APPENDIX G

Section 51

Outfall 018 - February 26 & 27, 2011

MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IUB2819

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IUB2819
Project Manager: B. Kelly

Matrix: Water

OC Level: IV

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 018	IUB2819-01	N/A	Water	2/26/2011 08:50	SM2540F
Outfall 018	IUB2819-03	G1C010481-001, S103017-01	Water	2/27/11 08:38	200.7, 200.7 (diss), 245.1, 245.1 (diss), 1613B, SM2130B, SM2510B, 900.0 MOD, 901.1 MOD, 903.0 MOD, 904 MOD, 905 MOD, 906.0 MOD, ASTM 5174

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at Eberline above the temperature limit; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at Eberline and TestAmerica-West Sacramento. As the sample was couriered to TestAmerica-Irvine, no custody seals were required. If necessary, the client ID was added to the sample result summary by the reviewer.

Project: SSFL NPDES
DATA VALIDATION REPORT SDG: IUB2819

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORTProject:SSFL NPDESDATA VALIDATION REPORTSDG:IUB2819

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Project: SSFL NPDES
DATA VALIDATION REPORT SDG: IUB2819

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: April 7, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had a detect below the EDL for OCDD; however, the method blank concentration was insufficient to qualify the associated sample result for OCDD.

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613, and RPDs were within the laboratory control limit of ≤50%.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHOD 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 7, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 200.7, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding times, six months for ICP metals and 28 days fo mercury, were met.
- Tuning: Not applicable to these analyses.
- Calibration: Calibration criteria were met. The mercury initial calibration r² value was ≥0.995. All initial and continuing calibration recoveries were within 90-110% and the CRDL recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no applicable detects.

Interference Check Samples: Recoveries were within 80-120%.

 Blank Spikes and Laboratory Control Samples: Recoveries and the zinc RPD were within laboratory-established QC limits.

- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The original total and dissolved zinc results were 7.3 and 24 μ g/L, respectively. Due to the discrepancy in the results, the laboratory digested new aliquots from the original sample containers and obtained somewhat similar results for total and dissolved zinc, 6.4 and 11 μ g/L, respectively. As the reanalyses were less disparate, the laboratory reported the second set of results. The reviewer was unable to determine if the total and dissolved sample containers were misidentified in the field or during the laboratory log-in process; therefore, both results were qualified as estimated, "J."

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 7, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, the nondetected result for gross alpha in the sample was qualified as estimated, "UJ." All remaining detector efficiencies were acceptable.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The strontium recovery was nominally above the control limit; however, strontium was not detected in the sample. The remaining recoveries were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.

A notation in the preparation logs indicated that a portion of the aliquots for this sample were filtered and that the filtrate was dissolved and added to the sample aliquot.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 7, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), Standard Method SM2310B and SM2510B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding times were met.
- Calibration: The initial calibration r2 values were ≥0.995 and the ICV and CCV recoveries were within 90-110%.
- Blanks: The method blanks had no detects.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analysis was performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summary were verified against the raw data. No transcription errors or
 calculation errors were noted. When the sample results were qualified and the reviewer
 was able to clearly determine bias, detected results were qualified as either "J+" or "J-";
 otherwise, bias was not indicated in the qualification. Any detects between the method
 detection limit and the reporting limit were qualified as estimated, "J," and coded with

"DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms IUB2819

Analysis Metho	od 900							
Sample Name	Outfall 018 (0	Composite) Matri	х Туре:	WATER	\	Validation Le	evel: IV
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/201	1 8:38:00 AM	I		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	0.345	3	0.516	pCi/L	U	UJ	С
Gross Beta	12587472	3.1	4	1.02	pCi/L	Jb	J	DNQ
Analysis Metho	od 901.1							
Sample Name	Outfall 018 (0	Composite) Matri	x Type:	WATER	V	alidation Le	evel: IV
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/201	1 8:38:00 AM	I		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	ND	20	1.69	pCi/L	U	U	
Potassium-40	13966002	ND	25	24.3	pCi/L	U	U	
Analysis Metho	od 903.1							
Sample Name	Outfall 018 (0	Composite) Matri	x Type:	WATER	1	/alidation Le	evel: IV
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/201	1 8:38:00 AM	I		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.688	1	0.529	pCi/L	Jb	J	DNQ
Analysis Metho	od 904							
Sample Name	Outfall 018 (0	Composite) Matri	x Type:	WATER	V	alidation Le	evel: IV
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/201	1 8:38:00 AM	I		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier		Validation Notes
Radium-228	15262201	-0.03	1	0.462	pCi/L	U	U	
Analysis Metho	od 905							
Sample Name	Outfall 018 (0	Composite) Matri	x Type:	WATER	V	alidation Le	evel: IV
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/201	1 8:38:00 AM	I		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	-0.256	2	0.999	pCi/L	U	U	

Monday, April 18, 2011 Page 1 of 4

Analysis Method 906

~	0 .011.010.44				WATED		7 10 1 /0 T	. 137
Sample Name	Outfall 018 (C	-	,	x Type:			alidation Le	vel: 1V
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/201	8:38:00 AM	I		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028178	-78.4	500	170	pCi/L	U	U	
Analysis Metho	od ASTN	15174-	.91					
Sample Name	Outfall 018 (C	Composite	e) Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/201	8:38:00 AM	I		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total	NA	0.322	1	0.022	pCi/L	Jb	J	DNQ
Analysis Metho	od EPA .	200.7						
Sample Name	Outfall 018 (0	Composite	e) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/201	8:38:00 AM	I		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
ron	7439-89-6	0.74	0.040	0.015	mg/l			
Zinc	7440-66-6	6.36	20.0	6.00	ug/l	J	J	DNQ, *III
Analysis Metho	od EPA	200.7-L	Diss					
Sample Name	Outfall 018 (0	Composite		x Type:	Water	V	alidation Le	vel: IV
Sample Name Lab Sample Name:		-	e) Matri		Water 8:38:00 AM		alidation Le	vel: IV
Lab Sample Name:	Outfall 018 (C	-	e) Matri				Validation Le Validation Qualifier	vel: IV Validation Notes
Lab Sample Name: Analyte	Outfall 018 (C	Sam Result	e) Matri	2/27/201	8:38:00 AM Result	Lab	Validation	Validation
Lab Sample Name: Analyte	Outfall 018 (CIUB2819-03	Sam Result Value	e) Matri uple Date: RL	2/27/201 MDL	Result Units	Lab	Validation	Validation
Lab Sample Name: Analyte ron Zinc	Outfall 018 (CIUB2819-03 CAS No 7439-89-6 7440-66-6	Result Value 0.060	mple Date: RL	2/27/201 MDL 0.015	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Lab Sample Name: Analyte ron Zinc Analysis Metho	Outfall 018 (CIUB2819-03 CAS No 7439-89-6 7440-66-6	Result Value 0.060 11.2 245.1	P) Matri pple Date: RL 0.040 20.0	2/27/201 MDL 0.015	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes DNQ, *III
Lab Sample Name: Analyte ron Zinc Analysis Metho Sample Name	Outfall 018 (CIUB2819-03 CAS No 7439-89-6 7440-66-6 POR STANDARD STANDA	Result Value 0.060 11.2 245.1 Composite	RL 0.040 20.0 Matri	2/27/201 MDL 0.015 6.00	Result Units mg/l ug/l	Lab Qualifier	Validation Qualifier J	Validation Notes DNQ, *III
•	Outfall 018 (CIUB2819-03) CAS No 7439-89-6 7440-66-6 Outfall 018 (CIUB2819-03)	Result Value 0.060 11.2 245.1 Composite	RL 0.040 20.0 Matri	2/27/201 MDL 0.015 6.00	Result Units mg/l ug/l Water	Lab Qualifier	Validation Qualifier J	Validation Notes DNQ, *III

Monday, April 18, 2011 Page 2 of 4

Analysis Method EPA 245.1-Diss

Sample Name	Outfall 018 (C	omposite) Matri	x Type:	Water	Validation Level: IV					
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/2011	8:38:00 AM	ſ					
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes			
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U				
Analysis Method EPA-5 1613B											
Sample Name	Outfall 018 (C	omposite) Matri	x Type:	WATER	V	Validation Le	vel: IV			
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/2011	8:38:00 AM	I					
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes			
1,2,3,4,6,7,8-HpCDD	35822-46-9	2e-005	0.00005	0.0000026	ug/L	J	J	DNQ			
1,2,3,4,6,7,8-HpCDF	67562-39-4	4.2e-006	0.00005	0.0000023	ug/L	J	J	DNQ			
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000035	ug/L		U				
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000032	ug/L		U				
,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000029	ug/L		U				
,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000028	ug/L		U				
,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000027	ug/L		U				
,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000025	ug/L		U				
,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.000004	ug/L		U				
,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.000007	ug/L		U				
,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000076	ug/L		U				
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000026	ug/L		U				
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000077	ug/L		U				
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.000007	ug/L		U				
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000013	ug/L		U				
OCDD	3268-87-9	0.00023	0.0001	0.000011	ug/L	Ba					
OCDF	39001-02-0	9.8e-006	0.0001	0.0000043	ug/L	J	J	DNQ			
Total HpCDD	37871-00-4	4.9e-005	0.00005	0.0000026	ug/L	J	J	DNQ			
Total HpCDF	38998-75-3	9.5e-006	0.00005	0.0000028	ug/L	J	J	DNQ			
Total HxCDD	34465-46-8	ND	0.00005	0.0000025	ug/L		U				
Total HxCDF	55684-94-1	ND	0.00005	0.0000026	ug/L		U				
Total PeCDD	36088-22-9	ND	0.00005	0.0000068	ug/L		U				
Total PeCDF	30402-15-4	ND	0.00005	0.0000069	ug/L		U				
Total TCDD	41903-57-5	ND	0.00001	0.000007	ug/L		U				
Total TCDF	55722-27-5	ND	0.00001	0.0000013	ug/L		U				

Monday, April 18, 2011 Page 3 of 4

Analysis Method SM2130B

Sample Name	Outfall 018 (0	Composite) Matri	x Type:	Water	Validation Level: IV			
Lab Sample Name:	IUB2819-03	Sam	ple Date:	2/27/201	1 8:38:00 AM	AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Turbidity	Turb	18	1.0	0.040	NTU				
Analysis Metho	od SM25	510B							
Sample Name	Outfall 018 (0	Grab)	Matri	x Type:	Water	Validation Level: IV			
Lab Sample Name:	IUB2819-01	Sam	ple Date:	2/26/201	1 8:50:00 AM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Specific Conductance	NA	310	1.0	1.0	umhos/c	B-1			

Monday, April 18, 2011 Page 4 of 4

APPENDIX G

Section 52

Outfall 018 – February 26 & 27, 2011
Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/26/11-02/27/11

Received: 02/26/11 Issued: 04/04/11 12:52

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 2°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

OCDD in the associated Method Blank (MB) is reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time

for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

The reporting limit has been raised for 2,3,7,8-TCDF in the laboratory control sample/laboratory control sample duplicate (LCS/LCSD) associated with this sample due to elevated noise. There is no adverse impact to the quality of the data as a result of this anomaly. Analytical data is reported with a "G" flag.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 02/26/11-02/27/11

Arcadia, CA 91007 Report Number: IUB2819 Received: 02/26/11

Attention: Bronwyn Kelly

LABORATORY IDCLIENT IDMATRIXIUB2819-01Outfall 018 (Grab)WaterIUB2819-02Trip BlanksWaterIUB2819-03Outfall 018 (Composite)WaterIUB2819-04Trip BlanksWater

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

TestAmerica Irvine

Debby Wilson

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-01 (Outfall 018 (Grab) - Water)				Sample	d: 02/26/11	l		
Reporting Units: ug/l									
1,2-Dichloroethane	EPA 624	11C0786	0.28	0.50	ND	1	MB	03/06/11	
1,1-Dichloroethene	EPA 624	11C0786	0.42	2.0	ND	1	MB	03/06/11	
Trichloroethene	EPA 624	11C0786	0.26	2.0	ND	1	MB	03/06/11	
Surrogate: 4-Bromofluorobenzene (80-120%)					95 %				
Surrogate: Dibromofluoromethane (80-120%)	ó)				101 %				
Surrogate: Toluene-d8 (80-120%)					103 %				
Sample ID: IUB2819-02 (Trip Blanks - Wa	ter)				Sample	d: 02/26/11	l		
Reporting Units: ug/l									
1,2-Dichloroethane	EPA 624	11C0786	0.28	0.50	ND	1	MB	03/06/11	
1,1-Dichloroethene	EPA 624	11C0786	0.42	2.0	ND	1	MB	03/06/11	
Trichloroethene	EPA 624	11C0786	0.26	2.0	ND	1	MB	03/06/11	
Surrogate: 4-Bromofluorobenzene (80-120%)					96 %				
Surrogate: Dibromofluoromethane (80-120%)	ó)				105 %				
Surrogate: Toluene-d8 (80-120%)					105 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (Com	posite) - Water)				Sample	ed: 02/27/11	1		
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	11B3517	1.63	4.78	ND	0.957	up	03/02/11	
2,4-Dinitrotoluene	EPA 625	11B3517	0.191	4.78	ND	0.957	up	03/02/11	
N-Nitrosodimethylamine	EPA 625	11B3517	0.0957	4.78	ND	0.957	up	03/02/11	
Pentachlorophenol	EPA 625	11B3517	0.0957	4.78	ND	0.957	up	03/02/11	
2,4,6-Trichlorophenol	EPA 625	11B3517	0.0957	5.74	ND	0.957	up	03/02/11	
Surrogate: 2,4,6-Tribromophenol (40-120%)					82 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					74 %				
Surrogate: 2-Fluorophenol (30-120%)					66 %				
Surrogate: Nitrobenzene-d5 (45-120%)					75 %				
Surrogate: Phenol-d6 (35-120%)					71 %				
Surrogate: Terphenyl-d14 (50-125%)					90 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (Comp			Sample	d: 02/27/11					
Reporting Units: ug/l									
alpha-BHC	EPA 608	11C0141	0.0024	0.0096	ND	0.962	CN	03/13/11	
Surrogate: Decachlorobiphenyl (45-120%)					56 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					64 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers	
Sample ID: IUB2819-01 (Outfall 018 (Grab) - Water)				Sampled: 02/26/11						
Reporting Units: mg/l										
Hexane Extractable Material (Oil &	EPA 1664A	11C0978	1.4	4.8	ND	1	DA	03/08/11		
Grease)										

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (C	omposite) - Water)				Sample	ed: 02/27/11			
Reporting Units: mg/l									
Iron	EPA 200.7	11C0647	0.015	0.040	0.74	1	DT	03/08/11	
Sample ID: IUB2819-03 (Outfall 018 (C	l 018 (Composite) - Water)					ed: 02/27/11			
Reporting Units: ug/l									
Mercury	EPA 245.1	11C0167	0.10	0.20	ND	1	DB	03/02/11	
Cadmium	EPA 200.8	11C0501	0.10	1.0	ND	1	RDC	03/04/11	
Copper	EPA 200.8	11C0501	0.50	2.0	2.6	1	RDC	03/04/11	
Lead	EPA 200.8	11C0501	0.20	1.0	0.49	1	RDC	03/04/11	J
Selenium	EPA 200.8	11C0501	0.50	2.0	ND	1	RDC	03/04/11	
Sample ID: IUB2819-03RE1 (Outfall 01	8 (Composite) - Wa	iter)			Sample	ed: 02/27/11			
Reporting Units: ug/l									
Zinc	EPA 200.7	11C2212	6.00	20.0	6.36	1	LL	03/16/11	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (C	omposite) - Water)	- cont.			Sample	ed: 02/27/11			
Reporting Units: mg/l									
Iron	EPA 200.7-Diss	11B3548	0.015	0.040	0.060	1	DP	03/09/11	
Sample ID: IUB2819-03 (Outfall 018 (C	omposite) - Water)				Sample	ed: 02/27/11			
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	11C0168	0.10	0.20	ND	1	DB	03/02/11	
Cadmium	EPA 200.8-Diss	11C0285	0.10	1.0	ND	1	RDC	03/03/11	
Copper	EPA 200.8-Diss	11C0285	0.50	2.0	1.2	1	RDC	03/03/11	J
Lead	EPA 200.8-Diss	11C0285	0.20	1.0	ND	1	RDC	03/03/11	
Selenium	EPA 200.8-Diss	11C0285	0.50	2.0	ND	1	RDC	03/03/11	
Sample ID: IUB2819-03RE1 (Outfall 01	8 (Composite) - Wa	ter)			Sample	ed: 02/27/11			
Reporting Units: ug/l									
Zine	EPA 200.7-Diss	11C2222	6.00	20.0	11.2	1	DP	03/16/11	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (Composite) - Water)	- cont.			Sample	ed: 02/27/11	l		
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	11C0150	0.500	0.500	ND	1	TMK	03/01/11	
Biochemical Oxygen Demand	SM5210B	11B3539	0.50	2.0	1.4	1	XL	03/05/11	J
Chloride	EPA 300.0	11B3465	0.30	0.50	11	1	KS	02/27/11	
Nitrate-N	EPA 300.0	11B3465	0.060	0.11	0.15	1	KS	02/27/11	
Nitrite-N	EPA 300.0	11B3465	0.090	0.15	ND	1	KS	02/27/11	
Nitrate/Nitrite-N	EPA 300.0	11B3465	0.15	0.26	0.15	1	KS	02/27/11	J
Sulfate	EPA 300.0	11B3465	3.0	5.0	48	10	KS	02/27/11	
Surfactants (MBAS)	SM5540-C	11B3555	0.050	0.10	0.068	1	SLA	02/28/11	J
Total Dissolved Solids	SM2540C	11C0204	1.0	10	220	1	MC	03/02/11	
Total Suspended Solids	SM 2540D	11C0585	1.0	10	8.0	1	DK1	03/03/11	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 02/26/11-02/27/11

Arcadia, CA 91007 Report Number: IUB2819 Received: 02/26/11

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-01 (Outfall 018 (Gr	ab) - Water)				Sample	ed: 02/26/11	l		
Reporting Units: ml/l									
Total Settleable Solids	SM2540F	11B3432	0.10	0.10	ND	1	AC1	02/26/11	
Sample ID: IUB2819-03 (Outfall 018 (Co	mposite) - Water)				Sample	ed: 02/27/11	l		
Reporting Units: NTU									
Turbidity	SM2130B	11B3525	0.040	1.0	18	1	RRZ	02/28/11	
Sample ID: IUB2819-03 (Outfall 018 (Co	mposite) - Water)				Sample	ed: 02/27/11	l		
Reporting Units: ug/l									
Perchlorate	EPA 314.0	11C0021	0.90	4.0	ND	1	mn	03/01/11	
Total Cyanide	SM4500CN-E	11C0158	2.2	5.0	ND	1	HH	03/01/11	
Sample ID: IUB2819-01 (Outfall 018 (Gr Reporting Units: umhos/cm @ 25C	ab) - Water)				Sample	ed: 02/26/11	l		
Specific Conductance	SM2510B	11C0016	1.0	1.0	310	1	MC	03/01/11	B-1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

ND

1

1

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Uranium, Total

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

8669

8669

Sampled: 02/26/11-02/27/11

03/15/11

U

Received: 02/26/11

TSC

			8669						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (Composite) - Water)					Sample	ed: 02/27/11	1		
Reporting Units: pCi/L Uranium, Total	8669	8669		1	0.322	1	TSC	03/15/11	Jb
Sample ID: IUB2819-04 (Trip Blank Reporting Units: pCi/L	xs - Water)				Sample	ed: 02/27/11	1		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 02/26/11-02/27/11

Arcadia, CA 91007 Report Number: IUB2819 Received: 02/26/11

Attention: Bronwyn Kelly

			900						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (C	omposite) - Water)			Sample	ed: 02/27/1	1		
Reporting Units: pCi/L									
Gross Alpha	900	8669		3	0.345	1	LS	03/15/11	U
Gross Beta	900	8669		4	3.1	1	LS	03/15/11	Jb
Sample ID: IUB2819-04 (Trip Blanks - V	Water)				Sample	ed: 02/27/1	1		
Reporting Units: pCi/L									
Gross Alpha	900	8669		3	0.033	1	LS	03/15/11	U
Gross Beta	900	8669		4	-0.466	1	LS	03/15/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200

Routine Outfall 018

Arcadia, CA 91007

Report Number: IUB2819

Attention: Bronwyn Kelly

Received: 02/26/11

Sampled: 02/26/11-02/27/11

•	^	-	-
u	"		
7	v		

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (Con	nposite) - Water)				Sample	ed: 02/27/11	1		
Reporting Units: pCi/L									
Cesium-137	901.1	8669		20	ND	1	LS	03/11/11	U
Potassium-40	901.1	8669		25	ND	1	LS	03/11/11	U
Sample ID: IUB2819-04 (Trip Blanks - Wa	ater)				Sample	ed: 02/27/11	1		
Reporting Units: pCi/L									
Cesium-137	901.1	8669		20	ND	1	LS	03/11/11	U
Potassium-40	901.1	8669		25	ND	1	LS	03/11/11	U

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 02/26/11-02/27/11

Arcadia, CA 91007 Report Number: IUB2819 Received: 02/26/11

903.1

	M.O. A	D (1	MDL	Reporting	Sample			Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (Reporting Units: pCi/L	(Composite) - Water)			Sample	ed: 02/27/11	I		
Radium-226	903.1	8669		1	0.688	1	ASM	03/19/11	Jb
Sample ID: IUB2819-04 (Trip Blanks Reporting Units: pCi/L	- Water)				Sample	ed: 02/27/11	1		
Radium-226	903.1	8669		1	-0.046	1	ASM	03/19/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

			904						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (Composite) - Water)					Sample	d: 02/27/1	1		
Reporting Units: pCi/L									
Radium-228	904	8669		1	-0.03	1	ASM	03/18/11	U
Sample ID: IUB2819-04 (Trip Blanks - Water)					Sample	ed: 02/27/1	1		
Reporting Units: pCi/L									
Radium-228	904	8669		1	-0.065	1	ASM	03/18/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

			905						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (Composite) - Water) Sampled: 02/27/11									
Reporting Units: pCi/L									
Strontium-90	905	8669		2	-0.256	1	ASM	03/16/11	U
Sample ID: IUB2819-04 (Trip Blanks - Water)					Sample	ed: 02/27/1	1		
Reporting Units: pCi/L	00.5	0.660		•	0.046		4.03.6	00/16/11	**
Strontium-90	905	8669		2	0.046	l	ASM	03/16/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (Composite) - Water)			Sampled: 02/27/11						
Reporting Units: pCi/L Tritium	906	8669		500	-78.4	1	WL	03/22/11	U

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

EPA-5 1613Bx

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUB2819-03 (Outfall 018 (C	Composite) - Water)	- cont			Cample	d. 02/27/11	1		
Reporting Units: ug/L	composite, water,	cont.			Sample	d: 02/27/11	L		
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	1060411	0.0000026	5 0.00005	2e-005	0.98	SO	03/02/11	J
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B		0.0000023		4.2e-006	0.98	SO	03/02/11	J
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B		0.0000035		ND	0.98	SO	03/02/11	·
1,2,3,4,7,8-HxCDD	EPA-5 1613B		0.0000032		ND	0.98	SO	03/02/11	
1,2,3,4,7,8-HxCDF	EPA-5 1613B		0.0000029		ND	0.98	SO	03/02/11	
1,2,3,6,7,8-HxCDD	EPA-5 1613B		0.0000028		ND	0.98	SO	03/02/11	
1,2,3,6,7,8-HxCDF	EPA-5 1613B		0.0000027		ND	0.98	SO	03/02/11	
1,2,3,7,8,9-HxCDD	EPA-5 1613B		0.0000025		ND	0.98	SO	03/02/11	
1,2,3,7,8,9-HxCDF	EPA-5 1613B		0.000004		ND	0.98	SO	03/02/11	
1,2,3,7,8-PeCDD	EPA-5 1613B		0.000007		ND	0.98	SO	03/02/11	
1,2,3,7,8-PeCDF	EPA-5 1613B		0.0000076		ND	0.98	SO	03/02/11	
2,3,4,6,7,8-HxCDF	EPA-5 1613B		0.0000026		ND	0.98	SO	03/02/11	
2,3,4,7,8-PeCDF	EPA-5 1613B		0.0000077		ND	0.98	SO	03/02/11	
2,3,7,8-TCDD	EPA-5 1613B		0.000007		ND	0.98	SO	03/02/11	
2,3,7,8-TCDF	EPA-5 1613B		0.0000013		ND	0.98	SO	03/02/11	
OCDD	EPA-5 1613B		0.000011	0.0001	0.00023	0.98	SO	03/02/11	Ba
OCDF	EPA-5 1613B		0.0000043		9.8e-006	0.98	SO	03/02/11	J
Total HpCDD	EPA-5 1613B		0.0000026		4.9e-005	0.98	SO	03/02/11	J
Total HpCDF	EPA-5 1613B		0.0000028		9.5e-006	0.98	SO	03/02/11	J
Total HxCDD	EPA-5 1613B		0.0000025		ND	0.98	SO	03/02/11	
Total HxCDF	EPA-5 1613B		0.0000026		ND	0.98	SO	03/02/11	
Total PeCDD	EPA-5 1613B		0.0000068		ND	0.98	SO	03/02/11	
Total PeCDF	EPA-5 1613B		0.0000069		ND	0.98	SO	03/02/11	
Total TCDD	EPA-5 1613B		0.000007		ND	0.98	SO	03/02/11	
Total TCDF	EPA-5 1613B		0.0000013		ND	0.98	SO	03/02/11	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2					91 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (2)					109 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (2)					106 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-					87 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-	· · · · · · · · · · · · · · · · · · ·				95 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-	*				96 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-					108 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-					104 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18					81 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-18	<i>'</i>				89 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-					107 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-17	· · · · · · · · · · · · · · · · · · ·				92 %				
Surrogate: 13C-2,3,7,8-TCDD (25-164%)					81 %				
Surrogate: 13C-2,3,7,8-TCDF (24-169%)					94 %				
Surrogate: 13C-OCDD (17-157%)	•				101 %				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-197	7%)				93 %				
	•								

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 018 (Grab) (IUB2819-01	Hold Time (in days)) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
SM2540F	2	02/26/2011 08:50	02/26/2011 14:40	02/26/2011 18:00	02/26/2011 18:00
Sample ID: Outfall 018 (Composite) (IUB28	19-03) - Water				
EPA 300.0	2	02/27/2011 08:38	02/26/2011 14:40	02/27/2011 16:15	02/27/2011 16:53
Filtration	1	02/27/2011 08:38	02/26/2011 14:40	02/27/2011 20:30	02/27/2011 20:30
SM2130B	2	02/27/2011 08:38	02/26/2011 14:40	02/28/2011 08:40	02/28/2011 08:40
SM5210B	2	02/27/2011 08:38	02/26/2011 14:40	02/28/2011 09:36	03/05/2011 12:00
SM5540-C	2	02/27/2011 08:38	02/26/2011 14:40	02/28/2011 15:57	02/28/2011 21:49

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C0786 Extracted: 03/06/1	1										
	_										
Blank Analyzed: 03/06/2011 (11C0786-I	BLK1)										
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	2.0	0.42	ug/l							
Trichloroethene	ND	2.0	0.26	ug/l							
Surrogate: 4-Bromofluorobenzene	23.6			ug/l	25.0		94	80-120			
Surrogate: Dibromofluoromethane	24.7			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.6			ug/l	25.0		102	80-120			
LCS Analyzed: 03/06/2011 (11C0786-BS	S1)										
1,2-Dichloroethane	28.9	0.50	0.28	ug/l	25.0		115	60-140			
1,1-Dichloroethene	25.8	2.0	0.42	ug/l	25.0		103	70-125			
Trichloroethene	27.4	2.0	0.26	ug/l	25.0		109	70-125			
Surrogate: 4-Bromofluorobenzene	23.7			ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	24.9			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	26.0			ug/l	25.0		104	80-120			
Matrix Spike Analyzed: 03/06/2011 (110	C0786-MS1)				Sou	rce: IUB2	2819-01				
1,2-Dichloroethane	29.5	0.50	0.28	ug/l	25.0	ND	118	60-140			
1,1-Dichloroethene	26.4	2.0	0.42	ug/l	25.0	ND	105	60-130			
Trichloroethene	26.7	2.0	0.26	ug/l	25.0	ND	107	65-125			
Surrogate: 4-Bromofluorobenzene	23.8			ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	26.4			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	25.9			ug/l	25.0		104	80-120			
Matrix Spike Dup Analyzed: 03/06/2011	l (11C0786-M	SD1)			Sou	rce: IUB2	2819-01				
1,2-Dichloroethane	27.8	0.50	0.28	ug/l	25.0	ND	111	60-140	6	20	
1,1-Dichloroethene	25.6	2.0	0.42	ug/l	25.0	ND	103	60-130	3	20	
Trichloroethene	26.1	2.0	0.26	ug/l	25.0	ND	104	65-125	2	20	
Surrogate: 4-Bromofluorobenzene	23.8			ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	26.1			ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11B3517 Extracted: 02/28/1	<u>1_</u>										
	_										
Blank Analyzed: 03/02/2011 (11B3517-I	BLK1)										
Bis(2-ethylhexyl)phthalate	ND	5.00	1.70	ug/l							
2,4-Dinitrotoluene	ND	5.00	0.200	ug/l							
N-Nitrosodimethylamine	ND	5.00	0.100	ug/l							
Pentachlorophenol	ND	5.00	0.100	ug/l							
2,4,6-Trichlorophenol	ND	6.00	0.100	ug/l							
Surrogate: 2,4,6-Tribromophenol	18.7			ug/l	20.0		94	40-120			
Surrogate: 2-Fluorobiphenyl	8.02			ug/l	10.0		80	50-120			
Surrogate: 2-Fluorophenol	16.3			ug/l	20.0		81	30-120			
Surrogate: Nitrobenzene-d5	8.20			ug/l	10.0		82	45-120			
Surrogate: Phenol-d6	16.3			ug/l	20.0		81	35-120			
Surrogate: Terphenyl-d14	9.98			ug/l	10.0		100	50-125			
LCS Analyzed: 03/02/2011 (11B3517-BS	S1)										MNR1
Bis(2-ethylhexyl)phthalate	10.7	5.00	1.70	ug/l	10.0		107	65-130			
2,4-Dinitrotoluene	8.58	5.00	0.200	ug/l	10.0		86	65-120			
N-Nitrosodimethylamine	7.26	5.00	0.100	ug/l	10.0		73	45-120			
Pentachlorophenol	7.48	5.00	0.100	ug/l	10.0		75	24-121			
2,4,6-Trichlorophenol	8.14	6.00	0.100	ug/l	10.0		81	55-120			
Surrogate: 2,4,6-Tribromophenol	17.3			ug/l	20.0		86	40-120			
Surrogate: 2-Fluorobiphenyl	7.46			ug/l	10.0		75	50-120			
Surrogate: 2-Fluorophenol	13.3			ug/l	20.0		67	30-120			
Surrogate: Nitrobenzene-d5	7.28			ug/l	10.0		73	45-120			
Surrogate: Phenol-d6	14.5			ug/l	20.0		72	35-120			
Surrogate: Terphenyl-d14	9.32			ug/l	10.0		93	50-125			
LCS Dup Analyzed: 03/02/2011 (11B35	17-BSD1)										
Bis(2-ethylhexyl)phthalate	9.22	5.00	1.70	ug/l	10.0		92	65-130	15	20	
2,4-Dinitrotoluene	7.78	5.00	0.200	ug/l	10.0		78	65-120	10	20	
N-Nitrosodimethylamine	6.92	5.00	0.100	ug/l	10.0		69	45-120	5	20	
Pentachlorophenol	5.94	5.00	0.100	ug/l	10.0		59	24-121	23	25	
2,4,6-Trichlorophenol	7.52	6.00	0.100	ug/l	10.0		75	55-120	8	30	
Surrogate: 2,4,6-Tribromophenol	14.9			ug/l	20.0		74	40-120			
Surrogate: 2-Fluorobiphenyl	6.72			ug/l	10.0		67	50-120			
Surrogate: 2-Fluorophenol	12.7			ug/l	20.0		63	30-120			
Surrogate: Nitrobenzene-d5	6.62			ug/l	10.0		66	45-120			
Surrogate: Phenol-d6	14.1			ug/l	20.0		70	35-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result %REC	Limits	RPD	Limit	Qualifiers

Batch: 11B3517 Extracted: 02/28/11

LCS Dup Analyzed: 03/02/2011 (11B3517-BSD1)

Surrogate: Terphenyl-d14 8.24 ug/l 10.0 82 50-125

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C0141 Extracted: 03/01/11	<u>L</u>										
Blank Analyzed: 03/11/2011 (11C0141-B	LK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.340			ug/l	0.500		68	45-120			
Surrogate: Tetrachloro-m-xylene	0.323			ug/l	0.500		65	35-115			
LCS Analyzed: 03/11/2011 (11C0141-BS	1)										MNR1
alpha-BHC	0.354	0.010	0.0025	ug/l	0.500		71	45-115			
Surrogate: Decachlorobiphenyl	0.319			ug/l	0.500		64	45-120			
Surrogate: Tetrachloro-m-xylene	0.296			ug/l	0.500		59	35-115			
LCS Dup Analyzed: 03/11/2011 (11C014	1-BSD1)										
alpha-BHC	0.403	0.010	0.0025	ug/l	0.500		81	45-115	13	30	
Surrogate: Decachlorobiphenyl	0.402			ug/l	0.500		80	45-120			
Surrogate: Tetrachloro-m-xylene	0.339			ug/l	0.500		68	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C0978 Extracted: 03/08/11	_										
Blank Analyzed: 03/08/2011 (11C0978-Bl	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 03/08/2011 (11C0978-BS)	1)										MNR1
Hexane Extractable Material (Oil & Grease)	18.9	5.0	1.4	mg/l	20.0		94	78-114			
LCS Dup Analyzed: 03/08/2011 (11C0978	B-BSD1)										
Hexane Extractable Material (Oil & Grease)	19.2	5.0	1.4	mg/l	20.0		96	78-114	2	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

METALS

]	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C0167 Extracted: 03/01/11											
	_										
Blank Analyzed: 03/02/2011 (11C0167-Bl	L K1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 03/02/2011 (11C0167-BS)	`										
Mercury	7.70	0.20	0.10	ug/l	8.00		96	85-115			
Nicicuity	7.70	0.20	0.10	ug/1	8.00		90	03-113			
Matrix Spike Analyzed: 03/02/2011 (11C)	0167-MS1)				Sour	rce: IUB2	2630-01				
Mercury	5.72	0.20	0.10	ug/l	8.00	ND	71	70-130			
Matrix Spike Dup Analyzed: 03/02/2011	(11C0167-MSI	D1)			Sour	rce: IUB2	630-01				
Mercury	5.81	0.20	0.10	ug/l	8.00	ND	73	70-130	2	20	
Batch: 11C0501 Extracted: 03/03/11											
	-										
Blank Analyzed: 03/04/2011 (11C0501-Bl	L K1)										
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
LCS Analyzed: 03/04/2011 (11C0501-BS)	.)										
Cadmium	83.9	1.0	0.10	ug/l	80.0		105	85-115			
Copper	79.1	2.0	0.50	ug/l	80.0		99	85-115			
Lead	87.9	1.0	0.20	ug/l	80.0		110	85-115			
Selenium	76.0	2.0	0.50	ug/l	80.0		95	85-115			
Matrix Spike Analyzed: 03/04/2011 (11C	0501-MS1)				Sour	rce: IUC(0095-07				
Cadmium	80.6	1.0	0.10	ug/l	80.0	ND	101	70-130			
Copper	72.3	2.0	0.50	ug/l	80.0	2.55	87	70-130			
Lead	85.0	1.0	0.20	ug/l	80.0	ND	106	70-130			
Selenium	75.8	2.0	0.50	ug/l	80.0	0.659	94	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C0501 Extracted: 03/03	/11_										
Matrix Spike Analyzed: 03/04/2011 (1	1C0501-MS2)				Sou	rce: IUC	0095-01				
Cadmium	80.3	1.0	0.10	ug/l	80.0	0.112	100	70-130			
Copper	71.1	2.0	0.50	ug/l	80.0	2.29	86	70-130			
Lead	86.4	1.0	0.20	ug/l	80.0	ND	108	70-130			
Selenium	78.9	2.0	0.50	ug/l	80.0	2.23	96	70-130			
Matrix Spike Dup Analyzed: 03/04/20	11 (11C0501-M	SD1)			Sou	rce: IUC	0095-07				
Cadmium	80.9	1.0	0.10	ug/l	80.0	ND	101	70-130	0.4	20	
Copper	73.0	2.0	0.50	ug/l	80.0	2.55	88	70-130	1	20	
Lead	85.5	1.0	0.20	ug/l	80.0	ND	107	70-130	0.7	20	
Selenium	74.7	2.0	0.50	ug/l	80.0	0.659	93	70-130	1	20	
Batch: 11C0647 Extracted: 03/04	/11_										
Blank Analyzed: 03/07/2011 (11C0647	7-BLK1)										
Iron	ND	0.040	0.015	mg/l							
LCS Analyzed: 03/07/2011 (11C0647-	BS1)										
Iron	0.559	0.040	0.015	mg/l	0.500		112	85-115			
Matrix Spike Analyzed: 03/07/2011 (1	1C0647-MS1)				Sou	rce: IUC	0168-01				
Iron	1.12	0.040	0.015	mg/l	0.500	0.512	122	70-130			
Matrix Spike Analyzed: 03/07/2011 (1	1C0647-MS2)				Sou	rce: IUC	0168-04				
Iron	0.619	0.040	0.015	mg/l	0.500	0.119	100	70-130			
Matrix Spike Dup Analyzed: 03/07/20	11 (11C0647-M	SD1)			Sou	rce: IUC	0168-01				
Iron	1.01	0.040	0.015	mg/l	0.500	0.512	100	70-130	10	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C2212 Extracted: 03/16/11	=										
Blank Analyzed: 03/16/2011 (11C2212-Bl	LK1)										
Zinc	ND	20.0	6.00	ug/l							
LCS Analyzed: 03/16/2011 (11C2212-BS1	.)										
Zinc	489	20.0	6.00	ug/l	500		98	85-115			
Matrix Spike Analyzed: 03/16/2011 (11C	2212-MS1)				Sou	rce: IUC	1036-05				
Zinc	517	20.0	6.00	ug/l	500	ND	103	70-130			
Matrix Spike Analyzed: 03/16/2011 (11C	2212-MS2)				Sou	rce: IUC	1185-01				
Zinc	540	20.0	6.00	ug/l	500	10.0	106	70-130			
Matrix Spike Dup Analyzed: 03/16/2011 (11C2212-MSD1)					Sou	rce: IUC	1036-05				
Zinc	522	20.0	6.00	ug/l	500	ND	104	70-130	0.9	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

DISSOLVED METALS

A Bods	D14	Reporting	MDI	TI:4-	Spike	Source	0/DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11B3548 Extracted: 02/28/11	-										
Blank Analyzed: 03/02/2011 (11B3548-Bl	LK1)										
Iron	ND	0.040	0.015	mg/l							
LCS Analyzed: 03/02/2011 (11B3548-BS1	.)										
Iron	0.510	0.040	0.015	mg/l	0.500		102	85-115			
Matrix Spike Analyzed: 03/02/2011 (11B3	3548-MS1)				Sou	rce: IUB2	2647-01				
Iron	0.501	0.040	0.015	mg/l	0.500	ND	100	70-130			
Matrix Spike Analyzed: 03/07/2011 (11B3	3548-MS2)				Sour	rce: IUB2	2630-01				
Iron	0.431	0.080	0.030	mg/l	0.500	ND	86	70-130			
Matrix Spike Dup Analyzed: 03/02/2011	(11B3548-MS	SD1)			Sour	rce: IUB2	2647-01				
Iron	0.500	0.040	0.015	mg/l	0.500	ND	100	70-130	0.3	20	
Batch: 11C0168 Extracted: 03/01/11	<u>-</u>										
Blank Analyzed: 03/02/2011 (11C0168-Bl	(K 1)										
Mercury	ND	0.20	0.10	ug/l							
•		0.20	0.10	ug/1							
LCS Analyzed: 03/02/2011 (11C0168-BS)				_							
Mercury	7.30	0.20	0.10	ug/l	8.00		91	85-115			
Matrix Spike Analyzed: 03/02/2011 (11C	0168-MS1)				Sour	rce: IUB2	2647-01				
Mercury	7.27	0.20	0.10	ug/l	8.00	ND	91	70-130			
Matrix Spike Dup Analyzed: 03/02/2011	(11C0168-MS	SD1)			Sour	rce: IUB2	2647-01				
Mercury	7.31	0.20	0.10	ug/l	8.00	ND	91	70-130	0.4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C0285 Extracted: 03/02/11											
	=										
Blank Analyzed: 03/03/2011 (11C0285-Bl	LK1)										
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
LCS Analyzed: 03/03/2011 (11C0285-BS)	1)										
Cadmium	81.9	1.0	0.10	ug/l	80.0		102	85-115			
Copper	80.2	2.0	0.50	ug/l	80.0		100	85-115			
Lead	82.5	1.0	0.20	ug/l	80.0		103	85-115			
Selenium	80.8	2.0	0.50	ug/l	80.0		101	85-115			
Matrix Spike Analyzed: 03/03/2011 (11C	0285-MS1)				Sou	rce: IUB2	2862-01				
Cadmium	80.4	1.0	0.10	ug/l	80.0	ND	101	70-130			
Copper	79.3	2.0	0.50	ug/l	80.0	ND	99	70-130			
Lead	77.4	1.0	0.20	ug/l	80.0	ND	97	70-130			
Selenium	80.9	2.0	0.50	ug/l	80.0	ND	101	70-130			
Matrix Spike Analyzed: 03/03/2011 (11C	0285-MS2)				Sou	rce: IUB2	2647-01				
Cadmium	80.1	1.0	0.10	ug/l	80.0	ND	100	70-130			
Copper	79.0	2.0	0.50	ug/l	80.0	ND	99	70-130			
Lead	78.3	1.0	0.20	ug/l	80.0	ND	98	70-130			
Selenium	79.1	2.0	0.50	ug/l	80.0	ND	99	70-130			
Matrix Spike Dup Analyzed: 03/03/2011	(11C0285-M	SD1)			Sou	rce: IUB2	2862-01				
Cadmium	80.5	1.0	0.10	ug/l	80.0	ND	101	70-130	0.04	20	
Copper	78.4	2.0	0.50	ug/l	80.0	ND	98	70-130	1	20	
Lead	78.6	1.0	0.20	ug/l	80.0	ND	98	70-130	1	20	
Selenium	80.6	2.0	0.50	ug/l	80.0	ND	101	70-130	0.3	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte Batch: 11C2222 Extracted: 03/16/11	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 03/16/2011 (11C2222-Bl	L K1) ND	20.0	6.00	ug/l							
LCS Analyzed: 03/16/2011 (11C2222-BS1 Zinc) 514	20.0	6.00	ug/l	500		103	85-115			MNR1
LCS Dup Analyzed: 03/16/2011 (11C2222 Zinc	514	20.0	6.00	ug/l	500		103	85-115	0.08	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
-		Zimit	IDE	Cints	Ecter	itesuit	, under	Zimits	I D	Ziiiii	Qualifiers
Batch: 11B3465 Extracted: 02/27/11	-										
Blank Analyzed: 02/27/2011 (11B3465-Bl	LK1)										
Chloride	ND	0.50	0.30	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.30	mg/l							
LCS Analyzed: 02/27/2011 (11B3465-BS1	1)										
Chloride	4.57	0.50	0.30	mg/l	5.00		91	90-110			
Nitrate-N	1.09	0.11	0.060	mg/l	1.13		97	90-110			
Nitrite-N	1.44	0.15	0.090	mg/l	1.52		95	90-110			
Sulfate	9.78	0.50	0.30	mg/l	10.0		98	90-110			
Matrix Spike Analyzed: 02/27/2011 (11B3	3465-MS1)				Sou	rce: IUB2	2814-03				
Chloride	18.0	0.50	0.30	mg/l	5.00	12.6	109	80-120			
Nitrate-N	1.64	0.11	0.060	mg/l	1.13	0.561	96	80-120			
Nitrite-N	1.52	0.15	0.090	mg/l	1.52	ND	100	80-120			
Sulfate	16.2	0.50	0.30	mg/l	10.0	6.25	99	80-120			
Matrix Spike Dup Analyzed: 02/27/2011	(11B3465-M	SD1)			Sou	rce: IUB2	2814-03				
Chloride	17.7	0.50	0.30	mg/l	5.00	12.6	103	80-120	2	20	
Nitrate-N	1.62	0.11	0.060	mg/l	1.13	0.561	94	80-120	1	20	
Nitrite-N	1.51	0.15	0.090	mg/l	1.52	ND	99	80-120	0.9	20	
Sulfate	15.9	0.50	0.30	mg/l	10.0	6.25	96	80-120	2	20	
Batch: 11B3525 Extracted: 02/28/11	-										
Blank Analyzed: 02/28/2011 (11B3525-Bl	LK1)										
Turbidity	ND	1.0	0.040	NTU							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11B3525 Extracted: 02/28/11		Limit	MIDL	Cints	Level	Result	70REC	Limits	KI D	Limit	Quanners
Daten. 11D3323 Extracted. 02/20/11	=										
Duplicate Analyzed: 02/28/2011 (11B352	5-DUP1)				Sou	rce: IUB2	2817-03				
Turbidity	9.62	1.0	0.040	NTU		9.81			2	20	
Duplicate Analyzed: 02/28/2011 (11B352	5-DUP2)				Sou	rce: IUB2	2823-07				
Turbidity	7.15	1.0	0.040	NTU		7.44			4	20	
Batch: 11B3539 Extracted: 02/28/11	_										
Blank Analyzed: 03/05/2011 (11B3539-B	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.50	mg/l							
LCS Analyzed: 03/05/2011 (11B3539-BS	1)										
Biochemical Oxygen Demand	186	100	25	mg/l	198		94	85-115			
LCS Dup Analyzed: 03/05/2011 (11B3539	9-BSD1)										
Biochemical Oxygen Demand	185	100	25	mg/l	198		93	85-115	0.3	20	
Batch: 11B3555 Extracted: 02/28/11	_										
Blank Analyzed: 02/28/2011 (11B3555-B	LK1)										
Surfactants (MBAS)	ND	0.10	0.050	mg/l							
LCS Analyzed: 02/28/2011 (11B3555-BS	1)										
Surfactants (MBAS)	0.254	0.10	0.050	mg/l	0.250		101	90-110			
Matrix Spike Analyzed: 02/28/2011 (11B	3555-MS1)				Sou	rce: IUB2	819-03				
Surfactants (MBAS)	0.322	0.10	0.050	mg/l	0.250	0.0682	102	50-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDI	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11B3555 Extracted: 02/28/11											
	_										
Matrix Spike Dup Analyzed: 02/28/2011	(11B3555-M	(SD1)			Sou	rce: IUB2	2819-03				
Surfactants (MBAS)	0.323	0.10	0.050	mg/l	0.250	0.0682	102	50-125	0.2	20	
Batch: 11C0016 Extracted: 03/01/13	<u>L</u>										
Blank Analyzed: 03/01/2011 (11C0016-B	BLK1)										
Specific Conductance	1.14	1.0	1.0	hos/cm @ 2							В
LCS Analyzed: 03/01/2011 (11C0016-BS	51)										
Specific Conductance	1390	1.0	1.0	hos/cm @ 2	1410		98	90-110			
Duplicate Analyzed: 03/01/2011 (11C00)	(6-DUP1)				Sou	rce: IUB2	2878-01				
Specific Conductance	735	1.0	1.0	hos/cm @ 2		735			0	5	
Batch: 11C0021 Extracted: 03/01/11	<u>L</u>										
Blank Analyzed: 03/01/2011 (11C0021-B	BLK1)										
Perchlorate	ND	4.0	0.90	ug/l							
LCS Analyzed: 03/01/2011 (11C0021-BS	1)										
Perchlorate	26.1	4.0	0.90	ug/l	25.0		105	85-115			
Matrix Spike Analyzed: 03/01/2011 (110	C0021-MS1)				Sou	rce: IUB2	2737-03				
Perchlorate	29.7	4.0	0.90	ug/l	25.0	3.55	105	80-120			
Matrix Spike Dup Analyzed: 03/01/2011	(11C0021-M	ISD1)			Sou	rce: IUB2	2737-03				
Perchlorate	29.8	4.0	0.90	ug/l	25.0	3.55	105	80-120	0.5	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C0150 Extracted: 03/01/11	_										
Disub Assalson de 02/01/2011 (11/01/50 D)	I 171)										
Blank Analyzed: 03/01/2011 (11C0150-Bl Ammonia-N (Distilled)	ND	0.500	0.500	mg/l							
,		0.500	0.500	IIIg/I							
LCS Analyzed: 03/01/2011 (11C0150-BS)											
Ammonia-N (Distilled)	9.80	0.500	0.500	mg/l	10.0		98	80-115			
Matrix Spike Analyzed: 03/01/2011 (11C	0150-MS1)				Sou	rce: IUB2	2621-03				
Ammonia-N (Distilled)	9.80	0.500	0.500	mg/l	10.0	ND	98	70-120			
Matrix Spike Dup Analyzed: 03/01/2011	(11C0150-M	SD1)			Sou	rce: IUB2	2621-03				
Ammonia-N (Distilled)	9.80	0.500	0.500	mg/l	10.0	ND	98	70-120	0	15	
Batch: 11C0158 Extracted: 03/01/11	_										
Blank Analyzed: 03/01/2011 (11C0158-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 03/01/2011 (11C0158-BS)	D.										
Total Cyanide	196	5.0	2.2	ug/l	196		100	90-110			
•				8							
Matrix Spike Analyzed: 03/01/2011 (11C		5.0	2.2	/1		rce: IUB2		70 115			
Total Cyanide	201	5.0	2.2	ug/l	196	ND	102	70-115			
Matrix Spike Dup Analyzed: 03/01/2011	(11C0158-M	SD1)			Sou	rce: IUB2	2819-03				
Total Cyanide	199	5.0	2.2	ug/l	196	ND	101	70-115	0.9	15	
Batch: 11C0204 Extracted: 03/02/11	_										
Blank Analyzed: 03/02/2011 (11C0204-Bl	LK1)										
Total Dissolved Solids	ND	10	1.0	mg/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C0204 Extracted: 03/02/11	_										
LCS Analyzed: 03/02/2011 (11C0204-BS	1)										
Total Dissolved Solids	1020	10	1.0	mg/l	1000		102	90-110			
Duplicate Analyzed: 03/02/2011 (11C020	4-DUP1)				Sou	rce: IUB2	2750-01				
Total Dissolved Solids	365	10	1.0	mg/l		352			4	10	
Batch: 11C0585 Extracted: 03/03/11	_										
Blank Analyzed: 03/03/2011 (11C0585-B	LK1)										
Total Suspended Solids	ND	10	1.0	mg/l							
LCS Analyzed: 03/03/2011 (11C0585-BS	1)										
Total Suspended Solids	996	10	1.0	mg/l	1000		100	85-115			
Duplicate Analyzed: 03/03/2011 (11C0585-DUP1)					Sou	rce: IUC(0002-01				
Total Suspended Solids	13.0	10	1.0	mg/l		13.0			0	10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8669 Extracted: 03/15/11											
LCS Analyzed: 03/15/2011 (S103013-03)					Sou	rce:					
Uranium, Total	53.9	1	N/A	pCi/L	56.5		95	80-120			
Blank Analyzed: 03/15/2011 (S103013-04)				Sou	rce:					
Uranium, Total	ND	1	N/A	pCi/L				-			U
Duplicate Analyzed: 03/15/2011 (S103013	3-05)				Sou	rce:					
Uranium, Total	0.574	1	N/A	pCi/L				-	7		Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8669 Extracted: 03/11/11											
LCS Analyzed: 03/14/2011 (S103013-03)					Sou	rce:					
Gross Alpha	107	3	N/A	pCi/L	101		106	70-130			
Gross Beta	86.8	4	N/A	pCi/L	87.2		100	70-130			
Blank Analyzed: 03/14/2011 (S103013-04)				Sou	rce:					
Gross Alpha	0.089	3	N/A	pCi/L				-			U
Gross Beta	0.136	4	N/A	pCi/L				-			U
Duplicate Analyzed: 03/14/2011 (S103013	3-05)				Sou	rce:					
Gross Alpha	1.44	3	N/A	pCi/L				-	32		Jb
Gross Beta	3.86	4	N/A	pCi/L				-	12		Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

