 50,1054               |
| 4     |     |                | 12.650                        | 1019      |                       |
| 5     | 5   | Hydrazine      | 15.383                        | 48538     | 10.4158               |
| TOTAL |     |                |                               | 903535    | 110.8641              |

DETECTOR: #UV #2 322

| PK \$ | ID₽ | Component Name | Retention Time<br>( minutes ) | Peak Area | Sample Conc.<br>( ug/L ) |
|-------|-----|----------------|-------------------------------|-----------|--------------------------|
|       |     |                |                               |           |                          |
| 1     |     |                | 4.625                         | 4508487   |                          |
| 2     | 2   | ‡              | 6.558                         | 53002     | 49.9671                  |
| 3     |     |                | 8.742                         | 1271      |                          |
| 4     |     |                | 9.508                         | 3647      |                          |
| 5     | 4   | *ODMH          | 11.500                        | 23420     | 51.7555                  |
| б     |     |                | 12.717                        | 793       |                          |
| 7     |     |                | 13.267                        | 2004      |                          |
| 8     | 6   | ‡Hydrazine     | 15.442                        | 155382    | 10.5871                  |
| TOTAL |     |                |                               | 4748005   | 112.3097                 |

057

Acquired: 23-MAR-111 15:08 Nethod: C:\MAX\DATA1\HYD-699 Operator: JS 10-2 volts i N O □ - 4.57 \_ 6.49 MMH x 1111 Pitches -12.6515.38 Hydrazine Parke Late Supratification of the State Control of the State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of State Control of St 

Channel: UV #1 365

Filename: MR112315

Sample: 709338 QCS

Operator: JS volts - 4.61 6.56 \*MMH 8.74 9.51 11.50 \*UDMH -12.72 -13.27- 15.44 \*Hydrazine 

Filename: MR112315

Printed: 23-MAR-20|1 17:08:42

SAMPLE: MP BLANK 2

\$16 in Method: BPA8315M, ODS COL, SHIMADZU LC/UV

Acquired: 23-MAR-2011 15:34

Rate: 2.0 points/sec Duration: 24.900 minutes

Operator: JS

DETECTOR: UV #1 365

Type: UNKN Instrument: Shimadzu 6A Pilename: MR112016 Index: 16

₽K∦ ID\$ Component Name Retention Time Peak Area Sample Conc. ( minutes ) ( ug/L ) 6.100 920 1 24.808 2 683 TOTAL 1604 0.0000

DETECTOR: \*UV #2 322

Retention Time Peak Area Sample Conc. PK# ID\$ Component Name ( ug/L ) ( minutes ) \_\_\_\_\_ -----0

TOTAL

0.0000

Filename: WR112316 Operator: JS Sample: MP BLANK 2 Channel: UV \$1 365
Acquired: 23-WAR-111 15:34 Method: C:\WAX\DATA1\HYD-699 unlts ÷ - 6.10 

Sample: MP BLANK 2 Acquired: 23-MAR-111 15:34 Channel: #UV #2 322 Wethod: C:\MAX\DATAI\HYD-699 Operator: JS volts 5 - II a. II

Filename: MR112316

## **APPENDIX G**

## Section 49

Outfall 018 – February 17 & 18, 2011

MECX Data Validation Report



## DATA VALIDATION REPORT

# Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IUB1966

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES SDG: IUB1966

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IUB1966
Project Manager: B. Kelly

Matrix: Water QC Level: IV

No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

**Table 1. Sample Identification** 

| Client ID   | Laboratory ID | Sub-Laboratory<br>ID                        | Matrix | Collected        | Method                                                                                                                                                                                                   |
|-------------|---------------|---------------------------------------------|--------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outfall 018 | IUB1966-01    | N/A                                         | Water  | 2/18/10<br>15:30 | 120.1, 8015M                                                                                                                                                                                             |
| Outfall 018 | IUB1966-03    | G1B220467-001,<br>S102233-001,<br>993769-01 | Water  |                  | 180.1, 200.7, 200.7 (Diss), 245.1,<br>245.1 (Diss), 1613B, 8260B SIM,<br>8315M, 625, 900.0 MOD, 901.1<br>MOD, 903.0 MOD, 904 MOD, 905<br>MOD, 906.0 MOD, SM2340B,<br>SM2340B-Diss, SM5310B, ASTM<br>5174 |

#### II. Sample Management

No anomalies were observed regarding sample management. The samples were received above the temperature limit at Eberline; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at Eberline and TestAmerica-West Sacramento. As the sample was couriered to TestAmerica-Irvine and Truesdail, no custody seals were required. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Project: SSFL NPDES
DATA VALIDATION REPORT SDG: IUB1966

### **Data Qualifier Reference Table**

| Qualifie | er Organics                                                                                                                                                                                                                                                             | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

2 Revision 0

## **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of standards used for the calibration was incorrect                    |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| Ε         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| I         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

### **Qualification Code Reference Table Cont.**

| D      | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р      | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ    | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *  , * | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

### III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: March 24, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - OGC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had a detect between the EDL and the RL for OCDD. The sample result below the reporting limit was qualified as nondetected, "U," at the level of contamination.

 Blank Spikes and Laboratory Control Samples: LCS recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. EMPCs were qualified as estimated nondetects, "UJ," at the level of the EMPC. Totals containing EMPCs were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

#### B. EPA METHOD 8315M—Hydrazines

Reviewed By: P. Meeks

Date Reviewed: March 25, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 8315M, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The hydrazine sample
  was derivitized within 28 days of collection and was analyzed within three days of
  derivitization.
- Calibration: Calibration criteria were met. The initial calibration r² values were ≥0.995. The ICV, CCV and QCS recoveries were within 85-115%.
- Blanks: Hydrazine was not detected in the method blank.

 Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.

- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision were evaluated based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Review of the sample, LCS, and LCSD chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibrations and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

#### C. EPA METHODS 200.7, and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 25, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC<sup>X</sup> Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.
- Tuning: Not applicable to these analyses.
- Calibration: Calibration criteria were met. Mercury initial calibration r<sup>2</sup> values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP metals and 85-115% for mercury. The CRDL/CRI recoveries were within the control limits of 70-130%.

Blanks: Method blanks and CCBs had no applicable detects.

• Interference Check Samples: Recoveries were within 80-120% for all 200.7 analyses. Boron was detected in the ICSA associated with the total analysis at 76.7 μg/L and was reported in the ICSA associated with the dissolved analysis at –57.7 μg/L; however, the concentration of the primary interferent, iron, was not sufficient to cause matrix interference in the site sample.

- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the the sample in this SDG. Method accuracy for the methods was evaluated based on the LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### D. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 25, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

 Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.

• Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J." the remaining detector efficiencies were ≥20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for all analytes. The gross alpha RPD exceeded the control limit; therefore gross alpha detected in the sample was qualified as estimated, "J." The remaining RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

### E. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin

Date Reviewed: March 25, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs and the ICV and continuing calibration RRFs were 0.05 for all target compounds. The initial calibration %RSDs were ≤35%, or r² values ≥0.995. The second source ICV had a %D above 20% for 1,2-diphenylhydrazine/azobenzene; therefore, the nondetected result for this compound was qualified as estimated, "UJ." The remaining ICV and CCV %Ds were ≤20%.
- Blanks: Butylbenzyl phthalate was detected in the method blank below the reporting limit at 0.70 µg/L. The sample result for butylbenzyl phthalate was qualified as nondetected, "U," at the reporting limit. The method blank had no other target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
   -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

## F. EPA METHODS 8015Mod—Gasoline Range Organics (GRO), and 8015B— Extractable Total Fuel Hydrocarbons (EFHs)

Reviewed By: L. Calvin

Date Reviewed: March 25, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Total Fuel Hydrocarbons (DVP-8, Rev. 0), EPA Method 8015B, and the National Functional Guidelines for Organic Data Review (10/99).

 Holding Times: Extraction and analytical holding times were met. The GRO sample was analyzed within 14 days of collection and the sample for the remaining hydrocarbon ranges was extracted within seven days of collection and analyzed within 40 days of extraction.

 Calibration: The initial calibration %RSDs for all target compound ranges were less than 20%, and continuing calibration %Ds were less than 15%.

- Blanks: The method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries for all LCSs and RPDs for the EFH LCS/LCSD (representative of all of the reported extractable hydrocarbon ranges) were within laboratory-established QC limits.
- Surrogate Recovery: The surrogate recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Method accuracy for GRO and EFH ranges, and precision for EFH were evaluated based on the blank spike results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Four hydrocarbon ranges were reported: GRO (C4-C12,) DRO (C13-C28,) EFH (C13-C40,) and ORO (C29-C40.) Review of the sample chromatograms and retention time ranges indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibrations and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

#### G. EPA METHOD 8260B-SIM—1,4-Dioxane

Reviewed By: L. Calvin

Date Reviewed: March 25, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Methods 624 and 8260B, and the National Functional Guidelines for Organic Data Review (10/99).

• Holding Times: The analytical holding time was met. The preserved water sample was analyzed within 14 days of collection.

- GC/MS Tuning: The BFB tunes met the method abundance criteria specified by EPA Method 8260B. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: The initial calibration average RRF and continuing calibration RRF were ≥0.05 for 1,4-dioxane. The initial calibration %RSD was≤15%, and the continuing calibration %D was ≤20%.
- Blanks: The method blank had 1,4-dioxane detected marginally below the MDL at 0.68 µg/L. The sample result below the reporting limit was well below five times the method blank concentration; therefore, in the professional judgment of the reviewer, the sample result was qualified as nondetected, "U," at the level of contamination.
- Blank Spikes and Laboratory Control Samples: The LCS recovery was within laboratoryestablished QC limits.
- Surrogate Recovery: The recovery was within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy was based on LCS results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Trip Blanks: A trip blank was not analyzed for 1,4-dioxane by Method 8260B SIM.
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified in this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
   -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for 1,4-dioxane by Method 8260B SIM. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limit was supported by the low point of the initial calibration and the laboratory MDL. Any result reported between the MDL and the reporting limit was

qualified as estimated, "J," and coded with "DNQ" to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

• Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.

 System Performance: Review of the raw data indicated no problems with system performance.

#### H. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: March 25, 2011

The sample listed in Table 1 for this analysis were validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 180.1, SM5310B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995. All initial and continuing calibration recoveries were within 90-110%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.

Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

o Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms IUB1966

| Analysis Metho   | od 8663        |                 |           |          |                 |                  |                         |                     |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Sample Name      | Outfall 018 (C | Composite       | ) Matr    | ix Type: | WATER           | V                | Validation Le           | vel: IV             |
| Lab Sample Name: | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Uranium, Total   |                | 0.104           | 1         | 0.02     | pCi/L           | Jb               | J                       | DNQ                 |
| Analysis Metho   | od 900         |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 018 (C | Composite       | ) Matr    | ix Type: | WATER           | 1                | Validation Le           | vel: IV             |
| Lab Sample Name: | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Gross Alpha      | 12587461       | 0.49            | 3         | 0.367    | pCi/L           | Jb               | J                       | C, E, DNQ           |
| Gross Beta       | 12587472       | 3.7             | 4         | 1.01     | pCi/L           | Jb               | J                       | DNQ                 |
| Analysis Metho   | od 901.1       |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 018 (C | Composite       | e) Matr   | ix Type: | WATER           | 7                | Validation Le           | vel: IV             |
| Lab Sample Name: | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Cesium-137       | 10045973       | ND              | 20        | 1.25     | pCi/L           | U                | U                       |                     |
| Potassium-40     | 13966002       | ND              | 25        | 29.1     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od 903.1       |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 018 (C | Composite       | e) Matr   | ix Type: | WATER           | 1                | Validation Le           | vel: IV             |
| Lab Sample Name: | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium-226       | 13982633       | -0.028          | 1         | 0.583    | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od 904         |                 |           |          |                 |                  |                         |                     |
| Sample Name      | Outfall 018 (C | Composite       | ) Matr    | ix Type: | WATER           | 1                | Validation Le           | vel: IV             |
| Lab Sample Name: | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium-228       | 15262201       | -0.13           | 1         | 0.493    | pCi/L           | U                | U                       |                     |

Friday, April 01, 2011 Page 1 of 8

## Analysis Method 905

| Sample Name          | Outfall 018 (0 | Composite)      | Matri     | ix Type: | WATER           | V                    | alidation Le            | vel: IV             |  |
|----------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|--|
| Lab Sample Name:     | IUB1966-03     | Samj            | ple Date: | 2/18/201 | 1 3:31:00 PM    |                      |                         |                     |  |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Strontium-90         | 10098972       | -0.162          | 2         | 0.728    | pCi/L           | U                    | U                       |                     |  |
| Analysis Method      | d 906          |                 |           |          |                 |                      |                         |                     |  |
| Sample Name          | Outfall 018 (0 | Composite)      | Matri     | ix Type: | WATER           | Validation Level: IV |                         |                     |  |
| Lab Sample Name:     | IUB1966-03     | Samj            | ple Date: | 2/18/201 | 1 3:31:00 PM    |                      |                         |                     |  |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Tritium              | 10028178       | -33.1           | 500       | 218      | pCi/L           | U                    | U                       |                     |  |
| Analysis Method      | d EPA          | 120.1           |           |          |                 |                      |                         |                     |  |
| Sample Name          | Outfall 018 (0 | Grab)           | Matri     | ix Type: | Water           | V                    | alidation Le            | vel: IV             |  |
| Lab Sample Name:     | IUB1966-01     | Samj            | ple Date: | 2/17/201 | 1 3:30:00 PM    |                      |                         |                     |  |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Specific Conductance | NA             | 250             | 1.0       | 1.0      | umhos/c         |                      |                         |                     |  |
| Analysis Method      | d EPA          | 180.1           |           |          |                 |                      |                         |                     |  |
| Sample Name          | Outfall 018 (0 | Composite)      | Matri     | ix Type: | Water           | V                    | alidation Le            | vel: IV             |  |
| Lab Sample Name:     | IUB1966-03     | Samj            | ole Date: | 2/18/201 | 1 3:31:00 PM    |                      |                         |                     |  |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Turbidity            | Turb           | 3.1             | 1.0       | 0.040    | NTU             |                      |                         |                     |  |

Friday, April 01, 2011 Page 2 of 8

## Analysis Method EPA 200.7

| Sample Name      | Outfall 018 (0 | Composite       | ) Matri   | x Type:  | Water           | Validation Level: IV |                         |                     |
|------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name: | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                      |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Arsenic          | 7440-38-2      | ND              | 10        | 7.0      | ug/l            |                      | U                       |                     |
| Barium           | 7440-39-3      | 0.010           | 0.010     | 0.0060   | mg/l            |                      |                         |                     |
| Beryllium        | 7440-41-7      | ND              | 2.0       | 0.90     | ug/l            |                      | U                       |                     |
| Boron            | 7440-42-8      | 0.055           | 0.050     | 0.020    | mg/l            |                      |                         |                     |
| Calcium          | 7440-70-2      | 33              | 0.10      | 0.050    | mg/l            |                      |                         |                     |
| Chromium         | 7440-47-3      | ND              | 5.0       | 2.0      | ug/l            |                      | U                       |                     |
| Cobalt           | 7440-48-4      | ND              | 10        | 2.0      | ug/l            |                      | U                       |                     |
| Iron             | 7439-89-6      | 0.073           | 0.040     | 0.015    | mg/l            |                      |                         |                     |
| Magnesium        | 7439-95-4      | 7.7             | 0.020     | 0.012    | mg/l            |                      |                         |                     |
| Manganese        | 7439-96-5      | 49              | 20        | 7.0      | ug/l            |                      |                         |                     |
| Nickel           | 7440-02-0      | 2.3             | 10        | 2.0      | ug/l            | J                    | J                       | DNQ                 |
| Vanadium         | 7440-62-2      | ND              | 10        | 3.0      | ug/l            |                      | U                       |                     |
| Zinc             | 7440-66-6      | 6.72            | 20.0      | 6.00     | ug/l            | J                    | J                       | DNQ                 |

## Analysis Method EPA 200.7-Diss

| Sample Name      | Outfall 018 (0 | Composite       | ) Matri   | ix Type: | Water           | Validation Level: IV |                         |                     |
|------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name: | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                      |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Arsenic          | 7440-38-2      | ND              | 10        | 7.0      | ug/l            |                      | U                       |                     |
| Barium           | 7440-39-3      | 0.010           | 0.010     | 0.0060   | mg/l            |                      |                         |                     |
| Beryllium        | 7440-41-7      | ND              | 2.0       | 0.90     | ug/l            |                      | U                       |                     |
| Boron            | 7440-42-8      | 0.060           | 0.050     | 0.020    | mg/l            |                      |                         |                     |
| Calcium          | 7440-70-2      | 32              | 0.10      | 0.050    | mg/l            |                      |                         |                     |
| Chromium         | 7440-47-3      | ND              | 5.0       | 2.0      | ug/l            |                      | U                       |                     |
| Cobalt           | 7440-48-4      | ND              | 10        | 2.0      | ug/l            |                      | U                       |                     |
| Iron             | 7439-89-6      | 0.026           | 0.040     | 0.015    | mg/l            | J                    | J                       | DNQ                 |
| Magnesium        | 7439-95-4      | 7.6             | 0.020     | 0.012    | mg/l            |                      |                         |                     |
| Manganese        | 7439-96-5      | ND              | 20        | 7.0      | ug/l            |                      | U                       |                     |
| Nickel           | 7440-02-0      | 2.0             | 10        | 2.0      | ug/l            | J                    | J                       | DNQ                 |
| Vanadium         | 7440-62-2      | ND              | 10        | 3.0      | ug/l            |                      | U                       |                     |
| Zinc             | 7440-66-6      | ND              | 20.0      | 6.00     | ug/l            |                      | U                       |                     |

Friday, April 01, 2011 Page 3 of 8

## Analysis Method EPA 245.1

| Sample Name      | Outfall 018 (C | Composite)      | Matr      | ix Type: | Water           | 7                | Validation Le           | vel: IV             |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20      | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | od EPA 2       | 245.1-D         | iss       |          |                 |                  |                         |                     |
| Sample Name      | Outfall 018 (C | Composite)      | Matr      | ix Type: | Water           | 7                | Validation Le           | vel: IV             |
| Lab Sample Name: | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20      | 0.10     | ug/l            |                  | U                       |                     |

Friday, April 01, 2011 Page 4 of 8

| Sample Name                       | Outfall 018 (C             | composite       | e) Matri  | ix Type:   | Water           | Validation Level: I |                         |                     |  |
|-----------------------------------|----------------------------|-----------------|-----------|------------|-----------------|---------------------|-------------------------|---------------------|--|
| Lab Sample Name:                  | IUB1966-03RE1 Sample Date: |                 | 2/18/2011 | 3:31:00 PM |                 |                     |                         |                     |  |
| Analyte                           | CAS No                     | Result<br>Value | RL        | MDL        | Result<br>Units | Lab<br>Qualifier    | Validation<br>Qualifier | Validation<br>Notes |  |
| 1,2,4-Trichlorobenzene            | 120-82-1                   | ND              | 1.00      | 0.100      | ug/l            |                     | U                       |                     |  |
| 1,2-Dichlorobenzene               | 95-50-1                    | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| 1,2-<br>Diphenylhydrazine/Azobenz | 103-33-3<br>ene            | ND              | 1.00      | 0.100      | ug/l            | С                   | UJ                      | С                   |  |
| 1,3-Dichlorobenzene               | 541-73-1                   | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| 1,4-Dichlorobenzene               | 106-46-7                   | ND              | 0.500     | 0.200      | ug/l            |                     | U                       |                     |  |
| 2,4,6-Trichlorophenol             | 88-06-2                    | ND              | 1.00      | 0.100      | ug/l            |                     | U                       |                     |  |
| 2,4-Dichlorophenol                | 120-83-2                   | ND              | 2.00      | 0.200      | ug/l            |                     | U                       |                     |  |
| 2,4-Dimethylphenol                | 105-67-9                   | ND              | 2.00      | 0.300      | ug/l            |                     | U                       |                     |  |
| 2,4-Dinitrophenol                 | 51-28-5                    | ND              | 5.00      | 0.900      | ug/l            |                     | U                       |                     |  |
| 2,4-Dinitrotoluene                | 121-14-2                   | ND              | 5.00      | 0.200      | ug/l            |                     | U                       |                     |  |
| 2,6-Dinitrotoluene                | 606-20-2                   | ND              | 5.00      | 0.100      | ug/l            |                     | U                       |                     |  |
| 2-Chloronaphthalene               | 91-58-7                    | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| 2-Chlorophenol                    | 95-57-8                    | ND              | 1.00      | 0.200      | ug/l            |                     | U                       |                     |  |
| 2-Nitrophenol                     | 88-75-5                    | ND              | 2.00      | 0.100      | ug/l            |                     | U                       |                     |  |
| 3,3'-Dichlorobenzidine            | 91-94-1                    | ND              | 5.00      | 5.00       | ug/l            |                     | U                       |                     |  |
| 4,6-Dinitro-2-methylphenol        | 534-52-1                   | ND              | 5.00      | 0.200      | ug/l            |                     | U                       |                     |  |
| 4-Bromophenyl phenyl ether        | 101-55-3                   | ND              | 1.00      | 0.100      | ug/l            |                     | U                       |                     |  |
| 4-Chloro-3-methylphenol           | 59-50-7                    | ND              | 2.00      | 0.200      | ug/l            |                     | U                       |                     |  |
| 4-Chlorophenyl phenyl ether       | 7005-72-3                  | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| 4-Nitrophenol                     | 100-02-7                   | ND              | 5.00      | 2.50       | ug/l            |                     | U                       |                     |  |
| Acenaphthene                      | 83-32-9                    | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| Acenaphthylene                    | 208-96-8                   | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| Anthracene                        | 120-12-7                   | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| Benzidine                         | 92-87-5                    | ND              | 5.00      | 5.00       | ug/l            |                     | U                       |                     |  |
| Benzo(a)anthracene                | 56-55-3                    | ND              | 5.00      | 0.100      | ug/l            |                     | U                       |                     |  |
| Benzo(a)pyrene                    | 50-32-8                    | ND              | 2.00      | 0.100      | ug/l            |                     | U                       |                     |  |
| Benzo(b)fluoranthene              | 205-99-2                   | ND              | 2.00      | 0.100      | ug/l            |                     | U                       |                     |  |
| Benzo(g,h,i)perylene              | 191-24-2                   | ND              | 5.00      | 0.100      | ug/l            |                     | U                       |                     |  |
| Benzo(k)fluoranthene              | 207-08-9                   | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| Bis(2-chloroethoxy)methane        | 111-91-1                   | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| Bis(2-chloroethyl)ether           | 111-44-4                   | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| Bis(2-chloroisopropyl)ether       | 108-60-1                   | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |
| Bis(2-ethylhexyl)phthalate        | 117-81-7                   | ND              | 5.00      | 1.70       | ug/l            |                     | U                       |                     |  |
| Butyl benzyl phthalate            | 85-68-7                    | ND              | 5.00      | 0.700      | ug/l            | B, J                | U                       | В                   |  |
| Chrysene                          | 218-01-9                   | ND              | 0.500     | 0.100      | ug/l            |                     | U                       |                     |  |

Friday, April 01, 2011 Page 5 of 8

| Analysis Method | EPA 625   |
|-----------------|-----------|
| Anaiysis Meinoa | EFA $025$ |

| Dibenz(a,h)anthracene      | 53-70-3  | ND    | 0.500 | 0.100 | ug/l |   | U |     |
|----------------------------|----------|-------|-------|-------|------|---|---|-----|
| Diethyl phthalate          | 84-66-2  | 0.200 | 1.00  | 0.100 | ug/l | J | J | DNQ |
| Dimethyl phthalate         | 131-11-3 | ND    | 0.500 | 0.100 | ug/l |   | U |     |
| Di-n-butyl phthalate       | 84-74-2  | ND    | 2.00  | 0.200 | ug/l |   | U |     |
| Di-n-octyl phthalate       | 117-84-0 | ND    | 5.00  | 0.100 | ug/l |   | U |     |
| Fluoranthene               | 206-44-0 | ND    | 0.500 | 0.100 | ug/l |   | U |     |
| Fluorene                   | 86-73-7  | ND    | 0.500 | 0.100 | ug/l |   | U |     |
| Hexachlorobenzene          | 118-74-1 | ND    | 1.00  | 0.100 | ug/l |   | U |     |
| Hexachlorobutadiene        | 87-68-3  | ND    | 2.00  | 0.200 | ug/l |   | U |     |
| Hexachlorocyclopentadiene  | 77-47-4  | ND    | 5.00  | 0.100 | ug/l |   | U |     |
| Hexachloroethane           | 67-72-1  | ND    | 3.00  | 0.200 | ug/l |   | U |     |
| Indeno(1,2,3-cd)pyrene     | 193-39-5 | ND    | 2.00  | 0.100 | ug/l |   | U |     |
| Isophorone                 | 78-59-1  | ND    | 1.00  | 0.100 | ug/l |   | U |     |
| Naphthalene                | 91-20-3  | ND    | 1.00  | 0.100 | ug/l |   | U |     |
| Nitrobenzene               | 98-95-3  | ND    | 1.00  | 0.100 | ug/l |   | U |     |
| N-Nitrosodimethylamine     | 62-75-9  | ND    | 2.00  | 0.100 | ug/l |   | U |     |
| N-Nitroso-di-n-propylamine | 621-64-7 | ND    | 2.00  | 0.100 | ug/l |   | U |     |
| N-Nitrosodiphenylamine     | 86-30-6  | ND    | 1.00  | 0.100 | ug/l |   | U |     |
| Pentachlorophenol          | 87-86-5  | ND    | 2.00  | 0.100 | ug/l |   | U |     |
| Phenanthrene               | 85-01-8  | ND    | 0.500 | 0.100 | ug/l |   | U |     |
| Phenol                     | 108-95-2 | ND    | 1.00  | 0.300 | ug/l |   | U |     |
| Pyrene                     | 129-00-0 | ND    | 0.500 | 0.100 | ug/l |   | U |     |

## Analysis Method EPA 8015 Mod.

DRO (C13 - C28)

| Sample Name      | Outfall 018 (  | Grab)           | Matri     | ix Type: | Water           | •                | Validation Level: IV    |                     |  |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|--|
| Lab Sample Name: | IUB1966-01     | Sam             | ple Date: | 2/17/201 | 1 3:30:00 PM    |                  |                         |                     |  |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |  |
| GRO (C4 - C12)   | 8006-61-9      | 0.036           | 0.10      | 0.025    | mg/l            | J                | J                       | DNQ                 |  |
| Analysis Metho   | od EPA         | 8015B           |           |          |                 |                  |                         |                     |  |
| Sample Name      | Outfall 018 (0 | Grab)           | Matri     | ix Type: | Water           | 7                | Validation Le           | evel: IV            |  |
| Lab Sample Name: | IUB1966-01     | Sam             | ple Date: | 2/17/201 | 1 3:30:00 PM    |                  |                         |                     |  |
| Analyte          | CAS No         | Result          | RL        | MDL      | Result          | Lab              | Validation              | Validation          |  |

Value

0.51

ND

C13-C28

Qualifier Qualifier

U

Notes

Units

mg/l

Friday, April 01, 2011 Page 6 of 8

0.10

## Analysis Method EPA 8260B-SIM

| Sample Name         | Outfall 018 (C | omposite)       | Matri     | x Type:   | Water           | Validation Level: IV |                         |                     |  |  |
|---------------------|----------------|-----------------|-----------|-----------|-----------------|----------------------|-------------------------|---------------------|--|--|
| Lab Sample Name:    | IUB1966-03     | Sam             | ple Date: | 2/18/2011 | 3:31:00 PM      |                      |                         |                     |  |  |
| Analyte             | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |  |
| 1,4-Dioxane         | 123-91-1       | ND              | 2.0       | 1.0       | ug/l            | J                    | U                       | В                   |  |  |
| Analysis Metho      | od EPA-5       | 1613E           | 3         |           |                 |                      |                         |                     |  |  |
| Sample Name         | Outfall 018 (C | omposite)       | Matri     | x Type:   | WATER           | V                    | alidation Le            | vel: IV             |  |  |
| Lab Sample Name:    | IUB1966-03     | Sam             | ple Date: | 2/18/2011 | 3:31:00 PM      |                      |                         |                     |  |  |
| Analyte             | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |  |
| ,2,3,4,6,7,8-HpCDD  | 35822-46-9     | 0.000004        | 0.000057  | 0.0000007 | ug/L            | J                    | J                       | DNQ                 |  |  |
| 1,2,3,4,6,7,8-HpCDF | 67562-39-4     | 0.000002        | 0.000057  | 0.0000006 | ug/L            | J                    | J                       | DNQ                 |  |  |
| ,2,3,4,7,8,9-HpCDF  | 55673-89-7     | ND              | 0.000057  | 0.0000007 | ug/L            | J, Q                 | UJ                      | *III                |  |  |
| ,2,3,4,7,8-HxCDD    | 39227-28-6     | ND              | 0.000057  | 0.0000007 | ug/L            | J, Q                 | UJ                      | *III                |  |  |
| ,2,3,4,7,8-HxCDF    | 70648-26-9     | ND              | 0.000057  | 0.0000002 | ug/L            | J, Q                 | UJ                      | *III                |  |  |
| ,2,3,6,7,8-HxCDD    | 57653-85-7     | 0.000001        | 0.000057  | 0.0000006 | ug/L            | J                    | J                       | DNQ                 |  |  |
| ,2,3,6,7,8-HxCDF    | 57117-44-9     | ND              | 0.000057  | 0.0000002 | ug/L            | J, Q                 | UJ                      | *III                |  |  |
| ,2,3,7,8,9-HxCDD    | 19408-74-3     | ND              | 0.000057  | 0.0000006 | ug/L            | J, Q                 | UJ                      | *III                |  |  |
| ,2,3,7,8,9-HxCDF    | 72918-21-9     | ND              | 0.000057  | 0.0000002 | ug/L            | J, Q                 | UJ                      | *III                |  |  |
| ,2,3,7,8-PeCDD      | 40321-76-4     | ND              | 0.000057  | 0.0000006 | ug/L            |                      | U                       |                     |  |  |
| ,2,3,7,8-PeCDF      | 57117-41-6     | ND              | 0.000057  | 0.0000007 | ug/L            |                      | U                       |                     |  |  |
| 2,3,4,6,7,8-HxCDF   | 60851-34-5     | ND              | 0.000057  | 0.0000002 | ug/L            | J, Q                 | UJ                      | *III                |  |  |
| ,3,4,7,8-PeCDF      | 57117-31-4     | ND              | 0.000057  | 0.0000007 | ug/L            |                      | U                       |                     |  |  |
| 2,3,7,8-TCDD        | 1746-01-6      | ND              | 0.000011  | 0.0000007 | ug/L            |                      | U                       |                     |  |  |
| 2,3,7,8-TCDF        | 51207-31-9     | ND              | 0.000011  | 0.0000009 | ug/L            |                      | U                       |                     |  |  |
| OCDD                | 3268-87-9      | ND              | 0.00011   | 0.0000012 | ug/L            | J, Ba                | U                       | В                   |  |  |
| OCDF                | 39001-02-0     | 0.000005        | 0.00011   | 0.000001  | ug/L            | J                    | J                       | DNQ                 |  |  |
| Total HpCDD         | 37871-00-4     | 0.000007        | 0.000057  | 0.0000007 | ug/L            | J                    | J                       | DNQ                 |  |  |
| Total HpCDF         | 38998-75-3     | 0.000003        | 0.000057  | 0.0000007 | ug/L            | J, Q                 | J                       | DNQ, *III           |  |  |
| Total HxCDD         | 34465-46-8     | 0.000003        | 0.000057  | 0.0000006 | ug/L            | J, Q                 | J                       | DNQ, *III           |  |  |
| Total HxCDF         | 55684-94-1     | 0.000003        | 0.000057  | 0.0000002 | ug/L            | J, Q                 | J                       | DNQ, *III           |  |  |
| Total PeCDD         | 36088-22-9     | ND              | 0.000057  | 0.0000006 | ug/L            |                      | U                       |                     |  |  |
| Total PeCDF         | 30402-15-4     | ND              | 0.000057  | 0.0000007 | ug/L            |                      | U                       |                     |  |  |
| Total TCDD          | 41903-57-5     | ND              | 0.000011  | 0.0000007 | ug/L            |                      | U                       |                     |  |  |
| Fotal TCDF          | 55722-27-5     | ND              | 0.000011  | 0.0000009 | ug/L            |                      | U                       |                     |  |  |

Friday, April 01, 2011 Page 7 of 8

## Analysis Method SM2340B

| Sample Name          | Outfall 018 (0 | Composite       | ) Matr    | ix Type: | Water           | 7                | Validation Le           | evel: IV            |
|----------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:     | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                  |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Hardness (as CaCO3)  | NA             | 110             | 0.33      | 0.17     | mg/l            |                  |                         |                     |
| Analysis Metho       | od SM53        | 310B            |           |          |                 |                  |                         |                     |
| Sample Name          | Outfall 018 (0 | Composite       | ) Matr    | ix Type: | Water           | 1                | Validation Le           | evel: IV            |
| Lab Sample Name:     | IUB1966-03     | Sam             | ple Date: | 2/18/201 | 1 3:31:00 PM    |                  |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Organic Carbon | TOC            | 10              | 1.0       | 0.50     | mg/l            |                  |                         |                     |

Friday, April 01, 2011 Page 8 of 8



Established 1931

14201 FRANKLIN AVENUE . TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: Test America - Irvine

17461 Derlan Avenue, Suite 100

Irvine, CA 92614-5817

Attention:

**Debby Wilson** Water / 1 Sample

Sample: Project Name:

**IUB1966 IUB1966** 

Project Number: Method Number:

EPA 8315 (Modified)

Investigation:

Hydraz!nes

REPORT

993769 Laboratory No:

Report Date: Sampling Date:

March 3, 2011

February 18, 2011 February 22, 2011

Receiving Date: Extraction Date:

February 22, 2011

Analysis Date: February 23, 2011

Units:

μ**g**/L

Reported By: JS

Outfall 018

Analytical Results

| Analytical Nesalis |                    |             |          |            |            |           |                                       |  |  |  |  |
|--------------------|--------------------|-------------|----------|------------|------------|-----------|---------------------------------------|--|--|--|--|
|                    |                    | Sample      | Dilution | Monomethyl | u-Dimethyl | Hydrazine | Qualifler                             |  |  |  |  |
| Sample ID          | Sample Description | Amount (mL) | Factor   | Hydrazine  | Hydrazine  |           | Codes                                 |  |  |  |  |
| 709287-MB          | Method Blank       | 100         | 1        | ND         | ND         | NŌ        | None                                  |  |  |  |  |
| 993769             | IUB1966-03         | 100         | 1        | NO U       | ND ()      | ND U      | None                                  |  |  |  |  |
| MDL                |                    |             |          | 1.77       | 1.13       | 0.439     |                                       |  |  |  |  |
| PQL                |                    |             |          | 5.0        | 5.0        | 1.00      | · · · · · · · · · · · · · · · · · · · |  |  |  |  |
| Sample Reportir    | ng Limits          |             |          | 5.0        | 5.0        | 1.00      |                                       |  |  |  |  |

LEUGL IV

Note: Results based on detector #1 (UV=365nm) data.

Note: Sample was received after hold time.



Jeff Lee, Project Manager

Analytical Services, Truesdail Laboratories, Inc.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

## **APPENDIX G**

## Section 50

Outfall 018 – February 17 & 18, 2011
Test America Analytical Laboratory Report



#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/17/11-02/18/11

Received: 02/17/11 Revised: 04/28/11 16:30

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### **CASE NARRATIVE**

SAMPLE RECEIPT: Samples were received intact, at 6°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag.

Revised report to correct carbon range and units for 8015.

Revised report to include trichlorofluoromethane and xylenes per client request.

| LABORATORY ID | CLIENT ID               | MATRIX |
|---------------|-------------------------|--------|
| IUB1966-01    | Outfall 018 (Grab)      | Water  |
| IUB1966-02    | Trip Blank              | Water  |
| IUB1966-03    | Outfall 018 (Composite) | Water  |

#### TestAmerica Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IUB1966

Received: 02/17/11

LABORATORY ID

CLIENT ID

MATRIX Water

IUB1966-04

Trip Blank

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

**TestAmerica Irvine** 

Debby Wilson

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Received: 02/17/11

Report Number: IUB1966

#### CORRECTIVE ACTION REPORT

Department: Pesticides Date: 02/25/2011

Method: EPA 608 Matrix: Water

QC Batch: 11B2911

#### Identification and Definition of Problem:

The surrogate recovery in the method blank for batch 11B2911 was below laboratory control limits.

#### Determination of the Cause of the Problem:

A definitive cause for the QC failure has not been determined. The surrogate recovery was also low (but passing) in the LCS for this batch but all the associated samples had passing surrogate recoveries. It is suspected the problem was related to the laboratory's reagent water supply.

#### Corrective Action Taken:

The presence of a non-detect sample has been used to demonstrate passing negative (blank) control. This is based on the fact that the laboratory water is used only for the batch QC (method blank and LCS), it would have no impact on sample results. The sample used as the blank has been reported in the batch as 11B2911-BLK2 and is referenced to this non-conformance report. Corrective action on the laboratory's water system is in progress.

Quality Assurance Approval:

Dave Dawes

Date: 04/05/2011 02:44 PM



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/17/11-02/18/11

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

### **VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)**

| A., -1.4-                             | M-41 J            | D-4-b   | MDL   | Reporting |        | Dilution |         | Date     | Data<br>Oualifiers |
|---------------------------------------|-------------------|---------|-------|-----------|--------|----------|---------|----------|--------------------|
| Analyte                               | Method            | Batch   | Limit | Limit     | Result | Factor   | Analyst | Analyzed | Quanners           |
| Sample ID: IUB1966-01 (Outfall 018 (G | Sampled: 02/17/11 |         |       |           |        |          |         |          |                    |
| Reporting Units: mg/l                 |                   |         |       |           |        |          |         |          |                    |
| GRO (C4 - C12)                        | EPA 8015 Mod.     | 11C0087 | 0.025 | 0.10      | 0.036  | 1        | IM      | 03/02/11 | J                  |
| Surrogate: 4-BFB (FID) (65-140%)      |                   |         |       |           | 90 %   |          |         |          |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/17/11-02/18/11

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

## EXTRACTABLE FUEL HYDROCARBONS (EPA 3510C/EPA 8015B)

| Analyte                                 | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-01 (Outfall 018 (Gra |           |         | Sample       | d: 02/17/11        |                  |                    |         |                  |                    |
| Reporting Units: mg/l                   |           |         |              |                    |                  |                    |         |                  |                    |
| DRO (C13 - C28)                         | EPA 8015B | 11B3103 | 0.10         | 0.51               | ND               | 1.02               | CP      | 02/25/11         |                    |
| Surrogate: n-Octacosane (45-120%)       |           |         |              |                    | 47 %             |                    |         |                  |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                   | Method            | Batch   | MDL<br>Limit      | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |
|-------------------------------------------|-------------------|---------|-------------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|
| •                                         |                   |         | Limit             | Limit              | Result           | 1 actor            | Analyst | 7 mary 2cu       | <b>V</b>           |  |
| Sample ID: IUB1966-01 (Outfall 018 (Gra   | b) - Water) - con | t.      | Sampled: 02/17/11 |                    |                  |                    |         |                  |                    |  |
| Reporting Units: ug/l                     |                   |         |                   |                    |                  |                    |         |                  |                    |  |
| Benzene                                   | EPA 624           | 11C0049 | 0.28              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Bromodichloromethane                      | EPA 624           | 11C0049 | 0.30              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Bromoform                                 | EPA 624           | 11C0049 | 0.40              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Bromomethane                              | EPA 624           | 11C0049 | 0.42              | 1.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Carbon tetrachloride                      | EPA 624           | 11C0049 | 0.28              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Chlorobenzene                             | EPA 624           | 11C0049 | 0.36              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Chloroethane                              | EPA 624           | 11C0049 | 0.40              | 1.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Chloroform                                | EPA 624           | 11C0049 | 0.33              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Chloromethane                             | EPA 624           | 11C0049 | 0.40              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Dibromochloromethane                      | EPA 624           | 11C0049 | 0.40              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,2-Dichlorobenzene                       | EPA 624           | 11C0049 | 0.32              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,3-Dichlorobenzene                       | EPA 624           | 11C0049 | 0.35              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,4-Dichlorobenzene                       | EPA 624           | 11C0049 | 0.37              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1-Dichloroethane                        | EPA 624           | 11C0049 | 0.40              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,2-Dichloroethane                        | EPA 624           | 11C0049 | 0.28              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1-Dichloroethene                        | EPA 624           | 11C0049 | 0.42              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| cis-1,2-Dichloroethene                    | EPA 624           | 11C0049 | 0.32              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| trans-1,2-Dichloroethene                  | EPA 624           | 11C0049 | 0.30              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,2-Dichloropropane                       | EPA 624           | 11C0049 | 0.35              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| cis-1,3-Dichloropropene                   | EPA 624           | 11C0049 | 0.22              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| trans-1,3-Dichloropropene                 | EPA 624           | 11C0049 | 0.32              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,2-Dichloro-1,1,2-trifluoroethane        | EPA 624           | 11C0049 | 1.1               | 2.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Ethylbenzene                              | EPA 624           | 11C0049 | 0.25              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Methylene chloride                        | EPA 624           | 11C0049 | 0.95              | 1.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1,2,2-Tetrachloroethane                 | EPA 624           | 11C0049 | 0.30              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Tetrachloroethene                         | EPA 624           | 11C0049 | 0.32              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1,1-Trichloroethane                     | EPA 624           | 11C0049 | 0.30              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1,2-Trichloroethane                     | EPA 624           | 11C0049 | 0.30              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Trichloroethene                           | EPA 624           | 11C0049 | 0.26              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Trichlorofluoromethane                    | EPA 624           | 11C0049 | 0.34              | 0.50               | ND               | 1                  | GCM     | 03/02/11         |                    |  |
| Trichlorotrifluoroethane (Freon 113)      | EPA 624           | 11C0049 | 0.50              | 5.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Vinyl chloride                            | EPA 624           | 11C0049 | 0.40              | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Xylenes, Total                            | EPA 624           | 11C0049 | 0.90              | 1.5                | ND               | 1                  | GCM     | 03/02/11         |                    |  |
| Cyclohexane                               | EPA 624           | 11C0049 | 0.40              | 1.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Surrogate: 4-Bromofluorobenzene (80-120%) |                   | 1100017 | 00                |                    | 105 %            | •                  |         |                  |                    |  |
| Surroguie. 7-Dromojiuorobenzene (00-120)  | *                 |         |                   |                    | 115.07           |                    |         |                  |                    |  |

Surrogate: 4-Bromofluorobenzene (80-120%)

Surrogate: Dibromofluoromethane (80-120%)

Surrogate: Toluene-d8 (80-120%)

115 %

111 %

## TestAmerica Irvine

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

## **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                   | Method  | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|---------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-01RE1 (Outfall 018 (   | - cont. |         |              | Sample             | ed: 02/17/11     | 1                  |         |                  |                    |
| Reporting Units: ug/l                     |         |         |              |                    |                  |                    |         |                  |                    |
| Toluene                                   | EPA 624 | 11C0226 | 0.36         | 0.50               | ND               | 1                  | GMK     | 03/02/11         |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%  | ó)      |         |              |                    | 92 %             |                    |         |                  |                    |
| Surrogate: Dibromofluoromethane (80-120%) | %)      |         |              |                    | 101 %            |                    |         |                  |                    |
| Surrogate: Toluene-d8 (80-120%)           |         |         |              |                    | 105 %            |                    |         |                  |                    |



MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

## **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                                             | Method  | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |
|---------------------------------------------------------------------|---------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|
| Sample ID: IUB1966-02 (Trip Blank - Wat                             | er)     |         |              | Sampled: 02/17/11  |                  |                    |         |                  |                    |  |
| Reporting Units: ug/l                                               | ,       |         |              |                    | <b>-</b>         |                    |         |                  |                    |  |
| Benzene                                                             | EPA 624 | 11C0049 | 0.28         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Bromodichloromethane                                                | EPA 624 | 11C0049 | 0.30         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Bromoform                                                           | EPA 624 | 11C0049 | 0.40         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Bromomethane                                                        | EPA 624 | 11C0049 | 0.42         | 1.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Carbon tetrachloride                                                | EPA 624 | 11C0049 | 0.28         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Chlorobenzene                                                       | EPA 624 | 11C0049 | 0.36         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Chloroethane                                                        | EPA 624 | 11C0049 | 0.40         | 1.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Chloroform                                                          | EPA 624 | 11C0049 | 0.33         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Chloromethane                                                       | EPA 624 | 11C0049 | 0.40         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Dibromochloromethane                                                | EPA 624 | 11C0049 | 0.40         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,2-Dichlorobenzene                                                 | EPA 624 | 11C0049 | 0.32         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,3-Dichlorobenzene                                                 | EPA 624 | 11C0049 | 0.35         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,4-Dichlorobenzene                                                 | EPA 624 | 11C0049 | 0.37         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1-Dichloroethane                                                  | EPA 624 | 11C0049 | 0.40         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,2-Dichloroethane                                                  | EPA 624 | 11C0049 | 0.28         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1-Dichloroethene                                                  | EPA 624 | 11C0049 | 0.42         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| cis-1,2-Dichloroethene                                              | EPA 624 | 11C0049 | 0.32         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| trans-1,2-Dichloroethene                                            | EPA 624 | 11C0049 | 0.30         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,2-Dichloropropane                                                 | EPA 624 | 11C0049 | 0.35         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| cis-1,3-Dichloropropene                                             | EPA 624 | 11C0049 | 0.22         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| trans-1,3-Dichloropropene                                           | EPA 624 | 11C0049 | 0.32         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,2-Dichloro-1,1,2-trifluoroethane                                  | EPA 624 | 11C0049 | 1.1          | 2.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Ethylbenzene                                                        | EPA 624 | 11C0049 | 0.25         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Methylene chloride                                                  | EPA 624 | 11C0049 | 0.95         | 1.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1,2,2-Tetrachloroethane                                           | EPA 624 | 11C0049 | 0.30         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Tetrachloroethene                                                   | EPA 624 | 11C0049 | 0.32         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1,1-Trichloroethane                                               | EPA 624 | 11C0049 | 0.30         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| 1,1,2-Trichloroethane                                               | EPA 624 | 11C0049 | 0.30         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Trichloroethene                                                     | EPA 624 | 11C0049 | 0.26         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Trichlorofluoromethane                                              | EPA 624 | 11C0049 | 0.34         | 0.50               | ND               | 1                  | GCM     | 03/02/11         |                    |  |
| Trichlorotrifluoroethane (Freon 113)                                | EPA 624 | 11C0049 | 0.50         | 5.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Vinyl chloride                                                      | EPA 624 | 11C0049 | 0.40         | 0.50               | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Xylenes, Total                                                      | EPA 624 | 11C0049 | 0.90         | 1.5                | ND               | 1                  | GCM     | 03/02/11         |                    |  |
| Cyclohexane                                                         | EPA 624 | 11C0049 | 0.40         | 1.0                | ND               | 1                  | ALE     | 03/02/11         |                    |  |
| Surrogate: 4-Bromofluorobenzene (80-120%)                           |         |         |              |                    | 103 %            |                    |         |                  |                    |  |
| Surrogate: Dibromofluoromethane (80-120%)                           | ó)      |         |              |                    | 115 %            |                    |         |                  |                    |  |
| Surrogate: Toluene-d8 (80-120%)                                     |         |         |              |                    | 111 %            |                    |         |                  |                    |  |
| Sample ID: IUB1966-02RE1 (Trip Blank - Water) Reporting Units: ug/l |         |         |              |                    | Sample           | ed: 02/17/11       |         |                  |                    |  |
| Toluene                                                             | EPA 624 | 11C0226 | 0.36         | 0.50               | ND               | 1                  | GMK     | 03/02/11         |                    |  |
|                                                                     |         |         |              |                    |                  |                    |         |                  |                    |  |

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                 | Method | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------------|--------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-02RE1 (Trip Blank    |        |       |              | Sample             | d: 02/17/11      | l                  |         |                  |                    |
| Reporting Units: ug/l                   |        |       |              |                    |                  |                    |         |                  |                    |
| Surrogate: 4-Bromofluorobenzene (80-120 | 9%)    |       |              |                    | 95 %             |                    |         |                  |                    |
| Surrogate: Dibromofluoromethane (80-12) | 0%)    |       |              |                    | 102 %            |                    |         |                  |                    |
| Surrogate: Toluene-d8 (80-120%)         |        |       |              |                    | 104 %            |                    |         |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Received: 02/17/11

Report Number: IUB1966

## **PURGEABLES-- GC/MS (EPA 624)**

| Analyte                                            | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |  |
|----------------------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|--|
| Sample ID: IUB1966-01 (Outfall 018 (Grab) - Water) |           |         |              | Sampled: 02/17/11  |                  |                    |         |                  |                    |  |  |
| Reporting Units: ug/l                              |           |         |              |                    |                  |                    |         |                  |                    |  |  |
| Acrolein                                           | EPA 624   | 11B2518 | 4.0          | 5.0                | ND               | 1                  | LB      | 02/19/11         | C                  |  |  |
| Acrylonitrile                                      | EPA 624   | 11B2518 | 1.2          | 2.0                | ND               | 1                  | LB      | 02/19/11         |                    |  |  |
| 2-Chloroethyl vinyl ether                          | EPA 624   | 11B2518 | 1.8          | 5.0                | ND               | 1                  | LB      | 02/19/11         |                    |  |  |
| Surrogate: 4-Bromofluorobenzene (80-120%)          | )         |         |              |                    | 101 %            |                    |         |                  |                    |  |  |
| Surrogate: Dibromofluoromethane (80-120%           | <i>6)</i> |         |              |                    | 109 %            |                    |         |                  |                    |  |  |
| Surrogate: Toluene-d8 (80-120%)                    |           |         |              |                    | 111 %            |                    |         |                  |                    |  |  |
| Sample ID: IUB1966-02 (Trip Blank - Wate           | er)       |         |              |                    | Sample           | ed: 02/17/11       |         |                  |                    |  |  |
| Reporting Units: ug/l                              |           |         |              |                    |                  |                    |         |                  |                    |  |  |
| Acrolein                                           | EPA 624   | 11B2518 | 4.0          | 5.0                | ND               | 1                  | LB      | 02/19/11         | C                  |  |  |
| Acrylonitrile                                      | EPA 624   | 11B2518 | 1.2          | 2.0                | ND               | 1                  | LB      | 02/19/11         |                    |  |  |
| 2-Chloroethyl vinyl ether                          | EPA 624   | 11B2518 | 1.8          | 5.0                | ND               | 1                  | LB      | 02/19/11         |                    |  |  |
| Surrogate: 4-Bromofluorobenzene (80-120%)          | )         |         |              |                    | 102 %            |                    |         |                  |                    |  |  |
| Surrogate: Dibromofluoromethane (80-120%           | <i>6)</i> |         |              |                    | 105 %            |                    |         |                  |                    |  |  |
| Surrogate: Toluene-d8 (80-120%)                    |           |         |              |                    | 111 %            |                    |         |                  |                    |  |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/17/11-02/18/11

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

## 1,4-DIOXANE BY GCMS - SINGLE ION MONITORING (SIM)

| Analyte                                                 | Method        | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------------------------|---------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-03 (Outfall 018 (Composite) - Water) |               |         |              |                    | Sample           | ed: 02/18/11       | l       |                  |                    |
| Reporting Units: ug/l                                   |               |         |              |                    |                  |                    |         |                  |                    |
| 1,4-Dioxane                                             | EPA 8260B-SIM | 11B3460 | 1.0          | 2.0                | 1.4              | 1                  | GMK     | 02/28/11         | J                  |
| Surrogate: Dibromofluoromethane (80-120%)               |               |         |              |                    | 115 %            |                    |         |                  |                    |



MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

## ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                              | Method            | Batch         | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|-------------------|---------------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-03RE1 (Outfall 01 | 8 (Composite) - W | ater) - cont. |              |                    | Sample           | 1                  |         |                  |                    |
| Reporting Units: ug/l                |                   | ,             |              |                    | <b>-</b>         |                    | _       |                  |                    |
| Acenaphthene                         | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Acenaphthylene                       | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Anthracene                           | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Benzidine                            | EPA 625           | 11B3291       | 5.00         | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Benzo(a)anthracene                   | EPA 625           | 11B3291       | 0.100        | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Benzo(a)pyrene                       | EPA 625           | 11B3291       | 0.100        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Benzo(b)fluoranthene                 | EPA 625           | 11B3291       | 0.100        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Benzo(g,h,i)perylene                 | EPA 625           | 11B3291       | 0.100        | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Benzo(k)fluoranthene                 | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| 4-Bromophenyl phenyl ether           | EPA 625           | 11B3291       | 0.100        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Butyl benzyl phthalate               | EPA 625           | 11B3291       | 0.700        | 5.00               | 0.820            | 1                  | up      | 03/02/11         | B, J               |
| 4-Chloro-3-methylphenol              | EPA 625           | 11B3291       | 0.200        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Bis(2-chloroethoxy)methane           | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Bis(2-chloroethyl)ether              | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Bis(2-chloroisopropyl)ether          | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Bis(2-ethylhexyl)phthalate           | EPA 625           | 11B3291       | 1.70         | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 2-Chloronaphthalene                  | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| 2-Chlorophenol                       | EPA 625           | 11B3291       | 0.200        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 4-Chlorophenyl phenyl ether          | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Chrysene                             | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Dibenz(a,h)anthracene                | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Di-n-butyl phthalate                 | EPA 625           | 11B3291       | 0.200        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 1,2-Dichlorobenzene                  | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| 1,3-Dichlorobenzene                  | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| 1,4-Dichlorobenzene                  | EPA 625           | 11B3291       | 0.200        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| 3,3'-Dichlorobenzidine               | EPA 625           | 11B3291       | 5.00         | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 2,4-Dichlorophenol                   | EPA 625           | 11B3291       | 0.200        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Diethyl phthalate                    | EPA 625           | 11B3291       | 0.100        | 1.00               | 0.200            | 1                  | up      | 03/02/11         | J                  |
| 2,4-Dimethylphenol                   | EPA 625           | 11B3291       | 0.300        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Dimethyl phthalate                   | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| 4,6-Dinitro-2-methylphenol           | EPA 625           | 11B3291       | 0.200        | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 2,4-Dinitrophenol                    | EPA 625           | 11B3291       | 0.900        | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 2,4-Dinitrotoluene                   | EPA 625           | 11B3291       | 0.200        | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 2,6-Dinitrotoluene                   | EPA 625           | 11B3291       | 0.100        | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Di-n-octyl phthalate                 | EPA 625           | 11B3291       | 0.100        | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 1,2-Diphenylhydrazine/Azobenzene     | EPA 625           | 11B3291       | 0.100        | 1.00               | ND               | 1                  | up      | 03/02/11         | C                  |
| Fluoranthene                         | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Fluorene                             | EPA 625           | 11B3291       | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Hexachlorobenzene                    | EPA 625           | 11B3291       | 0.100        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Hexachlorobutadiene                  | EPA 625           | 11B3291       | 0.200        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Hexachlorocyclopentadiene            | EPA 625           | 11B3291       | 0.100        | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/17/11-02/18/11

Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                                            | Method  | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------------------------------------|---------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-03RE1 (Outfall 018 (Composite) - Water) - cont. |         |         |              | Sampled: 02/18/11  |                  |                    |         |                  |                    |
| Reporting Units: ug/l                                              |         |         |              |                    | -                |                    |         |                  |                    |
| Hexachloroethane                                                   | EPA 625 | 11B3291 | 0.200        | 3.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Indeno(1,2,3-cd)pyrene                                             | EPA 625 | 11B3291 | 0.100        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Isophorone                                                         | EPA 625 | 11B3291 | 0.100        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Naphthalene                                                        | EPA 625 | 11B3291 | 0.100        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Nitrobenzene                                                       | EPA 625 | 11B3291 | 0.100        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 2-Nitrophenol                                                      | EPA 625 | 11B3291 | 0.100        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 4-Nitrophenol                                                      | EPA 625 | 11B3291 | 2.50         | 5.00               | ND               | 1                  | up      | 03/02/11         |                    |
| N-Nitroso-di-n-propylamine                                         | EPA 625 | 11B3291 | 0.100        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| N-Nitrosodimethylamine                                             | EPA 625 | 11B3291 | 0.100        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| N-Nitrosodiphenylamine                                             | EPA 625 | 11B3291 | 0.100        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Pentachlorophenol                                                  | EPA 625 | 11B3291 | 0.100        | 2.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Phenanthrene                                                       | EPA 625 | 11B3291 | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| Phenol                                                             | EPA 625 | 11B3291 | 0.300        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Pyrene                                                             | EPA 625 | 11B3291 | 0.100        | 0.500              | ND               | 1                  | up      | 03/02/11         |                    |
| 1,2,4-Trichlorobenzene                                             | EPA 625 | 11B3291 | 0.100        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| 2,4,6-Trichlorophenol                                              | EPA 625 | 11B3291 | 0.100        | 1.00               | ND               | 1                  | up      | 03/02/11         |                    |
| Surrogate: 2,4,6-Tribromophenol (40-120%)                          |         |         |              |                    | 81 %             |                    |         |                  |                    |
| Surrogate: 2-Fluorobiphenyl (50-120%)                              |         |         |              |                    | 73 %             |                    |         |                  |                    |
| Surrogate: 2-Fluorophenol (30-120%)                                |         |         |              |                    | 73 %             |                    |         |                  |                    |
| Surrogate: Nitrobenzene-d5 (45-120%)                               |         |         |              |                    | 76 %             |                    |         |                  |                    |
| Surrogate: Phenol-d6 (35-120%)                                     |         |         |              |                    | 70 %             |                    |         |                  |                    |
| Surrogate: Terphenyl-d14 (50-125%)                                 |         |         |              |                    | 84 %             |                    |         |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018 MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

## **ORGANOCHLORINE PESTICIDES (EPA 608)**

| Analyte                                   | Method           | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-03 (Outfall 018 (Comp  | oosite) - Water) | - cont. |              |                    | Sample           | ed: 02/18/11       | 1       |                  |                    |
| Reporting Units: ug/l                     |                  |         |              |                    | •                |                    |         |                  |                    |
| 4,4'-DDD                                  | EPA 608          | 11B2911 | 0.0043       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         |                    |
| 4,4'-DDE                                  | EPA 608          | 11B2911 | 0.0032       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         |                    |
| 4,4'-DDT                                  | EPA 608          | 11B2911 | 0.0043       | 0.011              | ND               | 1.08               | CN      | 03/01/11         |                    |
| Aldrin                                    | EPA 608          | 11B2911 | 0.0016       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         |                    |
| alpha-BHC                                 | EPA 608          | 11B2911 | 0.0027       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         |                    |
| beta-BHC                                  | EPA 608          | 11B2911 | 0.0043       | 0.011              | ND               | 1.08               | CN      | 03/01/11         |                    |
| delta-BHC                                 | EPA 608          | 11B2911 | 0.0038       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         |                    |
| Dieldrin                                  | EPA 608          | 11B2911 | 0.0022       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         |                    |
| Endosulfan I                              | EPA 608          | 11B2911 | 0.0022       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         |                    |
| Endosulfan II                             | EPA 608          | 11B2911 | 0.0032       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         |                    |
| Endosulfan sulfate                        | EPA 608          | 11B2911 | 0.0032       | 0.011              | ND               | 1.08               | CN      | 03/01/11         |                    |
| Endrin                                    | EPA 608          | 11B2911 | 0.0022       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         |                    |
| Endrin aldehyde                           | EPA 608          | 11B2911 | 0.0022       | 0.011              | ND               | 1.08               | CN      | 03/01/11         |                    |
| gamma-BHC (Lindane)                       | EPA 608          | 11B2911 | 0.0032       | 0.022              | ND               | 1.08               | CN      | 03/01/11         |                    |
| Heptachlor                                | EPA 608          | 11B2911 | 0.0032       | 0.011              | ND               | 1.08               | CN      | 03/01/11         |                    |
| Heptachlor epoxide                        | EPA 608          | 11B2911 | 0.0027       | 0.0054             | ND               | 1.08               | CN      | 03/01/11         | L                  |
| Chlordane                                 | EPA 608          | 11B2911 | 0.086        | 0.11               | ND               | 1.08               | CN      | 03/01/11         |                    |
| Toxaphene                                 | EPA 608          | 11B2911 | 0.27         | 0.54               | ND               | 1.08               | CN      | 03/01/11         |                    |
| Surrogate: Decachlorobiphenyl (45-120%)   |                  |         |              |                    | 64 %             |                    |         |                  |                    |
| Surrogate: Tetrachloro-m-xylene (35-115%) |                  |         |              |                    | 55 %             |                    |         |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/17/11-02/18/11

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

### **TOTAL PCBS (EPA 608)**

| Analyte                                 | Method           | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |
|-----------------------------------------|------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|
| Sample ID: IUB1966-03 (Outfall 018 (Com | posite) - Water) | - cont. |              | Sampled: 02/18/11  |                  |                    |         |                  |                    |  |
| Reporting Units: ug/l                   |                  |         |              |                    |                  |                    |         |                  |                    |  |
| Aroclor 1016                            | EPA 608          | 11B2911 | 0.27         | 0.54               | ND               | 1.08               | CN      | 02/25/11         |                    |  |
| Aroclor 1221                            | EPA 608          | 11B2911 | 0.27         | 0.54               | ND               | 1.08               | CN      | 02/25/11         |                    |  |
| Aroclor 1232                            | EPA 608          | 11B2911 | 0.27         | 0.54               | ND               | 1.08               | CN      | 02/25/11         |                    |  |
| Aroclor 1242                            | EPA 608          | 11B2911 | 0.27         | 0.54               | ND               | 1.08               | CN      | 02/25/11         |                    |  |
| Aroclor 1248                            | EPA 608          | 11B2911 | 0.27         | 0.54               | ND               | 1.08               | CN      | 02/25/11         |                    |  |
| Aroclor 1254                            | EPA 608          | 11B2911 | 0.27         | 0.54               | ND               | 1.08               | CN      | 02/25/11         |                    |  |
| Aroclor 1260                            | EPA 608          | 11B2911 | 0.27         | 0.54               | ND               | 1.08               | CN      | 02/25/11         |                    |  |
| Surrogate: Decachlorobiphenyl (45-120%) |                  |         |              |                    | 60 %             |                    |         |                  |                    |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                                            | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-01 (Outfall 018 (Grab) - Water) |           |         |              |                    | Sample           | ed: 02/17/11       | 1       |                  |                    |
| Reporting Units: mg/l                              |           |         |              |                    |                  |                    |         |                  |                    |
| Hexane Extractable Material (Oil &                 | EPA 1664A | 11C0598 | 1.3          | 4.7                | ND               | 1                  | DA      | 03/04/11         |                    |
| Grease)                                            |           |         |              |                    |                  |                    |         |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

#### **METALS**

|                     | 1                                                                                                                                                                                                                                                                                                | VIL I A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mathad              | Dotah                                                                                                                                                                                                                                                                                            | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A I4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Data<br>Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Method              | Daten                                                                                                                                                                                                                                                                                            | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lillit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Anaiyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Anaiyzeu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Composite) - Water) |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed: 02/18/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SM2340B             | [CALC]                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 0.0060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Composite) - Water) |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed: 02/18/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 245.1           | 11B2879                                                                                                                                                                                                                                                                                          | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02/23/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.8           | 11B3277                                                                                                                                                                                                                                                                                          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02/25/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/02/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EPA 200.8           | 11B3277                                                                                                                                                                                                                                                                                          | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02/25/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.7           | 11B3269                                                                                                                                                                                                                                                                                          | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EPA 200.8           | 11B3277                                                                                                                                                                                                                                                                                          | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02/25/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EPA 200.8           | 11B3277                                                                                                                                                                                                                                                                                          | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02/25/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.8           | 11B3277                                                                                                                                                                                                                                                                                          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02/25/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.8           | 11B3277                                                                                                                                                                                                                                                                                          | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02/25/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EPA 200.8           | 11B3277                                                                                                                                                                                                                                                                                          | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02/25/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | SM2340B EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 Composite) - Water)  EPA 245.1 EPA 200.7 EPA 200.8 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 | Method Batch  Composite) - Water)  SM2340B [CALC] EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.7 11B3269 EPA 200.8 11B3277 EPA 200.8 11B3277 EPA 200.8 11B3277 EPA 200.8 11B3277 EPA 200.8 11B3277 EPA 200.8 11B3277 EPA 200.8 11B3277 EPA 200.8 11B3277 EPA 200.8 11B3277 EPA 200.8 11B3277 | Method Batch Limit  Composite) - Water)  SM2340B [CALC] EPA 200.7 11B3269 0.0060 EPA 200.7 11B3269 0.050 EPA 200.7 11B3269 0.015 EPA 200.7 11B3269 0.015 EPA 200.7 11B3269 0.012  Composite) - Water)  EPA 245.1 11B2879 0.10 EPA 200.7 11B3269 7.0 EPA 200.8 11B3277 0.30 EPA 200.7 11B3269 0.90 EPA 200.7 11B3269 2.0 EPA 200.7 11B3269 2.0 EPA 200.7 11B3269 2.0 EPA 200.7 11B3269 2.0 EPA 200.7 11B3269 3.0 EPA 200.7 11B3269 7.0 EPA 200.7 11B3269 3.0 EPA 200.8 11B3277 0.10 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 EPA 200.8 11B3277 0.500 | Method         Batch         MDL Limit         Reporting Limit           Composite) - Water)         Composite) - Water)         0.33           EPA 200.7         11B3269         0.0060         0.010           EPA 200.7         11B3269         0.020         0.050           EPA 200.7         11B3269         0.050         0.10           EPA 200.7         11B3269         0.015         0.040           EPA 200.7         11B3269         0.012         0.020           Composite) - Water)           EPA 245.1         11B2879         0.10         0.20           EPA 200.7         11B3269         7.0         10           EPA 200.8         11B3277         0.30         2.0           EPA 200.7         11B3269         2.0         5.0           EPA 200.7         11B3269         2.0         10           EPA 200.7         11B3269         3.0         10           EPA 200.8         11B3277         0.10         1.0           E | Method         Batch         Limit         Limit         Result           Composite) - Water)         Sample           SM2340B         [CALC]         0.33         110           EPA 200.7         11B3269         0.0060         0.010         0.010           EPA 200.7         11B3269         0.050         0.10         33           EPA 200.7         11B3269         0.015         0.040         0.073           EPA 200.7         11B3269         0.012         0.020         7.7           Composite) - Water)         Sample           EPA 245.1         11B2879         0.10         0.20         ND           EPA 200.7         11B3269         7.0         10         ND           EPA 200.8         11B3277         0.30         2.0         0.33           EPA 200.7         11B3269         2.0         5.0         ND           EPA 200.7         11B3269         2.0         5.0         ND           EPA 200.7         11B3269         2.0         5.0         ND           EPA 200.7         11B3269         2.0         10         ND           EPA 200.7         11B3269         2.0         10         ND | Method         Batch         MDL Limit         Reporting Limit         Sample Result         Dilution Factor           Composite) - Water)         Sampled: 02/18/11           SM2340B         [CALC]         0.33         110         1           EPA 200.7         11B3269         0.0060         0.010         0.010         1           EPA 200.7         11B3269         0.020         0.050         0.055         1           EPA 200.7         11B3269         0.015         0.040         0.073         1           EPA 200.7         11B3269         0.012         0.020         7.7         1           Composite) - Water)           Sampled: 02/18/11           EPA 245.1         11B2879         0.10         0.20         ND         1           EPA 200.7         11B3269         7.0         10         ND         1           EPA 200.8         11B3277         0.30         2.0         ND         1           EPA 200.7         11B3269         2.0         5.0         ND         1           EPA 200.7         11B3269         2.0         5.0         ND         1           EPA 200.7         11B3269 | Method         Batch         Limit         Reporting Limit         Sample Result         Dilution Factor         Analyst           Composite) - Water)         SM2340B         [CALC]         0.33         110         1         LL           EPA 200.7         11B3269         0.0060         0.010         0.010         1         LL           EPA 200.7         11B3269         0.020         0.050         0.055         1         LL           EPA 200.7         11B3269         0.050         0.10         33         1         LL           EPA 200.7         11B3269         0.015         0.040         0.073         1         LL           EPA 200.7         11B3269         0.012         0.020         7.7         1         LL           Composite) - Water)           EPA 200.7         11B3269         0.012         0.020         ND         1         DB           EPA 245.1         11B2879         0.10         0.20         ND         1         LL           EPA 200.7         11B3269         7.0         10         ND         1         LL           EPA 200.7         11B3269         0.90         2.0         ND         1 <td< td=""><td>Method         Batch         Limit         Reporting Limit         Sample Result         Dilution Factor         Analyst         Analyzed           Composite) - Water)         Sample: 02/18/11           SM2340B         [CALC]         0.33         110         1         LL         03/01/11           EPA 200.7         11B3269         0.0060         0.010         0.015         1         LL         03/01/11           EPA 200.7         11B3269         0.020         0.050         0.055         1         LL         03/01/11           EPA 200.7         11B3269         0.050         0.10         33         1         LL         03/01/11           EPA 200.7         11B3269         0.015         0.040         0.073         1         LL         03/01/11           EPA 200.7         11B3269         0.012         0.020         7.7         1         LL         03/01/11           EPA 200.7         11B3269         0.012         0.020         ND         1         DB         02/23/11           EPA 245.1         11B2879         0.10         0.20         ND         1         LL         03/01/11           EPA 200.7         11B3269         0.0         0</td></td<> | Method         Batch         Limit         Reporting Limit         Sample Result         Dilution Factor         Analyst         Analyzed           Composite) - Water)         Sample: 02/18/11           SM2340B         [CALC]         0.33         110         1         LL         03/01/11           EPA 200.7         11B3269         0.0060         0.010         0.015         1         LL         03/01/11           EPA 200.7         11B3269         0.020         0.050         0.055         1         LL         03/01/11           EPA 200.7         11B3269         0.050         0.10         33         1         LL         03/01/11           EPA 200.7         11B3269         0.015         0.040         0.073         1         LL         03/01/11           EPA 200.7         11B3269         0.012         0.020         7.7         1         LL         03/01/11           EPA 200.7         11B3269         0.012         0.020         ND         1         DB         02/23/11           EPA 245.1         11B2879         0.10         0.20         ND         1         LL         03/01/11           EPA 200.7         11B3269         0.0         0 |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

#### **DISSOLVED METALS**

|                                  |                         | DISSOI  |              | VILLIALS           |                  |                    |         |                  |                    |
|----------------------------------|-------------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                          | Method                  | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUB1966-03 (Outfall 0 | 18 (Composite) - Water) | - cont. |              |                    | Sample           | ed: 02/18/11       | 1       |                  |                    |
| Reporting Units: mg/l            |                         |         |              |                    |                  |                    |         |                  |                    |
| Hardness as CaCO3                | SM2340B-Diss            | [CALC]  |              | 0.33               | 110              | 1                  | NH      | 03/01/11         |                    |
| Barium                           | EPA 200.7-Diss          | 11B2496 | 0.0060       | 0.010              | 0.010            | 1                  | NH      | 03/01/11         |                    |
| Boron                            | EPA 200.7-Diss          | 11B2496 | 0.020        | 0.050              | 0.060            | 1                  | NH      | 03/01/11         |                    |
| Calcium                          | EPA 200.7-Diss          | 11B2496 | 0.050        | 0.10               | 32               | 1                  | NH      | 03/01/11         |                    |
| Iron                             | EPA 200.7-Diss          | 11B2496 | 0.015        | 0.040              | 0.026            | 1                  | NH      | 03/01/11         | J                  |
| Magnesium                        | EPA 200.7-Diss          | 11B2496 | 0.012        | 0.020              | 7.6              | 1                  | NH      | 03/01/11         |                    |
| Sample ID: IUB1966-03 (Outfall 0 | 18 (Composite) - Water) |         |              |                    | Sample           | ed: 02/18/11       | l       |                  |                    |
| Reporting Units: ug/l            |                         |         |              |                    |                  |                    |         |                  |                    |
| Mercury                          | EPA 245.1-Diss          | 11B2762 | 0.10         | 0.20               | ND               | 1                  | DB      | 02/23/11         |                    |
| Arsenic                          | EPA 200.7-Diss          | 11B2496 | 7.0          | 10                 | ND               | 1                  | NH      | 03/01/11         |                    |
| Antimony                         | EPA 200.8-Diss          | 11B2681 | 0.30         | 2.0                | 0.30             | 1                  | RDC     | 02/22/11         | J                  |
| Beryllium                        | EPA 200.7-Diss          | 11B2496 | 0.90         | 2.0                | ND               | 1                  | NH      | 03/01/11         |                    |
| Chromium                         | EPA 200.7-Diss          | 11B2496 | 2.0          | 5.0                | ND               | 1                  | NH      | 03/01/11         |                    |
| Cobalt                           | EPA 200.7-Diss          | 11B2496 | 2.0          | 10                 | ND               | 1                  | LL      | 03/06/11         |                    |
| Manganese                        | EPA 200.7-Diss          | 11B2496 | 7.0          | 20                 | ND               | 1                  | NH      | 03/01/11         |                    |
| Nickel                           | EPA 200.7-Diss          | 11B2496 | 2.0          | 10                 | 2.0              | 1                  | NH      | 03/01/11         | J                  |
| Cadmium                          | EPA 200.8-Diss          | 11B2681 | 0.10         | 1.0                | ND               | 1                  | RDC     | 02/22/11         |                    |
| Vanadium                         | EPA 200.7-Diss          | 11B2496 | 3.0          | 10                 | ND               | 1                  | NH      | 03/01/11         |                    |
| Zinc                             | EPA 200.7-Diss          | 11B2496 | 6.00         | 20.0               | ND               | 1                  | NH      | 03/01/11         |                    |
| Copper                           | EPA 200.8-Diss          | 11B2681 | 0.500        | 2.00               | 1.91             | 1                  | RDC     | 02/22/11         | B, J               |
| Lead                             | EPA 200.8-Diss          | 11B2681 | 0.20         | 1.0                | ND               | 1                  | RDC     | 02/22/11         |                    |
| Selenium                         | EPA 200.8-Diss          | 11B2681 | 0.50         | 2.0                | ND               | 1                  | RDC     | 02/22/11         |                    |
| Silver                           | EPA 200.8-Diss          | 11B2681 | 0.10         | 1.0                | ND               | 1                  | RDC     | 02/22/11         |                    |
| Thallium                         | EPA 200.8-Diss          | 11B2681 | 0.20         | 1.0                | ND               | 1                  | RDC     | 02/22/11         |                    |
|                                  |                         |         |              |                    |                  |                    |         |                  |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966

Received: 02/17/11

#### **DISSOLVED INORGANICS**

| Analyte                                 | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-03 (Outfall 018 (Con |           |         | Sample       | ed: 02/18/11       | ļ                |                    |         |                  |                    |
| Reporting Units: ug/l<br>Chromium VI    | EPA 218.6 | 11B2432 | 0.250        | 1.00               | ND               | 1                  | SLA     | 02/18/11         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/17/11-02/18/11

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

#### **INORGANICS**

| Analyte                            | Method      | Batch             | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|-------------|-------------------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-03 (Outfall 018 |             | Sampled: 02/18/11 |              |                    |                  |                    |         |                  |                    |
| Reporting Units: mg/l              |             |                   |              |                    |                  |                    |         |                  |                    |
| Ammonia-N (Distilled)              | SM4500NH3-C | 11B2727           | 0.500        | 0.500              | ND               | 1                  | TMK     | 02/22/11         |                    |
| <b>Biochemical Oxygen Demand</b>   | SM5210B     | 11B2542           | 0.50         | 2.0                | 2.2              | 1                  | XL      | 02/24/11         |                    |
| Chloride                           | EPA 300.0   | 11B2377           | 0.30         | 0.50               | 11               | 1                  | NN      | 02/18/11         |                    |
| Fluoride                           | SM 4500-F-C | 11B2818           | 0.020        | 0.10               | 0.19             | 1                  | FZ      | 02/23/11         |                    |
| Nitrate-N                          | EPA 300.0   | 11B2377           | 0.060        | 0.11               | 0.37             | 1                  | NN      | 02/18/11         |                    |
| Nitrite-N                          | EPA 300.0   | 11B2377           | 0.090        | 0.15               | ND               | 1                  | NN      | 02/18/11         |                    |
| Nitrate/Nitrite-N                  | EPA 300.0   | 11B2377           | 0.15         | 0.26               | 0.37             | 1                  | NN      | 02/18/11         |                    |
| Sulfate                            | EPA 300.0   | 11B2377           | 1.5          | 2.5                | 64               | 5                  | NN      | 02/19/11         |                    |
| Surfactants (MBAS)                 | SM5540-C    | 11B2469           | 0.050        | 0.10               | 0.061            | 1                  | SLA     | 02/18/11         | J                  |
| <b>Total Dissolved Solids</b>      | SM2540C     | 11B2988           | 1.0          | 10                 | 220              | 1                  | MC      | 02/24/11         |                    |
| Total Organic Carbon               | SM5310B     | 11C0193           | 0.50         | 1.0                | 10               | 1                  | FZ      | 03/02/11         |                    |
| Total Suspended Solids             | SM 2540D    | 11B3172           | 1.0          | 10                 | ND               | 1                  | DC      | 02/24/11         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 02/17/11-02/18/11

Arcadia, CA 91007

Report Number: IUB1966

Received: 02/17/11

#### **INORGANICS**

| Analyte                                            | Method            | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|-------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-01 (Outfall 018 (Gr             | ab) - Water)      |         |              |                    | Sample           | ed: 02/17/11       | l       |                  |                    |
| Reporting Units: ml/l                              | G1 50 5 40 F      | 4455405 |              | 0.40               |                  |                    |         | 00/40/44         |                    |
| Total Settleable Solids                            | SM2540F           | 11B2487 | 0.10         | 0.10               | 0.10             | 1                  | AC1     | 02/18/11         |                    |
| Sample ID: IUB1966-03 (Outfall 018 (Co             | mposite) - Water) |         |              |                    | Sample           | ed: 02/18/11       | 1       |                  |                    |
| Reporting Units: NTU                               |                   |         |              |                    |                  |                    |         |                  |                    |
| Turbidity                                          | EPA 180.1         | 11B2547 | 0.040        | 1.0                | 3.1              | 1                  | AC1     | 02/19/11         |                    |
| Sample ID: IUB1966-03 (Outfall 018 (Co             | mposite) - Water) |         |              |                    | Sample           | ed: 02/18/11       | l       |                  |                    |
| Reporting Units: ug/l                              |                   |         |              |                    |                  |                    |         |                  |                    |
| Perchlorate                                        | EPA 314.0         | 11B2817 | 0.90         | 1.0                | ND               | 1                  | mn      | 02/23/11         |                    |
| Total Cyanide                                      | SM4500CN-E        | 11B2925 | 2.2          | 5.0                | ND               | 1                  | HH      | 02/23/11         |                    |
| Sample ID: IUB1966-01 (Outfall 018 (Grab) - Water) |                   |         |              |                    | Sample           | ed: 02/17/11       | [       |                  |                    |
| Reporting Units: umhos/cm @ 25C                    |                   |         |              |                    | •                |                    |         |                  |                    |
| Specific Conductance                               | EPA 120.1         | 11B3192 | 1.0          | 1.0                | 250              | 1                  | MC      | 02/25/11         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/17/11-02/18/11

Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

### COLIFORMS BY MULTIPLE TUBE FERMENTATION - MPN (SM9221/40 CFR 141.21(f)(6)(i))

| Analyte                                                           | Method                           | Batch              | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst  | Date<br>Analyzed     | Data<br>Qualifiers |
|-------------------------------------------------------------------|----------------------------------|--------------------|--------------|--------------------|------------------|--------------------|----------|----------------------|--------------------|
| Sample ID: IUB1966-01 (Outfall 018<br>Reporting Units: MPN/100 ml | (Grab) - Water) - cont           | •                  |              |                    | Sample           | ed: 02/17/11       | <u>l</u> |                      |                    |
| Fecal Coliform E. Coli                                            | SM9221 A,B,C,E<br>SM9221 A,B,C,E | 11B2543<br>11B2543 | 2.00<br>2.00 | 2.00<br>2.00       | ND<br>ND         | 1                  | AK<br>AK | 02/20/11<br>02/20/11 |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Jb

Report Number: IUB1966

Received: 02/17/11

| 8663         |                    |        |                    |         |                  |                    |
|--------------|--------------------|--------|--------------------|---------|------------------|--------------------|
| MDL<br>Limit | Reporting<br>Limit |        | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|              |                    | Sample | ed: 02/18/1        | 1       |                  |                    |

Sampled: 02/18/11

#### Analyte Method Batch Sample ID: IUB1966-03 (Outfall 018 (Composite) - Water)

Reporting Units: pCi/L

Uranium, Total 1 0.104 TSC03/04/11 8663 8663 1

Sample ID: IUB1966-04 (Trip Blank - Water)

Reporting Units: pCi/L

#### TSC Uranium, Total 8663 8663 1 ND 03/04/11 U 1

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/17/11-02/18/11

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

|                                      |                      |       | 900          |                    |                  |                    |         |                  |                    |
|--------------------------------------|----------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                              | Method               | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUB1966-03 (Outfall 018 ( | (Composite) - Water) | 1     |              |                    | Sample           | ed: 02/18/1        | 1       |                  |                    |
| Reporting Units: pCi/L               |                      |       |              |                    |                  |                    |         |                  |                    |
| Gross Alpha                          | 900                  | 8663  |              | 3                  | 0.49             | 1                  | DVP     | 03/04/11         | Jb                 |
| Gross Beta                           | 900                  | 8663  |              | 4                  | 3.7              | 1                  | DVP     | 03/04/11         | Jb                 |
| Sample ID: IUB1966-04 (Trip Blank -  | Water)               |       |              |                    | Sample           | ed: 02/18/1        | 1       |                  |                    |
| Reporting Units: pCi/L               |                      |       |              |                    |                  |                    |         |                  |                    |
| Gross Alpha                          | 900                  | 8663  |              | 3                  | 0.092            | 1                  | DVP     | 03/04/11         | U                  |
| Gross Beta                           | 900                  | 8663  |              | 4                  | -0.145           | 1                  | DVP     | 03/04/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 02/17/11-02/18/11

Arcadia, CA 91007

Report Number: IUB1966

Received: 02/17/11

901.1

|                                    |                     |       | 701.1        | L                  |                  |                    |         |                  |                    |
|------------------------------------|---------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                            | Method              | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUB1966-03 (Outfall 018 | (Composite) - Water | )     |              |                    | Sample           | ed: 02/18/1        | 1       |                  |                    |
| Reporting Units: pCi/L             |                     |       |              |                    |                  |                    |         |                  |                    |
| Cesium-137                         | 901.1               | 8663  |              | 20                 | ND               | 1                  | LS      | 02/25/11         | U                  |
| Potassium-40                       | 901.1               | 8663  |              | 25                 | ND               | 1                  | LS      | 02/25/11         | U                  |
| Sample ID: IUB1966-04 (Trip Blank  | - Water)            |       |              |                    | Sample           | ed: 02/18/1        | 1       |                  |                    |
| Reporting Units: pCi/L             |                     |       |              |                    |                  |                    |         |                  |                    |
| Cesium-137                         | 901.1               | 8663  |              | 20                 | ND               | 1                  | LS      | 02/25/11         | U                  |
| Potassium-40                       | 901.1               | 8663  |              | 25                 | ND               | 1                  | LS      | 02/25/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IUB1966 Received: 02/17/11

903.1

| Analyte                                                     | Method                 | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------------------------|------------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-03 (Outfall 01<br>Reporting Units: pCi/L | 8 (Composite) - Water) | )     |              |                    | Sample           | ed: 02/18/11       | 1       |                  |                    |
| Radium-226                                                  | 903.1                  | 8663  |              | 1                  | -0.028           | 1                  | TM      | 03/09/11         | U                  |
| Sample ID: IUB1966-04 (Trip Blank<br>Reporting Units: pCi/L | k - Water)             |       |              |                    | Sample           | ed: 02/18/11       | 1       |                  |                    |
| Radium-226                                                  | 903.1                  | 8663  |              | 1                  | 0.455            | 1                  | TM      | 03/09/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IUB1966

Received: 02/17/11

|                                    |                     |       | 904          |                    |                  |                    |         |                  |                    |
|------------------------------------|---------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                            | Method              | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUB1966-03 (Outfall 018 | (Composite) - Water | )     |              |                    | Sample           | ed: 02/18/1        | 1       |                  |                    |
| Reporting Units: pCi/L             |                     |       |              |                    |                  |                    |         |                  |                    |
| Radium-228                         | 904                 | 8663  |              | 1                  | -0.13            | 1                  | ASM     | 03/09/11         | U                  |
| Sample ID: IUB1966-04 (Trip Blank  | - Water)            |       |              |                    | Sample           | d: 02/18/1         | 1       |                  |                    |
| Reporting Units: pCi/L             |                     |       |              |                    |                  |                    |         |                  |                    |
| Radium-228                         | 904                 | 8663  |              | 1                  | -0.221           | 1                  | ASM     | 03/09/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Report Number: IUB1966

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Received: 02/17/11

905

|                                                             |                        |       | 705          |                    |                  |                    |         |                  |                    |
|-------------------------------------------------------------|------------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Analyte                                                     | Method                 | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IUB1966-03 (Outfall 01<br>Reporting Units: pCi/L | 8 (Composite) - Water) |       |              |                    | Sample           | ed: 02/18/11       | I       |                  |                    |
| Strontium-90                                                | 905                    | 8663  |              | 2                  | -0.162           | 1                  | WL      | 03/12/11         | U                  |
| Sample ID: IUB1966-04 (Trip Blank<br>Reporting Units: pCi/L | k - Water)             |       |              |                    | Sample           | ed: 02/18/11       | I       |                  |                    |
| Strontium-90                                                | 905                    | 8663  |              | 2                  | 0.027            | 1                  | WL      | 03/12/11         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

| 906                                   |                    |       |              |                    |                  |                    |         |                  |                    |  |  |
|---------------------------------------|--------------------|-------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|--|--|
| Analyte                               | Method             | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |  |  |
| Sample ID: IUB1966-03 (Outfall 018 (C | omposite) - Water) |       |              |                    | Sample           | ed: 02/18/11       | 1       |                  |                    |  |  |
| Reporting Units: pCi/L                |                    |       |              |                    |                  |                    |         |                  |                    |  |  |
| Tritium                               | 906                | 8663  |              | 500                | -33.1            | 1                  | JO      | 03/10/11         | U                  |  |  |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

#### EPA-5 1613Bx

| Analyte                                | Method              | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Analyst | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|---------------------|---------|--------------|--------------------|------------------|--------------------|---------|------------------|--------------------|
| Sample ID: IUB1966-03 (Outfall 018 (C  | 'omnosite) - Water) | - cont  |              |                    | Sampla           | ۸۰ ۵۷/19/11        | Ī       |                  |                    |
| Reporting Units: ug/L                  | omposite) - water)  | - cont. |              |                    | Sample           | d: 02/18/11        | L       |                  |                    |
| 1,2,3,4,6,7,8-HpCDD                    | EPA-5 1613B         | 1054371 | 0.000000     | 7 0.000057         | 0.0000043        | 1.13               | SY      | 02/24/11         | J                  |
| 1,2,3,4,6,7,8-HpCDF                    | EPA-5 1613B         |         |              | 1 0.000057         | 0.0000025        |                    | SY      | 02/24/11         | J                  |
| 1,2,3,4,7,8,9-HpCDF                    | EPA-5 1613B         |         |              | 9 0.000057         | 0.0000012        |                    | SY      | 02/24/11         | J, Q               |
| 1,2,3,4,7,8-HxCDD                      | EPA-5 1613B         |         |              | 2 0.000057         | 0.0000012        |                    | SY      | 02/24/11         | J, Q               |
| 1,2,3,4,7,8-HxCDF                      | EPA-5 1613B         |         |              | 6 0.000057         | 0.00000092       |                    | SY      | 02/24/11         | J, Q               |
| 1,2,3,6,7,8-HxCDD                      | EPA-5 1613B         |         |              | 7 0.000057         | 0.0000011        | 1.13               | SY      | 02/24/11         | J                  |
| 1,2,3,6,7,8-HxCDF                      | EPA-5 1613B         |         |              | 4 0.000057         | 0.00000084       |                    | SY      | 02/24/11         | J, Q               |
| 1,2,3,7,8,9-HxCDD                      | EPA-5 1613B         |         |              | 1 0.000057         | 0.00000088       |                    | SY      | 02/24/11         | J, Q               |
| 1,2,3,7,8,9-HxCDF                      | EPA-5 1613B         |         |              | 9 0.000057         |                  |                    | SY      | 02/24/11         | J, Q               |
| 1,2,3,7,8-PeCDD                        | EPA-5 1613B         |         |              | 5 0.000057         | ND               | 1.13               | SY      | 02/24/11         | , ,                |
| 1,2,3,7,8-PeCDF                        | EPA-5 1613B         |         |              | 7 0.000057         | ND               | 1.13               | SY      | 02/24/11         |                    |
| 2,3,4,6,7,8-HxCDF                      | EPA-5 1613B         |         |              |                    | 0.00000074       |                    | SY      | 02/24/11         | J, Q               |
| 2,3,4,7,8-PeCDF                        | EPA-5 1613B         | 1054371 | 0.0000007    | 8 0.000057         | ND               | 1.13               | SY      | 02/24/11         |                    |
| 2,3,7,8-TCDD                           | EPA-5 1613B         | 1054371 | 0.0000007    | 2 0.000011         | ND               | 1.13               | SY      | 02/24/11         |                    |
| 2,3,7,8-TCDF                           | EPA-5 1613B         | 1054371 | 0.0000009    | 6 0.000011         | ND               | 1.13               | SY      | 02/24/11         |                    |
| OCDD                                   | EPA-5 1613B         | 1054371 | 0.0000012    | 2 0.00011          | 0.000035         | 1.13               | SY      | 02/24/11         | J, Ba              |
| OCDF                                   | EPA-5 1613B         | 1054371 | 0.000001     | 0.00011            | 0.000005         | 1.13               | SY      | 02/24/11         | J                  |
| Total HpCDD                            | EPA-5 1613B         | 1054371 | 0.0000007    | 0.000057           | 0.0000077        | 1.13               | SY      | 02/24/11         | J                  |
| Total HpCDF                            | EPA-5 1613B         | 1054371 | 0.0000007    | 7 0.000057         | 0.0000037        | 1.13               | SY      | 02/24/11         | J, Q               |
| Total HxCDD                            | EPA-5 1613B         | 1054371 | 0.0000006    | 6 0.000057         | 0.0000032        | 1.13               | SY      | 02/24/11         | J, Q               |
| Total HxCDF                            | EPA-5 1613B         | 1054371 | 0.0000002    | 6 0.000057         | 0.0000034        | 1.13               | SY      | 02/24/11         | J, Q               |
| Total PeCDD                            | EPA-5 1613B         | 1054371 | 0.0000006    | 5 0.000057         | ND               | 1.13               | SY      | 02/24/11         |                    |
| Total PeCDF                            | EPA-5 1613B         | 1054371 | 0.0000007    | 7 0.000057         | ND               | 1.13               | SY      | 02/24/11         |                    |
| Total TCDD                             | EPA-5 1613B         | 1054371 | 0.0000007    | 2 0.000011         | ND               | 1.13               | SY      | 02/24/11         |                    |
| Total TCDF                             | EPA-5 1613B         | 1054371 | 0.0000009    | 6 0.000011         | ND               | 1.13               | SY      | 02/24/11         |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2. | 3-140%)             |         |              |                    | 97 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28 | 8-143%)             |         |              |                    | 87 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (20 | 5-138%)             |         |              |                    | 88 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-  | 141%)               |         |              |                    | 89 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-  |                     |         |              |                    | 89 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-  | 130%)               |         |              |                    | 81 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-  |                     |         |              |                    | 83 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-  |                     |         |              |                    | 88 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDD (25-18  |                     |         |              |                    | 72 %             |                    |         |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDF (24-18  |                     |         |              |                    | 70 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-  | <i>'</i>            |         |              |                    | 87 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF (21-17) | · ·                 |         |              |                    | 74 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDD (25-164%)  |                     |         |              |                    | 68 %             |                    |         |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDF (24-169%)  | )                   |         |              |                    | 68 %             |                    |         |                  |                    |
| Surrogate: 13C-OCDD (17-157%)          | *** ()              |         |              |                    | 82 %             |                    |         |                  |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-197  | ·//)                |         |              |                    | 82 %             |                    |         |                  |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

#### SHORT HOLD TIME DETAIL REPORT

|                                            | Hold Time<br>(in days) | Date/Time<br>Sampled | Date/Time<br>Received | Date/Time<br>Extracted | Date/Time<br>Analyzed |
|--------------------------------------------|------------------------|----------------------|-----------------------|------------------------|-----------------------|
| Sample ID: Outfall 018 (Grab) (IUB1966-01) | - Water                |                      |                       |                        |                       |
| EPA 624                                    | 3                      | 02/17/2011 15:30     | 02/17/2011 19:30      | 02/19/2011 00:00       | 02/19/2011 14:45      |
| SM2540F                                    | 2                      | 02/17/2011 15:30     | 02/17/2011 19:30      | 02/18/2011 15:05       | 02/18/2011 15:05      |
| SM9221 A,B,C,E                             | 0                      | 02/17/2011 15:30     | 02/17/2011 19:30      | 02/17/2011 19:34       | 02/20/2011 15:25      |
| Sample ID: Trip Blank (IUB1966-02) - Water | •                      |                      |                       |                        |                       |
| EPA 624                                    | 3                      | 02/17/2011 15:30     | 02/17/2011 19:30      | 02/19/2011 00:00       | 02/19/2011 14:15      |
| Sample ID: Outfall 018 (Composite) (IUB196 | 6-03) - Water          |                      |                       |                        |                       |
| EPA 180.1                                  | 2                      | 02/18/2011 15:31     | 02/17/2011 19:30      | 02/19/2011 11:00       | 02/19/2011 11:00      |
| EPA 218.6                                  | 1                      | 02/18/2011 15:31     | 02/17/2011 19:30      | 02/18/2011 21:30       | 02/18/2011 21:40      |
| EPA 300.0                                  | 2                      | 02/18/2011 15:31     | 02/17/2011 19:30      | 02/18/2011 20:00       | 02/18/2011 23:01      |
| Filtration                                 | 1                      | 02/18/2011 15:31     | 02/17/2011 19:30      | 02/19/2011 11:29       | 02/19/2011 11:31      |
| SM5210B                                    | 2                      | 02/18/2011 15:31     | 02/17/2011 19:30      | 02/19/2011 13:30       | 02/24/2011 10:00      |
| SM5540-C                                   | 2                      | 02/18/2011 15:31     | 02/17/2011 19:30      | 02/18/2011 21:09       | 02/18/2011 21:57      |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### METHOD BLANK/QC DATA

#### **VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)**

| Analyte                                | Result     | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11C0087 Extracted: 03/01/11     | <u>-</u>   |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/01/2011 (11C0087-B  | LK1)       |                    |       |       |                |                  |         |                |     |              |                    |
| GRO (C4 - C12)                         | ND         | 0.10               | 0.025 | mg/l  |                |                  |         |                |     |              |                    |
| Surrogate: 4-BFB (FID)                 | 0.00998    |                    |       | mg/l  | 0.0100         |                  | 100     | 65-140         |     |              |                    |
| LCS Analyzed: 03/01/2011 (11C0087-BS   | 1)         |                    |       |       |                |                  |         |                |     |              |                    |
| GRO (C4 - C12)                         | 0.781      | 0.10               | 0.025 | mg/l  | 0.800          |                  | 98      | 80-120         |     |              |                    |
| Surrogate: 4-BFB (FID)                 | 0.0132     |                    |       | mg/l  | 0.0100         |                  | 132     | 65-140         |     |              |                    |
| Matrix Spike Analyzed: 03/01/2011 (11C | (0087-MS1) |                    |       |       | Sou            | rce: IUB2        | 2645-02 |                |     |              |                    |
| GRO (C4 - C12)                         | 0.267      | 0.10               | 0.025 | mg/l  | 0.220          | ND               | 121     | 65-140         |     |              |                    |
| Surrogate: 4-BFB (FID)                 | 0.0107     |                    |       | mg/l  | 0.0100         |                  | 107     | 65-140         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/02/2011  | (11C0087-M | SD1)               |       |       | Sou            | rce: IUB2        | 2645-02 |                |     |              |                    |
| GRO (C4 - C12)                         | 0.325      | 0.10               | 0.025 | mg/l  | 0.220          | ND               | 148     | 65-140         | 19  | 20           | M1                 |
| Surrogate: 4-BFB (FID)                 | 0.0106     |                    |       | mg/l  | 0.0100         |                  | 106     | 65-140         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### METHOD BLANK/QC DATA

#### EXTRACTABLE FUEL HYDROCARBONS (EPA 3510C/EPA 8015B)

| Analyte                                   | Result   | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|----------|--------------------|------|-------|----------------|------------------|------|----------------|------|--------------|--------------------|
| <b>Batch:</b> 11B3103 Extracted: 02/24/11 | <u> </u> |                    |      |       |                |                  |      |                |      |              |                    |
| Blank Analyzed: 02/24/2011 (11B3103-B     | SLK1)    |                    |      |       |                |                  |      |                |      |              |                    |
| DRO (C13 - C28)                           | ND       | 0.50               | 0.10 | mg/l  |                |                  |      |                |      |              |                    |
| EFH (C10 - C28)                           | 0.00202  | NA                 | N/A  | mg/l  |                |                  |      |                |      |              |                    |
| Surrogate: n-Octacosane                   | 0.171    |                    |      | mg/l  | 0.200          |                  | 85   | 45-120         |      |              |                    |
| LCS Analyzed: 02/24/2011 (11B3103-BS      | 1)       |                    |      |       |                |                  |      |                |      |              | MNR1               |
| EFH (C10 - C28)                           | 0.734    | NA                 | N/A  | mg/l  | 1.00           |                  | 73   | 40-115         |      |              |                    |
| Surrogate: n-Octacosane                   | 0.168    |                    |      | mg/l  | 0.200          |                  | 84   | 45-120         |      |              |                    |
| LCS Dup Analyzed: 02/24/2011 (11B310      | 3-BSD1)  |                    |      |       |                |                  |      |                |      |              |                    |
| EFH (C10 - C28)                           | 0.735    | NA                 | N/A  | mg/l  | 1.00           |                  | 73   | 40-115         | 0.03 | 25           |                    |
| Surrogate: n-Octacosane                   | 0.167    |                    |      | mg/l  | 0.200          |                  | 83   | 45-120         |      |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### METHOD BLANK/QC DATA

#### **PURGEABLES BY GC/MS (EPA 624)**

|                                      |              | Reporting |      |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|--------------------------------------|--------------|-----------|------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                              | Result       | Limit     | MDL  | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11C0049 Extracted: 03/01/1    | 1            |           |      |       |       |        |      |        |     |       |            |
| Butter 1100019 Extructeur 00/01/1    | <del>-</del> |           |      |       |       |        |      |        |     |       |            |
| Blank Analyzed: 03/01/2011 (11C0049- | BLK1)        |           |      |       |       |        |      |        |     |       |            |
| Benzene                              | ND           | 0.50      | 0.28 | ug/l  |       |        |      |        |     |       |            |
| Bromodichloromethane                 | ND           | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| Bromoform                            | ND           | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| Bromomethane                         | ND           | 1.0       | 0.42 | ug/l  |       |        |      |        |     |       |            |
| Carbon tetrachloride                 | ND           | 0.50      | 0.28 | ug/l  |       |        |      |        |     |       |            |
| Chlorobenzene                        | ND           | 0.50      | 0.36 | ug/l  |       |        |      |        |     |       |            |
| Chloroethane                         | ND           | 1.0       | 0.40 | ug/l  |       |        |      |        |     |       |            |
| Chloroform                           | ND           | 0.50      | 0.33 | ug/l  |       |        |      |        |     |       |            |
| Chloromethane                        | ND           | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| Dibromochloromethane                 | ND           | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| 1,2-Dichlorobenzene                  | ND           | 0.50      | 0.32 | ug/l  |       |        |      |        |     |       |            |
| 1,3-Dichlorobenzene                  | ND           | 0.50      | 0.35 | ug/l  |       |        |      |        |     |       |            |
| 1,4-Dichlorobenzene                  | ND           | 0.50      | 0.37 | ug/l  |       |        |      |        |     |       |            |
| 1,1-Dichloroethane                   | ND           | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| 1,2-Dichloroethane                   | ND           | 0.50      | 0.28 | ug/l  |       |        |      |        |     |       |            |
| 1,1-Dichloroethene                   | ND           | 0.50      | 0.42 | ug/l  |       |        |      |        |     |       |            |
| cis-1,2-Dichloroethene               | ND           | 0.50      | 0.32 | ug/l  |       |        |      |        |     |       |            |
| trans-1,2-Dichloroethene             | ND           | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| 1,2-Dichloropropane                  | ND           | 0.50      | 0.35 | ug/l  |       |        |      |        |     |       |            |
| cis-1,3-Dichloropropene              | ND           | 0.50      | 0.22 | ug/l  |       |        |      |        |     |       |            |
| trans-1,3-Dichloropropene            | ND           | 0.50      | 0.32 | ug/l  |       |        |      |        |     |       |            |
| 1,2-Dichloro-1,1,2-trifluoroethane   | ND           | 2.0       | 1.1  | ug/l  |       |        |      |        |     |       |            |
| Ethylbenzene                         | ND           | 0.50      | 0.25 | ug/l  |       |        |      |        |     |       |            |
| Methylene chloride                   | ND           | 1.0       | 0.95 | ug/l  |       |        |      |        |     |       |            |
| 1,1,2,2-Tetrachloroethane            | ND           | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| Tetrachloroethene                    | ND           | 0.50      | 0.32 | ug/l  |       |        |      |        |     |       |            |
| Toluene                              | ND           | 0.50      | 0.36 | ug/l  |       |        |      |        |     |       |            |
| 1,1,1-Trichloroethane                | ND           | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| 1,1,2-Trichloroethane                | ND           | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| Trichloroethene                      | ND           | 0.50      | 0.26 | ug/l  |       |        |      |        |     |       |            |
| Trichlorofluoromethane               | ND           | 0.50      | 0.34 | ug/l  |       |        |      |        |     |       |            |
| Trichlorotrifluoroethane (Freon 113) | ND           | 5.0       | 0.50 | ug/l  |       |        |      |        |     |       |            |
| Vinyl chloride                       | ND           | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| Xylenes, Total                       | ND           | 1.5       | 0.90 | ug/l  |       |        |      |        |     |       |            |
| Cyclohexane                          | ND           | 1.0       | 0.40 | ug/l  |       |        |      |        |     |       |            |
|                                      |              |           |      |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

### METHOD BLANK/QC DATA

#### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                               | Result | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------|--------|--------------------|------|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11C0049 Extracted: 03/01/1     | 1      |                    |      |       |                |                  |      |                |     |              |                    |
|                                       |        |                    |      |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/01/2011 (11C0049-1 | BLK1)  |                    |      |       |                |                  |      |                |     |              |                    |
| Surrogate: 4-Bromofluorobenzene       | 26.1   |                    |      | ug/l  | 25.0           |                  | 105  | 80-120         |     |              |                    |
| Surrogate: Dibromofluoromethane       | 27.4   |                    |      | ug/l  | 25.0           |                  | 110  | 80-120         |     |              |                    |
| Surrogate: Toluene-d8                 | 27.7   |                    |      | ug/l  | 25.0           |                  | 111  | 80-120         |     |              |                    |
| LCS Analyzed: 03/01/2011 (11C0049-B   | S1)    |                    |      |       |                |                  |      |                |     |              |                    |
| Benzene                               | 22.8   | 0.50               | 0.28 | ug/l  | 25.0           |                  | 91   | 70-120         |     |              |                    |
| Bromodichloromethane                  | 26.6   | 0.50               | 0.30 | ug/l  | 25.0           |                  | 106  | 70-135         |     |              |                    |
| Bromoform                             | 21.1   | 0.50               | 0.40 | ug/l  | 25.0           |                  | 84   | 55-130         |     |              |                    |
| Bromomethane                          | 21.3   | 1.0                | 0.42 | ug/l  | 25.0           |                  | 85   | 65-140         |     |              |                    |
| Carbon tetrachloride                  | 24.5   | 0.50               | 0.28 | ug/l  | 25.0           |                  | 98   | 65-140         |     |              |                    |
| Chlorobenzene                         | 23.8   | 0.50               | 0.36 | ug/l  | 25.0           |                  | 95   | 75-120         |     |              |                    |
| Chloroethane                          | 23.1   | 1.0                | 0.40 | ug/l  | 25.0           |                  | 92   | 60-140         |     |              |                    |
| Chloroform                            | 24.5   | 0.50               | 0.33 | ug/l  | 25.0           |                  | 98   | 70-130         |     |              |                    |
| Chloromethane                         | 18.9   | 0.50               | 0.40 | ug/l  | 25.0           |                  | 76   | 50-140         |     |              |                    |
| Dibromochloromethane                  | 22.5   | 0.50               | 0.40 | ug/l  | 25.0           |                  | 90   | 70-140         |     |              |                    |
| 1,2-Dichlorobenzene                   | 26.1   | 0.50               | 0.32 | ug/l  | 25.0           |                  | 105  | 75-120         |     |              |                    |
| 1,3-Dichlorobenzene                   | 25.5   | 0.50               | 0.35 | ug/l  | 25.0           |                  | 102  | 75-120         |     |              |                    |
| 1,4-Dichlorobenzene                   | 24.8   | 0.50               | 0.37 | ug/l  | 25.0           |                  | 99   | 75-120         |     |              |                    |
| 1,1-Dichloroethane                    | 23.3   | 0.50               | 0.40 | ug/l  | 25.0           |                  | 93   | 70-125         |     |              |                    |
| 1,2-Dichloroethane                    | 24.1   | 0.50               | 0.28 | ug/l  | 25.0           |                  | 96   | 60-140         |     |              |                    |
| 1,1-Dichloroethene                    | 22.6   | 0.50               | 0.42 | ug/l  | 25.0           |                  | 90   | 70-125         |     |              |                    |
| cis-1,2-Dichloroethene                | 25.1   | 0.50               | 0.32 | ug/l  | 25.0           |                  | 100  | 70-125         |     |              |                    |
| trans-1,2-Dichloroethene              | 23.6   | 0.50               | 0.30 | ug/l  | 25.0           |                  | 94   | 70-125         |     |              |                    |
| 1,2-Dichloropropane                   | 24.0   | 0.50               | 0.35 | ug/l  | 25.0           |                  | 96   | 70-125         |     |              |                    |
| cis-1,3-Dichloropropene               | 25.9   | 0.50               | 0.22 | ug/l  | 25.0           |                  | 104  | 75-125         |     |              |                    |
| trans-1,3-Dichloropropene             | 23.2   | 0.50               | 0.32 | ug/l  | 25.0           |                  | 93   | 70-125         |     |              |                    |
| Ethylbenzene                          | 24.5   | 0.50               | 0.25 | ug/l  | 25.0           |                  | 98   | 75-125         |     |              |                    |
| Methylene chloride                    | 21.6   | 1.0                | 0.95 | ug/l  | 25.0           |                  | 86   | 55-130         |     |              |                    |
| 1,1,2,2-Tetrachloroethane             | 24.3   | 0.50               | 0.30 | ug/l  | 25.0           |                  | 97   | 55-130         |     |              |                    |
| Tetrachloroethene                     | 23.1   | 0.50               | 0.32 | ug/l  | 25.0           |                  | 92   | 70-125         |     |              |                    |
| Toluene                               | 25.0   | 0.50               | 0.36 | ug/l  | 25.0           |                  | 100  | 70-120         |     |              |                    |
| 1,1,1-Trichloroethane                 | 25.6   | 0.50               | 0.30 | ug/l  | 25.0           |                  | 102  | 65-135         |     |              |                    |
| 1,1,2-Trichloroethane                 | 24.4   | 0.50               | 0.30 | ug/l  | 25.0           |                  | 98   | 70-125         |     |              |                    |
| Trichloroethene                       | 25.0   | 0.50               | 0.26 | ug/l  | 25.0           |                  | 100  | 70-125         |     |              |                    |
| Trichlorofluoromethane                | 24.5   | 0.50               | 0.34 | ug/l  | 25.0           |                  | 98   | 65-145         |     |              |                    |
| Vinyl chloride                        | 20.9   | 0.50               | 0.40 | ug/l  | 25.0           |                  | 84   | 55-135         |     |              |                    |
|                                       |        |                    |      |       |                |                  |      |                |     |              |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