901.1

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8669 Extracted: 03/03/11											
LCS Analyzed: 03/08/2011 (S103013-03)					Sou	rce:					
Cobalt-60	123	10	N/A	pCi/L	126		98	80-120			
Cesium-137	116	20	N/A	pCi/L	110		106	80-120			
Blank Analyzed: 03/08/2011 (S103013-04)				Sou	rce:					
Cesium-137	ND	20	N/A	pCi/L				-			U
Potassium-40	ND	25	N/A	pCi/L				-			U
Duplicate Analyzed: 03/10/2011 (S103013	3-05)				Sou	rce:					
Cesium-137	ND	20	N/A	pCi/L				-	0		U
Potassium-40	ND	25	N/A	pCi/L				-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

903.1

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8669 Extracted: 03/25/11											
LCS Analyzed: 03/25/2011 (S103013-03)					Sou	rce:					
Radium-226	59.5	1	N/A	pCi/L	55.7		107	80-120			
Blank Analyzed: 03/19/2011 (S103013-04)				Sou	rce:					
Radium-226	0.156	1	N/A	pCi/L				-			U
Duplicate Analyzed: 03/19/2011 (S10301)	3-05)				Sou	rce:					
Radium-226	0.467	1	N/A	pCi/L				-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8669 Extracted: 03/18/11											
LCS Analyzed: 03/18/2011 (S103013-03)					Sou	rce:					
Radium-228	16.1	1	N/A	pCi/L	15.1		107	60-140			
Blank Analyzed: 03/18/2011 (S103013-04)				Sou	rce:					
Radium-228	-0.11	1	N/A	pCi/L				-			U
Duplicate Analyzed: 03/18/2011 (S10301)	3-05)				Sou	rce:					
Radium-228	0.062	1	N/A	pCi/L				-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

Analyte Batch: 8669 Extracted: 03/15/11	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 03/16/2011 (S103013-03) Strontium-90	20.3	2	N/A	pCi/L	Sou :	rce:	117	80-120			
Blank Analyzed: 03/16/2011 (S103013-04 Strontium-90	-0.258	2	N/A	pCi/L	Sou	rce:		-			U
Duplicate Analyzed: 03/16/2011 (S103013 Strontium-90	3-05) -0.199	2	N/A	pCi/L	Sou	rce:		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8669 Extracted: 03/19/11											
LCS Analyzed: 03/22/2011 (S103013-03)					Sour	rce:					
Tritium	2780	500	N/A	pCi/L	2940		95	80-120			
Blank Analyzed: 03/22/2011 (S103013-04)				Sour	rce:					
Tritium	-28	500	N/A	pCi/L				-			U
Duplicate Analyzed: 03/22/2011 (S103013	-05)				Sou	rce:					
Tritium	-42.1	500	N/A	pCi/L				-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Reporting

Sampled: 02/26/11-02/27/11

RPD

Data

Received: 02/26/11

METHOD BLANK/QC DATA

EPA-5 1613Bx

Spike

Source

		Keporting	,		Spike	Source		OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1060411 Extracted: 03/0	1/11										
Blank Analyzed: 03/02/2011 (G1C0)	10000411B)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	ND	0.00005	0.0000028	ug/L				-			
1,2,3,4,6,7,8-HpCDF	ND	0.00005	0.0000022	ug/L				-			
1,2,3,4,7,8,9-HpCDF	ND	0.00005	0.0000032	ug/L				-			
1,2,3,4,7,8-HxCDD	ND	0.00005	0.0000026	ug/L				-			
1,2,3,4,7,8-HxCDF	ND	0.00005	0.0000028	ug/L				-			
1,2,3,6,7,8-HxCDD	ND	0.00005	0.0000024	ug/L				-			
1,2,3,6,7,8-HxCDF	ND	0.00005	0.0000026	ug/L				-			
1,2,3,7,8,9-HxCDD	ND	0.00005	0.0000021	ug/L				-			
1,2,3,7,8,9-HxCDF	ND	0.00005	0.0000033	ug/L				-			
1,2,3,7,8-PeCDD	ND	0.00005	0.0000071	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	0.0000093	ug/L				-			
2,3,4,6,7,8-HxCDF	ND	0.00005	0.0000024	ug/L				-			
2,3,4,7,8-PeCDF	ND	0.00005	0.0000095	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	0.0000095	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	0.000003	ug/L				-			
OCDD	4.4e-006	0.0001	0.0000071	ug/L				-			J
OCDF	ND	0.0001	0.0000042	ug/L				-			
Total HpCDD	ND	0.00005	0.0000028	ug/L				-			
Total HpCDF	ND	0.00005	0.0000022	ug/L				-			
Total HxCDD	ND	0.00005	0.0000021	ug/L				-			
Total HxCDF	ND	0.00005	0.0000024	ug/L				-			
Total PeCDD	ND	0.00005	0.0000071	ug/L				-			
Total PeCDF	ND	0.00005	0.0000093	ug/L				-			
Total TCDD	ND	0.00001	0.0000095	ug/L				-			
Total TCDF	ND	0.00001	0.000003	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0018			ug/L	0.002		88	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0021			ug/L	0.002		106	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0021			ug/L	0.002		104	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0017			ug/L	0.002		85	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0019			ug/L	0.002		95	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0018			ug/L	0.002		92	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0018			ug/L	0.002		92	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0019			ug/L	0.002		96	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0016			ug/L	0.002		78	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0017			ug/L	0.002		85	24-185			

TestAmerica Irvine

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Source

Spike

Received: 02/26/11

Sampled: 02/26/11-02/27/11

RPD

Data

METHOD BLANK/QC DATA

EPA-5 1613Bx

Reporting

Analyte Resu		Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1060411 Extracted: 03/0	1/11										
Blank Analyzed: 03/02/2011 (G1C0)	10000411B)				Sou	rce:					
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.002			ug/L	0.002		102	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0018			ug/L	0.002		89	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0014			ug/L	0.002		71	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0016			ug/L	0.002		82	24-169			
Surrogate: 13C-OCDD	0.0039			ug/L	0.004		97	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00073			ug/L	0.0008		91	35-197			
LCS Analyzed: 03/02/2011 (G1C010	0000411C)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.00122	0.00005	0.0000078	ug/L	0.001		122	70-140			
1,2,3,4,6,7,8-HpCDF	0.0011	0.00005	0.000011	ug/L	0.001		110	82-122			
1,2,3,4,7,8,9-HpCDF	0.00112	0.00005	0.000016	ug/L	0.001		112	78-138			
1,2,3,4,7,8-HxCDD	0.00115	0.00005	0.000002	ug/L	0.001		115	70-164			
1,2,3,4,7,8-HxCDF	0.00121	0.00005	0.0000034	ug/L	0.001		121	72-134			
1,2,3,6,7,8-HxCDD	0.00113	0.00005	0.0000017	ug/L	0.001		113	76-134			
1,2,3,6,7,8-HxCDF	0.00124	0.00005	0.0000031	ug/L	0.001		124	84-130			
1,2,3,7,8,9-HxCDD	0.00117	0.00005	0.0000015	ug/L	0.001		117	64-162			
1,2,3,7,8,9-HxCDF	0.00129	0.00005	0.0000041	ug/L	0.001		129	78-130			
1,2,3,7,8-PeCDD	0.00128	0.00005	0.0000081	ug/L	0.001		128	70-142			
1,2,3,7,8-PeCDF	0.00122	0.00005	0.000016	ug/L	0.001		122	80-134			
2,3,4,6,7,8-HxCDF	0.00119	0.00005	0.0000028	ug/L	0.001		119	70-156			
2,3,4,7,8-PeCDF	0.00121	0.00005	0.000016	ug/L	0.001		121	68-160			
2,3,7,8-TCDD	0.000306	0.00001	0.0000093	ug/L	0.0002		153	67-158			
2,3,7,8-TCDF	0.000289	0.000013	0.000013	ug/L	0.0002		145	75-158			G
OCDD	0.00222	0.0001	0.000016	ug/L	0.002		111	78-144			Ва
OCDF	0.00258	0.0001	0.0000072	ug/L	0.002		129	63-170			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00175			ug/L	0.002		88	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00211			ug/L	0.002		105	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00203			ug/L	0.002		102	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00167			ug/L	0.002		84	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00186			ug/L	0.002		93	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00191			ug/L	0.002		96	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00188			ug/L	0.002		94	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.002			ug/L	0.002		100	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0016			ug/L	0.002		80	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00175			ug/L	0.002		87	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00207			ug/L	0.002		103	22-176			
2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF Surrogate: 13C-1,2,3,4,6,7,8-HpCDD Surrogate: 13C-1,2,3,4,6,7,8-HpCDF Surrogate: 13C-1,2,3,4,7,8,9-HpCDF Surrogate: 13C-1,2,3,4,7,8-HxCDD Surrogate: 13C-1,2,3,4,7,8-HxCDD Surrogate: 13C-1,2,3,6,7,8-HxCDF Surrogate: 13C-1,2,3,6,7,8-HxCDF Surrogate: 13C-1,2,3,6,7,8-HxCDF Surrogate: 13C-1,2,3,7,8,9-HxCDF Surrogate: 13C-1,2,3,7,8,9-HxCDF Surrogate: 13C-1,2,3,7,8-PeCDD Surrogate: 13C-1,2,3,7,8-PeCDD	0.00119 0.00121 0.000306 0.000289 0.00222 0.00258 0.00175 0.00211 0.00203 0.00167 0.00186 0.00191 0.00188 0.002 0.0016 0.00175	0.00005 0.00005 0.00001 0.000013 0.0001	0.0000028 0.000016 0.0000093 0.000013 0.000016	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.001 0.001 0.0002 0.0002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002		119 121 153 145 111 129 88 105 102 84 93 96 94 100 80 87	70-156 68-160 67-158 75-158 78-144 63-170 26-166 21-158 20-186 21-193 19-202 25-163 21-159 17-205 21-227 21-192			

TestAmerica Irvine

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819 Re

Spike

Source

Received: 02/26/11

Sampled: 02/26/11-02/27/11

RPD

Data

METHOD BLANK/QC DATA

EPA-5 1613Bx

Reporting

Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1060411 Extracted: 03/01/	'11										
LCS Analyzed: 03/02/2011 (G1C0100	00411C)				Sou	rce:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00182			ug/L	0.002		91	13-328			
Surrogate: 13C-2,3,7,8-TCDD	0.00155			ug/L	0.002		78	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00177			ug/L	0.002		88	22-152			
Surrogate: 13C-OCDD	0.00377			ug/L	0.004		94	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000729			ug/L	0.0008		91	31-191			
LCS Dup Analyzed: 03/02/2011 (G1C	010000411L)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.00114	0.00005	0.0000082	ug/L	0.001		114	70-140	6.5	50	
1,2,3,4,6,7,8-HpCDF	0.00101	0.00005	0.000011	ug/L	0.001		101	82-122	8.6	50	
1,2,3,4,7,8,9-HpCDF	0.00104	0.00005	0.000016	ug/L	0.001		104	78-138	7.1	50	
1,2,3,4,7,8-HxCDD	0.00101	0.00005	0.0000021	ug/L	0.001		101	70-164	13	50	
1,2,3,4,7,8-HxCDF	0.00107	0.00005	0.0000035	ug/L	0.001		107	72-134	12	50	
1,2,3,6,7,8-HxCDD	0.00101	0.00005	0.0000019	ug/L	0.001		101	76-134	11	50	
1,2,3,6,7,8-HxCDF	0.00108	0.00005	0.0000032	ug/L	0.001		108	84-130	14	50	
1,2,3,7,8,9-HxCDD	0.00101	0.00005	0.0000017	ug/L	0.001		101	64-162	14	50	
1,2,3,7,8,9-HxCDF	0.00105	0.00005	0.0000044	ug/L	0.001		105	78-130	21	50	
1,2,3,7,8-PeCDD	0.00108	0.00005	0.0000083	ug/L	0.001		108	70-142	17	50	
1,2,3,7,8-PeCDF	0.00105	0.00005	0.000012	ug/L	0.001		105	80-134	15	50	
2,3,4,6,7,8-HxCDF	0.00101	0.00005	0.0000032	ug/L	0.001		101	70-156	16	50	
2,3,4,7,8-PeCDF	0.00105	0.00005	0.000013	ug/L	0.001		105	68-160	14	50	
2,3,7,8-TCDD	0.000224	0.00001	0.0000082	ug/L	0.0002		112	67-158	31	50	
2,3,7,8-TCDF	0.000213	0.000012	0.000012	ug/L	0.0002		107	75-158	30	50	G
OCDD	0.00215	0.0001	0.000011	ug/L	0.002		107	78-144	3.3	50	Ва
OCDF	0.00246	0.0001	0.0000079	ug/L	0.002		123	63-170	4.7	50	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00173			ug/L	0.002		86	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0021			ug/L	0.002		105	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00203			ug/L	0.002		102	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00189			ug/L	0.002		94	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00187			ug/L	0.002		94	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00183			ug/L	0.002		92	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00202			ug/L	0.002		101	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00206			ug/L	0.002		103	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00162			ug/L	0.002		81	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00178			ug/L	0.002		89	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00208			ug/L	0.002		104	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00184			ug/L	0.002		92	13-328			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUB2819

Sampled: 02/26/11-02/27/11

Received: 02/26/11

METHOD BLANK/QC DATA

EPA-5 1613Bx

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1060411 Extracted: 03/01/13	<u>L</u>										
LCS Dup Analyzed: 03/02/2011 (G1C01	0000411L)				Sou	rce:					
Surrogate: 13C-2,3,7,8-TCDD	0.00157			ug/L	0.002		78	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.0018			ug/L	0.002		90	22-152			
Surrogate: 13C-OCDD	0.00381			ug/L	0.004		95	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000707			ug/L	0.0008		88	31-191			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 02/26/11-02/27/11

Arcadia, CA 91007 Report Number: IUB2819 Received: 02/26/11

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IUB2819-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0	4.8	15
IUB2819-01	624-(601list)	1,1-Dichloroethene	ug/l	0	2.0	6
IUB2819-01	624-(601list)	1,2-Dichloroethane	ug/l	0	0.50	0.5
IUB2819-01	624-(601list)	Trichloroethene	ug/l	0	2.0	5
IUB2819-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.3

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IUB2819-02	624-(601list)	1,1-Dichloroethene	ug/l	0	2.0	6
IUB2819-02	624-(601list)	1,2-Dichloroethane	ug/l	0	0.50	0.5
IUB2819-02	624-(601list)	Trichloroethene	ug/l	0	2.0	5

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IUB2819-03	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0.00076	0.0096	0.03
IUB2819-03	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0.00070	5.74	13
IUB2819-03	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	4.78	18
IUB2819-03	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.50	4.78	4
IUB2819-03	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	4.78	16
IUB2819-03	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	4.78	16.5
IUB2819-03	Ammonia-N, Titr 4500NH3-C (w/c	di:Ammonia-N (Distilled)	mg/l	0	0.500	10.1
IUB2819-03	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	1.43	2.0	30
IUB2819-03	Cadmium-200.8	Cadmium	ug/l	0.049	1.0	3.1
IUB2819-03	Chloride - 300.0	Chloride	mg/l	11	0.50	150
IUB2819-03	Copper-200.8	Copper	ug/l	2.63	2.0	14
IUB2819-03	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	-4	5.0	8.5
IUB2819-03	Iron-200.7	Iron	mg/l	0.74	0.040	0.3
IUB2819-03	Lead-200.8	Lead	ug/l	0.49	1.0	5.2
IUB2819-03	MBAS - SM5540C	Surfactants (MBAS)	mg/l	0.068	0.10	0.5
IUB2819-03	Mercury - 245.1	Mercury	ug/l	0	0.20	0.1
IUB2819-03	Nitrate-N, 300.0	Nitrate-N	mg/l	0.15	0.11	8

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Report Number: Attention: Bronwyn Kelly		Routine Outfall 018 2010 Routine Outfall 018 IUB2819			oled: 02/26/11 ved: 02/26/11		
IUB2819-03	Nitrite-N, 300.0	Nitrite-N		mg/l	0	0.15	1
IUB2819-03	Nitrogen, NO3+NO2 -N EPA 30	00.0 Nitrate/Nitrite-N		mg/l	0.15	0.26	8
IUB2819-03	Perchlorate 314.0 - Default	Perchlorate		ug/l	0.57	4.0	6
IUB2819-03	Selenium-200.8	Selenium		ug/l	0.24	2.0	5
IUB2819-03	Sulfate-300.0	Sulfate		mg/l	48	5.0	300
IUB2819-03	TDS - SM2540C	Total Dissolved S	Solids	mg/l	217	10	950
IUB2819-03	TSS - SM2540D	Total Suspended	Solids	mg/l	8.00	10	45

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

							Compliance
LabNumber	Analysis	Analy	yte	Units	Result	MRL	Limit

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Arcadia, CA 91007 Report Number: IUB2819
Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

В	Analyte was detected in the associated Method Blank.
---	--

B-1 Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the

concentration found in the method blank.

Ba Method blank contamination. The associated method blank contains the target analyte at a reportable level.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the

imit.

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018 2010 Routine Outfall 018 618 Michillinda Avenue, Suite 200

Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Certification Summary

TestAmerica Irvine

Arcadia, CA 91007

Attention: Bronwyn Kelly

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 1664A	Water	X	X
EPA 200.7-Diss	Water	X	N/A
EPA 200.7	Water	X	N/A
EPA 200.8-Diss	Water	X	N/A
EPA 200.8	Water	X	N/A
EPA 245.1-Diss	Water	X	N/A
EPA 245.1	Water	X	N/A
EPA 300.0	Water	X	N/A
EPA 314.0	Water	X	N/A
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2130B	Water	X	X
SM2510B	Water	X	N/A
SM2540C	Water	X	N/A
SM2540F	Water	X	X
SM4500CN-E	Water	X	N/A
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5540-C	Water	X	N/A

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IUB2819-03, IUB2819-04

Analysis Performed: Gross Alpha Samples: IUB2819-03, IUB2819-04

Analysis Performed: Gross Beta Samples: IUB2819-03, IUB2819-04

Analysis Performed: Radium, Combined Samples: IUB2819-03, IUB2819-04

Analysis Performed: Strontium 90 Samples: IUB2819-03, IUB2819-04

Analysis Performed: Tritium Samples: IUB2819-03

Analysis Performed: Uranium, Combined Samples: IUB2819-03, IUB2819-04

TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8669

Samples: IUB2819-03, IUB2819-04

Method Performed: 900

Samples: IUB2819-03, IUB2819-04

Method Performed: 901.1

Samples: IUB2819-03, IUB2819-04

Method Performed: 903.1

Samples: IUB2819-03, IUB2819-04

Method Performed: 904

Samples: IUB2819-03, IUB2819-04

Method Performed: 905

Samples: IUB2819-03, IUB2819-04

Method Performed: 906 Samples: IUB2819-03

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 02/26/11-02/27/11

Report Number: IUB2819 Received: 02/26/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: IUB2819-03

CHAIN OF CUSTODY FORM

Client Name/A	Address:			Project:		ANALYSIS REQUIRED															
MWH-Arcad				Boeing-SSFL N	IPDES									TETOTO NEGOTIED							
618 Michillinda Arcadia, CA	a Ave, Sı	uite 200		Routine Outfa GRAB											ļ						Field readings: (Log in and include in report Temp and pH)
Test America	Contact:	Debby Wils	son				1,1-DCE, 1,2-DCA, TCE (624)	IEM)													Temp °F = 78° pH = 7. 6 DO = 8. 4/ mG/L
Project Manag	ger: Bro	nwyn Kelly		Phone Number	·;		Ϋ́	4-49							ļ		l				DO = 8.9/
Sampler: R_{ℓ}	ck B	ANAGR	9	(626) 568-6691 Fax Number: (626) 568-6515			& Grease (1664-HEM)	Settleable Solids	Conductivity							;				Time of readings	
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	1,1-E	a S S S S	Settle	Cond											Comments
Outfall 018	w	VOAs	5	08:50	HCI	1A, 1B, 1C, 1D, 1E	Х														
Outfall 018	w	1L Amber	2		HCI	2A, 2B		х													
Outfall 018	w	1L Poly	1	>	None	3			Х												
Outfall 018	w	500 mL Poly	2	08:50	None	4A, 4B				Х											
Trip Blanks	w	VOAs	3	08:50	HCI	5A, 5B, 5C	х														
			<u> </u>							<u> </u>			.							,	
										<u> </u>											
7			_																		
			_					ļ	ļ	<u> </u>			_ -	_		-					
			<u> </u>					ļ		-			-								11,900
			-						-	<u> </u>		-+	\perp		_						500
-					-					-		-		\dashv	+				-		
	These	Samples a	are th	ne Grab Portion	of Outfall		storn	ı ever				ample	s will	folio	w an	d are	to be	adde	d to th	is wo	rk\order.
Relinquished By	gr.	D	ate/Tir	me: 2-26-3	2010	Received By				Date/1	ime:	, M.	4-11		Furn-aro	und time	: (Check	.)	40 5		
(and	y y					Received By	úν	, <i>\</i>	`	LV	on 2	16.50	y ~ ∵uS		24 Hour: 18 Hour:		72 Hour: 5 Day:		Normal:		
Relinquished By	(D	ate/Tir	me:		Received By			(")	Date/T	ime:	<u>`</u>			Samuela 1		(Ch 1)		1		
Wha	~ /	-News	h .	J-916-11	14.40		-				li s	ntact:	J.	(Check) On Ice:	J.	· \ _					
Relinquished By		N D	ate/Tir	me:		Received By					7										
1						1					၁	Data Requirements: (Check) No Level IV: All Level IV: NPDES Level IV:									

CHAIN OF CUSTODY FORM

IUB2819

Page 2 of 3

Client Name/Address: Project:															ANA	ALYSIS	REQUIP	RED						
MWH-Arcad 618 Michillinda Arcadia, CA 9 Test America (Boeing-SSFL NPDES Routine Outfall 018 COMPOSITE				Recoverable Metals: Cu, Pb, Hg, Cd, n, Fe, Mn	eners)			V, Perchlorate					2,4,6 TCP, 2,4 Dinitrotoluene, Bis(2-ethylhexyl)phthalate, NDMA, PCP (SVOCs 625)					Comments					
Project Manager: Bronwyn Kelly Sampler: R Banaga					Number 668-6691 Imber: 668-6515		Total Recoverable M Se, Zn, Fe, Mn	TCDD (and all congeners)	BOD ₅ (20 degrees C)	Surfactants (MBAS)	CI', SO ₄ , NO ₃ +NO ₂ -N, Perchlorate	Nitrate-N, Nitrite-N	Turbidity, TDS, TSS	Ammonia-N (350.2)	Alpha BHC (608)	TCP, 2,4 Dinitre exyl)phthalate, NI					-			
Sample Description	Sample Matrix	Container Type	# of Cont.	Date	npling /Time	Preservative	Bottle #	Total Se, Z	TCD	BOD	Surfa	CI, S	Nitra	Turbi	Amm	Alph	2,4,6 ethylh							
Outfall 018	W	1L Poly	1	<i>⊋-⊋</i> 08∷	7-201 3-8	HNO₃	6A	х																
Outfall 018 Dup	w	1L Poly	1	,		HNO₃	6B	Х																
Outfall 018	w	1L Amber	· 2			None	7A, 7B		Х													·		
Outfall 018	W	1L Poly	1			None	8			Х														
Outfall 018	w	500 mL Poly	2			None	9A, 9B				Х													
Outfail 018	W	500 mL Poly	2			None	10A, 10B					х												
Outfall 018	W	500 mL Poly	1			None	11						Х											
Outfall 018	w	500 mL Poly	.2			None	12A, 12B							Х										
Outfall 018	W	500 mL Poly	,1			H₂SO₄	13								Х									
Outfall 018	w	1L Amber	2	*	•	None	14A, 14B									Х								
Outfall 018	w	1L Amber	2	08	38	None	15A, 15B										Х							
									_	ļ		_	!			ļ					-			
COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 018 for this storm event.																								
				The	se must	be added	to the s	me wo	rkør	der fo	or Cy	C Pa	ge 1 c	of 3 fc	or Ou	tfall 0	18 for 1	he sam	e event.					
Relinquished By Date/Time: 3-27-20// 10:30							Received B	(ax () my / 10:30								Tum-around time: (Check) 24 Hour: 72 Hour: 10 Day: 48 Hour: 5 Day: Normal:								
Relinfuished By Date/Time: 2-77-9 13:45							Received B										Sample Integrity: (Check) Intact: On Ice:							
Relinquished By	~ —	U -	ate/Ti	me:		_	Received B		>		_	ate/Tim 27(1		3(0	45	Data R No Lev	equiremen	its: (Check) All Level IV		NPDES Le	vel IV:	ζ		

										16.	>										
Client Name/A	Address:			Project:					\top				ANA	LYSI	S RE	QUIF	RED				
MWH-Arca 618 Michillind Arcadia, CA	dia a Ave, S	uite 200		Boeing-SSFL Noutine Outfa			Cd, Se,	.0), Total :.1) &)), K-													
Test America Contact: Debby Wilson							Dissolved Metals: Cu, Pb, Hg, Cd, e, Mn	Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)					:								Comments
Project Manager: Bronwyn Kelly Sampler: R . Bannager			Phone Numbe (626) 568-669 Fax Number: (626) 568-651	1	Total Dissolved Meta Zn, Fe, Mn	s Alpha(900.0), m (H-3) (906.0) bined Radium 2 m 228 (904.0) S-137 (901.0 o	Chronic Toxicity	ide													
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Total Zn, F	Gros Gros Com Radi 40, C	E	Cyanide											
Outfall 018	w	1L Poly	1	08:38	None	16	Х														Filter w/in 24hrs of receipt at lab
Outfall 018	w	2.5 Gal Cube 500 mL Amber	1	⋫	None None	17A 17B	-	×													Unfiltered and unpreserved analysis
Outfall 018	101	1-Cal Cuba				1/6			<u>H.</u>								<u> </u>			ļ	Only test if first or second rain
				2-27-2011	Nenc	100			L								ļ		-		events of the year
Outfall 018	w	500 mL Poly	1	08:38	NaOH	19				X							ļ				
														:							
				<u> </u>			-		-										<u> </u>		
				COC Pee	2 2 2 2 2 2 2 2 2 2		of 2 or	 e the composit			<u> </u>	.46all	049.6	on thi			·ont		<u></u>		
																		ıt .			
Relinquished By Date/Time: 2-27-2611 Received E						att	Min	Date/Tifve: 2 - 2 - 1 - (Turn-around time: (Check) 24 Hour: 72 Hour: 10 Day: 10 Day:													
Relinquis/led/By	u	/ Nunt	/	13:4	-(1 [5	Received E		Ψ	ate/fin						Sample Intact:		ity: (Che _ On Ice				
Refinquished By	-(a (e /Ti	rie.		Received E			ate/Tin		'11	t7	3:14	5	Data R No Lev	equiren	nents: (C _ All Lev	Check) el IV:	_ NPDE	S Level	IV: _ *

EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

March 31, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine IUB2819

Eberline Analytical Report S103017-8669

Sample Delivery Group 8669

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Job No. IUB2819. The samples were received on March 1, 2011.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

N. Joseph Verville

Client Services Manager

NJV/ljb

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

March 31, 2011

1.0 General Comments

Sample delivery group 8669 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

2.0 Quality Control

Samples IUB2819-03 and IUB2819-04 (Trip Blank) were analyzed in a common prep batch with other outfall samples from this project. The QC samples from that common prep batch were assigned to SDG 8665 and are reported herein. Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2^{σ} error (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

Case Narrative, page 2

March 31, 2011

4.0 Analysis Notes

- 4.1 Gross Alpha/Gross Beta Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis** No other problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **Radium-226 Analysis -** The initial Ra-226 QC LCS recovery was less than the lower control limit of 80% therefore the LCS was re-emanated and recounted. The LCS recovery after the rework was within control limits and is reported herein. No other problems were encountered during the processing of the samples.
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.7 Gamma Spectroscopy** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

ndid	3/31/11
N. Joseph Verville	Date
Client Services Manager	

SDG <u>8669</u>
Contact <u>N. Joseph Verville</u>

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

SUMMARY DATA SECTION

TABLE OF	CO	N T	E N	T S	
About this section	*	•	•		1
Sample Summaries		•	•	•	3
Prep Batch Summary	•		•	•	5
Work Summary	•	•	•	•	6
Method Blanks	•	•	•	•	8
Lab Control Samples	•	•	•	•	9
Duplicates	•	•	•	`•	10
Data Sheets	•	٠	•	•	11
Method Summaries	•	•	•	•	13
Report Guides	•	•	•	•	21
End of Section	•	•	•	•	35

b

Prepared by

Reviewed by

Lab id EAS
Protocol $\overline{\text{TA}}$ Version $\overline{\text{Ver 1.0}}$ Form $\overline{\text{DVD-TOC}}$ Version $\overline{3.06}$ Report date $\overline{03/30/11}$

SDG 8669

SDG <u>8669</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUB2819</u>

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 1

Lab id <u>EAS</u> Protocol <u>TA</u>

Version Ver 1.0

Form <u>DVD-RG</u> Version <u>3.06</u>

SDG 8669

SDG <u>8669</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 2

Lab id <u>EAS</u>

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

SDG 8669

SDG <u>8669</u>
Contact <u>N. Joseph Verville</u>

LAB SAMPLE SUMMARY

Client Test America, Inc.
Contract IUB2819

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION		MATRIX	LEVEL	SAS NO	CHAIN OF	COLLECTED
S103013-03	Lab Control Sample			WATER				
S103013-04	Method Blank			WATER				
S103013-05	Duplicate (S103013-01)	Boeing - SSFL		WATER				02/26/11 20:26
S103017-01	IUB2819-03	Boeing - SSFL		WATER			IUB2819	02/27/11 08:38
S103017-02	IUB2819-04 (TRIP-BLANK)			WATER			IUB2819	02/27/11 10:30

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LS

 Version 3.06

SDG 8669

SDG 8669
Contact N. Joseph Verville

QC SUMMARY

Client Test America, Inc.
Contract IUB2819

QC BATCH	CHAIN OF CUSTODY	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8665		Method Blank Lab Control Sample Duplicate (S103013-01)	WATER WATER WATER		10.0 L		03/01/11	3	S103013-04 S103013-03 S103013-05	8665-004 8665-003 8665-005
8669	IUB2819	IUB2819-03 IUB2819-04 (TRIP-BLANK)	WATER WATER		10.0 L 10.0 L		03/01/11 03/01/11		S103017-01 S103017-02	8669-001 8669-002

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-QS

 Version
 3.06

 Report date
 03/30/11

SDG 8669

SDG 8669
Contact N. Joseph Verville

PREP BATCH SUMMARY

Client Test America, Inc.

Contract IUB2819

			PREPARATION	ERROR			- PLA	NCHETS :	ANALYZ	ED	QUALI-
TEST	MATRIX	METHOD	ватсн	2σ ¥	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Beta	Counting										
AC	WATER	Radium-228 in Water	7281-046	10.4	2		***************************************	1	1	1/0/1	
SR	WATER	Strontium-90 in Water	7281-046	10.4	2			1	1	1/0/1	
Gas P	roportiona	al Counting									
80A	WATER	Gross Alpha in Water	7281-046	20.6	2			1	1	1/0/1	
80B	WATER	Gross Beta in Water	7281-046	11.0	2			1	1	1/0/1	
Gamma	Spectroso	юру									
GAM	WATER	Gamma Emitters in Water	7281-046	7.0	2			1	1	1/0/1	
Kinet	ic Phospho	orimetry, ug									
U_T	WATER	Uranium, Total	7281-046		2			1	1	1/0/1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Liqui	d Scintill	lation Counting									
н	WATER	Tritium in Water	7281-046	10.0	1			1	1	1/0/1	
Radon	Counting										
RA	WATER	Radium-226 in Water	7281-046	16.4	2			1	1	1/0/1	

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample. In counts like 'a/b/c', 'a' = QC planchets, 'b' = Originals in this SDG, 'c' = Originals in other SDGs.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-PBS

 Version
 3.06

 Report date
 03/30/11

SDG 8669

SDG <u>8669</u>
Contact <u>N. Joseph Verville</u>

LAB WORK SUMMARY

Client Test America, Inc.
Contract IUB2819

LAB SAMPLE	CLIENT SAMPLE ID									
COLLECTED	LOCATION	MATI SAS no	RIX	PLANCHET	TEST	SUF-	3373 T W////ID	DENZERADO	DV	Manage
RECEIVED	CUSTODY	SAS IIO		PLANCIET	1631	ETV	ANALYZED	KEVIEWED	BY	METHOD
103013-03	Lab Control Samp	le		8665-003	80A/80		03/14/11	03/15/11	BW	Gross Alpha in Water
		TAW	ER	8665-003	80B/80		03/14/11	03/15/11	BW	Gross Beta in Water
				8665-003	AC		03/18/11	03/21/11	BW	Radium-228 in Water
				8665-003	GAM		03/08/11	03/15/11	MWT	Gamma Emitters in Water
				8665-003	Н		03/22/11	03/25/11	BW	Tritium in Water
				8665-003	RA	Rl	03/25/11	03/28/11	BW	Radium-226 in Water
				8665-003	SR		03/16/11	03/22/11	BW	Strontium-90 in Water
				8665-003	U_T		03/15/11	03/16/11	BW	Uranium, Total
S103013-04	Method Blank			8665-004	80A/80		03/14/11	03/15/11	BW	Gross Alpha in Water
		ITAW	ER	8665-004	80B/80		03/14/11	03/15/11	BW	Gross Beta in Water
				8665-004	AC		03/18/11	03/21/11	BW	Radium-228 in Water
				8665-004	GAM		03/08/11	03/15/11	MWT	Gamma Emitters in Water
				8665-004	Н		03/22/11	03/25/11	BW	Tritium in Water
				8665-004	RA		03/19/11	03/28/11	BW	Radium-226 in Water
				8665-004	SR		03/16/11	03/22/11	BW	Strontium-90 in Water
				8665-004	υ_τ		03/15/11	03/16/11	BW	Uranium, Total
S103013-05	Duplicate (S1030)	13-01)		8665-005	80A/80		03/14/11	03/15/11	ВW	Gross Alpha in Water
02/26/11	Boeing - SSFL	WATI	ER	8665-005	80B/80		03/14/11	03/15/11	BW	Gross Beta in Water
03/01/11				8665-005	AC		03/18/11	03/21/11	BW	Radium-228 in Water
				8665-005	GAM		03/10/11	03/15/11	MWT	Gamma Emitters in Water
				8665-005	Н		03/22/11	03/25/11	BW	Tritium in Water
				8665-005	RA		03/19/11	03/28/11	BW	Radium-226 in Water
				8665-005	SR		03/16/11	03/22/11	BW	Strontium-90 in Water
				8665-005	U_T		03/15/11	03/16/11	BW	Uranium, Total
5103017-01	IUB2819-03			8669-001	80A/80		03/15/11	03/15/11	вw	Gross Alpha in Water
02/27/11	Boeing - SSFL	WATI	ER	8669-001	80B/80		03/15/11	03/15/11	BW	Gross Beta in Water
03/01/11	IUB2819			8669-001	AC		03/18/11	03/21/11	BW	Radium-228 in Water
				8669-001	GAM		03/11/11	03/15/11	MWT	Gamma Emitters in Water
				8669-001	Н		03/22/11	03/25/11	BW	Tritium in Water
				8669-001	RA		03/19/11	03/28/11	BW	Radium-226 in Water
				0.000 0.01	an.		02/16/11	02/22/11	DIV	Chrombium 00 in Water
				8669-001	SR		03/16/11	03/22/11	BW	Strontium-90 in Water

WORK SUMMARY
Page 1
SUMMARY DATA SECTION
Page 6

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

SDG 8669

SDG 8669
Contact N. Joseph Verville

WORK SUMMARY, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUB2819</u>

LAB SAMPLE COLLECTED	CLIENT SAMI	PLE ID	MATRIX	•						
RECEIVED	CUSTODY	SAS no		PLANCHET	TEST	SUF- FIX	ANALYZED	REVIEWED	BY	METHOD
S103017-02	IUB2819-04	(TRIP-BLANK)		8669-002	80A/80		03/15/11	03/15/11	BW	Gross Alpha in Water
02/27/11			WATER	8669-002	80B/80		03/15/11	03/15/11	BW	Gross Beta in Water
03/01/11	IUB2819			8669-002	AC		03/18/11	03/21/11	BW	Radium-228 in Water
				8669-002	GAM		03/11/11	03/15/11	MWT	Gamma Emitters in Water
				8669-002	RA		03/19/11	03/28/11	BW	Radium-226 in Water
				8669-002	SR		03/16/11	03/22/11	BW	Strontium-90 in Water
				8669-002	U_T		03/15/11	03/16/11	BW	Uranium, Total

TEST	SAS no	COUNTS METHOD	OF TESTS BY REFERENCE		RE BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0	2	1	1	1	5
80B/80		Gross Beta in Water	900.0	2	1	1	1	5
AC		Radium-228 in Water	904.0	2	1	1	1	5
GAM		Gamma Emitters in Water	901.1	2	1	1	1	5
Н		Tritium in Water	906.0	ı	1	1	1	4
RA		Radium-226 in Water	903.1	2	1	1	1	5
SR		Strontium-90 in Water	905.0	2	1	1	1	5
U_T		Uranium, Total	D5174	2	1	1	1	5
TOTALS				15	8	8	8	39

WORK SUMMARY
Page 2
SUMMARY DATA SECTION
Page 7

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LWS

Version 3.06

8665-004

METHOD BLANK

Method Blank

SDG <u>8669</u> Client <u>Test America, Inc.</u> Contact N. Joseph Verville Contract <u>IUB2819</u>

Lab sample id <u>S103013-04</u> Dept sample id 8665-004 Material/Matrix ______ WATER

Client sample id Method Blank

ANALYTE	CAS NO	RESULT pCi/L	2o ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.089	0.90	1.62	3.00	U	80A
Gross Beta	12587472	0.136	1.7	2.78	4.00	U	80B
Tritium	10028178	-28.0	98	167	500	U	Н
Radium-226	13982633	0.156	0.38	0.661	1.00	U	RA
Radium-228	15262201	-0.110	0.17	0.430	1.00	U	AC
Strontium-90	10098972	-0.258	0.38	1.04	2.00	U	SR
Uranium, Total		0	0.010	0.022	1.00	U	U_T
Potassium-40	13966002	Ū		23.0	25.0	U	GAM
Cesium-137	10045973	Ū		1.53	20.0	U	GAM

QC-BLANK #77580

METHOD BLANKS Page 1 SUMMARY DATA SECTION Page 8

Lab id EAS Protocol TA Version <u>Ver 1.0</u> Form DVD-DS Version 3.06 Report date <u>03/30/11</u>

SDG 8669

8665-003

SDG 8669

Contact N. Joseph Verville

LAB CONTROL SAMPLE

Lab Control Sample

Client Test America, Inc.

Contract <u>IUB2819</u>

Lab sample id S103013-03 Client sample id Lab Control Sample

Dept sample id 8665-003 Material/Matrix WATER

	RESULT	2σ ERR	MDA	RDL	QUALI-		ADDED	2σ ERR	REC	2σ LMTS	
ANALYTE	pCi/L	(COUNT)	pCi/L	pCi/L	FIERS	TEST	pCi/L	pCi/L	* 	(TOTAL)	LIMITS
Gross Alpha	107	5.7	1.56	3.00		A08	101	4.0	106	77-123	70-130
Gross Beta	86.8	3.5	2.39	4.00		80B	87.2	3.5	100	88-112	70-130
Tritium	2780	160	168	500		н	2940	120	95	88-112	80-120
Radium-226	59.5	2.4	0.867	1.00		RA	55.7	2.2	107	82-118	80-120
Radium-228	16.1	0.55	0.429	1.00		AC	15.1	0.60	107	88-112	60-140
Strontium-90	20.3	1.8	0.961	2.00		SR	17.4	0.70	117	84-116	80-120
Uranium, Total	53.9	6.4	0.223	1.00		U_T	56.5	2.3	95	88-112	80-120
Cobalt-60	123	4.6	2.31	10.0		GAM	126	5.0	98	91-109	80-120
Cesium-137	116	4.0	2.64	20.0		GAM	110	4.4	106	91-109	80-120

QC-LCS #77579

LAB CONTROL SAMPLES
Page 1
SUMMARY DATA SECTION
Page 9

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LCS</u>

Version <u>3.06</u>

Report date <u>03/30/11</u>

SDG 8669

8665-005

DUPLICATE

IUB2814-03

WATER

SDG <u>8669</u>

Contact N. Joseph Verville

DUPLICATE

ORIGINAL

Lab sample id <u>S103013-05</u>

Dept sample id <u>8665-005</u>

Lab sample id <u>S103013-01</u>
Dept sample id <u>8665-001</u>

Received <u>03/01/11</u>

Client <u>Test America, Inc.</u>

Contract <u>IUB2819</u>

Client sample id <u>IUB2814-03</u>

Location/Matrix Boeing - SSFL

Collected/Volume 02/26/11 20:26 10.0 L

Chain of custody id <u>IUB2814</u>

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ тот	DER o
Gross Alpha	1.44	0.58	0.572	3.00	J,	80A	1.04	0.53	0.645	J	32	105	0.9
Gross Beta	3.86	0.91	1.35	4.00	J	80B	4.34	0.69	0.934		12	48	0.7
Tritium	-42.1	99	170	500	Ü	. н	-106	98	172	U	-		0.9
Radium-226	0.467	0.39	0.618	1.00	U	RA.	0.436	0.36	0.562	U	-		0.1
Radium-228	0.062	0.16	0.406	1.00	U	AC	0.016	0.17	0.421	υ	-		0.4
Strontium-90	-0.199	0.43	1.10	2.00	U	SR	-0.031	0.62	1.35	U	-		0.4
Uranium, Total	0.574	0.065	0.022	1.00	J	U_T	0.618	0.070	0.022	J	7	24	0.9
Potassium-40	Ū		24.8	25.0	Ū	GAM	υ		19.0	U	-		0.4
Cesium-137	U		1.52	20.0	Ū	GAM	υ		1.67	U	-		0.1

QC-DUP#1 77581

DUPLICATES

Page 1

SUMMARY DATA SECTION

Page 10

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version Ver 1.0
Form DVD-DUP

Version 3.06

8669-001

DATA SHEET

IUB2819-03

WATER

SDG 8669 Client Test America, Inc.
Contact N. Joseph Verville Contract IUB2819

Lab sample id <u>S103017-01</u>
Dept sample id <u>8669-001</u>

sample id <u>8669-001</u>

Received <u>03/01/11</u>

Client sample id <u>IUB2819-03</u>

Location/Matrix Boeing - SSFL

Collected/Volume 02/27/11 08:38 10.0 L

Chain of custody id <u>IUB2819</u>

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.345	0.34	0.516	3.00	U	80A
Gross Beta	12587472	3.10	0.70	1.02	4.00	J	80B
Tritium	10028178	-78.4	99	170	500	U	Н
Radium-226	13982633	0.688	0.38	0.529	1.00	J	RA
Radium-228	15262201	-0.030	0.19	0.462	1.00	U	AC
Strontium-90	10098972	-0.256	0.37	0.999	2.00	U	SR
Uranium, Total		0.322	0.037	0.022	1.00	J	U_T
Potassium-40	13966002	U		24.3	25.0	U	GAM
Cesium-137	10045973	υ		1.69	20.0	υ	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-DS
Version 3.06Report date 03/30/11

8669-002

Radium-228

Strontium-90

Potassium-40

Cesium-137

Uranium, Total

Page 12

DATA SHEET

IUB2819-04 (TRIP-BLANK)

Chain of custody id <u>IUB2819</u>

0.17

0.37

0.010

0.411

0.853

0.022

24.8

1.19

1.00

2.00

1.00

25.0

20.0

U

U

U

U

Report date <u>03/30/11</u>

AC

SR

UT

GAM

GAM

RESULT 2σ ERR MDA \mathtt{RDL} QUALI-ANALYTE CAS NO pCi/L (COUNT) pCi/L pCi/L FIERS TEST 0.033 0.297 3.00 U A08 Gross Alpha 12587461 0.14 Gross Beta 12587472 -0.466 0.43 0.760 4.00 U 80B Radium-226 -0.046 0.34 0.652 1.00 U RΑ 13982633

-0.065

U 0

U

0.046

15262201

10098972

13966002

10045973

 Lab id EAS

 Protocol TA

 DATA SHEETS
 Version Ver 1.0

 Page 2
 Form DVD-DS

 SUMMARY DATA SECTION
 Version 3.06

SDG 8669

Test AC Matrix WATER

SDG 8669

Contact N. Joseph Verville

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB2819</u>

RADIUM-228 IN WATER BETA COUNTING

RESULTS

SAMPLE ID TEST F		CLIENT SAMPLE ID	Radium-	228
Preparation batch	7281-046			
S103013-03	8665-003	Lab Control Sample	ok	
S103013-04	8665-004	Method Blank	U	
S103013-05	8665-005	Duplicate (S103013-01)	-	U
S103017-01	8669-001	IUB2819-03	U	
S103017-02	8669-002	IUB2819-04 (TRIP-BLANK)	U	

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	*	¥	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
							····							
Preparation	n batch 7281-046 2σ prep error 10	.4 % Re	ference	Lab 1	Noteboo!	k No.	7281	pg 04	5					
S103013-03	Lab Control Sample	0.429	1.80			81		150				03/18/11	03/18	GRB-220
S103013-04	Method Blank	0.430	1.80			78		150				03/18/11	03/18	GRB-221
S103013-05	Duplicate (S103013-01)	0.406	1.80		•	78		150			20	03/18/11	03/18	GRB-222
S103017-01	IUB2819-03	0.462	1.80			78		150			19	03/18/11	03/18	GRB-201
S103017-02	IUB2819-04 (TRIP-BLANK)	0.411	1.80			79		150			19	03/18/11	03/18	GRB-202
Nominal val	lues and limits from method	1.00	1.80			30-10	5	50			180			

	PROCEDURES	REFERENCE	904.0
		DWP-894	Sequential Separation of Actinium-228 and
			Radium-226 in Drinking Water (>1 Liter Aliquot),
			rev 5
ı			

AVERAGES ± 2 SD MDA 0.428 ± 0.044
FOR 5 SAMPLES YIELD 79 ± 3

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 13

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version Ver 1.0

Form <u>DVD-LMS</u>

Version 3.06

SDG 8669

Test SR Matrix WATER

SDG 8669

Contact N. Joseph Verville

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB2819</u>

STRONTIUM-90 IN WATER
BETA COUNTING

RESULTS

Preparation batch	7281-046			
S103013-03	8665-003	Lab Control Sample	ok	
S103013-04	8665-004	Method Blank	Ū	
S103013-05	8665-005	Duplicate (S103013-01)	- U	
S103017-01	8669-001	IUB2819-03	U	
S103017-02	8669-002	IUB2819-04 (TRIP-BLANK)	U	

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	ક	¥	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7281-046 20 prep error 10	.4 % Re	ference	Lab N	lotebool	c No.	7281	pg 046	5					
S103013-03	Lab Control Sample	0.961	0.500			76		50				03/15/11	03/16	GRB-229
S103013-04	Method Blank	1.04	0.500			82		50				03/15/11	03/16	GRB-230
S103013-05	Duplicate (S103013-01)	1.10	0.500			84		50			18	03/15/11	03/16	GRB-231
S103017-01	IUB2819-03	0.999	0.500			85		50			17	03/16/11	03/16	GRB-232
S103017-02	IUB2819-04 (TRIP-BLANK)	0.853	0.500			83		50			17	03/16/11	03/16	GRB-230
Nominal val	ues and limits from method	2.00	0.500			30-10	5	50			180			

PROCEDURES	REFERENCE	905.0
	DWP-380	Strontium in Drinking Water, rev 8

AVERAGES ± 2 SD MDA 0.991 ± 0.185

FOR 5 SAMPLES YIELD 82 ± 7

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 14

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 03/30/11

Lab id EAS

SDG 8669

Test 80A Matrix WATER

SDG 8669

Contact N. Joseph Verville

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB2819</u>

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

RESULTS

LAB	RAW SUF-				
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross	Alpha
Preparation	batch 728	1-046			
S103013-03	80	8665-003	Lab Control Sample	ok	
S103013-04	80	8665-004	Method Blank	υ	
S103013-05	80	8665-005	Duplicate (S103013-01)	ok	J
S103017-01	80	8669-001	IUB2819-03	Ū	
S103017-02	80	8669-002	IUB2819-04 (TRIP-BLANK)	υ	

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 728	1-046 2σ prep error 20	.6 % Re	ference	Lab N	Noteboo	k No.	7281	pg 046	5					
S103013-03	80	Lab Control Sample	1.56	0.100			59		400				03/11/11	03/14	GRB-104
S103013-04	80	Method Blank	1.62	0.100			58		400				03/11/11	03/14	GRB-105
S103013-05	80	Duplicate (S103013-01)	0.572	0.300			91		400			16	03/11/11	03/14	GRB-107
S103017-01	80	IUB2819-03	0.516	0.300			59		400			16	03/11/11	03/15	GRB-103
S103017-02	80	IUB2819-04 (TRIP-BLANK)	0.297	0.300			0		400			16	03/11/11	03/15	GRB-104
															
Nominal val	ues and li	mits from method	3.00	0.100			0-20	0	100			180			

PROCEDURES	REFERENCE	900.0
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,
		rev 10

AVERAGES ± 2 SD MDA 0.913 ± 1.25 FOR 5 SAMPLES RESIDUE 53 ± 66

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 15

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>03/30/11</u>

Lab id EAS

SDG 8669

Test 80B Matrix WATER

SDG 8669

Contact N. Joseph Verville

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB2819</u>

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

RESULTS

Preparation	batch 728	31-046			
S103013-03	80	8665-003	Lab Control Sample	ok	
S103013-04	80	8665-004	Method Blank	Ū	
S103013-05	80	8665-005	Duplicate (S103013-01)	ok	J
S103017-01	80	8669-001	IUB2819-03	3.10	J
S103017-02	80	8669-002	IUB2819-04 (TRIP-BLANK)	U	

METHOD PERFORMANCE

	MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
T FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
													
ch 7281-046 20 prep err	or 11.0 % F	Reference	Lab 1	Noteboo!	k No.	7281	pg 046	5					
Lab Control Sample	2.39	0.100			59		400				03/11/11	03/14	GRB-104
Method Blank	2.78	0.100			58		400				03/11/11	03/14	GRB-105
Duplicate (S103013-0	1) 1.35	0.300			91		400			16	03/11/11	03/14	GRB-107
IUB2819-03	1.02	0.300			59		400			16	03/11/11	03/15	GRB-103
IUB2819-04 (TRIP-BLA	NK) 0.760	0.300			0		400			16	03/11/11	03/15	GRB-104
													
and limits from method	4.00	0.100			0-20	0	100			180			
	ch 7281-046 20 prep err Lab Control Sample Method Blank Duplicate (S103013-0 IUB2819-03 IUB2819-04 (TRIP-BLA	Ch 7281-046	Ch 7281-046 20 prep error 11.0 % Reference Lab Control Sample 2.39 0.100 Method Blank 2.78 0.100 Duplicate (S103013-01) 1.35 0.300 IUB2819-03 1.02 0.300 IUB2819-04 (TRIP-BLANK) 0.760 0.300	Ch 7281-046 20 prep error 11.0 % Reference Lab Notebook No. 7281 pg 046 Lab Control Sample 2.39 0.100 59 400 Method Blank 2.78 0.100 58 400 Duplicate (S103013-01) 1.35 0.300 91 400 IUB2819-03 1.02 0.300 59 400 IUB2819-04 (TRIP-BLANK) 0.760 0.300 0 400	Ch 7281-046 20 prep error 11.0 % Reference Lab Notebook No. 7281 pg 046 Lab Control Sample 2.39 0.100 59 400 Method Blank 2.78 0.100 58 400 Duplicate (S103013-01) 1.35 0.300 91 400 IUB2819-03 1.02 0.300 59 400 IUB2819-04 (TRIP-BLANK) 0.760 0.300 0 400	Ch 7281-046 20 prep error 11.0 % Reference Lab Notebook No. 7281 pg 046 Lab Control Sample 2.39 0.100 59 400 Method Blank 2.78 0.100 58 400 Duplicate (S103013-01) 1.35 0.300 91 400 IUB2819-03 1.02 0.300 59 400 IUB2819-04 (TRIP-BLANK) 0.760 0.300 0 400	Ch 7281-046 20 prep error 11.0 % Reference Lab Notebook No. 7281 pg 046 Lab Control Sample 2.39 0.100 59 400 Method Blank 2.78 0.100 58 400 Duplicate (S103013-01) 1.35 0.300 91 400 16 IUB2819-03 1.02 0.300 59 400 16 IUB2819-04 (TRIP-BLANK) 0.760 0.300 0 400 16	Ch 7281-046 20 prep error 11.0 % Reference Lab Notebook No. 7281 pg 046 Lab Control Sample 2.39 0.100 59 400 03/11/11 Method Blank 2.78 0.100 58 400 03/11/11 Duplicate (S103013-01) 1.35 0.300 91 400 16 03/11/11 IUB2819-03 1.02 0.300 59 400 16 03/11/11 IUB2819-04 (TRIP-BLANK) 0.760 0.300 0 400 16 03/11/11	Ch 7281-046 20 prep error 11.0 % Reference Lab Notebook No. 7281 pg 046 Lab Control Sample 2.39 0.100 59 400 03/11/11 03/14 Method Blank 2.78 0.100 58 400 03/11/11 03/14 Duplicate (S103013-01) 1.35 0.300 91 400 16 03/11/11 03/14 IUB2819-03 1.02 0.300 59 400 16 03/11/11 03/15 IUB2819-04 (TRIP-BLANK) 0.760 0.300 0 400 16 03/11/11 03/15				

l	PROCEDURES	REFERENCE	900.0
l		DWP-121	Gross Alpha and Gross Beta in Drinking Water,
			rev 10

AVERAGES ± 2 SD MDA 1.66 ± 1.76

FOR 5 SAMPLES RESIDUE 53 ± 66

METHOD SUMMARIES

Page 4

SUMMARY DATA SECTION

Page 16

SDG 8669

Test GAM Matrix WATER

SDG 8669

Contact N. Joseph Verville

LAB METHOD SUMMARY

Client Test America, Inc.
Contract IUB2819

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium	n-137	
Preparation	batch 728	1-046					
S103013-03		8665-003	Lab Control Sample	ok	ok		
S103013-04		8665-004	Method Blank		U		
S103013-05		8665-005	Duplicate (S103013-01)		-	υ	
S103017-01		8669-001	IUB2819-03		U		
S103017-02		8669-002	IUB2819-04 (TRIP-BLANK)		υ		

METHOD PERFORMANCE

LAB	RAW SUF-				MDA	QILIA	PREP	DILU-	YIELI	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT	SAMPLE	ID	pCi/L	L	FAC	TION	ક	*	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 728	1-046	2ơ pr	ep error	7.0 %	Reference	Lab	Noteboo:	k No.	7281	pg 04	5				i	
S103013-03		Lab Cor	ntrol Sa	mple		2.00					508				03/03/11	03/08	01,02,00
S103013-04		Method	Blank			2.00					508				03/03/11	03/08	01,04,00
S103013-05		Duplica	ate (S10	3013-01)		2.00					402			12	03/03/11	03/10	01,03,00
S103017-01		IUB2819	9-03			2.00					427			12	03/03/11	03/11	01,03,00
S103017-02		IUB2819	9-04 (TR	IP-BLANK)		2.00					807			12	03/03/11	03/11	01,02,00
Nominal val	ues and li	mits fro	om metho	d	6.00	2.00					400			180		ATE A	

PROCEDURES	REFERENCE	901.1
	DWP-100	Preparation of Drinking Water Samples for Gamma
		Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 17

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>03/30/11</u>

SDG 8669

Test	U T Matrix WATER
SDG	8669
Contact	N. Joseph Verville

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

URANIUM, TOTAL

KINETIC PHOSPHORIMETRY, UG

RESULTS

LAB	RAW SUF-		Uranium,
SAMPLE ID	TEST FIX PLANCHET	CLIENT SAMPLE ID	Total
Preparation	batch 7281-046		
S103013-03	8665-003	Lab Control Sample	ok
S103013-04	8665-004	Method Blank	Ŭ .
S103013-05	8665-005	Duplicate (S103013-01)	ok J
S103017-01	8669-001	IUB2819-03	0.322 J
S103017-02	8669-002	IUB2819-04 (TRIP-BLANK)	υ
Nominal val	ues and limits from m	ethod RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	AIEID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	Г	FAC	TION	ક	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
														·
Preparation	batch 7281-046 2o prep error	Re	eference	Lab N	loteboo	k No.	7281	pg 046	5					
S103013-03	Lab Control Sample	0.223	0.0200									03/15/11	03/15	KPA-001
S103013-04	Method Blank	0.022	0.0200									03/15/11	03/15	KPA-001
S103013-05	Duplicate (S103013-01)	0.022	0.0200								17	03/15/11	03/15	KPA-001
S103017-01	IUB2819-03	0.022	0.0200								16	03/15/11	03/15	KPA-001
S103017-02	IUB2819-04 (TRIP-BLANK)	0.022	0.0200								16	03/15/11	03/15	KPA-001
Nominal val	ues and limits from method	1.00	0.0200								180			
Nominal val	ues and limits from method	1.00	0.0200								180			

PROCEDURES REFERENCE D5174	AVERAGES ± 2 SD	MDA	0.062 ±	0.180
	FOR 5 SAMPLES	YIELD	±	

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 18

Lab id EAS
Protocol TA

Version Ver 1.0

Form DVD-LMS
Version 3.06

SDG 8669

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUB2819</u>

TRITIUM IN WATER
LIQUID SCINTILLATION COUNTING

RESULTS

SAMPLE ID TES	ST FIX PLANCHET	CLIENT SAMPLE ID .	Tritium
Preparation bat	ch 7281-046		
S103013-03	8665-003	Lab Control Sample	ok
S103013-04	8665-004	Method Blank	U
S103013-05	8665-005	Duplicate (S103013-01)	- U
S103017-01	8669-001	IUB2819-03	U

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/I	ALIQ L	PREP FAC		YIELD		COUNT min	_	 	PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7281-046 20 prep error	10.0 %	Reference	Lab 1	Noteboo	k No.	7281	pg 046	5				
S103013-03	Lab Control Sample	168	0.100			10		150			03/19/11	03/22	LSC-004
S103013-04	Method Blank	167	0.100			10		150			03/19/11	03/22	LSC-004
S103013-05	Duplicate (S103013-01)	170	0.0100			100		150		24	03/19/11	03/22	LSC-004
S103017-01	IUB2819-03	170	0.0100			100		150		23	03/19/11	03/22	LSC-004
Nominal val	ues and limits from method	500	0.0100					100	····	180			

PROCEDURES	REFERENCE	906.0	
	DWP-212	Tritium in Drinking Water by Distillation, rev	8

AVERAGES ± 2 SD MDA 169 ± 3.00 FOR 4 SAMPLES YIELD 55 ± 104

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 19

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

Version 3.06

Report date 03/30/11

SDG 8669

Test RA Matrix WATER

SDG 8669

Contact N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER
RADON COUNTING

Client <u>Test America, Inc.</u>
Contract <u>IUB2819</u>

RESULTS

	AW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	Radium-226
Preparation b	atch 728	1-046		
S103013-03	R1	8665-003	Lab Control Sample	ok
S103013-04		8665-004	Method Blank	U
S103013-05		8665-005	Duplicate (S103013-01)	- U
S103017-01		8669-001	IUB2819-03	0.688 J
S103017-02		8669-002	IUB2819-04 (TRIP-BLANK)	Ū

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	AIETD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	ક	*	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
										-					
Preparation	batch 728	1-046 20 prep error 1	6.4 % Re	terence	Lab I	Noteboo.	k No.	7281	pg 046	•					
S103013-03	R1	Lab Control Sample	0.867	0.100			100		140				03/25/11	03/25	RN-009
S103013-04		Method Blank	0.661	0.100			100		103				03/19/11	03/19	RN-010
S103013-05		Duplicate (S103013-01)	0.618	0.100			100		103			21	03/19/11	03/19	RN-016
S103017-01		IUB2819-03	0.529	0.100			100		100			20	03/19/11	03/19	RN-013
S103017-02		IUB2819-04 (TRIP-BLANK)	0.652	0.100			100		100			20	03/19/11	03/19	RN-014

Nominal values and limits from method		1.00	0.100					100			180				

PROCEDURES	REFERENCE	903.1	
	DWP-881A	Ra-226 Screening in Drinking Water, rev 6	

AVERAGES ± 2 SD	MDA	0.665	±	0.248
FOR 5 SAMPLES	YIELD	100	±	0

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 20

Lab id EAS

SDG 8669

SDG 8669 Contact N. Joseph Verville

REPORT GUIDE

Client Test America, Inc. Contract IUB2819

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
 - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- * All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES Page 1 SUMMARY DATA SECTION Page 21

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06 Report date 03/30/11

SDG 8669

SDG <u>8669</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 22

Lab id <u>EAS</u> Protocol <u>TA</u>

Protocol TA

Version <u>Ver 1.0</u>

Form DVD-RG

Version 3.06

SDG 8669

SDG 8669 Contact N. Joseph Verville

REPORT GUIDE

Client Test America, Inc. Contract IUB2819

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES Page 3 SUMMARY DATA SECTION Page 23

Lab id EAS Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06 Report date <u>03/30/11</u>

SDG 8669

SDG <u>8669</u> Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES
Page 4
SUMMARY DATA SECTION
Page 24

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

SDG 8669

SDG 8669
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- ${\tt X}\,$ Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 25

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version <u>3.06</u>

SDG 8669

SDG <u>8669</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 26

Lab id <u>EAS</u> Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u> Version 3.06

SDG 8669

SDG <u>8669</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION
Page 27

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>

Form <u>DVD-RG</u> Version <u>3.06</u>

SDG 8669

SDG 8669
Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 28

Lab id <u>EAS</u> Protocol <u>TA</u>

Version Ver 1.0

Form <u>DVD-RG</u> Version <u>3.06</u>

SDG 8669

SDG 8669 Contact N. Joseph Verville

GUIDE, cont.

Client Test America, Inc. Contract <u>IUB2819</u>

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES Page 9 SUMMARY DATA SECTION Page 29

Lab id EAS

Protocol TA

Version Ver 1.0 Form DVD-RG

Version 3.06

SDG 8669

SDG 8669
Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 30

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>
Form DVD-RG

Version 3.06

SDG 8669

SDG <u>8669</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 31

Lab id <u>EAS</u> Protocol <u>TA</u>

Version Ver 1.0

Form <u>DVD-RG</u> Version <u>3.06</u>

SDG 8669

SDG 8669 Contact N. Joseph Verville

REPORT GUIDE

Client Test America, Inc. Contract <u>IUB2819</u>

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES Page 12 SUMMARY DATA SECTION Page 32

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

EBERLINE ANALYTICAL

SDG 8669

SDG 8669
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUB2819</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 33

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-RG
Version 3.06Report date 03/30/11

EBERLINE ANALYTICAL

SDG 8669

SDG 8669
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1÷3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 34

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version Ver 1

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u> Version 3.06

Report date <u>03/30/11</u>

EBERLINE ANALYTICAL

SDG 8669

SDG 8669
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUB2819</u>

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 35

Lab id <u>EAS</u> Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date <u>03/30/11</u>

Subcontract Order - TestAmerica Irvine (IUB2819)

RECEIVING LABORATORY:
Eberline Services - SUB $\qquad \qquad \qquad$
2030 Wright Avenue Richmond, CA 94804
Phone :(510) 235-2633
Fax: (510) 235-0438
Project Location: California Receipt Temperature: °C Ice: Y N

		te is requested. => Due Date:	Initials:
Analysis	Units	Expires	Comments
Sample ID: IUB2819-03 (Outfall 018 (Composite) - '	Water) Sampled: 02/27/11 08:38	
Gamma Spec-O	mg/kg	02/27/12 08:38	jflags; Cs 137 + K 40; do not filter
Gross Alpha-O	pCi/L	08/26/11 08:38	jflags; do not filter
Gross Beta-O	pCi/L	08/26/11 08:38	jflags; do not filter
Radium, Combined-O	pCi/L	02/27/12 08:38	jflags; do not filter
Strontium 90-O	pCi/L	02/27/12 08:38	jflags; do not filter
Tritium-O	pCi/L	02/27/12 08:38	jflags; do not filter
Uranium, Combined-O	pCi/L	02/27/12 08:38	jflags; do not filter
Containers Supplied:			
2.5 gal Poly (S)	500 mL Amber (T)		
Sample ID: IUB2819-04 (Trip Blanks - Water)	Sampled: 02/27/11 10:30	
Gamma Spec-O	mg/kg	02/27/12 10:30	jflags; Cs 137 + K 40; do not filter
Gross Alpha-O	pCi/L	08/26/11 10:30	jflags; do not filter
Gross Beta-O	pCi/lূL	08/26/11 10:30	jflags; do not filter
Radium, Combined-O	pCi/L	02/27/12 10:30	jflags; do not filter
Strontium 90-0	pCi/L	02/27/12 10:30	jflags; do not filter
Uranium, Combined-O	pCi/L	02/27/12 10:30	jflags; do not filter
Containers Supplied:	EOO mal. Amaham (D)		
2.5 gal Poly (A)	500 ml Amber (B)		

Released By Date/Time

Released By Date/Time

Received By Date/Time

Page 1 of 1

Received By Date/Time

EBERLINE BERLINE

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client:	TES	T AWED	UCA COC NO	City	WINE	State	<u>ca</u>			
Date/Tir	me receiv	ed 13 of u	940 COC NO	<u> </u>	2819					
Container I.D. No. (GE CHEST Requested TAT (Days) STD P.O. Received Yes [] No []										
				INSPEC	TION					
1.	Custody	seals on shippi	ing container int	act?		Yes [-	No[] N/A [1		
2.	Custody	seals on shippi	ing container da	ted & signer	ქ ?	Yes []	No[] N/A []		
3.	Custody	seals on samp	ie containers int	act?		Yes []	No[] N/A [/		
4.	Custody	seals on samp	le containers da	ited & signe	d?	Yes []		71		
5.	Packing	material is:		2		Wet[]	Dix[λ]	/		
6.	Number	of samples in s	shipping contain	er:	Sample Matri			<u> </u>		
7.	Number	of containers p	er sample:		(Or see CoC _					
8.	Samples	are in correct	container		Yes [大]	No []				
9.	Paperwo	rk agrees with	samples?	•	Yes [x]	No[]				
10.	Samples	have: Tape	[] Hazard	abels[] F	Rad labels []	Appropriate sam	iple labels [X]			
11.	Samples	are: In go	od condition I	Leakin	g[] Broken	Container []	~ ∫⊘- Missing []			
12.	Samples	are: Preserv	ed [x] Not pr	eserved [X	JPHK2/NAPre	eservative	<u> </u>			
13.		any anomalie			/					
·										
					- I J c No I	1 Date				
14.	Was P.I		iny anomalies?		302 (1 Time	110-	`			
15.	Inspect	ed by	Tues	Date?	102 () Tim	e:				
	tomer	Beta/GammaV	Ion Chamber	Wipe	Customer Sample No.	Beta/Gamma	ion Chamber			
Sam			i ma≪unr i			cpm	mR/hr	wipe		
W. /	pie No.	cpm	mR/hr			cpm	mK/nr	wipe .		
He SI	pie No. Kuf US		mR/AII			cpm	mR/nr	wipe		
He SI		cpm	mikviti			Gpm .	mk/nr	wipe		
the St		cpm	mrvni		·	cpm	mk/nr	wipe		
fre Si		cpm	medic			cpm	mk/nr	wipe		
Are Si		cpm	mrvni			cpm	mk/nr	wipe		
fre Si		cpm	medi			cpm	mk/nr	wipe		
Are Si		cpm	medic			cpm	mr/nr	wipe		
Are Si		cpm	medi			cpm	mk/nr	wipe		
Are Si		cpm	medic			cpm	mr/nr	wipe		
Are Si		cpm	medi			cpm	mk/nr	wipe		
Are Si		cpm	medi			cpm	mr/nr	wipe		
	ku j W	cpm Albe								
ion Che	amber Ser	cpm Albe			Calibration dat	e	mr/nr			
ion Cha	amber Ser.	cpm Albe		2.7.6.						

APPENDIX G

Section 53

Outfall 018 - March 20, 2011

MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IUC2139

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00 Sample Delivery Group: IUC2139

Project Manager: B. Kelly

Matrix: Water QC Level: IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 018	IUC2139-	G1C230575-001, S103137	Water	3/20/2011 13:40	200.7, 200.7 (Diss), 245.1, 245.1 (Diss), 1613B, 900.0 MOD, 901.1 MOD, 903.0 MOD, 904 MOD, 905 MOD, 906.0 MOD, ASTM 5174

II. Sample Management

No anomalies were observed regarding sample management. The samples were received above the temperature limit at Eberline; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at Eberline and TestAmerica-West Sacramento. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Project: SSFL NPDES
DATA VALIDATION REPORT SDG: IUC2139

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D The analysis with this flag should not The analysis with this flag should not be used because another more be used because another more technically sound analysis is technically sound analysis is available. available. Ρ Instrument performance for Post Digestion Spike recovery was pesticides was poor. not within control limits. **DNQ** The reported result is above the The reported result is above the method detection limit but is less than method detection limit but is less than the reporting limit. the reporting limit. *11, *111 Unusual problems found with the Unusual problems found with the data that have been described in data that have been described in Section II, "Sample Management," or Section II, "Sample Management," Section III, "Method Analyses." The or Section III, "Method Analyses." number following the asterisk (*) will The number following the asterisk indicate the report section where a (*) will indicate the report section description of the problem can be where a description of the problem found. can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 10, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had a detect between the EDL and the reporting limit for OCDD; however, the method blank concentration was insufficient to qualify the associated sample result for OCDD.

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613, and RPDs were within the laboratory control limit of ≤50%.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Individual isomers reported as EMPCs were qualified as estimated nondetects, "UJ," at the level of the EMPC. Totals including EMPCs were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 8, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: Not applicable to these analyses.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and

ICP-MS metals and 85-115% for mercury. CRDL/CRI recoveries were within the control limits of 70-130%.

 Blanks: Zinc was detected in the dissolved method blank at 11.1 µg/L; therefore, dissolved zinc detected in the sample was qualified as nondetected, "U," at the reporting limit. Method blanks and CCBs had no other detects.

- Interference Check Samples: Recoveries were within 80-120%.
- Blank Spikes and Laboratory Control Samples: Recoveries were within methodestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for dissolved mercury. Recoveries and the RPD were within method-established control limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: April 18, 2011

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

 Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.

• Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J." The remaining detector efficiencies were ≥20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The strontium recovery was nominally above the control limit; however, strontium was not detected in the sample. The remaining recoveries were within laboratory-established control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for all analytes. The RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.

A notation in the preparation log indicated that a portion of the aliquots were filtered and that the filtrate was dissolved and added back to the aliquot.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 8, 2011

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^x Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 314.0, SM2510B, and SM2130B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. The perchlorate IPC and reporting limit check standards were recovered within 80-120% and 75-125%, respectively.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summary were verified against the raw data. No transcription errors or
 calculation errors were noted. When the sample results were qualified and the reviewer
 was able to clearly determine bias, detected results were qualified as either "J+" or "J-";
 otherwise, bias was not indicated in the qualification. Any detects between the method
 detection limit and the reporting limit were qualified as estimated, "J," and coded with

"DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms IUC2139

Analysis Metho	d 900							
Sample Name	Outfall 018 (0	Composite) Matri	x Type:	WATER	V	Validation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	1.08	3	0.364	pCi/L	Jb	J	C, DNQ
Gross Beta	12587472	4.79	4	0.886	pCi/L			
Analysis Metho	d 901.1							
Sample Name	Outfall 018 (0	Composite) Matri	x Type:	WATER	\	Validation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	ND	20	1.7	pCi/L	U	U	
Potassium-40	13966002	ND	25	24.7	pCi/L	U	U	
Analysis Metho	d 903.1							
Sample Name	Outfall 018 (0	Composite) Matri	x Type:	WATER	7	/alidation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.284	1	0.794	pCi/L	U	U	
Analysis Metho	d 904							
Sample Name	Outfall 018 (0	Composite) Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier		Validation Notes
Radium-228	15262201	0.386	1	0.415	pCi/L	U	U	
Analysis Metho	d 905							
Sample Name	Outfall 018 (0	Composite) Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	-0.103	2	0.723	pCi/L	U	U	

Analysis Method 906

Sample Name	Outfall 018 (0	Composite	e) Matri	ix Type:	WATER	'	Validation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Гritium	10028178	-42	500	168	pCi/L	U	U	
Analysis Metho	od ASTN	15174-	.91					
Sample Name	Outfall 018 (0	Composite	e) Matri	іх Туре:	WATER	1	Validation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total	NA	0.267	1	0.02	pCi/L	Jb	J	DNQ
Analysis Metho	od EPA .	200.7						
Sample Name	Outfall 018 (0	Composite	e) Matri	іх Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Iron	7439-89-6	1.1	0.040	0.015	mg/l			
Zinc	7440-66-6	15.5	20.0	6.00	ug/l	Ja	J	DNQ
Analysis Metho	od EPA .	200.7-1	<i>Diss</i>					
Sample Name	Outfall 018 (0	Composite	e) Matri	ix Type:	Water	V	Validation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Iron	7439-89-6	0.061	0.040	0.015	mg/l			
Zinc	7440-66-6	ND	20.0	6.00	ug/l	B, Ja	U	В
Analysis Metho	od EPA .	245.1						
Sample Name	Outfall 018 (0	Composite	e) Matri	ix Type:	Water	1	Validation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	

Analysis Method EPA 245.1-Diss

Sample Name	Outfall 018 (C	composite)) Matri	ix Type:	Water	7	Validation Le	evel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 3	314.0						
Sample Name	Outfall 018 (C	omposite)) Matr	ix Type:	Water	7	Validation Le	evel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/201	1 1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Perchlorate	14797-73-0	ND	4.0	0.90	ug/1		U	

Analysis Method EPA-5 1613B

Sample Name	Outfall 018 (C	omposite) Matri	x Type:	WATER	7	alidation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/2011	1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000043	ug/L	J, Q	UJ	*III
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.000002	ug/L	J, Q	UJ	*III
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000031	ug/L		U	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000013	ug/L		U	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000011	ug/L		U	
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000017	ug/L	J, Q	UJ	*III
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000009	ug/L		U	
1,2,3,7,8,9-HxCDD	19408-74-3	2.9e-006	0.00005	0.0000015	ug/L	J	J	DNQ
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000013	ug/L		U	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000012	ug/L		U	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000013	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000009	ug/L		U	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000013	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000012	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000014	ug/L		U	
OCDD	3268-87-9	0.0006	0.0001	0.0000082	ug/L	Ba		
OCDF	39001-02-0	ND	0.0001	0.0000041	ug/L	J, Q	UJ	*III
Total HpCDD	37871-00-4	0.00011	0.00005	0.0000043	ug/L	J, Q	J	DNQ, *III
Total HpCDF	38998-75-3	2.9e-005	0.00005	0.0000025	ug/L	J, Q	J	DNQ, *III
Total HxCDD	34465-46-8	1.6e-005	0.00005	0.0000017	ug/L	J, Q	J	DNQ, *III
Total HxCDF	55684-94-1	6.7e-006	0.00005	0.0000011	ug/L	J	J	DNQ
Total PeCDD	36088-22-9	ND	0.00005	0.0000012	ug/L		U	
Total PeCDF	30402-15-4	ND	0.00005	0.0000013	ug/L		U	
Total TCDD	41903-57-5	ND	0.00001	0.0000012	ug/L		U	
Total TCDF	55722-27-5	ND	0.00001	0.0000014	ug/L		U	
Analysis Metho	od SM21	30B						
Sample Name	Outfall 018 (C	omposite) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUC2139-03	Sam	ple Date:	3/20/2011	1:40:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Turbidity	Turb	30	1.0	0.040	NTU			

Analysis Method SM2510B

Sample Name	Outfall 018 (Grab)	Matri	ix Type:	Water	7	Validation Level: IV		
Lab Sample Name:	IUC2139-01	Sam	ple Date:	3/20/2011	1 11:00:00 A	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Specific Conductance	NA	280	1.0	1.0	umhos/c			_	

APPENDIX G

Section 54

Outfall 018 – March 20, 2011 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 03/20/11 Received: 03/20/11

Issued: 04/15/11 07:01

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Some analytes in this sample have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical in abundance ratio. Analytical positive property desires a "O" float

the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

LABORATORY IDCLIENT IDMATRIXIUC2139-01Outfall 018 (Grab)WaterIUC2139-02Trip BlanksWaterIUC2139-03Outfall 018 (Composite)Water

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

TestAmerica Irvine

Delby Wilson

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Sampled: 03/20/11 Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-01 (Outfall 018 (Grab	o) - Water)								
Reporting Units: ug/l									
1,2-Dichloroethane	EPA 624	11C3502	0.28	0.50	ND	1	NA	03/26/11	
1,1-Dichloroethene	EPA 624	11C3502	0.42	2.0	ND	1	NA	03/26/11	
Trichloroethene	EPA 624	11C3502	0.26	2.0	ND	1	NA	03/26/11	
Surrogate: 4-Bromofluorobenzene (80-120%))				90 %				
Surrogate: Dibromofluoromethane (80-120%	6)				100 %				
Surrogate: Toluene-d8 (80-120%)					99 %				
Sample ID: IUC2139-02 (Trip Blanks - Wa	ter)								
Reporting Units: ug/l									
1,2-Dichloroethane	EPA 624	11C3502	0.28	0.50	ND	1	NA	03/26/11	
1,1-Dichloroethene	EPA 624	11C3502	0.42	2.0	ND	1	NA	03/26/11	
Trichloroethene	EPA 624	11C3502	0.26	2.0	ND	1	NA	03/26/11	
Surrogate: 4-Bromofluorobenzene (80-120%))				89 %				
Surrogate: Dibromofluoromethane (80-120%	ó)				100 %				
Surrogate: Toluene-d8 (80-120%)					99 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Sampled: 03/20/11 Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers	
Sample ID: IUC2139-03 (Outfall 018 (Composite) - Water)										
Reporting Units: ug/l										
Bis(2-ethylhexyl)phthalate	EPA 625	11C3070	1.60	4.72	ND	0.943	LB	03/25/11		
2,4-Dinitrotoluene	EPA 625	11C3070	0.189	4.72	ND	0.943	LB	03/25/11		
N-Nitrosodimethylamine	EPA 625	11C3070	0.0943	4.72	ND	0.943	LB	03/25/11		
Pentachlorophenol	EPA 625	11C3070	0.0943	4.72	ND	0.943	LB	03/25/11		
2,4,6-Trichlorophenol	EPA 625	11C3070	0.0943	5.66	ND	0.943	LB	03/25/11		
Surrogate: 2,4,6-Tribromophenol (40-120%)					91 %					
Surrogate: 2-Fluorobiphenyl (50-120%)					83 %					
Surrogate: 2-Fluorophenol (30-120%)					68 %					
Surrogate: Nitrobenzene-d5 (45-120%)					79 %					
Surrogate: Phenol-d6 (35-120%)					75 %					
Surrogate: Terphenyl-d14 (50-125%)					95 %					

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 03/20/11 Arcadia, CA 91007 Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-03 (Outfall 018 (Comp	oosite) - Water)	- cont.							
Reporting Units: ug/l	EPA 608	11C2988	0.0024	0.0094	ND	0.943	CNI	02/24/11	C
alpha-BHC Surrogate: Decachlorobiphenyl (45-120%)	EPA 008	11C2988	0.0024	0.0094	ND 89 %	0.943	CN	03/24/11	С
Surrogate: Tetrachloro-m-xylene (35-115%)					77 %				
Surrogate. Tetrachioro-m-xytene (55-11576)					// /0				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 03/20/11

Report Number: IUC2139 Received: 03/20/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-01 (Outfall 018 (Gra	b) - Water)								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	11C3551	1.3	4.7	ND	1	DA	03/28/11	
Grease)									

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Sampled: 03/20/11 Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

METALS

THE TREE									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-03 (Outfall 018 ((Composite) - Water)								
Reporting Units: mg/l									
Iron	EPA 200.7	11C3037	0.015	0.040	1.1	1	LL	03/23/11	
Sample ID: IUC2139-03 (Outfall 018 ((Composite) - Water)								
Reporting Units: ug/l									
Mercury	EPA 245.1	11C2939	0.10	0.20	ND	1	DB	03/23/11	
Cadmium	EPA 200.8	11C2899	0.10	1.0	ND	1	RDC	03/22/11	
Zinc	EPA 200.7	11C3037	6.00	20.0	15.5	1	LL	03/23/11	Ja
Copper	EPA 200.8	11C2899	0.50	2.0	2.7	1	RDC	03/22/11	
Lead	EPA 200.8	11C2899	0.20	1.0	0.72	1	RDC	03/22/11	Ja
Selenium	EPA 200.8	11C2899	0.50	2.0	ND	1	RDC	03/22/11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 03/20/11 Arcadia, CA 91007 Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

DISSOLVED METALS

Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
(Composite) - Water)	- cont.							
EPA 200.7-Diss	11C3474	0.015	0.040	0.061	1	DP	03/26/11	
(Composite) - Water)								
EPA 245.1-Diss	11C3083	0.10	0.20	ND	1	DB	03/23/11	
EPA 200.8-Diss	11C3506	0.10	1.0	ND	1	RDC	03/28/11	
EPA 200.7-Diss	11C3474	6.00	20.0	9.40	1	DP	03/26/11	B, Ja
EPA 200.8-Diss	11C3506	0.50	2.0	1.6	1	RDC	03/28/11	Ja
EPA 200.8-Diss	11C3506	0.20	1.0	ND	1	RDC	03/28/11	
EPA 200.8-Diss	11C3506	0.50	2.0	ND	1	RDC	03/28/11	
	(Composite) - Water) EPA 200.7-Diss (Composite) - Water) EPA 245.1-Diss EPA 200.8-Diss EPA 200.7-Diss EPA 200.8-Diss EPA 200.8-Diss	(Composite) - Water) - cont. EPA 200.7-Diss 11C3474 (Composite) - Water) EPA 245.1-Diss 11C3083 EPA 200.8-Diss 11C3506 EPA 200.7-Diss 11C3474 EPA 200.8-Diss 11C3506 EPA 200.8-Diss 11C3506	Method Batch Limit (Composite) - Water) - cont. EPA 200.7-Diss 11C3474 0.015 (Composite) - Water) EPA 245.1-Diss 11C3083 0.10 EPA 200.8-Diss 11C3506 0.10 EPA 200.7-Diss 11C3474 6.00 EPA 200.8-Diss 11C3506 0.50 EPA 200.8-Diss 11C3506 0.20	Method Batch Limit Limit (Composite) - Water) - cont. EPA 200.7-Diss 11C3474 0.015 0.040 (Composite) - Water) EPA 245.1-Diss 11C3083 0.10 0.20 EPA 200.8-Diss 11C3506 0.10 1.0 EPA 200.7-Diss 11C3474 6.00 20.0 EPA 200.8-Diss 11C3506 0.50 2.0 EPA 200.8-Diss 11C3506 0.20 1.0	Method Batch Limit Limit Result (Composite) - Water) - cont. EPA 200.7-Diss 11C3474 0.015 0.040 0.061 (Composite) - Water) EPA 245.1-Diss 11C3083 0.10 0.20 ND EPA 200.8-Diss 11C3506 0.10 1.0 ND EPA 200.7-Diss 11C3474 6.00 20.0 9.40 EPA 200.8-Diss 11C3506 0.50 2.0 1.6 EPA 200.8-Diss 11C3506 0.20 1.0 ND	Method Batch Limit Limit Result Factor (Composite) - Water) - cont. EPA 200.7-Diss 11C3474 0.015 0.040 0.061 1 (Composite) - Water) EPA 245.1-Diss 11C3083 0.10 0.20 ND 1 EPA 200.8-Diss 11C3506 0.10 1.0 ND 1 EPA 200.7-Diss 11C3506 0.50 2.0 9.40 1 EPA 200.8-Diss 11C3506 0.50 2.0 1.6 1 EPA 200.8-Diss 11C3506 0.20 1.0 ND 1	Method Batch Limit Limit Result Factor Analyst (Composite) - Water) - cont. EPA 200.7-Diss 11C3474 0.015 0.040 0.061 1 DP (Composite) - Water) EPA 245.1-Diss 11C3083 0.10 0.20 ND 1 DB EPA 200.8-Diss 11C3506 0.10 1.0 ND 1 RDC EPA 200.8-Diss 11C3506 0.50 2.0 1.6 1 RDC EPA 200.8-Diss 11C3506 0.20 1.0 ND 1 RDC	Method Batch Limit Limit Result Factor Analyst Analyzed (Composite) - Water) - cont. EPA 200.7-Diss 11C3474 0.015 0.040 0.061 1 DP 03/26/11 (Composite) - Water) EPA 245.1-Diss 11C3083 0.10 0.20 ND 1 DB 03/23/11 EPA 200.8-Diss 11C3506 0.10 1.0 ND 1 RDC 03/28/11 EPA 200.8-Diss 11C3506 0.50 2.0 1.6 1 RDC 03/28/11 EPA 200.8-Diss 11C3506 0.20 1.0 ND 1 RDC 03/28/11

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 03/20/11

Report Number: IUC2139 Received: 03/20/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers	
Sample ID: IUC2139-03 (Outfall 018 (Composite) - Water) - cont.										
Reporting Units: mg/l										
Ammonia-N (Distilled)	SM4500NH3-C	11C2967	0.500	0.500	ND	1	TMK	03/22/11		
Biochemical Oxygen Demand	SM5210B	11C2910	0.50	2.0	2.8	1	XL	03/27/11		
Chloride	EPA 300.0	11C2745	0.30	0.50	9.7	1	NN	03/22/11		
Nitrate-N	EPA 300.0	11C2745	0.060	0.11	0.58	1	NN	03/22/11		
Nitrite-N	EPA 300.0	11C2745	0.090	0.15	ND	1	NN	03/22/11		
Nitrate/Nitrite-N	EPA 300.0	11C2745	0.15	0.26	0.58	1	NN	03/22/11		
Sulfate	EPA 300.0	11C2884	3.0	5.0	40	10	NN	03/22/11		
Surfactants (MBAS)	SM5540-C	11C2931	0.050	0.10	ND	1	EL	03/22/11		
Total Dissolved Solids	SM2540C	11C2823	1.0	10	190	1	MC	03/22/11		
Total Suspended Solids	SM 2540D	11C2949	1.0	10	17	1	DK1	03/22/11		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 03/20/11 Arcadia, CA 91007 Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

INORGANICS

n voltari ves										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers	
Sample ID: IUC2139-01 (Outfall 018 (Grab) - Water)										
Reporting Units: ml/l										
Total Settleable Solids	SM2540F	11C2743	0.10	0.10	ND	1	RRZ	03/21/11		
Sample ID: IUC2139-03 (Outfall 018 (C	Composite) - Water)									
Reporting Units: NTU	,									
Turbidity	SM2130B	11C2881	0.040	1.0	30	1	RRZ	03/22/11		
Sample ID: IUC2139-03 (Outfall 018 (C	Composite) - Water)									
Reporting Units: ug/l										
Perchlorate	EPA 314.0	11C2871	0.90	4.0	ND	1	mn	03/22/11		
Total Cyanide	SM4500CN-E	11C3437	2.2	5.0	ND	1	SLA	03/25/11		
Sample ID: IUC2139-01 (Outfall 018 (Grab) - Water)										
Reporting Units: umhos/cm @ 25C	, , , ,									
Specific Conductance	SM2510B	11C2667	1.0	1.0	280	1	MC	03/21/11		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200

Routine Outfall 018

Arcadia, CA 91007

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

8675

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-03 (Outfall 018 (C Reporting Units: pCi/L Uranium, Total	Composite) - Water) 8675	8675		1	0.267	1	TAC	03/29/11	Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 03/20/11 Arcadia, CA 91007 Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

900

			900						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-03 (Outfall 018 (Com	posite) - Water	r) - cont.							
Reporting Units: pCi/L									
Gross Alpha	900	8675		3	1.08	1	LS	03/31/11	Jb
Gross Beta	900	8675		4	4.79	1	LS	03/31/11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

901.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-03 (Outfall 018 (Com	posite) - Water) -	cont.							
Reporting Units: pCi/L									
Cesium-137	901.1	8675		20	ND	1	LS	03/30/11	U
Potassium-40	901.1	8675		25	ND	1	LS	03/30/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

903.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-03 (Outfall 018 (Com	posite) - Water) -	cont.							
Reporting Units: pCi/L Radium-226	903.1	8675		1	0.284	1	TM	04/05/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-03 (Outfall 018 (Com Reporting Units: pCi/L	iposite) - Water	r) - cont.							
Radium-228	904	8675		1	0.386	1	LD	04/07/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-03 (Outfall 018 (Com	posite) - Water) – cont.							
Reporting Units: pCi/L									
Strontium-90	905	8675		2	-0.103	1	EMB	04/01/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

906												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers			
Sample ID: IUC2139-03 (Outfall 018	B (Composite) - Water	r) - cont.										
Reporting Units: pCi/L												
Tritium	906	8675		500	-42	1	WL	03/30/11	U			

Sampled: 03/20/11

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139 Received: 03/20/11

EPA-5 1613Bx

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUC2139-03 (Outfall 018 (Composite) - Water)	- cont.							
Reporting Units: ug/L	. , ,								
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	1083190	0.0000043	0.00005	4.4e-005	0.97	MO	03/25/11	J, Q
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	1083190	0.000002	0.00005	1.1e-005	0.97	MO	03/25/11	J, Q
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	1083190	0.0000031	0.00005	ND	0.97	MO	03/25/11	
1,2,3,4,7,8-HxCDD	EPA-5 1613B	1083190	0.0000013	0.00005	ND	0.97	MO	03/25/11	
1,2,3,4,7,8-HxCDF	EPA-5 1613B	1083190	0.0000011	0.00005	ND	0.97	MO	03/25/11	
1,2,3,6,7,8-HxCDD	EPA-5 1613B	1083190	0.0000017	7 0.00005	2e-006	0.97	MO	03/25/11	J, Q
1,2,3,6,7,8-HxCDF	EPA-5 1613B	1083190	0.0000009	7 0.00005	ND	0.97	MO	03/25/11	
1,2,3,7,8,9-HxCDD	EPA-5 1613B	1083190	0.0000015	0.00005	2.9e-006	0.97	MO	03/25/11	J
1,2,3,7,8,9-HxCDF	EPA-5 1613B	1083190	0.0000013	0.00005	ND	0.97	MO	03/25/11	
1,2,3,7,8-PeCDD	EPA-5 1613B	1083190	0.0000012	0.00005	ND	0.97	MO	03/25/11	
1,2,3,7,8-PeCDF	EPA-5 1613B	1083190	0.0000013	0.00005	ND	0.97	MO	03/25/11	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	1083190	0.0000009	5 0.00005	ND	0.97	MO	03/25/11	
2,3,4,7,8-PeCDF	EPA-5 1613B	1083190	0.0000013	0.00005	ND	0.97	MO	03/25/11	
2,3,7,8-TCDD	EPA-5 1613B	1083190	0.0000012	2 0.00001	ND	0.97	MO	03/25/11	
2,3,7,8-TCDF	EPA-5 1613B	1083190	0.0000014	1 0.00001	ND	0.97	MO	03/25/11	
OCDD	EPA-5 1613B	1083190	0.0000082	2 0.0001	0.0006	0.97	MO	03/25/11	Ba
OCDF	EPA-5 1613B	1083190	0.0000041	0.0001	1.7e-005	0.97	MO	03/25/11	J, Q
Total HpCDD	EPA-5 1613B	1083190	0.0000043	0.00005	0.00011	0.97	MO	03/25/11	J, Q
Total HpCDF	EPA-5 1613B	1083190	0.0000025	5 0.00005	2.9e-005	0.97	MO	03/25/11	J, Q
Total HxCDD	EPA-5 1613B	1083190	0.0000017	7 0.00005	1.6e-005	0.97	MO	03/25/11	J, Q
Total HxCDF	EPA-5 1613B	1083190	0.0000011	0.00005	6.7e-006	0.97	MO	03/25/11	J
Total PeCDD	EPA-5 1613B	1083190	0.0000012	2 0.00005	ND	0.97	MO	03/25/11	
Total PeCDF	EPA-5 1613B	1083190	0.0000013	0.00005	ND	0.97	MO	03/25/11	
Total TCDD	EPA-5 1613B	1083190	0.0000012	2 0.00001	ND	0.97	MO	03/25/11	
Total TCDF	EPA-5 1613B	1083190	0.0000014	1 0.00001	ND	0.97	MO	03/25/11	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2	3-140%)				35 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (2	8-143%)				35 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (2	6-138%)				31 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-	141%)				36 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-	152%)				35 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-	130%)				39 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-					42 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-	147%)				37 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18					39 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-18	35%)				34 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-	· · · · · · · · · · · · · · · · · · ·				40 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-17					35 %				
Surrogate: 13C-2,3,7,8-TCDD (25-164%)					37 %				
Surrogate: 13C-2,3,7,8-TCDF (24-169%)	<i>5)</i>				39 %				
Surrogate: 13C-OCDD (17-157%)					34 %				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-19)	7%)				86 %				
TT A A • T •									

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Sampled: 03/20/11 Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 018 (Grab) (IUC2139-01)	Hold Time (in days)) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
SM2540F	2	03/20/2011 11:00	03/20/2011 16:40	03/21/2011 08:05	03/21/2011 08:05
Sample ID: Outfall 018 (Composite) (IUC213	39-03) - Water				
EPA 300.0	2	03/20/2011 13:40	03/20/2011 16:40	03/21/2011 23:15	03/22/2011 01:35
Filtration	1	03/20/2011 13:40	03/20/2011 16:40	03/21/2011 23:30	03/21/2011 23:30
SM2130B	2	03/20/2011 13:40	03/20/2011 16:40	03/22/2011 11:00	03/22/2011 11:00
SM5210B	2	03/20/2011 13:40	03/20/2011 16:40	03/22/2011 11:00	03/27/2011 12:30
SM5540-C	2	03/20/2011 13:40	03/20/2011 16:40	03/22/2011 11:50	03/22/2011 12:59