### METHOD BLANK/QC DATA

#### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                   | Result     | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC        | %REC   | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|------------|--------------------|------|-------|----------------|------------------|-------------|--------|-----|--------------|--------------------|
| •                                         |            |                    |      |       |                |                  | , , , , , , |        |     |              | <b>C</b>           |
| <b>Batch: 11C0049 Extracted: 03/01/11</b> | <u>-</u>   |                    |      |       |                |                  |             |        |     |              |                    |
| LCS Analyzed: 03/01/2011 (11C0049-BS      | 1)         |                    |      |       |                |                  |             |        |     |              |                    |
| Xylenes, Total                            | 76.2       | 1.5                | 0.90 | ug/l  | 75.0           |                  | 102         | 70-125 |     |              |                    |
| Surrogate: 4-Bromofluorobenzene           | 26.4       |                    |      | ug/l  | 25.0           |                  | 106         | 80-120 |     |              |                    |
| Surrogate: Dibromofluoromethane           | 27.1       |                    |      | ug/l  | 25.0           |                  | 109         | 80-120 |     |              |                    |
| Surrogate: Toluene-d8                     | 27.5       |                    |      | ug/l  | 25.0           |                  | 110         | 80-120 |     |              |                    |
| Matrix Spike Analyzed: 03/02/2011 (11C    | (0049-MS1) |                    |      |       | Sou            | rce: IUB2        | 2188-03     |        |     |              |                    |
| Benzene                                   | 25.2       | 0.50               | 0.28 | ug/l  | 25.0           | 2.15             | 92          | 65-125 |     |              |                    |
| Bromodichloromethane                      | 29.2       | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 117         | 70-135 |     |              |                    |
| Bromoform                                 | 21.7       | 0.50               | 0.40 | ug/l  | 25.0           | ND               | 87          | 55-135 |     |              |                    |
| Bromomethane                              | 22.0       | 1.0                | 0.42 | ug/l  | 25.0           | ND               | 88          | 55-145 |     |              |                    |
| Carbon tetrachloride                      | 25.1       | 0.50               | 0.28 | ug/l  | 25.0           | ND               | 100         | 65-140 |     |              |                    |
| Chlorobenzene                             | 25.8       | 0.50               | 0.36 | ug/l  | 25.0           | ND               | 103         | 75-125 |     |              |                    |
| Chloroethane                              | 23.9       | 1.0                | 0.40 | ug/l  | 25.0           | ND               | 96          | 55-140 |     |              |                    |
| Chloroform                                | 26.4       | 0.50               | 0.33 | ug/l  | 25.0           | ND               | 106         | 65-135 |     |              |                    |
| Chloromethane                             | 19.0       | 0.50               | 0.40 | ug/l  | 25.0           | ND               | 76          | 45-145 |     |              |                    |
| Dibromochloromethane                      | 23.7       | 0.50               | 0.40 | ug/l  | 25.0           | ND               | 95          | 65-140 |     |              |                    |
| 1,2-Dichlorobenzene                       | 27.1       | 0.50               | 0.32 | ug/l  | 25.0           | ND               | 108         | 75-125 |     |              |                    |
| 1,3-Dichlorobenzene                       | 26.3       | 0.50               | 0.35 | ug/l  | 25.0           | ND               | 105         | 75-125 |     |              |                    |
| 1,4-Dichlorobenzene                       | 26.1       | 0.50               | 0.37 | ug/l  | 25.0           | ND               | 104         | 75-125 |     |              |                    |
| 1,1-Dichloroethane                        | 25.2       | 0.50               | 0.40 | ug/l  | 25.0           | ND               | 101         | 65-130 |     |              |                    |
| 1,2-Dichloroethane                        | 25.3       | 0.50               | 0.28 | ug/l  | 25.0           | ND               | 101         | 60-140 |     |              |                    |
| 1,1-Dichloroethene                        | 29.1       | 0.50               | 0.42 | ug/l  | 25.0           | ND               | 116         | 60-130 |     |              |                    |
| cis-1,2-Dichloroethene                    | 29.5       | 0.50               | 0.32 | ug/l  | 25.0           | 2.38             | 108         | 65-130 |     |              |                    |
| trans-1,2-Dichloroethene                  | 24.0       | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 96          | 65-130 |     |              |                    |
| 1,2-Dichloropropane                       | 26.2       | 0.50               | 0.35 | ug/l  | 25.0           | ND               | 105         | 65-130 |     |              |                    |
| cis-1,3-Dichloropropene                   | 28.5       | 0.50               | 0.22 | ug/l  | 25.0           | ND               | 114         | 70-130 |     |              |                    |
| trans-1,3-Dichloropropene                 | 24.8       | 0.50               | 0.32 | ug/l  | 25.0           | ND               | 99          | 65-135 |     |              |                    |
| Ethylbenzene                              | 31.2       | 0.50               | 0.25 | ug/l  | 25.0           | 6.23             | 100         | 65-130 |     |              |                    |
| Methylene chloride                        | 23.8       | 1.0                | 0.95 | ug/l  | 25.0           | ND               | 95          | 50-135 |     |              |                    |
| 1,1,2,2-Tetrachloroethane                 | 23.0       | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 92          | 55-135 |     |              |                    |
| Tetrachloroethene                         | 24.0       | 0.50               | 0.32 | ug/l  | 25.0           | ND               | 96          | 65-130 |     |              |                    |
| Toluene                                   | 26.1       | 0.50               | 0.36 | ug/l  | 25.0           | ND               | 105         | 70-125 |     |              |                    |
| 1,1,1-Trichloroethane                     | 26.7       | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 107         | 65-140 |     |              |                    |
| 1,1,2-Trichloroethane                     | 28.4       | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 114         | 65-130 |     |              |                    |
| Trichloroethene                           | 25.7       | 0.50               | 0.26 | ug/l  | 25.0           | ND               | 103         | 65-125 |     |              |                    |
| Trichlorofluoromethane                    | 22.5       | 0.50               | 0.34 | ug/l  | 25.0           | ND               | 90          | 60-145 |     |              |                    |
| TD 44 • T •                               |            |                    |      |       |                |                  |             |        |     |              |                    |

#### **TestAmerica Irvine**

Spike



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

%REC

RPD

Data

Report Number: IUB1966 Received: 02/17/11

Source

### METHOD BLANK/QC DATA

#### **PURGEABLES BY GC/MS (EPA 624)**

Reporting

|                                    |                 | Keporung |      |       | Spike | Source     |         | OKEC   |     | KI D  | Data       |
|------------------------------------|-----------------|----------|------|-------|-------|------------|---------|--------|-----|-------|------------|
| Analyte                            | Result          | Limit    | MDL  | Units | Level | Result     | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C0049 Extracted: 03/0     | 1/11            |          |      |       |       |            |         |        |     |       |            |
| Matrix Spike Analyzed: 03/02/2011  | (11C0049-MS1)   |          |      |       | Sou   | ırce: IUB2 | 2188-03 |        |     |       |            |
| Vinyl chloride                     | 19.2            | 0.50     | 0.40 | ug/l  | 25.0  | ND         | 77      | 45-140 |     |       |            |
| Xylenes, Total                     | 80.4            | 1.5      | 0.90 | ug/l  | 75.0  | ND         | 107     | 60-130 |     |       |            |
| Surrogate: 4-Bromofluorobenzene    | 27.6            |          |      | ug/l  | 25.0  |            | 110     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane    | 28.6            |          |      | ug/l  | 25.0  |            | 114     | 80-120 |     |       |            |
| Surrogate: Toluene-d8              | 27.7            |          |      | ug/l  | 25.0  |            | 111     | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 03/02/2 | 2011 (11C0049-N | ASD1)    |      |       | Sou   | ırce: IUB2 | 2188-03 |        |     |       |            |
| Benzene                            | 24.8            | 0.50     | 0.28 | ug/l  | 25.0  | 2.15       | 91      | 65-125 | 2   | 20    |            |
| Bromodichloromethane               | 29.1            | 0.50     | 0.30 | ug/l  | 25.0  | ND         | 117     | 70-135 | 0.2 | 20    |            |
| Bromoform                          | 22.0            | 0.50     | 0.40 | ug/l  | 25.0  | ND         | 88      | 55-135 | 2   | 25    |            |
| Bromomethane                       | 21.9            | 1.0      | 0.42 | ug/l  | 25.0  | ND         | 88      | 55-145 | 0.5 | 25    |            |
| Carbon tetrachloride               | 24.3            | 0.50     | 0.28 | ug/l  | 25.0  | ND         | 97      | 65-140 | 3   | 25    |            |
| Chlorobenzene                      | 25.2            | 0.50     | 0.36 | ug/l  | 25.0  | ND         | 101     | 75-125 | 2   | 20    |            |
| Chloroethane                       | 23.9            | 1.0      | 0.40 | ug/l  | 25.0  | ND         | 95      | 55-140 | 0.3 | 25    |            |
| Chloroform                         | 26.1            | 0.50     | 0.33 | ug/l  | 25.0  | ND         | 104     | 65-135 | 1   | 20    |            |
| Chloromethane                      | 18.0            | 0.50     | 0.40 | ug/l  | 25.0  | ND         | 72      | 45-145 | 6   | 25    |            |
| Dibromochloromethane               | 24.1            | 0.50     | 0.40 | ug/l  | 25.0  | ND         | 96      | 65-140 | 2   | 25    |            |
| 1,2-Dichlorobenzene                | 26.7            | 0.50     | 0.32 | ug/l  | 25.0  | ND         | 107     | 75-125 | 1   | 20    |            |
| 1,3-Dichlorobenzene                | 26.1            | 0.50     | 0.35 | ug/l  | 25.0  | ND         | 104     | 75-125 | 0.7 | 20    |            |
| 1,4-Dichlorobenzene                | 25.8            | 0.50     | 0.37 | ug/l  | 25.0  | ND         | 103     | 75-125 | 1   | 20    |            |
| 1,1-Dichloroethane                 | 24.7            | 0.50     | 0.40 | ug/l  | 25.0  | ND         | 99      | 65-130 | 2   | 20    |            |
| 1,2-Dichloroethane                 | 25.2            | 0.50     | 0.28 | ug/l  | 25.0  | ND         | 101     | 60-140 | 0.5 | 20    |            |
| 1,1-Dichloroethene                 | 28.9            | 0.50     | 0.42 | ug/l  | 25.0  | ND         | 116     | 60-130 | 0.6 | 20    |            |
| cis-1,2-Dichloroethene             | 29.4            | 0.50     | 0.32 | ug/l  | 25.0  | 2.38       | 108     | 65-130 | 0.3 | 20    |            |
| trans-1,2-Dichloroethene           | 24.0            | 0.50     | 0.30 | ug/l  | 25.0  | ND         | 96      | 65-130 | 0.3 | 20    |            |
| 1,2-Dichloropropane                | 25.5            | 0.50     | 0.35 | ug/l  | 25.0  | ND         | 102     | 65-130 | 3   | 20    |            |
| cis-1,3-Dichloropropene            | 28.2            | 0.50     | 0.22 | ug/l  | 25.0  | ND         | 113     | 70-130 | 1   | 20    |            |
| trans-1,3-Dichloropropene          | 25.0            | 0.50     | 0.32 | ug/l  | 25.0  | ND         | 100     | 65-135 | 0.6 | 25    |            |
| Ethylbenzene                       | 30.4            | 0.50     | 0.25 | ug/l  | 25.0  | 6.23       | 96      | 65-130 | 3   | 20    |            |
| Methylene chloride                 | 23.4            | 1.0      | 0.95 | ug/l  | 25.0  | ND         | 94      | 50-135 | 1   | 20    |            |
| 1,1,2,2-Tetrachloroethane          | 24.1            | 0.50     | 0.30 | ug/l  | 25.0  | ND         | 96      | 55-135 | 4   | 30    |            |
| Tetrachloroethene                  | 23.6            | 0.50     | 0.32 | ug/l  | 25.0  | ND         | 94      | 65-130 | 2   | 20    |            |
| Toluene                            | 25.6            | 0.50     | 0.36 | ug/l  | 25.0  | ND         | 103     | 70-125 | 2   | 20    |            |
| 1,1,1-Trichloroethane              | 26.2            | 0.50     | 0.30 | ug/l  | 25.0  | ND         | 105     | 65-140 | 2   | 20    |            |
| 1,1,2-Trichloroethane              | 28.7            | 0.50     | 0.30 | ug/l  | 25.0  | ND         | 115     | 65-130 | 0.8 | 25    |            |
| Trichloroethene                    | 25.6            | 0.50     | 0.26 | ug/l  | 25.0  | ND         | 103     | 65-125 | 0.2 | 20    |            |
| Test America Irvine                |                 |          |      |       |       |            |         |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

### METHOD BLANK/QC DATA

#### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                | Result     | Reporting<br>Limit | MDL  | Units     | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|------|-----------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11C0049 Extracted: 03/01/11     |            |                    |      |           |                |                  |         |                |     |              |                    |
|                                        | _          |                    |      |           |                |                  |         |                |     |              |                    |
| Matrix Spike Dup Analyzed: 03/02/2011  | (11C0049-M | ASD1)              |      |           | Sou            | rce: IUB2        | 2188-03 |                |     |              |                    |
| Trichlorofluoromethane                 | 22.2       | 0.50               | 0.34 | ug/l      | 25.0           | ND               | 89      | 60-145         | 1   | 25           |                    |
| Vinyl chloride                         | 18.7       | 0.50               | 0.40 | ug/l      | 25.0           | ND               | 75      | 45-140         | 3   | 30           |                    |
| Xylenes, Total                         | 79.2       | 1.5                | 0.90 | ug/l      | 75.0           | ND               | 106     | 60-130         | 2   | 20           |                    |
| Surrogate: 4-Bromofluorobenzene        | 27.0       |                    |      | ug/l      | 25.0           |                  | 108     | 80-120         |     |              |                    |
| Surrogate: Dibromofluoromethane        | 28.4       |                    |      | ug/l      | 25.0           |                  | 113     | 80-120         |     |              |                    |
| Surrogate: Toluene-d8                  | 27.4       |                    |      | ug/l      | 25.0           |                  | 110     | 80-120         |     |              |                    |
| Batch: 11C0226 Extracted: 03/02/11     | <u></u>    |                    |      |           |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/02/2011 (11C0226-B  | LK1)       |                    |      |           |                |                  |         |                |     |              |                    |
| Toluene                                | ND         | 0.50               | 0.36 | ug/l      |                |                  |         |                |     |              |                    |
| Surrogate: 4-Bromofluorobenzene        | 23.4       |                    |      | ug/l      | 25.0           |                  | 93      | 80-120         |     |              |                    |
| Surrogate: Dibromofluoromethane        | 26.4       |                    |      | ug/l      | 25.0           |                  | 106     | 80-120         |     |              |                    |
| Surrogate: Toluene-d8                  | 25.4       |                    |      | ug/l      | 25.0           |                  | 102     | 80-120         |     |              |                    |
| LCS Analyzed: 03/02/2011 (11C0226-BS   | 1)         |                    |      |           |                |                  |         |                |     |              |                    |
| Toluene                                | 27.1       | 0.50               | 0.36 | ug/l      | 25.0           |                  | 108     | 70-120         |     |              |                    |
| Surrogate: 4-Bromofluorobenzene        | 24.2       |                    |      | ug/l      | 25.0           |                  | 97      | 80-120         |     |              |                    |
| Surrogate: Dibromofluoromethane        | 26.8       |                    |      | ug/l      | 25.0           |                  | 107     | 80-120         |     |              |                    |
| Surrogate: Toluene-d8                  | 26.1       |                    |      | ug/l      | 25.0           |                  | 105     | 80-120         |     |              |                    |
| Matrix Spike Analyzed: 03/02/2011 (11C |            |                    | Sou  | rce: IUB2 | 2542-08        |                  |         |                |     |              |                    |
| Toluene                                | 27.8       | 0.50               | 0.36 | ug/l      | 25.0           | 1.07             | 107     | 70-125         |     |              |                    |
| Surrogate: 4-Bromofluorobenzene        | 23.5       |                    |      | ug/l      | 25.0           |                  | 94      | 80-120         |     |              |                    |
| Surrogate: Dibromofluoromethane        | 25.9       |                    |      | ug/l      | 25.0           |                  | 104     | 80-120         |     |              |                    |
| Surrogate: Toluene-d8                  | 25.9       |                    |      | ug/l      | 25.0           |                  | 104     | 80-120         |     |              |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### METHOD BLANK/QC DATA

#### **PURGEABLES BY GC/MS (EPA 624)**

|                                    |                | Reporting |      |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|------------------------------------|----------------|-----------|------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                            | Result         | Limit     | MDL  | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11C0226 Extracted: 03/02    | 2/11           |           |      |       |       |          |         |        |     |       |            |
| Matrix Spike Dup Analyzed: 03/02/2 | 011 (11C0226-M | ISD1)     |      |       | Sou   | rce: IUB | 2542-08 |        |     |       |            |
| Toluene                            | 29.0           | 0.50      | 0.36 | ug/l  | 25.0  | 1.07     | 112     | 70-125 | 4   | 20    |            |
| Surrogate: 4-Bromofluorobenzene    | 24.1           |           |      | ug/l  | 25.0  |          | 96      | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane    | 25.0           |           |      | ug/l  | 25.0  |          | 100     | 80-120 |     |       |            |
| Surrogate: Toluene-d8              | 26.0           |           |      | ug/l  | 25.0  |          | 104     | 80-120 |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

#### METHOD BLANK/QC DATA

#### **PURGEABLES-- GC/MS (EPA 624)**

|                                        |            | Reporting |     |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|-----|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11B2518 Extracted: 02/19/11     | <u>-</u>   |           |     |       |       |          |         |        |     |       |            |
|                                        |            |           |     |       |       |          |         |        |     |       |            |
| Blank Analyzed: 02/19/2011 (11B2518-B  | LK1)       |           |     |       |       |          |         |        |     |       |            |
| Acrolein                               | ND         | 5.0       | 4.0 | ug/l  |       |          |         |        |     |       |            |
| Acrylonitrile                          | ND         | 2.0       | 1.2 | ug/l  |       |          |         |        |     |       |            |
| 2-Chloroethyl vinyl ether              | ND         | 5.0       | 1.8 | ug/l  |       |          |         |        |     |       |            |
| Surrogate: 4-Bromofluorobenzene        | 25.2       |           |     | ug/l  | 25.0  |          | 101     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 26.4       |           |     | ug/l  | 25.0  |          | 106     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 27.7       |           |     | ug/l  | 25.0  |          | 111     | 80-120 |     |       |            |
| LCS Analyzed: 02/19/2011 (11B2518-BS   | 1)         |           |     |       |       |          |         |        |     |       |            |
| 2-Chloroethyl vinyl ether              | 33.1       | 5.0       | 1.8 | ug/l  | 25.0  |          | 133     | 25-170 |     |       |            |
| Surrogate: 4-Bromofluorobenzene        | 26.6       |           |     | ug/l  | 25.0  |          | 107     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 27.2       |           |     | ug/l  | 25.0  |          | 109     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 28.0       |           |     | ug/l  | 25.0  |          | 112     | 80-120 |     |       |            |
| Matrix Spike Analyzed: 02/19/2011 (11B | 32518-MS1) |           |     |       | Sou   | rce: IUB | 1396-14 |        |     |       |            |
| 2-Chloroethyl vinyl ether              | ND         | 5.0       | 1.8 | ug/l  | 25.0  | ND       |         | 25-170 |     |       | M13        |
| Surrogate: 4-Bromofluorobenzene        | 27.0       |           |     | ug/l  | 25.0  |          | 108     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 28.6       |           |     | ug/l  | 25.0  |          | 115     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 28.2       |           |     | ug/l  | 25.0  |          | 113     | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 02/19/2011  | (11B2518-M | SD1)      |     |       | Sou   | rce: IUB | 1396-14 |        |     |       |            |
| 2-Chloroethyl vinyl ether              | ND         | 5.0       | 1.8 | ug/l  | 25.0  | ND       |         | 25-170 |     | 25    | M13        |
| Surrogate: 4-Bromofluorobenzene        | 26.9       |           |     | ug/l  | 25.0  |          | 108     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 28.3       |           |     | ug/l  | 25.0  |          | 113     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 27.8       |           |     | ug/l  | 25.0  |          | 111     | 80-120 |     |       |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

### METHOD BLANK/QC DATA

# 1,4-DIOXANE BY GCMS - SINGLE ION MONITORING (SIM)

| Analyte                                 | Result     | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|------------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11B3460 Extracted: 02/28/11      | <u>-</u>   |                    |     |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/28/2011 (11B3460-B)  | LK1)       |                    |     |       |                |                  |         |                |     |              |                    |
| 1,4-Dioxane                             | ND         | 2.0                | 1.0 | ug/l  |                |                  |         |                |     |              |                    |
| Surrogate: Dibromofluoromethane         | 1.10       |                    |     | ug/l  | 1.00           |                  | 110     | 80-120         |     |              |                    |
| LCS Analyzed: 02/28/2011 (11B3460-BS1   | .)         |                    |     |       |                |                  |         |                |     |              |                    |
| 1,4-Dioxane                             | 10.1       | 2.0                | 1.0 | ug/l  | 10.0           |                  | 101     | 70-125         |     |              |                    |
| Surrogate: Dibromofluoromethane         | 1.07       |                    |     | ug/l  | 1.00           |                  | 107     | 80-120         |     |              |                    |
| Matrix Spike Analyzed: 02/28/2011 (11B: | 3460-MS1)  |                    |     |       | Sou            | rce: IUB2        | 2220-02 |                |     |              |                    |
| 1,4-Dioxane                             | 10.4       | 2.0                | 1.0 | ug/l  | 10.0           | ND               | 104     | 70-130         |     |              |                    |
| Surrogate: Dibromofluoromethane         | 1.13       |                    |     | ug/l  | 1.00           |                  | 113     | 80-120         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/28/2011   | (11B3460-M | SD1)               |     |       | Sou            | rce: IUB2        | 2220-02 |                |     |              |                    |
| 1,4-Dioxane                             | 10.4       | 2.0                | 1.0 | ug/l  | 10.0           | ND               | 104     | 70-130         | 0.4 | 30           |                    |
| Surrogate: Dibromofluoromethane         | 1.14       |                    |     | ug/l  | 1.00           |                  | 114     | 80-120         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

### METHOD BLANK/QC DATA

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                               | Result | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------|--------|--------------------|-------|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11B3291 Extracted: 02/25/12    | 1      |                    |       |       |                |                  |      |                |     |              |                    |
|                                       | _      |                    |       |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/02/2011 (11B3291-F | BLK1)  |                    |       |       |                |                  |      |                |     |              |                    |
| Acenaphthene                          | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Acenaphthylene                        | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Anthracene                            | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Benzidine                             | ND     | 5.00               | 5.00  | ug/l  |                |                  |      |                |     |              |                    |
| Benzo(a)anthracene                    | ND     | 5.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Benzo(a)pyrene                        | ND     | 2.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Benzo(b)fluoranthene                  | ND     | 2.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Benzo(g,h,i)perylene                  | ND     | 5.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Benzo(k)fluoranthene                  | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 4-Bromophenyl phenyl ether            | ND     | 1.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Butyl benzyl phthalate                | 0.700  | 5.00               | 0.700 | ug/l  |                |                  |      |                |     |              | J                  |
| 4-Chloro-3-methylphenol               | ND     | 2.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| Bis(2-chloroethoxy)methane            | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Bis(2-chloroethyl)ether               | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Bis(2-chloroisopropyl)ether           | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Bis(2-ethylhexyl)phthalate            | ND     | 5.00               | 1.70  | ug/l  |                |                  |      |                |     |              |                    |
| 2-Chloronaphthalene                   | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 2-Chlorophenol                        | ND     | 1.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 4-Chlorophenyl phenyl ether           | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Chrysene                              | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Dibenz(a,h)anthracene                 | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Di-n-butyl phthalate                  | ND     | 2.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 1,2-Dichlorobenzene                   | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 1,3-Dichlorobenzene                   | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 1,4-Dichlorobenzene                   | ND     | 0.500              | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 3,3'-Dichlorobenzidine                | ND     | 5.00               | 5.00  | ug/l  |                |                  |      |                |     |              |                    |
| 2,4-Dichlorophenol                    | ND     | 2.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| Diethyl phthalate                     | ND     | 1.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 2,4-Dimethylphenol                    | ND     | 2.00               | 0.300 | ug/l  |                |                  |      |                |     |              |                    |
| Dimethyl phthalate                    | ND     | 0.500              | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| 4,6-Dinitro-2-methylphenol            | ND     | 5.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 2,4-Dinitrophenol                     | ND     | 5.00               | 0.900 | ug/l  |                |                  |      |                |     |              |                    |
| 2,4-Dinitrotoluene                    | ND     | 5.00               | 0.200 | ug/l  |                |                  |      |                |     |              |                    |
| 2,6-Dinitrotoluene                    | ND     | 5.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
| Di-n-octyl phthalate                  | ND     | 5.00               | 0.100 | ug/l  |                |                  |      |                |     |              |                    |
|                                       |        |                    |       |       |                |                  |      |                |     |              |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### METHOD BLANK/QC DATA

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

|                                       |        | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|---------------------------------------|--------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                               | Result | Limit     | MDL   | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11B3291 Extracted: 02/25/1     | 1      |           |       |       |       |        |      |        |     |       |            |
|                                       |        |           |       |       |       |        |      |        |     |       |            |
| Blank Analyzed: 03/02/2011 (11B3291-l | BLK1)  |           |       |       |       |        |      |        |     |       |            |
| 1,2-Diphenylhydrazine/Azobenzene      | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Fluoranthene                          | ND     | 0.500     | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Fluorene                              | ND     | 0.500     | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Hexachlorobenzene                     | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Hexachlorobutadiene                   | ND     | 2.00      | 0.200 | ug/l  |       |        |      |        |     |       |            |
| Hexachlorocyclopentadiene             | ND     | 5.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Hexachloroethane                      | ND     | 3.00      | 0.200 | ug/l  |       |        |      |        |     |       |            |
| Indeno(1,2,3-cd)pyrene                | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Isophorone                            | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Naphthalene                           | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Nitrobenzene                          | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| 2-Nitrophenol                         | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| 4-Nitrophenol                         | ND     | 5.00      | 2.50  | ug/l  |       |        |      |        |     |       |            |
| N-Nitroso-di-n-propylamine            | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| N-Nitrosodimethylamine                | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| N-Nitrosodiphenylamine                | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Pentachlorophenol                     | ND     | 2.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Phenanthrene                          | ND     | 0.500     | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Phenol                                | ND     | 1.00      | 0.300 | ug/l  |       |        |      |        |     |       |            |
| Pyrene                                | ND     | 0.500     | 0.100 | ug/l  |       |        |      |        |     |       |            |
| 1,2,4-Trichlorobenzene                | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| 2,4,6-Trichlorophenol                 | ND     | 1.00      | 0.100 | ug/l  |       |        |      |        |     |       |            |
| Surrogate: 2,4,6-Tribromophenol       | 17.5   |           |       | ug/l  | 20.0  |        | 87   | 40-120 |     |       |            |
| Surrogate: 2-Fluorobiphenyl           | 7.54   |           |       | ug/l  | 10.0  |        | 75   | 50-120 |     |       |            |
| Surrogate: 2-Fluorophenol             | 14.8   |           |       | ug/l  | 20.0  |        | 74   | 30-120 |     |       |            |
| Surrogate: Nitrobenzene-d5            | 7.26   |           |       | ug/l  | 10.0  |        | 73   | 45-120 |     |       |            |
| Surrogate: Phenol-d6                  | 15.7   |           |       | ug/l  | 20.0  |        | 79   | 35-120 |     |       |            |
| Surrogate: Terphenyl-d14              | 8.56   |           |       | ug/l  | 10.0  |        | 86   | 50-125 |     |       |            |
|                                       |        |           |       |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### METHOD BLANK/QC DATA

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                  | Result   | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source | %REC  | %REC    | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------|----------|--------------------|-------|-------|----------------|--------|-------|---------|------|--------------|--------------------|
| ·                                        |          | Limit              | MIDL  | Units | Levei          | Result | /oKEC | Lillits | KI D | Lillit       | Quanners           |
| <b>Batch: 11B3291 Extracted: 02/25/1</b> | <u>1</u> |                    |       |       |                |        |       |         |      |              |                    |
| I CC AI J. 02/02/2011 (11D2201 D6        | 71)      |                    |       |       |                |        |       |         |      |              |                    |
| LCS Analyzed: 03/02/2011 (11B3291-BS     |          | 0.500              | 0.100 | /1    | 10.0           |        | 0.6   | (0.120  |      |              |                    |
| Acenaphthene                             | 8.60     | 0.500              | 0.100 | ug/l  | 10.0           |        | 86    | 60-120  |      |              |                    |
| Acenaphthylene                           | 9.66     | 0.500              | 0.100 | ug/l  | 10.0           |        | 97    | 60-120  |      |              |                    |
| Anthracene                               | 9.04     | 0.500              | 0.100 | ug/l  | 10.0           |        | 90    | 65-120  |      |              | * *                |
| Benzidine                                | ND       | 5.00               | 5.00  | ug/l  | 10.0           |        | 0.6   | 30-160  |      |              | L6                 |
| Benzo(a)anthracene                       | 9.64     | 5.00               | 0.100 | ug/l  | 10.0           |        | 96    | 65-120  |      |              |                    |
| Benzo(a)pyrene                           | 9.08     | 2.00               | 0.100 | ug/l  | 10.0           |        | 91    | 55-130  |      |              |                    |
| Benzo(b)fluoranthene                     | 9.58     | 2.00               | 0.100 | ug/l  | 10.0           |        | 96    | 55-125  |      |              |                    |
| Benzo(g,h,i)perylene                     | 8.82     | 5.00               | 0.100 | ug/l  | 10.0           |        | 88    | 45-135  |      |              |                    |
| Benzo(k)fluoranthene                     | 9.34     | 0.500              | 0.100 | ug/l  | 10.0           |        | 93    | 50-125  |      |              |                    |
| 4-Bromophenyl phenyl ether               | 9.08     | 1.00               | 0.100 | ug/l  | 10.0           |        | 91    | 60-120  |      |              |                    |
| Butyl benzyl phthalate                   | 9.54     | 5.00               | 0.700 | ug/l  | 10.0           |        | 95    | 55-130  |      |              |                    |
| 4-Chloro-3-methylphenol                  | 9.14     | 2.00               | 0.200 | ug/l  | 10.0           |        | 91    | 60-120  |      |              |                    |
| Bis(2-chloroethoxy)methane               | 9.54     | 0.500              | 0.100 | ug/l  | 10.0           |        | 95    | 55-120  |      |              |                    |
| Bis(2-chloroethyl)ether                  | 8.46     | 0.500              | 0.100 | ug/l  | 10.0           |        | 85    | 50-120  |      |              |                    |
| Bis(2-chloroisopropyl)ether              | 8.48     | 0.500              | 0.100 | ug/l  | 10.0           |        | 85    | 45-120  |      |              |                    |
| Bis(2-ethylhexyl)phthalate               | 10.1     | 5.00               | 1.70  | ug/l  | 10.0           |        | 101   | 65-130  |      |              |                    |
| 2-Chloronaphthalene                      | 8.86     | 0.500              | 0.100 | ug/l  | 10.0           |        | 89    | 60-120  |      |              |                    |
| 2-Chlorophenol                           | 8.18     | 1.00               | 0.200 | ug/l  | 10.0           |        | 82    | 45-120  |      |              |                    |
| 4-Chlorophenyl phenyl ether              | 9.08     | 0.500              | 0.100 | ug/l  | 10.0           |        | 91    | 65-120  |      |              |                    |
| Chrysene                                 | 8.92     | 0.500              | 0.100 | ug/l  | 10.0           |        | 89    | 65-120  |      |              |                    |
| Dibenz(a,h)anthracene                    | 8.76     | 0.500              | 0.100 | ug/l  | 10.0           |        | 88    | 50-135  |      |              |                    |
| Di-n-butyl phthalate                     | 9.02     | 2.00               | 0.200 | ug/l  | 10.0           |        | 90    | 60-125  |      |              |                    |
| 1,2-Dichlorobenzene                      | 7.36     | 0.500              | 0.100 | ug/l  | 10.0           |        | 74    | 40-120  |      |              |                    |
| 1,3-Dichlorobenzene                      | 6.92     | 0.500              | 0.100 | ug/l  | 10.0           |        | 69    | 35-120  |      |              |                    |
| 1,4-Dichlorobenzene                      | 7.02     | 0.500              | 0.200 | ug/l  | 10.0           |        | 70    | 35-120  |      |              |                    |
| 3,3'-Dichlorobenzidine                   | 7.22     | 5.00               | 5.00  | ug/l  | 10.0           |        | 72    | 45-135  |      |              |                    |
| 2,4-Dichlorophenol                       | 8.56     | 2.00               | 0.200 | ug/l  | 10.0           |        | 86    | 55-120  |      |              |                    |
| Diethyl phthalate                        | 8.70     | 1.00               | 0.100 | ug/l  | 10.0           |        | 87    | 55-120  |      |              |                    |
| 2,4-Dimethylphenol                       | 7.62     | 2.00               | 0.300 | ug/l  | 10.0           |        | 76    | 40-120  |      |              |                    |
| Dimethyl phthalate                       | 8.44     | 0.500              | 0.100 | ug/l  | 10.0           |        | 84    | 30-120  |      |              |                    |
| 4,6-Dinitro-2-methylphenol               | 9.08     | 5.00               | 0.200 | ug/l  | 10.0           |        | 91    | 45-120  |      |              |                    |
| 2,4-Dinitrophenol                        | 8.72     | 5.00               | 0.900 | ug/l  | 10.0           |        | 87    | 40-120  |      |              |                    |
| 2,4-Dinitrotoluene                       | 8.70     | 5.00               | 0.200 | ug/l  | 10.0           |        | 87    | 65-120  |      |              |                    |
| 2,6-Dinitrotoluene                       | 8.80     | 5.00               | 0.100 | ug/l  | 10.0           |        | 88    | 65-120  |      |              |                    |
| Di-n-octyl phthalate                     | 10.1     | 5.00               | 0.100 | ug/l  | 10.0           |        | 101   | 65-135  |      |              |                    |
| 21 if octyr phiniaiae                    | 10.1     | 5.00               | 0.100 | ug/1  | 10.0           |        | 101   | 05 155  |      |              |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### METHOD BLANK/QC DATA

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                   | Result   | Reporting<br>Limit | MDL   | Units  | Spike<br>Level | Source | %REC  | %REC   | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|----------|--------------------|-------|--------|----------------|--------|-------|--------|------|--------------|--------------------|
| ·                                         |          | Limit              | MDL   | Cilits | Level          | Result | /OKEC | Limits | KI D | Limit        | Quanners           |
| <b>Batch:</b> 11B3291 Extracted: 02/25/11 | <u> </u> |                    |       |        |                |        |       |        |      |              |                    |
| LCS Analyzed: 03/02/2011 (11B3291-BS      | 1)       |                    |       |        |                |        |       |        |      |              |                    |
| 1,2-Diphenylhydrazine/Azobenzene          | 7.62     | 1.00               | 0.100 | ug/l   | 10.0           |        | 76    | 60-120 |      |              |                    |
| Fluoranthene                              | 9.48     | 0.500              | 0.100 | ug/l   | 10.0           |        | 95    | 60-120 |      |              |                    |
| Fluorene                                  | 9.14     | 0.500              | 0.100 | ug/l   | 10.0           |        | 91    | 65-120 |      |              |                    |
| Hexachlorobenzene                         | 8.50     | 1.00               | 0.100 | ug/l   | 10.0           |        | 85    | 60-120 |      |              |                    |
| Hexachlorobutadiene                       | 6.80     | 2.00               | 0.200 | ug/l   | 10.0           |        | 68    | 40-120 |      |              |                    |
| Hexachlorocyclopentadiene                 | 6.76     | 5.00               | 0.100 | ug/l   | 10.0           |        | 68    | 25-120 |      |              |                    |
| Hexachloroethane                          | 6.54     | 3.00               | 0.200 | ug/l   | 10.0           |        | 65    | 35-120 |      |              |                    |
| Indeno(1,2,3-cd)pyrene                    | 9.54     | 2.00               | 0.100 | ug/l   | 10.0           |        | 95    | 45-135 |      |              |                    |
| Isophorone                                | 9.72     | 1.00               | 0.100 | ug/l   | 10.0           |        | 97    | 50-120 |      |              |                    |
| Naphthalene                               | 8.02     | 1.00               | 0.100 | ug/l   | 10.0           |        | 80    | 55-120 |      |              |                    |
| Nitrobenzene                              | 8.38     | 1.00               | 0.100 | ug/l   | 10.0           |        | 84    | 55-120 |      |              |                    |
| 2-Nitrophenol                             | 8.28     | 2.00               | 0.100 | ug/l   | 10.0           |        | 83    | 50-120 |      |              |                    |
| 4-Nitrophenol                             | 10.1     | 5.00               | 2.50  | ug/l   | 10.0           |        | 101   | 45-120 |      |              |                    |
| N-Nitroso-di-n-propylamine                | 9.28     | 2.00               | 0.100 | ug/l   | 10.0           |        | 93    | 45-120 |      |              |                    |
| N-Nitrosodimethylamine                    | 8.74     | 2.00               | 0.100 | ug/l   | 10.0           |        | 87    | 45-120 |      |              |                    |
| N-Nitrosodiphenylamine                    | 9.62     | 1.00               | 0.100 | ug/l   | 10.0           |        | 96    | 60-120 |      |              |                    |
| Pentachlorophenol                         | 6.70     | 2.00               | 0.100 | ug/l   | 10.0           |        | 67    | 24-121 |      |              |                    |
| Phenanthrene                              | 8.74     | 0.500              | 0.100 | ug/l   | 10.0           |        | 87    | 65-120 |      |              |                    |
| Phenol                                    | 8.48     | 1.00               | 0.300 | ug/l   | 10.0           |        | 85    | 40-120 |      |              |                    |
| Pyrene                                    | 9.26     | 0.500              | 0.100 | ug/l   | 10.0           |        | 93    | 55-125 |      |              |                    |
| 1,2,4-Trichlorobenzene                    | 7.30     | 1.00               | 0.100 | ug/l   | 10.0           |        | 73    | 45-120 |      |              |                    |
| 2,4,6-Trichlorophenol                     | 9.34     | 1.00               | 0.100 | ug/l   | 10.0           |        | 93    | 55-120 |      |              |                    |
| Surrogate: 2,4,6-Tribromophenol           | 17.1     |                    |       | ug/l   | 20.0           |        | 86    | 40-120 |      |              |                    |
| Surrogate: 2-Fluorobiphenyl               | 8.16     |                    |       | ug/l   | 10.0           |        | 82    | 50-120 |      |              |                    |
| Surrogate: 2-Fluorophenol                 | 15.3     |                    |       | ug/l   | 20.0           |        | 76    | 30-120 |      |              |                    |
| Surrogate: Nitrobenzene-d5                | 8.46     |                    |       | ug/l   | 10.0           |        | 85    | 45-120 |      |              |                    |
| Surrogate: Phenol-d6                      | 17.6     |                    |       | ug/l   | 20.0           |        | 88    | 35-120 |      |              |                    |
| Surrogate: Terphenyl-d14                  | 9.06     |                    |       | ug/l   | 10.0           |        | 91    | 50-125 |      |              |                    |

#### **TestAmerica Irvine**

Reporting

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

RPD

Data

Report Number: IUB1966 Received: 02/17/11

### METHOD BLANK/QC DATA

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Spike

Source

| Analyte                           | Result        | Limit | MDL    | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
|-----------------------------------|---------------|-------|--------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Batch: 11B3291 Extracted: 02/2    | <u>25/11</u>  |       |        |       |       |           |         |        |     |       |            |
| M 4 1 C 1 A 1 1 02/02/2011        | (11D2201 MC1) |       |        |       | G     | HID       | 2/20 01 |        |     |       |            |
| Matrix Spike Analyzed: 03/02/2011 | ` /           | 0.470 | 0.0057 | /1    |       | irce: IUB |         | (0.120 |     |       |            |
| Acenaphthene                      | 6.99          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 73      | 60-120 |     |       |            |
| Acenaphthylene                    | 7.39          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 77      | 60-120 |     |       |            |
| Anthracene                        | 7.20          | 0.478 | 0.0957 | ug/1  | 9.57  | ND        | 75      | 65-120 |     |       | 1.40       |
| Benzidine                         | ND            | 4.78  | 4.78   | ug/1  | 9.57  | ND        | 96      | 30-160 |     |       | M8         |
| Benzo(a)anthracene                | 8.27          | 4.78  | 0.0957 | ug/l  | 9.57  | ND        | 86      | 65-120 |     |       |            |
| Benzo(a)pyrene                    | 7.27          | 1.91  | 0.0957 | ug/l  | 9.57  | ND        | 76      | 55-130 |     |       |            |
| Benzo(b)fluoranthene              | 8.82          | 1.91  | 0.0957 | ug/l  | 9.57  | ND        | 92      | 55-125 |     |       |            |
| Benzo(g,h,i)perylene              | 9.45          | 4.78  | 0.0957 | ug/l  | 9.57  | ND        | 99      | 45-135 |     |       |            |
| Benzo(k)fluoranthene              | 8.10          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 85      | 55-125 |     |       |            |
| 4-Bromophenyl phenyl ether        | 8.19          | 0.957 | 0.0957 | ug/l  | 9.57  | ND        | 86      | 60-120 |     |       |            |
| Butyl benzyl phthalate            | 8.96          | 4.78  | 0.670  | ug/l  | 9.57  | 0.762     | 86      | 55-130 |     |       |            |
| 4-Chloro-3-methylphenol           | 7.29          | 1.91  | 0.191  | ug/l  | 9.57  | ND        | 76      | 60-120 |     |       |            |
| Bis(2-chloroethoxy)methane        | 7.35          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 77      | 50-120 |     |       |            |
| Bis(2-chloroethyl)ether           | 6.49          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 68      | 50-120 |     |       |            |
| Bis(2-chloroisopropyl)ether       | 6.41          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 67      | 45-120 |     |       |            |
| Bis(2-ethylhexyl)phthalate        | 10.1          | 4.78  | 1.63   | ug/l  | 9.57  | ND        | 105     | 65-130 |     |       |            |
| 2-Chloronaphthalene               | 7.16          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 75      | 60-120 |     |       |            |
| 2-Chlorophenol                    | 5.89          | 0.957 | 0.191  | ug/l  | 9.57  | ND        | 62      | 45-120 |     |       |            |
| 4-Chlorophenyl phenyl ether       | 7.83          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 82      | 65-120 |     |       |            |
| Chrysene                          | 7.41          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 77      | 65-120 |     |       |            |
| Dibenz(a,h)anthracene             | 9.03          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 94      | 45-135 |     |       |            |
| Di-n-butyl phthalate              | 8.52          | 1.91  | 0.191  | ug/l  | 9.57  | ND        | 89      | 60-125 |     |       |            |
| 1,2-Dichlorobenzene               | 7.20          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 75      | 40-120 |     |       |            |
| 1,3-Dichlorobenzene               | 5.51          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 58      | 35-120 |     |       |            |
| 1,4-Dichlorobenzene               | 5.72          | 0.478 | 0.191  | ug/l  | 9.57  | ND        | 60      | 35-120 |     |       |            |
| 3,3'-Dichlorobenzidine            | ND            | 4.78  | 4.78   | ug/l  | 9.57  | ND        |         | 45-135 |     |       | M2         |
| 2,4-Dichlorophenol                | 6.07          | 1.91  | 0.191  | ug/l  | 9.57  | ND        | 63      | 55-120 |     |       |            |
| Diethyl phthalate                 | 8.61          | 0.957 | 0.0957 | ug/l  | 9.57  | ND        | 90      | 55-120 |     |       |            |
| 2,4-Dimethylphenol                | ND            | 1.91  | 0.287  | ug/l  | 9.57  | ND        |         | 40-120 |     |       | M2         |
| Dimethyl phthalate                | 7.64          | 0.478 | 0.0957 | ug/l  | 9.57  | ND        | 80      | 30-120 |     |       |            |
| 4,6-Dinitro-2-methylphenol        | 8.23          | 4.78  | 0.191  | ug/l  | 9.57  | ND        | 86      | 45-120 |     |       |            |
| 2,4-Dinitrophenol                 | 10.6          | 4.78  | 0.861  | ug/l  | 9.57  | ND        | 111     | 40-120 |     |       |            |
| 2,4-Dinitrotoluene                | 8.04          | 4.78  | 0.191  | ug/l  | 9.57  | ND        | 84      | 65-120 |     |       |            |
| 2,6-Dinitrotoluene                | 8.73          | 4.78  | 0.0957 | ug/l  | 9.57  | ND        | 91      | 65-120 |     |       |            |
| Di-n-octyl phthalate              | 9.13          | 4.78  | 0.0957 | ug/l  | 9.57  | ND        | 95      | 65-135 |     |       |            |
|                                   |               |       |        |       |       |           |         |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### METHOD BLANK/QC DATA

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                   | Result     | Reporting<br>Limit | MDL    | Units | Spike<br>Level | Source     | %REC    | %REC    | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|------------|--------------------|--------|-------|----------------|------------|---------|---------|-----|--------------|--------------------|
| •                                         |            | LIIIII             | MIDL   | Units | Level          | Result     | 70KEC   | Lillits | KFD | Lillit       | Quanners           |
| <b>Batch:</b> 11B3291 Extracted: 02/25/11 | <u></u>    |                    |        |       |                |            |         |         |     |              |                    |
| Matrix Spike Analyzed: 03/02/2011 (11B    | 33291-MS1) |                    |        |       | Sou            | ırce: IUB2 | 2628-01 |         |     |              |                    |
| 1,2-Diphenylhydrazine/Azobenzene          | 6.85       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 72      | 60-120  |     |              |                    |
| Fluoranthene                              | 8.40       | 0.478              | 0.0957 | ug/l  | 9.57           | ND         | 88      | 60-120  |     |              |                    |
| Fluorene                                  | 7.81       | 0.478              | 0.0957 | ug/l  | 9.57           | ND         | 82      | 65-120  |     |              |                    |
| Hexachlorobenzene                         | 6.91       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 72      | 60-120  |     |              |                    |
| Hexachlorobutadiene                       | 5.57       | 1.91               | 0.191  | ug/l  | 9.57           | ND         | 58      | 40-120  |     |              |                    |
| Hexachlorocyclopentadiene                 | 6.53       | 4.78               | 0.0957 | ug/l  | 9.57           | ND         | 68      | 25-120  |     |              |                    |
| Hexachloroethane                          | 5.44       | 2.87               | 0.191  | ug/l  | 9.57           | ND         | 57      | 35-120  |     |              |                    |
| Indeno(1,2,3-cd)pyrene                    | 9.74       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 102     | 40-135  |     |              |                    |
| Isophorone                                | 8.10       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 85      | 50-120  |     |              |                    |
| Naphthalene                               | 6.14       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 64      | 55-120  |     |              |                    |
| Nitrobenzene                              | 9.42       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 98      | 55-120  |     |              |                    |
| 2-Nitrophenol                             | 6.95       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 73      | 50-120  |     |              |                    |
| 4-Nitrophenol                             | 11.5       | 4.78               | 2.39   | ug/l  | 9.57           | ND         | 120     | 45-120  |     |              |                    |
| N-Nitroso-di-n-propylamine                | 7.14       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 75      | 45-120  |     |              |                    |
| N-Nitrosodimethylamine                    | 7.00       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 73      | 45-120  |     |              |                    |
| N-Nitrosodiphenylamine                    | 7.48       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 78      | 60-120  |     |              |                    |
| Pentachlorophenol                         | 8.63       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 90      | 24-121  |     |              |                    |
| Phenanthrene                              | 7.43       | 0.478              | 0.0957 | ug/l  | 9.57           | ND         | 78      | 65-120  |     |              |                    |
| Phenol                                    | 10.2       | 0.957              | 0.287  | ug/l  | 9.57           | ND         | 107     | 40-120  |     |              |                    |
| Pyrene                                    | 8.77       | 0.478              | 0.0957 | ug/l  | 9.57           | ND         | 92      | 55-125  |     |              |                    |
| 1,2,4-Trichlorobenzene                    | 5.88       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 61      | 45-120  |     |              |                    |
| 2,4,6-Trichlorophenol                     | 7.71       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 81      | 55-120  |     |              |                    |
| Surrogate: 2,4,6-Tribromophenol           | 14.9       |                    |        | ug/l  | 19.1           |            | 78      | 40-120  |     |              |                    |
| Surrogate: 2-Fluorobiphenyl               | 6.45       |                    |        | ug/l  | 9.57           |            | 67      | 50-120  |     |              |                    |
| Surrogate: 2-Fluorophenol                 | 10.1       |                    |        | ug/l  | 19.1           |            | 53      | 30-120  |     |              |                    |
| Surrogate: Nitrobenzene-d5                | 6.72       |                    |        | ug/l  | 9.57           |            | 70      | 45-120  |     |              |                    |
| Surrogate: Phenol-d6                      | 12.0       |                    |        | ug/l  | 19.1           |            | 63      | 35-120  |     |              |                    |
| Surrogate: Terphenyl-d14                  | 8.46       |                    |        | ug/l  | 9.57           |            | 88      | 50-125  |     |              |                    |

#### **TestAmerica Irvine**

%REC

RPD

Data



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

Source

### METHOD BLANK/QC DATA

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Spike

Reporting

| Analyte                          | Result            | Limit | MDL    | Units | Level | Result     | %REC    | Limits | RPD | Limit | Qualifiers |
|----------------------------------|-------------------|-------|--------|-------|-------|------------|---------|--------|-----|-------|------------|
| Batch: 11B3291 Extracted: 02     | /25/11            |       |        |       |       |            |         |        |     |       |            |
| Matrix Spike Dup Analyzed: 03/02 | 2/2011 (11B3291-M | ISD1) |        |       | Sou   | ırce: IUB2 | 2628-01 |        |     |       |            |
| Acenaphthene                     | 8.00              | 0.478 | 0.0957 | ug/1  | 9.57  | ND         | 84      | 60-120 | 14  | 25    |            |
| Acenaphthylene                   | 9.07              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 95      | 60-120 | 20  | 25    |            |
| Anthracene                       | 7.56              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 79      | 65-120 | 5   | 25    |            |
| Benzidine                        | ND                | 4.78  | 4.78   | ug/l  | 9.57  | ND         |         | 30-160 |     | 35    | M8         |
| Benzo(a)anthracene               | 9.01              | 4.78  | 0.0957 | ug/l  | 9.57  | ND         | 94      | 65-120 | 9   | 20    |            |
| Benzo(a)pyrene                   | 7.52              | 1.91  | 0.0957 | ug/l  | 9.57  | ND         | 79      | 55-130 | 3   | 25    |            |
| Benzo(b)fluoranthene             | 9.34              | 1.91  | 0.0957 | ug/l  | 9.57  | ND         | 98      | 55-125 | 6   | 25    |            |
| Benzo(g,h,i)perylene             | 10.0              | 4.78  | 0.0957 | ug/l  | 9.57  | ND         | 105     | 45-135 | 6   | 30    |            |
| Benzo(k)fluoranthene             | 8.92              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 93      | 55-125 | 10  | 30    |            |
| 4-Bromophenyl phenyl ether       | 8.78              | 0.957 | 0.0957 | ug/l  | 9.57  | ND         | 92      | 60-120 | 7   | 25    |            |
| Butyl benzyl phthalate           | 9.49              | 4.78  | 0.670  | ug/l  | 9.57  | 0.762      | 91      | 55-130 | 6   | 25    |            |
| 4-Chloro-3-methylphenol          | 7.64              | 1.91  | 0.191  | ug/l  | 9.57  | ND         | 80      | 60-120 | 5   | 25    |            |
| Bis(2-chloroethoxy)methane       | 8.80              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 92      | 50-120 | 18  | 25    |            |
| Bis(2-chloroethyl)ether          | 7.77              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 81      | 50-120 | 18  | 25    |            |
| Bis(2-chloroisopropyl)ether      | 7.81              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 82      | 45-120 | 20  | 25    |            |
| Bis(2-ethylhexyl)phthalate       | 10.2              | 4.78  | 1.63   | ug/l  | 9.57  | ND         | 107     | 65-130 | 1   | 25    |            |
| 2-Chloronaphthalene              | 8.29              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 87      | 60-120 | 15  | 20    |            |
| 2-Chlorophenol                   | 7.35              | 0.957 | 0.191  | ug/l  | 9.57  | ND         | 77      | 45-120 | 22  | 25    |            |
| 4-Chlorophenyl phenyl ether      | 8.54              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 89      | 65-120 | 9   | 25    |            |
| Chrysene                         | 8.17              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 85      | 65-120 | 10  | 25    |            |
| Dibenz(a,h)anthracene            | 9.82              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 103     | 45-135 | 8   | 30    |            |
| Di-n-butyl phthalate             | 9.00              | 1.91  | 0.191  | ug/l  | 9.57  | ND         | 94      | 60-125 | 5   | 25    |            |
| 1,2-Dichlorobenzene              | 9.44              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 99      | 40-120 | 27  | 25    | R          |
| 1,3-Dichlorobenzene              | 6.91              | 0.478 | 0.0957 | ug/l  | 9.57  | ND         | 72      | 35-120 | 22  | 25    |            |
| 1,4-Dichlorobenzene              | 7.00              | 0.478 | 0.191  | ug/1  | 9.57  | ND         | 73      | 35-120 | 20  | 25    |            |
| 3,3'-Dichlorobenzidine           | ND                | 4.78  | 4.78   | ug/1  | 9.57  | ND         |         | 45-135 |     | 25    | M2         |
| 2,4-Dichlorophenol               | 7.44              | 1.91  | 0.191  | ug/1  | 9.57  | ND         | 78      | 55-120 | 20  | 25    |            |
| Diethyl phthalate                | 8.82              | 0.957 | 0.0957 | ug/1  | 9.57  | ND         | 92      | 55-120 | 2   | 30    |            |
| 2,4-Dimethylphenol               | ND                | 1.91  | 0.287  | ug/1  | 9.57  | ND         |         | 40-120 |     | 25    | M2         |
| Dimethyl phthalate               | 8.11              | 0.478 | 0.0957 | ug/1  | 9.57  | ND         | 85      | 30-120 | 6   | 30    |            |
| 4,6-Dinitro-2-methylphenol       | 9.63              | 4.78  | 0.191  | ug/l  | 9.57  | ND         | 101     | 45-120 | 16  | 25    |            |
| 2,4-Dinitrophenol                | 11.6              | 4.78  | 0.861  | ug/l  | 9.57  | ND         | 121     | 40-120 | 9   | 25    | M1         |
| 2,4-Dinitrotoluene               | 8.75              | 4.78  | 0.191  | ug/l  | 9.57  | ND         | 91      | 65-120 | 8   | 25    |            |
| 2,6-Dinitrotoluene               | 9.67              | 4.78  | 0.0957 | ug/l  | 9.57  | ND         | 101     | 65-120 | 10  | 20    |            |
| Di-n-octyl phthalate             | 10.1              | 4.78  | 0.0957 | ug/l  | 9.57  | ND         | 106     | 65-135 | 10  | 20    |            |
|                                  |                   |       |        |       |       |            |         |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### METHOD BLANK/QC DATA