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3502 Extracted: 03/26/1	<u>1_</u>										
D	V 774\										
Blank Analyzed: 03/26/2011 (11C3502-F	,										
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	2.0	0.42	ug/l							
Trichloroethene	ND	2.0	0.26	ug/l							
Surrogate: 4-Bromofluorobenzene	22.4			ug/l	25.0		90	80-120			
Surrogate: Dibromofluoromethane	23.1			ug/l	25.0		92	80-120			
Surrogate: Toluene-d8	24.5			ug/l	25.0		98	80-120			
LCS Analyzed: 03/26/2011 (11C3502-BS	S1)										
1,2-Dichloroethane	23.2	0.50	0.28	ug/l	25.0		93	60-140			
1,1-Dichloroethene	23.7	2.0	0.42	ug/l	25.0		95	70-125			
Trichloroethene	24.7	2.0	0.26	ug/l	25.0		99	70-125			
Surrogate: 4-Bromofluorobenzene	23.7			ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	23.7			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	24.7			ug/l	25.0		99	80-120			
Matrix Spike Analyzed: 03/26/2011 (110	C3502-MS1)				Sou	rce: IUC	2031-01				
1,2-Dichloroethane	25.3	0.50	0.28	ug/l	25.0	ND	101	60-140			
1,1-Dichloroethene	22.4	2.0	0.42	ug/l	25.0	ND	90	60-130			
Trichloroethene	24.1	2.0	0.26	ug/l	25.0	ND	97	65-125			
Surrogate: 4-Bromofluorobenzene	23.8			ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	25.1			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	24.6			ug/l	25.0		99	80-120			
Matrix Spike Dup Analyzed: 03/26/2011	(11C3502-M	ISD1)			Sou	rce: IUC	2031-01				
1,2-Dichloroethane	24.7	0.50	0.28	ug/l	25.0	ND	99	60-140	2	20	
1,1-Dichloroethene	22.5	2.0	0.42	ug/l	25.0	ND	90	60-130	0.5	20	
Trichloroethene	24.2	2.0	0.26	ug/l	25.0	ND	97	65-125	0.3	20	
Surrogate: 4-Bromofluorobenzene	23.9			ug/l	25.0		96	80-120			
Surrogate: Dibromofluoromethane	25.2			ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	24.4			ug/l	25.0		98	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C3070 Extracted: 03/23/1	<u>1_</u>										
Blank Analyzed: 03/25/2011 (11C3070-I	BLK1)										
Bis(2-ethylhexyl)phthalate	ND	5.00	1.70	ug/l							
2,4-Dinitrotoluene	ND	5.00	0.200	ug/l							
N-Nitrosodimethylamine	ND	5.00	0.100	ug/l							
Pentachlorophenol	ND	5.00	0.100	ug/l							
2,4,6-Trichlorophenol	ND	6.00	0.100	ug/l							
Surrogate: 2,4,6-Tribromophenol	15.1			ug/l	20.0		75	40-120			
Surrogate: 2-Fluorobiphenyl	7.92			ug/l	10.0		79	50-120			
Surrogate: 2-Fluorophenol	15.1			ug/l	20.0		76	30-120			
Surrogate: Nitrobenzene-d5	8.22			ug/l	10.0		82	45-120			
Surrogate: Phenol-d6	16.3			ug/l	20.0		81	35-120			
Surrogate: Terphenyl-d14	9.64			ug/l	10.0		96	50-125			
LCS Analyzed: 03/25/2011 (11C3070-BS	S1)										MNR1
Bis(2-ethylhexyl)phthalate	8.60	5.00	1.70	ug/l	10.0		86	65-130			
2,4-Dinitrotoluene	8.64	5.00	0.200	ug/l	10.0		86	65-120			
N-Nitrosodimethylamine	7.72	5.00	0.100	ug/l	10.0		77	45-120			
Pentachlorophenol	6.24	5.00	0.100	ug/l	10.0		62	24-121			
2,4,6-Trichlorophenol	8.04	6.00	0.100	ug/l	10.0		80	55-120			
Surrogate: 2,4,6-Tribromophenol	16.7			ug/l	20.0		84	40-120			
Surrogate: 2-Fluorobiphenyl	7.78			ug/l	10.0		78	50-120			
Surrogate: 2-Fluorophenol	13.0			ug/l	20.0		65	30-120			
Surrogate: Nitrobenzene-d5	7.26			ug/l	10.0		73	45-120			
Surrogate: Phenol-d6	14.5			ug/l	20.0		73	35-120			
Surrogate: Terphenyl-d14	8.72			ug/l	10.0		87	50-125			
LCS Dup Analyzed: 03/25/2011 (11C30'	70-BSD1)										
Bis(2-ethylhexyl)phthalate	8.74	5.00	1.70	ug/l	10.0		87	65-130	2	20	
2,4-Dinitrotoluene	9.02	5.00	0.200	ug/l	10.0		90	65-120	4	20	
N-Nitrosodimethylamine	7.70	5.00	0.100	ug/l	10.0		77	45-120	0.3	20	
Pentachlorophenol	6.20	5.00	0.100	ug/l	10.0		62	24-121	0.6	25	
2,4,6-Trichlorophenol	8.02	6.00	0.100	ug/l	10.0		80	55-120	0.2	30	
Surrogate: 2,4,6-Tribromophenol	16.9			ug/l	20.0		84	40-120			
Surrogate: 2-Fluorobiphenyl	7.90			ug/l	10.0		79	50-120			
Surrogate: 2-Fluorophenol	13.1			ug/l	20.0		66	30-120			
Surrogate: Nitrobenzene-d5	7.72			ug/l	10.0		77	45-120			
Surrogate: Phenol-d6	15.4			ug/l	20.0		77	35-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result %	%REC	Limits	RPD	Limit	Qualifiers

Batch: 11C3070 Extracted: 03/23/11

LCS Dup Analyzed: 03/25/2011 (11C3070-BSD1)

Surrogate: Terphenyl-d14 8.78 ug/l 10.0 88 50-125

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C2988 Extracted: 03/23/11	_										
Blank Analyzed: 03/23/2011 (11C2988-B	LK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.433			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.371			ug/l	0.500		74	35-115			
LCS Analyzed: 03/23/2011 (11C2988-BS	1)										MNR1
alpha-BHC	0.398	0.010	0.0025	ug/l	0.500		80	45-115			
Surrogate: Decachlorobiphenyl	0.446			ug/l	0.500		89	45-120			
Surrogate: Tetrachloro-m-xylene	0.383			ug/l	0.500		77	35-115			
LCS Dup Analyzed: 03/23/2011 (11C298	8-BSD1)										
alpha-BHC	0.398	0.010	0.0025	ug/l	0.500		80	45-115	0.1	30	
Surrogate: Decachlorobiphenyl	0.441			ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.384			ug/l	0.500		77	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C3551 Extracted: 03/28/11	<u>L</u>										
Blank Analyzed: 03/28/2011 (11C3551-E	BLK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 03/28/2011 (11C3551-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	18.7	5.0	1.4	mg/l	20.0		94	78-114			
LCS Dup Analyzed: 03/28/2011 (11C355	31-BSD1)										
Hexane Extractable Material (Oil & Grease)	19.1	5.0	1.4	mg/l	20.0		96	78-114	2	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/20/11

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139 Received: 03/20/11

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C2899 Extracted: 03/22/11	_										
Blank Analyzed: 03/22/2011 (11C2899-Bl	LK1)										
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
LCS Analyzed: 03/22/2011 (11C2899-BS)	1)										
Cadmium	85.3	1.0	0.10	ug/l	80.0		107	85-115			
Copper	82.8	2.0	0.50	ug/l	80.0		104	85-115			
Lead	79.6	1.0	0.20	ug/l	80.0		100	85-115			
Selenium	82.8	2.0	0.50	ug/l	80.0		104	85-115			
Matrix Spike Analyzed: 03/22/2011 (11C	2899-MS1)				Sou	rce: IUC	2134-02				
Cadmium	77.7	1.0	0.10	ug/l	80.0	ND	97	70-130			
Copper	85.0	2.0	0.50	ug/l	80.0	4.75	100	70-130			
Lead	73.0	1.0	0.20	ug/l	80.0	1.35	90	70-130			
Selenium	75.4	2.0	0.50	ug/l	80.0	ND	94	70-130			
Matrix Spike Analyzed: 03/22/2011 (11C	2899-MS2)				Sou	rce: IUC	1965-02				
Cadmium	77.9	1.0	0.10	ug/l	80.0	ND	97	70-130			
Copper	84.2	2.0	0.50	ug/l	80.0	6.68	97	70-130			
Lead	70.4	1.0	0.20	ug/l	80.0	0.795	87	70-130			
Selenium	80.3	2.0	0.50	ug/l	80.0	2.49	97	70-130			
Matrix Spike Dup Analyzed: 03/22/2011	(11C2899-M	SD1)			Sou	rce: IUC	2134-02				
Cadmium	78.2	1.0	0.10	ug/l	80.0	ND	98	70-130	0.6	20	
Copper	86.2	2.0	0.50	ug/l	80.0	4.75	102	70-130	1	20	
Lead	72.3	1.0	0.20	ug/l	80.0	1.35	89	70-130	0.9	20	
Selenium	76.2	2.0	0.50	ug/l	80.0	ND	95	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C2939 Extracted: 03/22/11	=										
Blank Analyzed: 03/23/2011 (11C2939-B)	LK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 03/23/2011 (11C2939-BS)	1)										
Mercury	7.89	0.20	0.10	ug/l	8.00		99	85-115			
Matrix Spike Analyzed: 03/23/2011 (11C	2939-MS1)				Sou	rce: IUC	2224-01				
Mercury	7.87	0.20	0.10	ug/l	8.00	ND	98	70-130			
Matrix Spike Dup Analyzed: 03/23/2011	(11C2939-MS	D1)			Sou	rce: IUC	2224-01				
Mercury	7.86	0.20	0.10	ug/l	8.00	ND	98	70-130	0.2	20	
Batch: 11C3037 Extracted: 03/23/11	_										
DI I A I I 02/22/2011 (11/22027 DI	F TZ4\										
Blank Analyzed: 03/23/2011 (11C3037-B)	L K1) ND	0.040	0.015	/1							
Iron Zinc	ND ND	0.040 20.0	0.015 6.00	mg/l ug/l							
Zinc	ND	20.0	0.00	ug/1							
LCS Analyzed: 03/23/2011 (11C3037-BS)	1)										
Iron	0.562	0.040	0.015	mg/l	0.500		112	85-115			
Zinc	524	20.0	6.00	ug/l	500		105	85-115			
Matrix Spike Analyzed: 03/23/2011 (11C	3037-MS1)				Sou	rce: IUC	2108-02				
Iron	0.559	0.040	0.015	mg/l	0.500	ND	112	70-130			
Zinc	509	20.0	6.00	ug/l	500	ND	102	70-130			
Matrix Spike Analyzed: 03/23/2011 (11C	3037-MS2)				Sou	rce: IUC	1923-02				
Iron	0.558	0.040	0.015	mg/l	0.500	ND	112	70-130			
Zinc	515	20.0	6.00	ug/l	500	ND	103	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data		
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers		
Batch: 11C3037 Extracted: 03/23/11	-												
Matrix Spike Dup Analyzed: 03/23/2011 (11C3037-MSD1) Source: IUC2108-02													
Iron	0.567	0.040	0.015	mg/l	0.500	ND	113	70-130	1	20			
Zinc	522	20.0	6.00	110/1	500	ND	104	70-130	3	20			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3083 Extracted: 03/23/11	_										
Blank Analyzed: 03/23/2011 (11C3083-Bl	· ·										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 03/23/2011 (11C3083-BS)	1)										
Mercury	7.87	0.20	0.10	ug/l	8.00		98	85-115			
Matrix Spike Analyzed: 03/23/2011 (11C	3083-MS1)				Sou	rce: IUC	2139-03				
Mercury	7.77	0.20	0.10	ug/l	8.00	ND	97	70-130			
Matrix Spike Dup Analyzed: 03/23/2011	(11C3083-MS	D1)			Sou	rce: IUC	2139-03				
Mercury	7.76	0.20	0.10	ug/l	8.00	ND	97	70-130	0.2	20	
Batch: 11C3474 Extracted: 03/25/11	_										
Blank Analyzed: 03/26/2011 (11C3474-B)	L K1)										
Iron	ND	0.040	0.015	mg/l							
Zinc	11.1	20.0	6.00	ug/l							Ja
LCS Analyzed: 03/26/2011 (11C3474-BS)	1)										
Iron	0.530	0.040	0.015	mg/l	0.500		106	85-115			
Zinc	505	20.0	6.00	ug/l	500		101	85-115			
Matrix Spike Analyzed: 03/26/2011 (11C	3474-MS1)				Sou	rce: IUC	2140-03				
Iron	0.577	0.040	0.015	mg/l	0.500	0.0583	104	70-130			
Zinc	509	20.0	6.00	ug/l	500	7.18	100	70-130			
Matrix Spike Dup Analyzed: 03/26/2011	D1)			Sou	rce: IUC	2140-03					
Iron	0.594	0.040	0.015	mg/l	0.500	0.0583	107	70-130	3	20	
Zinc	531	20.0	6.00	ug/l	500	7.18	105	70-130	4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3506 Extracted: 03/26/11											
	_										
Blank Analyzed: 03/28/2011 (11C3506-B)	LK1)										
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
LCS Analyzed: 03/28/2011 (11C3506-BS)	1)										
Cadmium	79.3	1.0	0.10	ug/l	80.0		99	85-115			
Copper	84.1	2.0	0.50	ug/l	80.0		105	85-115			
Lead	78.6	1.0	0.20	ug/l	80.0		98	85-115			
Selenium	79.7	2.0	0.50	ug/l	80.0		100	85-115			
Matrix Spike Analyzed: 03/28/2011 (11C	3506-MS1)				Sou	rce: IUC	2142-02				
Cadmium	77.2	1.0	0.10	ug/l	80.0	ND	96	70-130			
Copper	83.9	2.0	0.50	ug/l	80.0	1.96	102	70-130			
Lead	76.8	1.0	0.20	ug/l	80.0	0.555	95	70-130			
Selenium	74.2	2.0	0.50	ug/l	80.0	ND	93	70-130			
Matrix Spike Analyzed: 03/28/2011 (11C	3506-MS2)				Sou	rce: IUC	2141-02				
Cadmium	77.0	1.0	0.10	ug/l	80.0	ND	96	70-130			
Copper	83.9	2.0	0.50	ug/l	80.0	2.04	102	70-130			
Lead	76.2	1.0	0.20	ug/l	80.0	ND	95	70-130			
Selenium	73.3	2.0	0.50	ug/l	80.0	ND	92	70-130			
Matrix Spike Dup Analyzed: 03/28/2011	(11C3506-MS	SD1)			Sou	rce: IUC	2142-02				
Cadmium	78.2	1.0	0.10	ug/l	80.0	ND	98	70-130	1	20	
Copper	84.8	2.0	0.50	ug/l	80.0	1.96	104	70-130	1	20	
Lead	76.6	1.0	0.20	ug/l	80.0	0.555	95	70-130	0.3	20	
Selenium	73.5	2.0	0.50	ug/l	80.0	ND	92	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

INORGANICS

	B 1/	Reporting	MDI	. TT */	Spike	Source	A/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDI	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C2667 Extracted: 03/21/11	<u>1_</u>										
Blank Analyzed: 03/21/2011 (11C2667-E	91 K1)										
Specific Conductance	ND	1.0	1.0	hos/cm @ 2							
Specific Conductance	ND	1.0	1.0	nos/cm @ 2							
LCS Analyzed: 03/21/2011 (11C2667-BS	51)										
Specific Conductance	1410	1.0	1.0	hos/cm @ 2	1410		100	90-110			
Duplicate Analyzed: 03/21/2011 (11C260	67-DUP1)				Sou	ırce: IUC	2135-01				
Specific Conductance	15200	2.0	2.0	hos/cm @ 2		15200			0.1	5	
Databa 11/02/15 Fasture et al. 02/21/11	1										
Batch: 11C2745 Extracted: 03/21/13	<u>. </u>										
Blank Analyzed: 03/21/2011 (11C2745-E	BLK1)										
Chloride	ND	0.50	0.30	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
LCS Analyzed: 03/21/2011 (11C2745-BS	51)										
Chloride	4.85	0.50	0.30	mg/l	5.00		97	90-110			
Nitrate-N	1.17	0.11	0.060	mg/l	1.13		104	90-110			
Nitrite-N	1.45	0.15	0.090	mg/l	1.52		95	90-110			
Matrix Spike Analyzed: 03/21/2011 (110	C2745-MS1)				Sou	ırce: IUC	2093-01				
Chloride	458	25	15	mg/l	50.0	418	80	80-120			MHA
Nitrate-N	12.6	5.5	3.0	mg/l	11.3	ND	112	80-120			
Nitrite-N	20.0	7.5	4.5	mg/l	15.2	ND	132	80-120			M1
Matrix Spike Analyzed: 03/21/2011 (110	C2745-MS2)				Sou	ırce: IUC	2198-02				
Chloride	153	5.0	3.0	mg/l	50.0	109	88	80-120			
Nitrate-N	31.2	1.1	0.60	mg/l	11.3	20.5	95	80-120			
Nitrite-N	16.0	1.5	0.90	mg/l	15.2	ND	105	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C2745 Extracted: 03/21/11											
	_										
Matrix Spike Dup Analyzed: 03/21/2011	(11C2745-M	SD1)			Sou	rce: IUC2	2093-01				
Chloride	477	25	15	mg/l	50.0	418	119	80-120	4	20	MHA
Nitrate-N	11.2	5.5	3.0	mg/l	11.3	ND	99	80-120	12	20	
Nitrite-N	19.3	7.5	4.5	mg/l	15.2	ND	127	80-120	4	20	M1
Batch: 11C2823 Extracted: 03/22/11											
	_										
Blank Analyzed: 03/22/2011 (11C2823-B	LK1)										
Total Dissolved Solids	ND	10	1.0	mg/l							
LCS Analyzed: 03/22/2011 (11C2823-BS)	1)										
Total Dissolved Solids	998	10	1.0	mg/l	1000		100	90-110			
				8							
Duplicate Analyzed: 03/22/2011 (11C282				_	Sou	rce: IUC2	2198-02				
Total Dissolved Solids	509	10	1.0	mg/l		513			0.8	10	
Batch: 11C2871 Extracted: 03/22/11	_										
Blank Analyzed: 03/22/2011 (11C2871-B	LK1)										
Perchlorate	ND	4.0	0.90	ug/l							
LCS Analyzed: 03/22/2011 (11C2871-BS	1)										
Perchlorate	26.0	4.0	0.90	ug/l	25.0		104	85-115			
Matrix Spiles Applymed, 02/22/2011 (11C	2071 MC1)				Con	rce: IUC2	2000 01				
Matrix Spike Analyzed: 03/22/2011 (11C	,	4.0	0.00	/1				90 120			
Perchlorate	26.1	4.0	0.90	ug/l	25.0	ND	104	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike Source				%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C2871 Extracted: 03/22/11											
	_										
Matrix Spike Dup Analyzed: 03/22/2011	(11C2871-MS	SD1)			Sou	rce: IUC	2009-01				
Perchlorate	26.3	4.0	0.90	ug/l	25.0	ND	105	80-120	0.6	20	
Batch: 11C2881 Extracted: 03/22/11											
Butter, 1102001 Extracted, 60/22/11	_										
Blank Analyzed: 03/22/2011 (11C2881-B	LK1)										
Turbidity	ND	1.0	0.040	NTU							
Duplicate Analyzed: 03/22/2011 (11C288	1-DUP1)				Sou	rce: IUC	2139-03				
Turbidity	29.9	1.0	0.040	NTU		29.9			0	20	
Duplicate Analyzed: 03/22/2011 (11C288	1-DUP2)				Sou	rce: IUC2	2220-12				
Turbidity	0.280	1.0	0.040	NTU		0.270			4	20	Ja
Batch: 11C2884 Extracted: 03/22/11											
Datell. 11C2007 Extracted. 05/22/11	<u> </u>										
Blank Analyzed: 03/22/2011 (11C2884-B	LK1)										
Sulfate	ND	0.50	0.30	mg/l							
LCS Analyzed: 03/22/2011 (11C2884-BS	1)										
Sulfate	9.96	0.50	0.30	mg/l	10.0		100	90-110			
				8		****					
Matrix Spike Analyzed: 03/22/2011 (11C	,	0.50				rce: IUC2		00.120			
Sulfate	13.8	0.50	0.30	mg/l	10.0	4.18	96	80-120			
Matrix Spike Analyzed: 03/22/2011 (11C	C2884-MS2) Source: IUC2320-01										
Sulfate	48.2	1.0	0.60	mg/l	10.0	38.8	95	80-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C2884 Extracted: 03/22/11	_										
Matrix Spike Dup Analyzed: 03/22/2011	(11C2884-MSI	D1)			Sou	rce: IUC2	2181-03				
Sulfate	14.3	0.50	0.30	mg/l	10.0	4.18	101	80-120	4	20	
Batch: 11C2910 Extracted: 03/22/11	-										
Blank Analyzed: 03/27/2011 (11C2910-Bl	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.50	mg/l							
LCS Analyzed: 03/27/2011 (11C2910-BS)	1)										
Biochemical Oxygen Demand	198	100	25	mg/l	198		100	85-115			
LCS Dup Analyzed: 03/27/2011 (11C2910	0-BSD1)										
Biochemical Oxygen Demand	206	100	25	mg/l	198		104	85-115	3	20	
Batch: 11C2931 Extracted: 03/22/11	-										
Blank Analyzed: 03/22/2011 (11C2931-Bl	LK1)										
Surfactants (MBAS)	ND	0.10	0.050	mg/l							
LCS Analyzed: 03/22/2011 (11C2931-BS)	1)										
Surfactants (MBAS)	0.250	0.10	0.050	mg/l	0.250		100	90-110			
Matrix Spike Analyzed: 03/22/2011 (11C				Sou	rce: IUC2	2139-03					
Surfactants (MBAS)	0.244	0.10	0.050	mg/l	0.250	ND	98	50-125			
Matrix Spike Dup Analyzed: 03/22/2011	(11C2931-MSI	D1)			Sou	rce: IUC2	2139-03				
Surfactants (MBAS)	0.262	0.10	0.050	mg/l	0.250	ND	105	50-125	7	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C2949 Extracted: 03/22/11	_										
Blank Analyzed: 03/22/2011 (11C2949-Bl	LK1)										
Total Suspended Solids	ND	10	1.0	mg/l							
LCS Analyzed: 03/22/2011 (11C2949-BS)	1)										
Total Suspended Solids	1000	10	1.0	mg/l	1000		100	85-115			
Duplicate Analyzed: 03/22/2011 (11C294)	9-DUP1)				Sou	rce: IUC	2184-03				
Total Suspended Solids	36.0	10	1.0	mg/l		37.0			3	10	
Batch: 11C2967 Extracted: 03/22/11	_										
Blank Analyzed: 03/22/2011 (11C2967-Bl	LK1)										
Ammonia-N (Distilled)	ND	0.500	0.500	mg/l							
LCS Analyzed: 03/22/2011 (11C2967-BS)	1)										
Ammonia-N (Distilled)	9.80	0.500	0.500	mg/l	10.0		98	80-115			
Matrix Spike Analyzed: 03/22/2011 (11C	2967-MS1)				Sou	rce: IUC	2139-03				
Ammonia-N (Distilled)	9.80	0.500	0.500	mg/l	10.0	ND	98	70-120			
Matrix Spike Dup Analyzed: 03/22/2011	(11C2967-M	SD1)			Sou	rce: IUC	2139-03				
Ammonia-N (Distilled)	9.80	0.500	0.500	mg/l	10.0	ND	98	70-120	0	15	
Batch: 11C3437 Extracted: 03/25/11	-										
Blank Analyzed: 03/25/2011 (11C3437-Bl	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11C3437 Extracted: 03/25/11	<u>-</u>										
LCS Analyzed: 03/25/2011 (11C3437-BS)	1)										
Total Cyanide	194	5.0	2.2	ug/l	196		99	90-110			
Matrix Spike Analyzed: 03/25/2011 (11C	3437-MS1)				Sou	rce: IUC	2139-03				
Total Cyanide	199	5.0	2.2	ug/l	196	ND	101	70-115			
Matrix Spike Dup Analyzed: 03/25/2011	D1)			Sou	rce: IUC	2139-03					
Total Cyanide	201	5.0	2.2	ug/l	196	ND	102	70-115	0.9	15	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8675 Extracted: 03/29/11											
LCS Analyzed: 03/29/2011 (S103143-02)					Sou	rce:					
Uranium, Total	55.3	1	N/A	pCi/L	56.5		98	80-120			
Blank Analyzed: 03/29/2011 (S103143-03)				Sou	rce:					
Uranium, Total	ND	1	N/A	pCi/L				-			U
Duplicate Analyzed: 03/29/2011 (S103143	3-04)				Sou	rce:					
Uranium, Total	0.292	1	N/A	pCi/L				-	9		Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8675 Extracted: 03/31/11											
LCS Analyzed: 03/31/2011 (S103143-02)					Sou	rce:					
Gross Alpha	122	3	N/A	pCi/L	101		121	70-130			
Gross Beta	83.8	4	N/A	pCi/L	87.1		96	70-130			
Blank Analyzed: 03/31/2011 (S103143-03)				Sou	rce:					
Gross Alpha	0.261	3	N/A	pCi/L				-			U
Gross Beta	-0.333	4	N/A	pCi/L				-			U
Duplicate Analyzed: 03/31/2011 (S103143	3-04)				Sou	rce:					
Gross Alpha	1.94	3	N/A	pCi/L				-	15		Jb
Gross Beta	6.74	4	N/A	pCi/L				-	8		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

901.1

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8675 Extracted: 03/24/11											
LCS Analyzed: 03/31/2011 (S103143-02)					Sou	irce:					
Cobalt-60	123	10	N/A	pCi/L	124		99	80-120			
Cesium-137	118	20	N/A	pCi/L	110		107	80-120			
Blank Analyzed: 03/31/2011 (S103143-03	3)				Sou	irce:					
Cesium-137	ND	20	N/A	pCi/L				-			U
Potassium-40	ND	25	N/A	pCi/L				-			U
Duplicate Analyzed: 03/31/2011 (S10314	3-04)				Sou	irce:					
Cesium-134	ND	20	N/A	pCi/L				-	0		U
Cesium-137	ND	20	N/A	pCi/L				-	0		U
Potassium-40	ND	25	N/A	pCi/L				-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

903.1

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8675 Extracted: 04/05/11	=										
LCS Analyzed: 04/05/2011 (S103143-	-02)				Sou	rce:					
Radium-226	49	1	N/A	pCi/L	55.7		88	80-120			
Blank Analyzed: 04/05/2011 (S10314	3-03)				Sou	rce:					
Radium-226	0.031	1	N/A	pCi/L				-			U
Duplicate Analyzed: 04/05/2011 (S10	03143-04)				Sou	rce:					
Radium-226	0.283	1	N/A	pCi/L				-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8675 Extracted: 04/07/11											
LCS Analyzed: 04/07/2011 (S103143-02)					Sou	rce:					
Radium-228	3.92	1	N/A	pCi/L	5.01		78	60-140			
Blank Analyzed: 04/07/2011 (S103143-03	3)				Sou	rce:					
Radium-228	-0.153	1	N/A	pCi/L				-			U
Duplicate Analyzed: 04/07/2011 (S10314)	3-04)				Sou	rce:					
Radium-228	0.235	1	N/A	pCi/L				-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

Analyte Batch: 8675 Extracted: 04/01/11	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 04/01/2011 (S103143-02) Strontium-90	19.7	2	N/A	pCi/L	Sou : 17.4	rce:	113	80-120			
Blank Analyzed: 04/01/2011 (S103143-03 Strontium-90	0.045	2	N/A	pCi/L	Sou	rce:		-			U
Duplicate Analyzed: 04/01/2011 (S103143 Strontium-90	0.078	2	N/A	pCi/L	Sou	rce:		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8675 Extracted: 03/30/11											
LCS Analyzed: 03/30/2011 (S103143-02)					Sour	rce:					
Tritium	2150	500	N/A	pCi/L	2350		91	80-120			
Blank Analyzed: 03/30/2011 (S103143-03)				Sou	rce:					
Tritium	-30.1	500	N/A	pCi/L				-			U
Duplicate Analyzed: 03/30/2011 (S103143	-04)				Sou	rce:					
Tritium	-10.9	500	N/A	pCi/L				-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

Sampled: 03/20/11

RPD

Data

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139 Received: 03/20/11

Source

METHOD BLANK/QC DATA

EPA-5 1613Bx

Spike

Reporting

		Keporung	5		Spike	Source		OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1083190 Extracted: 03/2	4/11										
Blank Analyzed: 03/25/2011 (G1C2-	40000190B)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	ND	0.00005	0.0000013	ug/L				-			
1,2,3,4,6,7,8-HpCDF	ND	0.00005	0.00000066	ug/L				-			
1,2,3,4,7,8,9-HpCDF	ND	0.00005	0.00000096	ug/L				-			
1,2,3,4,7,8-HxCDD	ND	0.00005	0.00000068	ug/L				-			
1,2,3,4,7,8-HxCDF	ND	0.00005	0.00000062	ug/L				-			
1,2,3,6,7,8-HxCDD	ND	0.00005	0.00000065	ug/L				-			
1,2,3,6,7,8-HxCDF	ND	0.00005	0.00000033	ug/L				-			
1,2,3,7,8,9-HxCDD	ND	0.00005	0.00000058	ug/L				-			
1,2,3,7,8,9-HxCDF	ND	0.00005	0.00000043	ug/L				-			
1,2,3,7,8-PeCDD	ND	0.00005	0.00000091	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	0.00000087	ug/L				-			
2,3,4,6,7,8-HxCDF	ND	0.00005	0.00000032	ug/L				-			
2,3,4,7,8-PeCDF	ND	0.00005	0.0000009	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	0.00000052	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	0.0000012	ug/L				-			
OCDD	2.2e-006	0.0001	0.0000019	ug/L				-			J
OCDF	ND	0.0001	0.0000021	ug/L				-			
Total HpCDD	ND	0.00005	0.0000013	ug/L				-			
Total HpCDF	ND	0.00005	0.00000066	ug/L				-			
Total HxCDD	ND	0.00005	0.00000058	ug/L							
Total HxCDF	ND	0.00005	0.00000032	ug/L				-			
Total PeCDD	ND	0.00005	0.00000091	ug/L				-			
Total PeCDF	ND	0.00005	0.00000087	_				-			
Total TCDD	ND	0.00001	0.00000052	ug/L				-			
Total TCDF	ND	0.00001	0.0000012	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0012			ug/L	0.002		61	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0011			ug/L	0.002		57	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.001			ug/L	0.002		52	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0011			ug/L	0.002		55	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0011			ug/L	0.002		55	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0013			ug/L	0.002		64	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0013			ug/L	0.002		65	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0012			ug/L	0.002		61	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0013			ug/L	0.002		65	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0011			ug/L	0.002		53	24-185			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

Sampled: 03/20/11

RPD

Data

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139 Received: 03/20/11

Source

Spike

METHOD BLANK/QC DATA

EPA-5 1613Bx

Reporting

		Keporung	5		Spike	Source		OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1083190 Extracted: 03/24	/11_										
Blank Analyzed: 03/25/2011 (G1C240	0000190B)				Sou	rce:					
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0013			ug/L	0.002		65	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0011			ug/L	0.002		56	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0011			ug/L	0.002		53	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0012			ug/L	0.002		58	24-169			
Surrogate: 13C-OCDD	0.0024			ug/L	0.004		61	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00066			ug/L	0.0008		82	35-197			
LCS Analyzed: 03/25/2011 (G1C2400	000190C)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.00107	0.00005	0.0000086	ug/L	0.001		107	70-140			
1,2,3,4,6,7,8-HpCDF	0.00109	0.00005	0.000018	ug/L	0.001		109	82-122			
1,2,3,4,7,8,9-HpCDF	0.00114	0.00005	0.000027	ug/L	0.001		114	78-138			
1,2,3,4,7,8-HxCDD	0.00109	0.00005	0.00000078	ug/L	0.001		109	70-164			
1,2,3,4,7,8-HxCDF	0.00107	0.00005	0.0000053	ug/L	0.001		107	72-134			
1,2,3,6,7,8-HxCDD	0.0011	0.00005	0.00000071	ug/L	0.001		110	76-134			
1,2,3,6,7,8-HxCDF	0.0011	0.00005	0.0000048	ug/L	0.001		110	84-130			
1,2,3,7,8,9-HxCDD	0.00121	0.00005	0.00000065	ug/L	0.001		121	64-162			
1,2,3,7,8,9-HxCDF	0.00111	0.00005	0.0000064	ug/L	0.001		111	78-130			
1,2,3,7,8-PeCDD	0.000988	0.00005	0.0000025	ug/L	0.001		99	70-142			
1,2,3,7,8-PeCDF	0.00112	0.00005	0.0000034	ug/L	0.001		112	80-134			
2,3,4,6,7,8-HxCDF	0.0011	0.00005	0.0000047	ug/L	0.001		110	70-156			
2,3,4,7,8-PeCDF	0.00109	0.00005	0.0000036	ug/L	0.001		109	68-160			
2,3,7,8-TCDD	0.000219	0.00001	0.0000014	ug/L	0.0002		110	67-158			
2,3,7,8-TCDF	0.000263	0.00001	0.0000015	ug/L	0.0002		132	75-158			
OCDD	0.00207	0.0001	0.000014	ug/L	0.002		103	78-144			Ва
OCDF	0.00204	0.0001	0.000011	ug/L	0.002		102	63-170			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.000957			ug/L	0.002		48	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.000967			ug/L	0.002		48	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.000872			ug/L	0.002		44	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.000944			ug/L	0.002		47	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00102			ug/L	0.002		51	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00111			ug/L	0.002		56	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00109			ug/L	0.002		55	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00104			ug/L	0.002		52	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00111			ug/L	0.002		56	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00095			ug/L	0.002		48	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0011			ug/L	0.002		55	22-176			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11

Received: 03/20/11

METHOD BLANK/QC DATA

EPA-5 1613Bx

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1083190 Extracted: 03/24/11	<u>L</u>										
LCS Analyzed: 03/25/2011 (G1C240000	190C)				Sou	rce:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.000997			ug/L	0.002		50	13-328			
Surrogate: 13C-2,3,7,8-TCDD	0.000983			ug/L	0.002		49	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00103			ug/L	0.002		51	22-152			
Surrogate: 13C-OCDD	0.00197			ug/L	0.004		49	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000667			ug/L	0.0008		83	31-191			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 03/20/11

Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IUC2139-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.57	4.7	15
IUC2139-01	624-(601list)	1,1-Dichloroethene	ug/l	0	2.0	6
IUC2139-01	624-(601list)	1,2-Dichloroethane	ug/l	0	0.50	0.5
IUC2139-01	624-(601list)	Trichloroethene	ug/l	0	2.0	5
IUC2139-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.3

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IUC2139-02	624-(601list)	1,1-Dichloroethene	ug/l	0	2.0	6
IUC2139-02	624-(601list)	1,2-Dichloroethane	ug/l	0	0.50	0.5
IUC2139-02	624-(601list)	Trichloroethene	ug/l	0	2.0	5

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IUC2139-03	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0.00035	0.0094	0.03
IUC2139-03	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.66	13
IUC2139-03	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	4.72	18
IUC2139-03	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.30	4.72	4
IUC2139-03	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	4.72	16
IUC2139-03	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	4.72	16.5
IUC2139-03	Ammonia-N, Titr 4500NH3-C (w/c	di:Ammonia-N (Distilled)	mg/l	0	0.500	10.1
IUC2139-03	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	2.84	2.0	30
IUC2139-03	Cadmium-200.8	Cadmium	ug/l	0.055	1.0	3.1
IUC2139-03	Chloride - 300.0	Chloride	mg/l	9.72	0.50	150
IUC2139-03	Copper-200.8	Copper	ug/l	2.71	2.0	14
IUC2139-03	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	1.81	5.0	8.5
IUC2139-03	Iron-200.7	Iron	mg/l	1.14	0.040	0.3
IUC2139-03	Lead-200.8	Lead	ug/l	0.72	1.0	5.2
IUC2139-03	MBAS - SM5540C	Surfactants (MBAS)	mg/l	0.045	0.10	0.5
IUC2139-03	Mercury - 245.1	Mercury	ug/l	0	0.20	0.1
IUC2139-03	Nitrate-N, 300.0	Nitrate-N	mg/l	0.58	0.11	8

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasader 618 Michillind Arcadia, CA 9 Attention: Bro	a Avenue, Suite 200 1007	Project ID: Report Number:	Routine Outfall 018 2010 Routine Outfall 018 IUC2139		1	led: 03/20/11 red: 03/20/11	
IUC2139-03	Nitrite-N, 300.0	Nitrite-N		mg/l	0	0.15	1
IUC2139-03	Nitrogen, NO3+NO2 -N EPA 300.0	Nitrate/Nitrite-N		mg/l	0.58	0.26	8
IUC2139-03	Perchlorate 314.0 - Default	Perchlorate		ug/l	0	4.0	6
IUC2139-03	Selenium-200.8	Selenium		ug/l	0.093	2.0	5
IUC2139-03	Sulfate-300.0	Sulfate		mg/l	40	5.0	300
IUC2139-03	TDS - SM2540C	Total Dissolved S	Solids	mg/l	191	10	950
IUC2139-03	TSS - SM2540D	Total Suspended	Solids	mg/l	17	10	45

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 03/20/11

Report Number: IUC2139 Received: 03/20/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank	
--	--

- Ba Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- J Estimated result. Result is less than the reporting limit.
- Ja Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **Q** Estimated maximum possible concentration (EMPC).
- U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.
- **ND** Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018 2010

Routine Outfall 018

Report Number: IUC2139

Sampled: 03/20/11 Received: 03/20/11

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 1664A	Water	X	X
EPA 200.7-Diss	Water	X	N/A
EPA 200.7	Water	X	N/A
EPA 200.8-Diss	Water	X	N/A
EPA 200.8	Water	X	N/A
EPA 245.1-Diss	Water	X	N/A
EPA 245.1	Water	X	N/A
EPA 300.0	Water	X	N/A
EPA 314.0	Water	X	N/A
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2130B	Water	X	X
SM2510B	Water	X	N/A
SM2540C	Water	X	N/A
SM2540F	Water	X	X
SM4500CN-E	Water	X	N/A
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5540-C	Water	X	N/A

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018 2010

Routine Outfall 018 Sampled: 03/20/11

Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly Eberline Services - SUB

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: IUC2139-03

Analysis Performed: Gross Alpha

Samples: IUC2139-03

Analysis Performed: Gross Beta

Samples: IUC2139-03

Analysis Performed: Level 4 Data Package

Samples: IUC2139-03

Analysis Performed: Radium, Combined

Samples: IUC2139-03

Analysis Performed: Strontium 90

Samples: IUC2139-03

Analysis Performed: Tritium

Samples: IUC2139-03

Analysis Performed: Uranium, Combined

Samples: IUC2139-03

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 018 Sampled: 03/20/11 Arcadia, CA 91007 Report Number: IUC2139 Received: 03/20/11

Attention: Bronwyn Kelly

TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8675 Samples: IUC2139-03

Method Performed: 900 Samples: IUC2139-03

Method Performed: 901.1 Samples: IUC2139-03

Method Performed: 903.1 Samples: IUC2139-03

Method Performed: 904 Samples: IUC2139-03

Method Performed: 905 Samples: IUC2139-03

Method Performed: 906 Samples: IUC2139-03

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: IUC2139-03

TestAmerica Irvine

MWH-Arcadia
Test America Contact: Debby Wilson Project Manager: Bronwyn Kelly
Sample Sample Sample Description Sampling Date/Time Preservative Bottle # To Sampling Date/Time Preservative Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time
Sample Sample Description Matrix Type Cont. Type Cont. Date/Time Preservative Bottle # Type Sampling Date/Time Sampling Date/Time Preservative Bottle # Type Sampling Date/Time Date/Time
Sample Sample Description Matrix Type Cont. Type Cont. Date/Time Preservative Bottle # Type Sampling Date/Time Sampling Date/Time Preservative Bottle # Type Sampling Date/Time Date/Time
Sample Description Sample Matrix Type Cont. Type Cont. Sampling Date/Time Preservative Bottle # Comments
Outfall 018 W VOAs 5 3-3 (-25) / 1.0 (-10, 1E) X IA, 1B, 1C, 1D, 1E X ID, 1E
Outfall 018 W 1L Amber 2 HCl 2A, 2B X Image: Control of the
Outfall 018 W 1L Poly 1 None 3 X Image: Control of the cont
Outfall 018 W 500 mL Poly 2 None 4A, 4B X
Trip Blanks W VOAs 3 3 3 5 5 5 5 1 HCl 5A, 5B, 5C X
These Samples are the Grab Portion of Outfall 018 for this storm event. Composite samples will follow and are to be added to this work order. Relinquished By Date/Time: 3 - 201-201/ Received By Date/Time: 1 Turn-around time: (Check)
These Samples are the Grab Portion of Outfall 018 for this storm event. Composite samples will follow and are to be added to this work order. Relinquished By Date/Time: 3 - 20 - 20 1/ Received By Date/Time: Turn-around time: (Check) 24 Hour:
Received By Date/Time: Date/Time: Sample Integrity: (Check)
Inlact: On Ice:
Data Requirements: (Check) No Level IV: All Level IV: NPDES Level IV:

Project Manager: Bronwyn Kelly Phone Number: (626) 568-6691												ANA	ALYSIS	REQUIF	RED								
Cutfall 018									-i									5)					
Outfall 018 W 1L Poly 1 13.2 Col. HNO, BA X X Outfall 018 Dup W 1L Poly 1 HNO, BB X X IND Outfall 018 W 1L Amber 2 None 7A, 7B X X IND <	618 Michillinda	a Ave, S	uite 200		Routin	e Outfa	ال 11 018 ال		ŭ									9 62				1	
Outfall 018 W 1L Poly 1 13.2 Col. HNO, BA X X Outfall 018 Dup W 1L Poly 1 HNO, BB X X IND Outfall 018 W 1L Amber 2 None 7A, 7B X X IND <	Arcadia, CA 9	1007			COMP	DSITE	- 17161	7	£									ွပ္ပို			,		
Outfall 018 W 1L Poly 1 13.2 Col. HNO, BA X X Outfall 018 Dup W 1L Poly 1 HNO, BB X X IND Outfall 018 W 1L Amber 2 None 7A, 7B X X IND <		.							Pb,				ate					3is(2 (SV(
Cutfall 018	Test America	Contact:	Debby Wils	son					j,				hlor					GP.					
Cutfall 018									s: (s)			ercl					Jen J. P.					
Cutfall 018									etal	ner	_		<u>-</u>					otoli OM/					Comments
Cutfall 018	Project Manac	er Broi	nwyn Kelly		Phone	Number	r·		Σ	nge	s C)	S)	√-Z(- 1	SS	2)		itr N					
Outfall 018 W 1L Poly 1 13.2 Col. HNO, BA X X Outfall 018 Dup W 1L Poly 1 HNO, BB X X IND Outfall 018 W 1L Amber 2 None 7A, 7B X X IND <	1 -		-		1				able	8	jë j	IBA	Š	ie-	Ĭ,	50.	8	alate Di					
Outfall 018 W 1L Poly 1 13.2 Col. HNO, BA X X Outfall 018 Dup W 1L Poly 1 HNO, BB X X IND Outfall 018 W 1L Amber 2 None 7A, 7B X X IND <	Sampler: P() K N AG P Fax Number: Sampler: Sampler																						
Cutfall 018	Sampler: ト(トトンドル みしか Fax Number: 3 g g y g g g g g g g g g g g g g g g g																						
Cutfall 018	(020) 508-0010																						
Cutfall 018	Description Matrix Type Cont. Date/Time Preservative Bottle # 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																						
Cutfall 018 Dup W	0.45.11.04.0	14.	4. 5.		2-7	204	11110																
Outfall 018 W 1L Amber 2 None 7A, 7B X Outfall 018 W 1L Poly 1 None 8 X Outfall 018 W 500 mL Poly 2 None 9A, 9B X Outfall 018 W 500 mL Poly 2 None 10A, 10B X Outfall 018 W 500 mL Poly 1 None 11 X Outfall 018 W 500 mL Poly 1 None 12A, 12B X Outfall 018 W 500 mL Poly 1 None 14A, 14B X Outfall 018 W 500 mL Poly 1 None 15A, 15B X Outfall 018 W 1L Amber 2 None 14A, 14B X Outfall 018 W 1L Amber 2 None 15A, 15B X Outfall 018 W 1L Amber 2 None	Outfall 018	W	1L Poly	1	13:	40	HNO ₃	6A	Х														
Outfall 018	Outfall 018 Dup	w	1L Poly	1			HNO ₃	6B	Х										:				
Outfall 018	Outfail 018	w	1L Amber	2			None	7A, 7B		Х													
Outfall 018 W 500 mL Poly 2 None 10A, 10B X X Interview X Interview Interview <td>Outfall 018</td> <td>w</td> <td>1L Poly</td> <td>1</td> <td></td> <td>1</td> <td>None</td> <td>8</td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Outfall 018	w	1L Poly	1		1	None	8			Х			:									
Outfail 018 W 500 mL Poly 1 None 11 X X D U W 500 mL Poly 2 None 12A, 12B X X D U W 500 mL Poly 1 Pl ₂ SO ₄ 13 X X D U W 500 mL Poly 1 Pl ₂ SO ₄ 14 X X D U W 500 mL Poly 1 Pl ₂ SO ₄ 14 X X D U W 500 mL Poly 1 Pl ₂ SO ₄ 14 X X D U W 500 mL Poly 1 Pl ₂ SO ₄ 14 X X D U W 500 mL Poly 1 Pl ₂ SO ₄ 14 X X D U W 500 mL Poly 1 Pl ₂ SO ₄ 14 X X D U W 500 mL Poly 1 Pl ₂ SO ₄ 14 X X D U W 500 mL Poly 1 Pl ₂ SO ₄ 14	Outfall 018	w	500 mL Poly	2			None	9A, 9B				Х											
Outfall 018 W 500 mL Poly 2 None 12A, 12B X X Ditable 1018 W 500 mL Poly 1 H ₂ SO ₄ 13 X X Ditable 1018 W 1L Amber 2 None 14A, 14B X X Ditable 1018 W 1L Amber 2 None 15A, 15B X X Ditable 1018 W 1L Amber 2 3-3-3-3-4 None 15A, 15B X X Ditable 1018 for this storm event. These must be added to the same work order for COC Page 1 of 3 for Outfall 018 for the same event. Relinquished By Date/Time: 3-2/-201/ Received By Date/Time: 10 Day: Normal:	Outfall 018	w	500 mL Poly	2			None	10A, 10B					Х										
Outfall 018 W 500 mL Poly 1	Outfall 018	w	500 mL Poly	1			None	11						х									
Outfall 018 W 1L Amber 2 None 14A, 14B Outfall 018 W 1L Amber 2 3-3-3-3-1 None 15A, 15B COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 018 for this storm event. These must be added to the same work order for COC Page 1 of 3 for Outfall 018 for the same event. Relinquished By Date/Time: 3-2/-30// Received By Date/Time: Turn-around time: (Check) 24 Hour: 72 Hour: 10 Day: Normal: Normal: Sample Integrity: (Check) 3.4 Relinquished By Date/Time: Sample Integrity: (Check) 3.4	Outfail 018	w	500 mL Poly	2			None	12A, 12B							Х								011
COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 018 for this storm event. These must be added to the same work order for COC Page 1 of 3 for Outfall 018 for the same event. Relinquished By Date/Time: Received By Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Sample Integrity: (Check) AB Hour: On Ice: Received By Date/Time:	Outfall 018	w	500 mL Poly	1			H₂SO₄	13								Х							0,22
COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 018 for this storm event. These must be added to the same work order for COC Page 1 of 3 for Outfall 018 for the same event. Relinquished By Date/Time: Received By Date/Time:	Outfall 018	w	1L Amber	2	1		None	14A, 14B									Х						312
These must be added to the same work order for COC Page 1 of 3 for Outfall 018 for the same event. Relinquished By Date/Time: Received By Date/Time:	Outfall 018	w	1L Amber	2	3-3	105.	None	15A, 15B										Х					
These must be added to the same work order for COC Page 1 of 3 for Outfall 018 for the same event. Relinquished By Date/Time: Received By Date/Time:																							
These must be added to the same work order for COC Page 1 of 3 for Outfall 018 for the same event. Relinquished By Date/Time: Received By Date/Time:																							
Received By Date/Time: Date/Time: Date/Time: Date/Time: Turn-around time: (Check) 24 Hour:																							
Relinquished By Date/Time: Sample Integrity: (Check))					Thes	se must	be added			rk or	der fo	or CO	C Pag	ge 1 c	of 3 fo	or Out				event.			
Relinquished By Date/Time: Sample Integrity: (Check))	Relinquished By	,	C	ate/Ti	me: 3.	-21-	2011	Received B	/			Da	ate/Tim	e:									
Relinquished By Date/Time: Sample Integrity: (Check))	Was 18							Sym	. /	٠ ـ ـ ـ ١	۸		J	1.71	<i>-</i> \ \ \		24 Hou	ır	72 Hour: _	<u> </u>	10 Day: _		
Relinquished By Date/Time: Sample Integrity: (Check))	100	L				191:3	<i>30</i>	~ /\r	'/~ ·	Σ	\lozenge_{ϵ_A}	dr		lβ	:.30		48 Hou	ır:	.5 Day:	<u>×</u>	Normal:		
Relinquished By Date/Time: Received By Date/Time:	Relinquished By			ate/Ti	me: ე.	-21-1	· · ·	Received B	/	/	$\overline{}$	Da	ate/Tim										
Relinquished By Date/Time:	10.	\			_	•				/	- \	- \					Sample	Integrity:	(Check)).	4			
Relinquished By Date/Time: Dete/Time:	2 Xan	- 41v	Jena			121:1	<		//	 		1					Intact:		On Ice:				
	Relinquished By	77)	ate/Ti	me:	<u> </u>	-	Received B	y (\mathcal{I}^{-}	Y												
Data Requirements: (Check) No Level IV: All Level IV: NPDES Level IV:								Dao	kon	J.	9	eg	3/2	4/11	20	:15	Data R	equiremer	nts: (Check) All Level IV		NPDES Lev	vel IV:	·

										<u> </u>	-											
Client Name/A				Projec						T				ANA	ALYSI	S RE	QUIR	ED				
MWH-Arcad	dia			Boein	g-SSFL N	NPDES		e)														
618 Michillinda	a Ave, Si	uite 200		Routi	ne Outfa	11 018 - HIG 1		, S	ر اقر بح مج fal	- 1												
Arcadia, CA 9				COM	POSITE	~ 7710 l	T	ပြ	0.0 To 33.1 .0),													
								Hg,	06) (0.50) 806	<i> </i>										ĺ		
Test America	Contact:	Debby Wils	son	ļ				۾ ا	eta 905 0 or n (9													1
				Ì				l 'n	s B 00 (9 03.0 1) iur	П		Ì							·	1	Į	ļ
								Ō	708. 9. (9. %) 101.					}								C
				Combined Patch Complete Radium Complete Ra																	Comments	
Project Manag	ger: Bror	nwyn Kelly		Phone	Numbe	r:		₩	0.0 0.0 0.0 0.0 0.0													
_				(626)	568-669°	1		<u>8</u>	96 ag (96)	₺												
Sampler: R	2/ J	anger	-	Fax N	umber:			<u>ء</u> ق	1-3) 1-3) 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3	1									1	}		
/ / /	-,- ,- ,	,,		(626)	568-651	5		js Z	A - 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1፮	g									İ		1
Sample	Sample	Container	# of	Sa	mpling			<u> </u>	Eight and Signature (Control of the Control of the	Chronic Toxicity	Cyanide											
Description	Matrix	Туре	Cont.		e/Time	Preservative	Bottle #	Z Z	Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)	₽	े									1		
Outfall 018	w	1L Poly	1	13	10301 140	None	16	Х													ļ	Filter w/in 24hrs of receipt at lab
Outfall 018	l w	2.5 Gal Cube	1]	1	None	17A		x													Unfiltered and unpreserved
		500 mL Amber	1			None	17B		,													analysis
Outfall 018	-w_	1 Gal Cube		 	<u> </u>	None	18	ļ		+	-				-					ļ	├	Only test if first or second rain events of the year
Outfall 018	W	500 mL Poly	1	22-7	0 2011	NaOH	19	†	<u> </u>		x							 		<u> </u>		
Outlan 010	- ''	JOO IIIL 1 OIY	<u> </u>	1/3	/3. 70 NaOH 19					ļ	<u> </u>			-				_	 	 	-	
																				<u></u>		
														ļ		ļ				<u> </u>	 	
				+												 				 	 	
				-														 			\vdash	
				┼				 		ļ	<u> </u>							 	_	<u> </u>	 	
	 		_	 										<u> </u>				\vdash				
				(COC Pag	e 2 of 3 and	d Page 3	of 3 are	the composite	e san	ples	for O	utfall	0181	or th	s sto	rm ev	vent.				
				Th	ese mus	t be added	to the sa	me woi	k order for CO	C Pa	ge 1 c	of 3 fo	r Out	tfall 0	18 fo							
Relinquished By	1	С	ate/Ti	me: 3	-2/-	2011	Received E	Ву	Da	ate/Tim	e: へ.	21-	- 11	-		Turn-ai	round tir	me: (Ch	eck)			
Mui 1	Sun	-				,	$ \alpha' $, (0	J- (-	• • •			24 Hou	ır:	72 Hou	ır:	10 Day	y:	
	· ·				195.3	0	1 5 VG	$\lambda \cap \lambda$	LYSENA			७	:30)		24 Hour: 72 Hour: 10 Day: 48 Hour: 5 Day:						
Relinquished By			ate/Tii	me: o	<u> </u>		Received E	By Date/Time:														
				3	ナハハ		Received By Date/Time: 3.21-11 Received By Date/Time:									Sample Integrity: (Check) 1. 4 intact: On Ice:						
12 train	د ، نلا .	روسد			22:19	\										intact:	<u> </u>	On Ice	: <u> </u>	✓ \		
Relinquished By))	C	ate/Tir	me:			Received E	Ву	Da	ate/Tim	e:					1					,	
																		nents: (0				
																No Lev	el IV: _	_ All Lev	el IV: _	NPDE	S Level	IV: <u>}</u>

EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

April 12, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine IUC2139

Eberline Analytical Report S103137-8675

Sample Delivery Group 8675

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for one water sample received under Test America Job No. IUC2139. The sample was received on March 23, 2011.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

N. Joseph Verville

Client Services Manager

NJV/ljb

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

April 12, 2011

1.0 General Comments

Sample delivery group 8675 consists of the analytical results and supporting documentation for one water sample. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

2.0 Quality Control

Sample IUC2139-03 was analyzed in a common prep batch with other outfall samples from this project. The QC samples from that common prep batch were assigned to SDG 8681 and are also reported herein. Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2σ error (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

Case Narrative, page 2

April 12, 2011

4.0 Analysis Notes

- **4.1** Gross Alpha/Gross Beta Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4 Radium-226 Analysis** –No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.5 Radium-228 Analysis -** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- **Total Uranium Analysis -** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.7 Gamma Spectroscopy** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

which	4/13/11
N. Joseph Verville	Date
Client Services Manager	

E B E R L I N E A N A L Y T I C A L SDG 8675

SDG <u>8675</u>
Contact <u>N. Joseph Verville</u>

Client <u>Test America, Inc.</u> Contract <u>IUC2139</u>

SUMMARY DATA SECTION

TABLE OF	C O	N T	E N	T S	
About this section	٠	•	•	•	1
Sample Summaries	•	•			3
Prep Batch Summary	•		•		5
Work Summary	•	•		•	6
Method Blanks		•	•	•	8
Lab Control Samples	•	•	•	•	9
Duplicates	•	•	•	•	10
Data Sheets		•	•	•	11
Method Summaries	•	•	•	•	12
Report Guides	•	•	•	•	20
End of Section	•	•	•	•	34

UD

Prepared by

Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06Report date 04/12/11

SDG 8675

SDG <u>8675</u>

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1
SUMMARY DATA SECTION

Page 1

SDG 8675

SDG 8675

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUC2139</u>

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES

Page 2
SUMMARY DATA SECTION

Page 2

SDG 8675

SDG 8675
Contact N. Joseph Verville

LAB SAMPLE SUMMARY

Client Test America, Inc.
Contract IUC2139

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF	COLLECTED
S103137-01	IUC2139-03	Boeing - SSFL	WATER			IUC2139	03/20/11 13:40
S103143-02	Lab Control Sample		WATER				
S103143-03	Method Blank		WATER				
S103143-04	Duplicate (S103143-01)	Boeing - SSFL	WATER				03/20/11 21:35

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LS

 Version
 3.06

 Report date
 04/12/11

SDG 8675

SDG 8675
Contact N. Joseph Verville

QC SUMMARY

Client Test America, Inc.
Contract IUC2139

QC BATCH	CHAIN OF CUSTODY	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8675	IUC2139	IUC2139-03	WATER		18.0 L		03/23/11	3	S103137-01	8675-001
8681		Method Blank Lab Control Sample Duplicate (S103143-01)	WATER WATER WATER		10.0 L		03/23/11	3	S103143-03 S103143-02 S103143-04	8681-003 8681-002 8681-004

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-QS

Version 3.06

Report date 04/12/11

SDG 8675

SDG <u>8675</u>
Contact <u>N. Joseph Verville</u>

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

- PLANCHETS ANALYZED -PREPARATION ERROR QUALI-2σ % CLIENT MORE TEST MATRIX METHOD BATCH RE BLANK LCS DUP/ORIG MS/ORIG FIERS Beta Counting WATER Radium-228 in Water 7281-071 10.4 1 1. 1/0/1 AC WATER Strontium-90 in Water 7281-071 10.4 1 1 1/0/1 SR Gas Proportional Counting WATER Gross Alpha in Water 7281-071 20.6 1/0/1 80A 1 1 7281-071 1 1/0/1 80B WATER Gross Beta in Water 11.0 1 1 Gamma Spectroscopy WATER Gamma Emitters in Water 7281-071 7.0 1 1/0/1 1 GAM 1 Kinetic Phosphorimetry, ug WATER Uranium, Total 7281-071 1 1 1 1/0/1 Liquid Scintillation Counting Tritium in Water 10.0 1 1/0/1 WATER 7281-071 1 1 Radon Counting WATER Radium-226 in Water 7281-071 1 1/0/1 RA

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample. In counts like 'a/b/c', 'a' = QC planchets, 'b' = Originals in this SDG, 'c' = Originals in other SDGs.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-PBS

 Version 3.06

 Report date 04/12/11

SDG 8675

SDG 8675
Contact N. Joseph Verville

LAB WORK SUMMARY

Client <u>Test America</u>, <u>Inc</u>.