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                   | Result     | Reporting<br>Limit | MDL    | Units | Spike<br>Level | Source     | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Oualifiers |
|-------------------------------------------|------------|--------------------|--------|-------|----------------|------------|---------|----------------|-----|--------------|--------------------|
| ·                                         |            | Limit              | MIDL   | Units | Level          | Result     | %KEC    | Limits         | KPD | Limit        | Quaimers           |
| <b>Batch:</b> 11B3291 Extracted: 02/25/11 | <u>_</u>   |                    |        |       |                |            |         |                |     |              |                    |
| Matrix Spike Dup Analyzed: 03/02/2011     | (11B3291-N | MSD1)              |        |       | Sou            | ırce: IUB2 | 2628-01 |                |     |              |                    |
| 1,2-Diphenylhydrazine/Azobenzene          | 7.10       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 74      | 60-120         | 4   | 25           |                    |
| Fluoranthene                              | 9.13       | 0.478              | 0.0957 | ug/l  | 9.57           | ND         | 95      | 60-120         | 8   | 25           |                    |
| Fluorene                                  | 8.59       | 0.478              | 0.0957 | ug/l  | 9.57           | ND         | 90      | 65-120         | 10  | 25           |                    |
| Hexachlorobenzene                         | 7.62       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 80      | 60-120         | 10  | 25           |                    |
| Hexachlorobutadiene                       | 7.18       | 1.91               | 0.191  | ug/l  | 9.57           | ND         | 75      | 40-120         | 25  | 25           |                    |
| Hexachlorocyclopentadiene                 | 8.19       | 4.78               | 0.0957 | ug/l  | 9.57           | ND         | 86      | 25-120         | 23  | 30           |                    |
| Hexachloroethane                          | 7.00       | 2.87               | 0.191  | ug/l  | 9.57           | ND         | 73      | 35-120         | 25  | 25           |                    |
| Indeno(1,2,3-cd)pyrene                    | 10.4       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 108     | 40-135         | 6   | 30           |                    |
| Isophorone                                | 10.0       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 105     | 50-120         | 22  | 25           |                    |
| Naphthalene                               | 7.64       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 80      | 55-120         | 22  | 25           |                    |
| Nitrobenzene                              | 10.8       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 113     | 55-120         | 14  | 25           |                    |
| 2-Nitrophenol                             | 8.77       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 92      | 50-120         | 23  | 25           |                    |
| 4-Nitrophenol                             | 11.8       | 4.78               | 2.39   | ug/l  | 9.57           | ND         | 123     | 45-120         | 2   | 30           | M1                 |
| N-Nitroso-di-n-propylamine                | 9.19       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 96      | 45-120         | 25  | 25           |                    |
| N-Nitrosodimethylamine                    | 8.02       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 84      | 45-120         | 14  | 25           |                    |
| N-Nitrosodiphenylamine                    | 7.98       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 83      | 60-120         | 6   | 25           |                    |
| Pentachlorophenol                         | 9.68       | 1.91               | 0.0957 | ug/l  | 9.57           | ND         | 101     | 24-121         | 11  | 25           |                    |
| Phenanthrene                              | 8.19       | 0.478              | 0.0957 | ug/l  | 9.57           | ND         | 86      | 65-120         | 10  | 25           |                    |
| Phenol                                    | 12.2       | 0.957              | 0.287  | ug/l  | 9.57           | ND         | 128     | 40-120         | 18  | 25           | M1                 |
| Pyrene                                    | 9.24       | 0.478              | 0.0957 | ug/l  | 9.57           | ND         | 97      | 55-125         | 5   | 25           |                    |
| 1,2,4-Trichlorobenzene                    | 7.08       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 74      | 45-120         | 19  | 20           |                    |
| 2,4,6-Trichlorophenol                     | 8.90       | 0.957              | 0.0957 | ug/l  | 9.57           | ND         | 93      | 55-120         | 14  | 30           |                    |
| Surrogate: 2,4,6-Tribromophenol           | 16.9       |                    |        | ug/l  | 19.1           |            | 88      | 40-120         |     |              |                    |
| Surrogate: 2-Fluorobiphenyl               | 7.71       |                    |        | ug/l  | 9.57           |            | 81      | 50-120         |     |              |                    |
| Surrogate: 2-Fluorophenol                 | 13.1       |                    |        | ug/l  | 19.1           |            | 68      | 30-120         |     |              |                    |
| Surrogate: Nitrobenzene-d5                | 7.96       |                    |        | ug/l  | 9.57           |            | 83      | 45-120         |     |              |                    |
| Surrogate: Phenol-d6                      | 14.8       |                    |        | ug/l  | 19.1           |            | 78      | 35-120         |     |              |                    |
| Surrogate: Terphenyl-d14                  | 9.01       |                    |        | ug/l  | 9.57           |            | 94      | 50-125         |     |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

RPD

Data

Received: 02/17/11

Report Number: IUB1966

Reporting

## METHOD BLANK/QC DATA

## **ORGANOCHLORINE PESTICIDES (EPA 608)**

Spike

Source

|                                     |            | Keporting |        |       | Spike | Source |      | /OKEC  |     | KI D  | Data       |
|-------------------------------------|------------|-----------|--------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                             | Result     | Limit     | MDL    | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11B2911 Extracted: 02/23/    | <u>'11</u> |           |        |       |       |        |      |        |     |       |            |
| Blank Analyzed: 02/24/2011 (11B2911 | -BLK1)     |           |        |       |       |        |      |        |     |       |            |
| 4,4'-DDD                            | ND         | 0.0050    | 0.0040 | ug/l  |       |        |      |        |     |       |            |
| 4,4'-DDE                            | ND         | 0.0050    | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| 4,4'-DDT                            | ND         | 0.010     | 0.0040 | ug/l  |       |        |      |        |     |       |            |
| Aldrin                              | ND         | 0.0050    | 0.0015 | ug/l  |       |        |      |        |     |       |            |
| alpha-BHC                           | ND         | 0.0050    | 0.0025 | ug/l  |       |        |      |        |     |       |            |
| beta-BHC                            | ND         | 0.010     | 0.0040 | ug/l  |       |        |      |        |     |       |            |
| delta-BHC                           | ND         | 0.0050    | 0.0035 | ug/l  |       |        |      |        |     |       |            |
| Dieldrin                            | ND         | 0.0050    | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| Endosulfan I                        | ND         | 0.0050    | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| Endosulfan II                       | ND         | 0.0050    | 0.0030 | ug/1  |       |        |      |        |     |       |            |
| Endosulfan sulfate                  | ND         | 0.010     | 0.0030 | ug/1  |       |        |      |        |     |       |            |
| Endrin                              | ND         | 0.0050    | 0.0020 | ug/1  |       |        |      |        |     |       |            |
| Endrin aldehyde                     | ND         | 0.010     | 0.0020 | ug/1  |       |        |      |        |     |       |            |
| gamma-BHC (Lindane)                 | ND         | 0.020     | 0.0030 | ug/1  |       |        |      |        |     |       |            |
| Heptachlor                          | ND         | 0.010     | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| Heptachlor epoxide                  | ND         | 0.0050    | 0.0025 | ug/l  |       |        |      |        |     |       |            |
| Chlordane                           | ND         | 0.10      | 0.080  | ug/l  |       |        |      |        |     |       |            |
| Toxaphene                           | ND         | 0.50      | 0.25   | ug/l  |       |        |      |        |     |       |            |
| Surrogate: Decachlorobiphenyl       | 0.202      |           |        | ug/l  | 0.500 |        | 40   | 45-120 |     |       | <i>Z6</i>  |
| Surrogate: Tetrachloro-m-xylene     | 0.467      |           |        | ug/l  | 0.500 |        | 93   | 35-115 |     |       |            |
| Blank Analyzed: 02/24/2011 (11B2911 | -BLK2)     |           |        |       |       |        |      |        |     |       |            |
| 4,4'-DDD                            | ND         | 0.0050    | 0.0040 | ug/l  |       |        |      |        |     |       |            |
| 4,4'-DDE                            | ND         | 0.0050    | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| 4,4'-DDT                            | ND         | 0.010     | 0.0040 | ug/l  |       |        |      |        |     |       |            |
| Aldrin                              | ND         | 0.0050    | 0.0015 | ug/l  |       |        |      |        |     |       |            |
| alpha-BHC                           | ND         | 0.0050    | 0.0025 | ug/l  |       |        |      |        |     |       |            |
| beta-BHC                            | ND         | 0.010     | 0.0040 | ug/l  |       |        |      |        |     |       |            |
| delta-BHC                           | ND         | 0.0050    | 0.0035 | ug/l  |       |        |      |        |     |       |            |
| Dieldrin                            | ND         | 0.0050    | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| Endosulfan I                        | ND         | 0.0050    | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| Endosulfan II                       | ND         | 0.0050    | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| Endosulfan sulfate                  | ND         | 0.010     | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| Endrin                              | ND         | 0.0050    | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| Endrin aldehyde                     | ND         | 0.010     | 0.0020 | ug/l  |       |        |      |        |     |       |            |
| gamma-BHC (Lindane)                 | ND         | 0.020     | 0.0030 | ug/l  |       |        |      |        |     |       |            |
| TestAmerica Irvine                  |            |           |        |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## METHOD BLANK/QC DATA

# **ORGANOCHLORINE PESTICIDES (EPA 608)**

| Analyte                               | Result   | Reporting<br>Limit | MDL    | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------|----------|--------------------|--------|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11B2911 Extracted: 02/23/1     | 1        |                    |        |       |                |                  |      |                |     |              |                    |
|                                       |          |                    |        |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 02/24/2011 (11B2911-F | BLK2)    |                    |        |       |                |                  |      |                |     |              |                    |
| Heptachlor                            | ND       | 0.010              | 0.0030 | ug/l  |                |                  |      |                |     |              |                    |
| Heptachlor epoxide                    | ND       | 0.0050             | 0.0025 | ug/l  |                |                  |      |                |     |              |                    |
| Chlordane                             | ND       | 0.10               | 0.080  | ug/l  |                |                  |      |                |     |              |                    |
| Toxaphene                             | ND       | 0.50               | 0.25   | ug/l  |                |                  |      |                |     |              |                    |
| Surrogate: Decachlorobiphenyl         | 0.428    |                    |        | ug/l  | 0.500          |                  | 86   | 45-120         |     |              | N2                 |
| Surrogate: Tetrachloro-m-xylene       | 0.451    |                    |        | ug/l  | 0.500          |                  | 90   | 35-115         |     |              | N2                 |
| LCS Analyzed: 02/24/2011 (11B2911-BS  | S1)      |                    |        |       |                |                  |      |                |     |              | MNR1               |
| 4,4'-DDD                              | 0.466    | 0.0050             | 0.0040 | ug/l  | 0.500          |                  | 93   | 55-120         |     |              |                    |
| 4,4'-DDE                              | 0.500    | 0.0050             | 0.0030 | ug/l  | 0.500          |                  | 100  | 50-120         |     |              |                    |
| 4,4'-DDT                              | 0.492    | 0.010              | 0.0040 | ug/l  | 0.500          |                  | 98   | 55-120         |     |              |                    |
| Aldrin                                | 0.403    | 0.0050             | 0.0015 | ug/l  | 0.500          |                  | 81   | 40-115         |     |              |                    |
| alpha-BHC                             | 0.463    | 0.0050             | 0.0025 | ug/l  | 0.500          |                  | 93   | 45-115         |     |              |                    |
| beta-BHC                              | 0.476    | 0.010              | 0.0040 | ug/l  | 0.500          |                  | 95   | 55-115         |     |              |                    |
| delta-BHC                             | 0.496    | 0.0050             | 0.0035 | ug/l  | 0.500          |                  | 99   | 55-115         |     |              |                    |
| Dieldrin                              | 0.496    | 0.0050             | 0.0020 | ug/l  | 0.500          |                  | 99   | 55-115         |     |              |                    |
| Endosulfan I                          | 0.502    | 0.0050             | 0.0020 | ug/l  | 0.500          |                  | 100  | 55-115         |     |              |                    |
| Endosulfan II                         | 0.517    | 0.0050             | 0.0030 | ug/l  | 0.500          |                  | 103  | 55-120         |     |              |                    |
| Endosulfan sulfate                    | 0.440    | 0.010              | 0.0030 | ug/l  | 0.500          |                  | 88   | 60-120         |     |              |                    |
| Endrin                                | 0.463    | 0.0050             | 0.0020 | ug/l  | 0.500          |                  | 93   | 55-115         |     |              |                    |
| Endrin aldehyde                       | 0.475    | 0.010              | 0.0020 | ug/l  | 0.500          |                  | 95   | 50-120         |     |              |                    |
| gamma-BHC (Lindane)                   | 0.490    | 0.020              | 0.0030 | ug/l  | 0.500          |                  | 98   | 45-115         |     |              |                    |
| Heptachlor                            | 0.455    | 0.010              | 0.0030 | ug/l  | 0.500          |                  | 91   | 45-115         |     |              |                    |
| Heptachlor epoxide                    | 0.503    | 0.0050             | 0.0025 | ug/l  | 0.500          |                  | 101  | 55-115         |     |              |                    |
| Surrogate: Decachlorobiphenyl         | 0.253    |                    |        | ug/l  | 0.500          |                  | 51   | 45-120         |     |              |                    |
| Surrogate: Tetrachloro-m-xylene       | 0.406    |                    |        | ug/l  | 0.500          |                  | 81   | 35-115         |     |              |                    |
| LCS Dup Analyzed: 02/24/2011 (11B29)  | 11-BSD1) |                    |        |       |                |                  |      |                |     |              |                    |
| 4,4'-DDD                              | 0.514    | 0.0050             | 0.0040 | ug/l  | 0.500          |                  | 103  | 55-120         | 10  | 30           |                    |
| 4,4'-DDE                              | 0.557    | 0.0050             | 0.0030 | ug/l  | 0.500          |                  | 111  | 50-120         | 11  | 30           |                    |
| 4,4'-DDT                              | 0.554    | 0.010              | 0.0040 | ug/l  | 0.500          |                  | 111  | 55-120         | 12  | 30           |                    |
| Aldrin                                | 0.451    | 0.0050             | 0.0015 | ug/l  | 0.500          |                  | 90   | 40-115         | 11  | 30           |                    |
| alpha-BHC                             | 0.515    | 0.0050             | 0.0025 | ug/l  | 0.500          |                  | 103  | 45-115         | 11  | 30           |                    |
| beta-BHC                              | 0.526    | 0.010              | 0.0040 | ug/l  | 0.500          |                  | 105  | 55-115         | 10  | 30           |                    |
| delta-BHC                             | 0.555    | 0.0050             | 0.0035 | ug/l  | 0.500          |                  | 111  | 55-115         | 11  | 30           |                    |
| Dieldrin                              | 0.545    | 0.0050             | 0.0020 | ug/l  | 0.500          |                  | 109  | 55-115         | 9   | 30           |                    |
|                                       |          |                    |        | - 6   |                |                  |      |                | -   |              |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

## METHOD BLANK/QC DATA

# **ORGANOCHLORINE PESTICIDES (EPA 608)**

|                                       |         | Reporting |        |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|---------------------------------------|---------|-----------|--------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                               | Result  | Limit     | MDL    | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11B2911 Extracted: 02/23/11    | -       |           |        |       |       |        |      |        |     |       |            |
|                                       |         |           |        |       |       |        |      |        |     |       |            |
| LCS Dup Analyzed: 02/24/2011 (11B2911 | I-BSD1) |           |        |       |       |        |      |        |     |       |            |
| Endosulfan I                          | 0.543   | 0.0050    | 0.0020 | ug/l  | 0.500 |        | 109  | 55-115 | 8   | 30    |            |
| Endosulfan II                         | 0.564   | 0.0050    | 0.0030 | ug/l  | 0.500 |        | 113  | 55-120 | 9   | 30    |            |
| Endosulfan sulfate                    | 0.482   | 0.010     | 0.0030 | ug/l  | 0.500 |        | 96   | 60-120 | 9   | 30    |            |
| Endrin                                | 0.506   | 0.0050    | 0.0020 | ug/l  | 0.500 |        | 101  | 55-115 | 9   | 30    |            |
| Endrin aldehyde                       | 0.524   | 0.010     | 0.0020 | ug/l  | 0.500 |        | 105  | 50-120 | 10  | 30    |            |
| gamma-BHC (Lindane)                   | 0.546   | 0.020     | 0.0030 | ug/l  | 0.500 |        | 109  | 45-115 | 11  | 30    |            |
| Heptachlor                            | 0.508   | 0.010     | 0.0030 | ug/l  | 0.500 |        | 102  | 45-115 | 11  | 30    |            |
| Heptachlor epoxide                    | 0.606   | 0.0050    | 0.0025 | ug/l  | 0.500 |        | 121  | 55-115 | 19  | 30    | L          |
| Surrogate: Decachlorobiphenyl         | 0.316   |           |        | ug/l  | 0.500 |        | 63   | 45-120 |     |       |            |
| Surrogate: Tetrachloro-m-xylene       | 0.455   |           |        | ug/l  | 0.500 |        | 91   | 35-115 |     |       |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

# METHOD BLANK/QC DATA

# **TOTAL PCBS (EPA 608)**

| Amaluta                                   | Result  | Reporting<br>Limit | MDI  | TIm:40 | Spike<br>Level | Source | %REC  | %REC   | RPD | RPD   | Data<br>Qualifiers |
|-------------------------------------------|---------|--------------------|------|--------|----------------|--------|-------|--------|-----|-------|--------------------|
| Analyte                                   |         | Limit              | MDL  | Units  | Levei          | Result | 70KEC | Limits | KPD | Limit | Quanners           |
| <b>Batch: 11B2911 Extracted: 02/23/11</b> | -       |                    |      |        |                |        |       |        |     |       |                    |
| Blank Analyzed: 02/24/2011 (11B2911-B     | LK1)    |                    |      |        |                |        |       |        |     |       |                    |
| Aroclor 1016                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1221                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1232                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1242                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1248                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1254                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1260                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Surrogate: Decachlorobiphenyl             | 0.184   |                    |      | ug/l   | 0.500          |        | 37    | 45-120 |     |       | <i>Z6</i>          |
| Blank Analyzed: 02/25/2011 (11B2911-B     | LK2)    |                    |      |        |                |        |       |        |     |       |                    |
| Aroclor 1016                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1221                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1232                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1242                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1248                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1254                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Aroclor 1260                              | ND      | 0.50               | 0.25 | ug/l   |                |        |       |        |     |       |                    |
| Surrogate: Decachlorobiphenyl             | 0.377   |                    |      | ug/l   | 0.500          |        | 75    | 45-120 |     |       | N2                 |
| LCS Analyzed: 02/24/2011 (11B2911-BS      | 2)      |                    |      |        |                |        |       |        |     |       | MNR1               |
| Aroclor 1016                              | 2.92    | 0.50               | 0.25 | ug/l   | 4.00           |        | 73    | 50-115 |     |       |                    |
| Aroclor 1260                              | 3.12    | 0.50               | 0.25 | ug/l   | 4.00           |        | 78    | 60-120 |     |       |                    |
| Surrogate: Decachlorobiphenyl             | 0.351   |                    |      | ug/l   | 0.500          |        | 70    | 45-120 |     |       |                    |
| LCS Dup Analyzed: 02/24/2011 (11B291      | 1-BSD2) |                    |      |        |                |        |       |        |     |       |                    |
| Aroclor 1016                              | 3.09    | 0.50               | 0.25 | ug/l   | 4.00           |        | 77    | 50-115 | 6   | 30    |                    |
| Aroclor 1260                              | 3.09    | 0.50               | 0.25 | ug/l   | 4.00           |        | 77    | 60-120 | 0.9 | 25    |                    |
| Surrogate: Decachlorobiphenyl             | 0.350   |                    |      | ug/l   | 0.500          |        | 70    | 45-120 |     |       |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## METHOD BLANK/QC DATA

### HEXANE EXTRACTABLE MATERIAL

| Analyte                                    | Result  | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------|---------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 11C0598 Extracted: 03/04/11         | _       |                    |     |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/04/2011 (11C0598-B      | LK1)    |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | ND      | 5.0                | 1.4 | mg/l  |                |                  |      |                |     |              |                    |
| LCS Analyzed: 03/04/2011 (11C0598-BS       | 1)      |                    |     |       |                |                  |      |                |     |              | MNR1               |
| Hexane Extractable Material (Oil & Grease) | 18.9    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 94   | 78-114         |     |              |                    |
| LCS Dup Analyzed: 03/04/2011 (11C0598      | 8-BSD1) |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 19.2    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 96   | 78-114         | 2   | 11           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

# METHOD BLANK/QC DATA

### **METALS**

|                                          |            | Reporting   |               |              | Spike | Source   |         | %REC   |     | RPD   | Data       |
|------------------------------------------|------------|-------------|---------------|--------------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                  | Result     | Limit       | MDL           | Units        | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11B2879 Extracted: 02/23/11       | _          |             |               |              |       |          |         |        |     |       |            |
|                                          |            |             |               |              |       |          |         |        |     |       |            |
| Blank Analyzed: 02/23/2011 (11B2879-B)   | LK1)       |             |               |              |       |          |         |        |     |       |            |
| Mercury                                  | ND         | 0.20        | 0.10          | ug/l         |       |          |         |        |     |       |            |
| LCS Analyzed: 02/23/2011 (11B2879-BS)    | 1)         |             |               |              |       |          |         |        |     |       |            |
| Mercury                                  | 8.11       | 0.20        | 0.10          | ug/l         | 8.00  |          | 101     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 02/23/2011 (11B   | 2879-MS1)  |             |               |              | Sou   | rce: IUB | 1955-02 |        |     |       |            |
| Mercury                                  | 1.76       | 0.20        | 0.10          | ug/l         | 8.00  | 0.605    | 14      | 70-130 |     |       | M2         |
| Matrix Spike Dup Analyzed: 02/23/2011    | (11B2879-M | SD1)        |               |              | Sou   | rce: IUB | 1955-02 |        |     |       |            |
| Mercury                                  | 1.59       | 0.20        | 0.10          | ug/l         | 8.00  | 0.605    | 12      | 70-130 | 10  | 20    | M2         |
| Batch: 11B3269 Extracted: 02/25/11       | _          |             |               |              |       |          |         |        |     |       |            |
| Disals Assalsanda 02/20/2011 (11D22/0 Di | L 1/21)    |             |               |              |       |          |         |        |     |       |            |
| Blank Analyzed: 02/28/2011 (11B3269-B    | ,          | 10          | 7.0           | /1           |       |          |         |        |     |       |            |
| Arsenic<br>Barium                        | ND<br>ND   | 10<br>0.010 | 7.0<br>0.0060 | ug/l         |       |          |         |        |     |       |            |
| Beryllium                                | ND<br>ND   | 2.0         | 0.0000        | mg/l<br>ug/l |       |          |         |        |     |       |            |
| Boron                                    | ND<br>ND   | 0.050       | 0.90          | mg/l         |       |          |         |        |     |       |            |
| Calcium                                  | ND         | 0.10        | 0.050         | mg/l         |       |          |         |        |     |       |            |
| Chromium                                 | ND         | 5.0         | 2.0           | ug/l         |       |          |         |        |     |       |            |
| Cobalt                                   | ND         | 10          | 2.0           | ug/l         |       |          |         |        |     |       |            |
| Iron                                     | ND         | 0.040       | 0.015         | mg/l         |       |          |         |        |     |       |            |
| Magnesium                                | ND         | 0.020       | 0.012         | mg/l         |       |          |         |        |     |       |            |
| Manganese                                | ND         | 20          | 7.0           | ug/l         |       |          |         |        |     |       |            |
| Nickel                                   | ND         | 10          | 2.0           | ug/l         |       |          |         |        |     |       |            |
| Vanadium                                 | ND         | 10          | 3.0           | ug/l         |       |          |         |        |     |       |            |

ND

20.0

6.00

ug/l

### **TestAmerica Irvine**

Debby Wilson Project Manager

Zinc



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

# METHOD BLANK/QC DATA

### **METALS**

|                                        | <b>.</b>  | Reporting | Mark   | ** •  | Spike | Source    |         | %REC   | D.D.D. | RPD   | Data       |
|----------------------------------------|-----------|-----------|--------|-------|-------|-----------|---------|--------|--------|-------|------------|
| Analyte                                | Result    | Limit     | MDL    | Units | Level | Result    | %REC    | Limits | RPD    | Limit | Qualifiers |
| Batch: 11B3269 Extracted: 02/25/11     | <u>=</u>  |           |        |       |       |           |         |        |        |       |            |
|                                        |           |           |        |       |       |           |         |        |        |       |            |
| LCS Analyzed: 02/28/2011 (11B3269-BS   |           |           |        |       |       |           |         |        |        |       |            |
| Arsenic                                | 477       | 10        | 7.0    | ug/l  | 500   |           | 95      | 85-115 |        |       |            |
| Barium                                 | 0.498     | 0.010     | 0.0060 | mg/l  | 0.500 |           | 100     | 85-115 |        |       |            |
| Beryllium                              | 480       | 2.0       | 0.90   | ug/l  | 500   |           | 96      | 85-115 |        |       |            |
| Boron                                  | 0.515     | 0.050     | 0.020  | mg/l  | 0.500 |           | 103     | 85-115 |        |       |            |
| Calcium                                | 2.46      | 0.10      | 0.050  | mg/l  | 2.50  |           | 98      | 85-115 |        |       |            |
| Chromium                               | 509       | 5.0       | 2.0    | ug/l  | 500   |           | 102     | 85-115 |        |       |            |
| Cobalt                                 | 461       | 10        | 2.0    | ug/l  | 500   |           | 92      | 85-115 |        |       |            |
| Iron                                   | 0.474     | 0.040     | 0.015  | mg/l  | 0.500 |           | 95      | 85-115 |        |       |            |
| Magnesium                              | 2.58      | 0.020     | 0.012  | mg/l  | 2.50  |           | 103     | 85-115 |        |       |            |
| Manganese                              | 493       | 20        | 7.0    | ug/l  | 500   |           | 99      | 85-115 |        |       |            |
| Nickel                                 | 473       | 10        | 2.0    | ug/l  | 500   |           | 95      | 85-115 |        |       |            |
| Vanadium                               | 492       | 10        | 3.0    | ug/l  | 500   |           | 98      | 85-115 |        |       |            |
| Zinc                                   | 495       | 20.0      | 6.00   | ug/l  | 500   |           | 99      | 85-115 |        |       |            |
| Matrix Spike Analyzed: 02/28/2011 (11B | 3269-MS1) |           |        |       | Sou   | rce: IUB2 | 2067-05 |        |        |       |            |
| Arsenic                                | 502       | 10        | 7.0    | ug/l  | 500   | ND        | 100     | 70-130 |        |       |            |
| Barium                                 | 0.647     | 0.010     | 0.0060 | mg/l  | 0.500 | 0.156     | 98      | 70-130 |        |       |            |
| Beryllium                              | 492       | 2.0       | 0.90   | ug/l  | 500   | ND        | 98      | 70-130 |        |       |            |
| Boron                                  | 1.93      | 0.050     | 0.020  | mg/l  | 0.500 | 1.44      | 98      | 70-130 |        |       |            |
| Calcium                                | 121       | 0.10      | 0.050  | mg/l  | 2.50  | 121       | 1       | 70-130 |        |       | MHA        |
| Chromium                               | 516       | 5.0       | 2.0    | ug/l  | 500   | 2.20      | 103     | 70-130 |        |       |            |
| Cobalt                                 | 453       | 10        | 2.0    | ug/l  | 500   | ND        | 91      | 70-130 |        |       |            |
| Iron                                   | 0.490     | 0.040     | 0.015  | mg/l  | 0.500 | ND        | 98      | 70-130 |        |       |            |
| Magnesium                              | 62.9      | 0.020     | 0.012  | mg/l  | 2.50  | 61.0      | 77      | 70-130 |        |       | MHA        |
| Manganese                              | 548       | 20        | 7.0    | ug/l  | 500   | 52.8      | 99      | 70-130 |        |       |            |
| Nickel                                 | 467       | 10        | 2.0    | ug/l  | 500   | 14.4      | 90      | 70-130 |        |       |            |
| Vanadium                               | 504       | 10        | 3.0    | ug/l  | 500   | ND        | 101     | 70-130 |        |       |            |
| Zinc                                   | 493       | 20.0      | 6.00   | ug/l  | 500   | ND        | 99      | 70-130 |        |       |            |
|                                        |           |           |        | 2     |       |           |         |        |        |       |            |

### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

# METHOD BLANK/QC DATA

### **METALS**

|                                        |             | Reporting   |        |       | Spike | Source   |         | %REC   |       | RPD   | Data       |
|----------------------------------------|-------------|-------------|--------|-------|-------|----------|---------|--------|-------|-------|------------|
| Analyte                                | Result      | Limit       | MDL    | Units | Level | Result   | %REC    | Limits | RPD   | Limit | Qualifiers |
| Batch: 11B3269 Extracted: 02/25/11     |             |             |        |       |       |          |         |        |       |       |            |
|                                        | _           |             |        |       |       |          |         |        |       |       |            |
| Matrix Spike Analyzed: 02/28/2011 (11B | 3269-MS2)   |             |        |       | Sou   | rce: IUB | 1977-03 |        |       |       |            |
| Arsenic                                | 474         | 10          | 7.0    | ug/l  | 500   | ND       | 95      | 70-130 |       |       |            |
| Barium                                 | 0.498       | 0.010       | 0.0060 | mg/l  | 0.500 | ND       | 100     | 70-130 |       |       |            |
| Beryllium                              | 478         | 2.0         | 0.90   | ug/l  | 500   | ND       | 96      | 70-130 |       |       |            |
| Boron                                  | 0.698       | 0.050       | 0.020  | mg/l  | 0.500 | 0.200    | 100     | 70-130 |       |       |            |
| Calcium                                | 2.40        | 0.10        | 0.050  | mg/l  | 2.50  | ND       | 96      | 70-130 |       |       |            |
| Chromium                               | 505         | 5.0         | 2.0    | ug/l  | 500   | ND       | 101     | 70-130 |       |       |            |
| Cobalt                                 | 455         | 10          | 2.0    | ug/l  | 500   | ND       | 91      | 70-130 |       |       |            |
| Iron                                   | 0.466       | 0.040       | 0.015  | mg/l  | 0.500 | ND       | 93      | 70-130 |       |       |            |
| Magnesium                              | 2.53        | 0.020       | 0.012  | mg/l  | 2.50  | ND       | 101     | 70-130 |       |       |            |
| Manganese                              | 491         | 20          | 7.0    | ug/l  | 500   | ND       | 98      | 70-130 |       |       |            |
| Nickel                                 | 457         | 10          | 2.0    | ug/l  | 500   | ND       | 91      | 70-130 |       |       |            |
| Vanadium                               | 484         | 10          | 3.0    | ug/l  | 500   | ND       | 97      | 70-130 |       |       |            |
| Zinc                                   | 478         | 20.0        | 6.00   | ug/l  | 500   | ND       | 96      | 70-130 |       |       |            |
| Matrix Spike Dup Analyzed: 02/28/2011  | (11B3269-MS | <b>D</b> 1) |        |       | Sou   | rce: IUB | 2067-05 |        |       |       |            |
| Arsenic                                | 483         | 10          | 7.0    | ug/l  | 500   | ND       | 97      | 70-130 | 4     | 20    |            |
| Barium                                 | 0.642       | 0.010       | 0.0060 | mg/l  | 0.500 | 0.156    | 97      | 70-130 | 0.8   | 20    |            |
| Beryllium                              | 481         | 2.0         | 0.90   | ug/l  | 500   | ND       | 96      | 70-130 | 2     | 20    |            |
| Boron                                  | 1.93        | 0.050       | 0.020  | mg/l  | 0.500 | 1.44     | 98      | 70-130 | 0.07  | 20    |            |
| Calcium                                | 121         | 0.10        | 0.050  | mg/l  | 2.50  | 121      | 2       | 70-130 | 0.005 | 20    | MHA        |
| Chromium                               | 501         | 5.0         | 2.0    | ug/l  | 500   | 2.20     | 100     | 70-130 | 3     | 20    |            |
| Cobalt                                 | 440         | 10          | 2.0    | ug/l  | 500   | ND       | 88      | 70-130 | 3     | 20    |            |
| Iron                                   | 0.479       | 0.040       | 0.015  | mg/l  | 0.500 | ND       | 96      | 70-130 | 2     | 20    |            |
| Magnesium                              | 63.8        | 0.020       | 0.012  | mg/l  | 2.50  | 61.0     | 112     | 70-130 | 1     | 20    | MHA        |
| Manganese                              | 533         | 20          | 7.0    | ug/l  | 500   | 52.8     | 96      | 70-130 | 3     | 20    |            |
| Nickel                                 | 455         | 10          | 2.0    | ug/l  | 500   | 14.4     | 88      | 70-130 | 3     | 20    |            |
| Vanadium                               | 489         | 10          | 3.0    | ug/l  | 500   | ND       | 98      | 70-130 | 3     | 20    |            |
| Zinc                                   | 482         | 20.0        | 6.00   | ug/l  | 500   | ND       | 96      | 70-130 | 2     | 20    |            |

### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

# METHOD BLANK/QC DATA

### **METALS**

| Analyte                                   | Result    | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC   | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|-----------|--------------------|-------|-------|----------------|------------------|---------|--------|------|--------------|--------------------|
| -                                         |           | Limit              | MIDL  | Cints | Level          | Result           | /UKEC   | Limits | KI D | Lillie       | Quanners           |
| <b>Batch: 11B3277 Extracted: 02/25/11</b> | -         |                    |       |       |                |                  |         |        |      |              |                    |
| Blank Analyzed: 02/25/2011 (11B3277-B)    | LK1)      |                    |       |       |                |                  |         |        |      |              |                    |
| Antimony                                  | ND        | 2.0                | 0.30  | ug/l  |                |                  |         |        |      |              |                    |
| Cadmium                                   | ND        | 1.0                | 0.10  | ug/l  |                |                  |         |        |      |              |                    |
| Copper                                    | ND        | 2.00               | 0.500 | ug/l  |                |                  |         |        |      |              |                    |
| Lead                                      | ND        | 1.0                | 0.20  | ug/l  |                |                  |         |        |      |              |                    |
| Selenium                                  | ND        | 2.0                | 0.50  | ug/l  |                |                  |         |        |      |              |                    |
| Silver                                    | ND        | 1.0                | 0.10  | ug/l  |                |                  |         |        |      |              |                    |
| Thallium                                  | ND        | 1.0                | 0.20  | ug/l  |                |                  |         |        |      |              |                    |
| LCS Analyzed: 02/25/2011 (11B3277-BS)     | 1)        |                    |       |       |                |                  |         |        |      |              |                    |
| Antimony                                  | 84.3      | 2.0                | 0.30  | ug/l  | 80.0           |                  | 105     | 85-115 |      |              |                    |
| Cadmium                                   | 85.4      | 1.0                | 0.10  | ug/l  | 80.0           |                  | 107     | 85-115 |      |              |                    |
| Copper                                    | 84.5      | 2.00               | 0.500 | ug/l  | 80.0           |                  | 106     | 85-115 |      |              |                    |
| Lead                                      | 81.4      | 1.0                | 0.20  | ug/l  | 80.0           |                  | 102     | 85-115 |      |              |                    |
| Selenium                                  | 84.5      | 2.0                | 0.50  | ug/l  | 80.0           |                  | 106     | 85-115 |      |              |                    |
| Silver                                    | 83.9      | 1.0                | 0.10  | ug/l  | 80.0           |                  | 105     | 85-115 |      |              |                    |
| Thallium                                  | 81.2      | 1.0                | 0.20  | ug/l  | 80.0           |                  | 101     | 85-115 |      |              |                    |
| Matrix Spike Analyzed: 02/25/2011 (11B    | 3277-MS1) |                    |       |       | Sou            | rce: IUB2        | 2432-01 |        |      |              |                    |
| Antimony                                  | 85.2      | 2.0                | 0.30  | ug/l  | 80.0           | ND               | 107     | 70-130 |      |              |                    |
| Cadmium                                   | 81.4      | 1.0                | 0.10  | ug/l  | 80.0           | ND               | 102     | 70-130 |      |              |                    |
| Copper                                    | 75.7      | 2.00               | 0.500 | ug/l  | 80.0           | 0.668            | 94      | 70-130 |      |              |                    |
| Lead                                      | 75.3      | 1.0                | 0.20  | ug/l  | 80.0           | ND               | 94      | 70-130 |      |              |                    |
| Selenium                                  | 83.6      | 2.0                | 0.50  | ug/l  | 80.0           | ND               | 105     | 70-130 |      |              |                    |
| Silver                                    | 78.3      | 1.0                | 0.10  | ug/l  | 80.0           | ND               | 98      | 70-130 |      |              |                    |
| Thallium                                  | 76.6      | 1.0                | 0.20  | ug/l  | 80.0           | ND               | 96      | 70-130 |      |              |                    |
| Matrix Spike Analyzed: 02/25/2011 (11B    | 3277-MS2) |                    |       |       | Sou            | rce: IUB         | 2352-01 |        |      |              |                    |
| Antimony                                  | 84.2      | 2.0                | 0.30  | ug/l  | 80.0           | 0.426            | 105     | 70-130 |      |              |                    |
| Cadmium                                   | 79.2      | 1.0                | 0.10  | ug/l  | 80.0           | 0.127            | 99      | 70-130 |      |              |                    |
| Copper                                    | 81.5      | 2.00               | 0.500 | ug/l  | 80.0           | 9.87             | 90      | 70-130 |      |              |                    |
| Lead                                      | 75.6      | 1.0                | 0.20  | ug/l  | 80.0           | 2.40             | 91      | 70-130 |      |              |                    |
| Selenium                                  | 86.7      | 2.0                | 0.50  | ug/l  | 80.0           | 1.50             | 106     | 70-130 |      |              |                    |
| Silver                                    | 75.8      | 1.0                | 0.10  | ug/l  | 80.0           | ND               | 95      | 70-130 |      |              |                    |
| Thallium                                  | 75.1      | 1.0                | 0.20  | ug/l  | 80.0           | ND               | 94      | 70-130 |      |              |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## METHOD BLANK/QC DATA

### **METALS**

|                                       |               | Reporting    |       |       | Spike | Source    |         | %REC   |      | RPD   | Data       |
|---------------------------------------|---------------|--------------|-------|-------|-------|-----------|---------|--------|------|-------|------------|
| Analyte                               | Result        | Limit        | MDL   | Units | Level | Result    | %REC    | Limits | RPD  | Limit | Qualifiers |
| Batch: 11B3277 Extracted: 02/25/11    | _             |              |       |       |       |           |         |        |      |       |            |
| 35                                    | // DAARE 3.50 | <b>7.</b> 43 |       |       | ~     |           |         |        |      |       |            |
| Matrix Spike Dup Analyzed: 02/25/2011 | (11B3277-MS   | D1)          |       |       | Sou   | rce: IUB2 | 2432-01 |        |      |       |            |
| Antimony                              | 84.9          | 2.0          | 0.30  | ug/l  | 80.0  | ND        | 106     | 70-130 | 0.4  | 20    |            |
| Cadmium                               | 81.4          | 1.0          | 0.10  | ug/l  | 80.0  | ND        | 102     | 70-130 | 0.04 | 20    |            |
| Copper                                | 74.8          | 2.00         | 0.500 | ug/l  | 80.0  | 0.668     | 93      | 70-130 | 1    | 20    |            |
| Lead                                  | 74.1          | 1.0          | 0.20  | ug/l  | 80.0  | ND        | 93      | 70-130 | 2    | 20    |            |
| Selenium                              | 82.3          | 2.0          | 0.50  | ug/l  | 80.0  | ND        | 103     | 70-130 | 2    | 20    |            |
| Silver                                | 77.9          | 1.0          | 0.10  | ug/l  | 80.0  | ND        | 97      | 70-130 | 0.5  | 20    |            |
| Thallium                              | 76.3          | 1.0          | 0.20  | ug/l  | 80.0  | ND        | 95      | 70-130 | 0.5  | 20    |            |

### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

# METHOD BLANK/QC DATA

### **DISSOLVED METALS**

|                                       |                      | Reporting |        |              | Spike | Source |      | %REC   |     | RPD   | Data       |
|---------------------------------------|----------------------|-----------|--------|--------------|-------|--------|------|--------|-----|-------|------------|
| Analyte                               | Result               | Limit     | MDL    | Units        | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 11B2496 Extracted: 02/19/1     | <u>1</u>             |           |        |              |       |        |      |        |     |       |            |
| Blank Analyzed: 02/19/2011-02/24/2011 | (11 <b>D2</b> 406 DI | (V1)      |        |              |       |        |      |        |     |       |            |
| Arsenic                               | ND                   | 10        | 7.0    | ug/l         |       |        |      |        |     |       |            |
| Barium                                | ND<br>ND             | 0.010     | 0.0060 | mg/l         |       |        |      |        |     |       |            |
| Beryllium                             | ND<br>ND             | 2.0       | 0.000  | ug/l         |       |        |      |        |     |       |            |
| Boron                                 | ND<br>ND             | 0.050     | 0.90   | mg/l         |       |        |      |        |     |       |            |
| Calcium                               | ND<br>ND             | 0.030     | 0.020  | mg/l         |       |        |      |        |     |       |            |
| Chromium                              | ND<br>ND             | 5.0       | 2.0    | -            |       |        |      |        |     |       |            |
|                                       | ND<br>ND             | 10        | 2.0    | ug/l         |       |        |      |        |     |       |            |
| Cobalt<br>Iron                        | ND<br>ND             | 0.040     | 0.015  | ug/l<br>mg/l |       |        |      |        |     |       |            |
| Magnesium                             | ND<br>ND             | 0.040     | 0.013  | mg/l         |       |        |      |        |     |       |            |
| Manganese                             | ND<br>ND             | 20        | 7.0    | -            |       |        |      |        |     |       |            |
| Nickel                                | ND<br>ND             | 10        | 2.0    | ug/l         |       |        |      |        |     |       |            |
| Vanadium                              | ND<br>ND             | 10        | 3.0    | ug/l         |       |        |      |        |     |       |            |
| Zinc                                  | ND<br>ND             | 20.0      | 6.00   | ug/l         |       |        |      |        |     |       |            |
| Zilic                                 | ND                   | 20.0      | 0.00   | ug/l         |       |        |      |        |     |       |            |
| LCS Analyzed: 02/19/2011-02/24/2011 ( | 11B2496-BS1          | )         |        |              |       |        |      |        |     |       |            |
| Arsenic                               | 479                  | 10        | 7.0    | ug/l         | 500   |        | 96   | 85-115 |     |       |            |
| Barium                                | 0.501                | 0.010     | 0.0060 | mg/l         | 0.500 |        | 100  | 85-115 |     |       |            |
| Beryllium                             | 489                  | 2.0       | 0.90   | ug/l         | 500   |        | 98   | 85-115 |     |       |            |
| Boron                                 | 0.516                | 0.050     | 0.020  | mg/l         | 0.500 |        | 103  | 85-115 |     |       |            |
| Calcium                               | 2.48                 | 0.10      | 0.050  | mg/l         | 2.50  |        | 99   | 85-115 |     |       |            |
| Chromium                              | 507                  | 5.0       | 2.0    | ug/l         | 500   |        | 101  | 85-115 |     |       |            |
| Cobalt                                | 491                  | 10        | 2.0    | ug/l         | 500   |        | 98   | 85-115 |     |       |            |
| Iron                                  | 0.491                | 0.040     | 0.015  | mg/l         | 0.500 |        | 98   | 85-115 |     |       |            |
| Magnesium                             | 2.62                 | 0.020     | 0.012  | mg/l         | 2.50  |        | 105  | 85-115 |     |       |            |
| Manganese                             | 497                  | 20        | 7.0    | ug/l         | 500   |        | 99   | 85-115 |     |       |            |
| Nickel                                | 474                  | 10        | 2.0    | ug/l         | 500   |        | 95   | 85-115 |     |       |            |
| Vanadium                              | 502                  | 10        | 3.0    | ug/l         | 500   |        | 100  | 85-115 |     |       |            |
| Zinc                                  | 480                  | 20.0      | 6.00   | ug/l         | 500   |        | 96   | 85-115 |     |       |            |
|                                       |                      |           |        |              |       |        |      |        |     |       |            |

### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

## METHOD BLANK/QC DATA

### **DISSOLVED METALS**

|                                        |              | Reporting  |        |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|--------------|------------|--------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result       | Limit      | MDL    | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11B2496 Extracted: 02/19/1      | <u>1_</u>    |            |        |       |       |          |         |        |     |       |            |
|                                        |              |            |        |       | _     |          |         |        |     |       |            |
| Matrix Spike Analyzed: 02/19/2011-02/2 |              |            |        |       |       | rce: IUB |         |        |     |       |            |
| Arsenic                                | 492          | 10         | 7.0    | ug/l  | 500   | ND       | 98      | 70-130 |     |       |            |
| Barium                                 | 0.531        | 0.010      | 0.0060 | mg/l  | 0.500 | 0.0439   | 97      | 70-130 |     |       |            |
| Beryllium                              | 491          | 2.0        | 0.90   | ug/l  | 500   | ND       | 98      | 70-130 |     |       |            |
| Boron                                  | 0.644        | 0.050      | 0.020  | mg/l  | 0.500 | 0.146    | 100     | 70-130 |     |       |            |
| Calcium                                | 64.2         | 0.10       | 0.050  | mg/l  | 2.50  | 61.3     | 115     | 70-130 |     |       | MHA        |
| Chromium                               | 501          | 5.0        | 2.0    | ug/l  | 500   | ND       | 100     | 70-130 |     |       |            |
| Cobalt                                 | 491          | 10         | 2.0    | ug/l  | 500   | ND       | 98      | 70-130 |     |       |            |
| Iron                                   | 0.499        | 0.040      | 0.015  | mg/l  | 0.500 | ND       | 100     | 70-130 |     |       |            |
| Magnesium                              | 13.7         | 0.020      | 0.012  | mg/l  | 2.50  | 11.2     | 101     | 70-130 |     |       | MHA        |
| Manganese                              | 522          | 20         | 7.0    | ug/l  | 500   | 34.2     | 97      | 70-130 |     |       |            |
| Nickel                                 | 474          | 10         | 2.0    | ug/1  | 500   | 15.3     | 92      | 70-130 |     |       |            |
| Vanadium                               | 503          | 10         | 3.0    | ug/l  | 500   | 5.66     | 99      | 70-130 |     |       |            |
| Zinc                                   | 492          | 20.0       | 6.00   | ug/l  | 500   | 15.0     | 95      | 70-130 |     |       |            |
| Matrix Spike Analyzed: 02/19/2011-02/2 | 24/2011 (11B | 32496-MS2) |        |       | Sou   | rce: IUB | 1624-01 |        |     |       |            |
| Arsenic                                | 521          | 10         | 7.0    | ug/l  | 500   | 22.5     | 100     | 70-130 |     |       |            |
| Barium                                 | 0.904        | 0.010      | 0.0060 | mg/l  | 0.500 | 0.421    | 97      | 70-130 |     |       |            |
| Beryllium                              | 493          | 2.0        | 0.90   | ug/l  | 500   | ND       | 99      | 70-130 |     |       |            |
| Boron                                  | 3.86         | 0.050      | 0.020  | mg/l  | 0.500 | 3.35     | 101     | 70-130 |     |       | MHA        |
| Calcium                                | 432          | 0.10       | 0.050  | mg/l  | 2.50  | 429      | 130     | 70-130 |     |       | MHA        |
| Chromium                               | 502          | 5.0        | 2.0    | ug/l  | 500   | 2.46     | 100     | 70-130 |     |       |            |
| Cobalt                                 | 470          | 10         | 2.0    | ug/l  | 500   | ND       | 94      | 70-130 |     |       |            |
| Iron                                   | 34.8         | 0.040      | 0.015  | mg/l  | 0.500 | 34.3     | 109     | 70-130 |     |       | MHA        |
| Magnesium                              | 143          | 0.020      | 0.012  | mg/l  | 2.50  | 137      | 250     | 70-130 |     |       | MHA        |
| Manganese                              | 2060         | 20         | 7.0    | ug/l  | 500   | 1560     | 98      | 70-130 |     |       |            |
| Nickel                                 | 792          | 10         | 2.0    | ug/1  | 500   | 352      | 88      | 70-130 |     |       |            |
| Vanadium                               | 498          | 10         | 3.0    | ug/1  | 500   | ND       | 100     | 70-130 |     |       |            |
| Zinc                                   | 469          | 20.0       | 6.00   | ug/l  | 500   | ND       | 94      | 70-130 |     |       |            |

### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## METHOD BLANK/QC DATA

### **DISSOLVED METALS**

| Analyte                               | Result       | Reporting<br>Limit   | MDL        | Units | Spike<br>Level | Source<br>Result | %REC      | %REC   | RPD      | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------|--------------|----------------------|------------|-------|----------------|------------------|-----------|--------|----------|--------------|--------------------|
| Batch: 11B2496 Extracted: 02/19/1     | <u>1_</u>    |                      |            |       |                |                  |           |        |          |              |                    |
| M-4-2- C-2- Down A J. 02/10/2011      | 02/24/2011   | (11 <b>D24</b> 0/ MC | (D1)       |       | C              | IUD:             | 10// 03   |        |          |              |                    |
| Matrix Spike Dup Analyzed: 02/19/2011 |              |                      |            | /1    |                | rce: IUB         |           | 70 120 | 0.0      | 20           |                    |
| Arsenic<br>Barium                     | 496<br>0.537 | 10                   | 7.0        | ug/l  | 500            | ND               | 99        | 70-130 | 0.8      | 20           |                    |
|                                       | 495          | 0.010                | 0.0060     | mg/l  | 0.500          | 0.0439           | 99        | 70-130 | 1<br>0.7 | 20           |                    |
| Beryllium                             |              | 2.0                  | 0.90       | ug/l  | 500            | ND               | 99        | 70-130 |          | 20           |                    |
| Boron<br>Calcium                      | 0.652        | 0.050                | 0.020      | mg/l  | 0.500          | 0.146            | 101       | 70-130 | 1<br>0.5 | 20           | МНА                |
| Chromium                              | 64.5<br>505  | 0.10                 | 0.050      | mg/l  | 2.50           | 61.3             | 127       | 70-130 | 0.5      | 20           | MHA                |
|                                       | 490          | 5.0<br>10            | 2.0<br>2.0 | ug/l  | 500            | ND               | 101<br>98 | 70-130 | 0.8      | 20           |                    |
| Cobalt                                |              |                      |            | ug/l  | 500            | ND               |           | 70-130 | 0.08     | 20           |                    |
| Iron                                  | 0.501        | 0.040                | 0.015      | mg/l  | 0.500          | ND               | 100       | 70-130 |          | 20           | 1.07.4             |
| Magnesium                             | 13.6         | 0.020                | 0.012      | mg/l  | 2.50           | 11.2             | 97        | 70-130 | 0.7      | 20           | MHA                |
| Manganese                             | 527          | 20                   | 7.0        | ug/l  | 500            | 34.2             | 99        | 70-130 | 1        | 20           |                    |
| Nickel                                | 478          | 10                   | 2.0        | ug/l  | 500            | 15.3             | 93        | 70-130 | 1        | 20           |                    |
| Vanadium                              | 509          | 10                   | 3.0        | ug/l  | 500            | 5.66             | 101       | 70-130 | 1        | 20           |                    |
| Zinc                                  | 495          | 20.0                 | 6.00       | ug/l  | 500            | 15.0             | 96        | 70-130 | 0.6      | 20           |                    |
| Batch: 11B2681 Extracted: 02/22/1     | <u>1_</u>    |                      |            |       |                |                  |           |        |          |              |                    |
| Blank Analyzed: 02/22/2011 (11B2681-E | BLK1)        |                      |            |       |                |                  |           |        |          |              |                    |
| Antimony                              | ND           | 2.0                  | 0.30       | ug/l  |                |                  |           |        |          |              |                    |
| Cadmium                               | ND           | 1.0                  | 0.10       | ug/l  |                |                  |           |        |          |              |                    |
| Copper                                | 1.26         | 2.00                 | 0.500      | ug/l  |                |                  |           |        |          |              | J                  |
| Lead                                  | ND           | 1.0                  | 0.20       | ug/l  |                |                  |           |        |          |              |                    |
| Selenium                              | ND           | 2.0                  | 0.50       | ug/l  |                |                  |           |        |          |              |                    |
| Silver                                | ND           | 1.0                  | 0.10       | ug/l  |                |                  |           |        |          |              |                    |
| Thallium                              | ND           | 1.0                  | 0.20       | ug/l  |                |                  |           |        |          |              |                    |
| LCS Analyzed: 02/22/2011 (11B2681-BS  | S1)          |                      |            |       |                |                  |           |        |          |              |                    |
| Antimony                              | 79.4         | 2.0                  | 0.30       | ug/l  | 80.0           |                  | 99        | 85-115 |          |              |                    |
| Cadmium                               | 79.5         | 1.0                  | 0.10       | ug/l  | 80.0           |                  | 99        | 85-115 |          |              |                    |
| Copper                                | 78.2         | 2.00                 | 0.500      | ug/1  | 80.0           |                  | 98        | 85-115 |          |              |                    |
| Lead                                  | 80.4         | 1.0                  | 0.20       | ug/l  | 80.0           |                  | 100       | 85-115 |          |              |                    |
| Selenium                              | 80.1         | 2.0                  | 0.50       | ug/l  | 80.0           |                  | 100       | 85-115 |          |              |                    |
| Silver                                | 78.0         | 1.0                  | 0.10       | ug/l  | 80.0           |                  | 97        | 85-115 |          |              |                    |
| Thallium                              | 80.7         | 1.0                  | 0.20       | ug/l  | 80.0           |                  | 101       | 85-115 |          |              |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