Contract <u>IUC2139</u>

LAB SAMPLE COLLECTED	CLIENT SAMPLE ID	MATRIX			SUF-				
RECEIVED	CUSTODY SAS no		PLANCHET	TEST	FIX	ANALYZED	REVIEWED	вч	METHOD
S103137-01	IUC2139-03		8675-001	80A/80		03/31/11	04/01/11	MWT	Gross Alpha in Water
03/20/11	Boeing - SSFL	WATER	8675-001	80B/80		03/31/11	04/01/11	MWT	Gross Beta in Water
03/23/11	IUC2139		8675-001	AC		04/07/11	04/11/11	BW	Radium-228 in Water
			8675-001	GAM		03/30/11	04/04/11	MWT	Gamma Emitters in Water
			8675-001	Н		03/30/11	04/04/11	BW	Tritium in Water
			8675-001	RA		04/05/11	04/06/11	BW	Radium-226 in Water
			8675-001	SR		04/01/11	04/08/11	KWP	Strontium-90 in Water
			8675-001	U_T		03/29/11	03/29/11	BW	Uranium, Total
S103143-02	Lab Control Sample		8681-002	80A/80		03/31/11	04/01/11	MWT	Gross Alpha in Water
		WATER	8681-002	80B/80		03/31/11	04/01/11	MWT	Gross Beta in Water
			8681-002	AC		04/07/11	04/08/11	MWT	Radium-228 in Water
			8681-002	GAM		03/31/11	04/04/11	MWT	Gamma Emitters in Water
			8681-002	Н		03/30/11	04/04/11	BW	Tritium in Water
			8681-002	RA		04/05/11	04/06/11	BW	Radium-226 in Water
			8681-002	SR		04/01/11	04/08/11	MWT	Strontium-90 in Water
			8681-002	U_T		03/29/11	03/29/11	BW	Uranium, Total
S103143-03	Method Blank		8681-003	80A/80		03/31/11	04/01/11	MWT	Gross Alpha in Water
		WATER	8681-003	80B/80		03/31/11	04/01/11	MWT	Gross Beta in Water
			8681-003	AC		04/07/11	04/08/11	MWT	Radium-228 in Water
			8681-003	GAM		03/31/11	04/04/11	MWT	Gamma Emitters in Water
			8681-003	Н		03/30/11	04/04/11	BW	Tritium in Water
			8681-003	RA		04/05/11	04/06/11	BW	Radium-226 in Water
			8681-003	SR		04/01/11	04/08/11	MWT	Strontium-90 in Water
			8681-003	U_T		03/29/11	03/29/11	BW	Uranium, Total
S103143-04	Duplicate (S103143-01)		8681-004	80A/80		03/31/11	04/01/11	MWT	Gross Alpha in Water
03/20/11	Boeing - SSFL	WATER	8681-004	80B/80		03/31/11	04/01/11	MWT	Gross Beta in Water
03/23/11	<u> </u>		8681-004	AC		04/07/11	04/08/11	MWT	Radium-228 in Water
			8681-004	GAM		03/31/11	04/04/11	MWT	Gamma Emitters in Water
			8681-004	Н		03/30/11	04/04/11	BW	Tritium in Water
			8681-004	RA		04/05/11	04/06/11	BW	Radium-226 in Water
			8681-004	SR		04/01/11	04/08/11	MWT	Strontium-90 in Water
			8681-004	UT			03/29/11	BW	Uranium, Total
			_	_					,

WORK SUMMARY
Page 1
SUMMARY DATA SECTION
Page 6

SDG 8675

SDG <u>8675</u>
Contact <u>N. Joseph Verville</u>

WORK SUMMARY, cont.

Client Test America, Inc.
Contract IUC2139

TEST	SAS no	COUNTS METHOD	OF TESTS BY	SAMPLE TYPE CLIENT MORE RE	E BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0	1	1	1	1	4
80B/80		Gross Beta in Water	900.0	1	1	1	1	4
AC		Radium-228 in Water	904.0	1	1	1	1	4
GAM		Gamma Emitters in Water	901.1	1	1	1	1	4
Н		Tritium in Water	906.0	1	1	1	1	4
RA		Radium-226 in Water	903.1	ı	1	1	1	4
SR		Strontium-90 in Water	905.0	1.	1	1	1	4
U_T		Uranium, Total	D5174	1	1	1	1	4
TOTALS				8	8	8	8	32

WORK SUMMARY
Page 2
SUMMARY DATA SECTION
Page 7

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 04/12/11

SDG 8675

8681-003

Method Blank

METHOD BLANK

SDG 8675 Client Test America, Inc.
Contact N. Joseph Verville Contract IUC2139

Lab sample id S103143-03 Client sample id Method Blank
Dept sample id 8681-003 Material/Matrix MATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.261	0.90	1.85	3.00	U	A08
Gross Beta	12587472	-0.333	1.4	2.40	4.00	U	80B
Tritium	10028178	-30.1	95	163	500	U	Н
Radium-226	13982633	0.031	0.43	0.800	1.00	U	RA
Radium-228	15262201	-0.153	0.16	0.434	1.00	U	AC
Strontium-90	10098972	0.045	0.24	0.468	2.00	U	SR
Uranium, Total		0	0.009	0.020	1.00	U	U_T
Potassium-40	13966002	U		47.4	25.0	U	GAM
Cesium-137	10045973	U		2.34	20.0	U	GAM

QC-BLANK #77925

METHOD BLANKS

Page 1

SUMMARY DATA SECTION

Page 8

SDG 8675

8681-002

LAB CONTROL SAMPLE

Lab Control Sample

SDG 8675 Client Test America, Inc.

Contact N. Joseph Verville Contract IUC2139

Lab sample id S103143-02 Client sample id Lab Control Sample

Dept sample id 8681-002 Material/Matrix WATER

ANALYTE	RESULT pCi/L	20 ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	20 LMTS	PROTOCOI LIMITS
Gross Alpha	122	6.6	1.21	3.00		A08	101	4.0	121	74-126	70-130
Gross Beta	83.8	3.7	3.06	4.00		80B	87.1	3.5	96	88-112	70-130
Tritium	2150	150	166	500		Н	2350	94	91	88-112	80-120
Radium-226	49.0	2.5	0.859	1.00		RA	55.7	2.2	88	84-116	80-120
Radium-228	3.92	0.34	0.432	1.00		AC	5.01	0.20	78	89-111	60-140
Strontium-90	19.7	1.4	0.576	2.00		SR	17.4	0.70	113	85-115	80-120
Uranium, Total	55.3	6.6	0.205	1.00		U_T	56.5	2.3	98	88-112	80-120
Cobalt-60	123	5.2	2.50	10.0		GAM	124	5.0	99	91-109	80-120
Cesium-137	118	4.8	3.18	20.0		GAM	110	4,4	107	90-110	80-120

QC-LCS #77924

LAB CONTROL SAMPLES $\begin{array}{ccc} \text{Page 1} \\ \text{SUMMARY DATA SECTION} \\ \text{Page 9} \end{array}$

Lab id EAS
Protocol TA

Version <u>Ver 1.0</u>

Form <u>DVD-LCS</u>
Version <u>3.06</u>

Report date <u>04/12/11</u>

SDG 8675

8681-004

DUPLICATE

ORIGINAL

IUC2187-03

SDG 8675

Dept sample id <u>8681-004</u>

Contact N. Joseph Verville

DUPLICATE

Lab sample id <u>S103143-04</u>

Lab sample id <u>S103143-01</u>

Dept sample id 8681-001

Received 03/23/11

Client <u>Test America</u>, <u>Inc</u>.

Contract IUC2139

Client sample id IUC2187-03

Location/Matrix Boeing - SSFL WATER

Collected/Volume 03/20/11 21:35 10.0 L

Chain of custody id <u>IUC2187</u>

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ TOT	DER O
Gross Alpha	1.94	0.48	0.434	3.00	J	A08	2.26	0.46	0.276	J	15	65	0.7
Gross Beta	6.74	0.70	0.831	4.00		80B	6.22	0.70	0.866		8	33	0.7
Tritium	-10.9	99	168	500	U	Н	-77.2	96	167	U	-		1.0
Radium-226	0.283	0.42	0.711	1.00	U	RA	0.350	0.34	0.544	U			0.2
Radium-228	0.235	0.38	0.402	1.00	U	AC	0.229	0.32	0.420	U	-		0
Strontium-90	0.078	0.32	0.717	2.00	U	SR	-0.018	0.26	0.625	U	-		0.5
Uranium, Total	0.292	0.034	0.020	1.00	J	ד_ט	0.321	0.18	0.020	J	9	90	0.3
Potassium-40	υ		15.8	25.0	υ	GAM	Ü		58.4	U	-		1.4
Cesium-134	Ü		3.68	20.0	U	GAM	Ū			J	0	213	0
Cesium-137	υ		1.17	20.0	U	GAM	Ū		3.25	U	-		1.2
						1							

QC-DUP#1 77926

DUPLICATES

Page 1

SUMMARY DATA SECTION

Page 10

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-DUP

Version 3.06

Report date 04/12/11

SDG 8675

8675-001

IUC2139-03

DATA SHEET

ANALYTE	CAS NO	RESULT pCi/L	20 ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	1.08	0.40	0.364	3.00	J	80A
Gross Beta	12587472	4.79	0.68	0.886	4.00		80B
Tritium	10028178	-42.0	98	168	500	U	Н
Radium-226	13982633	0.284	0.47	0.794	1.00	U	RA
Radium-228	15262201	0.386	0.42	0.415	1.00	U	AC
Strontium-90	10098972	-0.103	0.28	0.723	2.00	U	SR
Uranium, Total		0.267	0.032	0.020	1.00	J	U_T
Potassium-40	13966002	U		24.7	25.0	U	GAM
Cesium-137	10045973	U		1.70	20.0	U	GAM

DATA SHEETS

Page 1

SUMMARY DATA SECTION

Page 11

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-DS

 Version
 3.06

 Report, date
 04/12/11

SDG 8675

Test <u>AC</u> Matrix <u>WATER</u>

SDG <u>8675</u>

Contact <u>N</u>. Joseph Verville

LAB METHOD SUMMARY

Client Test America, Inc.
Contract IUC2139

RADIUM-228 IN WATER BETA COUNTING

RESULTS

	SUF- F FIX PLANCHET	CLIENT SAMPLE ID	Radium-228	
Preparation bate	ch 7281-071			
S103137-01	8675-001	IUC2139-03	U	
S103143-02	8681-002	Lab Control Sample	ok	
S103143-03	8681-003	Method Blank	Ü	
S103143-04	8681-004	Duplicate (S103143-01)	- U	

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	%	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
				· .											
Preparation	batch 728	1-071 2o prep error	10.4 % Ref	erence	Lab N	otebool	No.	7281	pg. 71	-					
S103137-01		IUC2139-03	0.415	1.80			76		150			18	04/07/11	04/07	GRB-228
S103143-02		Lab Control Sample	0.432	1.80			80		150				04/07/11	04/07	GRB-230
S103143-03		Method Blank	0.434	1.80			89		150				04/07/11	04/07	GRB-231
S103143-04		Duplicate (S103143-01)	0.402	1.80			88		150			18	04/07/11	04/07	GRB-232
													~		
Nominal val	ues and li	mits from method	1.00	1.80			30-10	5	50			180			

PROCEDURES	REFERENCE	904.0	
	DWP-894	Sequential Separation of Actinium-228 and	
		Radium-226 in Drinking Water (>1 Liter Aliquot),	
		rev 5	

AVERAGES ± 2 SD MDA 0.421 ± 0.030
FOR 4 SAMPLES YIELD 83 ± 13

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 12

SDG 8675

Test <u>SR</u> Matrix <u>WATER</u>

SDG <u>8675</u>

Contact <u>N. Joseph Verville</u>

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

STRONTIUM-90 IN WATER
BETA COUNTING

RESULTS

RAW SUF-Strontium-90 CLIENT SAMPLE ID SAMPLE ID TEST FIX PLANCHET Preparation batch 7281-071 S103137-01 8675-001 IUC2139-03 U ok 8681-002 Lab Control Sample S103143-02 8681-003 Method Blank S103143-03 U Duplicate (S103143-01) S103143-04 8681-004 Nominal values and limits from method RDLs (pCi/L) 2.00

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	ALETD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	\mathbf{L}	FAC	TION	ે	왐	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
														
Preparation	n batch 7281-071 20 prep error 1	0.4 % Re	ference	Lab N	otebool	k No.	7281	pg. 73	L					
S103137-01	IUC2139-03	0.723	0.500			76		50			12	04/01/11	04/01	GRB-230
S103143-02	Lab Control Sample	0.576	0.500			94		50				04/01/11	04/01	GRB-232
S103143-03	Method Blank	0.468	0.500			85		100				04/01/11	04/01	GRB-231
S103143-04	Duplicate (S103143-01)	0.717	0.500			83		50			12	04/01/11	04/01	GRB-204

Nominal val	lues and limits from method	2.00	0.500			30-10	5	50			180			

PROCEDURES REFERENCE 905.0

DWP-380 Strontium in Drinking Water, rev 8

AVERAGES ± 2 SD MDA 0.621 ± 0.245 FOR 4 SAMPLES YIELD 84 ± 15

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 13

SDG 8675

Test 80A Matrix WATER

SDG 8675

Contact N. Joseph Verville

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

RESULTS

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Alpha
Preparation	batch 728	1-071		
S103137-01	80	8675-001	IUC2139-03	1.08 J
S103143-02	80	8681-002	Lab Control Sample	ok
S103143-03	80	8681-003	Method Blank	U
S103143-04	80	8681-004	Duplicate (S103143-01)	ok J

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	$_{\mathrm{EFF}}$	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	용	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
															·
Preparation	batch 728	1-071 20 prep error 2	0.6 % Re	ference	Lab N	oteboo!	k No.	7281	pg. 71	l.					
S103137-01	80	IUC2139-03	0.364	0.300			56		400			11	03/31/11	03/31	GRB-101
S103143-02	80	Lab Control Sample	1.21	0.100			60		400				03/31/11	03/31	GRB-103
S103143-03	80	Method Blank	1.85	0.100			60		400				03/31/11	03/31	GRB-104
S103143-04	80	Duplicate (S103143-01)	0.434	0.300			26		400			11	03/31/11	03/31	GRB-109
	140										······································	***************************************			
Nominal val	ues and li	mits from method	3.00	0.100			0-20	0	100			180			

PROCEDURES	REFERENCE	900.0
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,
		rev 10

AVERAGES ± 2 SD	MDA	0.964	±	1.41
FOR 4 SAMPLES	RESIDUE	50	±	33

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 14

SDG 8675

Test 80B Matrix WATER

SDG 8675

Contact N. Joseph Verville

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Beta
Preparation	batch 728	1-071		
S103137-01	80	8675-001	IUC2139-03	4.79
S103143-02	80	8681-002	Lab Control Sample	ok
S103143-03	80	8681-003	Method Blank	υ
	80	8681-004	Duplicate (S103143-01)	ok

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	왕	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
															
Preparation	batch 728	1-071 20 prep error 1	1.0 % Re	ference	Lab N	oteboo!	k No.	7281	pg. 7	L					
S103137-01	80	IUC2139-03	0.886	0.300			56		400			11	03/31/11	03/31	GRB-101
S103143-02	80	Lab Control Sample	3.06	0.100			60		400				03/31/11	03/31	GRB-103
S103143-03	80	Method Blank	2.40	0.100			60		400				03/31/11	03/31	GRB-104
S103143-04	80	Duplicate (S103143-01)	0.831	0.300			26		400			11	03/31/11	03/31	GRB-109
					~~~								· ····································		·
Nominal val	ues and li	mits from method	4.00	0.100			0-20	0	100			180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA 1.79 ± 2.23 FOR 4 SAMPLES RESIDUE 50 ± 33

METHOD SUMMARIES

Page 4
SUMMARY DATA SECTION

Page 15

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-LMS

Version 3.06

Report date <u>04/12/11</u>

SDG 8675

Test <u>GAM</u> Matrix <u>WATER</u>

SDG <u>8675</u>

Contact <u>N. Joseph Verville</u>

## LAB METHOD SUMMARY

Client <u>Test America</u>, <u>Inc.</u> Contract <u>IUC2139</u>

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

# RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX PLANCHI	T CLIENT SAMPLE ID	Cobalt-60	Cesium-137	
Preparation	batch 7281-071				
S103137-01	8675-00	1 IUC2139-03		U	
S103143-02	8681-00	2 Lab Control Sample	ok	ok	
5103143-03	8681-00	3 Method Blank		U	
S103143-04	8681-00	4 Duplicate (S103143-01)		- U	

# METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD %		COUNT min			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7281-071 20 prep error 7	.0 % Re:	ference	Lab N	lotebool	k No.	7281	pg. 71	L				
S103137-01	IUC2139-03		2.00					414		10	03/24/11	03/30	01,04,00
S103143-02	Lab Control Sample		2.00					401			03/24/11	03/31	MB,08,00
S103143-03	Method Blank		2.00					621			03/24/11	03/31	MB,05,00
S103143-04	Duplicate (S103143-01)		2.00					596		11	03/24/11	03/31	MB,08,00
Nominal val	ues and limits from method	6.00	2.00					400		180			

PROCEDURES	REFERENCE	901.1
	DWP-100	Preparation of Drinking Water Samples for Gamma
		Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 16

Lab id EAS .

Protocol TA

Version Ver 1.0

Form DVD-LMS

Version 3.06

Report date 04/12/11

SDG 8675

Test <u>U T</u> Matrix <u>WATER</u>
SDG 8675

Contact N. Joseph Verville

# LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

URANIUM, TOTAL

KINETIC PHOSPHORIMETRY, UG

# RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX PLANCHET	CLIENT SAMPLE ID	Uranium, Total	
Preparation	n batch 7281-071			
S103137-01	8675-001	IUC2139-03	0.267 J	
S103143-02	8681-002	Lab Control Sample	ok	
S103143-03	8681-003	Method Blank	U	
S103143-04	8681-004	Duplicate (S103143-01)	ok J	
Nominal val	ues and limits from m	nethod RDLs (pCi/L)	1.00	

# METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD	EFF %		FWHM keV			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7281-071 2g prep error	Re	ference	Lab N	oteboo]	k No. '	7281	pg. 73	1					
S103137-01	IUC2139-03	0.020	0.0200								9	03/29/11	03/29	KPA-001
S103143-02	Lab Control Sample	0.205	0.0200									03/29/11	03/29	KPA-001
S103143-03	Method Blank	0.020	0.0200									03/29/11	03/29	KPA-001
S103143-04	Duplicate (S103143-01)	0.020	0.0200								9	03/29/11	03/29	KPA-001
										, ,	,			
Nominal val	ues and limits from method	1.00	0.0200								180			

PROCEDURES REFERENCE	D5174		AVERAGES ± 2 SD	MDA 0	.066 ± 0.185
		j	FOR 4 SAMPLES	YIELD	±

 $\begin{array}{ccc} \textbf{METHOD} & \textbf{SUMMARIES} \\ & \textbf{Page} & \textbf{6} \\ \\ \textbf{SUMMARY} & \textbf{DATA} & \textbf{SECTION} \\ & \textbf{Page} & \textbf{17} \end{array}$ 

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-LMS

Version 3.06

Report date 04/12/11

SDG 8675

Test H Matrix WATER

SDG 8675

Contact N. Joseph Verville

# LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

TRITIUM IN WATER
LIQUID SCINTILLATION COUNTING

# RESULTS

SAMPLE ID TEST	SUF- FIX PLANCHET	CLIENT SAMPLE ID	Tritium	
Preparation batch	7281-071			
S103137-01	8675-001	IUC2139-03	Ŭ	
S103143-02	8681-002	Lab Control Sample	ok	
5103143-03	8681-003	Method Blank	Ŭ	
5103143-04	8681-004	Duplicate (S103143-01)	- U	

# METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	ક	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
									***************************************			<del></del>			
Preparation	n batch 728	1-071 2o prep error	10.0 % 1	Reference	Lab N	loteboo!	k No.	7281	pg. 73	L					
S103137-01		IUC2139-03	168	0.0100			100		150			10	03/30/11	03/30	LSC-004
S103143-02		Lab Control Sample	166	0.100			10		150				03/30/11	03/30	LSC-004
S103143-03		Method Blank	163	0.100			10		150				03/30/11	03/30	LSC-004
S103143-04		Duplicate (S103143-01)	168	0.0100			100		150			10	03/30/11	03/30	LSC-004
				***************************************									***************************************		
Nominal val	lues and li	mits from method	500	0.0100					100			180			

PROCEDURES	REFERENCE	906.0	
	DWP-212	Tritium in Drinking Water by Distillation, re	8 v

AVERAGES ± 2 SD	MDA	166	±	4.73
FOR 4 SAMPLES	YIELD	55	±	104

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 18

SDG 8675

Test RA Matrix WATER

SDG 8675

Contact N. Joseph Verville

# LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

RADIUM-226 IN WATER
RADON COUNTING

# RESULTS

Preparation bate	h 7281-071	•	
S103137-01	8675-001	IUC2139-03	U
S103143-02	8681-002	Lab Control Sample	ok
S103143-03	8681-003	Method Blank	U
S103143-04	8681-004	Duplicate (S103143-01)	- U

## METHOD PERFORMANCE

LAB	RAW SUF-			MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT	SAMPLE ID	pCi/L	L	FAC	TION	왕	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
					_								· · · · · · · · · · · · · · · · · · ·	******		
Preparation	batch 728	1-071	2σ prep error	16.4 % Re	eference	Lab N	otebool	K No.	7281	pg. 71	L.					
S103137-01		IUC2139	9-03	0.794	0.100			100		90			16	04/05/11	04/05	RN-011
S103143-02		Lab Cor	ntrol Sample	0.859	0.100			100		90				04/05/11	04/05	RN-009
S103143-03		Method	Blank	0.800	0.100			100		90				04/05/11	04/05	RN-010
S103143-04		Duplica	ate (S103143-01)	0.711	0.100			100		90			16	04/05/11	04/05	RN-015
				····									~~~~~~			
Nominal val	ues and li	mits fro	om method	1.00	0.100					100			180			

PROCEDURES	REFERENCE	903.1		
	DWP-881A	a-226 Screening in Drir	king Water, rev 6	

AVERAGES ± 2 SD	MDA	0.791	±	0.122
FOR 4 SAMPLES	AIETD	100	±	0

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 19

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>04/12/11</u>

Lab id EAS

SDG 8675

SDG <u>8675</u> Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUC2139</u>

#### SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
  - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- * All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES

Page 1
SUMMARY DATA SECTION

Page 20

SDG 8675

SDG <u>8675</u>
Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

#### PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- ${\tt X}\,$  Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES

Page 2
SUMMARY DATA SECTION

Page 21

SDG 8675

SDG <u>8675</u>
Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

#### WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES

Page 3

SUMMARY DATA SECTION

Page 22

SDG 8675

SDG 8675 Contact N. Joseph Verville

## REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUC2139</u>

#### DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES

Page 4

SUMMARY DATA SECTION

Page 23

SDG 8675

SDG 8675
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

#### DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- $\ensuremath{\mathtt{X}}$  Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES

Page 5

SUMMARY DATA SECTION

Page 24

SDG 8675

SDG <u>8675</u>

Contact N. Joseph Verville

# GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

# DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES

Page 6
SUMMARY DATA SECTION

Page 25

SDG 8675

SDG 8675
Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUC2139</u>

## LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
  - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date <u>04/12/11</u>

REPORT GUIDES

Page 7

SUMMARY DATA SECTION

Page 26

SDG 8675

SDG <u>8675</u>
Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

## DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
  - 1. A fixed percentage specified in the protocol.

REPORT GUIDES

Page 8

SUMMARY DATA SECTION

Page 27

SDG 8675

SDG <u>8675</u>

Contact N. Joseph Verville

# GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUC2139</u>

# DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES

Page 9

SUMMARY DATA SECTION

Page 28

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-RG

 Version
 3.06

 Report date
 04/12/11

SDG 8675

SDG <u>8675</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUC2139</u>

#### MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
  - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

Lab id <u>EAS</u> Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u> Version <u>3.06</u>

Report date 04/12/11

REPORT GUIDES

Page 10

SUMMARY DATA SECTION

Page 29

SDG 8675

SDG 8675

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

#### MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES

Page 11

SUMMARY DATA SECTION

Page 30

SDG 8675

SDG <u>8675</u>
Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUC2139</u>

#### METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES

Page 12

SUMMARY DATA SECTION

Page 31

SDG 8675

SDG <u>8675</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUC2139</u>

#### METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES

Page 13

SUMMARY DATA SECTION

Page 32

SDG 8675

SDG <u>8675</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

#### METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1 $\pm$ 3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES

Page 14

SUMMARY DATA SECTION

Page 33

SDG 8675

SDG 8675
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUC2139</u>

#### METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES

Page 15

SUMMARY DATA SECTION

Page 34

Lab id EAS
Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06Report date 04/12/11

## **Subcontract Order - TestAmerica Irvine (IUC2139)**

8675

**SENDING LABORATORY:** 

TestAmerica Irvine .

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Debby Wilson

RECEIVING LABORATORY:

Eberline Services

2030 Wright Avenue

Richmond, CA 94804

Phone :(510) 235-2633

Fax: (510) 235-0438

Project Location: California

Receipt Temperature:

Ice:

°C

Y / N

Analysis	Units	Due	Expires	Comments
sample ID: IUC2139-03 (Ou	tfall 018 (Co	mposite) - Wa	ter) Sampled: 03/20/11 13	2:40
Gamma Spec-O	mg/kg	03/28/11	03/19/12 13:40	jflags; Cs 137 + K 40; do not filte
Gross Alpha-O	pCi/L	03/28/11	09/16/11 13:40	jflags; do not filter
Gross Beta-O	pCi/L	03/28/11	09/16/11 13:40	jflags; do not filter
Level 4 Data Package - Ou	t N/A	03/28/11	04/17/11 13:40	
Radium, Combined-O	pCi/L	03/28/11	03/19/12 13:40	jflags; do not filter
Strontium 90-0	pCi/L	03/28/11	03/19/12 13:40	jflags; do not filter
Tritium-O	pCi/L	03/28/11	03/19/12 13:40	jflags; do not filter
Uranium, Combined-O	pCi/L	03/28/11	03/19/12 13:40	jflags; do not filter
Containers Supplied:				
2.5 gal Poly (T)	500 mL Ami	per (U)		

Released By

Released By

per ex

Date/Time

Date/Time

Received By

Date/Time

1920

Received By

Date/Time

Page 1 of 1

## RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

		-0.10	٨	in	JINE	State	CA	
Client: _	ItSI	the FILL	<u>₩</u> C	ity	2139			
		a 03/23/11	COC No.	100				
ontaine	er I.D. No.	1 @ CHIES	Requested T	AT (Days)	>TO P.O. Rec	eived Yes[]	No[]	
				INSPECT	ION			,
	Custody s	eals on shippir	ng container inta	act?		. /	] A\M [ ] oN	
,	Custody s	eals on shippir	ng container dat	ed & signed?	)	• /	] A\M [ ] aN A	
	Custody s	seals on sample	e containers into	act?	_	• •	No[ ] N/A [	
	Custody !	seals on sample	e containers da	ted & signed	?	Wet[]		<i>&gt;</i>
i.	Packing t	material is:	,	-	Sample Matrix			
<b>3</b> .	Number	of samples in s	hipping contain	er: √	Sample Matrix (Or see CoC	)		
7.					Yes [*)	No []		
В.	Samples	are in correct (	samples?		and the second s	No [x]		
9.	Paperwo	irk agrees with	samples :	ahels ( ) R	ad labels [ ] A	ppropriate sam	pie labels [ ]	
10.	Samples	nave: lape	nd condition (	Leaking	[] Broken	Container [ ]	Missing [ ]	
11.	Samples	Bre: Dracan	ed [ ] Not or	eserved [ ]	pHPre	servative		
12.		e any anomalie	s.		00.T	diamen (.	um > 500	land
13.	Describe	Sarry and mand	rupuE 11	J 5,0 6	AL CUBIT	ALDER Th	10) 2.5 GAL	108C
14.	Was P.	M. notified of a	ny anomalies?	Yes	[ ] No[	] Date		
15.	inspect	ed by	W	Date:	3 Time	e:		
Cusi	tomer	Beta/Gamma	ion Chamber	Wipe	Customer Sample No.	Beta/Gamma	ion Chamber mR/hr	wipe
	ole No.	Spm (	mR/hr	VVIDE	Dampio sas			
10C2	139	200						
								i
				1				
							***************************************	
	Λ.							
	•				Calibration da	te		
					Calibration da			
		. No	/ 11 /	148V	Calibration da	7// 5/	P10	
Beta/G	amma M	eter Ser, No			, <u></u>			

## **APPENDIX G**

## Section 55

Outfall 019 – January 6 & 7, 2011

MECX Data Validation Report



## DATA VALIDATION REPORT

## Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IUA0604

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IUA0604 Project Manager: B. Kelly

Matrix: Water

QC Level: IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 019 (composite)	IUA0604-03	G1A110449-001, S101095-01	Water	1/7/2011 8:59:00 AM	180.1, 200.7, 200.7 Diss, 245.1, 245.1-Diss, 314.0, 900, 901.1, 903.1, 904, 905, 906,1613B, SM2340B, SM2340B Diss, D5471
Outfall 019	IUA0604-01	N/A	Water	1/6/2011 8:35:00 AM	120.1

#### **II. Sample Management**

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-Irvine, TestAmerica-West Scramento, and Eberline within the temperature limits of  $4^{\circ}\text{C}$   $\pm 2^{\circ}\text{C}$ . According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at Eberline and TestAmerica-West Sacramento. As the samples were delivered to TestAmerica-Irvine by courier, no custody seals were required. If necessary, the client ID was added to the sample result summary by the reviewer.

### **Data Qualifier Reference Table**

Qualifie	er Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

### **Qualification Code Reference Table**

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT SDG: SSFL NPDES SDG: UA0604

#### **Qualification Code Reference Table Cont.**

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

#### III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: February 22, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - OGC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for 1,2,3,4,6,7,8-HpCDD, total HpCDD, OCDD, and OCDF. All but OCDD were reported as EMPCs; however, the reviewer considered it appropriate to use the EMPCs to qualify sample results. All sample results for these compounds were qualified as nondetected, "U," at the

level of contamination, including total HpCDD, as the single peak comprising the total was also present in the method blank.

- Blank Spikes and Laboratory Control Samples: LCS recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. EMPCs previously qualified as nondetected for method blank contamination were not further qualified as EMPCs. Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

#### B. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: February 22, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding times, six months for ICP metals and 28 days for mercury, were met.
- Tuning: Not applicable to these analyses.

• Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995. The initial and continuing calibration recoveries were within 85-115% for mercury and 90-110% for the ICP metals. CRI/CRA recoveries were within the control limits of 70-130%.

- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Recoveries were within 80-120% and there were no applicable detects above the MDL in the ICSA.
- Blank Spikes and Laboratory Control Samples: Recoveries were within methodestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the total fraction of the sample in this SDG for the 200.7 analytes. All recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

Both magnesium and zinc were detected at marginally larger concentrations in the dissolved fractions.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### C. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks

Date Reviewed: February 22, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days from collection, was met.
- Calibration: Calibration criteria were met. The initial calibration r² value was ≥0.995 and the initial and continuing calibration recoveries were within 90-110%. The IPC recovery was within 80-120%.
- Blanks: The method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analysis was performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on the LCS result.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### D. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: February 22, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

 Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.

 Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as estimated, "UJ." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for all analytes. The RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

#### E. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: February 22, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1 and 180.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding times, 48 hours from collection for turbidity and 28 days from collection for conductivity, were met.
- Calibration: Calibration criteria were met. Turbidity initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%.
- Blanks: The method blanks had no detects.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: A laboratory duplicate analyses was performed on the sample in this SDG for turbidity. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms IUA0604

Analysis Metho	od 8661							
Sample Name	Outfall 019 (C	Composite	e) Matri	ix Type:	WATER	1	Validation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total		0.065	1	0.016	pCi/L	Jb	J	DNQ
Analysis Metho	od 900							
Sample Name	Outfall 019 (C	Composite	e) Matri	іх Туре:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	0.496	3	1.13	pCi/L	U	UJ	С
Gross Beta	12587472	0.161	4	1.75	pCi/L	U	U	
Analysis Metho	od 901.1							
Sample Name	Outfall 019 (C	Composite	e) Matri	ix Type:	WATER	1	Validation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	ND	20	1.1	pCi/L	U	U	
Potassium-40	13966002	ND	25	22.6	pCi/L	U	U	
Analysis Metho	od 903.1							
Sample Name	Outfall 019 (C	Composite	e) Matri	іх Туре:	WATER	V	Validation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier		Validation Notes
Radium-226	13982633	0.448	1	0.512	pCi/L	U	U	
Analysis Metho	od 904							
Sample Name	Outfall 019 (C	Composite	e) Matri	іх Туре:	WATER	1	Validation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-228	15262201	0.17	1	0.339	pCi/L	U	U	

Page 1 of 5

## Analysis Method 905

Sample Name	Outfall 019 (0	Composite	e) Matri	x Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	0.051	2	1.79	pCi/L	U	U	
Analysis Metho	od 906							
Sample Name	Outfall 019 (0	Composite	e) Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028178	-18.9	500	298	pCi/L	U	U	
Analysis Metho	od EPA	120.1						
Sample Name	Outfall 019		Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUA0604-01	Sam	ple Date:	1/6/2011	8:35:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Specific Conductance	NA	760	1.0	1.0	umhos/c			
Analysis Metho	od EPA	180.1						
Sample Name	Outfall 019 (	Composite	e) Matri	х Туре:	Water	7	alidation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Turbidity	Turb	0.26	1.0	0.040	NTU	Ja	J	DNQ
Analysis Metho	od EPA .	200.7						
Sample Name	Outfall 019 (	Composite	e) Matri	x Type:	Water	1	alidation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Calcium	7440-70-2	16	0.10	0.050	mg/l	МНА		
Magnesium	7439-95-4	0.056	0.020	0.012	mg/l			
Zinc	7440-66-6	50.2	20.0	6.00	ug/l			

Friday, February 25, 2011 Page 2 of 5

## Analysis Method EPA 200.7-Diss

Sample Name	Outfall 019 (C	Composite	) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Calcium	7440-70-2	15	0.10	0.050	mg/l			
Magnesium	7439-95-4	0.058	0.020	0.012	mg/l			
Zinc	7440-66-6	56.0	20.0	6.00	ug/l			
Analysis Metho	od EPA 2	245.1						
Sample Name	Outfall 019 (C	Composite	) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 2	245.1-L	)iss					
Sample Name	Outfall 019 (C	Composite	) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA .	314.0						
Sample Name	Outfall 019 (C	Composite	) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
						_	•	

Friday, February 25, 2011 Page 3 of 5

## Analysis Method EPA-5 1613B

Sample Name	Outfall 019 (C	Composite	) Matri	x Type: \	WATER		Validation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011 8:	:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000017	ug/L	J, Q, Ba	U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000013	ug/L		U	
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000022	ug/L		U	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000014	ug/L		U	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000012	ug/L		U	
,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000013	ug/L		U	
,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000011	ug/L		U	
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000012	ug/L		U	
,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000014	ug/L		U	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000019	ug/L		U	
,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000019	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.000001	ug/L		U	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.000002	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.000001	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000024	ug/L		U	
OCDD	3268-87-9	ND	0.0001	0.0000032	ug/L	J, Q, Ba	U	В
OCDF	39001-02-0	ND	0.0001	0.0000015	ug/L	J, Q, Ba	U	В
Total HpCDD	37871-00-4	ND	0.00005	0.0000017	ug/L	J, Q, Ba	U	В
Total HpCDF	38998-75-3	ND	0.00005	0.0000013	ug/L		U	
Total HxCDD	34465-46-8	ND	0.00005	0.0000012	ug/L		U	
Total HxCDF	55684-94-1	ND	0.00005	0.000001	ug/L		U	
Total PeCDD	36088-22-9	ND	0.00005	0.0000019	ug/L		U	
Total PeCDF	30402-15-4	ND	0.00005	0.0000019	ug/L		U	
Total TCDD	41903-57-5	ND	0.00001	0.000001	ug/L		U	
Total TCDF	55722-27-5	ND	0.00001	0.0000024	ug/L		U	
Analysis Metho	d SM23	40B						
Sample Name	Outfall 019 (C	Composite	) Matri	x Type:	Water	V	Validation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011 8:	:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Hardness (as CaCO3)	NA	40	0.33	0.17	mg/l			

Friday, February 25, 2011 Page 4 of 5

## Analysis Method SM2340B-Diss

Sample Name	Outfall 019 (	Composite	e) Matr	ix Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	IUA0604-03	Sam	ple Date:	1/7/2011	8:59:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Hardness as CaCO3		38	0.33	0.17	mg/l			

Friday, February 25, 2011 Page 5 of 5

## **APPENDIX G**

## Section 56

Outfall 019 – January 6 & 7, 2011
Test America Analytical Laboratory Report





#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 01/06/11-01/07/11

Received: 01/06/11 Issued: 02/08/11 08:16

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

LABORATORY ID	CLIENT ID	MATRIX
IUA0604-01	Outfall 019	Water
IUA0604-02	Trip Blanks	Water
IUA0604-03	Outfall 019 (Composite)	Water
IUA0604-04	Trip Blank	Water

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

TestAmerica Irvine

Delby Wilson

Debby Wilson Project Manager



MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Sampled: 01/06/11-01/07/11

Arcadia, CA 91007

Report Number: IUA0604 Received: 01/06/11

#### PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-01 (Outfall 019 - W	(ater)				Cample	J. 01/06/1:			
Reporting Units: ug/l	atti				Sample	ed: 01/06/1	L		
Benzene	EPA 624	11A1662	0.28	0.50	ND	1	GMK	01/16/11	
Carbon tetrachloride	EPA 624	11A1662	0.28	0.50	ND	1	GMK	01/16/11	
Chloroform	EPA 624	11A1662	0.33	0.50	ND	1	GMK	01/16/11	
1,1-Dichloroethane	EPA 624	11A1662	0.40	0.50	ND	1	GMK	01/16/11	
1,2-Dichloroethane	EPA 624	11A1662	0.28	0.50	ND	1	GMK	01/16/11	
1,1-Dichloroethene	EPA 624	11A1662	0.42	0.50	ND	1	GMK	01/16/11	
Ethylbenzene	EPA 624	11A1662	0.25	0.50	ND	1	GMK	01/16/11	
Tetrachloroethene	EPA 624	11A1662	0.32	0.50	ND	1	GMK	01/16/11	
Toluene	EPA 624	11A1662	0.36	0.50	ND	1	GMK	01/16/11	
1,1,1-Trichloroethane	EPA 624	11A1662	0.30	0.50	ND	1	GMK	01/16/11	
1,1,2-Trichloroethane	EPA 624	11A1662	0.30	0.50	ND	1	GMK	01/16/11	
Trichloroethene	EPA 624	11A1662	0.26	0.50	ND	1	GMK	01/16/11	
Trichlorofluoromethane	EPA 624	11A1662	0.34	0.50	ND	1	GMK	01/16/11	
Trichlorotrifluoroethane (Freon 113)	EPA 624	11A1662	0.50	5.0	ND	1	GMK	01/16/11	
Vinyl chloride	EPA 624	11A1662	0.40	0.50	ND	1	GMK	01/16/11	
Xylenes, Total	EPA 624	11A1662	0.90	1.5	ND	1	GMK	01/16/11	
Surrogate: 4-Bromofluorobenzene (80-120					89 %				
Surrogate: Dibromofluoromethane (80-12					103 %				
Surrogate: Toluene-d8 (80-120%)	,				97 %				
Sample ID: IUA0604-02 (Trip Blanks - V	Vater)				Sample	ed: 01/06/1	1		
Reporting Units: ug/l					•				
Benzene	EPA 624	11A1662	0.28	0.50	ND	1	GMK	01/16/11	
Carbon tetrachloride	EPA 624	11A1662	0.28	0.50	ND	1	GMK	01/16/11	
Chloroform	EPA 624	11A1662	0.33	0.50	ND	1	GMK	01/16/11	
1,1-Dichloroethane	EPA 624	11A1662	0.40	0.50	ND	1	GMK	01/16/11	
1,2-Dichloroethane	EPA 624	11A1662	0.28	0.50	ND	1	GMK	01/16/11	
1,1-Dichloroethene	EPA 624	11A1662	0.42	0.50	ND	1	GMK	01/16/11	
Ethylbenzene	EPA 624	11A1662	0.25	0.50	ND	1	GMK	01/16/11	
Tetrachloroethene	EPA 624	11A1662	0.32	0.50	ND	1	GMK	01/16/11	
Toluene	EPA 624	11A1662	0.36	0.50	ND	1	GMK	01/16/11	
1,1,1-Trichloroethane	EPA 624	11A1662	0.30	0.50	ND	1	GMK	01/16/11	
1,1,2-Trichloroethane	EPA 624	11A1662	0.30	0.50	ND	1	GMK	01/16/11	
Trichloroethene	EPA 624	11A1662	0.26	0.50	ND	1	GMK	01/16/11	
Trichlorofluoromethane	EPA 624	11A1662	0.34	0.50	ND	1	GMK	01/16/11	
Trichlorotrifluoroethane (Freon 113)	EPA 624	11A1662	0.50	5.0	ND	1	GMK	01/16/11	
Vinyl chloride	EPA 624	11A1662	0.40	0.50	ND	1	GMK	01/16/11	
Xylenes, Total	EPA 624	11A1662	0.90	1.5	ND	1	GMK	01/16/11	
Surrogate: 4-Bromofluorobenzene (80-120	*				91 %				
Surrogate: Dibromofluoromethane (80-12	0%)				101 %				
Surrogate: Toluene-d8 (80-120%)					100 %				
Tost A marian Irvina									

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/06/11-01/07/11

MWH-Pasadena/Boeing Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

Attention: Bronwyn Kelly

#### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (Composite) - Water)					Sample	ed: 01/07/11	l		
Reporting Units: ug/l					_				
Bis(2-ethylhexyl)phthalate	EPA 625	11A1272	1.60	4.72	ND	0.943	LB	01/18/11	
2,4-Dinitrotoluene	EPA 625	11A1272	0.189	4.72	ND	0.943	LB	01/18/11	
N-Nitrosodimethylamine	EPA 625	11A1272	0.0943	4.72	ND	0.943	LB	01/18/11	L
Pentachlorophenol	EPA 625	11A1272	0.0943	4.72	ND	0.943	LB	01/18/11	
2,4,6-Trichlorophenol	EPA 625	11A1272	0.0943	5.66	ND	0.943	LB	01/18/11	
Surrogate: 2,4,6-Tribromophenol (40-120%)					82 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					73 %				
Surrogate: 2-Fluorophenol (30-120%)					63 %				
Surrogate: Nitrobenzene-d5 (45-120%)					72 %				
Surrogate: Phenol-d6 (35-120%)					64 %				
Surrogate: Terphenyl-d14 (50-125%)					84 %				



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/06/11-01/07/11

MWH-Pasadena/Boeing

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Report Number: IUA0604

Arcadia, CA 91007 Attention: Bronwyn Kelly Received: 01/06/11

#### **ORGANOCHLORINE PESTICIDES (EPA 608)**

			MDL	Reporting	Sample	Dilution		Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (Comp	posite) - Water)	- cont.			Sample	ed: 01/07/11			
Reporting Units: ug/l									
alpha-BHC	EPA 608	11A0912	0.0024	0.0094	ND	0.943	CN	01/11/11	
Surrogate: Decachlorobiphenyl (45-120%)					84 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					74 %				



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Sampled: 01/06/11-01/07/11

Arcadia, CA 91007

Report Number: IUA0604

Received: 01/06/11

#### HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-01 (Outfall 019 - V	Water)				Sample	ed: 01/06/11	l		
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	11A1847	1.3	4.7	ND	1	DA	01/18/11	
Grease)									



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/06/11-01/07/11

MWH-Pasadena/Boeing Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

Attention: Bronwyn Kelly

#### **METALS**

		•		~					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (Composite) - Water)					Sample	ed: 01/07/11	1		
Reporting Units: mg/l									
Hardness (as CaCO3)	SM2340B	[CALC]		0.33	40	1	VRS	01/12/11	
Calcium	EPA 200.7	11A0931	0.050	0.10	16	1	VRS	01/12/11	MHA
Magnesium	EPA 200.7	11A0931	0.012	0.020	0.056	1	VRS	01/12/11	
Sample ID: IUA0604-03 (Outfall 01	9 (Composite) - Water)				Sample	ed: 01/07/11	1		
Reporting Units: ug/l									
Mercury	EPA 245.1	11A0934	0.10	0.20	ND	1	DB	01/10/11	
Cadmium	EPA 200.8	11A0916	0.10	1.0	ND	1	RDC	01/11/11	
Zinc	EPA 200.7	11A0931	6.00	20.0	50.2	1	VRS	01/12/11	
Copper	EPA 200.8	11A0916	0.500	2.00	2.61	1	RDC	01/11/11	
Lead	EPA 200.8	11A0916	0.20	1.0	ND	1	RDC	01/11/11	
Selenium	EPA 200.8	11A0916	0.50	2.0	ND	1	RDC	01/11/11	



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/06/11-01/07/11

MWH-Pasadena/Boeing Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

Attention: Bronwyn Kelly

#### **DISSOLVED METALS**

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (	Composite) - Water)	- cont.			Sample	ed: 01/07/11	l		
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B-Diss	[CALC]		0.33	38	1	DP	01/12/11	
Calcium	EPA 200.7-Diss	11A1039	0.050	0.10	15	1	DP	01/12/11	
Magnesium	EPA 200.7-Diss	11A1039	0.012	0.020	0.058	1	DP	01/12/11	
Sample ID: IUA0604-03 (Outfall 019 (Composite) - Water)					Sample	ed: 01/07/11	l		
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	11A0940	0.10	0.20	ND	1	DB	01/10/11	
Cadmium	EPA 200.8-Diss	11A1040	0.10	1.0	ND	1	RDC	01/12/11	
Zinc	EPA 200.7-Diss	11A1039	6.00	20.0	56.0	1	DP	01/12/11	
Copper	EPA 200.8-Diss	11A1040	0.500	2.00	1.12	1	RDC	01/13/11	Ja
Lead	EPA 200.8-Diss	11A1040	0.20	1.0	ND	1	RDC	01/12/11	
Selenium	EPA 200.8-Diss	11A1040	0.50	2.0	ND	1	RDC	01/12/11	



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/06/11-01/07/11

MWH-Pasadena/Boeing Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

Attention: Bronwyn Kelly

#### **INORGANICS**

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (	Composite) - Water)	- cont.			Sample	ed: 01/07/11	1		
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	11A1264	0.500	0.500	ND	1	TMK	01/12/11	
Biochemical Oxygen Demand	SM5210B	11A0802	0.50	2.0	ND	1	XL	01/13/11	
Chloride	EPA 300.0	11A0682	2.5	5.0	51	10	NN	01/07/11	
Nitrate-N	EPA 300.0	11A0682	0.060	0.11	0.069	1	NN	01/07/11	Ja
Nitrite-N	EPA 300.0	11A0682	0.090	0.15	ND	1	NN	01/07/11	
Nitrate/Nitrite-N	EPA 300.0	11A0682	0.15	0.26	ND	1	NN	01/07/11	
Sulfate	EPA 300.0	11A0682	2.0	5.0	100	10	NN	01/07/11	
Surfactants (MBAS)	SM5540-C	11A0759	0.050	0.10	ND	1	EL	01/07/11	
<b>Total Dissolved Solids</b>	SM2540C	11A0837	1.0	10	410	1	MC	01/10/11	
Total Organic Carbon	SM5310B	11A0832	0.50	1.0	ND	1	FZ	01/10/11	
Total Suspended Solids	SM 2540D	11A1276	1.0	10	ND	1	DK	01/12/11	



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IUA0604

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Received: 01/06/11

#### **INORGANICS**

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-01 (Outfall 019 - Water)					Sample	ed: 01/06/11	Ĺ		
Reporting Units: ml/l									
Total Settleable Solids	SM2540F	11A0688	0.10	0.10	ND	1	RRZ	01/07/11	
Sample ID: IUA0604-03 (Outfall 019 (Composite) - Water)					Sample	ed: 01/07/11	l		
Reporting Units: NTU									
Turbidity	EPA 180.1	11A0811	0.040	1.0	0.26	1	AC1	01/08/11	Ja
Sample ID: IUA0604-03 (Outfall 019 (	Composite) - Water)				Sample	ed: 01/07/11			
Reporting Units: ug/l									
Perchlorate	EPA 314.0	11A1181	0.90	4.0	ND	1	MN	01/12/11	
Total Cyanide	SM4500CN-E	11A1083	2.2	5.0	ND	1	HH	01/11/11	
Sample ID: IUA0604-01 (Outfall 019 - Water)					Sample	ed: 01/06/11			
Reporting Units: umhos/cm @ 25C					•				
Specific Conductance	EPA 120.1	11A0638	1.0	1.0	760	1	MC	01/07/11	



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

ing Project ID: Routine Outfall 019

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

Attention: Bronwyn Kelly

Sampled: 01/06/11-01/07/11

			8661						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (Con	nposite) - Water)	)			Sample	ed: 01/07/1	1		
Reporting Units: pCi/L Uranium, Total	8661	8661		1	0.065	1	CSS	02/01/11	Jb
Sample ID: IUA0604-04 (Trip Blank - Wa	ter)				Sample	ed: 01/07/1	l		
Reporting Units: pCi/L Uranium, Total	8661	8661		1	ND	1	CSS	02/01/11	U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Sampled: 01/06/11-01/07/11

Arcadia, CA 91007

Report Number: IUA0604

Received: 01/06/11

			900						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019	(Composite) - Water	)			Sample	ed: 01/07/1	1		
Reporting Units: pCi/L									
Gross Alpha	900	8661		3	0.496	1	KT	01/19/11	U
Gross Beta	900	8661		4	0.161	1	KT	01/19/11	U
Sample ID: IUA0604-04 (Trip Blank	- Water)				Sample	ed: 01/07/1	1		
Reporting Units: pCi/L									
Gross Alpha	900	8661		3	-0.068	1	KT	01/21/11	U
Gross Beta	900	8661		4	-0.371	1	KT	01/21/11	U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Sampled: 01/06/11-01/07/11

Arcadia, CA 91007

Report Number: IUA0604 Received: 01/06/11

901.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (	Composite) - Water)	)			Sample	ed: 01/07/11	1		
Reporting Units: pCi/L									
Cesium-137	901.1	8661		20	ND	1	LS	01/17/11	U
Potassium-40	901.1	8661		25	ND	1	LS	01/17/11	U
Sample ID: IUA0604-04 (Trip Blank -	Water)				Sample	ed: 01/07/11	1		
Reporting Units: pCi/L									
Cesium-137	901.1	8661		20	ND	1	LS	01/20/11	U
Potassium-40	901.1	8661		25	ND	1	LS	01/20/11	U
Reporting Units: pCi/L Cesium-137	901.1				ND	ed: 01/07/11	LS		_



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Sampled: 01/06/11-01/07/11

Arcadia, CA 91007

Report Number: IUA0604

Received: 01/06/11

903.1

			, , ,						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 01 Reporting Units: pCi/L	9 (Composite) - Water)				Sample	ed: 01/07/11	l		
Radium-226	903.1	8661		1	0.448	1	ASM	01/27/11	U
Sample ID: IUA0604-04 (Trip Blan Reporting Units: pCi/L	k - Water)				Sample	ed: 01/07/11	1		
Radium-226	903.1	8661		1	0.056	1	ASM	01/27/11	U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Sampled: 01/06/11-01/07/11

Arcadia, CA 91007

Report Number: IUA0604

Received: 01/06/11

Attention: Bronwyn Kelly

			904						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (Con	nposite) - Water	)			Sample	d: 01/07/11	L		
Reporting Units: pCi/L									
Radium-228	904	8661		1	0.17	1	ASM	01/27/11	U
Sample ID: IUA0604-04 (Trip Blank - Wa	iter)				Sample	d: 01/07/11			
Reporting Units: pCi/L									
Radium-228	904	8661		1	0.072	1	ASM	01/27/11	U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Report Number: IUA0604

Arcadia, CA 91007 Attention: Bronwyn Kelly Received: 01/06/11

Sampled: 01/06/11-01/07/11

9015	_	_	_
	(1	11	_
	ч	.,	•

			MDL	Reporting	Sample	Dilution		Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers
Sample ID: IUA0604-03 (Outfall 019 Reporting Units: pCi/L	(Composite) - Water	)			Sample	ed: 01/07/11	l		
Strontium-90	905	8661		2	0.051	1	TSC	01/26/11	U
Sample ID: IUA0604-04 (Trip Blank Reporting Units: pCi/L	- Water)				Sample	ed: 01/07/11	l		
Strontium-90	905	8661		2	-0.3	1	TSC	01/26/11	U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Sampled: 01/06/11-01/07/11

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IUA0604

Received: 01/06/11

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (Composite) - Water)					Sample	d: 01/07/11	1		
Reporting Units: pCi/L Tritium	906	8661		500	-18.9	1	JO	01/27/11	U



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Received: 01/06/11

Report Number: IUA0604

## EPA-5 1613Bx

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUA0604-03 (Outfall 019 (C	omnosite) - Water)	- cont.			Sample	ed: 01/07/11	Ī		
Reporting Units: ug/L	omposite) water)	cont.			Sample	a: 01/0//13	L		
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	1011239	0.0000017	0.00005	2.5e-006	0.97	GV	01/12/11	J, Q, Ba
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B		0.0000013		ND	0.97	GV	01/12/11	*, 0, = "
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B		0.0000022		ND	0.97	GV	01/12/11	
1,2,3,4,7,8-HxCDD	EPA-5 1613B		0.0000014		ND	0.97	GV	01/12/11	
1,2,3,4,7,8-HxCDF	EPA-5 1613B		0.0000012		ND	0.97	GV	01/12/11	
1,2,3,6,7,8-HxCDD	EPA-5 1613B		0.0000013		ND	0.97	GV	01/12/11	
1,2,3,6,7,8-HxCDF	EPA-5 1613B		0.0000011		ND	0.97	GV	01/12/11	
1,2,3,7,8,9-HxCDD	EPA-5 1613B		0.0000012		ND	0.97	GV	01/12/11	
1,2,3,7,8,9-HxCDF	EPA-5 1613B	1011239	0.0000014	0.00005	ND	0.97	GV	01/12/11	
1,2,3,7,8-PeCDD	EPA-5 1613B	1011239	0.0000019	0.00005	ND	0.97	GV	01/12/11	
1,2,3,7,8-PeCDF	EPA-5 1613B	1011239	0.0000019	0.00005	ND	0.97	GV	01/12/11	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	1011239	0.000001	0.00005	ND	0.97	GV	01/12/11	
2,3,4,7,8-PeCDF	EPA-5 1613B	1011239	0.000002	0.00005	ND	0.97	GV	01/12/11	
2,3,7,8-TCDD	EPA-5 1613B	1011239	0.000001	0.00001	ND	0.97	GV	01/12/11	
2,3,7,8-TCDF	EPA-5 1613B	1011239	0.0000024	0.00001	ND	0.97	GV	01/12/11	
OCDD	EPA-5 1613B	1011239	0.0000032	0.0001	9e-006	0.97	GV	01/12/11	J, Q, Ba
OCDF	EPA-5 1613B	1011239	0.0000015	0.0001	1.8e-006	0.97	GV	01/12/11	J, Q, Ba
Total HpCDD	EPA-5 1613B	1011239	0.0000017	0.00005	2.5e-006	0.97	GV	01/12/11	J, Q, Ba
Total HpCDF	EPA-5 1613B	1011239	0.0000013	0.00005	ND	0.97	GV	01/12/11	
Total HxCDD	EPA-5 1613B	1011239	0.0000012	0.00005	ND	0.97	GV	01/12/11	
Total HxCDF	EPA-5 1613B	1011239	0.000001	0.00005	ND	0.97	GV	01/12/11	
Total PeCDD	EPA-5 1613B		0.0000019		ND	0.97	GV	01/12/11	
Total PeCDF	EPA-5 1613B	1011239	0.0000019	0.00005	ND	0.97	GV	01/12/11	
Total TCDD	EPA-5 1613B		0.000001	0.00001	ND	0.97	GV	01/12/11	
Total TCDF	EPA-5 1613B	1011239	0.0000024	0.00001	ND	0.97	GV	01/12/11	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (23	<i>3-140%)</i>				74 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28	· · · · · · · · · · · · · · · · · · ·				93 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (26					78 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-1	*				91 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-1	*				107 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-1	*				93 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-1					94 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-1					102 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18					81 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-18:					85 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-1)					107 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-178 Surrogate: 13C-2,3,7,8-TCDD (25-164%					88 % 89 %				
Surrogate: 13C-2,3,7,8-TCDD (23-104%)					97 %				
Surrogate: 13C-OCDD (17-157%)	•				77 %				
5 oguic. 130 00DD (17-13/70)					///0				

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200

Sampled: 01/06/11-01/07/11

Arcadia, CA 91007

Report Number: IUA0604

Received: 01/06/11

### EPA-5 1613Bx

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Analyst Analyzed Qualifiers

Sample ID: IUA0604-03 (Outfall 019 (Composite) - Water) - cont. Sampled: 01/07/11

Reporting Units: ug/L

Surrogate: 37Cl4-2,3,7,8-TCDD (35-197%) 93 %



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200 Sampled: 01/06/11-01/07/11

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

Attention: Bronwyn Kelly

## SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 019 (IUA0604-01) - Water	er				
SM2540F	2	01/06/2011 08:35	01/06/2011 16:15	01/07/2011 11:00	01/07/2011 11:00
Sample ID: Outfall 019 (Composite) (IUA06	04-03) - Water				
EPA 180.1	2	01/07/2011 08:59	01/06/2011 16:15	01/08/2011 16:20	01/08/2011 16:20
EPA 300.0	2	01/07/2011 08:59	01/06/2011 16:15	01/07/2011 15:00	01/07/2011 19:17
SM5210B	2	01/07/2011 08:59	01/06/2011 16:15	01/08/2011 11:23	01/13/2011 09:00
SM5540-C	2	01/07/2011 08:59	01/06/2011 16:15	01/07/2011 19:06	01/07/2011 20:13

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

# **PURGEABLES BY GC/MS (EPA 624)**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11A1662 Extracted: 01/16/11										
Blank Analyzed: 01/16/2011 (11A1662-	BLK1)									
Benzene	ND	0.50	ug/l							
Carbon tetrachloride	ND	0.50	ug/l							
Chloroform	2.20	0.50	ug/l							В
1,1-Dichloroethane	ND	0.50	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
1,1-Dichloroethene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Tetrachloroethene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
1,1,1-Trichloroethane	ND	0.50	ug/l							
1,1,2-Trichloroethane	ND	0.50	ug/l							
Trichloroethene	ND	0.50	ug/l							
Trichlorofluoromethane	ND	0.50	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	ug/l							
Vinyl chloride	ND	0.50	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Surrogate: 4-Bromofluorobenzene	22.4		ug/l	25.0		90	80-120			
Surrogate: Dibromofluoromethane	23.9		ug/l	25.0		96	80-120			
Surrogate: Toluene-d8	25.2		ug/l	25.0		101	80-120			
LCS Analyzed: 01/16/2011 (11A1662-B	SS1)									
Benzene	28.2	0.50	ug/l	25.0		113	70-120			
Carbon tetrachloride	30.1	0.50	ug/l	25.0		120	65-140			
Chloroform	26.3	0.50	ug/l	25.0		105	70-130			
1,1-Dichloroethane	28.8	0.50	ug/l	25.0		115	70-125			
1,2-Dichloroethane	29.2	0.50	ug/l	25.0		117	60-140			
1,1-Dichloroethene	28.4	0.50	ug/l	25.0		113	70-125			
Ethylbenzene	26.5	0.50	ug/l	25.0		106	75-125			
Tetrachloroethene	25.7	0.50	ug/l	25.0		103	70-125			
Toluene	27.7	0.50	ug/l	25.0		111	70-120			
1,1,1-Trichloroethane	30.1	0.50	ug/l	25.0		120	65-135			
1,1,2-Trichloroethane	27.5	0.50	ug/l	25.0		110	70-125			
Trichloroethene	27.4	0.50	ug/l	25.0		110	70-125			
Trichlorofluoromethane	28.5	0.50	ug/l	25.0		114	65-145			
Vinyl chloride	23.8	0.50	ug/l	25.0		95	55-135			
Xylenes, Total	81.3	1.5	ug/l	75.0		108	70-125			

### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

# **PURGEABLES BY GC/MS (EPA 624)**

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11A1662 Extracted: 01/16/11										
LCS Analyzed: 01/16/2011 (11A1662-BS	*									
Surrogate: 4-Bromofluorobenzene	23.4		ug/l	25.0		94	80-120			
Surrogate: Dibromofluoromethane	24.5		ug/l	25.0		98	80-120			
Surrogate: Toluene-d8	24.6		ug/l	25.0		99	80-120			
Matrix Spike Analyzed: 01/16/2011 (11A	1662-MS1)				Source: I	UA0875-0	4			
Benzene	28.5	0.50	ug/l	25.0	ND	114	65-125			
Carbon tetrachloride	31.7	0.50	ug/l	25.0	ND	127	65-140			
Chloroform	27.5	0.50	ug/l	25.0	ND	110	65-135			
1,1-Dichloroethane	29.6	0.50	ug/l	25.0	ND	118	65-130			
1,2-Dichloroethane	31.9	0.50	ug/l	25.0	ND	128	60-140			
1,1-Dichloroethene	28.9	0.50	ug/l	25.0	ND	115	60-130			
Ethylbenzene	27.3	0.50	ug/l	25.0	ND	109	65-130			
Tetrachloroethene	25.3	0.50	ug/l	25.0	ND	101	65-130			
Toluene	29.2	0.50	ug/l	25.0	ND	117	70-125			
1,1,1-Trichloroethane	31.5	0.50	ug/l	25.0	ND	126	65-140			
1,1,2-Trichloroethane	28.9	0.50	ug/l	25.0	ND	115	65-130			
Trichloroethene	28.6	0.50	ug/l	25.0	ND	114	65-125			
Trichlorofluoromethane	30.2	0.50	ug/l	25.0	ND	121	60-145			
Vinyl chloride	24.1	0.50	ug/l	25.0	ND	96	45-140			
Xylenes, Total	80.6	1.5	ug/l	75.0	ND	108	60-130			
Surrogate: 4-Bromofluorobenzene	23.7		ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	25.0		ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	26.2		ug/l	25.0		105	80-120			
Matrix Spike Dup Analyzed: 01/16/2011	(11 A 1662-MS	D1)			Source: I	UA0875-0	4			
Benzene	23.1	0.50	ug/l	25.0	ND	93	65-125	21	20	R
Carbon tetrachloride	26.2	0.50	ug/l	25.0	ND	105	65-140	19	25	
Chloroform	23.8	0.50	ug/l	25.0	ND	95	65-135	14	20	
1,1-Dichloroethane	26.2	0.50	ug/l	25.0	ND	105	65-130	12	20	
1,2-Dichloroethane	26.4	0.50	ug/l	25.0	ND	106	60-140	19	20	
1,1-Dichloroethene	25.7	0.50	ug/l	25.0	ND	103	60-130	12	20	
Ethylbenzene	23.7	0.50	ug/l	25.0	ND	93	65-130	16	20	
Tetrachloroethene	21.9	0.50	ug/l	25.0	ND	88	65-130	14	20	
Toluene	23.9	0.50	ug/l ug/l	25.0	ND ND	96	70-125	20	20	
1,1,1-Trichloroethane	26.4	0.50	•	25.0	ND ND	106	65-140	20 17	20	
1,1,2-Trichloroethane	24.7	0.50	ug/l	25.0	ND ND	99	65-130	17	25	
Trichloroethene	23.8	0.50	ug/l	25.0	ND ND	99 95	65-125	18	20	
Themorethene	43.6	0.50	ug/l	23.0	ND	93	03-123	10	20	

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

# **PURGEABLES BY GC/MS (EPA 624)**

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11A1662 Extracted: 01/16/11										
Matrix Spike Dup Analyzed: 01/16/20	11 (11A1662-M	ISD1)			Source: I	UA0875-0	4			
Trichlorofluoromethane	25.7	0.50	ug/l	25.0	ND	103	60-145	16	25	
Vinyl chloride	21.4	0.50	ug/l	25.0	ND	86	45-140	12	30	
Xylenes, Total	67.8	1.5	ug/l	75.0	ND	90	60-130	17	20	
Surrogate: 4-Bromofluorobenzene	22.9		ug/l	25.0		92	80-120			
Surrogate: Dibromofluoromethane	25.2		ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	24.7		ug/l	25.0		99	80-120			

### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11A1272 Extracted: 01/12/11										
Blank Analyzed: 01/18/2011 (11A1272-	-BLK1)									
Bis(2-ethylhexyl)phthalate	ND	5.00	ug/l							
2,4-Dinitrotoluene	ND	5.00	ug/l							
N-Nitrosodimethylamine	7.26	5.00	ug/l							
Pentachlorophenol	ND	5.00	ug/l							
2,4,6-Trichlorophenol	ND	6.00	ug/l							
Surrogate: 2,4,6-Tribromophenol	16.3		ug/l	20.0		82	40-120			
Surrogate: 2-Fluorobiphenyl	8.08		ug/l	10.0		81	50-120			
Surrogate: 2-Fluorophenol	13.3		ug/l	20.0		67	30-120			
Surrogate: Nitrobenzene-d5	7.40		ug/l	10.0		74	45-120			
Surrogate: Phenol-d6	13.2		ug/l	20.0		66	35-120			
Surrogate: Terphenyl-d14	8.90		ug/l	10.0		89	50-125			
LCS Analyzed: 01/18/2011 (11A1272-E	BS1)									MNR1
Bis(2-ethylhexyl)phthalate	8.52	5.00	ug/l	10.0		85	65-130			
2,4-Dinitrotoluene	8.16	5.00	ug/l	10.0		82	65-120			
N-Nitrosodimethylamine	13.9	5.00	ug/l	10.0		139	45-120			L
Pentachlorophenol	2.96	5.00	ug/l	10.0		30	24-121			Ja
2,4,6-Trichlorophenol	7.70	6.00	ug/l	10.0		77	55-120			
Surrogate: 2,4,6-Tribromophenol	17.2		ug/l	20.0		86	40-120			
Surrogate: 2-Fluorobiphenyl	7.64		ug/l	10.0		76	50-120			
Surrogate: 2-Fluorophenol	12.1		ug/l	20.0		60	30-120			
Surrogate: Nitrobenzene-d5	7.18		ug/l	10.0		72	45-120			
Surrogate: Phenol-d6	13.1		ug/l	20.0		65	35-120			
Surrogate: Terphenyl-d14	7.92		ug/l	10.0		79	50-125			
LCS Dup Analyzed: 01/18/2011 (11A12	272-BSD1)									
Bis(2-ethylhexyl)phthalate	8.98	5.00	ug/l	10.0		90	65-130	5	20	
2,4-Dinitrotoluene	8.54	5.00	ug/l	10.0		85	65-120	5	20	
N-Nitrosodimethylamine	14.3	5.00	ug/l	10.0		143	45-120	2	20	L
Pentachlorophenol	4.40	5.00	ug/l	10.0		44	24-121	39	25	R-7, Ja
2,4,6-Trichlorophenol	8.40	6.00	ug/l	10.0		84	55-120	9	30	
Surrogate: 2,4,6-Tribromophenol	18.4		ug/l	20.0		92	40-120			
Surrogate: 2-Fluorobiphenyl	8.10		ug/l	10.0		81	50-120			
Surrogate: 2-Fluorophenol	12.2		ug/l	20.0		61	30-120			
Surrogate: Nitrobenzene-d5	7.88		ug/l	10.0		79	45-120			
Surrogate: Phenol-d6	13.8		ug/l	20.0		69	35-120			
Surrogate: Terphenyl-d14	8.48		ug/l	10.0		85	50-125			
			-							

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604

Received: 01/06/11

# METHOD BLANK/QC DATA

# **ORGANOCHLORINE PESTICIDES (EPA 608)**

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11A0912 Extracted: 01/10/11										
Blank Analyzed: 01/11/2011 (11A0912-E	SLK1)									
alpha-BHC	ND	0.010	ug/l							
Surrogate: Decachlorobiphenyl	0.364		ug/l	0.500		73	45-120			
Surrogate: Tetrachloro-m-xylene	0.321		ug/l	0.500		64	35-115			
LCS Analyzed: 01/11/2011 (11A0912-BS	1)									
alpha-BHC	0.438	0.010	ug/l	0.500		88	45-115			
Surrogate: Decachlorobiphenyl	0.439		ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.408		ug/l	0.500		82	35-115			
Matrix Spike Analyzed: 01/11/2011 (11A	0912-MS1)				Source: II	U <b>A0602-1</b>	7			
alpha-BHC	0.374	0.0094	ug/l	0.472	ND	79	40-120			
Surrogate: Decachlorobiphenyl	0.417		ug/l	0.472		89	45-120			
Surrogate: Tetrachloro-m-xylene	0.328		ug/l	0.472		70	35-115			
Matrix Spike Dup Analyzed: 01/11/2011	(11A0912-M	SD1)			Source: II	U <b>A0602-1</b>	7			
alpha-BHC	0.413	0.0094	ug/l	0.472	ND	88	40-120	10	30	
Surrogate: Decachlorobiphenyl	0.382		ug/l	0.472		81	45-120			
Surrogate: Tetrachloro-m-xylene	0.375		ug/l	0.472		80	35-115			

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

## HEXANE EXTRACTABLE MATERIAL

Analyte  Batch: 11A1847 Extracted: 01/18/11	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 01/18/2011 (11A1847-Bl Hexane Extractable Material (Oil & Grease)	L <b>K1)</b> ND	5.0	mg/l							
LCS Analyzed: 01/18/2011 (11A1847-BS) Hexane Extractable Material (Oil & Grease)	1) 18.9	5.0	mg/l	20.0		94	78-114			MNR1
LCS Dup Analyzed: 01/18/2011 (11A184' Hexane Extractable Material (Oil & Grease)	<b>7-BSD1)</b> 18.7	5.0	mg/l	20.0		94	78-114	1	11	



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

### **METALS**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11A0916 Extracted: 01/10/11										
Blank Analyzed: 01/11/2011 (11A0916-B	LK1)									
Cadmium	ND	1.0	ug/l							
Copper	ND	2.00	ug/l							
Lead	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							
LCS Analyzed: 01/11/2011 (11A0916-BS	1)									
Cadmium	83.5	1.0	ug/l	80.0		104	85-115			
Copper	85.1	2.00	ug/l	80.0		106	85-115			
Lead	81.6	1.0	ug/l	80.0		102	85-115			
Selenium	81.8	2.0	ug/l	80.0		102	85-115			
Matrix Spike Analyzed: 01/11/2011 (11A	0916-MS1)				Source: I	UA0642-0	4			
Cadmium	79.9	1.0	ug/l	80.0	0.269	99	70-130			
Copper	80.6	2.00	ug/l	80.0	10.6	87	70-130			
Lead	81.1	1.0	ug/l	80.0	1.15	100	70-130			
Selenium	153	2.0	ug/l	80.0	63.5	111	70-130			
Matrix Spike Analyzed: 01/11/2011 (11A	0916-MS2)				Source: I	UA0604-0	3			
Cadmium	82.8	1.0	ug/l	80.0	ND	104	70-130			
Copper	80.1	2.00	ug/l	80.0	2.61	97	70-130			
Lead	83.8	1.0	ug/l	80.0	ND	105	70-130			
Selenium	84.7	2.0	ug/l	80.0	ND	106	70-130			
Matrix Spike Dup Analyzed: 01/11/2011	(11A0916-M	SD1)			Source: I	UA0642-0	4			
Cadmium	81.0	1.0	ug/l	80.0	0.269	101	70-130	1	20	
Copper	81.9	2.00	ug/l	80.0	10.6	89	70-130	2	20	
Lead	81.3	1.0	ug/l	80.0	1.15	100	70-130	0.3	20	
Selenium	152	2.0	ug/l	80.0	63.5	110	70-130	0.5	20	

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604

Received: 01/06/11

# METHOD BLANK/QC DATA

## **METALS**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11A0931 Extracted: 01/10/11	1100011		01110	20,01	1105411	,,,,,,	2111100		2	<b>Z</b>
Daten. 11A0/31 Extracted. 01/10/11										
Blank Analyzed: 01/12/2011 (11A0931-B	LK1)									
Calcium	ND	0.10	mg/l							
Magnesium	ND	0.020	mg/l							
Zinc	ND	20.0	ug/l							
LCS Analyzed: 01/12/2011 (11A0931-BS	1)									
Calcium	0.557	0.10	mg/l	0.500		111	85-115			
Magnesium	0.520	0.020	mg/l	0.500		104	85-115			
Zinc	517	20.0	ug/l	500		103	85-115			
Matrix Spike Analyzed: 01/12/2011 (11A	.0931-MS1)				Source: I	UA0604-0	3			
Calcium	16.4	0.10	mg/l	0.500	16.0	83	70-130			MHA
Magnesium	0.589	0.020	mg/l	0.500	0.0562	107	70-130			
Zinc	583	20.0	ug/l	500	50.2	106	70-130			
Matrix Spike Analyzed: 01/12/2011 (11A	.0931-MS2)				Source: I	UA0614-0	1			
Calcium	58.4	0.10	mg/l	0.500	58.4	-6	70-130			MHA
Magnesium	9.90	0.020	mg/l	0.500	9.56	67	70-130			MHA
Zinc	576	20.0	ug/l	500	50.4	105	70-130			
Matrix Spike Dup Analyzed: 01/12/2011	(11A0931-MS	SD1)			Source: I	UA0604-0	3			
Calcium	16.1	0.10	mg/l	0.500	16.0	33	70-130	2	20	MHA
Magnesium	0.581	0.020	mg/l	0.500	0.0562	105	70-130	1	20	
Zinc	575	20.0	ug/l	500	50.2	105	70-130	1	20	
Batch: 11A0934 Extracted: 01/10/11										
Blank Analyzed: 01/10/2011 (11A0934-B	LK1)									
Mercury	ND	0.20	ug/l							

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604

Received: 01/06/11

# METHOD BLANK/QC DATA

## **METALS**

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11A0934 Extracted: 01/10/11										
LCS Analyzed: 01/10/2011 (11A0934-BS	1)									
Mercury	7.90	0.20	ug/l	8.00		99	85-115			
Matrix Spike Analyzed: 01/10/2011 (11A	0934-MS1)				Source: I	UA0603-0	1			
Mercury	7.60	0.20	ug/l	8.00	ND	95	70-130			
Matrix Spike Dup Analyzed: 01/10/2011	(11A0934-MS	SD1)			Source: I	UA0603-0	1			
Mercury	7.54	0.20	ug/l	8.00	ND	94	70-130	0.8	20	



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

## **DISSOLVED METALS**

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11A0940 Extracted: 01/10/11										
Blank Analyzed: 01/10/2011 (11A0940-B	SLK1)									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 01/10/2011 (11A0940-BS	1)									
Mercury	7.98	0.20	ug/l	8.00		100	85-115			
Matrix Spike Analyzed: 01/10/2011 (11A	0940-MS1)				Source: I	UA0500-0	1			
Mercury	7.88	0.20	ug/l	8.00	ND	98	70-130			
Matrix Spike Dup Analyzed: 01/10/2011	(11A0940-M	SD1)			Source: I	UA0500-0	1			
Mercury	7.89	0.20	ug/l	8.00	ND	99	70-130	0.2	20	
Batch: 11A1039 Extracted: 01/11/11										
Blank Analyzed: 01/12/2011 (11A1039-B	LK1)									
Calcium	ND	0.10	mg/l							
Magnesium	ND	0.020	mg/l							
Zinc	ND	20.0	ug/l							
LCS Analyzed: 01/12/2011 (11A1039-BS	1)									
Calcium	0.560	0.10	mg/l	0.500		112	85-115			
Magnesium	0.539	0.020	mg/l	0.500		108	85-115			
Zinc	531	20.0	ug/l	500		106	85-115			
Matrix Spike Analyzed: 01/12/2011 (11A	1039-MS1)				Source: I	UA0603-0	1			
Calcium	117	0.10	mg/l	0.500	117	-146	70-130			MHA
Magnesium	29.4	0.020	mg/l	0.500	29.7	-56	70-130			MHA
Zinc	511	20.0	ug/l	500	ND	102	70-130			

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

## **DISSOLVED METALS**

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11A1039 Extracted: 01/11/11										
M	1 1 0 2 0 N I C 2 )				c 1	TI A 0 C 0 2 . 0	2			
Matrix Spike Analyzed: 01/12/2011 (11/	,	0.10	/1	0.500	Source: I					1.07.4
Calcium	240	0.10	mg/l	0.500	236	613	70-130			MHA
Magnesium	71.0	0.020	mg/l	0.500	69.6	263	70-130			MHA
Zinc	505	20.0	ug/l	500	ND	101	70-130			
Matrix Spike Dup Analyzed: 01/12/2011	(11A1039-M	SD1)			Source: I	UA0603-0	1			
Calcium	118	0.10	mg/l	0.500	117	172	70-130	1	20	MHA
Magnesium	30.3	0.020	mg/l	0.500	29.7	138	70-130	3	20	MHA
Zinc	518	20.0	ug/l	500	ND	104	70-130	1	20	
Batch: 11A1040 Extracted: 01/11/11										
Blank Analyzed: 01/12/2011 (11A1040-F	BLK1)									
Cadmium	ND	1.0	ug/l							
Copper	ND	2.00	ug/l							
Lead	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							
LCS Analyzed: 01/12/2011 (11A1040-BS	81)									
Cadmium	77.7	1.0	ug/l	80.0		97	85-115			
Copper	82.8	2.00	ug/l	80.0		104	85-115			
Lead	85.6	1.0	ug/l	80.0		107	85-115			
Selenium	76.0	2.0	ug/l	80.0		95	85-115			
Matrix Spike Analyzed: 01/12/2011 (11/	A1040-MS1)				Source: I	UA0617-0	1			
Cadmium	76.6	1.0	ug/l	80.0	ND	96	70-130			
Copper	82.5	2.00	ug/l	80.0	1.56	101	70-130			
Lead	82.9	1.0	ug/l	80.0	ND	104	70-130			
Selenium	74.7	2.0	ug/l	80.0	ND	93	70-130			

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604

Received: 01/06/11

# METHOD BLANK/QC DATA

## **DISSOLVED METALS**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11A1040 Extracted: 01/11/11										
Matrix Spike Analyzed: 01/12/2011 (11A	1040-MS2)				Source: I	UA0500-0	2			
Cadmium	74.4	1.0	ug/l	80.0	ND	93	70-130			
Copper	82.2	2.00	ug/l	80.0	1.69	101	70-130			
Lead	80.7	1.0	ug/l	80.0	ND	101	70-130			
Selenium	76.9	2.0	ug/l	80.0	1.60	94	70-130			
Matrix Spike Dup Analyzed: 01/12/2011	(11A1040-MS	D1)			Source: I	UA0617-0	1			
Cadmium	76.3	1.0	ug/l	80.0	ND	95	70-130	0.5	20	
Copper	82.9	2.00	ug/l	80.0	1.56	102	70-130	0.5	20	
Lead	80.6	1.0	ug/l	80.0	ND	101	70-130	3	20	
Selenium	75.0	2.0	ug/l	80.0	ND	94	70-130	0.5	20	



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

RPD

Data

Report Number: IUA0604 Received: 01/06/11

Source

# METHOD BLANK/QC DATA

## **INORGANICS**

Spike

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11A0638 Extracted: 01/07	<u>/11</u>									
Blank Analyzed: 01/07/2011 (11A) Specific Conductance	0638-BLK1) ND	1.0	umhos/cm @ 25C							
LCS Analyzed: 01/07/2011 (11A06 Specific Conductance	5 <b>38-BS1)</b> 1440	1.0	umhos/cm @ 25C	1410		102	90-110			
Duplicate Analyzed: 01/07/2011 (1 Specific Conductance	1 <b>1A0638-DUP1)</b> 1800	1.0	umhos/cm @ 25C		Source: I	UA0502-0	1	0.3	5	
Batch: 11A0682 Extracted: 01/07										
Blank Analyzed: 01/07/2011 (11A	0682-BLK1)									
Chloride	ND	0.50	mg/l							
Nitrate-N	ND	0.11	mg/l							
Nitrite-N	ND	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.26	mg/l							
Sulfate	ND	0.50	mg/l							
LCS Analyzed: 01/07/2011 (11A06	682-BS1)									
Chloride	4.97	0.50	mg/l	5.00		99	90-110			M-3
Nitrate-N	1.21	0.11	mg/l	1.13		107	90-110			
Nitrite-N	1.52	0.15	mg/l	1.52		100	90-110			
Sulfate	10.1	0.50	mg/l	10.0		101	90-110			M-3
Matrix Spike Analyzed: 01/07/201	1 (11A0682-MS1)				Source: I	UA0665-0	1			
Nitrate-N	12.0	0.55	mg/l	1.13	10.6	122	80-120			MHA
Nitrite-N	2.18	0.75	mg/l	1.52	ND	143	80-120			M1

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604

Received: 01/06/11

# METHOD BLANK/QC DATA

## **INORGANICS**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•	Kesuit	Limit	Units	Level	Result	/oKEC	Lillits	KI D	Lillit	Quanners
Batch: 11A0682 Extracted: 01/07/11										
Matrix Spike Analyzed: 01/07/2011 (11A	.0682-MS2)				Source: I	UA0725-0	5			
Chloride	93.2	5.0	mg/l	50.0	46.6	93	80-120			
Nitrate-N	12.6	1.1	mg/l	11.3	1.60	98	80-120			
Nitrite-N	14.6	1.5	mg/l	15.2	ND	96	80-120			
Sulfate	164	5.0	mg/l	100	66.6	98	80-120			
Matrix Spike Dup Analyzed: 01/07/2011	(11A0682-N	ISD1)			Source: I	UA0665-0	1			
Nitrate-N	12.1	0.55	mg/l	1.13	10.6	131	80-120	0.8	20	MHA
Nitrite-N	2.21	0.75	mg/l	1.52	ND	145	80-120	1	20	M1
Batch: 11A0759 Extracted: 01/07/11										
Blank Analyzed: 01/07/2011 (11A0759-B	LK1)									
Surfactants (MBAS)	ND	0.10	mg/l							
LCS Analyzed: 01/07/2011 (11A0759-BS	1)									
Surfactants (MBAS)	0.255	0.10	mg/l	0.250		102	90-110			
Matrix Spike Analyzed: 01/07/2011 (11A	.0759-MS1)				Source: I	UA0573-0	1			
Surfactants (MBAS)	0.283	0.10	mg/l	0.250	ND	113	50-125			
Matrix Spike Dup Analyzed: 01/07/2011	(11A0759-M	ISD1)			Source: I	UA0573-0	1			
Surfactants (MBAS)	0.238	0.10	mg/l	0.250	ND	95	50-125	17	20	
Batch: 11A0802 Extracted: 01/08/11										
Blank Analyzed: 01/13/2011 (11A0802-B	LK1)									
Biochemical Oxygen Demand	ND	2.0	mg/l							

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604

Received: 01/06/11

# METHOD BLANK/QC DATA

## **INORGANICS**

	D 1/	Reporting	TT •4	Spike	Source	A/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11A0802 Extracted: 01/08/11										
LCS Analyzed: 01/13/2011 (11A0802-BS)	1)									
Biochemical Oxygen Demand	202	100	mg/l	198		102	85-115			
••	DCD4)		S							
LCS Dup Analyzed: 01/13/2011 (11A0802	2-BSD1) 200	100	/1	198		101	85-115	0.7	20	
Biochemical Oxygen Demand	200	100	mg/l	198		101	83-113	0.7	20	
Batch: 11A0811 Extracted: 01/08/11										
Dlauk Analyzada 01/09/2011 (11 A 0911 D)	L IZ1)									
Blank Analyzed: 01/08/2011 (11A0811-Bl Turbidity	ND	1.0	NTU							
Turbidity	ND	1.0	NIU							
<b>Duplicate Analyzed: 01/08/2011 (11A081</b>	1-DUP1)				Source: I	UA0604-0	3			
Turbidity	0.280	1.0	NTU		0.260			7	20	Ja
<b>Duplicate Analyzed: 01/08/2011 (11A081</b>	1-DUP2)				Source: I	UA0746-0	1			
Turbidity	9.56	1.0	NTU		9.52			0.4	20	
Batch: 11A0832 Extracted: 01/10/11										
Daten. 11A0652 Extracted. 01/10/11										
Blank Analyzed: 01/10/2011 (11A0832-Bl	LK1)									
Total Organic Carbon	ND	1.0	mg/l							
LCS Analyzed: 01/10/2011 (11A0832-BS)	1)									
Total Organic Carbon	9.93	1.0	mg/l	10.0		99	90-110			
Matrix Spike Analyzed: 01/10/2011 (11A)	0832-MS1)				Source: I	UA0758-0	2			
Total Organic Carbon	4.44	1.0	mg/l	5.00	ND	89	80-120			

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

## **INORGANICS**

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
<b>Batch: 11A0832 Extracted: 01/10/11</b>										
Matrix Spike Dup Analyzed: 01/10/2011	(11A0832-M	(SD1)			Source: I	UA0758-0	2			
Total Organic Carbon	4.65	1.0	mg/l	5.00	ND	93	80-120	5	20	
Batch: 11A0837 Extracted: 01/10/11										
Blank Analyzed: 01/10/2011 (11A0837-E	BLK1)									
Total Dissolved Solids	ND	10	mg/l							
LCS Analyzed: 01/10/2011 (11A0837-BS	91)									
Total Dissolved Solids	988	10	mg/l	1000		99	90-110			
			8				_			
<b>Duplicate Analyzed: 01/10/2011 (11A083</b>						UA0725-0	2			
Total Dissolved Solids	547	10	mg/l		545			0.4	10	
Batch: 11A1083 Extracted: 01/11/11										
Blank Analyzed: 01/11/2011 (11A1083-B	BLK1)									
Total Cyanide	ND	5.0	ug/l							
LCS Analyzed: 01/11/2011 (11A1083-BS	(1)									
Total Cyanide	196	5.0	ug/l	200		98	90-110			
M-4 C-9 AI J. 01/11/2011 /11 A	1002 MC1)				C T	II A 0 6 7 1 . 0	1			
Matrix Spike Analyzed: 01/11/2011 (11A Total Cyanide	184	5.0	ug/l	200	ND	UA0671-0 92	70-115			
Total Cyamuc	104	5.0	ug/I	200	ND	92	/0-113			
Matrix Spike Dup Analyzed: 01/11/2011	(11A1083-M	(SD1)			Source: I	UA0671-0	1			
Total Cyanide	183	5.0	ug/l	200	ND	91	70-115	0.7	15	

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

## **INORGANICS**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•	Result	Limit	Units	Level	Result	/0KEC	Lillits	KID	Lillit	Qualifiers
Batch: 11A1181 Extracted: 01/12/11										
Blank Analyzed: 01/12/2011 (11A1181-B										
Perchlorate	ND	4.0	ug/l							
LCS Analyzed: 01/12/2011 (11A1181-BS	1)									
Perchlorate	24.9	4.0	ug/l	25.0		100	85-115			
Matrix Spike Analyzed: 01/12/2011 (11A	1181-MS1)				Source: I	UA0668-0	1			
Perchlorate	31.1	4.0	ug/l	25.0	6.03	100	80-120			
Matrix Spike Dup Analyzed: 01/12/2011	(11A1181-M	SD1)			Source: I	UA0668-0	1			
Perchlorate	32.3	4.0	ug/l	25.0	6.03	105	80-120	4	20	
Batch: 11A1264 Extracted: 01/12/11										
Blank Analyzed: 01/12/2011 (11A1264-B	LK1)									
Ammonia-N (Distilled)	ND	0.500	mg/l							
LCS Analyzed: 01/12/2011 (11A1264-BS	1)									
Ammonia-N (Distilled)	10.1	0.500	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 01/12/2011 (11A	1264-MS1)				Source: I	UA0604-0	3			
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0	ND	98	70-120			
Matrix Spike Dup Analyzed: 01/12/2011	(11A1264-M	SD1)			Source: I	UA0604-0	3			
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0	ND	98	70-120	0	15	
Batch: 11A1276 Extracted: 01/12/11										
Blank Analyzed: 01/12/2011 (11A1276-B	LK1)									
Total Suspended Solids	ND	10	mg/l							

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Received: 01/06/11

Report Number: IUA0604

# METHOD BLANK/QC DATA

## **INORGANICS**

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11A1276 Extracted: 01/12/11										
LCS Analyzed: 01/12/2011 (11A1276-F	BS1)									
Total Suspended Solids	991	10	mg/l	1000		99	85-115			
Duplicate Analyzed: 01/12/2011 (11A1	276-DUP1)				Source: I	UA0871-0	2			
Total Suspended Solids	39.0	10	mg/l		40.0			3	10	



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8661 Extracted: 02/01/11										
LCS Analyzed: 02/01/2011 (S101095-03) Uranium, Total	57.7	1	pCi/L	56.5	Source:	102	80-120			
Oramum, Total	31.1	1	pCI/L	30.3		102	80-120			
Blank Analyzed: 02/01/2011 (S101095-04	)				Source:					
Uranium, Total	0	1	pCi/L				-			U
Duplicate Analyzed: 02/01/2011 (S101095	5-05)				Source: Il	UA0604-0	3			
Uranium, Total	0.067	1	pCi/L		0.065		-	3		Jb



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8661 Extracted: 01/19/11										
LCS Analyzed: 01/19/2011 (S101095-03)					Source:					
Gross Alpha	46.6	3	pCi/L	40.4		115	70-130			
Gross Beta	34	4	pCi/L	35		97	70-130			
Blank Analyzed: 01/19/2011 (S101095-04	1)				Source:					
Gross Alpha	0.096	3	pCi/L				-			U
Gross Beta	-0.02	4	pCi/L				-			U
Duplicate Analyzed: 01/19/2011 (S10109)	5-05)				Source: I	UA0604-0	3			
Gross Alpha	0.394	3	pCi/L		0.496		-	0		U
Gross Beta	0.358	4	pCi/L		0.161		-	0		U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604

Received: 01/06/11

# METHOD BLANK/QC DATA

## 901.1

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8661 Extracted: 01/13/11										
LCS Analyzed: 01/17/2011 (S101095-03)					Source:					
Cobalt-60	127	10	pCi/L	128		99	80-120			
Cesium-137	109	20	pCi/L	110		99	80-120			
Blank Analyzed: 01/17/2011 (S101095-04	•)				Source:					
Cesium-137	ND	20	pCi/L				-			U
Potassium-40	ND	25	pCi/L				-			U
Duplicate Analyzed: 01/18/2011 (S10109	5-05)				Source: I	UA0604-0	3			
Cesium-137	ND	20	pCi/L		0		-	0		U
Potassium-40	ND	25	pCi/L		0		-	0		U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

## 903.1

Analyte  Batch: 8661 Extracted: 01/27/11	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 01/27/2011 (S101095-03) Radium-226	59.1	1	pCi/L	55.7	Source:	106	80-120			
Blank Analyzed: 01/27/2011 (S101095-04) Radium-226	-0.097	1	pCi/L		Source:		-			U
<b>Duplicate Analyzed: 01/27/2011 (S101095</b> Radium-226	<b>0.547</b>	1	pCi/L		Source: IV 0.448	U <b>A0604-0</b> :	3 -	20		Jb



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Received: 01/06/11

Report Number: IUA0604

# METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
<b>Batch: 8661 Extracted: 01/27/11</b>										
LCS Analyzed: 01/27/2011 (S101095-03	5)				Source:					
Radium-228	4.91	1	pCi/L	4.62		106	60-140			
Blank Analyzed: 01/27/2011 (S101095-0	04)				Source:					
Radium-228	-0.023	1	pCi/L				-			U
<b>Duplicate Analyzed: 01/27/2011 (S1010)</b>	95-05)				Source: I	UA0604-0	3			
Radium-228	0.2	1	pCi/L		0.17		-	0		U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604

Received: 01/06/11

# METHOD BLANK/QC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8661 Extracted: 01/19/11										
LCS Analyzed: 01/26/2011 (S101095-03)					Source:					
Strontium-90	18	2	pCi/L	17.5		103	80-120			
Blank Analyzed: 01/26/2011 (S101095-04	)				Source:					
Strontium-90	-0.233	2	pCi/L				-			U
Duplicate Analyzed: 01/26/2011 (S101095	5-05)				Source: I	UA0604-0	3			
Strontium-90	-0.159	2	pCi/L		0.051		-	0		U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

Analyte  Batch: 8661 Extracted: 01/27/11	Result	eporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 01/27/2011 (S101095-03) Tritium	2410	500	pCi/L	2540	Source:	95	80-120			
Blank Analyzed: 01/27/2011 (S101095-04) Tritium	-130	500	pCi/L		Source:		-			U
<b>Duplicate Analyzed: 01/27/2011 (S101095</b> Tritium	<b>-05)</b> -70.7	500	pCi/L		<b>Source: II</b> -18.9	U <b>A0604-0</b> 3	3 -	0		U