## METHOD BLANK/QC DATA

### **DISSOLVED METALS**

|                                        |            | Reporting |       |       | Spike | Source   |         | %REC   |      | RPD   | Data       |
|----------------------------------------|------------|-----------|-------|-------|-------|----------|---------|--------|------|-------|------------|
| Analyte                                | Result     | Limit     | MDL   | Units | Level | Result   | %REC    | Limits | RPD  | Limit | Qualifiers |
| Batch: 11B2681 Extracted: 02/22/11     |            |           |       |       |       |          |         |        |      |       |            |
|                                        | ='         |           |       |       |       |          |         |        |      |       |            |
| Matrix Spike Analyzed: 02/22/2011 (11B | 2681-MS1)  |           |       |       | Sou   | rce: IUB | 1622-03 |        |      |       |            |
| Antimony                               | 81.0       | 2.0       | 0.30  | ug/l  | 80.0  | 0.949    | 100     | 70-130 |      |       |            |
| Cadmium                                | 78.1       | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 98      | 70-130 |      |       |            |
| Copper                                 | 77.6       | 2.00      | 0.500 | ug/l  | 80.0  | 1.35     | 95      | 70-130 |      |       |            |
| Lead                                   | 70.2       | 1.0       | 0.20  | ug/l  | 80.0  | ND       | 88      | 70-130 |      |       |            |
| Selenium                               | 75.6       | 2.0       | 0.50  | ug/l  | 80.0  | ND       | 95      | 70-130 |      |       |            |
| Silver                                 | 75.0       | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 94      | 70-130 |      |       |            |
| Thallium                               | 70.3       | 1.0       | 0.20  | ug/l  | 80.0  | 0.222    | 88      | 70-130 |      |       |            |
| Matrix Spike Dup Analyzed: 02/22/2011  | (11B2681-M | SD1)      |       |       | Sou   | rce: IUB | 1622-03 |        |      |       |            |
| Antimony                               | 82.1       | 2.0       | 0.30  | ug/l  | 80.0  | 0.949    | 101     | 70-130 | 1    | 20    |            |
| Cadmium                                | 78.4       | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 98      | 70-130 | 0.4  | 20    |            |
| Copper                                 | 76.5       | 2.00      | 0.500 | ug/l  | 80.0  | 1.35     | 94      | 70-130 | 1    | 20    |            |
| Lead                                   | 71.2       | 1.0       | 0.20  | ug/l  | 80.0  | ND       | 89      | 70-130 | 1    | 20    |            |
| Selenium                               | 76.7       | 2.0       | 0.50  | ug/l  | 80.0  | ND       | 96      | 70-130 | 1    | 20    |            |
| Silver                                 | 74.9       | 1.0       | 0.10  | ug/l  | 80.0  | ND       | 94      | 70-130 | 0.09 | 20    |            |
| Thallium                               | 71.3       | 1.0       | 0.20  | ug/l  | 80.0  | 0.222    | 89      | 70-130 | 1    | 20    |            |
| Batch: 11B2762 Extracted: 02/22/11     | _          |           |       |       |       |          |         |        |      |       |            |
|                                        |            |           |       |       |       |          |         |        |      |       |            |
| Blank Analyzed: 02/23/2011 (11B2762-B  | LK1)       |           |       |       |       |          |         |        |      |       |            |
| Mercury                                | ND         | 0.20      | 0.10  | ug/l  |       |          |         |        |      |       |            |
| LCS Analyzed: 02/23/2011 (11B2762-BS   | 1)         |           |       |       |       |          |         |        |      |       |            |
| Mercury                                | 8.48       | 0.20      | 0.10  | ug/l  | 8.00  |          | 106     | 85-115 |      |       |            |
| Matrix Spike Analyzed: 02/23/2011 (11B | 2762-MS1)  |           |       |       | Sou   | rce: IUB | 1943-01 |        |      |       |            |
| Mercury                                | 8.04       | 0.20      | 0.10  | ug/l  | 8.00  | ND       | 101     | 70-130 |      |       |            |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## METHOD BLANK/QC DATA

### **DISSOLVED METALS**

|                                      |              | Reporting |      |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|--------------------------------------|--------------|-----------|------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                              | Result       | Limit     | MDL  | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11B2762 Extracted: 02/22/1    | 1_           |           |      |       |       |          |         |        |     |       |            |
| Matrix Spike Dup Analyzed: 02/23/201 | 1 (11B2762-M | ISD1)     |      |       | Sou   | rce: IUB | 1943-01 |        |     |       |            |
| Mercury                              | 8.01         | 0.20      | 0.10 | ug/l  | 8.00  | ND       | 100     | 70-130 | 0.4 | 20    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## METHOD BLANK/QC DATA

### **DISSOLVED INORGANICS**

| Analyte                                | Result      | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|-------------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11B2432 Extracted: 02/18/11     | -           |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/18/2011 (11B2432-B  | LK1)        |                    |       |       |                |                  |         |                |     |              |                    |
| Chromium VI                            | ND          | 1.00               | 0.250 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/18/2011 (11B2432-BS)  | 1)          |                    |       |       |                |                  |         |                |     |              |                    |
| Chromium VI                            | 48.1        | 1.00               | 0.250 | ug/l  | 50.0           |                  | 96      | 90-110         |     |              |                    |
| Matrix Spike Analyzed: 02/18/2011 (11B | 2432-MS1)   |                    |       |       | Sou            | rce: IUB2        | 2102-07 |                |     |              |                    |
| Chromium VI                            | 54.9        | 1.00               | 0.250 | ug/l  | 50.0           | 3.24             | 103     | 90-110         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/18/2011  | (11B2432-MS | SD1)               |       |       | Sou            | rce: IUB2        | 2102-07 |                |     |              |                    |
| Chromium VI                            | 55.5        | 1.00               | 0.250 | ug/l  | 50.0           | 3.24             | 105     | 90-110         | 1   | 10           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

## METHOD BLANK/QC DATA

### **INORGANICS**

| Analyte                                 | Result     | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC   | RPD | RPD<br>Limit | Data<br>Oualifiers |
|-----------------------------------------|------------|--------------------|-------|-------|----------------|------------------|-------------|--------|-----|--------------|--------------------|
| Batch: 11B2377 Extracted: 02/18/11      |            |                    |       |       |                |                  | , , , , , , |        |     |              | <b>C</b>           |
| Battin 11B25// Extracted: 02/10/11      |            |                    |       |       |                |                  |             |        |     |              |                    |
| Blank Analyzed: 02/18/2011 (11B2377-Bl  | LK1)       |                    |       |       |                |                  |             |        |     |              |                    |
| Chloride                                | ND         | 0.50               | 0.30  | mg/l  |                |                  |             |        |     |              |                    |
| Nitrate-N                               | ND         | 0.11               | 0.060 | mg/l  |                |                  |             |        |     |              |                    |
| Nitrite-N                               | ND         | 0.15               | 0.090 | mg/l  |                |                  |             |        |     |              |                    |
| Nitrate/Nitrite-N                       | ND         | 0.26               | 0.15  | mg/l  |                |                  |             |        |     |              |                    |
| Sulfate                                 | ND         | 0.50               | 0.30  | mg/l  |                |                  |             |        |     |              |                    |
| LCS Analyzed: 02/18/2011 (11B2377-BS1   | 1)         |                    |       |       |                |                  |             |        |     |              |                    |
| Chloride                                | 4.72       | 0.50               | 0.30  | mg/l  | 5.00           |                  | 94          | 90-110 |     |              |                    |
| Nitrate-N                               | 1.05       | 0.11               | 0.060 | mg/l  | 1.13           |                  | 93          | 90-110 |     |              |                    |
| Nitrite-N                               | 1.42       | 0.15               | 0.090 | mg/l  | 1.52           |                  | 94          | 90-110 |     |              |                    |
| Sulfate                                 | 9.39       | 0.50               | 0.30  | mg/l  | 10.0           |                  | 94          | 90-110 |     |              |                    |
| Matrix Spike Analyzed: 02/18/2011 (11B2 | 2377-MS1)  |                    |       |       | Sou            | rce: IUB         | 1964-05     |        |     |              |                    |
| Chloride                                | 137        | 10                 | 6.0   | mg/l  | 50.0           | 101              | 72          | 80-120 |     |              | M2                 |
| Nitrate-N                               | 18.3       | 2.2                | 1.2   | mg/l  | 11.3           | 9.76             | 76          | 80-120 |     |              | M2                 |
| Nitrite-N                               | 14.6       | 3.0                | 1.8   | mg/l  | 15.2           | ND               | 96          | 80-120 |     |              |                    |
| Sulfate                                 | 321        | 10                 | 6.0   | mg/l  | 100            | 247              | 73          | 80-120 |     |              | M2                 |
| Matrix Spike Analyzed: 02/18/2011 (11B2 | 2377-MS2)  |                    |       |       | Sou            | rce: IUB         | 1965-05     |        |     |              |                    |
| Chloride                                | 114        | 10                 | 6.0   | mg/l  | 50.0           | 71.7             | 85          | 80-120 |     |              |                    |
| Nitrate-N                               | 16.0       | 2.2                | 1.2   | mg/l  | 11.3           | 6.15             | 87          | 80-120 |     |              |                    |
| Nitrite-N                               | 15.8       | 3.0                | 1.8   | mg/l  | 15.2           | ND               | 104         | 80-120 |     |              |                    |
| Sulfate                                 | 213        | 10                 | 6.0   | mg/l  | 100            | 121              | 92          | 80-120 |     |              |                    |
| Matrix Spike Dup Analyzed: 02/18/2011   | (11B2377-M | SD1)               |       |       | Sou            | rce: IUB         | 1964-05     |        |     |              |                    |
| Chloride                                | 141        | 10                 | 6.0   | mg/l  | 50.0           | 101              | 79          | 80-120 | 3   | 20           | M2                 |
| Nitrate-N                               | 19.0       | 2.2                | 1.2   | mg/l  | 11.3           | 9.76             | 82          | 80-120 | 4   | 20           |                    |
| Nitrite-N                               | 14.6       | 3.0                | 1.8   | mg/l  | 15.2           | ND               | 96          | 80-120 | 0.2 | 20           |                    |
| Sulfate                                 | 332        | 10                 | 6.0   | mg/l  | 100            | 247              | 84          | 80-120 | 3   | 20           |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## METHOD BLANK/QC DATA

### **INORGANICS**

| Analyte                                   | Result     | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|------------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| <b>Batch: 11B2469 Extracted: 02/18/11</b> | _          |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/18/2011 (11B2469-Bl    | LK1)       |                    |       |       |                |                  |         |                |     |              |                    |
| Surfactants (MBAS)                        | ND         | 0.10               | 0.050 | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/18/2011 (11B2469-BS)     | 1)         |                    |       |       |                |                  |         |                |     |              |                    |
| Surfactants (MBAS)                        | 0.261      | 0.10               | 0.050 | mg/l  | 0.250          |                  | 104     | 90-110         |     |              |                    |
| Matrix Spike Analyzed: 02/18/2011 (11B    | 2469-MS1)  |                    |       |       | Sou            | rce: IUB         | 1926-01 |                |     |              |                    |
| Surfactants (MBAS)                        | 0.270      | 0.10               | 0.050 | mg/l  | 0.250          | ND               | 108     | 50-125         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/18/2011     | (11B2469-M | SD1)               |       |       | Sou            | rce: IUB         | 1926-01 |                |     |              |                    |
| Surfactants (MBAS)                        | 0.261      | 0.10               | 0.050 | mg/l  | 0.250          | ND               | 105     | 50-125         | 3   | 20           |                    |
| Batch: 11B2542 Extracted: 02/19/11        | _          |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/24/2011 (11B2542-Bl    | LK1)       |                    |       |       |                |                  |         |                |     |              |                    |
| Biochemical Oxygen Demand                 | ND         | 2.0                | 0.50  | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/24/2011 (11B2542-BS)     | 1)         |                    |       |       |                |                  |         |                |     |              |                    |
| Biochemical Oxygen Demand                 | 204        | 100                | 25    | mg/l  | 198            |                  | 103     | 85-115         |     |              |                    |
| LCS Dup Analyzed: 02/24/2011 (11B2542     | 2-BSD1)    |                    |       |       |                |                  |         |                |     |              |                    |
| Biochemical Oxygen Demand                 | 204        | 100                | 25    | mg/l  | 198            |                  | 103     | 85-115         | 0   | 20           |                    |
| Batch: 11B2547 Extracted: 02/19/11        | -          |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/19/2011 (11B2547-Bl    | LK1)       |                    |       |       |                |                  |         |                |     |              |                    |
| Turbidity                                 | ND         | 1.0                | 0.040 | NTU   |                |                  |         |                |     |              |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

## METHOD BLANK/QC DATA

### **INORGANICS**

| Analyte                                   | Result      | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|-------------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11B2547 Extracted: 02/19/11        | -           |                    |       |       |                |                  |         |                |     |              |                    |
| Duplicate Analyzed: 02/19/2011 (11B254'   | 7-DUP1)     |                    |       |       | Sou            | rce: IUB2        | 2032-01 |                |     |              |                    |
| Turbidity                                 | 0.120       | 1.0                | 0.040 | NTU   |                | 0.130            |         |                | 8   | 20           | J                  |
| Batch: 11B2727 Extracted: 02/22/11        | _           |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/22/2011 (11B2727-Bl    | LK1)        |                    |       |       |                |                  |         |                |     |              |                    |
| Ammonia-N (Distilled)                     | ND          | 0.500              | 0.500 | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/22/2011 (11B2727-BS1     | 1)          |                    |       |       |                |                  |         |                |     |              |                    |
| Ammonia-N (Distilled)                     | 10.1        | 0.500              | 0.500 | mg/l  | 10.0           |                  | 101     | 80-115         |     |              |                    |
| Matrix Spike Analyzed: 02/22/2011 (11B2   | 2727-MS1)   |                    |       |       | Sou            | rce: IUB1        | 1966-03 |                |     |              |                    |
| Ammonia-N (Distilled)                     | 9.80        | 0.500              | 0.500 | mg/l  | 10.0           | ND               | 98      | 70-120         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/22/2011     | (11B2727-MS | D1)                |       |       | Sou            | rce: IUB1        | 1966-03 |                |     |              |                    |
| Ammonia-N (Distilled)                     | 9.80        | 0.500              | 0.500 | mg/l  | 10.0           | ND               | 98      | 70-120         | 0   | 15           |                    |
| <b>Batch: 11B2817 Extracted: 02/23/11</b> | -           |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/23/2011 (11B2817-Bl    | LK1)        |                    |       |       |                |                  |         |                |     |              |                    |
| Perchlorate                               | ND          | 1.0                | 0.90  | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/23/2011 (11B2817-BS1     | 1)          |                    |       |       |                |                  |         |                |     |              |                    |
| Perchlorate                               | 26.1        | 1.0                | 0.90  | ug/l  | 25.0           |                  | 104     | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 02/23/2011 (11B2   | 2817-MS1)   |                    |       |       | Sou            | rce: IUB2        | 2211-15 |                |     |              |                    |
| Perchlorate                               | 26.5        | 1.0                | 0.90  | ug/l  | 25.0           | ND               | 106     | 80-120         |     |              |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

## METHOD BLANK/QC DATA

### **INORGANICS**

|                                         |              | Reporting   |       |       | Spike | Source    |        | %REC   |     | RPD   | Data       |
|-----------------------------------------|--------------|-------------|-------|-------|-------|-----------|--------|--------|-----|-------|------------|
| Analyte                                 | Result       | Limit       | MDL   | Units | Level | Result    | %REC   | Limits | RPD | Limit | Qualifiers |
| Batch: 11B2817 Extracted: 02/23/11      |              |             |       |       |       |           |        |        |     |       |            |
|                                         |              |             |       |       |       |           |        |        |     |       |            |
| Matrix Spike Dup Analyzed: 02/23/2011   | (11B2817-MSI | <b>D1</b> ) |       |       | Sou   | rce: IUB2 | 211-15 |        |     |       |            |
| Perchlorate                             | 27.8         | 1.0         | 0.90  | ug/l  | 25.0  | ND        | 111    | 80-120 | 5   | 20    |            |
| Batch: 11B2818 Extracted: 02/23/11      | <u>.</u>     |             |       |       |       |           |        |        |     |       |            |
| Blank Analyzed: 02/23/2011 (11B2818-Bl  | LK1)         |             |       |       |       |           |        |        |     |       |            |
| Fluoride                                | ND           | 0.10        | 0.020 | mg/l  |       |           |        |        |     |       |            |
| LCS Analyzed: 02/23/2011 (11B2818-BS1   | )            |             |       |       |       |           |        |        |     |       |            |
| Fluoride                                | 0.978        | 0.10        | 0.020 | mg/l  | 1.00  |           | 98     | 90-110 |     |       |            |
| Matrix Spike Analyzed: 02/23/2011 (11B2 | 2818-MS1)    |             |       |       | Sou   | rce: IUB1 | 930-01 |        |     |       |            |
| Fluoride                                | 1.06         | 0.10        | 0.020 | mg/l  | 1.00  | 0.0439    | 102    | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 02/23/2011   | (11B2818-MSI | D1)         |       |       | Sou   | rce: IUB1 | 930-01 |        |     |       |            |
| Fluoride                                | 1.05         | 0.10        | 0.020 | mg/l  | 1.00  | 0.0439    | 100    | 80-120 | 1   | 20    |            |
| Batch: 11B2925 Extracted: 02/23/11      |              |             |       |       |       |           |        |        |     |       |            |
| Blank Analyzed: 02/23/2011 (11B2925-Bl  | .K1)         |             |       |       |       |           |        |        |     |       |            |
| Total Cyanide                           | ND           | 5.0         | 2.2   | ug/l  |       |           |        |        |     |       |            |
| LCS Analyzed: 02/23/2011 (11B2925-BS1   | )            |             |       |       |       |           |        |        |     |       |            |
| Total Cyanide                           | 185          | 5.0         | 2.2   | ug/l  | 200   |           | 92     | 90-110 |     |       |            |
| Matrix Spike Analyzed: 02/23/2011 (11B2 | 2925-MS1)    |             |       |       | Sou   | rce: IUB1 | 828-01 |        |     |       |            |
| Total Cyanide                           | 185          | 5.0         | 2.2   | ug/l  | 200   | ND        | 92     | 70-115 |     |       |            |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

# METHOD BLANK/QC DATA

### **INORGANICS**

| Analyte                                 | Result      | Reporting<br>Limit | MDL | Units      | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|-------------|--------------------|-----|------------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 11B2925 Extracted: 02/23/11      | _           |                    |     |            |                |                  |         |                |     |              |                    |
| Matrix Spike Dup Analyzed: 02/23/2011   | (11R2925-MS | (D1)               |     |            | Sou            | rce: IUB1        | 1828-01 |                |     |              |                    |
| Total Cyanide                           | 184         | 5.0                | 2.2 | ug/l       | 200            | ND               | 92      | 70-115         | 0.3 | 15           |                    |
| Batch: 11B2988 Extracted: 02/24/11      |             |                    |     |            |                |                  |         |                |     |              |                    |
|                                         | _           |                    |     |            |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/24/2011 (11B2988-B)  | · ·         |                    |     |            |                |                  |         |                |     |              |                    |
| Total Dissolved Solids                  | ND          | 10                 | 1.0 | mg/l       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/24/2011 (11B2988-BS)   | 1)          |                    |     |            |                |                  |         |                |     |              |                    |
| Total Dissolved Solids                  | 1010        | 10                 | 1.0 | mg/l       | 1000           |                  | 101     | 90-110         |     |              |                    |
| Duplicate Analyzed: 02/24/2011 (11B298  | 8-DUP1)     |                    |     |            | Sou            | rce: IUB2        | 2188-01 |                |     |              |                    |
| Total Dissolved Solids                  | 1390        | 10                 | 1.0 | mg/l       |                | 1380             |         |                | 0.4 | 10           |                    |
| Batch: 11B3172 Extracted: 02/24/11      | _           |                    |     |            |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/24/2011 (11B3172-B   | LK1)        |                    |     |            |                |                  |         |                |     |              |                    |
| Total Suspended Solids                  | ND          | 10                 | 1.0 | mg/l       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/24/2011 (11B3172-BS)   | 1)          |                    |     |            |                |                  |         |                |     |              |                    |
| Total Suspended Solids                  | 997         | 10                 | 1.0 | mg/l       | 1000           |                  | 100     | 85-115         |     |              |                    |
| Duplicate Analyzed: 02/24/2011 (11B317) | 2-DUP1)     |                    |     |            | Sou            | rce: IUB2        | 2278-01 |                |     |              |                    |
| Total Suspended Solids                  | 46.0        | 10                 | 1.0 | mg/l       |                | 46.0             |         |                | 0   | 10           |                    |
| Batch: 11B3192 Extracted: 02/25/11      | -           |                    |     |            |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/25/2011 (11B3192-B   | LK1)        |                    |     |            |                |                  |         |                |     |              |                    |
| Specific Conductance                    | ND          | 1.0                | 1.0 | hos/cm @ 2 |                |                  |         |                |     |              |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## METHOD BLANK/QC DATA

### **INORGANICS**

|                                               |            | Reporting |      |            | Spike | Source    |         | %REC   |     | RPD   | Data       |
|-----------------------------------------------|------------|-----------|------|------------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                       | Result     | Limit     | MDL  | Units      | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 11B3192 Extracted: 02/25/11            |            |           |      |            |       |           |         |        |     |       |            |
| LCS Analyzed: 02/25/2011 (11B3192-BS          | 1)         |           |      |            |       |           |         |        |     |       |            |
| Specific Conductance                          | 1390       | 1.0       | 1.0  | hos/cm @ 2 | 1410  |           | 99      | 90-110 |     |       |            |
| <b>Duplicate Analyzed: 02/25/2011 (11B319</b> | 2-DUP1)    |           |      |            | Sou   | rce: IUB2 | 2433-01 |        |     |       |            |
| Specific Conductance                          | 831        | 1.0       | 1.0  | hos/cm @ 2 |       | 822       |         |        | 1   | 5     |            |
| Batch: 11C0193 Extracted: 03/02/11            | <u>L</u>   |           |      |            |       |           |         |        |     |       |            |
| Blank Analyzed: 03/02/2011 (11C0193-B         | LK1)       |           |      |            |       |           |         |        |     |       |            |
| Total Organic Carbon                          | ND         | 1.0       | 0.50 | mg/l       |       |           |         |        |     |       |            |
| LCS Analyzed: 03/02/2011 (11C0193-BS          | 1)         |           |      |            |       |           |         |        |     |       |            |
| Total Organic Carbon                          | 9.35       | 1.0       | 0.50 | mg/l       | 10.0  |           | 93      | 90-110 |     |       |            |
| Matrix Spike Analyzed: 03/02/2011 (11C        | (0193-MS1) |           |      |            | Sou   | rce: IUB1 | 966-03  |        |     |       |            |
| Total Organic Carbon                          | 14.3       | 1.0       | 0.50 | mg/l       | 5.00  | 10.1      | 84      | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 03/02/2011         | (11C0193-N | ASD1)     |      |            | Sou   | rce: IUB1 | 966-03  |        |     |       |            |
| Total Organic Carbon                          | 14.3       | 1.0       | 0.50 | mg/l       | 5.00  | 10.1      | 84      | 80-120 | 0.1 | 20    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

# METHOD BLANK/QC DATA

| Analyte                                 | Result | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|--------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| <b>Batch: 8663 Extracted: 03/02/11</b>  |        |                    |     |       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/04/2011 (S102233-03)   |        |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Gross Alpha                             | 103    | 3                  | N/A | pCi/L | 101            |                  | 102     | 70-130         |     |              |                    |
| Gross Beta                              | 82.5   | 4                  | N/A | pCi/L | 87.3           |                  | 94      | 70-130         |     |              |                    |
| Blank Analyzed: 03/04/2011 (S102233-04  | )      |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Gross Alpha                             | -0.182 | 3                  | N/A | pCi/L |                |                  |         | -              |     |              | U                  |
| Gross Beta                              | -1.43  | 4                  | N/A | pCi/L |                |                  |         | -              |     |              | U                  |
| Duplicate Analyzed: 03/05/2011 (S102233 | 3-05)  |                    |     |       | Sou            | rce: IUB         | 1966-03 |                |     |              |                    |
| Gross Alpha                             | -0.039 | 3                  | N/A | pCi/L |                | 0.49             |         | -              | 200 |              | U                  |
| Gross Beta                              | 4.29   | 4                  | N/A | pCi/L |                | 3.7              |         | -              | 15  |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

## METHOD BLANK/QC DATA

### 901.1

| Analyte                                        | Result | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------------|--------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| <b>Batch: 8663 Extracted: 02/23/11</b>         |        |                    |     |       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/28/2011 (S102233-03)          |        |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Cobalt-60                                      | 120    | 10                 | N/A | pCi/L | 126            |                  | 95      | 80-120         |     |              |                    |
| Cesium-137                                     | 110    | 20                 | N/A | pCi/L | 110            |                  | 100     | 80-120         |     |              |                    |
| Blank Analyzed: 02/28/2011 (S102233-04         | )      |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Cesium-137                                     | ND     | 20                 | N/A | pCi/L |                |                  |         | -              |     |              | U                  |
| Potassium-40                                   | ND     | 25                 | N/A | pCi/L |                |                  |         | -              |     |              | U                  |
| <b>Duplicate Analyzed: 02/28/2011 (S102233</b> | 3-05)  |                    |     |       | Sou            | rce: IUB         | 1966-03 |                |     |              |                    |
| Cesium-137                                     | ND     | 20                 | N/A | pCi/L |                | 0                |         | -              | 0   |              | U                  |
| Potassium-40                                   | ND     | 25                 | N/A | pCi/L |                | 0                |         | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

# METHOD BLANK/QC DATA

### 903.1

| Analyte                                 | Result | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|--------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| <b>Batch: 8663 Extracted: 03/09/11</b>  |        |                    |     |       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/09/2011 (S102233-03)   |        |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Radium-226                              | 51.7   | 1                  | N/A | pCi/L | 55.7           |                  | 93      | 80-120         |     |              |                    |
| Blank Analyzed: 03/09/2011 (S102233-04  | )      |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Radium-226                              | -0.08  | 1                  | N/A | pCi/L |                |                  |         | -              |     |              | U                  |
| Duplicate Analyzed: 03/09/2011 (S102233 | 3-05)  |                    |     |       | Sou            | rce: IUB1        | 1966-03 |                |     |              |                    |
| Radium-226                              | -0.111 | 1                  | N/A | pCi/L |                | -0.028           |         | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

# METHOD BLANK/QC DATA

| Analyte                                 | Result | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|--------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| <b>Batch: 8663 Extracted: 03/09/11</b>  |        |                    |     |       |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/09/2011 (S102233-03)   |        |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Radium-228                              | 15.3   | 1                  | N/A | pCi/L | 15.2           |                  | 101     | 60-140         |     |              |                    |
| Blank Analyzed: 03/09/2011 (S102233-04  | 4)     |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Radium-228                              | -0.353 | 1                  | N/A | pCi/L |                |                  |         | -              |     |              | U                  |
| Duplicate Analyzed: 03/09/2011 (S10223: | 3-05)  |                    |     |       | Sou            | rce: IUB         | 1966-03 |                |     |              |                    |
| Radium-228                              | -0.087 | 1                  | N/A | pCi/L |                | -0.13            |         | -              | 0   |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

# METHOD BLANK/QC DATA

| Analyte                                      | Result | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------------|--------|--------------------|-----|-------|----------------|------------------|--------|----------------|-----|--------------|--------------------|
| Batch: 8663 Extracted: 03/12/11              |        |                    |     |       |                |                  |        |                |     |              |                    |
| Blank Analyzed: 03/12/2011 (S102233-         | 06)    |                    |     |       | Sou            | rce:             |        |                |     |              |                    |
| Strontium-90                                 | -0.036 | 2                  | N/A | pCi/L |                |                  |        | -              |     |              | U                  |
| <b>Duplicate Analyzed: 03/12/2011 (S1022</b> | 33-07) |                    |     |       | Sou            | rce: IUB1        | 966-03 |                |     |              |                    |
| Strontium-90                                 | -0.117 | 2                  | N/A | pCi/L |                | -0.162           |        | -              | 0   |              | U                  |
| LCS Analyzed: 03/12/2011 (S102233-08         | 3)     |                    |     |       | Sou            | rce:             |        |                |     |              |                    |
| Strontium-90                                 | 17.5   | 2                  | N/A | pCi/L | 17.4           |                  | 101    | 80-120         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

# METHOD BLANK/QC DATA

| Analyte  Batch: 8663 Extracted: 03/09/11               | Result                | Reporting<br>Limit | MDL | Units | Spike<br>Level    | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------------------|-----------------------|--------------------|-----|-------|-------------------|------------------|---------|----------------|-----|--------------|--------------------|
| LCS Analyzed: 03/10/2011 (S102233-03)<br>Tritium       | 2040                  | 500                | N/A | pCi/L | <b>Sou</b> r 2220 | rce:             | 92      | 80-120         |     |              |                    |
| Blank Analyzed: 03/10/2011 (S102233-04) Tritium        | -74.3                 | 500                | N/A | pCi/L | Sour              | rce:             |         | -              |     |              | U                  |
| <b>Duplicate Analyzed: 03/10/2011 (S102233</b> Tritium | - <b>05)</b><br>-9.08 | 500                | N/A | pCi/L | Sour              | -33.1            | 1966-03 | -              | 0   |              | U                  |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

**RPD** 

Data

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

Source

# METHOD BLANK/QC DATA

### EPA-5 1613Bx

Spike

Reporting

| Analyte                            | Result   | Limit   | MDL       | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
|------------------------------------|----------|---------|-----------|-------|-------|--------|------|--------|-----|-------|------------|
| Batch: 1054371 Extracted: 02/2     | 23/11    |         |           |       |       |        |      |        |     |       |            |
|                                    |          |         |           |       | ~     |        |      |        |     |       |            |
| Blank Analyzed: 02/24/2011 (G1B2   |          |         |           |       | Sou   | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | ND       | 0.00005 | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,6,7,8-HpCDF                | ND       | 0.00005 | 0.0000015 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | ND       | 0.00005 | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,7,8-HxCDD                  | ND       | 0.00005 | 0.0000017 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | ND       | 0.00005 | 0.0000016 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,6,7,8-HxCDD                  | ND       | 0.00005 | 0.0000016 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | ND       | 0.00005 | 0.0000014 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8,9-HxCDD                  | ND       | 0.00005 | 0.0000014 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | ND       | 0.00005 | 0.0000019 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8-PeCDD                    | ND       | 0.00005 | 0.0000033 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8-PeCDF                    | ND       | 0.00005 | 0.0000039 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | ND       | 0.00005 | 0.0000014 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,4,7,8-PeCDF                    | ND       | 0.00005 | 0.0000041 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,7,8-TCDD                       | ND       | 0.00001 | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,7,8-TCDF                       | ND       | 0.00001 | 0.0000033 | ug/L  |       |        |      | -      |     |       |            |
| OCDD                               | 4.8e-006 | 0.0001  | 0.0000035 | ug/L  |       |        |      | -      |     |       | J, Q       |
| OCDF                               | ND       | 0.0001  | 0.0000021 | ug/L  |       |        |      | -      |     |       |            |
| Total HpCDD                        | ND       | 0.00005 | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| Total HpCDF                        | ND       | 0.00005 | 0.0000015 | ug/L  |       |        |      | -      |     |       |            |
| Total HxCDD                        | ND       | 0.00005 | 0.0000014 | ug/L  |       |        |      | -      |     |       |            |
| Total HxCDF                        | ND       | 0.00005 | 0.0000014 | ug/L  |       |        |      | -      |     |       |            |
| Total PeCDD                        | ND       | 0.00005 | 0.0000033 | ug/L  |       |        |      | -      |     |       |            |
| Total PeCDF                        | ND       | 0.00005 | 0.0000039 | ug/L  |       |        |      | -      |     |       |            |
| Total TCDD                         | ND       | 0.00001 | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| Total TCDF                         | ND       | 0.00001 | 0.0000033 | ug/L  |       |        |      | -      |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.0019   |         |           | ug/L  | 0.002 |        | 96   | 23-140 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.0019   |         |           | ug/L  | 0.002 |        | 96   | 28-143 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.002    |         |           | ug/L  | 0.002 |        | 98   | 26-138 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.0017   |         |           | ug/L  | 0.002 |        | 86   | 32-141 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.0018   |         |           | ug/L  | 0.002 |        | 88   | 26-152 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.0017   |         |           | ug/L  | 0.002 |        | 85   | 28-130 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.0018   |         |           | ug/L  | 0.002 |        | 89   | 26-123 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.0019   |         |           | ug/L  | 0.002 |        | 96   | 29-147 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.0017   |         |           | ug/L  | 0.002 |        | 85   | 25-181 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.0016   |         |           | ug/L  | 0.002 |        | 78   | 24-185 |     |       |            |
|                                    |          |         |           |       |       |        |      |        |     |       |            |

### **TestAmerica Irvine**

%REC

RPD

Data



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

Source

Spike

# METHOD BLANK/QC DATA

### EPA-5 1613Bx

Reporting

|                                    |             | Reporting | 3         |       | Spike  | Source |      | %REC   |     | KPD   | Data       |
|------------------------------------|-------------|-----------|-----------|-------|--------|--------|------|--------|-----|-------|------------|
| Analyte                            | Result      | Limit     | MDL       | Units | Level  | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 1054371 Extracted: 02/23/   | <u>/11_</u> |           |           |       |        |        |      |        |     |       |            |
|                                    |             |           |           |       |        |        |      |        |     |       |            |
| Blank Analyzed: 02/24/2011 (G1B230 | 0000371B)   |           |           |       | Sou    | rce:   |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.0018      |           |           | ug/L  | 0.002  |        | 91   | 28-136 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.0016      |           |           | ug/L  | 0.002  |        | 81   | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.0014      |           |           | ug/L  | 0.002  |        | 70   | 25-164 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.0013      |           |           | ug/L  | 0.002  |        | 67   | 24-169 |     |       |            |
| Surrogate: 13C-OCDD                | 0.0036      |           |           | ug/L  | 0.004  |        | 90   | 17-157 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.00068     |           |           | ug/L  | 0      |        | 85   | 35-197 |     |       |            |
| LCS Analyzed: 02/24/2011 (G1B2300  | 00371C)     |           |           |       | Sou    | ırce:  |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.00105     | 0.00005   | 0.0000063 | ug/L  | 0.001  |        | 105  | 70-140 |     |       |            |
| 1,2,3,4,6,7,8-HpCDF                | 0.00106     | 0.00005   | 0.0000036 | ug/L  | 0.001  |        | 106  | 82-122 |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | 0.00107     | 0.00005   | 0.0000052 | ug/L  | 0.001  |        | 107  | 78-138 |     |       |            |
| 1,2,3,4,7,8-HxCDD                  | 0.001       | 0.00005   | 0.0000014 | ug/L  | 0.001  |        | 100  | 70-164 |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | 0.00111     | 0.00005   | 0.0000017 | ug/L  | 0.001  |        | 111  | 72-134 |     |       |            |
| 1,2,3,6,7,8-HxCDD                  | 0.00126     | 0.00005   | 0.0000013 | ug/L  | 0.001  |        | 126  | 76-134 |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | 0.00103     | 0.00005   | 0.0000016 | ug/L  | 0.001  |        | 103  | 84-130 |     |       |            |
| 1,2,3,7,8,9-HxCDD                  | 0.00121     | 0.00005   | 0.0000011 | ug/L  | 0.001  |        | 121  | 64-162 |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | 0.00109     | 0.00005   | 0.0000021 | ug/L  | 0.001  |        | 109  | 78-130 |     |       |            |
| 1,2,3,7,8-PeCDD                    | 0.00105     | 0.00005   | 0.0000041 | ug/L  | 0.001  |        | 105  | 70-142 |     |       |            |
| 1,2,3,7,8-PeCDF                    | 0.00106     | 0.00005   | 0.000006  | ug/L  | 0.001  |        | 106  | 80-134 |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | 0.00107     | 0.00005   | 0.0000016 | ug/L  | 0.001  |        | 107  | 70-156 |     |       |            |
| 2,3,4,7,8-PeCDF                    | 0.00107     | 0.00005   | 0.0000061 | ug/L  | 0.001  |        | 107  | 68-160 |     |       |            |
| 2,3,7,8-TCDD                       | 0.000207    | 0.00001   | 0.0000022 | ug/L  | 0.0002 |        | 104  | 67-158 |     |       |            |
| 2,3,7,8-TCDF                       | 0.000211    | 0.00001   | 0.0000033 | ug/L  | 0.0002 |        | 105  | 75-158 |     |       |            |
| OCDD                               | 0.00221     | 0.0001    | 0.0000071 | ug/L  | 0.002  |        | 110  | 78-144 |     |       | Ва         |
| OCDF                               | 0.00224     | 0.0001    | 0.0000049 | ug/L  | 0.002  |        | 112  | 63-170 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00196     |           |           | ug/L  | 0.002  |        | 98   | 26-166 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00189     |           |           | ug/L  | 0.002  |        | 94   | 21-158 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.00191     |           |           | ug/L  | 0.002  |        | 95   | 20-186 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00185     |           |           | ug/L  | 0.002  |        | 92   | 21-193 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00175     |           |           | ug/L  | 0.002  |        | 88   | 19-202 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00159     |           |           | ug/L  | 0.002  |        | 79   | 25-163 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00182     |           |           | ug/L  | 0.002  |        | 91   | 21-159 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.00194     |           |           | ug/L  | 0.002  |        | 97   | 17-205 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.00174     |           |           | ug/L  | 0.002  |        | 87   | 21-227 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00165     |           |           | ug/L  | 0.002  |        | 83   | 21-192 |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00186     |           |           | ug/L  | 0.002  |        | 93   | 22-176 |     |       |            |
|                                    |             |           |           |       |        |        |      |        |     |       |            |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Report Number: IUB1966 Received: 02/17/11

## METHOD BLANK/QC DATA

## EPA-5 1613Bx

|                                      |          | Reporting |     |       | Spike  | Source |      | %REC   |     | RPD   | Data       |
|--------------------------------------|----------|-----------|-----|-------|--------|--------|------|--------|-----|-------|------------|
| Analyte                              | Result   | Limit     | MDL | Units | Level  | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 1054371 Extracted: 02/23/11   | _        |           |     |       |        |        |      |        |     |       |            |
|                                      |          |           |     |       |        |        |      |        |     |       |            |
| LCS Analyzed: 02/24/2011 (G1B2300003 | 871C)    |           |     |       | Sou    | rce:   |      |        |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF       | 0.00167  |           |     | ug/L  | 0.002  |        | 84   | 13-328 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD          | 0.00158  |           |     | ug/L  | 0.002  |        | 79   | 20-175 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF          | 0.0015   |           |     | ug/L  | 0.002  |        | 75   | 22-152 |     |       |            |
| Surrogate: 13C-OCDD                  | 0.00362  |           |     | ug/L  | 0.004  |        | 90   | 13-199 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD        | 0.000692 |           |     | ug/L  | 0.0008 |        | 87   | 31-191 |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Received: 02/17/11

### **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

Report Number: IUB1966

|                  |                             |                                          | <b>T</b> T •. | D 1    | MDI  | Compliance |
|------------------|-----------------------------|------------------------------------------|---------------|--------|------|------------|
| <b>LabNumber</b> | Analysis                    | Analyte                                  | Units         | Result | MRL  | Limit      |
| IUB1966-01       | 1664-HEM                    | Hexane Extractable Material (Oil & Greas | mg/l          | 0      | 4.7  | 15         |
| IUB1966-01       | 624-Reg-X-2+c12DCE, LOW     | 1,1-Dichloroethene                       | ug/l          | 0      | 0.50 | 6          |
| IUB1966-01       | 624-Reg-X-2+c12DCE, LOW     | 1,2-Dichloroethane                       | ug/l          | 0      | 0.50 | 0.5        |
| IUB1966-01       | 624-Reg-X-2+c12DCE, LOW     | Trichloroethene                          | ug/l          | 0      | 0.50 | 5          |
| IUB1966-01       | Settleable Solids - SM2540F | Total Settleable Solids                  | ml/l          | 0.100  | 0.10 | 0.3        |

### **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|           |          |         |       |        |     | Compliance |
|-----------|----------|---------|-------|--------|-----|------------|
| LabNumber | Analysis | Analyte | Units | Result | MRL | Limit      |

### **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|            |                         |                    |       |        |      | Compliance |
|------------|-------------------------|--------------------|-------|--------|------|------------|
| LabNumber  | Analysis                | Analyte            | Units | Result | MRL  | Limit      |
| IUB1966-02 | 624-Reg-X-2+c12DCE, LOW | 1,1-Dichloroethene | ug/l  | 0      | 0.50 | 6          |
| IUB1966-02 | 624-Reg-X-2+c12DCE, LOW | 1,2-Dichloroethane | ug/l  | 0      | 0.50 | 0.5        |
| IUB1966-02 | 624-Reg-X-2+c12DCE, LOW | Trichloroethene    | ug/l  | 0      | 0.50 | 5          |

### **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|                  |          |         |       |        |     | Compliance |
|------------------|----------|---------|-------|--------|-----|------------|
| <b>LabNumber</b> | Analysis | Analyte | Units | Result | MRL | Limit      |

### **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

|                  |                                |                           |       |        |        | Compliance |
|------------------|--------------------------------|---------------------------|-------|--------|--------|------------|
| <b>LabNumber</b> | Analysis                       | Analyte                   | Units | Result | MRL    | Limit      |
| IUB1966-03       | 608-Pesticides (LL)            | alpha-BHC                 | ug/l  | 0      | 0.0054 | 0.03       |
| IUB1966-03       | Ammonia-N, Titr 4500NH3-C (w/o | di:Ammonia-N (Distilled)  | mg/l  | 0      | 0.500  | 1.96       |
| IUB1966-03       | Antimony-200.8                 | Antimony                  | ug/l  | 0.33   | 2.0    | 6          |
| IUB1966-03       | Arsenic-200.7                  | Arsenic                   | ug/l  | 0      | 10     | 10         |
| IUB1966-03       | Barium-200.7                   | Barium                    | mg/l  | 0.010  | 0.010  | 1          |
| IUB1966-03       | Beryllium-200.7                | Beryllium                 | ug/l  | 0.031  | 2.0    | 4          |
| IUB1966-03       | BOD - SM5210B                  | Biochemical Oxygen Demand | mg/l  | 2.23   | 2.0    | 30         |
| IUB1966-03       | Cadmium-200.8                  | Cadmium                   | ug/l  | 0.022  | 1.0    | 3.1        |
| IUB1966-03       | Chloride - 300.0               | Chloride                  | mg/l  | 11     | 0.50   | 150        |
| IUB1966-03       | Chromium VI-218.6              | Chromium VI               | ug/l  | 0      | 1.00   | 16         |
| IUB1966-03       | Copper-200.8                   | Copper                    | ug/l  | 1.71   | 2.00   | 14         |
| IUB1966-03       | Cyanide, Total-4500CN-E (5ppb) | Total Cyanide             | ug/l  | -4     | 5.0    | 8.5        |
| IUB1966-03       | Fluoride SM4500F,C             | Fluoride                  | mg/l  | 0.19   | 0.10   | 1.6        |
| IUB1966-03       | Iron-200.7                     | Iron                      | mg/l  | 0.073  | 0.040  | 0.3        |
| IUB1966-03       | Lead-200.8                     | Lead                      | ug/l  | 0.058  | 1.0    | 5.2        |
| IUB1966-03       | Manganese-200.7                | Manganese                 | ug/l  | 49     | 20     | 50         |
| IUB1966-03       | MBAS - SM5540C                 | Surfactants (MBAS)        | mg/l  | 0.061  | 0.10   | 0.5        |
| IUB1966-03       | Mercury - 245.1                | Mercury                   | ug/l  | 0      | 0.20   | 0.1        |
| IUB1966-03       | Nickel-200.7                   | Nickel                    | ug/l  | 2.25   | 10     | 96         |
| IUB1966-03       | Nitrate-N, 300.0               | Nitrate-N                 | mg/l  | 0.37   | 0.11   | 8          |
| IUB1966-03       | Nitrite-N, 300.0               | Nitrite-N                 | mg/l  | 0      | 0.15   | 1          |
| IUB1966-03       | Nitrogen, NO3+NO2 -N EPA 300.  | 0 Nitrate/Nitrite-N       | mg/l  | 0.37   | 0.26   | 8          |
| IUB1966-03       | Perchlorate 314.0 (1ppb_IC6)   | Perchlorate               | ug/l  | 0      | 1.0    | 6          |
| IUB1966-03       | Silver-200.8                   | Silver                    | ug/l  | 0.072  | 1.0    | 4.1        |
| IUB1966-03       | Sulfate-300.0                  | Sulfate                   | mg/l  | 64     | 2.5    | 300        |
| IUB1966-03       | TDS - SM2540C                  | Total Dissolved Solids    | mg/l  | 222    | 10     | 950        |
| IUB1966-03       | Thallium-200.8                 | Thallium                  | ug/l  | 0.0029 | 1.0    | 2          |
| IUB1966-03       | TSS - SM2540D                  | Total Suspended Solids    | mg/l  | 0      | 10     | 45         |
| IUB1966-03       | Zinc-200.7                     | Zinc                      | ug/l  | 6.72   | 20.0   | 119        |

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|               |              |                            |       |        |      | Compliance |
|---------------|--------------|----------------------------|-------|--------|------|------------|
| LabNumber     | Analysis     | Analyte                    | Units | Result | MRL  | Limit      |
| IUB1966-03RE1 | 625+NDMA, LL | 2,4,6-Trichlorophenol      | ug/l  | 0      | 1.00 | 13         |
| IUB1966-03RE1 | 625+NDMA, LL | 2,4-Dinitrotoluene         | ug/l  | 0      | 5.00 | 18         |
| IUB1966-03RE1 | 625+NDMA, LL | Bis(2-ethylhexyl)phthalate | ug/l  | 1.66   | 5.00 | 4          |
| IUB1966-03RE1 | 625+NDMA, LL | N-Nitrosodimethylamine     | ug/l  | 0      | 2.00 | 16         |
| IUB1966-03RE1 | 625+NDMA, LL | Pentachlorophenol          | ug/l  | 0      | 2.00 | 16.5       |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 018

Sampled: 02/17/11-02/18/11

Received: 02/17/11

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

Report Number: IUB1966

Compliance **MRL** Limit **LabNumber** Analysis Analyte Units Result



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

### DATA QUALIFIERS AND DEFINITIONS

| В | P | Analyte | was detec | ted in th | e associated | Method Blank. |  |
|---|---|---------|-----------|-----------|--------------|---------------|--|
|---|---|---------|-----------|-----------|--------------|---------------|--|

- **Ba** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- J Estimated result. Result is less than the reporting limit.
- Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- L6 Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration.
- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M13 The sample spiked had a pH of less than 2. 2-Chloroethylvinylether degrades under acidic conditions.
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- N2 See corrective action report.
- **Q** Estimated maximum possible concentration (EMPC).
- R The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.
- U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.
- **Z6** Surrogate recovery was below acceptance limits.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

#### ADDITIONAL COMMENTS

#### For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

#### For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.

#### For Extractable Fuel Hydrocarbons (EFH, DRO, ORO):

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IUB1966

Sampled: 02/17/11-02/18/11

Received: 02/17/11

## **Certification Summary**

#### **TestAmerica Irvine**

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EDD + Level 4  | Water  | N/A   | N/A        |
| EPA 120.1      | Water  | X     | X          |
| EPA 1664A      | Water  | X     | X          |
| EPA 180.1      | Water  | X     | N/A        |
| EPA 200.7-Diss | Water  | X     | N/A        |
| EPA 200.7      | Water  | X     | N/A        |
| EPA 200.8-Diss | Water  | X     | N/A        |
| EPA 200.8      | Water  | X     | N/A        |
| EPA 218.6      | Water  | X     | X          |
| EPA 245.1-Diss | Water  | X     | N/A        |
| EPA 245.1      | Water  | X     | N/A        |
| EPA 300.0      | Water  | X     | N/A        |
| EPA 314.0      | Water  | X     | N/A        |
| EPA 608        | Water  | X     | X          |
| EPA 624        | Water  | X     | X          |
| EPA 625        | Water  | X     | X          |
| EPA 8015 Mod.  | Water  | X     | X          |
| EPA 8015B      | Water  | X     | X          |
| EPA 8260B-SIM  | Water  | X     | X          |
| Filtration     | Water  | N/A   | N/A        |
| Level 4        | Water  |       |            |
| SM 2540D       | Water  | X     | X          |
| SM 4500-F-C    | Water  | X     | N/A        |
| SM2340B-Diss   | Water  |       |            |
| SM2340B        | Water  | X     | N/A        |
| SM2540C        | Water  | X     | N/A        |
| SM2540F        | Water  | X     | X          |
| SM4500CN-E     | Water  | X     | N/A        |
| SM4500NH3-C    | Water  | X     | X          |
| SM5210B        | Water  | X     | X          |
| SM5310B        | Water  | X     | X          |
| SM5540-C       | Water  | X     | N/A        |
| SM9221 A,B,C,E | Water  |       |            |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

## TestAmerica Irvine



THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

#### Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IUB1966-03

Analysis Performed: Bioassay-Acute 96hr

Samples: IUB1966-01

#### **Eberline Services - SUB**

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IUB1966-03, IUB1966-04

Analysis Performed: Gross Alpha Samples: IUB1966-03, IUB1966-04

Analysis Performed: Gross Beta Samples: IUB1966-03, IUB1966-04

Analysis Performed: Radium, Combined Samples: IUB1966-03, IUB1966-04

Analysis Performed: Strontium 90 Samples: IUB1966-03, IUB1966-04

Analysis Performed: Tritium

Samples: IUB1966-03, IUB1966-04

Analysis Performed: Uranium, Combined Samples: IUB1966-03, IUB1966-04

#### **TestAmerica Irvine**



THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/17/11-02/18/11

Arcadia, CA 91007 Report Number: IUB1966 Received: 02/17/11

Attention: Bronwyn Kelly

#### TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8663

Samples: IUB1966-03, IUB1966-04

Method Performed: 900

Samples: IUB1966-03, IUB1966-04

Method Performed: 901.1

Samples: IUB1966-03, IUB1966-04

Method Performed: 903.1

Samples: IUB1966-03, IUB1966-04

Method Performed: 904

Samples: IUB1966-03, IUB1966-04

Method Performed: 905

Samples: IUB1966-03, IUB1966-04

Method Performed: 906

Samples: IUB1966-03

#### TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B

Samples: IUB1966-03

#### Truesdail Laboratories-SUB California Cert #1237

14201 Franklin Avenue - Tustin, CA 92680

Analysis Performed: Hydrazine

Samples: IUB1966-03

Analysis Performed: Level 4 Data Package

Samples: IUB1966-03

#### **TestAmerica Irvine**

#### **CHAIN OF CUSTODY FORM**

| Client Name/A                                 | ddress:          |                   |               | Project     |                                            |              |                       |                                         |                    |                   |              | ,                       | -          |                        | AN                      | ALYSI                | SREC            | UIRED    |              |               |                                                                  |
|-----------------------------------------------|------------------|-------------------|---------------|-------------|--------------------------------------------|--------------|-----------------------|-----------------------------------------|--------------------|-------------------|--------------|-------------------------|------------|------------------------|-------------------------|----------------------|-----------------|----------|--------------|---------------|------------------------------------------------------------------|
| MWH-Arcac<br>618 Michillinda<br>Arcadia, CA 9 | a Ave, S         | uite 200          |               |             | -SSFL N<br>I Outfal                        |              |                       | 3, Freon                                |                    |                   |              |                         |            |                        |                         |                      |                 |          |              |               | Field readings:<br>(Log in and include in<br>report Temp and pH) |
| Test America                                  | Contact:         | Debby Wils        | son           |             |                                            |              |                       | s + Freon 113,<br>+ PP                  | SVE                |                   |              | нем)                    |            |                        | 223)                    |                      |                 |          |              |               | Temp °F = 55-6<br>pH = 7.6<br>DO = 8.30<br>Total Residual        |
| Project Manag                                 | er: Bro          | nwyn Kelly        |               |             | Numbe                                      |              |                       | ane                                     | 4+20               | S                 |              | -664                    |            | fuel                   | SM9                     | <u>(2</u>            |                 |          |              |               | Chlorine = Ø                                                     |
| Sampler: $\cal R$                             | ckk              | BANAG             | B             | Fax Nu      | 568-669 <sup>,</sup><br>imber:<br>568-651! |              |                       | VOCs 624 + xylenes<br>123A, Cyclohexane | VOCs 624 +A+A+2CVE | Settleable Solids | Conductivity | Oil & Grease (1664-HEM) | 8015 - gas | 8015 - diesel/jet fuel | Fecal coliform (SM9223) | coli (SM9223)        | Acute Toxicity  |          |              | į             | Time of readings                                                 |
| Sample<br>Description                         | Sample<br>Matrix | Container<br>Type | # of<br>Cont. | San<br>Date | npling<br>/Time                            | Preservative | Bottle #              | VOC<br>123A                             | Š<br>V<br>V        | Settle            | Cond         | Oii &                   | 8015       | 8015                   | Feca                    | ы<br>В               | Acute           |          |              |               | Comments                                                         |
| Outfall 018                                   | w                | VOAs              | 5             | 15          | 7-2011                                     | HCI          | 1A, 1B, 1C,<br>1D, 1E | х                                       |                    |                   |              |                         |            |                        |                         |                      |                 |          |              |               |                                                                  |
| Outfall 018                                   | w                | VOAs              | 3             | 1           | \                                          | None         | 2A, 2B, 2C            |                                         | х                  |                   |              |                         |            |                        |                         |                      |                 |          |              |               |                                                                  |
| Outfall 018                                   | w                | 1L Poly           | 1             |             |                                            | None         | 3                     |                                         |                    | х                 |              |                         |            |                        |                         |                      |                 |          |              |               |                                                                  |
| Outfall 018                                   | w                | 500 mL Poly       | 2             |             |                                            | None         | 4A, 4B                |                                         |                    |                   | х            |                         |            |                        |                         |                      |                 |          |              |               |                                                                  |
| Outfall 018                                   | w                | 1L Amber          | 2             |             |                                            | HCI          | 5A, 5B                |                                         |                    |                   |              | х                       |            |                        |                         |                      |                 |          |              |               | 120,2                                                            |
| Trip Blanks                                   | w                | VOAs              | 3             |             |                                            | HCI          | 6A, 6B, 6C            | ×                                       |                    |                   |              |                         |            |                        |                         |                      |                 |          |              |               | / 2/17/1                                                         |
| Trip Blanks                                   | w                | VOAs              | 3             |             |                                            | None         | 7A, 7B, 7C            |                                         | х                  |                   |              |                         |            |                        |                         |                      |                 |          |              |               |                                                                  |
| Outfail 018                                   | w                | VOAs              | 1             |             |                                            | HCI          | 8A                    |                                         |                    |                   |              |                         | х          |                        |                         |                      |                 |          |              |               | l W                                                              |
| Outfall 018 Dup                               | w                | VOAs              | 2             |             |                                            | HCI          | 8B, 8C                |                                         |                    |                   |              |                         | х          |                        |                         |                      |                 |          |              |               |                                                                  |
| Outfall 018                                   | w                | 1L Amber          | 1             |             |                                            | None         | 9A                    |                                         |                    |                   |              |                         |            | х                      |                         |                      |                 |          |              |               |                                                                  |
| Outfall 018 Dup                               | w                | 1L Amber          | 1             |             |                                            | None         | 9B                    |                                         |                    |                   |              |                         |            | х                      |                         |                      |                 |          |              |               |                                                                  |
| Outfall 018                                   | w                | 125mL Poly        | 1             |             |                                            | Na2S2O3      | 10                    |                                         |                    |                   |              |                         | ļ <u>.</u> |                        | Х                       |                      |                 |          |              |               |                                                                  |
| Outfall 018                                   | W                | 125mL Poly        | 1             | +           |                                            | Na2S2O3      | 11                    |                                         |                    |                   |              |                         |            |                        |                         | х                    |                 |          |              |               |                                                                  |
| Outfall 018                                   | w                | 1 Gal Cube        | z             | 2-17        | 1-2011<br>30                               | None         | 12                    |                                         |                    |                   |              |                         |            |                        |                         |                      | х               |          |              |               |                                                                  |
|                                               | The              | se Samples        |               | h - C       | h Danti                                    |              | 11 040 5- 44          | in otor                                 |                    | nt C              | <u> </u>     |                         |            | 100 11                 | dill for                |                      |                 | 10 00 00 | dad to       | hio wo        | rk order                                                         |
| Relinquished By                               | ·                | se Samples        | are ta        | ne:         | D PORIC                                    | 7-2011       | Received By           | is stori                                | )                  |                   | Date/        | Time:                   |            | Turn-ai                | ound tim                | ne: (Chec            | k)              |          | ded to       | IIIS WO       | rk order.                                                        |
|                                               | - AND            | 25-7              | -             |             | 16                                         | :15          | Make                  | H/K                                     | aff                |                   | 2-1          | 7.1                     |            | 24 Hou<br>48 Hou       | r:                      | 72 Hour<br>5 Day:    | :               | -        | 10 D<br>Norm | ay:<br>nal: 🔀 | <del></del><br>                                                  |
| Relinquished By                               | £11              | me)               | ate/Tii       | ne: Z-<br>/ | 17-19                                      | (<br>SU      | Received By           |                                         | <i>V</i>           |                   | Date/        |                         |            | Sample<br>Intact:      | Integrity               | y: (Check<br>On Ice: | )<br>— <b>-</b> | _        |              |               |                                                                  |
| Relinquished By                               | <del></del>      |                   | ate/Tir       | ne:         |                                            |              | Received By           |                                         |                    |                   | Date/        |                         |            |                        |                         | ents: (Che           |                 |          |              |               |                                                                  |
|                                               |                  |                   |               |             |                                            | (            | Pyain                 | tin                                     | ) lvo              | ٠                 | 1.19         | / \\                    |            | I                      |                         |                      |                 |          | NPD          | ES Level I\   | /:_X                                                             |
|                                               |                  |                   |               |             |                                            |              | 1                     | 1                                       | )                  |                   | r \          | (a.,                    | 30         |                        |                         |                      |                 |          |              |               |                                                                  |