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

### EPA-5 1613Bx

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
•		Limit	Omis	Level	Result	/0KEC	Limits	KI D	Limit	Quanners
Batch: 1011239 Extracted: 01/11/11	-									
Blank Analyzed: 01/13/2011 (G1A11	0000239B)				Source:					
1,2,3,4,6,7,8-HpCDD	1.3e-006	0.00005	ug/L				_			J, Q
1,2,3,4,6,7,8-HpCDF	ND	0.00005	ug/L				-			
1,2,3,4,7,8,9-HpCDF	ND	0.00005	ug/L				-			
1,2,3,4,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,4,7,8-HxCDF	ND	0.00005	ug/L				-			
1,2,3,6,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,6,7,8-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8,9-HxCDD	ND	0.00005	ug/L				-			
1,2,3,7,8,9-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDD	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,4,6,7,8-HxCDF	ND	0.00005	ug/L				-			
2,3,4,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	ug/L				-			
OCDD	4.8e-006	0.0001	ug/L				-			J
OCDF	1.2e-006	0.0001	ug/L				-			J, Q
Total HpCDD	2.5e-006	0.00005	ug/L				-			J, Q
Total HpCDF	ND	0.00005	ug/L				-			
Total HxCDD	ND	0.00005	ug/L				-			
Total HxCDF	ND	0.00005	ug/L				-			
Total PeCDD	ND	0.00005	ug/L				-			
Total PeCDF	ND	0.00005	ug/L				-			
Total TCDD	ND	0.00001	ug/L				-			
Total TCDF	ND	0.00001	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0018		ug/L	0.002		91	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0016		ug/L	0.002		81	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0017		ug/L	0.002		86	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0016		ug/L	0.002		82	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0015		ug/L	0.002		77	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0018		ug/L	0.002		92	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0016		ug/L	0.002		81	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0016		ug/L	0.002		80	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0021		ug/L	0.002		103	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0021		ug/L	0.002		103	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0016		ug/L	0.002		81	28-136			

#### **TestAmerica Irvine**



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

#### EPA-5 1613Bx

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	DDD	RPD Limit	Data Qualifiers
•	Kesuit	Limit	Ullits	Level	Result	70KEC	Lillits	KFD	Lillit	Quanners
Batch: 1011239 Extracted: 01/11/11										
Blank Analyzed: 01/13/2011 (G1A1100	000239B)				Source:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.002		ug/L	0.002		99	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0018		ug/L	0.002		91	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0017		ug/L	0.002		83	24-169			
Surrogate: 13C-OCDD	0.0034		ug/L	0.004		84	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00078		ug/L	0.0008		98	35-197			
LCS Analyzed: 01/13/2011 (G1A11000	0239C)				Source:					
1,2,3,4,6,7,8-HpCDD	0.000908	0.00005	ug/L	0.001		91	70-140			Ва
1,2,3,4,6,7,8-HpCDF	0.000999	0.00005	ug/L	0.001		100	82-122			
1,2,3,4,7,8,9-HpCDF	0.000996	0.00005	ug/L	0.001		100	78-138			
1,2,3,4,7,8-HxCDD	0.000983	0.00005	ug/L	0.001		98	70-164			
1,2,3,4,7,8-HxCDF	0.000904	0.00005	ug/L	0.001		90	72-134			
1,2,3,6,7,8-HxCDD	0.000855	0.00005	ug/L	0.001		85	76-134			
1,2,3,6,7,8-HxCDF	0.000899	0.00005	ug/L	0.001		90	84-130			
1,2,3,7,8,9-HxCDD	0.000916	0.00005	ug/L	0.001		92	64-162			
1,2,3,7,8,9-HxCDF	0.000903	0.00005	ug/L	0.001		90	78-130			
1,2,3,7,8-PeCDD	0.000976	0.00005	ug/L	0.001		98	70-142			
1,2,3,7,8-PeCDF	0.000857	0.00005	ug/L	0.001		86	80-134			
2,3,4,6,7,8-HxCDF	0.000909	0.00005	ug/L	0.001		91	70-156			
2,3,4,7,8-PeCDF	0.000868	0.00005	ug/L	0.001		87	68-160			
2,3,7,8-TCDD	0.000185	0.00001	ug/L	0.0002		92	67-158			
2,3,7,8-TCDF	0.000167	0.00001	ug/L	0.0002		84	75-158			
OCDD	0.00167	0.0001	ug/L	0.002		84	78-144			Ва
OCDF	0.00159	0.0001	ug/L	0.002		80	63-170			Ва
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0019		ug/L	0.002		95	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0017		ug/L	0.002		85	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0018		ug/L	0.002		90	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00179		ug/L	0.002		89	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00164		ug/L	0.002		82	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00201		ug/L	0.002		100	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00172		ug/L	0.002		86	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00164		ug/L	0.002		82	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0021		ug/L	0.002		105	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00207		ug/L	0.002		104	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0017		ug/L	0.002		85	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00204		ug/L	0.002		102	13-328			

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Report Number: IUA0604 Received: 01/06/11

# METHOD BLANK/QC DATA

# EPA-5 1613Bx

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1011239 Extracted: 01/11/11										
LCS Analyzed: 01/13/2011 (G1A11000	0239C)				Source:					
Surrogate: 13C-2,3,7,8-TCDD	0.00179		ug/L	0.002		90	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00167		ug/L	0.002		83	22-152			
Surrogate: 13C-OCDD	0.00354		ug/L	0.004		89	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000811		ug/L	0.0008		101	31-191			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200 Sampled: 01/06/11-01/07/11

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

Attention: Bronwyn Kelly

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IUA0604-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0	4.7	15
IUA0604-01	624-Boeing 001/002Q (Fr113+X+	Fr1,1-Dichloroethene	ug/l	0	0.50	6
IUA0604-01	624-Boeing 001/002Q (Fr113+X+	FrTrichloroethene	ug/l	0	0.50	5
IUA0604-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.3

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

					Compliance
LabNumber	Analysis Analyte	Units	Result	MRL	Limit
IUA0604-02	624-Boeing 001/002Q (Fr113+X+Fr1,1-Dichloroethene	ug/l	0	0.50	6
IUA0604-02	624-Boeing 001/002Q (Fr113+X+FrTrichloroethene	ug/l	0	0.50	5

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IUA0604-03	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0094	0.03
IUA0604-03	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.66	13
IUA0604-03	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	4.72	18
IUA0604-03	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.45	4.72	4
IUA0604-03	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	4.72	16
IUA0604-03	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	4.72	16.5
IUA0604-03	Ammonia-N, Titr 4500NH3-C (w/c	li:Ammonia-N (Distilled)	mg/l	0	0.500	10.1
IUA0604-03	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	0.46	2.0	30
IUA0604-03	Cadmium-200.8	Cadmium	ug/l	0.0030	1.0	3.1
IUA0604-03	Chloride - 300.0	Chloride	mg/l	51	5.0	150
IUA0604-03	Copper-200.8	Copper	ug/l	2.61	2.00	14
IUA0604-03	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	-3	5.0	8.5
IUA0604-03	Lead-200.8	Lead	ug/l	0.095	1.0	5.2
IUA0604-03	MBAS - SM5540C	Surfactants (MBAS)	mg/l	0.020	0.10	0.5
IUA0604-03	Mercury - 245.1	Mercury	ug/l	0	0.20	0.1
IUA0604-03	Nitrate-N, 300.0	Nitrate-N	mg/l	0.069	0.11	8
IUA0604-03	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
IUA0604-03	Nitrogen, NO3+NO2 -N EPA 300.0	) Nitrate/Nitrite-N	mg/l	0.069	0.26	8
IUA0604-03	Perchlorate 314.0 - Default	Perchlorate	ug/l	0	4.0	6

#### **TestAmerica Irvine**

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasade	C	Project ID: Routine Outfall 019	9			
618 Michilling Arcadia, CA 9 Attention: Bro		Report Number: IUA0604			oled: 01/06/11 ved: 01/06/11	
IUA0604-03	Selenium-200.8	Selenium	ug/l	0.48	2.0	5
IUA0604-03	Sulfate-300.0	Sulfate	mg/l	104	5.0	300
IUA0604-03	TDS - SM2540C	Total Dissolved Solids	mg/l	410	10	950
IUA0604-03	TSS - SM2540D	Total Suspended Solids	mg/l	0	10	45
IUA0604-03	Zinc-200.7	Zinc	ug/l	50	20.0	119

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200 Sampled: 01/06/11-01/07/11

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

Attention: Bronwyn Kelly

## DATA QUALIFIERS AND DEFINITIONS

В	Analyte was detected in the associated Method Blank.
---	------------------------------------------------------

- Ba Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated result. Result is less than the reporting limit.
- Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- **Jb** The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits.

  Analyte not detected, data not impacted.
- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **Q** Estimated maximum possible concentration (EMPC).
- R The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.
- R-7 LCS/LCSD RPD exceeded the acceptance limit. Recovery met acceptance criteria.
- U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.
- **ND** Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 019

Sampled: 01/06/11-01/07/11

Received: 01/06/11

Report Number: IUA0604

# **Certification Summary**

#### **TestAmerica Irvine**

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 120.1	Water	X	X
EPA 1664A	Water	X	X
EPA 180.1	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1-Diss	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
SM 2540D	Water	X	X
SM2340B-Diss	Water		
SM2340B	Water	X	X
SM2540C	Water	X	
SM2540F	Water	X	X
SM4500CN-E	Water	X	X
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5310B	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IUA0604-03

Analysis Performed: Bioassay-Acute 96hr

Samples: IUA0604-03

# TestAmerica Irvine

Debby Wilson Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200 Sampled: 01/06/11-01/07/11

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

# Attention: Bronwyn Kelly Eberline Services - SUB

MWH-Pasadena/Boeing

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IUA0604-03, IUA0604-04

Analysis Performed: Gross Alpha Samples: IUA0604-03, IUA0604-04

Analysis Performed: Gross Beta Samples: IUA0604-03, IUA0604-04

Analysis Performed: Level 4 Data Package Samples: IUA0604-03, IUA0604-04

Analysis Performed: Radium, Combined Samples: IUA0604-03, IUA0604-04

Analysis Performed: Strontium 90 Samples: IUA0604-03, IUA0604-04

Analysis Performed: Tritium

Samples: IUA0604-03, IUA0604-04

Analysis Performed: Uranium, Combined Samples: IUA0604-03, IUA0604-04



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 019

618 Michillinda Avenue, Suite 200 Sampled: 01/06/11-01/07/11

Arcadia, CA 91007 Report Number: IUA0604 Received: 01/06/11

Attention: Bronwyn Kelly

#### TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8661

Samples: IUA0604-03, IUA0604-04

Method Performed: 900

Samples: IUA0604-03, IUA0604-04

Method Performed: 901.1

Samples: IUA0604-03, IUA0604-04

Method Performed: 903.1

Samples: IUA0604-03, IUA0604-04

Method Performed: 904

Samples: IUA0604-03, IUA0604-04

Method Performed: 905

Samples: IUA0604-03, IUA0604-04

Method Performed: 906

Samples: IUA0604-03

#### TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B

Samples: IUA0604-03

A control of the second of the control of the contr

IUA 0604

Client Name/A	Address:			Project:										ANA	ALYSI	SREC	UIRE		<del></del>		
MWH-Arcad 618 Michillinda Arcadia, CA	a Ave, S	uite 200		Boeing-SSFL N Quarterly Out GRAB																	Field readings: (Log in and include in report Temp and pH)
Test America	Contact	Debby Wils	son				13	1EM)													Temp °F = 50 0 pH = 6.8 DO = 4.50
Project Manag	-:   		VOCs 624 + Freon 113	Oil & Grease (1664-HEM)	Settleable Solids	Conductivity										ļ	Time of readings				
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	voc	Oii &	Settle	Cond											Comments
Outfall 019	w	VOAs	5	1-6-2011	нсі	1A, 1B, 1C, 1D, 1E	Х														
Outfall 019	w	1L Amber	2		HCI	2A, 2B		х													
Outfall 019	W	1L Poly	1		None	3			х												
Outfall 019	w	500 mL Poly	2	<b>b</b>	None	4A, 4B				х											
Trip Blanks	w	VOAs	3	08:35	HCI	5A, 5B, 5C	x														
																· <del>-</del> ·		•••		i	15:05
																					1 100
																					1/1/
													_								
								<u> </u>		ļ											
	ļ							<u> </u>	ļ												
	ļ							ļ													
<u> </u>	Thes	e Samples a	are ti	he Grab Portio	n of Outfall	019 for <b>t</b> his	storn	n_eve	nt. C	ompo	site s	sampl	les wi	ill fol	low a	nd are	to be	adde	d to th	is wo	rk order.
Relinquished By		D	ate/Ti	me: /-6-3	2011	Received By	<del>/</del> //	M		D <b>β</b> (e/ī	ime:   - 4	9-11 4:0	( W		Turn-ar	ound tim	e: (Checl	<b>(</b> )	10 Day: Normal:		
Relinquished/By	#//	July	ate/Ti	1-6-1	5	Received By	<i>&gt;</i>	4	_(	Date/i	[11	[{		5	Sample Intact:	Integrity	: (Check) On Ice:		_		
Treilinguistied by	C)	Ψ	ut6/ [ ]	me.		Ivereinen på				Date/1	mac.				Data Re	quireme	nts: (Che	eck)	NPDES	Level IV:	x

# **CHAIN OF CUSTODY FORM**

Page 2 of 3

IVA 0604

Client Name/A	ddress:		-	Project										_		ANA	LYSIS R	EQUIRE	D		<u> </u>	
MWH-Arcad					-SSFL N	IPDES	1															\\
618 Michillinda		uite 200		Quarte	rly Out			Ś									625					
Arcadia, CA				COMP	OSITE		,	Ę									-i					
		5		Tin	re 4	saited -ed	'	Po,				ate					Bis(2 (SVC				l .	
Test America	Contact	Debby Wil	son	14/4	: 4 4-	-ed		Čr Čr				훋					CP,					*
				We	/'y''			Total Recoverable Metals: Cu, Pb, Hg, Se, Zn, Hardness as CaCO ₃	ers)			Cľ, SO₄, NO₃+NO₂-N, Perchlorate					2,4,6 TCP, 2,4 Dinitrotoluene, Bis(2- ethylhexyl)phthalate, NDMA, PCP (SVOCs 625)			**		Comments
Project Manag	or: Pro	nunn Kolly		Phono	Number			as C	TCDD (and all congeners)	() s	ŝ	Z-Z,	_	SS	5)		itroi NDI			,		Comments
r roject ivianaç	ger. Bro	I		able ess	8	je je	₽₩	ş	ite-	), TS	350.	(80	4 Dir									
Sampler: $R$	LIN	•		ver Irdn	g	l ge	<u>\$</u>	ο̈́	Nit	<u> </u>	Z	9) (	2,2					·				
Campler. (C)	~ ~ ~	MAGE	5		ğ. ∓	(an	8	ta	4,	ž	ιχ	je je	표	2 (§								
Sample	Sample	Container			al F	8	BOD ₅ (20 degrees C)	Surfactants (MBAS)	S	Nitrate-N, Nitrite-N	Turbidity, TDS, TSS	Ammonia-N (350.2)	Alpha BHC (608)	,6 T								
Description	Matrix	Туре	# of Cont.	Date		Preservative	Bottle #	Se		8	nS.	5	ž	2	ΑĀ	₹	2,4 eth					
Outfall 019	w	1L Poly	1	1-7:		HNO₃	6A	Х														
Outfall 019 Dup	w	1L Poly	1			HNO₃	6B	×														
Outfall 019	w	1L Amber	2			None	7A, 7B		х									_	1			
Outfall 019	w	1L Poly	1	-		None	8			х												18, 18
Outfall 019	w	500 mL Poly	2			None	9A, 9B		į		×											17111/
Outfall 019	w	500 mL Poly	2			None	10A, 10B					Х										
Outfall 019	w	500 mL Poly	1			None	11						х									111
Outfall 019	w	500 mL Poly	2			None	12A, 12B							x_								
Outfall 019	w	500 mL Poly	1			H₂SO₄	13								х						<u> </u>	
Outfall 019	w	1L Amber	2	₩		None	14A, 14B									Х						
Outfall 019	w	1L Amber	2		2011	None	15A, 15B										Х					
		<u> </u>		l	COC D-	0 0 -		2 of 2 or					nloo	for O	L tefall	010	for this s	torm ou	ont	<u> </u>	<u> </u>	
		<del>-</del>				ge 2 of 3 a																
Relinquished By			Date/Ti				Received B		IK OIL	161 10							round time: (		event.			
2.11	3min				./~ 0	20//	17.	11. /-	~ 1				-7	_	_	24 Hou	ır:	72 Hour: _		10 Day: _		
King				$\mathcal{U}$	25		1400	MI	//u	yv,			11:2	25		48 Hou	ur:	5 Day: _		Normal: _	×	
Relinquished By	_	$ \rho_{\rm i}$	Date/Ti	ime:	<u> </u>	•	Received B	<u> </u>		1 6	Date/					1						
1/11/	10			1-	t-11			=								Sample	e Integrity; (C	heck)				
1/1/ WAR	(///	wy /		1	6:4	60										Intact:	a integrity, (C	On Ice:	X			
Relinquished By		1//	Date/T	ime:	<u> </u>		Received	*				Time:				1						
											•	110	NI	11	سره	Data R	Requirements	(Check)				
No Level IV: All Level IV: NPDES Level IV:																						

Client Name/	Address:			Proie	ct:									ANALYSIS	REQL	JIREI	)				
MWH-Arca 618 Michillind Arcadia, CA	dia a Ave, S	uite 200		Boein Quar	g-SSFL i terly Out POSITE			Cd, Se,		0.0), Total 33.1) & 0), K-				, , , , , ,							
Test America		: Debby Wil	son	Tiv	me Jeigb	ted		ls: Cu, Pb, Hg, 303		Gross Beta(90 Sr-90 (905.0), 26 (903.0 or 90 Uranium (908											Comments
Project Mana				(626) Fax M (626)	e Numbe 568-669 lumber: 568-651	1		Total Dissolved Metals: Cu, Zn, Hardness as CaCO3	Total Organic Carbon	Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)	Acute Toxicity	ide	Chronic Toxicity								
Sample Description	Sample Matrix	Container Type	# of Cont.	Da	ampling te/Time	Preservative	Bottle #	Total Zn, F	Total	Gros Tritiu Com Radii 40, C	Acut	Cyanide	Chro								
Outfall 019	w	1L Poly	1	10	7-2011 3.59	None	16	х													Filter w/in 24hrs of receipt at lab
Outfall 019	w	250 mL Glass	1			HCI	17		х												
Outfall 019	w	2.5 Gal Cube	1			None	18A			×											Unfiltered and unpreserved analysis
Outlan 019	VV	500 mL Amber	1			None	18B			^											Offiniered and anpreserved analysis
Outfall 019	w	1 Gal Cube	1			None	19				х		<u> </u>						ļ		
Outfall 019	W	500 mL Poly	1	₩		NaOH	20					×									
Outfall 019	w	1 Gal Poly	1	0	7:2011	None	21						х							<u> </u>	Only test if first or second rain events of the year
-																					
	-				**																
					0001	20-62		20 - 6 2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		   f-		fall 040 for this					<u> </u>		
										the composite order for \$OC											<u> </u>
Relinquished By			Date/T	ime:	1. 7	2011	Received	y y	7	Date/Tir	ne:	$\frac{1}{1-1}$	1	7			ime: (Ch	neck)			
Wich 13-5 11:25 Mart Out 11:25												24 Hoi 48 Hoi	ur: ur:	_ 72 Hot _ 5 Day:	ur:	_ 10 Da _ Norma	y: al:				
Relinquished By	60	ruit s	Date/T	ime:	-4.1	[ ] _u	Received B	у		Date/Tir	ne:				Sampl Intact:	e Integr	/ ity: (Che _ On Ice	eck) a:	<u> </u>		
Relinquished By Date/Time: Receiv							Received B	2		Date/Tir		(()	( b	40		Requirer	ments: (0	Check)		S Level	ıv: <u>X</u>



EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

February 7, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine IUA0604

Eberline Analytical Report S101095-8661

Sample Delivery Group 8661

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Job No. IUA0604. The samples were received on January 11, 2011.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

N. Joseph Werville

Client Services Manager

RM/ljb

Enclosure: Level IV CLP-like Data Package CD

#### Case Narrative, page 1

February 7, 2011

#### 1.0 General Comments

Sample delivery group 8661 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volume.

# 2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

#### 3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2^oerror (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

#### Case Narrative, page 2

February 7, 2011

# 4.0 Analysis Notes

- **4.1 Gross Alpha/Gross Beta Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis -** The Sr-90 MDA for sample IUA0604-04 (2.26 pCi/L) was greater than the required detection limit of 2.00 pCi/L. No other problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4 Radium-226 Analysis -** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.7 Gamma Spectroscopy** The K-40 MDA for QC Method Blank (41.2 pCi/L) was greater than the required detection limit of 25 pCi/L. No other problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

#### 5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

02/07/11 Date

N. Joseph Verville

Client Services Manager

SDG <u>8661</u> Contact <u>N. Joseph Verville</u> Client <u>Test America, Inc.</u> Contract <u>TUA0604</u>

# SUMMARY DATA SECTION

TABLE OF	C O	N T	E N	T S	
About this section	•	•		•	1
Sample Summaries	•				3
Prep Batch Summary	•		•	•	5
Work Summary	•		•	•	6
Method Blanks	•	•	•	•	8
Lab Control Samples	•	•	•	•	9
Duplicates	•	•	•	•	10
Data Sheets	•	•	•	•	11
Method Summaries	•	•	•	•	13
Report Guides	•			•	21
End of Section	•	•		•	35

16

Prepared by

Reviewed by

Melgus

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06

Report date <u>02/07/11</u>

SDG 8661

SDG <u>8661</u> Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

#### SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

#### PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

#### WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

#### METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

#### LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

**DUPLICATES** 

REPORT GUIDES
Page 1
SUMMARY DATA SECTION

Page 1

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

SDG 8661
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

#### MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

#### DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

#### METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

#### REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES

Page 2
SUMMARY DATA SECTION

Page 2

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

SDG 8661
Contact N. Joseph Verville

# LAB SAMPLE SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF CUSTODY	COLLECTED
S101095-01	IUA0604-03	Boeing - SSFL	WATER			IUA0604	01/07/11 08:59
520200	IUA0604-04 (TRIP BLANK)	Boeing - SSFL	WATER			IUA0604	01/07/11 18:25
S101095-03	Lab Control Sample		WATER				
S101095-04	Method Blank		WATER				
S101095-05	Duplicate (S101095-01)	Boeing - SSFL	WATER				01/07/11 08:59

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

SDG <u>8661</u>
Contact <u>N. Joseph Verville</u>

SDG 8661

# QC SUMMARY

Client Test America, Inc.
Contract IUA0604

QC BATCH	CHAIN OF	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8661	IUA0604	IUA0604-03 IUA0604-04 (TRIP BLANK)	WATER WATER		10.0 L 10.0 L		01/1Ì/11 01/11/11	4 4	S101095-01 S101095-02	8661-001 8661-002
		Method Blank Lab Control Sample Duplicate (S101095-01)	WATER WATER WATER		10.0 L		01/11/11	4	S101095-04 S101095-03 S101095-05	8661-004 8661-003 8661-005

QC SUMMARY
Page 1
SUMMARY DATA SECTION
Page 4

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-QS</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

SDG 8661
Contact N. Joseph Verville

#### PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

			PREPARATION	ERROR			- PLA	NCHETS 2	ANALYZ	ED —	QUALI-
TEST	MATRIX	METHOD	ватсн	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Beta	Counting					,					
AC	WATER	Radium-228 in Water	7271-043	10.4	2			1	1	1/1	
SR	WATER	Strontium-90 in Water	7271-043	10.4	2			1	1	1/1	
Gas I	roportiona	al Counting									
A08	WATER	Gross Alpha in Water	7271-043	20.6	2			1	1	1/1	
8 0 B	WATER	Gross Beta in Water	7271-043	11.0	2			1	1	1/1	
Gamma	Spectros	сору									
GAM	WATER	Gamma Emitters in Water	7271-043	7.0	2			1	1	1/1	
Kinet	ic Phosph	orimetry, ug									
U_T	WATER	Uranium, Total	7271-043		2			1	1	1/1	
Liqui	d Scintil	lation Counting									
Н	WATER	Tritium in Water	7271-043	10.0	1			1	1	1/1	
Rador	Counting										
RA	WATER	Radium-226 in Water	7271-043	16.4	2			1	1	1/1	

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY

Page 1

SUMMARY DATA SECTION

Page 5

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-PBS

 Version
 3.06

 Report date
 02/07/11

SDG 8661

SDG <u>8661</u>
Contact <u>N. Joseph Verville</u>

# LAB WORK SUMMARY

Client Test America, Inc.

Contract IUA0604

LAB SAMPLE COLLECTED	CLIENT SAMPLE ID	MATRIX			SUF-				
RECEIVED	CUSTODY SAS no		PLANCHET	TEST	FIX	ANALYZED	REVIEWED	вч	METHOD
S101095-01	IUA0604-03	,	8661-001	80A/80		01/19/11	01/24/11	BW	Gross Alpha in Water
01/07/11	Boeing - SSFL	WATER	8661-001	80B/80		01/19/11	01/24/11	BW	Gross Beta in Water
01/11/11	IUA0604		8661-001	AC		01/27/11	01/28/11	BW	Radium-228 in Water
			8661-001	GAM		01/17/11	01/20/11	MWT	Gamma Emitters in Water
· ·			8661-001	Н		01/27/11	02/03/11	BW	Tritium in Water
			8661-001	RA		01/27/11	01/28/11	BW	Radium-226 in Water
			8661-001	SR		01/26/11	01/31/11	BW	Strontium-90 in Water
			8661-001	U_T		02/01/11	02/03/11	BW	Uranium, Total
S101095-02	IUA0604-04 (TRIP BLANK)		8661-002	80A/80		01/21/11	01/24/11	BW	Gross Alpha in Water
01/07/11	Boeing - SSFL	WATER	8661-002	80B/80		01/21/11	01/24/11	BW	Gross Beta in Water
01/11/11	IUA0604		8661-002	AC		01/27/11	01/28/11	BW	Radium-228 in Water
			8661-002	GAM		01/20/11	01/20/11	MWT	Gamma Emitters in Water
•			8661-002	RA ·		01/27/11	01/28/11	BW	Radium-226 in Water
			8661-002	SR		01/26/11	01/31/11	BW	Strontium-90 in Water
			8661-002	U_T		02/01/11	02/03/11	BW	Uranium, Total
S101095-03	Lab Control Sample		8661-003	80A/80		01/19/11	01/24/11	BW	Gross Alpha in Water
		WATER	8661-003	80B/80		01/19/11	01/24/11	BW	Gross Beta in Water
			8661-003	AC		01/27/11	01/28/11	BW	Radium-228 in Water
			8661-003	GAM		01/17/11	01/20/11	MWT	Gamma Emitters in Water
			8661-003	Н		01/27/11	02/03/11	BW	Tritium in Water
			8661-003	RA		01/27/11	01/28/11	BW	Radium-226 in Water
			8661-003	SR		01/26/11	01/31/11	BW	Strontium-90 in Water
			8661-003	U_T		02/01/11	02/03/11	BW	Uranium, Total
S101095-04	Method Blank		8661-004	80 <b>A</b> /80		01/19/11	01/24/11	BW	Gross Alpha in Water
		WATER	8661-004	80B/80		01/19/11	01/24/11	BW	Gross Beta in Water
			8661-004	AC		01/27/11	01/28/11	BW	Radium-228 in Water
			8661-004	GAM		01/17/11	01/20/11	MWT	Gamma Emitters in Water
			8661-004	Н		01/27/11	02/03/11	BW	Tritium in Water
			8661-004	RA		01/27/11	01/28/11	BW	Radium-226 in Water
			8661-004	SR		01/26/11	01/31/11	BW	Strontium-90 in Water
			8661-004	<b>U_T</b>		02/01/11	02/03/11	BW	Uranium, Total

WORK SUMMARY
Page 1

SUMMARY DATA SECTION

Page 6

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LWS</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

SDG <u>8661</u>
Contact <u>N. Joseph Verville</u>

# WORK SUMMARY, cont.

Client Test America, Inc.
Contract IUA0604

LAB SAMPLE	CLIENT SAMPLE ID				ama				
COLLECTED	LOCATION CUSTODY SAS no	MATRIX	PLANCHET	TEST	SUF- FIX	ANALYZED	REVIEWED	вч	METHOD
S101095-05	Duplicate (S101095-01)		8661-005	80A/80		01/19/11	01/24/11	BW	Gross Alpha in Water
01/07/11	Boeing - SSFL	WATER	8661-005	80B/80		01/19/11	01/24/11	BW	Gross Beta in Water
01/11/11			8661-005	AC		01/27/11	01/28/11	BW	Radium-228 in Water
01/11/11			8661-005	GAM		01/18/11	01/20/11	MWT	Gamma Emitters in Water
			8661-005	Н		01/27/11	02/03/11	BW	Tritium in Water
			8661-005	RA		01/27/11	01/28/11	BW	Radium-226 in Water
			8661-005	SR		01/26/11	01/31/11	BW	Strontium-90 in Water
			8661-005	<b>U_</b> T		02/01/11	02/03/11	BW	Uranium, Total

TEST	SAS no	COUNTS	OF TESTS REFERENCE	вч	SAMPLE TYPE  CLIENT MORE	RE	BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0		2		1	1	1	5
80B/80		Gross Beta in Water	900.0		2		1	1	1	5
AC		Radium-228 in Water	904.0		2		1	1	1	5
GAM		Gamma Emitters in Water	901.1		2		1	1	1	5
Н		Tritium in Water	906.0		1		1	1	, <b>1</b>	4
RA		Radium-226 in Water	903.1		2		1	1	1	5
SR		Strontium-90 in Water	905.0		2		1	1	1	5
U_T		Uranium, Total	D5174		2		1	1	1	5
TOTALS					15		8	8	8	39

WORK SUMMARY

Page 2

SUMMARY DATA SECTION

Page 7

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 02/07/11

8661-004

#### METHOD BLANK

Method Blank

SDG 8661 Client Test America, Inc.
Contact N. Joseph Verville Contract IUA0604

Lab sample id S101095-04 Client sample id Method Blank
Dept sample id 8661-004 Material/Matrix WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.096	0.21	0.448	3.00	Ū	80A
Gross Beta	12587472	-0.020	0.56	0.952	4.00	U	80B
Tritium	10028178	-130	160	293	500	υ	H
Radium-226	13982633	-0.097	0.26	0.518	1.00	Ū	RA
Radium-228	15262201	-0.023	0.34	0.392	1.00	Ū	AC
Strontium-90	10098972	-0.233	0.54	1.39	2.00	υ	SR
Uranium, Total		0	0.007	0.016	1.00	U	U_T
Potassium-40	13966002	U		41.2	25.0	U	GAM
Cesium-137	10045973	υ		2.06	20.0	U	GAM

QC-BLANK #76836

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

8661-003

Lab Control Sample

# LAB CONTROL SAMPLE

Client Test America, Inc.
Contract IUA0604

Lab sample id <u>S101095-03</u>
Dept sample id <u>8661-003</u>

SDG <u>8661</u>

Contact N. Joseph Verville

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	46.6	2.6	0.674	3.00		A08	40.4	1.6	115	75-125	70-130
Gross Beta	34.0	1.5	1.24	4.00		80B	35.0	1.4	97	88-112	70-130
Tritium	2410	270	290	500		Н	2540	100	95	85-115	80-120
Radium-226	59.1	2.4	0.606	1.00		RA	55.7	2.2	106	82-118	80-120
Radium-228	4.91	0.28	0.322	1.00		AC	4.62	0.18	106	87-113	60-140
Strontium-90	18.0	2.2	1.46	2.00		SR	17.5	0.70	103	83-117	80-120
Uranium, Total	57.7	6.5	0.160	1.00		U_T	56.5	2.3	102	88-112	80-120
Cobalt-60	127	4.2	2.02	10.0		GAM	128	5.1	99	91-109	80-120
Cesium-137	109	3.6	2.52	20.0		GAM	110	4.4	99	91-109	80-120

QC-LCS #76835

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LCS

 Version
 3.06

 Report date
 02/07/11

SDG 8661

8661-005

#### DUPLICATE

IUA0604-03

SDG 8661

Contact N. Joseph Verville

DUPLICATE

Dept sample id <u>8661-005</u>

Lab sample id <u>S101095-05</u>

ORIGINAL

Lab sample id <u>S101095-01</u>

Dept sample id 8661-001

Received <u>01/11/11</u>

Client <u>Test America, Inc.</u>

Contract IUA0604

Client sample id <u>IUA0604-03</u>

Location/Matrix Boeing - SSFL WATER

Collected/Volume 01/07/11 08:59 10.0 L

Chain of custody id IUA0604

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ TOT	DER σ
Gross Alpha	0.394	0.33	0.461	3.00	ΰ	80A	0.496	0.69	1.13	U	-		0.3
Gross Beta	0.358	0.98	1.61	4.00	U	80B	0.161	1.1	1.75	U	-		0.3
Tritium	-70.7	170	298	500	U	н	-18.9	170	298	U	-		0.4
Radium-226	0.547	0.35	0.515	1.00	J	RA	0.448	0.33	0.512	Ū	20	149	0.4
Radium-228	0.200	0.34	0.360	1.00	U	AC	0.170	0.16	0.339	U	-		0.2
Strontium-90	-0.159	0.48	1.18	2.00	U	SR	0.051	0.78	1.79	ט	-		0.5
Uranium, Total	0.067	0.010	0.016	1.00	J	U_T	0.065	0.010	0.016	J	3	32	0.3
Potassium-40	U		22.3	25.0	U	GAM	υ		22.6	υ	-		0
Cesium-137	ŭ		1.40	20.0	υ	GAM	ט		1.10	U	-		0.3

QC-DUP#1 76837

DUPLICATES Page 1 SUMMARY DATA SECTION Page 10

Lab id <u>EAS</u> Protocol TA Version Ver 1.0 Form DVD-DUP Version 3.06 Report date <u>02/07/11</u>

8661-001

#### DATA SHEET

IUA0604-03

SDG 8661 Client Test America, Inc.
Contact N. Joseph Verville Contract UIA0604

Lab sample id S101095-01 Client sample id IUA0604-03

Dept sample id 8661-001 Location/Matrix Boeing - SSFL WATER
Received 01/11/11 Collected/Volume 01/07/11 08:59 10.0 L

Chain of custody id IUA0604

ANALYTE	CAS NO	RESULT pCi/L	$2\sigma$ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.496	0.69	1.13	3.00	U	80A
Gross Beta	12587472	0.161	1.1	1.75	4.00	υ	80B
Tritium	10028178	-18.9	170	298	500	υ	H
Radium-226	13982633	0.448	0.33	0.512	1.00	Ū	RA
Radium-228	15262201	0.170	0.16	0.339	1.00	ΰ	AC
Strontium-90	10098972	0.051	0.78	1.79	2.00	U	SR
Uranium, Total		0.065	0.010	0.016	1.00	J	U_T
Potassium-40	13966002	Ū		22.6	25.0	U	GAM
Cesium-137	10045973	Ū		1.10	20.0	υ	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-DS</u>
Version <u>3.06</u>
Report date <u>02/07/11</u>

8661-002

# DATA SHEET

IUA0604-04 (TRIP BLANK)

I .	8661 N. Joseph Verville	Client Contract	Test America, Inc.  IUA0604
Lab sample id Dept sample id Received	8661-002 01/11/11	Location/Matrix	01/07/11 18:25 10.0 L

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.068	0.16	0.310	3.00	U	80A
Gross Beta	12587472	-0.371	0.76	1.25	4.00	υ	80B
Radium-226	13982633	0.056	0.32	0.581	1.00	Ū	RA
Radium-228	15262201	0.072	0.30	0.328	1.00	U	AC
Strontium-90	10098972	-0.300	0.89	2.26	2.00	υ	SR
Uranium, Total		0	0.007	0.016	1.00	Ŭ	U_T
Potassium-40	13966002	υ		19.7	25.0	U	GAM
Cesium-137	10045973	U		1.40	20.0	U	GAM

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06Report date 02/07/11

SDG 8661

Test <u>AC</u> Matrix <u>WATER</u> SDG <u>8661</u>

Contact N. Joseph Verville

# LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client <u>Test America</u>, <u>Inc.</u> Contract <u>IUA0604</u>

#### RESULTS

reparation batch	n 7271-043						
3101095-01	8661-001	IUA0604-03	U				
3101095-02	8661-002	IUA0604-04 (TRIP BLANK)	U				
3101095-03	8661-003	Lab Control Sample	ok				
101095-04	8661-004	Method Blank	U				
3101095-05	8661-005	Duplicate (S101095-01)	-	U			

#### METHOD PERFORMANCE

LAB	RAW SUF-	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP		YIELD	EFF %	COUNT	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
SAMPLE ID	TEST FIX	CLIENI SAMPLE ID	pc1/L		IAC	11011				7.01	 			
Preparation	batch 727	1-043 2σ prep error	10.4 % Re	ference	Lab	Noteboo!	k No.	7271	pg.043	3				
S101095-01		IUA0604-03	0.339	1.80			76		150		20	01/27/11	01/27	GRB-221
S101095-02		IUA0604-04 (TRIP BLANK)	0.328	1.80			73		150		20	01/27/11	01/27	GRB-222
S101095-03		Lab Control Sample	0.322	1.80			77		150			01/27/11	01/27	GRB-223
S101095-04		Method Blank	0.392	1.80			75		150			01/27/11	01/27	GRB-224
S101095-05		Duplicate (S101095-01)	0.360	1.80			74		150		20	01/27/11	01/27	GRB-225
Nominal val	ues and li	mits from method	1.00	1.80			30-10	15	50		180			

	PROCEDURES	REFERENCE	904.0
-		DWP-894	Sequential Separation of Actinium-228 and
-			Radium-226 in Drinking Water (>1 Liter Aliquot),
***************************************			rev 5
ı			

AVERAGES ± 2 SD	MDA _	0.348	±	0.057
FOR 5 SAMPLES	YIELD _	75	±	3

METHOD SUMMARIES
Page 1

SUMMARY DATA SECTION

Page 13

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 02/07/11

SDG 8661

Test SR Matrix WATER
SDG 8661
Contact N. Joseph Verville

# LAB METHOD SUMMARY

Client Test America, Inc.
Contract IUA0604

STRONTIUM-90 IN WATER
BETA COUNTING

#### RESULTS

SAMPLE ID :	FEST FIX PLANCHET	CLIENT SAMPLE ID	Strontium-90
Preparation h	oatch 7271-043		
S101095-01	8661-001	IUA0604-03	U
S101095-02	8661-002	IUA0604-04 (TRIP BLANK)	U .
S101095-03	8661-003	Lab Control Sample	ok
S101095-04	8661-004	Method Blank	U
S101095-05	8661-005	Duplicate (S101095-01)	- U

#### METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		% YIELD	EFF %	COUNT min			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 727	1-043 2σ prep error	10.4 % R	eference	Lab :	Noteboo!	k No.	7271	pg.043	3				
S101095-01		IUA0604-03	1.79	0.500			53		50		19	01/19/11	01/26	GRB-231
S101095-02		IUA0604-04 (TRIP BLANK)	2.26	0.500			39		50		19	01/19/11	01/26	GRB-232
S101095-03		Lab Control Sample	1.46	0.500			44		50			01/19/11	01/26	GRB-223
S101095-04		Method Blank	1.39	0.500			63		50			01/19/11	01/26	GRB-230
S101095-05		Duplicate (S101095-01)	1.18	0.500			80		50		19	01/19/11	01/26	GRB-231
Nominal val	ues and li	mits from method	2.00	0.500			30-10	5 ,	50		180			

	PROCEDURES	REFERENCE	905.0
		DWP-380	Strontium in Drinking Water, rev 8
- 1			

AVERAGES ± 2 SD	MDA	1.62	±	0.843
FOR 5 SAMPLES	YIELD	56	±	33

METHOD SUMMARIES
Page 2

SUMMARY DATA SECTION

Page 14

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

Test 80A Matrix WATER

SDG <u>8661</u>

Contact N. Joseph Verville

# LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

#### RESULTS

LAB SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Alpha	
Preparation	batch 727	71-043			
S101095-01	80	8661-001	IUA0604-03	U	
S101095-02	80	8661-002	IUA0604-04 (TRIP BLANK)	U	
S101095-03	80	8661-003	Lab Control Sample	ok	
S101095-04	80	8661-004	Method Blank	U	
S101095-05	80	8661-005	Duplicate (S101095-01)	- U	

#### METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		RESID mg	EFF %	COUNT min	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparatio	n batch 727	71-043 2σ prep error 20	).6 % Re	ference	Lab 1	Noteboo	k No.	7271	pg.043	3				
S101095-01	80	IUA0604-03	1.13	0.160			82		400		12	01/19/11	01/19	GRB-101
S101095-02	80	IUA0604-04 (TRIP BLANK)	0.310	0.300			0		400		14	01/20/11	01/21	GRB-107
, S101095-03	80	Lab Control Sample	0.674	0.250			64		400			01/19/11	01/19	GRB-103
S101095-04	80	Method Blank	0.448	0.250			66		400			01/19/11	01/19	GRB-104
S101095-05	80	Duplicate (S101095-01)	0.461	0.160			0		400		 12	01/19/11	01/19	GRB-105
Nominal va	lues and li	imits from method	3.00	0.250			0-20	0	100		180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA 0.605 ± 0.642
FOR 5 SAMPLES RESIDUE 42 ± 79

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 15

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

Version 3.06

Report date <u>02/07/11</u>

SDG 8661

Test <u>80B</u> Matrix <u>WATER</u> SDG <u>8661</u>

Contact N. Joseph Verville

# LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

#### RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Beta	
reparation	batch 727	1-043			
S101095-01	80	8661-001	IUA0604-03	υ	
S101095-02	80	8661-002	IUA0604-04 (TRIP BLANK)	U	
S101095-03	80	8661-003	Lab Control Sample	ok	
S101095-04	80	8661-004	Method Blank	U	
S101095-05	80	8661-005	Duplicate (S101095-01)	- U	

#### METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF-	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP		RESID mg	EFF %		FWHM keV		PREPARED	ANAL- YZED	DETECTOR
SAMPLE ID	1ESI FIX	CHIENI DANELLE ID	pc+/ L				9				 			
Preparation	batch 727	1-043 2σ prep error 11	.0 % Re	eference	Lab 1	Notebool	No.	7271	pg.043	3				
S101095-01	80	IUA0604-03	1.75	0.160			82		400		12	01/19/11	01/19	GRB-101
S101095-02	80	IUA0604-04 (TRIP BLANK)	1.25	0.300			0		400		14	01/20/11	01/21	GRB-107
S101095-03	80	Lab Control Sample	1.24	0.250			64		400			01/19/11	01/19	GRB-103
S101095-04	80	Method Blank	0.952	0.250			66		400			01/19/11	01/19	GRB-104
S101095-05	80	Duplicate (S101095-01)	1.61	0.160			0		400		12	01/19/11	01/19	GRB-105
Nominal val	ues and li	mits from method	4.00	0.250			0-20	0	100		180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA 1.36 ± 0.638 FOR 5 SAMPLES RESIDUE 42 ± 79

METHOD SUMMARIES
Page 4

SUMMARY DATA SECTION

Page 16

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

Test <u>GAM</u> Matrix <u>WATER</u> SDG <u>8661</u>

Contact N. Joseph Verville

# LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

GAMMA EMITTERS IN WATER

GAMMA SPECTROSCOPY

#### RESULTS

SAMPLE ID TE	ST FIX PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium-137	 
Preparation ba	tch 7271-043				
S101095-01	8661-001	IUA0604-03		U	
S101095-02	8661-002	IUA0604-04 (TRIP BLANK)		U	
S101095-03	8661-003	Lab Control Sample	ok	ok	
S101095-04	8661-004	Method Blank		U	
S101095-05	8661-005	Duplicate (S101095-01)		- U	

#### METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT	SAMPLE ID	MDA pCi/L	ALIQ L	PREP		%	EFF	COUNT			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7271	L-043	2σ prep error 7	.0 % 1	Reference	Lab	Noteboo	k No.	7271	pg.04	3				
S101095-01		IUA0604	1-03		2.00					913		10	01/13/11	01/17	01,02,00
S101095-02		IUA0604	1-04 (TRIP BLANK)		2.00					564		13	01/13/11	01/20	01,04,00
S101095-03		Lab Cor	ntrol Sample		2.00					913			01/13/11	01/17	01,04,00
S101095-04		Method	Blank		2.00					913			01/13/11	01/17	MB,05,00
S101095-05		Duplica	ate (S101095-01)		2.00					427		11	01/13/11	01/18	MB,08,00
Nominal val	ues and lin	mits fro	om method	6.00	2.00					400		180			

PROCEDURES REFERENCE 901.1

DWP-100 Preparation of Drinking Water Samples for Gamma

Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 17

Venor

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version 3.06

Lab id EAS

Report date <u>02/07/11</u>

SDG 8661

Test <u>U T</u> Matrix <u>WATER</u>

SDG <u>8661</u>

Contact <u>N. Joseph Verville</u>

# LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

URANIUM, TOTAL

KINETIC PHOSPHORIMETRY, UG

#### RESULTS

I.AB	RAW SUF-	DT 3.34GVIDIII	CLIENT SAMPLE ID	Uranium, Total
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	10001
Preparation	batch 7271	-043		
S101095-01	8	8661-001	IUA0604-03	0.065 J
S101095-02	8	8661-002	IUA0604-04 (TRIP BLANK)	U
S101095-03	8	8661-003	Lab Control Sample	ok
S101095-04	\$	8661-004	Method Blank	U
S101095-05	1	8661-005	Duplicate (S101095-01)	ok J
Nominal va	lues and lim	its from m	ethod RDLs (pCi/L)	1.00

# METHOD PERFORMANCE

	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	% YIELD	EFF %	COUNT min	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation h	oatch 7271-043 2σ prep error	Ref	erence	Lab N	iotebool	k No.	7271	pg.043	3				
S101095-01	IUA0604-03	0.016 0	.0200							25	02/01/11	02/01	KPA-001
S101095-02	IUA0604-04 (TRIP BLANK)	0.016 0	.0200							25	02/01/11	02/01	KPA-001
S101095-03	Lab Control Sample	0.160 0	.0200								02/01/11	02/01	KPA-001
S101095-04	Method Blank	0.016 0	.0200	i							02/01/11	02/01	KPA-001
S101095-05	Duplicate (S101095-01)	0.016 0	.0200							25	02/01/11	02/01	KPA-001
Nominal value	es and limits from method	1.00 0	.0200							180			

PROCEDURES	REFERENCE	D5174
		the state of the s

AVERAGES ± 2 SD	MDA	.045 ±	0.129
FOR 5 SAMPLES	YIELD	±	

METHOD SUMMARIES

Page 6
SUMMARY DATA SECTION

Page 18

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

Test H Matrix WATER
SDG 8661
Contact N. Joseph Verville

# LAB METHOD SUMMARY

Client Test America, Inc.

Contract IUA0604

TRITIUM IN WATER LIQUID SCINTILLATION COUNTING

#### RESULTS

RAW SUF-LAB Tritium SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Preparation batch 7271-043 U IUA0604-03 S101095-01 8661-001 S101095-03 8661-003 Lab Control Sample ok Method Blank U 8661-004 S101095-04 U 8661-005 Duplicate (S101095-01) S101095-05 Nominal values and limits from method RDLs (pCi/L) 500

#### METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		YIELD %	EFF %	COUNT min	FWHM keV	DRIFT KeV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7271-043 2σ prep error	10.0 %	Reference	Lab I	Noteboo	k No.	7271	pg.043	3					
S101095-01	IUA0604-03	298	0.0100			100		50			20	01/27/11	01/27	LSC-004
S101095-03	Lab Control Sample	290	0.100			10		50				01/27/11	01/27	LSC-004
S101095-04	Method Blank	293	0.100			10		50				01/27/11	01/27	LSC-004
S101095-05	Duplicate (S101095-01)	298	0.0100			100		50			20	01/27/11	01/27	LSC-004
Nominal val	ues and limits from method	500	0.0100					100			180			

PROCEDURES	REFERENCE	906.0
	DWP-212	Tritium in Drinking Water by Distillation, rev 8

AVERAGES ± 2 SD MDA 295 ± 7.90 FOR 4 SAMPLES YIELD 55 ± 104

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 19

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

Version 3.06

Report date <u>02/07/11</u>

SDG 8661

Test RA Matrix WATER

SDG 8661

Contact N. Joseph Verville

# LAB METHOD SUMMARY

RADIUM-226 IN WATER
RADON COUNTING

Client <u>Test America</u>, <u>Inc</u>.