17May 5.9

| Client Name/A         | Address:         |                 |               | Projec        |                  | <u> </u>                   | <del></del>   |                                                                                                                                     |                          |                                               |                    |                                                             |                      |                     |                   | ANA                               | LYSIS R                                                             | EQUIRE        | D      |           |                 |           |
|-----------------------|------------------|-----------------|---------------|---------------|------------------|----------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------|--------------------|-------------------------------------------------------------|----------------------|---------------------|-------------------|-----------------------------------|---------------------------------------------------------------------|---------------|--------|-----------|-----------------|-----------|
| MWH-Arcad             | dia              |                 |               | Boeing        | J-SSFL I         | NPDES                      |               |                                                                                                                                     |                          |                                               | Т                  |                                                             |                      |                     |                   |                                   |                                                                     | Ī             |        |           |                 |           |
| 618 Michillinda       |                  | uite 200        |               | Annua         | al Outfal        | I 018                      |               | , T                                                                                                                                 |                          |                                               |                    |                                                             |                      |                     |                   |                                   | 325                                                                 |               |        |           |                 |           |
| Arcadia, CA 9         |                  |                 |               |               | OSITE            |                            |               | łg,<br>A <u>c</u>                                                                                                                   |                          |                                               |                    | _m                                                          |                      |                     |                   |                                   | SS                                                                  |               |        |           |                 |           |
| , troadia, o, t       | ,,,,,,,          |                 |               |               |                  |                            |               | Se, T                                                                                                                               |                          |                                               |                    | ate                                                         |                      |                     |                   | д.                                | 9,0<br>0,0                                                          |               |        |           |                 |           |
| Test America          | Contact          | · Dehby Wil     | eon           | 1             |                  |                            |               |                                                                                                                                     |                          |                                               |                    | Perchlorate                                                 |                      |                     |                   | +                                 | Bis(2-<br>' (SVOCs 625)                                             |               |        |           |                 |           |
| 1 C3(7 IIII CIIO      | Oomaoi           | . Debby vvii    | 0011          |               |                  |                            |               | 0 _ 0                                                                                                                               |                          |                                               |                    | ည                                                           |                      |                     |                   | Sec                               | e g                                                                 | ļ             |        |           |                 |           |
|                       |                  |                 |               |               |                  |                            |               | <u>8</u> 20 8                                                                                                                       | <u>(S</u>                |                                               |                    | ٩                                                           |                      |                     |                   | ğ                                 | P, P                                                                |               |        | 1         |                 |           |
|                       |                  |                 |               |               |                  |                            |               | eta<br>3e,<br>as                                                                                                                    | ue                       |                                               |                    | т,<br>Т                                                     |                      |                     |                   | es                                | oto<br>JM,                                                          |               |        |           |                 | Comments  |
| Project Manag         | er Bro           | nwyn Kelly      |               | Phone         | Numbe            | r.                         |               | M e M<br>SSS                                                                                                                        | l g                      | ာ                                             | (S)                | JZ                                                          | - 1                  | တ္တ                 | 2)                | +                                 | n it                                                                |               |        |           |                 |           |
| . rojoot manag        | JOI: <b>D</b> IO | .,,             |               | 1             | 568-669          |                            |               | de de                                                                                                                               | 8                        | <u> </u>                                      | BA                 | Ž                                                           | 卓                    | H                   | 50.               | (8)                               | iate                                                                |               |        |           |                 |           |
| Sampler: <b>R</b> :   | . L. R.          | OVACA           |               | 1' '          |                  | •                          |               | Ta, se                                                                                                                              | <u></u>                  | <u>eg</u>                                     | ≥ :                | ဝိ                                                          | Ē                    | SO                  | 0                 | 9)                                | 2,4<br>utha                                                         |               |        |           |                 |           |
| Sampler: K            | CK DI            | 7, 17, 15, 17   |               |               | umber:           | _                          |               | 8 ≥ >                                                                                                                               | <u>۾</u>                 | l ö                                           | ants               | Z                                                           | ヺ                    | , ⊤                 | ig.               | 오                                 | g, 4                                                                |               |        |           |                 |           |
|                       |                  | ·               |               | 1             | 568-651          | 5                          |               | 8 9 Q                                                                                                                               | ۵                        | 1 (5)                                         | 3Cts               | Š                                                           | Ę                    | gi                  | p                 | a<br>B                            | TC<br>year                                                          |               |        |           |                 |           |
| Sample<br>Description | Sample<br>Matrix | Container       | # of<br>Cont. |               | npling<br>e/Time | Preservative               | Bottle #      | Total Recoverable Metals: Cu, Pb, Hg, B,<br>Ba, Fe, Mn, Sb, As, Be, Cd, Ni, Se, Ag, Tl,<br>Zn, Co, V, Hardness as CaCO <sub>3</sub> | TCDD (and all congeners) | BOD <sub>5</sub> (20 degrees C)               | Surfactants (MBAS) | Ci', SO <sub>4</sub> , NO <sub>3</sub> +NO <sub>2</sub> -N, | Nitrate-N, Nitrite-N | Turbidity, TDS, TSS | Ammonia-N (350.2) | Alpha BHC (608) + Pesticides + PP | 2,4,6 TCP, 2,4 Dinitrotoluene, ethylnexyl)phthalate, NDMA, PCP + PP |               |        |           |                 |           |
| Description           | IVIALITA         | Туре            | COIII.        |               | -2011            |                            |               | <u> </u>                                                                                                                            | <u> </u>                 | <u> </u>                                      | S                  | 0                                                           | Z                    |                     | _                 | _4                                | 4 G (2)                                                             |               |        |           |                 |           |
| Outfall 018           | w                | 1L Poly         | 1             | 15            |                  | HNO₃                       | 13A           | Х                                                                                                                                   |                          |                                               |                    |                                                             |                      |                     |                   |                                   |                                                                     |               |        |           |                 |           |
| Outfall 018 Dup       | w                | 1L Poly         | 1             |               |                  | HNO <sub>3</sub>           | 13B           | х                                                                                                                                   |                          |                                               |                    |                                                             |                      |                     |                   |                                   |                                                                     | i             |        |           |                 |           |
| Outfall 018           | w                | 1L Amber        | 2             |               |                  | None                       | 14A, 14B      |                                                                                                                                     | Х                        |                                               |                    |                                                             |                      |                     |                   |                                   |                                                                     |               |        |           |                 |           |
| Outfall 018           | w                | 1L Poly         | 1             | ,             |                  | None                       | 15            |                                                                                                                                     |                          | х                                             |                    |                                                             |                      |                     |                   |                                   |                                                                     |               |        |           |                 |           |
| Outfall 018           | w                | 500 mL Poly     | 2             |               |                  | None                       | 16A, 16B      |                                                                                                                                     |                          |                                               | х                  |                                                             |                      |                     |                   |                                   |                                                                     |               |        |           |                 |           |
| Outfall 018           | w                | 500 mL Poly     | 2             |               |                  | None                       | 17A, 17B      |                                                                                                                                     |                          |                                               |                    | Х                                                           |                      |                     |                   |                                   |                                                                     |               |        |           |                 | /21/10    |
| Outfall 018           | w                | 500 mL Poly     | 1             |               |                  | None                       | 18            |                                                                                                                                     |                          |                                               |                    |                                                             | Х                    |                     |                   |                                   |                                                                     |               |        |           |                 | / 2/18/11 |
| Outfall 018           | w                | 500 mL Poly     | 2             |               |                  | None                       | 19A, 19B      |                                                                                                                                     |                          |                                               |                    |                                                             |                      | Х                   |                   |                                   |                                                                     |               |        |           |                 | N D       |
| Outfall 018           | w                | 500 mL Poly     | 1             | $\perp \perp$ |                  | H₂SO₄                      | 20            |                                                                                                                                     |                          |                                               |                    |                                                             |                      |                     | X                 |                                   |                                                                     |               |        |           |                 | 1/8       |
| Outfall 018           | w                | 1L Amber        | 2             | ₩             |                  | None                       | 21A, 21B      |                                                                                                                                     | ļ                        | ļ                                             |                    |                                                             | :                    |                     |                   | X                                 |                                                                     |               |        |           |                 |           |
| Outfail 018           | w                | 1L Amber        | 2             | 15            | 31               | None                       | 22A, 22B      |                                                                                                                                     |                          |                                               |                    |                                                             |                      |                     |                   |                                   | X                                                                   |               |        |           |                 |           |
|                       |                  |                 |               | <u> </u>      |                  |                            |               |                                                                                                                                     |                          |                                               |                    |                                                             |                      |                     | L                 |                                   |                                                                     |               |        |           |                 |           |
|                       |                  |                 |               | İ             |                  |                            |               |                                                                                                                                     | L                        | L                                             | L                  | L                                                           |                      |                     |                   | <u> </u>                          |                                                                     |               |        |           |                 |           |
|                       |                  |                 |               |               |                  | age 2 of 3 a<br>st be adde |               |                                                                                                                                     |                          |                                               |                    |                                                             |                      |                     |                   |                                   |                                                                     |               |        |           |                 |           |
| Relinquished By       |                  |                 | Date/Ti       |               |                  |                            | Received B    |                                                                                                                                     | K OIC                    | iei io                                        | Date/              |                                                             | <del>e</del> 10      | 7                   | Cut               |                                   | round time: (0                                                      |               | event. |           |                 |           |
| 17.1                  | 1                | . <b>.</b>      | Jaco, 11      |               | _                | 1106                       | $\overline{}$ |                                                                                                                                     |                          |                                               | -1-1               |                                                             | 2                    | /18/                | /10               | 24 Hou                            | ,                                                                   | 72 Hour:      | _      | 10 Day:   |                 |           |
| KM                    |                  |                 |               |               | 16-              | 20 (<br>/11<br>1950        | JU            | On                                                                                                                                  |                          | _                                             | ///                | 1                                                           | . /                  | 16                  | 39                | 48 Hou                            |                                                                     | 5 Day:        |        | Normal:   | <b>X</b> _      |           |
| Relinquished By       |                  | > -             | ate/Ti        | me:           | -10              | 1.                         | Received B    | у                                                                                                                                   |                          |                                               | Date/              | Time:                                                       |                      |                     |                   | ١.                                |                                                                     |               |        |           |                 |           |
| 12/                   |                  |                 | z) r          | ,             | 2/18             |                            |               |                                                                                                                                     |                          |                                               |                    |                                                             |                      |                     |                   | Sample                            | Integrity: (C                                                       | heck)         | , 3.°  | Y         |                 |           |
| Relinauiched By       | ~~               | <del>~</del> // | ZL<br>Date/Ti | me.           |                  | 1950                       | Received B    |                                                                                                                                     |                          |                                               | Date/              | Γime <sup>.</sup>                                           | -                    |                     |                   | intact:                           |                                                                     | On ice:       |        |           |                 |           |
| Relinquished By       |                  |                 |               |               |                  | d                          | \ \           | _                                                                                                                                   | (                        |                                               |                    |                                                             |                      |                     |                   | Data P                            | equirements:                                                        | (Check)       |        |           |                 |           |
|                       |                  |                 |               |               |                  |                            | ひか            | a.~                                                                                                                                 | 7                        | N 10                                          | <b>~</b> √         | 7                                                           | رپي.                 | ,, \                | a:<               | No Lev                            | el IV:                                                              | All Level IV: |        | NPDES Lev | vel IV: <u></u> |           |
|                       |                  |                 |               |               |                  |                            | <del></del>   |                                                                                                                                     | $\rightarrow$            | <u>)                                     </u> |                    |                                                             |                      |                     |                   |                                   |                                                                     |               |        |           |                 |           |

#145

| Client Name/A                                                | Address:          |                              |        | Proje                   | ct:                                           |            |                    |             |                      |                                                                                                                                                                                                           |               |                      |                  | ANALYS                                                                                       | SIS RI          | EQUI                       | RED                     |                              |             |                     |          |                                                 |
|--------------------------------------------------------------|-------------------|------------------------------|--------|-------------------------|-----------------------------------------------|------------|--------------------|-------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|------------------|----------------------------------------------------------------------------------------------|-----------------|----------------------------|-------------------------|------------------------------|-------------|---------------------|----------|-------------------------------------------------|
| MWH-Arcad<br>618 Michillind<br>Arcadia, CA S<br>Test America | a Ave, S<br>91007 |                              | son    | Boein<br>Annu           | ng-SSFL  <br>nal Outfa<br>POSITE              |            |                    |             |                      | Gross Alpha(900.0), Gross Beta(900.0),<br>Tritium (H-3) (906.0), Sr-90 (905.0), Total<br>Combined Radium 226 (903.0 or 903.1) &<br>Radium 228 (904.0), Uranium (908.0), K-<br>40, CS-137 (901.0 or 901.1) |               | a)                   |                  | Pb, Hg, B, Ba,<br>Se, Ag, Tl, Zn,                                                            |                 |                            |                         |                              |             |                     |          | Comments                                        |
| Project Manage Sampler: R;                                   | ck BA             | Container                    | # of   | (626)<br>Fax N<br>(626) | e Number: 568-669 Number: 568-651 ampling     | 1          | Bottle #           | 1,4-Dioxane | Total Organic Carbon | ross Alpha(900.0), G<br>titum (H-3) (906.0), 9<br>ombined Radium 228<br>adium 228 (904.0), 10, CS-137 (901.0 or 9                                                                                         | PCBs          | Monomethyl Hydrazine | Chronic Toxicity | Total Dissolved Metals: Cu, Fe, Mn, Sb, As, Be, Cd, Ni, Co, V, Hardness as CaCO <sub>3</sub> | Cr (VI) (218.6) | Cyanide                    |                         |                              |             |                     |          | Comments                                        |
| Description Outfall 018                                      | Matrix<br>W       | Type<br>VOAs                 | Cont.  | 2-/                     | 8-2011                                        | HCI        | 23A, 23B,          | X.          | F.                   | 0 F O K 4                                                                                                                                                                                                 |               | _≥                   | 0                | FE0                                                                                          | 0               | 0                          |                         |                              |             | -                   |          |                                                 |
| Outfall 018                                                  | w                 | 250 mL Glass                 | 1      | /5                      | 531                                           | HCI        | 23C<br>24          |             | ×                    |                                                                                                                                                                                                           |               |                      |                  |                                                                                              |                 |                            | _                       |                              |             |                     |          |                                                 |
| Outfall 018                                                  | w                 | 2.5 Gal Cube<br>500 mL Amber | 1      |                         | 1                                             | None       | 25A<br>25B         |             |                      | x                                                                                                                                                                                                         |               |                      |                  |                                                                                              |                 |                            |                         |                              |             |                     |          | Unfiltered and unpreserved analysis             |
| Outfall 018                                                  | w                 | 1L Amber                     | 2      |                         | 1                                             | None       | 26A, 26B           |             |                      |                                                                                                                                                                                                           | Х             |                      | -                |                                                                                              |                 |                            |                         |                              |             |                     |          |                                                 |
| Outfall 018                                                  | w                 | 1L Amber                     | 2      |                         |                                               | None       | 27A, 27B           |             |                      |                                                                                                                                                                                                           |               | х                    |                  |                                                                                              |                 |                            |                         |                              |             |                     |          |                                                 |
| Outfall 018                                                  | w                 | 1 Gal Cube                   | 1      |                         |                                               | None       | 28                 |             |                      |                                                                                                                                                                                                           |               |                      | х                |                                                                                              |                 |                            |                         |                              |             |                     |          | Only test if first or second rain events of the |
| Outfall 018                                                  | w                 | 1L Poly                      | 1      |                         | , ,                                           | None       | 29                 |             |                      |                                                                                                                                                                                                           |               |                      |                  | х                                                                                            |                 |                            |                         |                              |             |                     |          | Filter w/in 24hrs of receipt at lab             |
| Outfall 018                                                  | w                 | 500 mL Poly                  | 1      | 4                       | ,                                             | None       | 30                 |             |                      |                                                                                                                                                                                                           |               |                      |                  |                                                                                              | х               |                            |                         |                              |             |                     |          |                                                 |
| Outfall 018                                                  | w                 | 500 mL Poly                  | 1      | 3.1                     | 8-3011                                        | NaOH       | 31                 |             | <u> </u>             |                                                                                                                                                                                                           |               |                      |                  |                                                                                              |                 | х                          |                         |                              |             |                     |          |                                                 |
|                                                              |                   |                              |        | L                       | <u>,                                     </u> |            |                    |             | ļ                    |                                                                                                                                                                                                           |               |                      | ļ                |                                                                                              |                 |                            |                         |                              |             | ļ                   |          |                                                 |
|                                                              | ļ                 |                              |        | <del> </del>            |                                               |            |                    | _           |                      |                                                                                                                                                                                                           |               |                      |                  |                                                                                              | <u> </u>        |                            | <u> </u>                |                              |             | ļ                   | ļ        |                                                 |
|                                                              | J                 | 1                            | l      | C                       | OC Page                                       | 2 of 3 and | Page 3 o           | f 3 aı      | re the               | composite sar                                                                                                                                                                                             | nples         | for (                | <br>Outfa        | II 018 for t                                                                                 | his s           | torm                       | event                   | L<br>:.                      |             | <u> </u>            | L        |                                                 |
|                                                              |                   |                              |        |                         | se must                                       | be added t | o the sam          | e wo        | rk or                | der for COC Pa                                                                                                                                                                                            | ge 1          | of 3 f               | or O             | utfall 018 f                                                                                 | or the          | e san                      | ie eve                  | ent.                         |             |                     |          |                                                 |
| Relinquished By                                              | 3                 | `                            | Date/T |                         | 16.                                           | 3-3011     | Received B         | 2           | 2                    | Date/T                                                                                                                                                                                                    | ime:<br>}<br> | //8                  | 3/               | 163                                                                                          | ر ع             | Turn-a<br>24 Hou<br>48 Hou | round tir<br>ır:<br>ır: | ne: (Che<br>72 Hou<br>5 Day: | eck)<br>ur: | _ 10 Day<br>_ Norma | ر:<br>اد | <u>-</u>                                        |
| Relinquished By                                              | Que               | ~TA                          | Date/T | ime:                    | /18/                                          | 11         | <b>Re</b> ceived B | y           |                      | Date/T                                                                                                                                                                                                    | ime:          |                      | 7                |                                                                                              |                 | Sample<br>Intact:          | e Integrit              | y: (Chec                     | ck)         | <u>√</u> 3          | yY       |                                                 |
| Reimauished By                                               |                   | [                            | Date/T | ime:                    | •                                             |            | Received B         | •           |                      | Date/T                                                                                                                                                                                                    |               | 1811                 | ,                | \a`.50                                                                                       |                 |                            | equirem                 |                              |             | _ NPDES             | S Level  | ıv:_ <b>X</b>                                   |

¥ 162

#### LABORATORY REPORT

Date: February 22, 2011

Client: Test America – Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS BLAP Cert. No.: 1775

**Laboratory No.:** A-11021802-001 **Sample ID.:** IUB1966-01

Sample Control: The sample was received by ATL in a chilled state, within the recommended hold

time and with the chain of custody record attached.

Date Sampled: 02/17/11
Date Received: 02/18/11
Temp. Received: 2.4°C
Chlorine (TRC): 0.0 mg/l

Date Tested: 02/18/11 to 02/22/11

**Sample Analysis:** The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample.

**Result Summary:** 

Sample ID. Results

IUB1966-01 100% Survival (TUa = 0.0)

Quality Control: Reviewed and approved by:

Joseph A. LeMa

Laboratory Director

#### FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0



Lab No.: A-11021802-001

Client/ID: TestAmerica IUB1966-01

Start Date: 02/18/2011

#### **TEST SUMMARY**

Species: Pimephales promelas.

Age: 13 (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Control water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C.

Number of fish per chamber: 10.

QA/QC No.: RT-110201.

#### TEST DATA

|         |         | °C           | DO        | рН         | # D | ead<br>B | Analyst & Time of Readings |
|---------|---------|--------------|-----------|------------|-----|----------|----------------------------|
| INITIAL | Control | 20.0         | 7.8       | 8-0        | 0   | 0        | 1200                       |
| 24 Hr   | Control | 20.0         | 8.2       | 7.8<br>7.6 | 0   | 0        | 7 1200                     |
| 48 Hr   | Control | 19.9         | 8.2       | 7,8<br>7.6 | 0   | 0        | 1200                       |
| Renewal | Control | 19.9         | 8.4       | 8.0<br>7.3 | 0   | 0        | 1200                       |
| 72 Hr   | Control | 19-8<br>19-7 | 80<br>7-4 | 7-8<br>7.5 | 0   | 00       | 1200                       |
| 96 Hr   | Control | 19-8         | 7-4       | 7-7        | 0   | 0        | 1200                       |

#### Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 7-3; Conductivity: 263 umho; Temp: 2.4°C;

DO: 7 . 4 mg/l; Alkalinity: 47 mg/l; Hardness: 83 mg/l; NH<sub>3</sub>-N: 0.5 mg/l.

Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No. Control: Alkalinity: 68 mg/l; Hardness: 90 mg/l; Conductivity: 346 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes (No.

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O<sub>2</sub>.

#### RESULTS

Percent Survival In: Control: /W % 100% Sample: /// %

#### Subcontract Order - TestAmerica Irvine (IUB1966)

# SENDING LABORATORY: TestAmerica Irvine Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107 Irvine, CA 92614 Phone: (949) 261-1022 Phone: (805) 650-0546 Fax: (949) 260-3297 Project Manager: Debby Wilson Receipt Temperature: C C Ice: Y N

| Standard TAT is reques  | ted unless specific due d | late is requested. => Due Date: | Initials:                                     |
|-------------------------|---------------------------|---------------------------------|-----------------------------------------------|
| Analysis                | Units                     | Expires                         | Comments                                      |
| Sample ID: IUB1966-01 ( | Outfall 018 - Water)      | Sampled: <b>02/17/11 15:30</b>  |                                               |
| Bioassay-Acute 96hr     | % Survival                | 02/19/11 03:30                  | FH minnow, EPA/821-R02-012, Sub to AqTox Labs |
| Containers Supplied:    |                           |                                 |                                               |
| 1 gal Poly (S)          |                           |                                 |                                               |

Released By
Released By

2-18-117:30 Date/Time // 2-18-11/1195

Receiver

Date/Time

Page 1 of 1



# REFERENCE TOXICANT DATA

#### FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS



QA/QC Batch No.: RT-110201

#### **TEST SUMMARY**

Species: Pimephales promelas.

Age: 15 days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF. Source: In-lab culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs. Test chamber: 600 ml beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

#### **TEST DATA**

|            |      | INITIAL | _    |      |      | 24 Hr |      |      |      |       | 48 Hr |     | ,   |
|------------|------|---------|------|------|------|-------|------|------|------|-------|-------|-----|-----|
| Date/Time: | ント   | -((     | 1100 | 2-   | 2-11 |       | 1030 |      | 2    | - 3-1 |       | 10  | 30  |
| Analyst:   |      |         |      |      |      | B     |      |      |      | /     | ~     | _   |     |
|            | °C   | DO      |      | °C   | 00   |       | # 0  | Dead | °C   | DO.   | ,,,   | # D | ead |
|            |      | Ю       | pН   | -0   | DO   | pН    | А    | В    | , T  | DO    | pН    | А   | В   |
| Control    | 19.2 | 9,2     | 8-2  | 4.2  | 7.9  | 8.0   | U    | U    | 19-2 | 8,2   | 7-8   | 0   | Ü   |
| 1.0 mg/l   | 19.2 | 9.1     | 8.2  | 19.1 | 7.9  | 8.0   | U    | 0    | 19.1 | 8.4   | 7.8   | 0   | 0   |
| 2.0 mg/l   | 19-3 | 91      | 8,2  | 19.2 | 8.1  | 7.9   | 0    | 0    | 19-2 | 8-5   | 78    | U   | 0   |
| 4.0 mg/l   | 43   | 9-2     | 8.2  | 19-1 | 8-2  | 7-9   | 2    | 2-   | 19.1 | 8.2   | 7.9   | 0   | 0   |
| 8.0 mg/l   | 19-3 | 9.2     | 8.2  | 19.2 | 7.9  | 7.8   | 10   | 10   |      | _     |       |     |     |

|            | F    | RENEWA      | AL . |       |     | 72 Hr |     |      |      |      | 96 Hr |     |     |
|------------|------|-------------|------|-------|-----|-------|-----|------|------|------|-------|-----|-----|
| Date/Time: | 2.3  | -11         | 1030 | 2-4-  | 11  |       | 110 | (، ر | 2-5  | -11  |       | 103 | o   |
| Analyst:   |      | G           | ~    |       |     | 2     |     |      |      |      | 2     |     |     |
|            | l °c | DO          | рН   | °C    | DO  | pН    | # [ | Dead | °C   | DO   |       | # D | ead |
|            |      |             | p11  |       |     | ph    | Α   | В    |      |      | pН    | Α   | В   |
| Control    | 19.1 | 8-8         | 8-1  | 20.2  | 7.9 | 8.0   | 0   | U    | 20.5 | 2.3  | 8,0   | 0   | 0   |
| 1.0 mg/l   | 19.2 | 9.1         | 8-1  | 20, 2 | 8.0 | 8.0   | U   | O    | 20.5 | 7.7  | 8.0   | 0   | 0   |
| 2.0 mg/l   | 19,1 | 9.0         | 81   | 20.1  | 8.1 | 8.0   | 0   | O    | 20,4 | 7. 4 | 80    | 0   | 0   |
| 4.0 mg/l   | 19.2 | 9.2         | 8.2  | 20,2  | 8.1 | 8.0   | 0   | 0    | 20.3 | 7.9  | 8.0   | 0   | v   |
| 8.0 mg/l   |      | <del></del> | 1    | -     | _   | ·     | _   | -    | ,    | اسع  |       |     | ~   |

Comments: Control: Alkalinity: 66 mg/l; Hardness: 92 mg/l; Conductivity: 3>5 umho. SDS: Alkalinity: 66 mg/l; Hardness: 93 mg/l; Conductivity: 3>5 umho.

Concentration-response relationship acceptable? (see attached computer analysis):

Yes (response curve normal)

No (dose interrupted indicated or non-normal)

#### **TEST ORGANISM LOG**

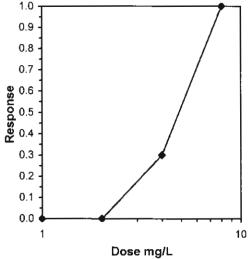


# FATHEAD MINNOW - LARVAL (Pimephales promelas)

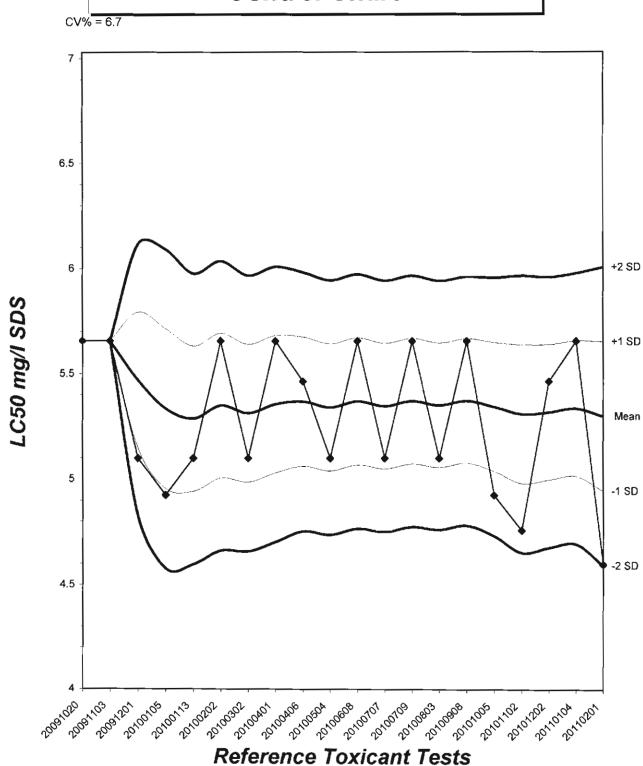
| QA/QC BATCH NO.:                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOURCE: In-Lab Culture                                                                                                                                                |
| DATE HATCHED:(-   8 -   (                                                                                                                                             |
| APPROXIMATE QUANTITY: 400                                                                                                                                             |
| GENERAL APPEARANCE:                                                                                                                                                   |
| # MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:                                                                                                                    |
| DATE USED IN LAB: 2/(///                                                                                                                                              |
| AVERAGE FISH WEIGHT: _ o o gm                                                                                                                                         |
| LOADING LIMITS: 0.65 gm/liter @ 20°C, 0.40 gm/liter @ 25°C                                                                                                            |
| Approximately 1000 fish per 10 liters limit if held overnight for acclimation without filtration @ 20°C for fish with a mean weight of 0.006 gm.                      |
| Approximately 650 fish per 10 liters limit if held overnight for acclimation without filtration @ 25°C for fish with a mean weight of 0.006 gm.                       |
| 200 ml test solution volume = 0.013 gm mean fish weight limit @ 20°C; 0.008 @ 25°C 250 ml test solution volume = 0.016 gm mean fish weight limit @ 20°C; 0.010 @ 25°C |
| ACCLIMATION WATER QUALITY:                                                                                                                                            |

Temp.: 19.2°C pH: 8.2 Ammonia: 20.1mg/l NH<sub>3</sub>-N

DO: 9-2 mg/l Alkalinity: 66 mg/l Hardness: 2 mg/l


READINGS RECORDED BY:

DATE: 2-2-11


|              |          |        |           | Acute Fish Test-96                | Hr Survival   |                            |
|--------------|----------|--------|-----------|-----------------------------------|---------------|----------------------------|
| Start Date:  | 2/1/2011 | 11:00  | Test 1D:  | RT110201                          | Sample ID:    | REF-Ref Toxicant           |
| End Date:    | 2/5/2011 | 10:00  | Lab ID:   | <b>CAATL-Aquatic Testing Labs</b> | Sample Type:  | SDS-Sodium dodecyl sulfate |
| Sample Date: | 2/1/2011 |        | Protocol: | ACUTE-EPA-821-R-02-012            | Test Species: | PP-Pimephales promelas     |
| Comments:    |          |        |           |                                   |               |                            |
| Conc-mg/L    | 1        | 2      |           |                                   |               |                            |
| D-Control    | 1.0000   | 1.0000 |           |                                   |               |                            |
| 1            | 1.0000   | 1.0000 |           |                                   |               |                            |
| 2            | 1.0000   | 1.0000 |           |                                   |               |                            |
| 4            | 0.8000   | 0.6000 |           |                                   |               |                            |
| 8            | 0.0000   | 0.0000 |           |                                   |               |                            |

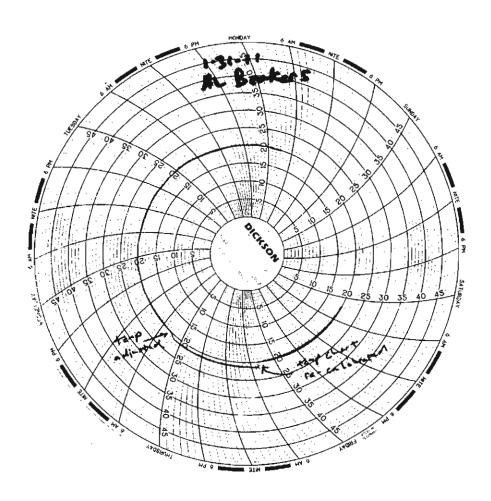
|           |        |        | Tra    | ansform: | Arcsin Sc | uare Roo | t | Number  | Total         |
|-----------|--------|--------|--------|----------|-----------|----------|---|---------|---------------|
| Conc-mg/L | Mean   | N-Mean | Mean   | Min      | Max       | CV%      | N | Resp No | <u>lumber</u> |
| D-Control | 1.0000 | 1.0000 | 1.4120 | 1.4120   | 1.4120    | 0.000    | 2 | 0       | 20            |
| 1         | 1.0000 | 1.0000 | 1.4120 | 1.4120   | 1.4120    | 0.000    | 2 | 0       | 20            |
| 2         | 1.0000 | 1.0000 | 1.4120 | 1.4120   | 1.4120    | 0.000    | 2 | 0       | 20            |
| 4         | 0.7000 | 0.7000 | 0.9966 | 0.8861   | 1.1071    | 15.685   | 2 | 6       | 20            |
| 8         | 0.0000 | 0.0000 | 0.1588 | 0.1588   | 0.1588    | 0.000    | 2 | 20      | 20            |

| Auxiliary Test    | 3          |            |           | Statistic               | Critical | Skew | Kurt |
|-------------------|------------|------------|-----------|-------------------------|----------|------|------|
| Normality of the  | e data set | cannot be  | confirmed |                         |          |      |      |
| Equality of varia | ance cann  | ot be conf | firmed    |                         |          |      |      |
|                   |            |            |           | Trimmed Spearman-Karber |          | -    |      |
| Trim Level        | EC50       | 95%        | CL        | •                       |          |      |      |
| 0.0%              | 4.5948     | 3.9863     | 5.2961    |                         |          |      |      |
| 5.0%              | 4.6576     | 3.9704     | 5.4637    |                         |          |      |      |
| 10.0%             | 4.7177     | 3.9185     | 5.6800    | 1.0                     |          | •    |      |
| 20.0%             | 4.8227     | 3.6460     | 6,3792    | 201                     |          | /    |      |
| Auto-0.0%         | 4.5948     | 3.9863     | 5.2961    | 0.9                     |          | /    |      |
|                   |            |            |           | 0.8 -                   |          | /    |      |
|                   |            |            |           | 0.7                     |          | /    |      |



# Fathead Minnow Acute Laboratory Control Chart






# Test Temperature Chart

Test No: RT-110201

Date Tested: 02/01/11 to 02/05/11

Acceptable Range: 20+/- 1°C



#### LABORATORY REPORT

Date: February 25, 2011

"dedicated to providing quality aquatic toxicity testing"

Testing

Laboratories

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Client: TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson

**Laboratory No.:** A-11021903-001

**Sample I.D.:** IUB1966-03 (Outfall 018)

Sample Control: The sample was received by ATL chilled, within the recommended hold time and

with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled: 02/18/11
Date Received: 02/19/11
Temp. Received: 2.0°C
Chlorine (TRC): 0.0 mg/l

Date Tested: 02/19/11 to 02/25/11

**Sample Analysis:** The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Chronic: NOEC TUC

Ceriodaphnia Survival: 100% 1.0 Ceriodaphnia Reproduction: 100% 1.0

**Quality Control:** Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

#### CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0



Lab No.: A-11021903-001 Date Tested: 02/19/11 to 02/25/11

Client/ID: Test America - IUB1966-03 (Outfall 018)

#### **TEST SUMMARY**

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia.

Source: In-laboratory culture.

Age: < 24 hrs; all released within 8 hrs.

Food: .1 ml YTC, algae per day.

Age: < 24 hrs; all released within 8 hrs. Food: .1 ml YTC, algae per day Test vessel size: 30 ml. Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 6 days.

QA/QC Batch No.: RT-110208. Statistics: ToxCalc computer program.

#### RESULTS SUMMARY

| Sample Concentration | Percent Survival              | Mean Number of Young<br>Per Female |
|----------------------|-------------------------------|------------------------------------|
| Control              | 100%                          | 23.5                               |
| 100% Sample          | 100%                          | 29.2                               |
| * Sample not s       | tatistically significantly le | ess than Control.                  |

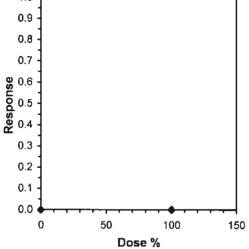
#### CHRONIC TOXICITY

| Survival NOEC     | 100% |
|-------------------|------|
| Survival TUc      | 1.0  |
| Reproduction NOEC | 100% |
| Reproduction TUc  | 1.0  |

#### QA/QC TEST ACCEPTABILITY

| Parameter                                                                             | Result                                                 |  |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Control survival ≥80%                                                                 | Pass (100% survival)                                   |  |  |  |  |
| ≥15 young per surviving control female                                                | Pass (23.5 young)                                      |  |  |  |  |
| ≥60% surviving controls had 3 broods                                                  | Pass (90% with 3 broods)                               |  |  |  |  |
| PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated | Pass (PMSD = 13.9%)                                    |  |  |  |  |
| Statistically significantly different concentrations relative difference > 13%        | Pass (no concentration significantly different)        |  |  |  |  |
| Concentration response relationship acceptable                                        | Pass (no significant response at concentration tested) |  |  |  |  |

Ceriodaphnia Survival and Reproduction Test-Survival Day 6
Sample ID: TA IUB1966-03 Start Date: 2/19/2011 12:00 Test ID: 11021903c End Date: 2/25/2011 12:00 Lab ID: CAATL-Aquatic Testing Labs Sample Type: EFF2-Industrial Protocol: FWCH EPA Test Species: Sample Date: 2/18/2011 15:31 CD-Ceriodaphnia dubia


Comments:

| Conc-%    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| D-Control | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 100       | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

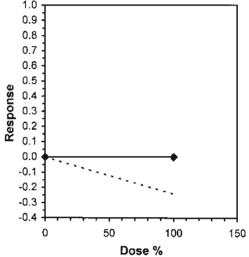
|           |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Isot   | onic   |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-%    | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Mean   | N-Mean |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 1,0000 | 1.0000 |
| 100       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 1.0000 | 1.0000 |

| Hypothesis Test (1-tail, 0.05) | NOEC | LOEC | ChV | TU |
|--------------------------------|------|------|-----|----|
| Fisher's Exact Test            | 100  | >100 |     | 1  |
| Transferente de D. Cambral     |      |      |     |    |

|       |      |    | Lir    | near Interpolation (200 Resamples) |  |
|-------|------|----|--------|------------------------------------|--|
| Point | %    | SD | 95% CL | Skew                               |  |
| 1C05  | >100 |    |        | **-                                |  |
| IC10  | >100 |    |        |                                    |  |
| IC15  | >100 |    |        | 1.0                                |  |
| IC20  | >100 |    |        | 2.1                                |  |
| IC25  | >100 |    |        | 0.9                                |  |
| IC40  | >100 |    |        | 0.8 -                              |  |
| IC50  | >100 |    |        |                                    |  |
|       |      |    |        |                                    |  |
|       |      |    |        | <b>%</b> 0.6 -                     |  |



| Ceriodaphnia Survival and Reproduction Test-Reproduction |           |        |           |          |           |           |                  |        |           |               |  |  |
|----------------------------------------------------------|-----------|--------|-----------|----------|-----------|-----------|------------------|--------|-----------|---------------|--|--|
| Start Date:                                              | 2/19/2011 | 12:00  | Test ID:  | 11021903 | C         |           | Sample ID        | );     | TA IUB196 | 36-03         |  |  |
| End Date:                                                | 2/25/2011 | 12:00  | Lab ID:   | CAATL-Aq | uatic Tes | ting Labs | Sample Ty        | /pe:   | EFF2-Indu | ıstrial       |  |  |
| Sample Date:                                             | 2/18/2011 | 15:31  | Protocol: | FWCH EP  | Α         |           | <b>Test Spec</b> | ies:   | CD-Cerioo | laphnia dubia |  |  |
| Comments:                                                |           |        |           |          |           |           |                  |        |           |               |  |  |
| Conc-%                                                   | 1         | 2      | 3         | 4        | 5         | 6         | 7                | 8      | 9         | 10            |  |  |
| D-Control                                                | 10.000    | 27.000 | 22.000    | 28.000   | 25.000    | 19,000    | 27,000           | 23.000 | 25.000    | 29.000        |  |  |
| 100                                                      | 29.000    | 29.000 | 30,000    | 31,000   | 29.000    | 30.000    | 27.000           | 30,000 | 25.000    | 32.000        |  |  |


|           |        |        |        | Transforn | n: Untran | sformed |    | Rank   | 1-Tailed | Isoto  | onic   |
|-----------|--------|--------|--------|-----------|-----------|---------|----|--------|----------|--------|--------|
| Conc-%    | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | N  | Sum    | Critical | Mean   | N-Mean |
| D-Control | 23.500 | 1.0000 | 23.500 | 10.000    | 29.000    | 23.925  | 10 |        |          | 26.350 | 1.0000 |
| 100       | 29.200 | 1.2426 | 29.200 | 25,000    | 32.000    | 6.811   | 10 | 145.50 | 82.00    | 26.350 | 1.0000 |

| Skew    | Kurt    |
|---------|---------|
| -1.9116 | 5.54014 |
|         |         |
| _       | -1.9116 |

Hypothesis Test (1-tail, 0.05)
Wilcoxon Two-Sample Test indicates no significant differences

Treatments vs D-Control

|       | Linear Interpolation (200 Resamples) |    |        |      |       |  |  |  |  |  |  |  |
|-------|--------------------------------------|----|--------|------|-------|--|--|--|--|--|--|--|
| Point | %                                    | SD | 95% CL | Skew |       |  |  |  |  |  |  |  |
| IC05  | >100                                 |    |        |      |       |  |  |  |  |  |  |  |
| IC10  | >100                                 |    |        |      |       |  |  |  |  |  |  |  |
| IC15  | >100                                 |    |        |      | 1.0   |  |  |  |  |  |  |  |
| IC20  | >100                                 |    |        |      | 0.9   |  |  |  |  |  |  |  |
| IC25  | >100                                 |    |        |      | 0.8   |  |  |  |  |  |  |  |
| IC40  | >100                                 |    |        |      | 0.7   |  |  |  |  |  |  |  |
| IC50  | >100                                 |    |        |      | 0.6 - |  |  |  |  |  |  |  |
|       |                                      |    |        |      | 0.5   |  |  |  |  |  |  |  |



Reviewed by:

Page 1

#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet



Lab No.: A-11021903-001

Client ID: TestAmerica - IUB1966-03 (Outfall 018)

Start Date: 02/19/2011

|              |          | DA                                 | Y 1                                     | <del>_</del>                                                                                                                   | Y 2                                      | <del>É</del>                                   | DAY 3                                   |                                                       | DA                                                                                                   | Y 4                                                 |                              | DAY 5                                                                      |            | DA            | AY 6                                      | D/       | AY 7                |
|--------------|----------|------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|----------------------------------------------------------------------------|------------|---------------|-------------------------------------------|----------|---------------------|
|              |          | 0 hr                               | 24hr                                    | 0 hr                                                                                                                           | 24hr                                     | 0 hr                                           | 24                                      | thr (                                                 | 0 hur                                                                                                | 24hr                                                | 0 hr                         | 0 hr 24hr                                                                  |            | 0 hr          | 24hr                                      | 0 hr     | 24hr                |
| Analyst Ir   | nitials: | 1                                  | 2                                       | 2                                                                                                                              |                                          | 12                                             | 7/                                      |                                                       |                                                                                                      | h                                                   | 1/2                          | 12                                                                         |            | 2             | 1/2                                       |          |                     |
| Time of Re   |          | rw                                 | 1230                                    | 1230                                                                                                                           | Iza                                      | 120                                            | 0 12                                    | 30 12                                                 | 130                                                                                                  | 1230                                                | 123                          | 1/130                                                                      | V I        | 3W            | 1700                                      |          |                     |
|              | DO       | 8.8                                | 8,8                                     | 9.3                                                                                                                            | 8-6                                      | 8.6                                            | 08.                                     | ,28                                                   | 7.6                                                                                                  | 7.8                                                 | 9.6                          | 9 9.                                                                       |            | 4.2.          | 7.8                                       | _        | 1                   |
| Control      | pН       | 8-1                                | 8.1                                     | 8.1                                                                                                                            | 8.0                                      | 8-1                                            | 8                                       | (1)                                                   | 8.1                                                                                                  | 8-1                                                 | 51                           | 9 8                                                                        | 7          | 8.0           | 8-1                                       |          | ~                   |
|              | Тетр     | 25, C                              | 24.9                                    | 24.4                                                                                                                           | 24.2                                     | 24.4                                           | 1 24                                    | .52                                                   | 1.3                                                                                                  | 242                                                 | 24.                          | 324                                                                        | 7          | 14.6          | 246                                       | ~        |                     |
|              | DO       | 98                                 | 8.6                                     | 9.8                                                                                                                            | 9.2                                      | 9.8                                            | 5 8                                     | 3 6                                                   | راء                                                                                                  | 75                                                  | 4                            | 5 8                                                                        | . 2 '      | 95)           | 79                                        |          |                     |
| 100%         | pН       | 7.4                                | 8.0                                     | 7.6                                                                                                                            | 79                                       | 56                                             | F 2                                     | 8 5                                                   | 7.3                                                                                                  | 7.6                                                 | 7.                           | 3 7                                                                        | 8          | 74            | 7.8                                       |          | -                   |
|              | Temp     | 25-2                               | 25.2                                    | 24.4                                                                                                                           | 24.3                                     | 24.                                            | 4 24                                    | 14 3                                                  | 4.4                                                                                                  | 24.3                                                | 34,                          | 5 24                                                                       | .3         | 4.7           | 24.7                                      |          | _                   |
|              |          | ditional                           | Paramete                                | rs                                                                                                                             |                                          |                                                |                                         |                                                       | Con                                                                                                  | trol                                                |                              |                                                                            |            |               | 100% San                                  | nple     |                     |
|              |          | nductivity                         |                                         |                                                                                                                                |                                          |                                                |                                         | 3                                                     | 33                                                                                                   |                                                     |                              |                                                                            |            |               | 315                                       | <u>'</u> |                     |
|              | Al       | kalinity (n                        | ng/l CaCC                               | )3)                                                                                                                            |                                          |                                                |                                         |                                                       | 72                                                                                                   |                                                     |                              |                                                                            |            |               | 61                                        |          |                     |
|              | Ha       | ardness (m                         | ıg/I CaCO                               | ) <sub>3</sub> )                                                                                                               |                                          |                                                |                                         |                                                       | 93                                                                                                   |                                                     |                              |                                                                            |            |               | 08                                        |          |                     |
|              | Ar       | nmonia (n                          | 1g/l NH <sub>3</sub> -1                 | N)                                                                                                                             |                                          |                                                |                                         | <                                                     | 0.1                                                                                                  |                                                     |                              |                                                                            |            | 0.            | <u>ر</u> ک                                |          |                     |
|              | ,        |                                    |                                         |                                                                                                                                |                                          |                                                | Source (                                | of Neona                                              | tes                                                                                                  |                                                     |                              |                                                                            |            |               |                                           |          |                     |
|              |          |                                    |                                         |                                                                                                                                | С                                        |                                                | D                                       |                                                       | Е                                                                                                    | F                                                   |                              | G                                                                          | $T^{-}$    | Н             | 1                                         |          | J                   |
| Rep          | ilicate. |                                    |                                         |                                                                                                                                |                                          |                                                | _                                       |                                                       |                                                                                                      |                                                     |                              | _ <u>-</u> _                                                               |            | <del></del>   | <u> </u>                                  |          |                     |
| <del>-</del> | od lD:   | 3                                  | 34                                      | 3 B                                                                                                                            | 3 (                                      |                                                | =[[                                     | S                                                     | E                                                                                                    | 31                                                  | Ź   ·                        | 3 G                                                                        | 1          | 77            | 35                                        | 7 6      | 25                  |
| Вгос         | od ID:   |                                    |                                         | 3B                                                                                                                             | 3 (                                      |                                                | ( '                                     | oung Pro                                              | _                                                                                                    | 3,5                                                 | 2   ·                        |                                                                            |            | , H           | 33                                        |          |                     |
| <del>-</del> | od ID:   | Day                                |                                         |                                                                                                                                | 3 (                                      |                                                | ( '                                     |                                                       | _                                                                                                    | 3 ч                                                 | <i>i</i>                     |                                                                            | Tota       | 77            | +-                                        | re A     | Analyst<br>Initials |
| Вгос         | od ID:   |                                    | 34                                      | В                                                                                                                              | <del>'</del>                             | Numb                                           | er of Yo                                | oung Pro                                              | duced                                                                                                |                                                     |                              | 3 G                                                                        | Tota       | I Live<br>ung | No. Liv                                   | re A     | Analyst             |
| Вгос         | od ID:   | Day                                | A (                                     | B 0 0                                                                                                                          | C 0                                      | Numb<br>D                                      | er of Yo                                | oung Pro                                              | duced                                                                                                | н                                                   |                              | 3 G                                                                        | Tota<br>Yo | I Live ung    | No. Liv                                   | re A     | Analyst             |
| Вгос         | od ID:   | Day                                | A (                                     | B O                                                                                                                            | С                                        | Numb<br>D                                      | er of Yo                                | oung Pro                                              | duced                                                                                                | н                                                   |                              | 3 G                                                                        | Tota<br>Yo | I Live ung    | No. Liv                                   | re A     | Analyst             |
| Вгос         | od ID:   | Day                                | A (                                     | B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        | C 0                                      | Numb<br>D                                      | er of Yo                                | F C                                                   | duced                                                                                                | н<br>С                                              | 1<br>0                       | 3 G                                                                        | Tota<br>Yo | I Live ung    | No. Liv                                   | re A     | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5                     | A ()                                    | B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        | c 0 0 0 0 U U 6                          | Numb  D  O  O  S  G                            | E O O O O O O O O O O O O O O O O O O O | F C C C C C C C C C C C C C C C C C C C               | duced<br>G<br>C<br>C<br>C<br>U                                                                       | H C () 1                                            | 1<br>0                       | 3 G                                                                        | Tota<br>Yo | I Live ung    | No. Liv<br>Adults                         | re A     | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5                     | A ()                                    | B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        | c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | Numb<br>D                                      | er of Yo                                | F C O O O O O O O O O O O O O O O O O O               | duced<br>G<br>C<br>C<br>U<br>U<br>4<br>8                                                             | H C C J                                             | 1<br>0                       | 3 G                                                                        | Tota<br>Yo | I Live ung    | No. Liv<br>Adults                         | re A     | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5 6 7                 | A ( ( )                                 | B<br>0 0<br>3 0<br>3 0<br>7 8<br>7 8                                                                                           | c<br>0<br>0<br>12<br>12                  | Numb  D  C  C  C  G  U                         | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | F C C C C C C C C C C C C C C C C C C C               | G C C C C C C C C C C C C C C C C C C C                                                              | H<br>C<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U | - 000<br>911                 | 3 G<br>J<br>U<br>U<br>U<br>U<br>U<br>1 G<br>I<br>I<br>I<br>I               | Tota Yo    | I Live ung    | No. Liv<br>Adults                         | re A     | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5 6 7 Total           | A C C C C C C C C C C C C C C C C C C C | B<br>0 0<br>3 0<br>3 0<br>7 8<br>7 8<br>7 15<br>                                                                               | c<br>0<br>0<br>12<br>12                  | Numb  D  C  C  C  G  U                         | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Dung Production F                                     | 15<br>2                                                                                              | H C O J O G 13 - 23                                 | 1<br>0                       | 3 G<br>J<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U  | Tota<br>Yo | I Live ung    | No. Liv<br>Adults  10 10 10 10 10 10      |          | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5 6 7                 | A ( ( )                                 | B<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | c<br>0<br>0<br>12<br>12                  | Numb  D  O  O  S  G  U  Z  8                   | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Dung Production F                                     | duced<br>G<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | H<br>C<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U | - 0005<br>911<br>- 25<br>C   | 3 G<br>J<br>U<br>U<br>U<br>U<br>U<br>1 G<br>I<br>I<br>I<br>I               | Tota Yo    | I Live ung    | No. Liv<br>Adults<br>10<br>10<br>10<br>10 |          | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5 6 7 Total           | A C C C C C C C C C C C C C C C C C C C | B<br>0 0<br>3 0<br>3 0<br>7 8<br>7 8<br>7 15<br>                                                                               | c<br>0<br>0<br>12<br>12                  | Numb  D  C  C  C  G  U                         | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Dung Production F                                     | 15<br>2                                                                                              | H C O J O G 13 - 23                                 | - 000<br>911                 | 3 G<br>J<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U  | Tota Yo    | I Live ung    | No. Liv<br>Adults  10 10 10 10 10 10      |          | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5 6 7 Total 1 2       | A C C C C C C C C C C C C C C C C C C C | B<br>0 0<br>3 0<br>3 0<br>7 8<br>7 8<br>7 15<br>                                                                               | c 0 0 0 0 12 1 12 1 0 0 0                | Numb  D  O  O  S  G  U  Z  8                   | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Dung Production F                                     | 15<br>-                                                                                              | H C O J O G 13 - 23                                 | - 0005<br>911<br>- 25<br>0   | 3 G<br>J<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U  | Tota Yo    | I Live ung    | No. Liv<br>Adults<br>10<br>10<br>10<br>10 |          | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5 6 7 Total 1 2 3     |                                         | B<br>0 0<br>3 0<br>3 0<br>7 8<br>7 8<br>7 15<br><br>0 27<br>7 0                                                                | c 0 0 0 0 12 1 12 1 0 0 0                | Numb  D  O  O  S  G  U  Z  8                   | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Doung Proving F                                       | duced<br>G<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | H C O J O O O S                                     | - 0005<br>911<br>- 25<br>000 | 3 G<br>1 U U O U U G<br>1 G<br>1 G<br>1 G<br>1 G<br>1 G<br>1 G<br>1 G<br>1 | Tota Yo    | I Live ung    | No. Liv<br>Adults<br>10<br>10<br>10<br>10 |          | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5 6 7 Total 1 2 3 4   |                                         | B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        | c 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 0 | Numb  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Doung Pro-<br>F C C C C C C C C C C C C C C C C C C C | duced<br>G<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>S<br>S<br>S<br>S<br>S                               | H C O J O O O S                                     | - 0005911-<br>25004          | 3G<br>J<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U   | Tota Yo    | I Live ung    | No. Liv<br>Adults<br>10<br>10<br>10<br>10 |          | Analyst             |
| Sample       | od ID:   | Day  1 2 3 4 5 6 7 Total 1 2 3 4 5 |                                         | B<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | Numb  D  C C C S G C C C S G C C C C C C C C C | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Doung Pro-<br>F C C C C C C C C C C C C C C C C C C C | duced<br>G<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                          | H C O J O O O S                                     | - 0005911-<br>250046         | 3G<br>J U U O U O O O O O O O O O O O O O O O                              | Tota Yo    | I Live ung    | No. Liv<br>Adults<br>10<br>10<br>10<br>10 |          | Analyst             |

Circled fourth brood not used in statistical analysis.

<sup>7</sup>th day only used if <60% of the surviving control females have produced their third brood.

#### Subcontract Order - TestAmerica Irvine (IUB1966)

#### SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Debby Wilson

#### RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756

Project Location: California

Receipt Temperature: 2 ℃ °C

Ice: (Y)/ 1

| Standard TAT is reques                                        | ted unless specific due | date is requested. => Due Date: | Initials:                                     |
|---------------------------------------------------------------|-------------------------|---------------------------------|-----------------------------------------------|
| Analysis                                                      | Units                   | Expires                         | Comments                                      |
| Sample ID: IUB1966-01 (0                                      | Outfall 018 (Grab) - Wa | ter) Sampled: 02/17/11 1        | 5:30                                          |
| Bioassay-Acute 96hr<br>Containers Supplied:<br>1 gal Poly (S) | % Survival              | 02/19/11 03:30                  | FH minnow, EPA/821-R02-012, Sub to AqTox Labs |
| Sample ID: IUB1966-03 (0                                      | Outfall 018 (Composite  | e) - Water) Sampled: 02/18/11 1 | 5:31                                          |
| Bioassay-7 dy Chmic                                           | N/A                     | 02/20/11 03:31                  | Cerio, EPA/821-R02-013, Sub to AqTox<br>Labs  |
| Containers Supplied:                                          |                         |                                 |                                               |
| 1 gal Poly (AB)                                               |                         |                                 |                                               |

Released By

Date/Time

Received M

Date/Time

Page 1 of



# REFERENCE TOXICANT DATA



# Ceriodaphnia dubia Chronic Toxicity Test Reference Toxicant Data

#### CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

#### REFERENCE TOXICANT - NaCl



QA/QC Batch No.: RT-110208

Date Tested: 02/08/11 to 02/14/11

#### **TEST SUMMARY**

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

#### **RESULTS SUMMARY**

| Sample Concentration | Percent Survi | val | Mean Number of<br>Young Per Female |    |  |
|----------------------|---------------|-----|------------------------------------|----|--|
| Control              | 100%          |     | 22.7                               |    |  |
| 0.25 g/l             | 100%          |     | 24.5                               |    |  |
| 0.5 g/l              | 100%          |     | 21.7                               |    |  |
| 1.0 g/l              | 90%           |     | 12.8                               | *  |  |
| 2.0 g/l              | 90%           |     | 3.5                                | *  |  |
| 4.0 g/l              | 0%            | *   | 0                                  | ** |  |

<sup>\*</sup> Statistically significantly less than control at P = 0.05 level

\*\* Reproduction data from concentrations greater than survival NOEC are

excluded from statistical analysis.

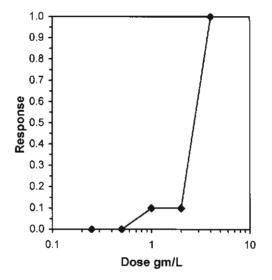
#### CHRONIC TOXICITY

| Survival LC50     | 2.5 g/l   |
|-------------------|-----------|
| Reproduction IC25 | 0.72 mg/l |

#### QA/QC TEST ACCEPTABILITY

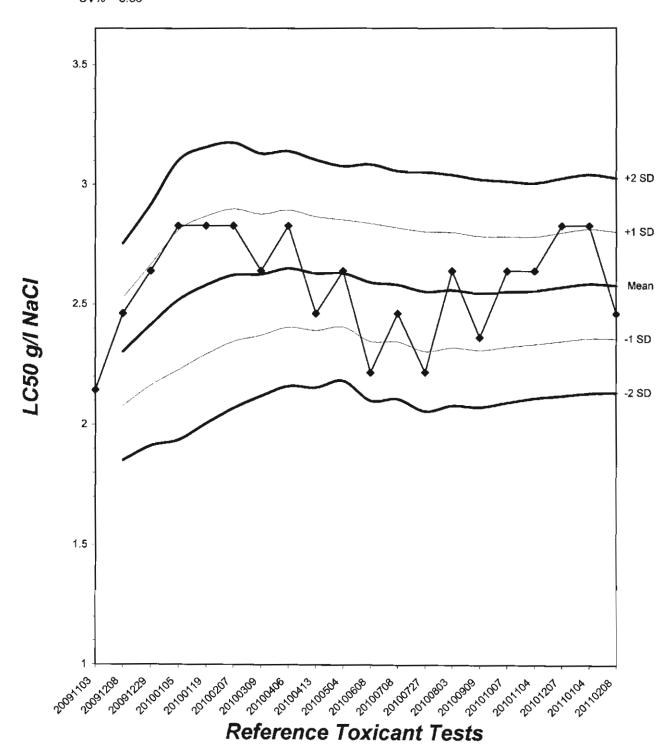
| Parameter                                       | Result                                                    |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| Control survival ≥80%                           | Pass (100% Survival)                                      |  |  |  |  |  |
| ≥15 young per surviving control female          | Pass (22.7 young)                                         |  |  |  |  |  |
| ≥60% surviving controls had 3 broods            | Pass (90% with 3 broods)                                  |  |  |  |  |  |
| PMSD <47% for reproduction                      | Pass (PMSD = 14.2%)                                       |  |  |  |  |  |
| Stat. sig. diff. conc. relative difference >13% | Pass (Stat. sig. diff. conc. Relative difference = 43.6%) |  |  |  |  |  |
| Concentration response relationship acceptable  | Pass (Response curve normal)                              |  |  |  |  |  |

| Ceriodaphnia Survival and Reproduction Test-Survival Day 6 |                                       |        |          |                              |        |        |           |        |           |               |  |  |
|------------------------------------------------------------|---------------------------------------|--------|----------|------------------------------|--------|--------|-----------|--------|-----------|---------------|--|--|
| Start Date:                                                | 2/8/2011 1                            | 4:00   | Test ID: | RT110208                     | c      |        | Sample ID | :      | REF-Ref 1 | Toxicant      |  |  |
| End Date:                                                  | 2/14/2011                             | 14:00  | Lab ID:  | ID: CAATL-Aquatic Testing La |        |        | Sample Ty | rpe:   | NACL-Soc  | dium chloride |  |  |
| Sample Date:                                               | mple Date: 2/8/2011 Protocol: FWCH El |        |          |                              | Α      |        | Test Spec | ies:   | CD-Cerioo | laphnia dubia |  |  |
| Comments:                                                  |                                       |        |          |                              |        | _      |           |        |           |               |  |  |
| Conc-gm/L                                                  | 1                                     | 2      | 3        | 4                            | 5      | 6      | 7         | 8      | 9         | 10            |  |  |
| D-Control                                                  | 1.0000                                | 1.0000 | 1.0000   | 1.0000                       | 1.0000 | 1.0000 | 1.0000    | 1.0000 | 1.0000    | 1.0000        |  |  |
| 0.25                                                       | 1.0000                                | 1.0000 | 1.0000   | 1.0000                       | 1.0000 | 1.0000 | 1.0000    | 1.0000 | 1.0000    | 1.0000        |  |  |
| 0.5                                                        | 1.0000                                | 1.0000 | 1.0000   | 1.0000                       | 1.0000 | 1.0000 | 1.0000    | 1.0000 | 1.0000    | 1.0000        |  |  |
| 1                                                          | 0.0000                                | 1.0000 | 1.0000   | 1.0000                       | 1.0000 | 1.0000 | 1,0000    | 1.0000 | 1.0000    | 1.0000        |  |  |
| 2                                                          | 0.0000                                | 1.0000 | 1.0000   | 1.0000                       | 1.0000 | 1.0000 | 1.0000    | 1.0000 | 1.0000    | 1.0000        |  |  |
| 4                                                          | 0.0000                                | 0.0000 | 0.0000   | 0.0000                       | 0.0000 | 0.0000 | 0.0000    | 0.0000 | 0.0000    | 0.0000        |  |  |


| •         |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Number | Total  |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-gm/L | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Resp   | Number |
| D-Control | 1,0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 0      | 10     |
| 0.25      | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 0.5       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 1         | 0.9000 | 0.9000 | 1    | 9    | 10    | 10 | 0.5000   | 0.0500   | 1      | 10     |
| 2         | 0.9000 | 0.9000 | 1    | 9    | 10    | 10 | 0.5000   | 0.0500   | 1      | 10     |
| 4         | 0.0000 | 0.0000 | 10   | 0    | 10    | 10 |          |          | 10     | 10     |

|                                |      |      |         |    | <br> |   |
|--------------------------------|------|------|---------|----|------|---|
| Hypothesis Test (1-tail, 0.05) | NOEC | LOEC | ChV     | TU |      | - |
| Fisher's Exact Test            | 2    | 4    | 2.82843 |    |      |   |
| Transmanta va D. Cantral       |      |      |         |    |      |   |

Treatments vs D-Control

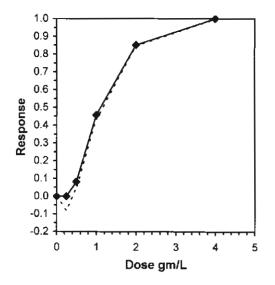

| Trimmed | Spearmar | n-Karber |
|---------|----------|----------|
|---------|----------|----------|

| Trim Level | EC50   | 95%    | CL     | _ |
|------------|--------|--------|--------|---|
| 0.0%       | 2.4623 | 2.0444 | 2.9656 |   |
| 5.0%       | 2.5965 | 2.1386 | 3.1523 |   |
| 10.0%      | 2.7216 | 2.5094 | 2.9517 |   |
| 20.0%      | 2.7216 | 2.5094 | 2.9517 |   |
| Auto-0.0%  | 2.4623 | 2.0444 | 2.9656 |   |



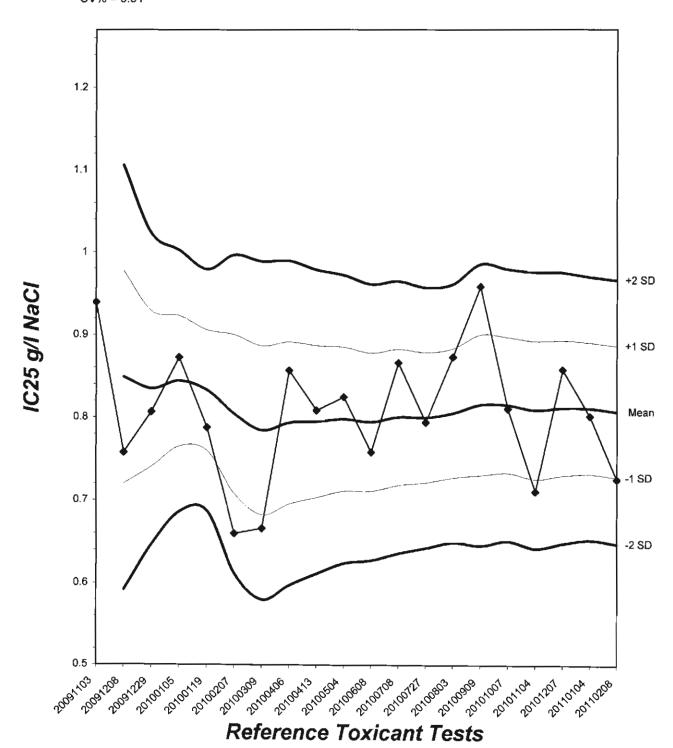
### Ceriodaphnia dubia Chronic Survival Laboratory Control Chart

CV% = 8.66




|              |            |         | Ceriod   | aphnia Su       | rvival and | l Reprodu | action Tes | st-Repro      | duction  |               |
|--------------|------------|---------|----------|-----------------|------------|-----------|------------|---------------|----------|---------------|
| Start Date:  | 2/8/2011 1 | 4:00    | Test ID: | t ID: RT110208c |            |           |            | ):            | REF-Ref  | oxicant       |
| End Date:    | 2/14/2011  | 14:00   | Lab ID:  |                 |            |           | Sample Ty  | /pe:          | NACL-Soc | fium chloride |
| Sample Date: | Protocol:  | FWCH EP | Ά        |                 | Test Spec  | ies:      | CD-Cerio   | laphnia dubia |          |               |
| Comments:    |            |         |          |                 |            |           |            |               |          |               |
| Conc-gm/L    | 1          | 2       | 3        | 4               | 5          | 6         | 7          | 8             | 9        | 10            |
| D-Control    | 22.000     | 22.000  | 27.000   | 21.000          | 22.000     | 22.000    | 23.000     | 26.000        | 18.000   | 24.000        |
| 0.25         | 25.000     | 26.000  | 27.000   | 25.000          | 27.000     | 25.000    | 21.000     | 24.000        | 23.000   | 22.000        |
| 0.5          | 26.000     | 20.000  | 22.000   | 24.000          | 24.000     | 21.000    | 23.000     | 12.000        | 22.000   | 23.000        |
| 1            | 3.000      | 14.000  | 17.000   | 10.000          | 10.000     | 20.000    | 9.000      | 16,000        | 17.000   | 12.000        |
| 2            | 0.000      | 3.000   | 4.000    | 5.000           | 3.000      | 3.000     | 6.000      | 3.000         | 3.000    | 5.000         |
| 4            | 0.000      | 0.000   | 0.000    | 0.000           | 0.000      | 0.000     | 0.000      | 0.000         | 0.000    | 0.000         |

|           |        |        | -      | Transform: Untransformed |        |        |    |        | 1-Tailed | Isoto  | nic    |
|-----------|--------|--------|--------|--------------------------|--------|--------|----|--------|----------|--------|--------|
| Conc-gm/L | Mean   | N-Mean | Меап   | Min                      | Max    | CV%    | N  | Sum    | Critical | Mean   | N-Mean |
| D-Control | 22.700 | 1.0000 | 22.700 | 18.000                   | 27.000 | 11.193 | 10 |        |          | 23.600 | 1.0000 |
| 0.25      | 24.500 | 1.0793 | 24.500 | 21.000                   | 27.000 | 8.220  | 10 | 126.00 | 76.00    | 23.600 | 1.0000 |
| 0.5       | 21.700 | 0.9559 | 21.700 | 12.000                   | 26.000 | 17.521 | 10 | 102.00 | 76.00    | 21.700 | 0.9195 |
| *1        | 12.800 | 0.5639 | 12.800 | 3.000                    | 20.000 | 39.115 | 10 | 56.00  | 76.00    | 12.800 | 0.5424 |
| *2        | 3.500  | 0.1542 | 3.500  | 0.000                    | 6.000  | 47.140 | 10 | 55.00  | 76.00    | 3.500  | 0.1483 |
| 4         | 0.000  | 0.0000 | 0.000  | 0.000                    | 0.000  | 0.000  | 10 |        |          | 0.000  | 0.0000 |


| Auxiliary Tests                   |              |            |         |         | Statistic | Critical | Skew    | Kurt |
|-----------------------------------|--------------|------------|---------|---------|-----------|----------|---------|------|
| Shapiro-Wilk's Test indicates nor | n-normal dis | stribution |         | 0.93185 | 0.947     | -0.9406  | 2.62377 |      |
| Bartlett's Test indicates unequal | variances (  | 0 = 7.37E  |         | 13.9773 | 13.2767   |          |         |      |
| Hypothesis Test (1-tail, 0.05)    | NOEC         | LOEC       | ChV     | TU      |           | 11-1     |         |      |
| Steel's Many-One Rank Test        | 0.5          | 1          | 0.70711 |         |           | _        | -       |      |
| Treatments vs D-Control           |              |            |         |         |           |          |         |      |

|       |        | _      |        | Linea  | ar Interpolat | ion (200 Resamples) |
|-------|--------|--------|--------|--------|---------------|---------------------|
| Point | gm/L   | SD     | 95% CL |        | Skew          |                     |
| 1C05  | 0.4053 | 0.0808 | 0.3089 | 0.5614 | 0.1046        |                     |
| IC10  | 0.5258 | 0.0669 | 0.3923 | 0.6229 | -0.4943       |                     |
| IC15  | 0.5921 | 0.0605 | 0.4653 | 0.6927 | -0.5050       | 1.0                 |
| IC20  | 0.6584 | 0.0577 | 0.5400 | 0.7643 | -0.3444       | 0.9                 |
| IC25  | 0.7247 | 0.0565 | 0.6167 | 0.8564 | 0.0715        | - 1                 |
| IC40  | 0.9236 | 0.0739 | 0.8175 | 1.1269 | 0.8628        | 0.8                 |
| IC50  | 1.1075 | 0.1074 | 0.9314 | 1.3257 | 0.1508        | 0,7                 |



# Ceriodaphnia dubia Chronic Reproduction Laboratory Control Chart

CV% = 9.91



#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

#### Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-110208

Start Date: 02/08/2011

| G 1       |       |               |     | Nu | mbei       | of Y | oung | Produ | iced |        |     | Total         | No.            | Analyst  |
|-----------|-------|---------------|-----|----|------------|------|------|-------|------|--------|-----|---------------|----------------|----------|
| Sample    | Day   | A             | В   | C  | D          | E    | F    | G     | н    | I      | J   | Live<br>Young | Live<br>Adults | Initials |
|           | 1     | 0             | 0   | 0  | 0          | 0    | 0    | 0     | 0    | 0      |     | 0             | SU             |          |
|           | 2     | 0             | 0   | 0  | 0          | 0    | 0    | 0     | 0    | 0      | 0   | 0             | 10             | //       |
|           | 3     | 3             | 0   | 0  | 4          | 4    | U    | 5     | 3    | 0      | 4   | 23            | 10             | gr       |
| Control   | 4     | 7             | 3   | 4  | 7          | 6    | 3    | つ     | 0    | 4      | 0   | 4             | 10             | m        |
| Control   | 5     | 12            | 8   | 8  | 0          | 0    | 9    | 0     | 9    | 0      | 8   | 54            | 10             | /ML      |
|           | 6     | 0             | 1 \ | 15 | 10         | 12   | 10   | 1     | 14   | 14     | 12  | 109           | 10             | M        |
|           | 7     | _             |     | _  | }          | ĺ    |      | Ì     | 1    | -      | , _ | 1             |                | /_       |
|           | Total | 22            | 22  | 27 | 21         | 22   | 22   | 23    | 26   | 18     | 24  | 227           | 10             | m        |
|           | 1     | 0             | 0   | 0  | 0          | 0    | 0    | 0     | 0    | 0      | 0   | 0             | (0             | h        |
|           | 2     | 0             | 0   | 0  | $\bigcirc$ | 0    | c    | 0     | 0    | 0      |     | 0             | 10             |          |
|           | 3     | 4             | 0   | 5  | 4          | 4    | 0    | 0     | 0    | 5      | 4   | 26            | 10             | M        |
| 0.05 . // | 4     | 7             | 5   | フ  | 8          | 0    | 4    | 4     | 7    | $\cap$ | 0   | 47            | 10             | 1 M      |
| 0.25 g/l  | 5     | 14            | 9   | 15 | 0          | 8    | つ    | 7     | 9    | 0      | 8   | 77            | 10             | 190~     |
|           | 6     | 0             | 12  | 0  | 13         | 15   | 14   | 10    | 10   | 11     | 10  | a5            | 10             | In       |
|           | 7     | _             |     |    |            | )    | -    | İ     | }    | ł      | ĺ   | -             | _              | <u></u>  |
|           | Total | 25            | 26  | 27 | 75         | 27   | 25   | 21    | 24   | 23     | 22  | 245           | 10             | 1h       |
|           | 1     | $\mathcal{C}$ | 0   | C  | C          | C    |      | 0     | C    | C      | 0   | 0             | 10             | M        |
|           | 2     | 0             | 0   | C  | C          | C    | C    | 0     | C    | C      | 0   | 0             | 10             | 1        |
|           | 3     | 5             | 0   | 0  | 4          | 3    | 0    | U     | 0    | 0      | 4   | 16            | 10             | h        |
| 0.5 -/1   | 4     | 6             | 3   | 4  | 0          | 7    | 4    | 3     | 2    | 4      |     | 36            | 10             | M        |
| 0.5 g/l   | 5     | 15            | 2   | 7  | 8          | 14   | )    | 7     | フ    | 6      | 9   | 27            | 10             | 180      |
|           | 6     | 0             | 10  | 11 | 12         | 0    | 10   | 13    | 0    | 12     | 10  | 78            | 10             | h        |
|           | 7     | _             |     |    |            |      |      | -     |      | _      |     |               |                | 1        |
|           | Total | 26            | 20  | 27 | スレ         | 24   | 2)   | 23    | 12   | 2      | 23  | 217           | 10             |          |

Circled fourth brood not used in statistical analysis.

<sup>7</sup>th day only used if <60% of the surviving control females have produced their third brood.

#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

#### Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-110208

Start Date: 02/08/2011

| Samuela Daniel |       |   |    | Nı | ımbe | r of Y         | oung l     | Produ | ced |                |    | Total         | No.            | Analyst    |
|----------------|-------|---|----|----|------|----------------|------------|-------|-----|----------------|----|---------------|----------------|------------|
| Sample         | Day   | A | В  | С  | D    | E              | F          | G     | н   | 1              | J  | Live<br>Young | Live<br>Adults | Initials   |
|                | 1     | 0 | 0  | C  | C    | $\overline{C}$ | C          | C     | 0   | C              |    | 0             | 10             | R          |
|                | 2     | 0 | 0  | 0  | 0    | 0              | 0          | 0     | 0   | 0              | 0  | $\mathcal{C}$ | 10             | la         |
|                | 3     | 0 | 0  | 0  | C    | C              | 0          | 0     | 3   | 3              | 0  | 6             | 10             | n          |
| 1.0 0/1        | 4     | 3 | 4  | 3  | 2    | 3              | 4          | 4     | 0   | 0              | 4  | 30            | 10             |            |
| 1.0 g/l        | 5     | 0 | 4  | 6  | 5    | 0              | 6          | 0     | フ   | つ              | 0  | 35            | 10             |            |
|                | 6     | X | 6  | 8  | 0    | 7              | 10         | 5     | 6   |                | 8  | 57            | 9              | n          |
|                | 7     |   | _  | _  | _    | 1              | _          | ĺ     | 1   | {              | -  |               |                |            |
|                | Total | 3 | 14 | 17 | 10   | 10             | W          | 9     | 16  | 17             | 12 | - 128         | 9              |            |
|                | 1     | 0 | 0  | 0  | C    | C              | $\bigcirc$ | 0     | 0   | 0              | c  | C             | 10             | 1          |
|                | 2     | 0 | C  | 0  | C    | C              | 0          | 0     | 0   | 0              | C  | 0             | 10             | 1          |
|                | 3     | 0 | C  | 0  | 0    | 0              | 0          | d     | C   | $\overline{C}$ | C  | C             | 10             | <b>/</b> ^ |
| 2.0 "          | 4     | C | 0  | 2  | 3    | 0              | 0          | 3     | 0   | 3              | 3  | 14            | 10             | h          |
| 2.0 g/l        | 5     | U | 3  | 0  | 0    | 3              | 0          | 3     | 3   |                | 0  | 12            | 10             | 1/2        |
|                | 6     | X | 0  | 2  | 2    | 0              | 3          | 0     | 0   | 0              | Z  | G             | 9              | 2          |
|                | 7     |   | _  |    |      |                |            | ļ     | J   |                | _  |               |                |            |
|                | Total | U | 3  | 4  | 5    | 3              | 3          | le    | 3   | 3              | 5  | 35            | 9              | 9          |
|                | 1     | × | X  | ×  | X    | X              | ×          | X     | X   | X              | X  | 0             | 0              | 2_         |
|                | 2     | _ | _  | ^  |      | _              | _          |       | 1   | -              |    |               |                |            |
|                | 3     |   | _  | _  | _    | _              | _          |       | )   |                | -  |               |                |            |
| 40. "          | 4     | _ | _  |    | _    | _              | -          | 1     |     | _              |    |               |                |            |
| 4.0 g/l        | 5     |   | _  | _  |      | _              |            |       |     | _              | -  |               | _              |            |
|                | 6     |   | -  | _  |      | _              | -          | -,-   | ,   | _              | _  |               |                |            |
|                | 7     |   |    | _  |      | . —            |            | 1     | _   | _              |    |               |                |            |
|                | Total | 0 | 0  | 0  | 0    | 0              | 0          | C     | 0   | 0              | C  | 0             | 0              | m          |

Circled fourth brood not used in statistical analysis.

<sup>7</sup>th day only used if <60% of the surviving control females have produced their third brood.

#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

#### Reference Toxicant - NaCl Water Chemistries Raw Data Sheet



QA/QC No.: RT-110208

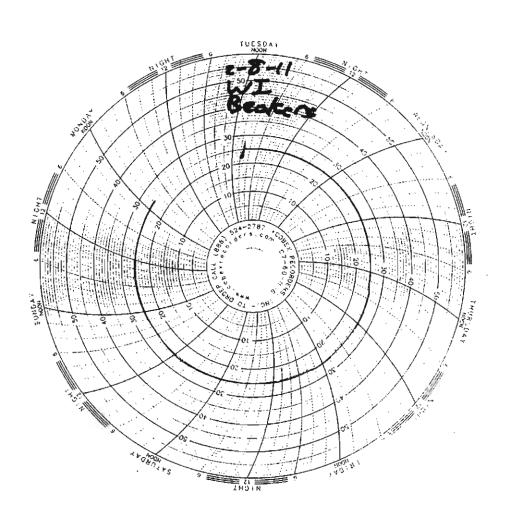
Start Date: 02/08/2011

|           |          |          |              |         |         |              |        |          | <del>"</del> |         |        |          |       |          |       |
|-----------|----------|----------|--------------|---------|---------|--------------|--------|----------|--------------|---------|--------|----------|-------|----------|-------|
|           |          | DA       | .Y 1         | DA      | Y 2     | DA           | Y 3    | DA       | Y 4          | DA      | Y 5    | DA       | Y 6   | DA       | Y 7   |
|           |          | Initial  | Final        | Initial | Final   | Initial      | Final  | Initial  | Final        | Initial | Final  | Initial  | Final | Initial  | Final |
| Analyst I | nitials: | m        | g            | m       |         | (            |        |          | <b>/</b>     |         | 7      | 2        | 1     | <b>-</b> |       |
| Time of R | eadings: | jya      | 1400)        | HW      | 1330    | 133 <i>D</i> | 33     | 330      | Ba           | KRW     | 1300   | 1300     | 140   | -        |       |
|           | DO       | 8.3      | 8-4          | 29      | 8.2     | 8.6          | 8      | 9.0      | 82           | 8.4     | 8.1    | 8.4      | 8.2   |          | -     |
| Control   | рН       | 8.2      | 53           | 8.2     | 8.1     | 8,1          | 8-1    | T.U      | 50           | 29      | 7.9    | 7.9      | 7.4   |          |       |
|           | Temp     | 24.7     | 247          | 25.0    | 24.2    | 247          | 24/    | 26       | 242          | 24.6    | 244    | 55.1     | 24.9  |          | _     |
|           | DO       | 66       | 8,8          | 8.4     | 8-1     | 8.7          | 8.2    | 8,8      | 8.3          | 8-5     | 8.4    | 8.5      | 84    | _        |       |
| 0.25 g/l  | pН       | 8.2      | 53           | 8.3     | 81      | 5.           | 81     | 8,0      | B.O          | 81)     | 7.9    | 8.0      | 7-4   | _        | )     |
|           | Temp     | 217      | 244          | 24.8    | 743     | 748          | 744    | 256      | 245          | 25-2    | 24.3   | 24.7     | 24.4  |          | _     |
|           | DO       | 85       | <i>\$</i> -7 | 8-6     | 81      | 67           | 8.6    | 8.0      | 85           | 8-5     | 8.8    | 8.7      | 86    | )        |       |
| 0.5 g/l   | pН       | 8.2      | 84           | 8.3     | 81      | 5-1          | 80     | 8-0      | 7.9          | 8.0     | 7.9    | 8.0      | 7-6   |          | : —   |
|           | Temp     | 246      | 243          | 250     | 242     | 248          | 246    | 256      | 24.8         | 254     | 243    | 24.6     | 35-1  | ţ        |       |
| _         | DO       | 8-5      | 8.6          | 8.5     | 8.2     | 88           | 8.6    | 92       | 84           | 8.6     | 8.6    | 84       | 86    |          | 1     |
| 1.0 g/l   | рН       | 8.2      | 83           | 8.3     | 8-1     | 8-1          | 7.9    | 80       | 29           | 80      | 7.9    | 810      | 7,7   |          | 1     |
|           | Temp     | <u> </u> | 21.2         | 249     | 243     | <i>25-0</i>  | 24.4   | 25-60    | 245          | 250     | 24.4   | 243      | 25-0  |          | _     |
|           | DO       | 8.6      | 88           | 5.4     | 8.2     | 8.6          | 24     | 9,1      | 8-2          | 84      | \$:5   | 8.2      | 8.0   | -        | _     |
| 2.0 g/l   | pН       | 8.2      | 83           | 8,2     | \$0     | 8-1          | 7.9    | 81)      | 2.9          | 80      | 7.9    | 7.9      | 7.7   | 1        | _     |
|           | Temp     | 249      | 243          | 24.9    | 24.2    | 25.1         | 745    | 25,6     | 247          | 248     | 24.1   | 24.5     | 25-1  | -        |       |
|           | DO       | 7.6      | 82           |         | _       | _            |        | _        |              |         | _      | _        | ~     | ~        | -     |
| 4.0 g/l   | pН       | 7.2      | 8.3          |         |         |              |        |          | _            | _       | _      | _        |       | _        | _     |
|           | Temp     | 25.6     | 243          | 34      |         |              |        |          |              |         |        | ~        | _     | _        | _     |
|           | D:       | ecolved  | l Ovva       | n (DO)  | reading | rc ara in    | ma/1 ( | ↑ · Tamı | 2020112      | (Tamp)  | randin | ac ara i | · °C  |          |       |

Dissolved Oxygen (DO) readings are in mg/l O2; Temperature (Temp) readings are in °C.

|                                      |       | Control |       | High Concentration |       |       |  |  |
|--------------------------------------|-------|---------|-------|--------------------|-------|-------|--|--|
| Additional Parameters                | Day 1 | Day 3   | Day 5 | Day 1              | Day 3 | Day 5 |  |  |
| Conductivity (μS)                    | 332   | 343     | 350   | 6880               | 4340  | 4200  |  |  |
| Alkalinity (mg/l CaCO <sub>3</sub> ) | 68    | 70      | 71    | 70                 | 20    | 71    |  |  |
| Hardness (mg/l CaCO <sub>3</sub> )   | 92    | 92      | 91    | 97                 | 92    | 92    |  |  |

| Source of Neonates |    |    |    |    |                |    |      |     |    |    |  |  |  |
|--------------------|----|----|----|----|----------------|----|------|-----|----|----|--|--|--|
| Replicate:         | A  | В  | С  | D  | <sub>ச</sub> E | F  | G    | Н   | I  | J  |  |  |  |
| Brood ID:          | 79 | 3B | 10 | 40 | IE             | if | 2-67 | 3-1 | 15 | 35 |  |  |  |




# Test Temperature Chart

Test No: RT-110208

Date Tested: 02/08/11 to 02/14/11

Acceptable Range: 25+/- 1°C





EBERUNE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (518) 235-8438
Toll Free (800) 841-5487
www.aberlinessrvices.com

March 18, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine IUB1966

Eberline Analytical Report S102233-8663

Sample Delivery Group 8663

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Job No. IUB1966. The samples were received on February 22, 2011.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

N. Joseph Verville

Client Services Manager

NJV/ljb

Enclosure: Level IV CLP-like Data Package CD

#### Case Narrative, page 1

March 18, 2011

#### 1.0 General Comments

Sample delivery group 8663 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

#### 2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

#### 3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2gerror (Total):

| Analysis       | Method Error |
|----------------|--------------|
| Gross alpha    | 20.6%        |
| Gross beta     | 11.0%        |
| Tritium        | 10.0%        |
| Sr-90          | 10.4%        |
| Ra-226         | 16.4%        |
| Ra-228         | 10.4%        |
| Uranium, Total |              |
| Gamma Spec.    | 7.0%         |

Case Narrative, page 2

March 18, 2011

#### 4.0 Analysis Notes

- 4.1 Gross Alpha/Gross Beta Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.2 Tritium Analysis The tritium analysis for sample IUB1966-04 (Trip Blank) was cancelled. See attached client email. No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.3 Strontium-90 Analysis Due to low chemical yield for the duplicate analysis of sample IUB1966-03, the entire analytical batch was realiquoted and reanalyzed. No other problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4** Radium-226 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy The K-40 MDA for the sample IUB1966-03 was 29.1 pCi/L, greater than the required detection limit of 25 pCi/L. No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

#### 5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

| 2 Paile                 | 3/18/11 |
|-------------------------|---------|
| N. Joseph Verville      | Date    |
| Client Services Manager |         |

#### EBERLINE ANALYTICAL SDG 8663

SDG <u>8663</u>
Contact N. Joseph Verville

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### SUMMARY DATA SECTION

| TABLE OF            | C O | N T | E N | T S |    |
|---------------------|-----|-----|-----|-----|----|
| About this section  |     |     |     |     | 1  |
| Sample Summaries    |     |     |     |     | 3  |
| Prep Batch Summary  |     |     |     |     | 5  |
| Work Summary        |     |     |     |     | 6  |
| Method Blanks       |     |     |     |     | 8  |
| Lab Control Samples |     |     |     |     | 10 |
| Duplicates          |     |     |     |     | 12 |
| Data Sheets         |     |     |     |     | 14 |
| Method Summaries    |     |     |     |     | 16 |
| Report Guides       |     |     |     |     | 24 |
| End of Section      | •   |     |     |     | 38 |
|                     |     |     |     |     |    |

15

Prepared by

Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06Report date 03/17/11

#### EBERLINE ANALYTICAL

SDG 8663

SDG 8663

Contact N. Joseph Verville

#### REPORT GUIDE

Client Test America, Inc. Contract IUB1966

#### SUMMARY ABOUT THE DATA SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

#### SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

#### PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

#### WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

#### METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

#### LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES Page 1 SUMMARY DATA SECTION Page 1

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date 03/17/11

SDG 8663

SDG <u>8663</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract IUB1966

#### ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

#### MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

#### DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

#### METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

#### REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 2

Lab id <u>EAS</u> Protocol <u>TA</u>

Version Ver 1.0

Form DVD-RG Version 3.06

SDG 8663

SDG 8663
Contact N. Joseph Verville

#### LAB SAMPLE SUMMARY

Client Test America, Inc.

Contract <u>IUB1966</u>

| LAB<br>SAMPLE ID | CLIENT SAMPLE ID        | LOCATION      | MATRIX LEV | el sas no | CUSTODY | COLLECTED     |
|------------------|-------------------------|---------------|------------|-----------|---------|---------------|
| S102233-01       | IUB1966-03              | Boeing - SSFL | WATER      |           | IUB1966 | 02/18/11 15:3 |
| 9102233-02       | IUB1966-04 (TRIP-BLANK) | Boeing - SSFL | WATER      |           | IUB1966 | 02/18/11 00:  |
| \$102233-03      | Lab Control Sample      |               | WATER      |           |         |               |
| S102233-04       | Method Blank            |               | WATER      |           |         |               |
| S102233-05       | Duplicate (S102233-01)  | Boeing - SSFL | WATER      |           |         | 02/18/11 15:  |
| S102233-06       | Method Blank            |               | WATER      |           |         |               |
| S102233-07       | Duplicate (S102233-01)  | Boeing - SSFL | WATER      |           |         | 02/18/11 15:  |
| 5102233-08       | Lab Control Sample      |               | WATER      | ,         |         |               |

LAB SUMMARY
Page 1
SUMMARY DATA SECTION
Page 3

SDG 8663

SDG 8663
Contact N. Joseph Verville

#### QC SUMMARY

Client Test America, Inc.
Contract IUB1966

| QC BATCH | CHAIN OF<br>CUSTODY | CLIENT SAMPLE ID                                                                                              | MATRIX                              | %<br>MOIST | Sample<br>Amount | BASIS<br>AMOUNT | DAYS S               |   | LAB<br>SAMPLE ID                                                                       | DEPARTMENT<br>SAMPLE ID                                  |
|----------|---------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|------------------|-----------------|----------------------|---|----------------------------------------------------------------------------------------|----------------------------------------------------------|
| 8663     | IUB1966             | IUB1966-03<br>IUB1966-04 (TRIP-BLANK)                                                                         | WATER<br>WATER                      |            | 10.0 L<br>10.0 L |                 | 02/22/11             | 4 | S102233-01<br>S102233-02                                                               | 8663-001<br>8663-002                                     |
|          |                     | Method Blank Method Blank Lab Control Sample Lab Control Sample Duplicate (S102233-01) Duplicate (S102233-01) | WATER WATER WATER WATER WATER WATER |            | 10.0 L<br>10.0 L |                 | 02/22/11<br>02/22/11 | 4 | \$102233-04<br>\$102233-06<br>\$102233-03<br>\$102233-08<br>\$102233-05<br>\$102233-07 | 8663-004<br>8663-006<br>8663-003<br>8663-008<br>8663-005 |

QC SUMMARY
Page 1
SUMMARY DATA SECTION
Page 4

SDG 8663

SDG <u>8663</u> Contact <u>N. Joseph Verville</u>

#### PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB1966</u>

|       |           |                         |             |       |        |      |       |          | •      |                  |        |
|-------|-----------|-------------------------|-------------|-------|--------|------|-------|----------|--------|------------------|--------|
|       |           |                         | PREPARATION | ERROR |        |      | - PLA | NCHETS 2 | ANALYZ | ED               | QUALI- |
| TEST  | MATRIX    | METHOD                  | BATCH       | 20 %  | CLIENT | MORE | RE    | BLANK    | LCS    | DUP/ORIG MS/ORIG | FIERS  |
| Beta  | Counting  |                         | •           |       |        |      |       |          |        |                  |        |
| AC    | WATER     | Radium-228 in Water     | 7281-033    | 10.4  | 2      |      |       | 1        | 1      | 1/1              |        |
| SR    | WATER     | Strontium-90 in Water   | 7281-033    | 10.4  | 2      | ·    |       | 1        | 1      | 1/1              |        |
| Gas I | roportion | al Counting             |             |       |        |      |       |          |        |                  |        |
| 80A   | WATER     | Gross Alpha in Water    | 7281-033    | 20.6  | 2      |      |       | 1        | 1      | 1/1              |        |
| 808   | WATER     | Gross Beta in Water     | 7281-033    | 11.0  | 2      |      |       | 1        | 1      | 1/1              |        |
| Gamma | Spectros  | сору                    |             |       |        |      |       |          |        |                  |        |
| GAM   | WATER     | Gamma Emitters in Water | 7281-033    | 7.0   | 2      |      |       | 1        | 1      | 1/1              |        |
| Kinet | ic Phosph | orimetry, ug            |             |       |        |      |       |          |        |                  |        |
| U_T   | WATER     | Uranium, Total          | 7281-033    |       | 2      |      |       | ı        | 1      | 1/1              |        |
| Liqui | d Scintil | lation Counting         |             |       |        |      |       |          |        |                  |        |
| Н     | WATER     | Tritium in Water        | 7281-033    | 10.0  | 1      |      |       | 1        | 1      | 1/1              |        |
| Rador | Counting  |                         |             | •     |        | •    |       |          |        |                  |        |
| RA    | WATER     | Radium-226 in Water     | 7281-033    | 16.4  | 2      |      |       | 1        | 1      | 1/1              |        |
|       |           |                         |             |       |        |      |       |          |        |                  |        |

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY

Page 1

SUMMARY DATA SECTION

Page 5

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-PBS</u>

Version <u>3.06</u>

Report date <u>03/17/11</u>

SDG 8663

SDG <u>8663</u>
Contact <u>N. Joseph Verville</u>

#### LAB WORK SUMMARY

Client. <u>Test America</u>, <u>Inc</u>. Contract <u>IUB1966</u>

| LAB SAMPLE | CLIENT SAMPLE ID        |        |          |             |             |          |          |     |                         |
|------------|-------------------------|--------|----------|-------------|-------------|----------|----------|-----|-------------------------|
| RECEIVED   | LOCATION CUSTODY SAS NO | MATRIX | PLANCHET | TEST        | SUF-<br>FIX | ANALYZED | REVIEWED | BX  | METHOD                  |
| S102233-01 | IUB1966-03              |        | 8663-001 | 80A/80      |             | 03/04/11 | 03/07/11 | вw  | Gross Alpha in Water    |
| 02/18/11   | Boeing - SSFL           | WATER  | 8663-001 | 80B/80      |             | 03/04/11 | 03/07/11 | BW  | Gross Beta in Water     |
| 02/22/11   | IUB1966                 |        | 8663-001 | AC          |             | 03/09/11 | 03/16/11 | ₿₩  | Radium-228 in Water     |
|            |                         |        | 8663-001 | GAM         |             | 02/25/11 | 03/05/11 | MWT | Gamma Emitters in Water |
|            |                         |        | 8663-001 | H           |             | 03/10/11 | 03/14/11 | BW  | Tritium in Water        |
|            |                         |        | 8663-001 | RA          |             | 03/09/11 | 03/11/11 | BW  | Radium-226 in Water     |
|            |                         |        | 8663-001 | SR          | A1          | 03/12/11 | 03/17/11 | BW  | Strontium-90 in Water   |
|            |                         |        | 8663-001 | U_T         |             | 03/04/11 | 03/07/11 | BW  | Uranium, Total          |
| S102233-02 | IUB1966-04 (TRIP-BLANK) |        | 8663-002 | 80A/80      |             | 03/04/11 | 03/07/11 | BM  | Gross Alpha in Water    |
| 02/18/11   | Boeing - SSFL           | WATER  | 8663-002 | 80B/80      |             | 03/04/11 | 03/07/11 | BW  | Gross Beta in Water     |
| 02/22/11   | IUB1966                 |        | 8663-002 | AÇ          |             | 03/09/11 | 03/16/11 | BW  | Radium-228 in Water     |
|            |                         |        | 8663-002 | GAM         |             | 02/25/11 | 03/05/11 | MWT | Gamma Emitters in Water |
|            |                         |        | 8663-002 | RA.         |             | 03/09/11 | 03/11/11 | BW  | Radium-226 in Water     |
|            |                         |        | 8663-002 | SR          | Al.         | 03/12/11 | 03/17/11 | BW  | Strontium-90 in Water   |
|            |                         |        | 8663-002 | U_T         |             | 03/04/11 | 03/07/11 | BW  | Oranium, Total          |
| S102233-03 | Lab Control Sample      |        | 8663-003 | 80A/80      |             | 03/04/11 | 03/07/11 | BW  | Gross Alpha in Water    |
|            |                         | WATER  | 8663-003 | 808/80      |             | 03/04/11 | 03/07/11 | BW  | Gross Beta in Water     |
|            |                         |        | 8663-003 | AC          |             | 03/09/11 | 03/16/11 | BW  | Radium-228 in Water     |
|            |                         |        | 8663-003 | GAM         |             | 02/28/11 | 03/05/11 | MWT | Gamma Emitters in Water |
|            |                         |        | 8663-003 | Н           |             | 03/10/11 | 03/14/11 | BW  | Tritium in Water        |
|            |                         |        | 8663-003 | RA          |             | 03/09/11 | 03/11/11 | BW  | Radium-226 in Water     |
|            |                         |        | 8663-003 | 0_ <b>r</b> |             | 03/04/11 | 03/07/11 | BW  | Uranium, Total          |
| 3102233-04 | Method Blank            |        | 8663-004 | 80A/80      |             | 03/04/11 | 03/07/11 | BW  | Gross Alpha in Water    |
|            |                         | WATER  | 8663-004 | 808/80      |             | 03/04/11 | 03/07/11 | BW  | Gross Beta in Water     |
|            |                         |        | 8663-004 | AC          |             | 03/09/11 | 03/16/11 | BW  | Radium-228 in Water     |
|            |                         |        | 8663-004 | GAM         |             | 02/28/11 | 03/05/11 | MWT | Gamma Emitters in Water |
|            |                         |        | 8663-004 | Н           |             | 03/10/11 | 03/14/11 | вw  | Tritium in Water        |
|            |                         |        | 8663-004 | RA          |             | 03/09/11 | 03/11/11 | BW  | Radium-226 in Water     |
|            |                         |        | 8663-004 | u_t         |             | 03/04/11 | 03/07/11 | BW  | Uranium, Total          |

WORK SUMMARY
Page 1
SUMMARY DATA SECTION
Page 6

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LWS</u>

Version <u>3.06</u>

Report date <u>03/17/11</u>

SDG 8663

SDG <u>8663</u>
Contact <u>N. Joseph Verville</u>

## WORK SUMMARY, cont.

Client Test America, Inc.
Contract IUB1966

| LAB SAMPLE COLLECTED RECEIVED      | CLIENT SAMPLE ID LOCATION CUSTODY SAS | MATRIX       | PLANCHET                                                             | Test                                     | SUF- | ANALYZED                                                 | REVIEWED                                                                         | BY                         | METHOD                                                                                                                                   |
|------------------------------------|---------------------------------------|--------------|----------------------------------------------------------------------|------------------------------------------|------|----------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| S102233-05<br>02/18/11<br>02/22/11 | Duplicate (\$102233-0                 | WATER        | 8663-005<br>8663-005<br>8663-005<br>8663-005<br>8663-005<br>8663-005 | 80A/80<br>80B/80<br>AC<br>GAM<br>H<br>RA |      | 03/05/11<br>03/09/11<br>02/28/11<br>03/10/11<br>03/09/11 | 03/07/11<br>03/07/11<br>03/16/11<br>03/05/11<br>03/14/11<br>03/11/11<br>03/07/11 | BW<br>BW<br>BW<br>BW<br>BW | Gross Alpha in Water Gross Beta in Water Radium-228 in Water Gamma Emitters in Water Tritium in Water Radium-226 in Water Uranium, Total |
| S102233-06                         | Method Blank                          | WATER        | 8663-006                                                             | SR                                       |      | 03/12/11                                                 | 03/17/11                                                                         | BW                         | Strontium-90 in Water                                                                                                                    |
| S102233-07<br>02/18/11<br>02/22/11 | Duplicate (S102233-0<br>Boeing - SSFL | 01)<br>WATER | 8663-007                                                             | SR                                       |      | 03/12/11                                                 | 03/17/11                                                                         | BW                         | Strontium-90 in Water                                                                                                                    |
| S102233-08                         | Lab Control Sample                    | WATER        | 8663~008                                                             | SR                                       |      | 03/12/11                                                 | 03/17/11                                                                         | BW                         | Strontium-90 in Water                                                                                                                    |

| TEST   | SAS no | COUNTS                  | OF TESTS B | Y SAMPLE TYPE CLIENT MORE | RE BLANK | LCS | DUP SPIKE | TOTAL |
|--------|--------|-------------------------|------------|---------------------------|----------|-----|-----------|-------|
| 80A/80 |        | Gross Alpha in Water    | 900.0      | 2                         | 1        | 1   | 1         | 5     |
| 80B/80 |        | Gross Beta in Water     | 900.0      | 2                         | ı        | 1   | 1         | 5     |
| AC     |        | Radium-228 in Water     | 904.0      | 2                         | 1        | 1   | 1         | 5     |
| GAM    |        | Gamma Emitters in Water | 901.1      | 2                         | 1        | 1   | 1         | 5     |
| Н      |        | Tritium in Water        | 906.0      | 1                         | 1        | 1   | 1         | 4     |
| RA     |        | Radium-226 in Water     | 903.1      | 2                         | 1.       | 1   | 1         | 5     |
| SR     |        | Strontium-90 in Water   | 905.0      | 2                         | 1        | 1   | 1         | 5     |
| u_T    |        | Uranium, Total          | D5174      | 2                         | 1        | 1   | 1         | 5     |
| TOTALS |        |                         |            | 15                        | 8        | 8   | 8         | 39    |

WORK SUMMARY

Page 2

SUMMARY DATA SECTION

Page 7

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

Version 3.06
Report date 03/17/11

8663-004

### METHOD BLANK

Method Blank

| SDG <u>8663</u><br>Contact <u>N. Joseph Verville</u>           | Client<br>Contract                  | Test America, Inc.  IUB1966 |
|----------------------------------------------------------------|-------------------------------------|-----------------------------|
| Lab sample id <u>S102233-04</u> Dept sample id <u>8663-004</u> | Client sample id<br>Material/Matrix |                             |

| ANALYTE        | CAS NO   | RESULT<br>pCi/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST |
|----------------|----------|-----------------|-------------------|--------------|--------------|-----------------|------|
| Gross Alpha    | 12587461 | -0.182          | 0.52              | 1.25         | 3,00         | U               | 80A  |
| Gross Beta     | 12587472 | -1.43           | 1.6               | 2.81         | 4.00         | U               | 80B  |
| Tritium        | 10028178 | -74.3           | 120               | 215          | 500          | Ü               | H    |
| Radium-226     | 13982633 | -0.080          | 0.31              | 0.585        | 1.00         | U               | RA   |
| Radium-228     | 15262201 | -0.353          | 0.39              | 0.768        | 1.00         | U               | AC   |
| Uranium, Total |          | 0               | 0.009             | 0.020        | 1.00         | U               | U_T  |
| Potassium-40   | 13966002 | U               |                   | 17.4         | 25.0         | U               | GAM  |
| Cesium-137     | 10045973 | Ū               |                   | 1.50         | 20.0         | Ŭ               | GAM  |

QC-BLANK #77479

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06Report date 03/17/11

8663-006

#### METHOD BLANK

Method Blank

SDG 8663 Client Test America, Inc.
Contact N. Joseph Verville Contract IUB1966

Lab sample id S102233-06 Client sample id Method Blank

Dept sample id <u>8663-006</u>

Material/Matrix \_\_\_\_\_\_\_WATER

| ANALYTE      | CAS NO   | RESULT<br>pCi/L | 20 ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST |
|--------------|----------|-----------------|-------------------|--------------|--------------|-----------------|------|
| Strontium-90 | 10098972 | -0.036          | 0.30              | 0.718        | 2.00         | Ü               | SR   |

QC-BLANK #77701

METHOD BLANKS
Page 2
SUMMARY DATA SECTION
Page 9

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>
Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>03/17/11</u>

SDG 8663

8663-003

#### LAB CONTROL SAMPLE

Lab Control Sample

WATER

SDG 8663 Client Test America, Inc.

Contact N. Joseph Verville Contract TUB1966

Lab sample id S102233-03 Client sample id Lab Control Sample

Dept sample id 8663-003 Material/Matrix

| ANALYTE        | RESULT<br>pCi/L | (COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST | pCi/L | 20 ERR<br>pCi/L | REC<br>% | 20 LMTS<br>(TOTAL) | LIMITS |
|----------------|-----------------|---------|--------------|--------------|-----------------|------|-------|-----------------|----------|--------------------|--------|
| Gross Alpha    | 103             | 5.8     | 1.78         | 3.00         |                 | A08  | 101   | 4.0             | 102      | 78-122             | 70-130 |
| Gross Beta     | 82.5            | 3.5     | 2.85         | 4.00         |                 | 80B  | 87.3  | 3.5             | 94       | 88-112             | 70-130 |
| Tritium        | 2040            | 200     | 211          | 500          |                 | H    | 2220  | 89              | 92       | 87-113             | 80-120 |
| Radium-226     | 51.7            | 2.1     | 0.800        | 1.00         |                 | RA   | 55.7  | 2.2             | 93       | 84-116             | 80-120 |
| Radium-228     | 15.3'           | 0.69    | 0.801        | 1.00         |                 | AC   | 15.2  | 0.61            | 101      | 88-112             | 60-140 |
| Uranium, Total | 56.3            | 6.6     | 0.205        | 1.00         |                 | U_T  | 56.5  | 2.3             | 100      | 88-112             | 80-120 |
| Cobalt-60      | 120             | 4.2     | 2.11         | 10.0         |                 | GAM  | 126   | 5.0             | 95       | 92~108             | 80-120 |
| Cesium-137     | 110             | 3.5     | 2.45         | 20.0         |                 | GAM  | 110   | 4.4             | 100      | 91-109             | 80-120 |

QC-LCS #77478

LAB CONTROL SAMPLES

Page 1

SUMMARY DATA SECTION

Page 10

SDG 8663

8663-008

#### LAB CONTROL SAMPLE

Lab Control Sample

| SDG 8663                        | Client           | Test America, Inc. |
|---------------------------------|------------------|--------------------|
| Contact N. Joseph Verville      | Contract         | 1081966            |
|                                 |                  |                    |
| Lab sample id <u>S102233-08</u> | Client sample id | Lab Control Sample |
| Dept sample id 8663-008         | Material/Matrix  | WATER              |

| ANALYTE      | RESULT<br>pCi/L | 20 ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST | ADDED<br>pCi/L | 20 ERR<br>pCi/L | REC<br>% | 20 LMTS<br>(TOTAL) | PROTOCOL<br>LIMITS |
|--------------|-----------------|-------------------|--------------|--------------|-----------------|------|----------------|-----------------|----------|--------------------|--------------------|
| Strontium-90 | 17.5            | 1.4               | 0.704        | 2.00         |                 | SR   | 17.4           | 0.70            | 101      | 86-114             | 80-120             |

|--|--|

LAB CONTROL SAMPLES
Page 2
SUMMARY DATA SECTION
Page 11

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LCS</u>

Version <u>3.06</u>

Report date <u>03/17/11</u>

SDG 8663

8663-005

IUB1966-03

WATER

#### DUPLICATE

SDG 8663

Contact N. Joseph Verville

DUPLICATE

Lab sample id <u>S102233-05</u> Dept sample id <u>8663-005</u>

ORIGINAL

Lab sample id <u>\$102233-01</u>

Dept sample id <u>8663-001</u>

Received <u>02/22/11</u>

Client Test America, Inc.