Contract IUA0604

#### RESULTS

LAB		KAW	SUF-	
<b>331077</b>	TD	mnam	7777	

SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Radium-226

Preparation batch 7271-043

S101095-01	8661-001	IUA0604-03	U
S101095-02	8661-002	IUA0604-04 (TRIP BLANK)	U

S101095-04 8661-004 Method Blank U S101095-05 8661-005 Duplicate (S101095-01) ok J

Nominal values and limits from method

RDLs (pCi/L)

1.00

#### METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD		COUNT min	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 727	1-043 2σ prep err	or 16.4 % R	eference	Lab :	Noteboo	k No.	7271	pg.043	3				
S101095-01		IUA0604-03	0.512	0.100			100		120		20	01/27/11	01/27	RN-012
S101095-02		IUA0604-04 (TRIP BLA	NK) 0.581	0.100			100		120		20	01/27/11	01/27	RN-015
S101095-03		Lab Control Sample	0.606	0.100			100		120			01/27/11	01/27	RN-010
S101095-04		Method Blank	0.518	0.100			100		120			01/27/11	01/27	RN-011
S101095-05		Duplicate (S101095-0	1) 0.515	0.100			100		120		20	01/27/11	01/27	RN-013
Nominal values and limits from method			1.00	0.100					100		 180			

PROCEDURES REFERENCE 903.1

DWP-881A Ra-226 Screening in Drinking Water, rev 6

AVERAGES ± 2 SD

MDA 0.546 ± 0.088

FOR 5 SAMPLES

YIELD 100 ± 0

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 20

Report date <u>02/07/11</u>

SDG 8661

SDG <u>8661</u> Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
  - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- * All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 21

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 02/07/11

SDG 8661

SDG <u>8661</u>
Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 22

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

SDG <u>8661</u> Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate; Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 23

Lab id EAS
Protocol TAVersion Ver 1.0Form Ver 1.0Version Ver 1.0Version Ver 1.0Version Ver 1.0Report date Ver 1.0

SDG 8661

SDG <u>8661</u> Contact N. Joseph Verville

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUA0604</u>

#### DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES

Page 4
SUMMARY DATA SECTION

Page 24

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>02/07/11</u>

SDG 8661

SDG 8661

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract <u>IUA0604</u>

#### DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 25

SDG 8661

SDG <u>8661</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES

Page 6

SUMMARY DATA SECTION

Page 26

SDG 8661

SDG <u>8661</u>
Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUA0604</u>

#### LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
  - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION
Page 27

SDG 8661

SDG <u>8661</u>
Contact <u>N. Joseph Verville</u>

#### REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
  - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 28

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

SDG	866	51	
ontact	N.	Joseph	Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 29

SDG 8661

SDG <u>8661</u> Contact N. Joseph Verville

#### REPORT GUIDE

Client Test America, Inc.
Contract IUA0604

#### MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
  - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES

Page 10

SUMMARY DATA SECTION

Page 30

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>02/07/11</u>

SDG 8661

SDG 8661
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUA0604</u>

#### MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 31

SDG 8661

#### REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUA0604</u>

#### METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 32

SDG 8661

SDG 8661
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 33

SDG 8661

SDG <u>8661</u>
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUA0604</u>

#### METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1÷3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES

Page 14

SUMMARY DATA SECTION

Page 34

SDG 8661

SDG <u>8661</u>
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUA0604</u>

#### METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 35

#### SUBCONTRACT ORDER TestAmerica Irvine

#### **IUA0604**



#### **SENDING LABORATORY:**

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Released By

Project Manager: Debby Wilson

**RECEIVING LABORATORY:** 

**Eberline Services** 2030 Wright Avenue Richmond, CA 94804 Phone:(510) 235-2633

Fax: (510) 235-0438

Project Location: California Receipt Temperature: 5.8

nalysis U	Jnits	Expires	Comments
ample ID: IUA0604-03 (Outfa	all 019 (Composite) -	Water) Sampled: 01/07/11 08:59	
Gamma Spec-O	mg/kg	01/07/12 08:59	Out St Louis, k-40 and cs-137 only, DO NOT FILTER!
Gross Alpha-O	pCi/L	07/06/11 08:59	Out St Louis, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	07/06/11 08:59	Out St Louis, Boeing permit, DO NOT FILTER!
Level 4 Data Package - Out	N/A	02/04/11 08:59	
Radium, Combined-O	pCi/L	01/07/12 08:59	Out St Louis, Boeing permit, DO NOT FILTER!
Strontium 90-0	pCi/L	01/07/12 08:59	Out St Louis, Boeing permit, DO NOT FILTER!
Tritium-O	pCi/L	01/07/12 08:59	Out St Louis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	01/07/12 08:59	Out St Louis, Boeing permit, DO NOT FILTER!
ample ID: IUA0604-04 (Trip		Sampled: 01/07/11 18:25	Out St Louis, k-40 and cs-137 only, DO
Gamma Spec-O	mg/kg	01/07/12 18:25	Out St Louis, k-40 and cs-137 only, DC NOT FILTER! Out St Louis, Boeing permit, DO NOT
Gamma Spec-O Gross Alpha-O	mg/kg pCi/L	01/07/12 18:25 07/06/11 18:25	Out St Louis, Boeing permit, DO NOT FILTER!
Gamma Spec-O Gross Alpha-O Gross Beta-O	mg/kg pCi/L pCi/L	01/07/12 18:25 07/06/11 18:25 07/06/11 18:25	NOT FILTER! Out St Louis, Boeing permit, DO NOT
Gamma Spec-O Gross Alpha-O Gross Beta-O Level 4 Data Package - Out	mg/kg pCi/L pCi/L N/A	01/07/12 18:25 07/06/11 18:25 07/06/11 18:25 02/04/11 18:25	NOT FILTER! Out St Louis, Boeing permit, DO NOT FILTER! Out St Louis, Boeing permit, DO NOT FILTER!
Gamma Spec-O Gross Alpha-O Gross Beta-O Level 4 Data Package - Out Radium, Combined-O	mg/kg pCi/L pCi/L N/A pCi/L	01/07/12 18:25 07/06/11 18:25 07/06/11 18:25 02/04/11 18:25 01/07/12 18:25	NOT FILTER! Out St Louis, Boeing permit, DO NOT FILTER! Out St Louis, Boeing permit, DO NOT
Gamma Spec-O Gross Alpha-O Gross Beta-O Level 4 Data Package - Out Radium, Combined-O Strontium 90-O	mg/kg pCi/L pCi/L N/A pCi/L pCi/L	01/07/12 18:25 07/06/11 18:25 07/06/11 18:25 02/04/11 18:25 01/07/12 18:25	NOT FILTER! Out St Louis, Boeing permit, DO NOT FILTER! Out St Louis, Boeing permit, DO NOT FILTER! Out St Louis, Boeing permit, DO NOT FILTER!
Gamma Spec-O Gross Alpha-O Gross Beta-O Level 4 Data Package - Out Radium, Combined-O Strontium 90-O Tritium-O	mg/kg pCi/L pCi/L N/A pCi/L pCi/L pCi/L	01/07/12 18:25 07/06/11 18:25 07/06/11 18:25 02/04/11 18:25 01/07/12 18:25	NOT FILTER! Out St Louis, Boeing permit, DO NOT
Gamma Spec-O Gross Alpha-O Gross Beta-O Level 4 Data Package - Out Radium, Combined-O Strontium 90-O Tritium-O Uranium, Combined-O Containers Supplied:	mg/kg pCi/L pCi/L N/A pCi/L pCi/L	01/07/12 18:25 07/06/11 18:25 07/06/11 18:25 02/04/11 18:25 01/07/12 18:25 01/07/12 18:25 01/07/12 18:25	NOT FILTER! Out St Louis, Boeing permit, DO NOT FILTER!
Gamma Spec-O Gross Alpha-O Gross Beta-O Level 4 Data Package - Out Radium, Combined-O Strontium 90-O Tritium-O Uranium, Combined-O	mg/kg pCi/L pCi/L N/A pCi/L pCi/L pCi/L	01/07/12 18:25 07/06/11 18:25 07/06/11 18:25 02/04/11 18:25 01/07/12 18:25 01/07/12 18:25 01/07/12 18:25	NOT FILTER! Out St Louis, Boeing permit, DO NOT
Gamma Spec-O Gross Alpha-O Gross Beta-O Level 4 Data Package - Out Radium, Combined-O Strontium 90-O Tritium-O Uranium, Combined-O Containers Supplied:	mg/kg pCi/L pCi/L N/A pCi/L pCi/L pCi/L pCi/L	01/07/12 18:25 07/06/11 18:25 07/06/11 18:25 02/04/11 18:25 01/07/12 18:25 01/07/12 18:25 01/07/12 18:25 01/07/12 18:25	NOT FILTER! Out St Louis, Boeing permit, DO NOT FILTER!



# RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

client:	TEBT	AMERIC	A C	ity	WINE.	State	<u>e</u> A	
- Nate/Tir	me receive	dollulu og	CoC No.	1 UA 0	604			
ontain	ner I.D. No.	le cotest	_ Requested T	AT (Days)	<u> </u>	eived Yes [ ]	No[]	
3. 4. 5.	Custody s Custody s Custody s Packing r Number o	eals on shipping and seals on sample seals on sample material is: of samples in soft containers por	er sample:	ed & signed act? ed & signed er: 2	?	Yes [ ] N Yes [ ] N Yes [ ] N Wet [ ] 1	No[] N/A [ N/A [ No[] N/A [ N] N] N]] N]	<b>/</b> -]
8. 9. 10. 11. 12. 13.	Paperwo Samples Samples Describe	are: In go are: Preserv any anomalie	samples? [ ] Hazard la od condition [ ] ed [ X ] Not pr s: any anomalies?	Leakin eserved [K	Yes [x]  Rad labels [ ] A  g [ ] Broken ] pH \( \frac{2}{\lambda} \rangle N \)  S [ ] No [	No [ ]  Appropriate samp  Container [ ]  servative	Micelpa I	
	stomer	Beta/Gamma	Ion Chamber	Wipe	Customer Sample No.	Beta/Gamma cpm	ion Chamber mR/hr	wipe
	inple No.	260						
Alpha	Meter Ser	r. No . No eter Ser, No	IT Y	8V	Calibration do	te te te_ZY_SEPT	/0	

#### LABORATORY REPORT

Aquatic Testing Laboratories

**Date:** January 14, 2011

Client: TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

**Laboratory No.:** A-11010708-001

**Sample I.D.:** IUA0604-03 (Outfall 019)

Sample Control: The sample was received by ATL chilled, within the recommended hold time and

with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled: 01/07/11
Date Received: 01/07/11
Temp. Received: 5.8°C
Chlorine (TRC): 0.0 mg/l

Date Tested: 01/07/11 to 01/14/11

**Sample Analysis:** The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0). *Ceriodaphnia dubia* Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

#### **Result Summary:**

Acute:	Survival	TUa
Fathead Minnow:	95%	0.41

Chronic: NOEC TUc
Ceriodaphnia Survival: 100% 1.0
Ceriodaphnia Reproduction: 100% 1.0

Quality Control: Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

### FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0



Lab No.: A-11010708-001

Client/ID: TestAmerica Outfall 019

Start Date: 01/07/2011

#### TEST SUMMARY

Species: Pimephales promelas.

Age: 14 (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Control water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C. Number of fish per chamber: 10.

OA/OC No.: RT-110104.

#### **TEST DATA**

					# D	ead	Analyst & Time
		°C	DO	pН	Α	В	of Readings
IN LITTER A I	Control	19.8	9.0	8-1	0	0	Rn
INITIAL	100%	19.8	7.8	7.7	U	0	1500
24.11	Control	20.2	26	2.7	0	0	fr.
24 Hr	100%	20.3	26	8.4		0	1500
40.11	Control	19.3	7.8	8.0	0	0	2
48 Hr	100%	19.6	7.0	8.6	0	)	1400
	Control	19.4	9.1	8.2	0	0	2
Renewal	100%	19.9	7.9	8.2	0	0	1400
<b>70 11</b>	Control	14.3	7.7	7.4	0	0	2
72 Hr	100%	19.5	7.2	8.5	0	0	1400
0611	Control	19.3	7.8	8.0	0	0	R
96 Hr	100%	19.2	6.4	8.4	0	0	1500

#### Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 77; Conductivity: 605 umho; Temp: 5.8°C; DO: 78 mg/l; Alkalinity: 176 mg/l; Hardness: 40 mg/l; NH₃-N: 0.4 mg/l. Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No Control: Alkalinity: 72 mg/l; Hardness: 90 mg/l; Conductivity: 320 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂

#### RESULTS

100% Sample: ___ Percent Survival In: Control: _______%



# CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

### CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0



Lab No.: A-11010708-001 Date Tested: 01/07/11 to 01/14/11

Client/ID: Test America – IUA0604-03 (Outfall 019)

#### **TEST SUMMARY**

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Source: In-laboratory culture.
Food: .1 ml YTC, algae per day.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Test solution volume: 15 ml.

Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 7 days.

QA/QC Batch No.: RT-110104. Statistics: ToxCalc computer program.

#### **RESULTS SUMMARY**

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	22.8
100% Sample	100%	24.4
* Sample not s	tatistically significantly le	ess than Control.

#### **CHRONIC TOXICITY**

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

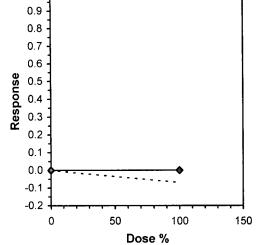
#### QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (22.8 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD < 47% for reproduction; if > 47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 13.8%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Cerioda	phnia Sui	vival and	Reprodu	iction Tes	t-7 Day S	Survival	
Start Date:	1/7/2011 1	15:00	Test ID:	11010708	С		Sample ID	):	Outfall 019	9
End Date:	1/14/2011	14:00	Lab ID:	CAATL-Ac	juatic Test	ing Labs	Sample Ty	/pe:	SRW2-Ind	lustrial stormwater
Sample Date:	1/7/2011 0	08:59	Protocol:	FWCH EP	Α	•	Test Speci	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				· · · · · · · · · · · · · · · · · · ·

				Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU				
Fisher's Exa	ct Test		100	>100		1				
Treatments v	vs D-Control									
				Line	ar Interpo	lation (2	00 Resamples)			
Point	%	SD	95%	CL	Skew					
IC05	>100									
IC10	>100									
IC15	>100						1.0			<del></del>
IC20	>100						0.9			
IC25	>100						4			
IC40	>100						0.8 -			
IC50	>100						0.7			
							J			-
							<u>8</u> 0.6 -			
							Response - 0.0 - 0.5 - 0.4 - 0.4 - 0.5 - 0.4 - 0.4 - 0.5 - 0.4 - 0.5 - 0.4 - 0.5 - 0.4 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0			
							8			
							<b>~</b> 0.4 ]			
							0.3			
							0.2			
							4			
							0.1			
							0.0			
							0	50	100	150


Dose %

		· · · · · · · · · · · · · · · · · · ·	Cerioda	phnia Su	rvival and	Reprodu	iction Tes	t-Reproc	luction	
Start Date: End Date: Sample Date:	1/7/2011 1 1/14/2011	14:00	Test ID: Lab ID: Protocol:		uatic Test	ting Labs	Sample ID Sample Ty Test Spec	/pe:		) lustrial stormwater laphnia dubia
•	1/1/2011	0.00	1 1010001.	1 44011 E1	, ,		1001 0 000			
Comments:	1	2	3	4	5	6	7	8	9	10

				Transforn	n: Untran	sformed			1-Tailed		Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	22.800	1.0000	22.800	18.000	27.000	14.591	10				23.600	
100	<b>24.40</b> 0	1.0702	24.400	16.000	32.000	19.145	10	-0.882	1.734	3.145	23.600	1.0000

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.98436		0.905		-0.1545	-0.1463
F-Test indicates equal variances (p = 0.33)	1.97189		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	3.14477	0.13793	12.8	16.4444	0.38927	1, 18

			Lir	near Interpolation	ı (200 Resamples)	
Point	%	SD	95% CL	Skew		
IC05	>100					
IC10	<b>&gt;10</b> 0					
IC15	>100				1.0 T	
IC20	<b>&gt;10</b> 0				0.9 -	
IC25	<b>&gt;10</b> 0				0.8 =	
IC40	>100				4	
IC50	>100				0.7	
					0.6 -	
					<b>છ</b> 0.5 -	
					95 0.5 - 95 0.4 -	



### CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet



Lab No.: A-11010708-001

Client ID: TestAmerica - Outfall 019 Start Date: 01/07/2011

	ment ii.	CSUMING	ca - Ou	uan or									Start	Date. UI	1101120	1 1
Oil		DA	ΥI	D/	Y2		DAY 3	D/	AY 4	DA	Y 5	D/	AY 6	D.A	AY 7	
Control   Principle   Princi			0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr
Control    DO	Analyst I	nitials:	Low	<i>R</i> ~	R	1/	1	In		Rn	R	R.	B~	hu	R	h
DO	of R	eadings:	15w	1430	1430	1500	IN	1420	1430	1530	1530	1500	WW	1530	1530	Ha
Temp		DO	8.5	8.3	8.1	D.2	8-4	81	8.2	8.4	8.5	85	83	8.0	8.7	7.4
DO	Control	рН	8.2	8.2	8.2	9.2	8.	18-1	8.2	8.2	8.3	8.2	8.3	29	8.2	8.
DO		Temp	25.5	24.7	24.7	24.8	24-2	294.7	242	24.5	25.2	24.4	25.3	249	25.0	24.5
100%   pH   7.4   8.6   7.6   7.6   7.9   7.0   7.1   8.7   7.8   8.6   8.0   8.7   8.0   7.5   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9		DO		8.0	8.3	8.0	8.5	7.8	8.6			88	94	8.2	10.3	8.0
Temp   24.3   24.8   24.8   24.4   24.1   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5   24.5	100%	pН	2.4	8.6	7.6	86	20	7.6	8.1		₩ <del></del>	8.6	8.0	<del>                                     </del>		
Conductivity (umohms)		Temp	243	24.8	24.8	7	24.1	24.6	24-5		25.0	24.8	24.3	+	-	
Alkalinity (mg/l CaCO ₁ )  Hardness (mg/l CaCO ₁ )  Ammonia (mg/l NH ₂ N)  Source of Neonates  Replicate:  A B C D E F G H I J  Brood ID:  Number of Young Producet  Number of Young Producet  Sample  Day  A B C D E F G H I J  J Total Live No. Live Young Initials  Initials  Analyst Initials  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Ad	lditional P	'arametei	rs				Cor	itrol		100% Sam	ıple			
Alkalinity (mg/l CaCO ₁ )  Hardness (mg/l CaCO ₁ )  Ammonia (mg/l NH ₂ -N)  Source of Neonates  Replicate:  A B C D E F G H I J  Brood ID:  Number of Young Producet  A B C D E F G H I J  Sample  Day  Number of Young Producet  A B C D E F G II I J J  Young Adults  Analyst Initials  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Co	nductivity	(umohms	)				30				(000	)		
Hardness (mg/l CaCo,)		All	kalinity (m	g/l CaCO	3)								,			
Control   Cont		На	ardness (mg	g/l CaCO	,)				90	2						
Replicate:		An	nmonia (m	g/l NH ₃ -N	1)											
Sample   Day							Se	ource of Ne	onates							
Sample   Day	Rep	licate:		A		С		D		F	(		Н	1		J
Control   Day   A   B   C   D   E   F   G   H   I   J   Young   No. Live   Initials	Bro	od ID:		A	213	30	3	10	1E	21	<u> </u>	F	3 H	17		25
Control  A B C D E F G H I J J Young Adults Initials  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Samole		Day				Number	of Young	Produced			То	tal Live	No. Live	e A	nalyst
Control  2			Duy	A	В	c	D	E F	G	н	ı ,	<u>`</u>	oung	Adults	I	nitials
Control  3			1	Ĺ		0	00	20	0	0	0	2		10		<u> </u>
Control  4 3 3 3 4 2 0 0 4 0 4 23 10 0 2 6 6 0 0 0 14 15 7 8 16 12 0 72 10 14 15 7 8 16 12 0 72 10 14 15 7 8 16 12 0 72 10 14 15 7 8 16 12 0 72 10 14 15 7 8 16 12 0 72 10 14 15 7 8 16 12 10 13 0 0 0 10 10 10 10 10 10 10 10 10 10 10		1				0			<del></del>	0	00		$\mathcal{Q}$	iV		g
S		<u> </u>	·		<del></del>	0			0	0	00	4	7	10	-	
6 0 0 0 14 15 7 8 16 17 0 72 10 12 10 17 12 10 13 0 0 10 14 16 10 11 80 10 11 10 10 10 10 10 10 10 10 10 10 10	Control	<u> </u>		1	1 2	1 , 1	<del>4</del> .	$\frac{2}{2}$	10	19	0 5	<u> </u>			1/2	
100%  Total   19   18   32   31   34   27   27   27   27   21   228   10   10   10   10   10   10   10   1					1/2			/ -	) <u>\S</u>	16	$\frac{2}{1}$		7	· · · · · · · · · · · · · · · · · · ·	10	a
Total   9   18   32   31   34   27   27   27   27   21   228   10   10   10   10   10   10   10   1					2 10			<del>3</del>   1	) 14		10 1	<del>/  \</del>	30	117	+	1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								<u> </u>			27/2	1 2	28	177		1/2
100%  2				0		T -				0		2 /	7	1/)		<b>5</b>
3 0 3 4 0 0 0 0 3 0 10 10 10 10 10 10 10 10 10 10 10 10 1		II—		<del>⊪-</del> -	<del></del>			<del>-  </del>			<u> </u>		$\frac{1}{2}$	11)	1	9
100%  5 5 0 0 7 7 5 6 0 7 0 37 10 19  6 0 16 8 0 16 11 12 17 0 6 86 10 15  7 11 0 0 14 19 16 11 0 14 13 79 10  Total 19 22 16 25 27 32 29 26 23 249 10			2	[_0	10	O	010	ノーひ	1 ()	IOI	-() + C	, 11 (	/ 11	/(/	11 /-	<u> </u>
5 5 0 0 7 7 5 6 0 7 0 37 10 Ry 6 0 16 8 0 16 11 12 17 0 6 86 10 17 7 11 0 0 14 19 16 11 0 14 13 79 10 17 Total 19 22 16 25 27 32 29 26 23 249 10					) 3	<del>  '                                   </del>				3			0	11)		B
7 11 0 0 14 19 16 11 0 14 13 79 10 17 Total 19 22 16 25 27 32 29 26 23 249 10	100%		3	C	3	Ч	0	00	10	3	00	7/		10		
Total 19 22 16 25 27 32 29 26 26 23 249 10	100%		3	C	3	Ч У О	0	00	0	3	5 4	1 1	2	10		
	100%		3 4 5	C	3 - 0	Ч У О	U 1 4 C 7	0 0 7 5 4 11	0 0 6 12	3 5 U 17	0 6 7 0 0 (	1 1	7	10		
	100%		3 4 5 6 7	3 5 0	3 3 0 16 0	4 9 0 8 0	U 1 7 7 0 1 14 0	0 0 7 5 6 11 9 16	0 0 6 12 11	3 5 U 17	0 6 7 0 0 (	1 1	7	10 10 10		

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.



# CHAIN OF CUSTODY

	evel 2	- NPDE	Check)	nents: (i	equiren	Data F												'Au	iiT\əts(	$\Omega$		Reli <b>f</b> iguished By
		>	•	ily: (Che		Sample	3	h:2	) '/			iThings of the control of the contro	V	190	Received E	~ sh	:21		iiT\əts(	Jum	1	Relinduished By
		(eO Or _		ле: (Сh 72 Ноц 5 Day		24 Hou		-1	て: 1	t-1	:əu	OO to tablo		2m	Received A	1100		, :ən	iiT\əts(	- <b>-</b>	الاست	Relinquished By
				Juev.	we ev	ie sai	th not (	ore or	O 101 8	or san	dues	the composite	STE .	C 10 % 8	and to the	E to S age	1 202					
		—-т		- Ju	ava (	miots	3141	OF OF IIC	,,,,,	1	1	-4124		7 2		<del></del>						
			-																			
							<del>  </del>				-											
						-																·-···
										ļ		Ì										
events of the year									×						12	None	1198	30,		t Gal Poly	M	910 lisituO
Only test if first or second rain															50	HOBN	11+C-1	4	ı	500 mL Poly	M	Outfall 019
							$\vdash$			X								+	1	1 Gal Cube	M	610 lisituO
											X				61	anoN		-	<u> </u>			
												×			188	anoM		1		19dmA Jm 008	M	Outfall 019
Unfiltered and unpreserved analysis			1									^			A81	anoM			1	2.5 Gal Cube		
		ļ			<u> </u>								X		<b>۲</b> ۱	HCI		1	1	S20 mr Class	M	Outfall 019
,			-	-		-	<del> </del>		<del>                                     </del>					x	91	anoM	125	इंद्र	ı	1L Poly	M	Outfall 019
Filter win 24hrs of receipt at lab			-	ļ	<u> </u>	<u> </u>	ļ		유	Ç	Ą	Gro Triti Cor Rac 40,	To		Bottle #	Preservative	1106	Date	# of Cont.	γγρε	xintsM	Description
									rog	Cyanide	te	oss tium tium mbii mbii diun	tal C	Ha		1	60190 60190		+	Container	Sample	Sample
					}				Chronic Toxicity	ō	Acute Toxicity	ss Alpha(900.0 ium (H-3) (906.0 ium (H-3) (906.0 ium film Radium film 228 (904.0 CS-137 (901.0	Total Organic Carbon	Total Dissolved Metals: Cu, Zn, Hardness as CaCO3		:	:eo cere nuper:		1	H-DH M	KIDA.	Sampler: <b>R</b> ; <b>c</b>
									Ř		υŧγ	a(90 3) (9 3) (9 Radi 8 (9	) Sir	ss a			1699-899		1	* / * *	· v	5
						İ						06.0 06.0 04.0	arbo	Met s Ca			Number	Phone		ıwyn Kelly	er: Bron	Project Manag
Comments				İ								, Gra ), Sr 226 226 ), U	ž	CO								
		1		Ì							ĺ	), Gross E 0), Sr-90 ( 226 (903 0), Uraniu or 901.1)		a Cr								
												Beta (905 .0 oi .m (8		P _b					uo	Deppy Wils	Contact:	Test America
												Gross Alpha(900.0), Gross Beta(900.0) Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)		Hg, 0	1		STISO	-IMICO			700 L	Arcadia, CA 9
									1			700) Tota 5), K		Cd, S		910 IIE	rly Outf. Ostre			00S ətir		618 Michillinda
								L		<u> </u>	<u> </u>	^ ∞ ≝		Se.	1	PDES	-22FL N	guisos	1			bsorA-HWM
					RED	EØNI	SIS K	YJANA										toject	4		qqress.	Client Name/A

#### SUBCONTRACT ORDER

#### TestAmerica Irvine

#### **IUA0604**

#### SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager:

Debby Wilson

#### **RECEIVING LABORATORY:**

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone :(805) 650-0546

Fax: (805) 650-0756

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: IUA0604-03	Water	Sampled: 01/07/11 08:59		
Bioassay-Acute 96hr	01/20/11 12:00	01/08/11 20:59		
Bioassay-7 dy Chrnic	01/20/11 12:00	01/08/11 20:59		Cerio, EPA/821-R02-013, Sub to Aquatic testing
Containers Supplied:				
1 gal Poly (V)	1 gal Poly (W)			

Released By Date Date Date

Released By Date Received By Date



# REFERENCE TOXICANT DATA

### FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS



QA/QC Batch No.: RT-110104

**TEST SUMMARY** 

Species: Pimephales promelas.

Age: <u>/ 3</u> days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF. Source: In-lab culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs. Test chamber: 600 ml beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

#### **TEST DATA**

		INITIAI				24 Hr	*				48 Hr		
Date/Time:	1-4-	//	1520	15.	-//		144	<i>y</i>	1-10	-1/		144)	
Analyst:		<u> Lu</u>	_		<u> </u>						R		
	°C	DO	pН	°C	DO	рН	# [	Dead	°C	DO	11	# D	ead
					50	pii	Α	В	C	50	рН	A	В
Control	20.4	8.8	8.2	A.C.	8.5	8.1	0	U	19.5	29	7.9	()	0
1.0 mg/l	20.4	8.8	8.2	19.6	8,5	8.1	0	0	19.5	2.9	8.0	1)	U
2.0 mg/l	204	8.9	8.2	19.5	8.6	8.1	0	0	19.5	29	8.0	0	U
4.0 mg/l	20.4	8.9	8.2	195	8.7	8.1	0	0	19.4	7-8	8.0	Ŭ	0
8.0 mg/l	20.4	8.9	8.2	19.5	2.7	8.0	10	10	_				_

	I	RENEWA	AL			72 Hr					96 Hr	· · · · · · · · · · · · · · · · · · ·	
Date/Time:	1-10-	//	/4u)	1-7-	-11		15a	)	1-8-1	'/		1500	
Analyst:		2-			<u>L</u>						0	<u> </u>	
	°C	DO	pН	°C	DO	pН	# [	Dead	°C	DO	pН	# 0	Dead
							Α	В		DO	pii	Α	В
Control	19.1	9.3	8.2	19.7	7.6	8.2	0	0	20.3	6.8	8.0	0	0
1.0 mg/l	19.1	9.3	8.2	19.7	2.8	8.1	0	()	20.3	20	8.0	0	U
2.0 mg/l	19.1	9.4	8.2	197	8.0	8.1	0	()	20.3	2.2	8.0	U	0
4.0 mg/l	19.1	9.4	8.2	19.6	2.9	8.1	0	()	20.3	7.4	8.0	0	
8.0 mg/l		)					-		-		-		1

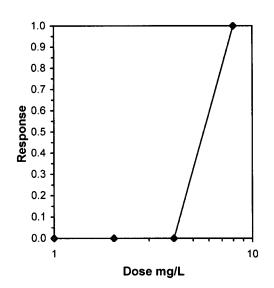
Comments: Control: Alkalinity: 73 mg/l; Hardness: 90 mg/l; Conductivity: 300 umho. SDS: Alkalinity: 73 mg/l; Hardness: 89 mg/l; Conductivity: 303 umho.

Concentration-response relationship acceptable? (see attached computer analysis):

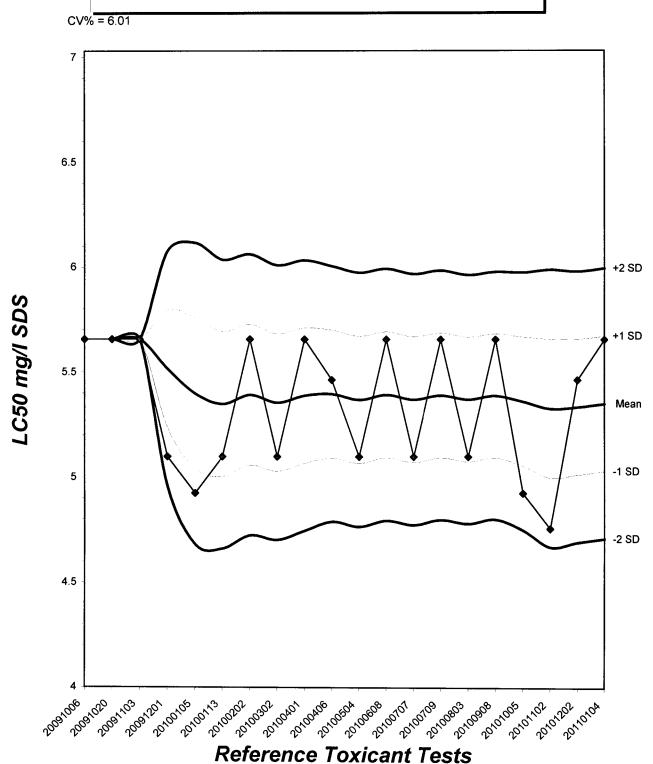
Yes (response curve normal)

No (dose interrupted indicated or non-normal)

				Acute Fish Test-96	Hr Survival	
Start Date: End Date: Sample Date:	1/4/2011 1/8/2011		Lab ID:	RT110104 CAATL-Aquatic Testing Labs ACUTE-EPA-821-R-02-012		REF-Ref Toxicant SDS-Sodium dodecyl sulfate PP-Pimephales promelas
Comments:	1/4/2011		1 1010001.	7,0012-217/-0214/-02-012		
Conc-mg/L	1	2				
D-Control	1.0000	1.0000				
1	1.0000	1.0000				
2	1.0000	1.0000				
4	1.0000	1.0000				
8	0.0000	0.0000				


			Tra	ansform:	Arcsin Sc	uare Roof	!	Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				
Equality of variance cannot be confirmed				
	Graphical Method			


Trim Level EC50 0.0% 5.6569

3.0308

5.6569



# Fathead Minnow Acute Laboratory Control Chart



## **TEST ORGANISM LOG**



# FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-110104
SOURCE: In-Lab Culture
DATE HATCHED: 1227-10
APPROXIMATE QUANTITY:4\tilde{\pi}
DATE HATCHED: 1227-10  APPROXIMATE QUANTITY: 400  GENERAL APPEARANCE: 500
# MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:
DATE USED IN LAB: 1/4/
AVERAGE FISH WEIGHT: gm
LOADING LIMITS: 0.65 gm/liter @ 20°C, 0.40 gm/liter @ 25°C
Approximately 1000 fish per 10 liters limit if held overnight for acclimation without filtration @ $20^{\circ}$ C for fish with a mean weight of 0.006 gm.
Approximately 650 fish per 10 liters limit if held overnight for acclimation without filtration @ 25°C for fish with a mean weight of 0.006 gm.
200 ml test solution volume = 0.013 gm mean fish weight limit @ 20°C; 0.008 @ 25°C 250 ml test solution volume = 0.016 gm mean fish weight limit @ 20°C; 0.010 @ 25°C
ACCLIMATION WATER QUALITY:
Temp.: Zarl °C pH: 8-2 Ammonia: Larl mg/l NH3-N
DO: <u>8-8</u> mg/l Alkalinity: <u>73 mg/l</u> Hardness: <u>90 mg/l</u>
READINGS RECORDED BY



# Test Temperature Chart

Test No: RT-110105

Date Tested: 01/04/11 to 01/08/11

Acceptable Range: 20+/- 1°C





# CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

## CERIODAPHNIA CHRONIC BIOASSAY

#### EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl



QA/QC Batch No.: RT-110104

Date Tested: 01/04/11 to 01/10/11

#### **TEST SUMMARY**

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

#### **RESULTS SUMMARY**

Sample Concentration	Percent Surv	ival	Mean Number of Young Per Female		
Control	100%		21.4		
0.25 g/l	100%		23.7		
0.5 g/l	100%		22.4		
1.0 g/l	100%		13.3	*	
2.0 g/l	100%		2.7	*	
4.0 g/l	0%	*	0	**	

^{*} Statistically significantly less than control at P = 0.05 level

#### **CHRONIC TOXICITY**

Survival LC50	2.8 g/l
Reproduction IC25	0.80 mg/l

#### QA/QC TEST ACCEPTABILITY

Parameter	Result					
Control survival ≥80%	Pass (100% Survival)					
≥15 young per surviving control female	Pass (21.4 young)					
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)					
PMSD <47% for reproduction	Pass (PMSD = 16.8%)					
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 37.9%)					
Concentration response relationship acceptable	Pass (Response curve normal)					

^{**} Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

### Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-110104

Start Date:01/04/2011

G I				Nu	mbei	of Y	oung	Produ	uced			Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0		10	2
	2	0	0	0	0	0	0	0	0	0	0	0	10	p
	3	0	0	0	0	0	0	0	0	0	0	0	10	R
Control	4	3	4	4	3	ح	J	3	ک	2	3	29	10	pc
Control	5	7	6	6	8	6	つ	6	6	6	う	65	10	M
	6	11	14	10	13	12	15	14	0	15	16	120	IV	In
	7	_	1	1	1	1	ļ	}	1	1	1		1	
	Total	21	۵ч	20	24	20	25	<u> ጉ</u> ፯	8	23	26	214	10	
	1	0	0	0	0	0	0	0	0	0	0	0	10	R
	2	0	0	D	0	0	0	0	0	0	0	0	10	an
	3	0	0	0	0	M	0	0	0	0	0	7	10	R
0.25 - /1	4	3	Ч	3	2	0	Μ	4	2	W	2	27	10	n
0.25 g/l	5	7	フ	6	6	7	6	8	6	フ	8	68	10	1
	6	12	12	17	14	15	12	ワ	10	14	16	139	10	
	7	,	_		1	_	_	)	J	1	1			
	Total	ንን	23	26	22	<u>کح</u>	21	29	18	24	27	737	10	
	1	0	0	0	0	0	0	0	0	0	0	0	10	2-
	2	0	0	0	0	0	0	0	0	0	0	0	10	R
	3	$\alpha$	0	0	0	0	0	0	0	0	4	4	10	1
0.5 //	4	Ч	3	C	ζ	2	4	2	ک	3	0	27	10	n
0.5 g/l	5	フ	9	6	6	2	)	7	6	フ	9	69	10	1
	6	10	12	15	10	12	14	16	12	10	13	124	10	
	7										_			
	Total	21	24	٦ <u>5</u>	19	19	29	25	20	20	26	224	10	h

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

## **Reference Toxicant - NaCl** Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-110104

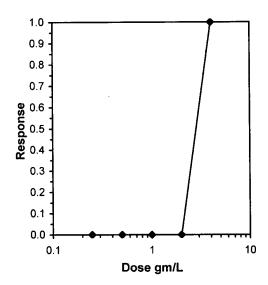
Start Date:01/04/2011

			··	Nu	ımbeı	r of Y	oung I	Produ	ced			Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	н	Ι	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	En
	2	0	0	0	0	0	0	0	0	0	0	0	10	2
	3	0	0	0	0	0	0	0	0	0	$\omega$	0	IV	Rom
1.0 a/l	4	2	3		2	4	2	3	4	^	ک	28	10	
1.0 g/l	5	0	4	4	3	5	4	4	4	0	2	33	10	
	6	10	7	6	0	8	10	11	10	10	0	73	10	1
	7	_	_		_	_	_	-			_		•	
	Total	12	14	12	5	17	16	18	18	13	8	1343	W	
	1	0	0	0	0	0	0	0	0	0	0	0	10	h
	2	0	0	0	0	0	0	0	0	0	0	0	10	an
	3	0	0	0	0	0	0	0	0	0	0	0	10	Ry
2.0 ~/1	4	0	2	C	C	, 3	$\mathcal{O}$	0	0	2	$\bigcirc$	7	10	
2.0 g/l	5	3	0	3	ک	C	2	0	3	0	2	15	10	
	6	$\mathcal{O}$	3	0	C	2	0	O	0	0	0	5	10	
	7			_	_		_							
	Total	3	5	3	Z	5	Z	O	3	2_	2	27	10	
	1	X	X	×	X	X	×	X	X	×	X	0	$\mathcal{O}$	R
	2		_	_	_	_		_	_	_	_			
	3			_	-	-	_	_	_	_	_		•	
40-71	4		_	_		_	_	_			_			
4.0 g/l	5		_			_	_		_	_	_	_		
	6			_	_		_	_	_	_			~	_
-	7			_			_							
	Total	C	C	C	C	0	c	C	0	0	0	C	0	Jr

Circled fourth brood not used in statistical analysis.  $7^{th}$  day only used if <60% of the surviving control females have produced their third brood.

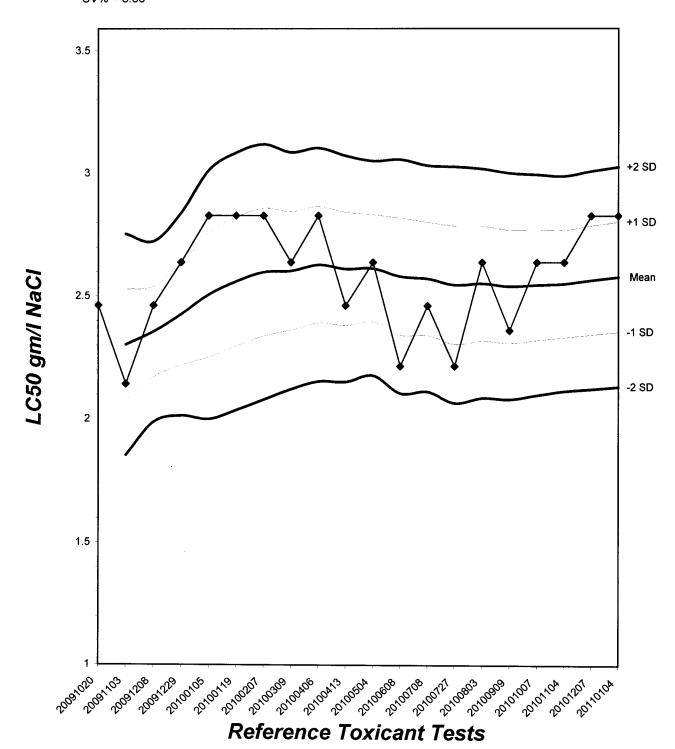
			Cerioda	aphnia Sui	vival and	Reprodu	ction Tes	t-Surviv			
Start Date:	1/4/2011	11:00	Test ID:	RT110104	·C	Sample ID:			REF-Ref Toxicant		
End Date:	1/10/2011	12:00	Lab ID:	CAATL-Ac	uatic Tes					lium chloride	
Sample Date:	1/4/2011		Protocol:	FWCH EP	'A	,	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2		1.0000			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
4		0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

		<del>.,,</del>		Not			Fisher's		Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	Ö	10	10	10	1.0000	0.0500	0	10
2	1.0000	1.0000	Ö	10	10	10	1.0000	0.0500	0	10
4	0.0000	0.0000	10	0	10	10			10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU
Fisher's Exact Test	2	4	2.82843	
Treatments vs D Control				

Treatments vs D-Control

**Graphical Method** 


Trim Level 0.0% EC50 2.8284

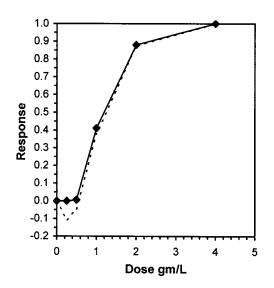
2.8284



# Ceriodaphnia Chronic Survival Laboratory Control Chart

CV% = 8.66

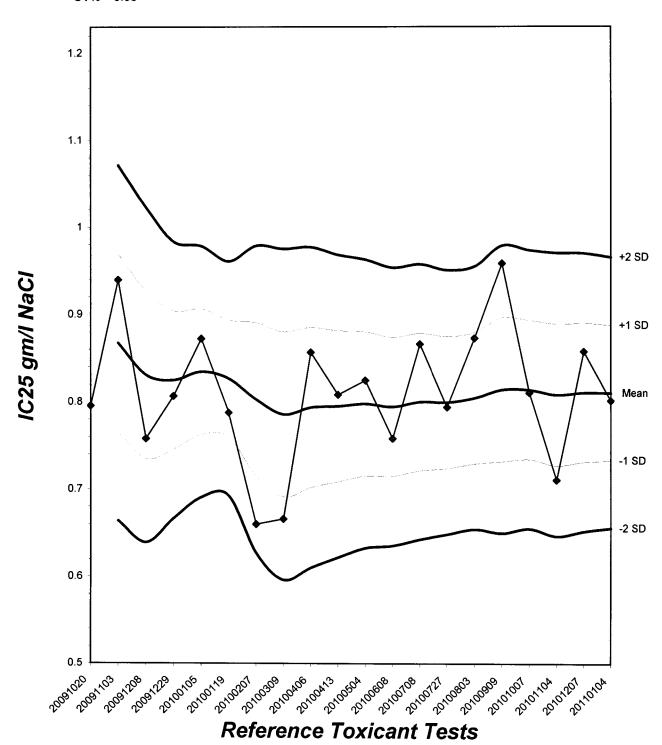



			Ceriod	aphnia Su	rvival and	l Reprodu	iction Tes	st-Repro	duction		
Start Date:	1/4/2011 1	1:00	Test ID:	RT110104	ŀc	,	Sample ID	);	REF-Ref Toxicant		
End Date:	1/10/2011	12:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride	
Sample Date:	1/4/2011		Protocol:	<b>FWCH EP</b>	A	•	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	21.000	24.000	20.000	24.000	20.000	25.000	23.000	8.000	23.000	26.000	
0.25	22.000	23.000	26.000	22.000	25.000	21.000	29.000	18.000	24.000	27.000	
0.5	21.000	24.000	25.000	19.000	19.000	25.000	25.000	20.000	20.000	26.000	
1	12.000	14.000	12.000	5.000	17.000	16.000	18.000	18.000	13.000	8.000	
2	3.000	5.000	3.000	2.000	5.000	2.000	0.000	3.000	2.000	2.000	
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

				Transforn	n: Untran	sformed		Rank	1-Tailed	Isoto	onic
Conc-gm/L	Mean	N-Mean -	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	21.400	1.0000	21.400	8.000	26.000	23.949	10			22.550	1.0000
0.25	23.700	1.1075	23.700	18.000	29.000	13.498	10	117.50	76.00	22.550	1.0000
0.5	22.400	1.0467	22.400	19.000	26.000	12.662	10	106.50	76.00	22.400	0.9933
*1	13.300	0.6215	13.300	5.000	18.000	32.301	10	63.50	76.00	13.300	0.5898
*2	2.700	0.1262	2.700	0.000	5.000	55.349	10	55.00	76.00	2.700	0.1197
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests			2		Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution		0.91212	0.947	-1.3784	3.64435	
Bartlett's Test indicates equal val	riances (p =	: 0.01)		12.4505	13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711					
Transfer and tra D Cambral								

Treatments vs D-Control


				Linear Interpolation (200 Resamp							
Point	gm/L	SD	95%	CL	Skew						
IC05	0.5537	0.0649	0.3513	0.5827	-1.2814						
IC10	0.6157	0.0467	0.5012	0.6654	-0.7928						
IC15	0.6776	0.0473	0.5652	0.7499	-0.0788	1.0					
IC20	0.7396	0.0514	0.6269	0.8345	0.3817	0.9					
IC25	0.8015	0.0576	0.6887	0.9191	0.6376	4					
IC40	0.9874	0.0860	0.8743	1.1742	0.5955	0.8					
IC50	1.1910	0.1048	0.9736	1.3514	-0.2328	0.7					



Reviewed by:

# Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 9.58



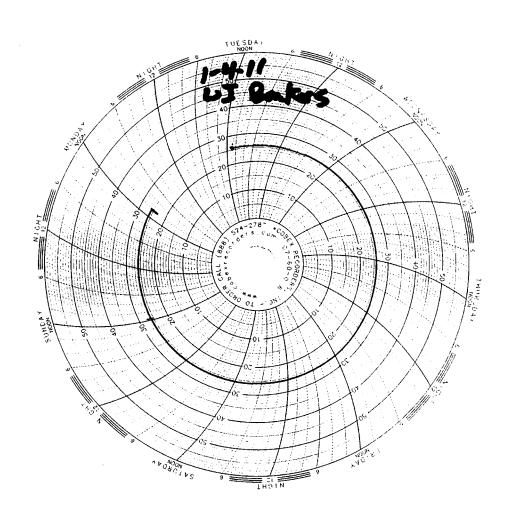
## CERIODAPHNIA DUBIA CHRONIC BIOASSAY

### Reference Toxicant - NaCl Water Chemistries Raw Data Sheet



A/QC No	o.: RT-11	0104											Start	Date:0	1/04/20	011	
		DAY 1			DAY 2		DAY 3		DAY 4			DAY 5		DAY 6		DAY 7	
		Initia	Fi	inal	Initial	Final	Initial	Final	Initial	Final	Initia	l Final	Initial	Final	Initial	Final	
Analyst Initials:		Ro	-   &	<u>~</u>	R-	Rm	Ru	Ro	h	Rm	2	- h	1/2	1			
Time of Readings:		1100	1/20	w	120)	1200	120)	1130	1130	1200	1211	lion	/ ja	120			
Control	DO	8.9	9.	2	8.4	8.9	8.7	8.5	8.2	8.3	8.	1 29	8.5	7-8		_	
	pН	8.2	8	./	8.2	8.2	8.3	82	8.3	8.1	8.2	2 8.2	8	8.5	-	_	
	Temp	24.8	8 24	14	24.2	24.2	24.6	24-1	25.7	240	24.	7 24. E	274.1	243			
0.25 g/l	DO	8.0	9	. [	8.5	8.8	8.8	8.5	8.2	8.3	8.	7.0	8-1	7-8			
	pН	8.2	8	.1	8.3	8.2	8.3	8.0	8.3	8.1	8,2	2 8.1	8.7	8.1	_	_	
	Temp	24.8	124	1.5	24.2	241	11 -	246	25.7	24.3	24:	24,	24.2	213			
0.5 g/l	DO	8.0		2	8.6	8.9	8.8	8.6	8.2	8.4	8.	1 7.9	8-7	78	_		
	pН	8.2	- 8	12	8.3	8.2	8.3	8.0	8.3	8.1	8.2	8.1	8, 2	8-1	_	_	
	Temp	24-1	124	1.8	24.2	24.7	24.6	24.6	25.2	24.4	24.	74,	27.	24.4			
1.0 g/l	DO	8.9	9	3	8.6	8.7	8.9	8.6	8.2	8.4	8.	1 2.2	8-1	78	_	_	
	pН	8.2	28	,2	8.3	8.2	8.3	8.1	8.3	8.1	8.2	1 8-	18:	28-1			
	Temp	24.	7 24	1.7	24-2	24.7	24.7	24.5	<u>   25.7</u>	224.4	24.	8 24.	924	245			
2.0 g/l	DO	8.0	9.	3	8.7	8.7	9.0		8.7	8.3	8.	2.7	8-0	7-8			
	pН	8.	_	،ک	8.3	8.2	8.2		8.3	8.1	8.		817	28-1			
	Temp	24.4	<del>-                                      </del>	48	24-1	24.6	24.8	24.5	25.	2 24.4	24.	924	7 24.2	245			
4.0 g/l	DO	8.8		.4		_	-			1-	<u> </u>		1 =	+-			
	pН	8.		2	_	_			_	-	1-		<del> </del>			-	
	Temp		0 2									<u> </u>		<u> </u>			
	Di	issolv	ed O	xyge	n (DO)	readin	gs are i			nperatu	e (Ter	np) read	ings are				
Additional Parameters  Conductivity (μS)					-	Con								ligh Concentrati			
						Day 1		Day 3		Day 5		Day 1		Day 3		Day 5	
Alkalinity (mg/l CaCO ₃ )						<i>30</i> 0		<u> 303</u> 74		<u>30)</u>		6510 75		728U		3400	
Hardness (mg/l CaCO ₃ )						90		89		89		93		91		90	
								urce of	Neonate								
Replicate:			A		В	(		D	E	Г	7	G	Н	I		J	

Brood ID:




# Test Temperature Chart

Test No: RT-110104

Date Tested: 01/04/11 to 01/10/11

Acceptable Range: 25+/- 1°C