Contract <u>IUB1966</u>

Client sample id <u>IUB1966-03</u>

Location/Matrix Boeing - SSFL

Collected/Volume <u>02/18/11 15:31</u> <u>10.0 L</u>

Chain of custody id <u>IUB1966</u>

| ANALYTE        | DUPLICATE<br>pci/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST | ORIGINAL<br>pCi/L | 20 ERR<br>(COUNT) | MDA<br>pCi/L | QUALI-<br>FIERS | RPD<br>% | 30<br><b>TOT</b> | DEI |
|----------------|--------------------|-------------------|--------------|--------------|-----------------|------|-------------------|-------------------|--------------|-----------------|----------|------------------|-----|
| Gross Alpha    | -0.039             | 0.27              | 0.575        | 3.00         | บ               | 80A  | 0.490             | 0.30              | 0.367        | J               | 200      | 236              | 2.  |
| Gross Beta     | 4.29               | 0.67              | 0.948        | 4.00         |                 | 808  | 3.70              | 0.71              | 1.01         | J               | 15       | 43               | 1.  |
| Tritium        | -9.08              | 130               | 219          | 500          | U               | Н    | -33.1             | 130               | 218          | U               | -        |                  | Ο.  |
| Radium-226     | -0.111             | 0.25              | 0.490        | 1.00         | υ               | RA   | -0.028            | 0.32              | 0.583        | υ               | -        |                  | Ο.  |
| Radium-228     | -0.087             | 0.23              | 0.542        | 1.00         | υ               | AC   | -0.130            | 0.20              | 0.493        | υ               | -        |                  | 0.  |
| Oranium, Total | 0.111              | 0.015             | 0.020        | 1.00         | J               | U_T  | 0.104             | 0.015             | 0.020        | J               | 7        | 30               | Ο,  |
| Potassium-40   | υ                  |                   | 22.1         | 25.0         | Ū               | GAM  | U                 |                   | 29.1         | υ               | -        |                  | 0.  |
| Cesium-137     | υ                  |                   | 1.35         | 20.0         | U               | GAM  | υ                 |                   | 1.25         | U               | -        |                  | 0.  |

OC-DUP#1 77480

DUPLICATES Page 1 SUMMARY DATA SECTION Page 12

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-DUP Version 3.06

SDG 8663

8663-007

DUPLICATE

1081966-03

SDG 8663

Lab sample id <u>\$102233-07</u>

Dept sample id <u>8663-007</u>

Contact N. Joseph Verville

DUPLICATE

ORIGINAL

Lab sample id S102233-01 Dept sample id 8663-001

Received 02/22/11

Client Test America, Inc.

Contract IUB1966

Client sample id IUB1966-03

Location/Matrix Boeing - SSFL

WATER

Collected/Volume 02/18/11 15:31 10.0 L

Chain of custody id <u>IUB1966</u>

| ANALYTE      | DUPLICATE<br>pCi/L | 20 ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST | ORIGINAL<br>pCi/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | QUALI-<br>FIERS | RPD | 30<br>TOT | DER<br>Ø |
|--------------|--------------------|-------------------|--------------|--------------|-----------------|------|-------------------|-------------------|--------------|-----------------|-----|-----------|----------|
| Strontium-90 | -0.117             | 0.30              | 0.744        | 2.00         | υ               | SR   | -0.162            | 0.29              | 0.728        | U               | -   |           | 0.2      |

QC-DUP#1 77702

DUPLICATES Page 2 SUMMARY DATA SECTION Page 13

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-DUP Version 3.06

Report date 03/17/11

8663-001

#### DATA SHEET

IUB1966-03

|                                             | 8663<br>N. Joseph Verville | Client<br>Contract                                                           | Test America, Inc.<br>IUB1966          |       |
|---------------------------------------------|----------------------------|------------------------------------------------------------------------------|----------------------------------------|-------|
| Lab sample id<br>Dept sample id<br>Received | 8663-001<br>02/22/11       | Client sample id<br>Location/Matrix<br>Collected/Volume<br>ain of custody id | Boeing - SSFL<br>02/18/11 15:31 10.0 L | WATER |

| ANALYTE        | CAS NO   | RESULT<br>pCi/L | 2σ ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST |
|----------------|----------|-----------------|-------------------|--------------|--------------|-----------------|------|
| Gross Alpha    | 12587461 | 0.490           | 0.30              | 0.367        | 3.00         | J               | 80A  |
| Gross Beta     | 12587472 | 3.70            | 0.71              | 1.01         | 4.00         | J               | 80B  |
| Tritium        | 10028178 | -33.1           | 130               | 218          | 500          | U               | H    |
| Radium-226     | 13982633 | -0.028          | 0.32              | 0.583        | 1.00         | U               | RA   |
| Radium-228     | 15262201 | -0.130          | 0.20              | 0.493        | 1.00         | U               | AC   |
| Strontium-90   | 10098972 | -0.162          | 0.29              | 0.728        | 2.00         | U               | SR   |
| Uranium, Total |          | 0.104           | 0.015             | 0.020        | 1.00         | J               | U_T  |
| Potassium-40   | 13966002 | U               |                   | 29.1         | 25.0         | U               | GAM  |
| Cesium-137     | 10045973 | U               |                   | 1.25         | 20.0         | U               | GAM  |

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 14

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>03/17/11</u>

8663-002

#### DATA SHEET

IUB1966-04 (TRIP-BLANK)

SDG 8663 Client Test America, Inc.
Contact N. Joseph Verville Contract UB1966

Lab sample id S102233-02 Client sample id UB1966-04 (TRIP-BLANK)

Dept sample id 8663-002 Location/Matrix Boeing - SSFL WATER

Received 02/22/11 Collected/Volume 02/18/11 00:00 10.0 L

Chain of custody id UB1966

| ANALYTE        | CAS NO   | RESULT<br>pCi/L | 20 ERR<br>(COUNT) | MDA<br>pCi/L | RDL<br>pCi/L | QUALI-<br>FIERS | TEST                       |
|----------------|----------|-----------------|-------------------|--------------|--------------|-----------------|----------------------------|
| Gross Alpha    | 12587461 | 0.092           | 0.13              | 0.259        | 3.00         | ט               | 80A                        |
| Gross Beta     | 12587472 | -0.145          | 0.45              | 0.758        | 4.00         | U               | 80B                        |
| Radium-226     | 13982633 | 0.455           | 0.33              | 0.510        | 1.00         | U               | RA                         |
| Radium-228     | 15262201 | -0.221          | 0.27              | 0.666        | 1.00         | U               | AC                         |
| Strontium-90   | 10098972 | 0.027           | 0.31              | 0.720        | 2.00         | U               | SR                         |
| Uranium, Total |          | 0               | 0.009             | 0.020        | 1.00         | U               | $\mathbf{U}_{-}\mathbf{T}$ |
| Potassium-40   | 13966002 | U               |                   | 17.2         | 25.0         | U               | GAM                        |
| Cesium-137     | 10045973 | Ŭ               |                   | 1.18         | 20.0         | υ               | GAM                        |

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 15

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 03/17/11

SDG 8663

Test AC Matrix WATER

SDG 8663

Contact N. Joseph Verville

#### LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB1966</u>

RADIUM-228 IN WATER BETA COUNTING

#### RESULTS

| LAB RAW<br>SAMPLE ID TEST | SUF-<br>I FIX PLANCHET | CLIENT SAMPLE ID        | Radium-228 |
|---------------------------|------------------------|-------------------------|------------|
| Preparation bate          | ch 7281-033            |                         |            |
| S102233-01                | 8663-001               | IUB1966-03              | υ          |
| S102233-02                | 8663-002               | IUB1966-04 (TRIP-BLANK) | υ          |
| S102233-03                | 8663-003               | Lab Control Sample      | ok         |
| S102233-04                | 8663-004               | Method Blank            | υ          |
| S102233-05                | 8663-005               | Duplicate (S102233-01)  | - U        |

#### METHOD PERFORMANCE

| LAB                                     | RAW SUF-                        | MDA       | ALIQ    | PREP  | DILU-    | Alepd | EFF  | COUNT  | FWHM | DRIFT | DAYS  |          | ANAL- |          |
|-----------------------------------------|---------------------------------|-----------|---------|-------|----------|-------|------|--------|------|-------|-------|----------|-------|----------|
| SAMPLE ID                               | TEST FIX CLIENT SAMPLE ID       | pCi/L     | L       | FAC   | TION     | *     | *    | min    | keV  | KeV   | HELPD | PREPARED | YZED  | DETECTOR |
| Preparation                             | batch 7281-033 20 prep error 10 | ).4 % Rei | ference | Lab 1 | Notebool | c No. | 7281 | pg 033 | 3    |       |       |          |       |          |
| S102233-01                              | IUB1966-03                      | 0.493     | 1.80    |       |          | 72    |      | 150    |      |       | 19    | 03/09/11 | 03/09 | GRB-222  |
| S102233-02                              | IUB1966-04 (TRIP-BLANK)         | 0.666     | 1.80    |       |          | 71    |      | 150    |      |       | 19    | 03/09/11 | 03/09 | GRB-223  |
| S102233-03                              | Lab Control Sample              | 0.801     | 1.80    |       |          | 69    |      | 150    |      |       |       | 03/09/11 | 03/09 | GRB-224  |
| S102233-04                              | Method Blank                    | 0.768     | 1.80    |       |          | 71    |      | 150    |      |       |       | 03/09/11 | 03/09 | GRB-229  |
| S102233-05                              | Duplicate (S102233-01)          | 0.542     | 1.80    |       |          | 74    |      | 150    |      |       | 19    | 03/09/11 | 03/09 | GRB-230  |
| *************************************** |                                 |           |         |       |          |       |      |        |      |       |       |          |       |          |
| Nominal val                             | ues and limits from method      | 1.00      | 1.80    |       |          | 30-10 | 5    | 50     |      |       | 180   |          |       |          |

| PROCEDURES | REFERENCE | 904.0                                            |
|------------|-----------|--------------------------------------------------|
|            | DWP-894   | Sequential Separation of Actinium-228 and        |
|            |           | Radium-226 in Drinking Water (>1 Liter Aliquot), |
|            |           | rev 5                                            |

| AVERAGES ± 2 SD | MDA   | 0.654 | ± | 0.271 |
|-----------------|-------|-------|---|-------|
| FOR 5 SAMPLES   | AIEID | 71    | ± | 4     |

METHOD SUMMARIES

Page 1
SUMMARY DATA SECTION

Page 16

Report date 03/17/11

SDG 8663

Test <u>SR</u> Matrix <u>WATER</u>
SDG <u>8663</u>

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB1966</u>

Contact N. Joseph Verville

STRONTIUM-90 IN WATER BETA COUNTING

#### RESULTS

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX |          | CLIENT SAMPLE TO        | Strontium-90 |  |
|------------------|----------------------|----------|-------------------------|--------------|--|
| Preparation      | batch 728            | 1-033    |                         |              |  |
| S102233-01       | A1.                  | 8663-001 | IUB1966-03              | σ            |  |
| 5102233-02       | Al                   | 8663-002 | IUB1966-04 (TRIP-BLANK) | υ            |  |
| S102233-06       |                      | 8663-006 | Method Blank            | σ            |  |
| S102233-07       |                      | 8663-007 | Duplicate (S102233-01)  | - U          |  |
| S102233-08       |                      | 8663-008 | Lab Control Sample      | ok           |  |

#### METHOD PERFORMANCE

| LAB         | RAW SUF-   |                         | MDA      | ALIQ    |     | DILU~   |       | EFF  |        |     |     |      |          | ANAL- |          |
|-------------|------------|-------------------------|----------|---------|-----|---------|-------|------|--------|-----|-----|------|----------|-------|----------|
| SAMPLE ID   | TEST FIX   | CLIENT SAMPLE ID        | pCi/L    | L       | FAC | TION    | ¥     | *    | min    | ke∀ | KeV | HELD | PREPARED | YZED  | DETECTOR |
| Preparation | batch 728  | 1-033 2σ prep error 10  | ).4 % Re | ference | Lab | Noteboo | k No. | 7281 | pg 033 | }   |     |      |          |       |          |
| S102233-01  | A1         | IUB1966-03              | 0.728    | 0.500   |     |         | 96    |      | 50     |     |     | 22   | 03/12/11 | 03/12 | GRB-201  |
| \$102233-02 | A1         | IUB1966-04 (TRIP-BLANK) | 0.720    | 0.500   |     |         | 87    |      | 50     |     |     | 22   | 03/12/11 | 03/12 | GRB-202  |
| S102233-06  |            | Method Blank            | 0.718    | 0.500   |     |         | 88    |      | 50     |     |     |      | 03/12/11 | 03/12 | GRB-203  |
| S102233-07  |            | Duplicate (S102233-01)  | 0.744    | 0.500   |     |         | 87    |      | 50     |     |     | 22   | 03/12/11 | 03/12 | GRB-204  |
| \$102233-08 |            | Lab Control Sample      | 0.704    | 0.500   |     |         | 89    |      | 50     |     |     |      | 03/12/11 | 03/12 | GRB-225  |
| Nominal val | ues and li | mits from method        | 2.00     | 0.500   |     |         | 30-10 | 5    | 50     |     |     | 180  |          |       |          |

| PROCEDURES | REFERENCE | 905.0                              |
|------------|-----------|------------------------------------|
|            | DWP-380   | Strontium in Drinking Water, rev 8 |

| AVERAGES ± 2 SD | MDA   | 0.723 | ± | 0.029 |
|-----------------|-------|-------|---|-------|
| FOR 5 SAMPLES   | AIETD | 89    | ŧ | 8     |

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 17

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>03/17/11</u>

SDG 8663

Test 80A Matrix WATER

SDG <u>8663</u>
Contact <u>N. Joseph Verville</u>

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB1966</u>

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

#### RESULTS

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX | PLANCHET | CLIENT SAMPLE ID        | Gross Alpha |
|------------------|----------------------|----------|-------------------------|-------------|
| Preparation      | batch 728            | 1-033    |                         |             |
| \$102233-01      | 80                   | 8663-001 | IUB1966-03              | 0.490 J     |
| S102233-02       | 80                   | 8663-002 | IUB1966-04 (TRIP-BLANK) | Ŭ           |
| S102233-03       | 80                   | 8663-003 | Lab Control Sample      | ok          |
| S102233-04       | 80                   | 8663-004 | Method Blank            | U           |
| S102233-05       | 80                   | 8663-005 | Duplicate (S102233-01)  | ok U        |

#### METHOD PERFORMANCE

| LAB         | RAW SUF-   | -                       | MOA      | ALIQ    | PREP  | DILU-    | RESID | EPP  | COUNT  | FWHM | DRIFT | DAYS |          | ANAL- |          |
|-------------|------------|-------------------------|----------|---------|-------|----------|-------|------|--------|------|-------|------|----------|-------|----------|
| SAMPLE ID   | TEST FIX   | CLIENT SAMPLE ID        | pCi/L    | r       | FAC   | TION     | mg    | *    | min    | keV  | KęV   | HELD | PREPARED | YZED  | DETECTOR |
|             |            |                         |          |         |       |          |       |      |        |      |       |      |          |       |          |
| Preparation | batch 728  | 31-033 2g prep error 20 | ).6 % Re | ference | Lab N | lotebool | No.   | 7281 | pg 033 | }    |       |      |          |       |          |
| S102233-01  | 80         | IUB1966-03              | 0.367    | 0.300   |       |          | 57    |      | 400    |      |       | 14   | 03/02/11 | 03/04 | GRB-103  |
| S102233-02  | 80         | IUB1966-04 (TRIP-BLANK) | 0.259    | 0.300   |       |          | 1     |      | 400    |      |       | 14   | 03/02/11 | 03/04 | GRB-104  |
| S102233-03  | 80         | Lab Control Sample      | 1.78     | 0.100   |       |          | 60    |      | 400    |      |       |      | 03/02/11 | 03/04 | GRB-214  |
| S102233-04  | 80         | Method Blank            | 1.25     | 0.100   |       |          | 58    |      | 400    |      |       |      | 03/02/11 | 03/04 | GRB-216  |
| S102233-05  | 80         | Duplicate (S102233-01)  | 0.575    | 0.300   |       |          | 57    |      | 400    |      |       | 15   | 03/02/11 | 03/05 | GRB-214  |
|             |            |                         |          |         |       |          |       |      |        |      |       |      |          |       |          |
| Nominal val | ues and li | imits from method       | 3.00     | 0.100   |       |          | 0-20  | 0    | 100    |      |       | 180  |          |       |          |

| PROCEDURES | REFERENCE | 900.0  |       |     |       |      |    |          |        |  |
|------------|-----------|--------|-------|-----|-------|------|----|----------|--------|--|
|            | DWP-121   | Gross  | Alpha | and | Gross | Beta | in | Drinking | Water, |  |
|            |           | rev 10 | )     |     |       |      |    |          |        |  |

| AVERAGES ± 2 SD | MDA _     | 0.846 | ± | 1.30 |
|-----------------|-----------|-------|---|------|
| FOR 5 SAMPLES   | RESIDUE _ | 47    | ± | 51   |

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 18

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-LMS

Version 3.06

Report date 03/17/11

SDG 8663

Test 80B Matrix WATER
SDG 8663

Contact N. Joseph Verville

#### LAB METHOD SUMMARY

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America</u>, <u>Inc</u>.

Contract <u>IUB1966</u>

#### RESULTS

| LAB         | RAW SUF-  |          |                         |            |
|-------------|-----------|----------|-------------------------|------------|
| SAMPLE ID   | TEST FIX  | PLANCHET | CLIENT SAMPLE ID        | Gross Beta |
| Preparation | batch 728 | 1-033    |                         |            |
| \$102233-01 | 80        | 8663-001 | IUB1966-03              | 3.70 J     |
| S102233-02  | 80        | 8663-002 | IUB1966-04 (TRIP-BLANK) | U          |
| S102233-03  | 80        | 8663-003 | Lab Control Sample      | ok         |
| S102233-04  | 80        | 8663-004 | Method Blank            | υ          |
| S102233-05  | 80        | 8663-005 | Duplicate (S102233-01)  | ok         |

#### METHOD PERFORMANCE

|                         |                                                                                                                                  |                                                                                                                                                      |         | DILTO-   | KESID   | PLL                                                                                                                                                                                                                           | COOMI   | F. MHW  | DRIFT   | DAYS    |                                                                                                                                                                                                                                                                        | ANAL-   |          |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| X CLIENT SAMPLE ID      | pCi/L                                                                                                                            | Ĺ                                                                                                                                                    | FAC     | TION     | mg      | ¥                                                                                                                                                                                                                             | mín     | keV     | KeV     | HELD    | PREPARED                                                                                                                                                                                                                                                               | YZED    | DETECTOR |
|                         |                                                                                                                                  |                                                                                                                                                      |         |          |         |                                                                                                                                                                                                                               |         |         |         |         |                                                                                                                                                                                                                                                                        |         |          |
| 281-033 2o prep error 1 | 11.0 % Re                                                                                                                        | eference                                                                                                                                             | Lab N   | lotebool | No.     | 7281                                                                                                                                                                                                                          | pg 033  | ı       |         |         |                                                                                                                                                                                                                                                                        |         |          |
| IUB1966-03              | 1.01                                                                                                                             | 0.300                                                                                                                                                |         |          | 57      |                                                                                                                                                                                                                               | 400     |         |         | 14      | 03/02/11                                                                                                                                                                                                                                                               | 03/04   | GRB-103  |
| IUB1966-04 (TRIP-BLANK) | 0.758                                                                                                                            | 0.300                                                                                                                                                |         |          | 1       |                                                                                                                                                                                                                               | 400     |         |         | 14      | 03/02/11                                                                                                                                                                                                                                                               | 03/04   | GRB-104  |
| Lab Control Sample      | 2.85                                                                                                                             | 0.100                                                                                                                                                |         |          | 60      |                                                                                                                                                                                                                               | 400     |         |         |         | 03/02/11                                                                                                                                                                                                                                                               | 03/04   | GRB-214  |
| Method Blank            | 2.81                                                                                                                             | 0.100                                                                                                                                                |         |          | 58      |                                                                                                                                                                                                                               | 400     |         |         |         | 03/02/11                                                                                                                                                                                                                                                               | 03/04   | GRB-216  |
| Duplicate (\$102233-01) | 0.948                                                                                                                            | 0.300                                                                                                                                                |         |          | 57      |                                                                                                                                                                                                                               | 400     |         |         | 15      | 03/02/11                                                                                                                                                                                                                                                               | 03/05   | GRB-214  |
|                         |                                                                                                                                  |                                                                                                                                                      |         |          |         |                                                                                                                                                                                                                               |         |         |         |         |                                                                                                                                                                                                                                                                        |         |          |
| limits from method      | 4.00                                                                                                                             | 0.100                                                                                                                                                |         |          | 0-20    | 0                                                                                                                                                                                                                             | 100     |         |         | 180     |                                                                                                                                                                                                                                                                        |         |          |
|                         | 281-033 20 prep error 1<br>IUB1966-03<br>IUB1966-04 (TRIP-BLANK)<br>Lab Control Sample<br>Method Blank<br>Duplicate (S102233-01) | 281-033 20 prep error 11.0 % Re IUB1966-03 1.01 IUB1966-04 (TRIP-BLANK) 0.758 Lab Control Sample 2.85 Method Blank 2.81 Duplicate (S102233-01) 0.948 | 281-033 | 281-033  | 281-033 | 281-033 20 prep error 11.0 % Reference Lab Notebook No.  IUB1966-03 1.01 0.300 57  IUB1966-04 (TRIP-BLANK) 0.758 0.300 1  Lab Control Sample 2.85 0.100 60  Method Blank 2.81 0.100 58  Duplicate (S102233-01) 0.948 0.300 57 | 281-033 | 281-033 | 281-033 | 281-033 | 281-033 20 prep error 11.0 % Reference Lab Notebook No. 7281 pg 033  IUB1966-03 1.01 0.300 57 400 14  IUB1966-04 (TRIP-BLANK) 0.758 0.300 1 400 14  Lab Control Sample 2.85 0.100 60 400  Method Blank 2.81 0.100 58 400  Duplicate (S102233-01) 0.948 0.300 57 400 15 | 281-033 | 281-033  |

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,
rev 10

AVERAGES ± 2 SD MDA 1.68 ± 2.12 FOR 5 SAMPLES RESIDUE 47 ± 51

METHOD SUMMARIES

Page 4

SUMMARY DATA SECTION

Page 19

Report date 03/17/11

SDG 8663

Test GAM Matrix WATER
SDG 8663
Contact N. Joseph Verville

#### LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB1966</u>

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

#### RESULTS

| SAMPLE ID TEST    |            | CLIENT SAMPLE ID        | Cobalt-60 | Cesium-137 |  |  |
|-------------------|------------|-------------------------|-----------|------------|--|--|
| Preparation batch | h 7281-033 |                         |           |            |  |  |
| \$102233-01       | 8663-001   | IUB1966-03              |           | υ          |  |  |
| S102233-02        | 8663-002   | IUB1966-04 (TRIP-BLANK) |           | υ          |  |  |
| S102233-03        | 8663-003   | Lab Control Sample      | ok        | ok         |  |  |
| S102233-04        | 8663-004   | Method Blank            |           | Ŭ          |  |  |
| \$102233-05       | 8663-005   | Duplicate (\$102233-01) |           | - Ü        |  |  |

#### METHOD PERFORMANCE

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX CLIE | nt sample | ID          | MOA<br>pCi/L | ALIQ<br>L | PREP | DILU-    | \$<br>Albid |      | COUNT  | FWHM<br>keV | <br> | PREPARED | ANAL-<br>YZED | DETECTOR |
|------------------|---------------------------|-----------|-------------|--------------|-----------|------|----------|-------------|------|--------|-------------|------|----------|---------------|----------|
| Preparation      | batch 7281-033            | 2σ p      | rep error 7 | .0 %         | Reference | Lab  | Notebool | No.         | 7281 | pg 03: | 3           |      |          |               |          |
| S102233-01       | IUB1                      | 966-03    |             |              | 2.00      |      |          |             |      | 822    |             | 7    | 02/23/11 | 02/25         | 01,04,00 |
| S102233-02       | IUB1                      | 966-04 (T | RIP-BLANK)  |              | 2.00      |      |          |             |      | 822    |             | 7    | 02/23/11 | 02/25         | 01,03,00 |
| S102233-03       | Lab                       | Control S | ample       |              | 2.00      |      |          |             |      | 727    |             |      | 02/23/11 | 02/28         | 01,03,00 |
| S102233-04       | Meth                      | od Blank  |             |              | 2.00      |      |          |             |      | 712    |             |      | 02/23/11 | 02/28         | 01,01,00 |
| S102233-05       | Dupl                      | icate (S1 | 02233-01)   |              | 2.00      |      |          |             |      | 712    |             | 10   | 02/23/11 | 02/28         | 01,04,00 |
| Nominal val      | ues and limits            | from meth | od          | δ.00         | 2.00      |      |          |             |      | 400    |             | 180  |          |               |          |

| PROCEDURES | REFERENCE | 901.1                                           |
|------------|-----------|-------------------------------------------------|
|            | DWP-100   | Preparation of Drinking Water Samples for Gamma |
|            |           | Spectroscopy, rev 5                             |

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 20

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-LMS
Version 3.06

Report date 03/17/11

SDG 8663

#### LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB1966</u>

URANIUM, TOTAL
KINETIC PHOSPHORIMETRY, UG

#### RESULTS

| LAB         | RAW SUF-     |         |                         | Oranium, |
|-------------|--------------|---------|-------------------------|----------|
| SAMPLE ID   | TEST FIX PI  | LANCHET | CLIENT SAMPLE ID        | Total    |
| Preparation | batch 7281-0 | 033     |                         |          |
| S102233-01  | 86           | 563-001 | IUB1966-03              | 0.104 J  |
| S102233-02  | 86           | 663-002 | IUB1966-04 (TRIP-BLANK) | U        |
| S102233-03  | 86           | 63-003  | Lab Control Sample      | ok       |
| S102233-04  | 86           | 63-004  | Method Blank            | υ        |
| 5102233-05  | 86           | 63-005  | Duplicate (S102233-01)  | ok J     |

#### METHOD PERFORMANCE

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX CLIENT SAMPLE ID | MDA<br>pCi/L | ALIQ<br>L | PREP  | DILU-<br>TION | YIELD<br>* |      |        |   |         | PREPARED | ANAL-<br>YZED | DETECTOR |
|------------------|---------------------------------------|--------------|-----------|-------|---------------|------------|------|--------|---|---------|----------|---------------|----------|
| Preparation      | batch 7281-033 2g prep error          | Re           | ference   | Lab 1 | Noteboo!      | NO.        | 7281 | pg 03: | 3 |         |          |               |          |
| \$102233-01      | IUB1966-03                            | 0.020        | 0.0200    |       |               |            |      |        |   | 14      | 03/04/11 | 03/04         | KPA-001  |
| S102233-02       | IUB1966-04 (TRIP-BLANK)               | 0.020        | 0.0200    |       |               |            |      |        |   | 14      | 03/04/11 | 03/04         | KPA-001  |
| S102233-03       | Lab Control Sample                    | 0.205        | 0.0200    |       |               |            |      |        |   |         | 03/04/11 | 03/04         | KPA-001  |
| S102233-04       | Method Blank                          | 0.020        | 0.0200    |       |               |            |      |        |   |         | 03/04/11 | 03/04         | KPA-001  |
| S102233-05       | Duplicate (S102233-01)                | 0.020        | 0.0200    |       |               |            |      |        |   | 14      | 03/04/11 | 03/04         | KPA-001  |
| Nominal val      | ues and limits from method            | 1.00         | 0.0200    |       |               |            |      |        |   | <br>180 | •        |               |          |

| PROCEDURES REPERENCE D5174 | AVERAGES ± 2 SD | MDA   | 0.057 ± 0.165 |
|----------------------------|-----------------|-------|---------------|
|                            | FOR 5 SAMPLES   | YIELD | ±             |

METHOD SUMMARIES
Page 6
SUMMARY DATA SECTION
Page 21

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>03/17/11</u>

SDG 8663

Test H Matrix WATER
SDG 8663
Contact N. Joseph Verville

#### LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB1966</u>

TRITIUM IN WATER

#### RESULTS

| Preparation batch | 2281-033 |                        |    |   |
|-------------------|----------|------------------------|----|---|
| \$102233-01       | 8663-001 | IUB1966-03             | σ  |   |
| S102233-03        | 8663-003 | Lab Control Sample     | ok |   |
| S102233-04        | 8663-004 | Method Blank           | σ  |   |
| S102233-05        | 8663-005 | Duplicate (S102233-01) | -  | U |

#### METHOD PERFORMANCE

| LAB<br>SAMPLE ID | RAW<br>TEST |       | CLIENT   | SAMPLE   | ID       | MDA<br>pCi/I | ALIQ<br>L | PREP<br>FAC | DILU-<br>TION | #<br>Aletd |      | COUNT  |   |     | PREPARED | ANAL-<br>YZED | DETECTOR |
|------------------|-------------|-------|----------|----------|----------|--------------|-----------|-------------|---------------|------------|------|--------|---|-----|----------|---------------|----------|
| Preparation      | batc        | h 728 | 1-033    | 20 pr    | ep error | 10.0 %       | Reference | Lab 1       | Noteboo       | k No.      | 7281 | pg 033 | 3 |     |          |               |          |
| S102233-01       |             |       | IUB196   | 5-03     |          | 218          | 0.0100    |             |               | 100        |      | 75     |   | 20  | 03/09/11 | 03/10         | LSC-007  |
| S102233-03       |             |       | Lab Cor  | ntrol Sa | mple     | 211          | 0.100     |             |               | 10         |      | 75     |   |     | 03/09/11 | 03/10         | LSC-007  |
| S102233-04       |             |       | Method   | Blank    |          | 215          | 0.100     |             |               | 10         |      | 75     |   |     | 03/09/11 | 03/10         | LSC-007  |
| S102233-05       |             |       | Duplica  | ate (S10 | 2233-01) | 219          | 0.0100    |             |               | 100        |      | 75     |   | 20  | 03/09/11 | 03/10         | LSC-007  |
| Nominal val      | ues a       | nd li | mite fro | om metho | od       | 500          | 0.0100    |             |               |            |      | 100    |   | 180 |          |               |          |

| PROCEDURES | REFERENCE | 906.0                                            |
|------------|-----------|--------------------------------------------------|
|            | DWP-212   | Tritium in Drinking Water by Distillation, rev 8 |

| AVERAGES ± 2 SD | MDA 2   | 16 ± | 7.19 |
|-----------------|---------|------|------|
| FOR 4 SAMPLES   | AIETD - | 55 ± | 104  |

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 22

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>03/17/11</u>

Lab id EAS

SDG 8663

Test RA Matrix WATER

SDG 8663

Contact N. Joseph Verville

#### LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB</u>1966

RADIUM-226 IN WATER RADON COUNTING

#### RESULTS

| Preparation batch | n 7281-033 |                         |     |
|-------------------|------------|-------------------------|-----|
| S102233-01        | 8663-001   | IUB1966-03              | ū   |
| S102233-02        | 8663-002   | IUB1966~04 (TRIP-BLANK) | U   |
| \$102233-03       | 8663-003   | Lab Control Sample      | ok  |
| S102233-04        | 8663-004   | Method Blank            | Ü   |
| S102233-05        | 8663-005   | Duplicate (S102233-01)  | - U |

#### METHOD PERFORMANCE

| LAB<br>SAMPLE ID | RAW SUF-<br>TEST FIX |         | SAMPLE ID    |        | MDA<br>pCi/L | ALIQ<br>L | PREF |         | #<br>AIET |      | COUNT |   |     | PREPARED | ANAL-<br>YZED | DETECTOR |
|------------------|----------------------|---------|--------------|--------|--------------|-----------|------|---------|-----------|------|-------|---|-----|----------|---------------|----------|
| Preparation      | batch 728            | 1-033   | 2o prep      | error  | 16.4 %       | Reference | Lab  | Noteboo | k No.     | 7281 | pg 03 | 3 |     |          |               |          |
| \$102233-01      |                      | IUB196  | 6-03         |        | 0.58         | 3 0.100   |      |         | 100       |      | 152   |   | 19  | 03/09/11 | 03/09         | RN-011   |
| S102233-02       |                      | TUB196  | 6-04 (TRIP-  | BLANK) | 0.51         | 0 0.100   |      |         | 100       |      | 152   |   | 19  | 03/09/11 | 03/09         | RN-013   |
| S102233-03       |                      | Lab Cor | ntrol Sampl  | e      | 0.80         | 0 0.100   |      |         | 100       |      | 152   |   |     | 03/09/11 | 03/09         | RN-009   |
| \$102233-04      |                      | Method  | Blank        |        | 0.58         | 5 0.100   |      |         | 100       |      | 152   |   |     | 03/09/11 | 03/09         | RN-010   |
| S102233-05       |                      | Duplica | ate (\$10223 | 3-01)  | 0.49         | 0 0.100   |      |         | 100       |      | 152   |   | 19  | 03/09/11 | 03/09         | RN-012   |
| Nominal val      | ues and li           | mits fr | om method    |        | 1.00         | 0.100     |      |         |           |      | 100   |   | 180 |          |               |          |

| PROCEDURES | REFERENCE | 903.1                                     |
|------------|-----------|-------------------------------------------|
|            | DWP-881A  | Ra-226 Screening in Drinking Water, rev 6 |

| AVERAGES ± 2 SD | MDA 0.594 ± 0.246 |
|-----------------|-------------------|
| FOR 5 SAMPLES   | YIELD 100 ± 0     |

METHOD SUMMARIES
Page 8
SUMMARY DATA SECTION
Page 23

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date 03/17/11

Lab id EAS

SDG 8663

SDG <u>8663</u> Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- \* LAB SAMPLE ID is the lab's primary identification for a sample.
- \* DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- \* CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- \* QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
  - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- \* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES
Page 1
SUMMARY DATA SECTION
Page 24

Lab id <u>EAS</u> Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u> Version 3.06

SDG 8663

SDG 8663
Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- \* The preparation batches are shown in the same order as the Method Summary Reports are printed.
- \* Only analyses of planchets relevant to the SDG are included.
- \* Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- \* The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 25

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06

SDG 8663

SDG 8663 Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- \* TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- \* SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- \* The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- \* PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- \* For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- \* The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 26

Lab id <u>EAS</u> Protocol <u>TA</u>

Version Ver 1.0

Form DVD-RG

Version 3.06

SDG 8663

SDG <u>8663</u> Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract IUB1966

#### DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- \* TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- \* The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- \* ERRORS can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- \* A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- \* When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES
Page 4
SUMMARY DATA SECTION
Page 27

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>

Version <u>Ver 1.0</u>
Form DVD-RG

Version 3.06

Report date 03/17/11

SDG 8663

SDG <u>8663</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- \* An MDA is underlined if it is bigger than its RDL.
- \* An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 28

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>03/17/11</u>

SDG 8663

SDG 8663

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- \* A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- \* When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 29

Lab id <u>EAS</u> Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u> Version <u>3.06</u>

SDG 8663

SDG <u>8663</u> Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract IUB1966

#### LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- \* All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- \* An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- \* REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- \* The first, computed limits for the recovery reflect:
  - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- \* The second limits are protocol defined upper and lower QC limits for the recovery.
- \* The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES

Page 7

SUMMARY DATA SECTION

Page 30

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>

Version 3.06

Report date 03/17/11

SDG 8663

SDG <u>8663</u>
Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

\* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

\* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

\* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- \* The second limit for the RPD is the larger of:
  - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 31

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>03/17/11</u>

SDG 8663

SDG 8663
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUB1966</u>

#### DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- \* The RPD is underlined if it is greater than either limit.
- \* If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

\* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 32

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date 03/17/11

SDG 8663

SDG <u>8663</u>
Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract IUB1966

#### MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

\* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

\* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- \* REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- \* The first, computed limits for the recovery reflect:
  - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- \* The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 33

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 03/17/11

SDG 8663

SDG <u>8663</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

\* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 34

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06

Report date 03/17/11

SDG 8663

SDG 8663 Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract IUB1966

#### METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

\* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

\* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

\* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- \* Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- \* Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 35

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

SDG 8663

SDG <u>8663</u> Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- \* Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- \* If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- \* Aliquots are underlined if less than the nominal value specified for the method.
- \* Prepareation factors are underlined if greater than the nominal value specified for the method.
- \* Dilution factors are underlined if greater than the nominal value specified for the method.
- \* Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- \* Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- \* Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- \* Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 36

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 03/17/11

SDG 8663

SDG 8663
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB1966</u>

#### METHOD SUMMARY

specified for the method.

- \* Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- \* Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- \* Days Held are underlined if greater than the holding time specified in the protocol.
- \* Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1÷3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES

Page 14
SUMMARY DATA SECTION

Page 37

Lab id <u>EAS</u>

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

SDG 8663

SDG <u>8663</u> Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract IUB1966

#### METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 38

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

## Subcontract Order - TestAmerica Irvine (IUB1966)

8663

#### SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, GA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Debby Wilson

#### **RECEIVING LABORATORY:**

Eberline Services - SUB 2030 Wright Avenue Richmond, CA 94804 Phone: (510) 235-2633

Fax: (510) 235-0438

Project Location: California
Receipt Temperature: 7 / 5 %

Ice: (Y) N

| Analysis                 | Units                 | Expires                                         | Comments                                          |
|--------------------------|-----------------------|-------------------------------------------------|---------------------------------------------------|
| Sample ID: IUB1966-03 (  | Outfall 018 (Composit | e) - <b>Water</b> ) Sampled: <b>02/18/11</b> 1: | 5:31                                              |
| Gamma Spec-O             | pCi/L                 | 02/18/12 15:31                                  | OutSt Louis, k-40 and cs-137 only, DC NOT FILTER! |
| Gross Alpha-O            | pCì/L                 | 08/17/11 15:31                                  | Out eberline Boeing permit, DO NOT FILTER!        |
| Gross Beta-O             | pCi/L                 | 08/17/11 15:31                                  | Out eberline, Boeing permit, DO NOT FILTER!       |
| Radium, Combined-O       | pCi/L                 | 02/18/12 15:31                                  | Out eberline, Boeing permit, DO NOT FILTER!       |
| Strontium 90-O           | pCi/L                 | 02/18/12 15:31                                  | Out eberline, Boeing permit, DO NOT FILTER!       |
| Trifium-O                | pCi/L                 | 02/18/12 15:31                                  | Out eberline, Boeing permit, DO NOT FILTER!       |
| Uranium, Combined-O      | pCi/L                 | 02/18/12 15:31                                  | Out eberline, Boeing permit, DO NOT FILTER!       |
| Containers Supplied:     |                       |                                                 |                                                   |
| 2.5 gal Poly (V)         | 500 mL Amber (W)      |                                                 |                                                   |
| sample ID: IUB1966-04 (T | rip Blank - Water)    | Sampled: <b>02/18/11 00</b>                     | ·00                                               |
| Gamma Spec-O             | pCi/L                 | 02/18/12 00:00                                  | Outeberline, k-40 and cs-137 only, DO NOT FILTER! |
| Gross Alpha-O            | pCi/L                 | 08/17/11 00:00                                  | Out eberline, Boeing permit, DO NOT FILTER!       |
| Gross Beta-O             | pCì/L                 | 08/17/11 00:00                                  | Out eberline, Boeing permit, DO NOT FILTER!       |
| Radium, Combined-O       | pCi/L                 | 02/18/12 00:00                                  | Outeberline Boeing permit, DO NOT FILTER!         |
| Strontium 90-O           | pCi/L                 | 02/18/12 00:00                                  | Out eberline, Boeing permit, DO NOT FILTER!       |
| Tritium-O                | pCi/L                 | 02/18/12 00:00                                  | Out eberline, Boeing permit, DO NOT FILTER!       |
| Uranium, Combined-O      | pCi/L                 | 02/18/12 00:00                                  | Out eberline, Boeing permit, DO NOT               |

Standard TAT is requested unless specific due date is requested. => Due Date: \_\_\_\_\_ Initials:

| Released By | Date/Time |
|-------------|-----------|

500 mL Amber (B)

Date/Time

Containers Supplied: 2.5 gal Poly (A)

Released By

Received By Date/Time

FILTER!

Received By Date/Time

Page 1 of 1

# EBERLINE

## RICHMOND, CA LABORATORY

## SAMPLE RECEIPT CHECKLIST

| Client:                                                                        | TEST                                                                       | AMERICA               | IRVINE                | City        | RVINE                  | State           | <u> </u>             |                |  |  |  |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------|-----------------------|-------------|------------------------|-----------------|----------------------|----------------|--|--|--|--|--|
| Date/Time received @ 22 1 09% Coc No. 1481966                                  |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| Container I.D. No. 14 4157 Requested TAT (Days) STD P.O. Received Yes [] No [] |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| INSPECTION                                                                     |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 1.                                                                             | Custody seals on shipping container intact?  Yes [X] No [ ] N/A [ ]        |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 2.                                                                             | Custody seals on shipping container dated & signed? Yes (X) No [ ] N/A [ ] |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 3.,                                                                            | Custody seals on sample containers intact?  Yes [ ] No [ ] N/A [ ]         |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 4.                                                                             |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| ·5.                                                                            |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 6.                                                                             |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 7.                                                                             | 7. Number of containers per sample:3 (Or see CoC)                          |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 8.                                                                             |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 9.                                                                             | 9. Paperwork agrees with samples? Yes [x] No [x]                           |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 10.                                                                            |                                                                            |                       |                       |             | Rad labels [ ]         |                 |                      |                |  |  |  |  |  |
| 11.                                                                            |                                                                            |                       |                       |             | g[] Broken             |                 |                      | $\supset$      |  |  |  |  |  |
| 12.                                                                            | Sample                                                                     | es are: Presen        | ved [x] Not p         | reserved [X | .) pH < 2/N/PA         | eservativeH     | N03                  | ——             |  |  |  |  |  |
| 13.                                                                            | Descrit                                                                    | e any anomalie<br>מתו | BS;<br>MI AMI         | 327) BA     | TTLE, TMP              | PIANLU C        | HUDIT AL             | 1000           |  |  |  |  |  |
|                                                                                |                                                                            | 300                   | 770(1)                | rek po      | live, liar             | BONZ S          | marie -m             | 1351106        |  |  |  |  |  |
|                                                                                |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| l                                                                              | 14/ D                                                                      | M ME - d - 6          |                       |             |                        | 3 Page          |                      |                |  |  |  |  |  |
| 14.                                                                            |                                                                            | ₩                     | eny anomalies?        |             | 1 1                    | ) Date          |                      |                |  |  |  |  |  |
| 15.                                                                            | inspec                                                                     | ted by                | 1405                  | Date: (     | 72 22 V Tim            | e: <u>/6 20</u> |                      |                |  |  |  |  |  |
|                                                                                | tomer<br>pie No.                                                           | Beta/Gamma<br>cpm     | tion Chamber<br>mR/hr | Wipe        | Customer<br>Sample No. | Beta/Gamma      | ion Chamber<br>mR/hr | wipe           |  |  |  |  |  |
| 1UB19                                                                          |                                                                            | 260                   |                       |             |                        |                 |                      |                |  |  |  |  |  |
| 100.                                                                           | 700                                                                        | ~~~                   |                       |             |                        | -               |                      |                |  |  |  |  |  |
|                                                                                |                                                                            |                       |                       |             |                        |                 |                      | <del>-</del> - |  |  |  |  |  |
|                                                                                |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
|                                                                                |                                                                            |                       |                       |             | ·                      |                 |                      |                |  |  |  |  |  |
|                                                                                |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
|                                                                                |                                                                            |                       | ĺ                     |             |                        |                 |                      |                |  |  |  |  |  |
| -                                                                              |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
|                                                                                |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
|                                                                                |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
|                                                                                |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
|                                                                                |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| ion Cher                                                                       | mber Ser                                                                   | No                    |                       |             | Calibration date       |                 |                      |                |  |  |  |  |  |
|                                                                                | ton Chamber Ser. No Calibration date                                       |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| Alpha Meter Ser. No                                                            |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |
| Beta/Gamma Meter Ser. No. 100402 Calibration date 24 SEP 10                    |                                                                            |                       |                       |             |                        |                 |                      |                |  |  |  |  |  |

## **RE: Eberline Analytical - Questions on CoCs**

Wilson, Debby [Debby.Wilson@testamericainc.com]

Sent: Monday, February 28, 2011 2:54 PM

To: Joe Verville; Laura Braits

What about ice preservation? Is that needed for all analyses? thanks

#### DEBBY WILSON

**From:** Joe Verville [mailto:joe.verville@eberlineservices.com]

Sent: Monday, February 28, 2011 10:53 AM

To: Wilson, Debby: Laura Bralts

Subject: RE: Eberline Analytical - Questions on CoCs

Hello Debby,

The tritium fraction should NOT be preserved. The acid will really mess with the distillation.

Regards,

Joseph Verville Client Services Manager Eberline Analytical Corp. Richmond Lab (510) 235-2633 x264

From: Wilson, Debby [Debby.Wilson@testamericainc.com]

Sent: Monday, February 28, 2011 10:44 AM

To: Laura Bralts Cc: Joe Verville

Subject: RE: Eberline Analytical - Questions on CoCs

Laura or Joe,

Boeing has requested that we start the preparation process by acidifying the samples before we send them to you since they are not allowed to acidify in the field and to help meet the 28 day TAT. They requested we prepare a trip blank with the same acid we are using and send it with the sample. We have not been acidifying the glass amber for tritium analysis. Can you confirm that tritium does not need the acidification with nitric acid? If it does, we will start acidifying that bottle too and send a corresponding trip blank in a glass container. If it doesn't, then tritium is not needed on trip blank so cancel the analysis and we will continue with the current process. Hope this makes sense. If not, call me to discuss.

Also, do any of the analyses need to ship on ice?

Thanks

#### DEBBY WILSON

From: Laura Bralts [mailto:laura.bralts@eberlineservices.com]

Sent: Friday, February 25, 2011 8:14 AM

To: Wilson, Debby Cc: Joe Verville

Subject: Eberline Analytical - Questions on CoCs

Hello,

## TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING



Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: Test America - Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614-5817

Attention:

**Debby Wilson** 

Sample:

Water / 1 Sample

**Project Name: Project Number:**  IUB1966 **IUB1966** 

**Method Number:** 

EPA 8315 (Modified)

Investigation:

**Hydrazines** 

REPORT

Laboratory No:

993769

Report Date:

March 3, 2011

Sampling Date:

February 18, 2011

Receiving Date:

February 22, 2011

Extraction Date:

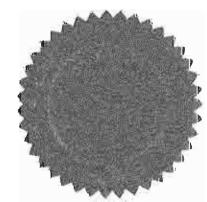
February 22, 2011

Analysis Date:

February 23, 2011

μg/L Units:

Reported By:


JS

**Analytical Results** 

|                 |                    | Sample      | Dilution | Monomethyl | u-Dimethyl | Hydrazine | Qualifier |
|-----------------|--------------------|-------------|----------|------------|------------|-----------|-----------|
| Sample ID       | Sample Description | Amount (mL) | Factor   | Hydrazine  | Hydrazine  |           | Codes     |
| 709287-MB       | Method Blank       | 100         | 1        | ND         | ND         | ND        | None      |
| 993769          | (UB1966-03         | 100         | 1        | ND         | ND         | ND        | None      |
| MDL             |                    |             |          | 1.77       | 1.13       | 0.439     |           |
| PQL             |                    |             |          | 5.0        | 5.0        | 1.00      |           |
| Sample Reportin | ng Limits          | 0)1         |          | 5.0        | 5.0        | 1.00      |           |

Note: Results based on detector #1 (UV=365nm) data.

Note: Sample was received after hold time.



Jeff Lee, Project Manager

Analytical Services, Truesdail Laboratories, Inc.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

## Truesdail Laboratories, Inc.

**EXCELLENCE IN INDEPENDENT TESTING** 

Client:

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

QC Lab. No.:

709287

Project Lab. No.: Spiked Sample ID: 993769 993770

Report Date:

March 3, 2011

Sampling Date:

February 18, 2011

Receiving Date:

February 22, 2011

Extraction Date: Analysis Date:

February 22, 2011

February 23, 2011

Reported By: JS

17461 Derian Avenue, Suite 100

Irvine, CA 92614-5817

Test America - Irvine

**Client Contact:** Debby Wilson

> Water / 1 Sample Sample:

**Project Number: IUB1966** 

Method Number: EPA 8315 (Modified)

Investigation: Hydrazines

Run Batch No.: Extraction: 5463; Analysis: 697

## **Quality Control/Quality Assurance Calibration Report**

| ICV          |                                             | QCS                                                                                                            |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theoretical  | Measured                                    | Percent                                                                                                        | Control                                                                                                                                                     | Flag                                                                                                                                                                                                             | Parameter                                                                                                                                                                                                                                                     | Theoretica!                                                                                                                                                                              | Measured                                                                                                                                                                                                                                                                                                                                                                                             | Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Value (ug/L) | Value (ug/L)                                | Recovery                                                                                                       | Limits                                                                                                                                                      |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                               | Value (ug/L)                                                                                                                                                                             | Value (ug/L)                                                                                                                                                                                                                                                                                                                                                                                         | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25.0         | 24.3                                        | 97.3                                                                                                           | 85-115                                                                                                                                                      | PASS                                                                                                                                                                                                             | Monomethyl Hydrazine                                                                                                                                                                                                                                          | 50.0                                                                                                                                                                                     | 45.5                                                                                                                                                                                                                                                                                                                                                                                                 | 91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25.0         | 24.8                                        | 99.3                                                                                                           | 85-115                                                                                                                                                      | PASS                                                                                                                                                                                                             | u-Dimethyl Hydrazine                                                                                                                                                                                                                                          | 50.0                                                                                                                                                                                     | 48.7                                                                                                                                                                                                                                                                                                                                                                                                 | 97.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.0          | 4.91                                        | 98.3                                                                                                           | 85-115                                                                                                                                                      | PASS                                                                                                                                                                                                             | Hydrazine                                                                                                                                                                                                                                                     | 10.0                                                                                                                                                                                     | 10.1                                                                                                                                                                                                                                                                                                                                                                                                 | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | Theoretical<br>Value (ug/L)<br>25.0<br>25.0 | Theoretical Value (ug/L)         Measured Value (ug/L)           25.0         24.3           25.0         24.8 | Theoretical Value (ug/L)         Measured (ug/L)         Percent Recovery           25.0         24.3         97.3           25.0         24.8         99.3 | Theoretical Value (ug/L)         Measured (ug/L)         Percent Recovery         Control Limits           25.0         24.3         97.3         85-115           25.0         24.8         99.3         85-115 | Theoretical Value (ug/L)         Measured Value (ug/L)         Percent Recovery         Control Limits         Flag           25.0         24.3         97.3         85-115         PASS           25.0         24.8         99.3         85-115         PASS | Theoretical<br>Value (ug/L)Measured<br>Value (ug/L)Percent<br>RecoveryControl<br>LimitsFlagParameter25.024.397.385-115PASSMonomethyl Hydrazine25.024.899.385-115PASSu-Dimethyl Hydrazine | Theoretical Value (ug/L)         Measured Value (ug/L)         Percent Recovery         Control Limits         Flag         Parameter         Theoretical Value (ug/L)           25.0         24.3         97.3         85-115         PASS         Monomethyl Hydrazine         50.0           25.0         24.8         99.3         85-115         PASS         u-Dimethyl Hydrazine         50.0 | Theoretical Value (ug/L)         Measured Value (ug/L)         Percent Recovery         Control Limits         Flag         Parameter         Theoretical Value (ug/L)         Measured Value (ug/L)         Measured Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         Value (ug/L)         < | Theoretical Value (ug/L)         Measured Value (ug/L)         Percent Limits         Flag         Parameter         Theoretical Value (ug/L)         Measured Value (ug/L)         Percent Value (ug/L)         Measured Value (ug/L)         Percent Value (ug/L)         Percent Value (ug/L)         Nonomethyl Hydrazine         tical Value (ug/L)         Measured Value (ug/L)         Percent Recovery         Control Limits         Parameter         Theoretical Value (ug/L)         Measured Value (ug/L)         Percent Recovery         Control Value (ug/L)           25.0         24.3         97.3         85-115         PASS         Monomethyl Hydrazine         50.0         45.5         91.0         85-115           25.0         24.8         99.3         85-115         PASS         u-Dimethyl Hydrazine         50.0         48.7         97.4         85-115 |

#### **Quality Control/Quality Assurance Spikes Report**

#### LCS/LCSD

|                      | Spiked | Recovered     |      | Percent<br>Recovery (%) |      | LCS/ |       | Control |    |        |
|----------------------|--------|---------------|------|-------------------------|------|------|-------|---------|----|--------|
|                      | Conc.  | Concentration |      |                         |      | LCSD | Flag  | Limits  |    |        |
| Parameter            | ug/L   | LCS           | LCSD | MB                      | LCS  | LCSD | RPD   |         | %D | % Rec. |
| Monomethyl Hydrazine | 50.0   | 45.6          | 48.5 | 0.0                     | 91.2 | 97.0 | 6.17% | PASS    | 20 | 50-150 |
| u-Dimethyl Hydrazine | 50.0   | 46.6          | 51.0 | 0.0                     | 93.2 | 102  | 8.98% | PASS    | 20 | 50-150 |
| Hydrazine            | 10.0   | 10.0          | 11.1 | 0.0                     | 100  | 111  | 10.0% | PASS    | 20 | 50-150 |

Note: Results based on detector #1 (UV=365nm) data.

Jeff Lee, Project Manager

Analytical Services, Truesdail Laboratories, Inc.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.