

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRK2832

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRK2832

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRK2832 Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 010	IRK2832-01	D8K290110-001, F8L030243-001, 31222-001	Water		245.1, 900.0, 901.1, 903.1, 904.0, 905.0, 906.0, 1613B, ASTM 5174-91

II. Sample Management

No anomalies were observed regarding sample management. The samples were received at TestAmerica-Irvine above the temperature limit; however, the sample had insufficient time to cool during transport. The samples were received at TestAmerica-Denver and Vista below the temperature limit; however, the samples were not noted to be damaged or frozen. The samples were received at TestAmerica-St. Louis within the temperature limits. According to the case narrative for this SDG, the samples were received intact at all laboratories; however a note on the TestAmerica-St. Louis sample receipt form indicated that the container leaked after receipt. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at TestAmerica-St. Louis, TestAmerica-Denver, and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRK2832

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
:	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRK2832

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORTProject:SSFL NPDESDATA VALIDATION REPORTSDG:IRK2832

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

4

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRK2832

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: E. Wessling

Date Reviewed: December 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank, MB-1751, had no target compound detects above the EDL which affected the site sample.

5

Project: SSFL NPDES

DATA VALIDATION REPORT SDG: IRK2832

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613 for the OPR-1751.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHOD 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: December 12, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this method.
- Calibration: Calibration criteria were met. The mercury initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 85-115%. The CRA and check standard was recovered below the control limit of 70-130%, at 68.5%; therefore, nondetected total and dissolved mercury in the sample were qualified as estimated, "UJ."
- Blanks: There were no applicable detects in the method blanks or CCBs.

6

Interference Check Samples: Not applicable to this method.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRK2832

 Blank Spikes and Laboratory Control Samples: The recovery was within the laboratoryestablished QC limits.

- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG. Both recoveries and the RPD were within the laboratory-established control limits.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this method.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summaries were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: January 13, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (07/02).

 Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were prepared beyond the five-day holding time for unpreserved samples; therefore, results for all analytes except tritium were qualified as estimated, "J," for detects and, "UJ," for nondetects. DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRK2832

 Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J." The radium-226 detector efficiency was marginally below 20% at 19%; however, as the detector passed the daily QC checks, no qualifications were required. The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The strontium-90, radium-226 and radium-228 chemical yields were greater than 50% and considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks or KPA CCBs.
- Blank Spikes and Laboratory Control Samples: All recoveries and the radium-226, radium-228, and strontium-90 RPDs were within the laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG. Method precision was evaluated based on LCS/LCSD results for radium-226, radium-228, and strontium-90.
- Matrix Spike/Matrix Spike Duplicate: No matrix spike or MS/MSD analyses were performed on the sample in this SDG. The recovery was within the laboratory-established control limits. Method accuracy for the remaining analytes was evaluated based on LCS/LCSD results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Detects
 reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ,"
 in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

8

Client Data Tes Name: Tes Project: IRk Date Collected: 26-	Test Americ IRK2832 26-Nov-08 0915	Test America-Irvine, CA IRK2832 26-Nov-08 915		Sample Data Matrix: Sample Size:	Aqueous 1.03 L	Laboratory Data Lab Sample: QC Bareh No.: Date Analyzed DB-5:	31222-001 1751 11-Dec-08	Date Received Date Extracted Date Analyzed I	Date Received: Date Extracted: Date Analyzed DB-225:	29-Nov-08 9-Dec-08 NA
Analyte	Conc.	(ng/L)	DI a	EMPCb	Qualifiers	Labeled Standard	dard	%R	rcr-ncr _q	Oualifiers
2,3,7,8-TCDD	ND	5	0.00000103	03		IS 13C-2,3,7,8-TCDD	COC	67.5	25 - 164	
1,2,3,7,8-PeCDD	S	-	0.00000483	83		13C-1,2,3,7,8-PeCDD	PeCDD	48.4	25 - 181	
1,2,3,4,7,8-HxCDD	ND		0.00000483	83		13C-1,2,3,4,7,8-HxCDD	-HxCDD	45.3	32 - 141	
1,2,3,6,7,8-HxCDD	S		0.00000433	33		13C-1,2,3,6,7,8-HxCDD	-HxCDD	52.3	28 - 130	
1,2,3,7,8,9-HxCDD	ND		0.00000424	24		13C-1,2,3,4,6,7,8-HpCDD	',8-HpCDD	46.4	23 - 140	
1,2,3,4,6,7,8-HpCDD	SP	>	0.0000122	2		13C-0CDD		35.2	17 - 157	
осрр	0.000	98900				13C-2,3,7,8-TCDF	DF	72.0	24 - 169	
2,3,7,8-TCDF	S	3	0.000000962	962		13C-1,2,3,7,8-PeCDF	eCDF	46.4	24 - 185	
1,2,3,7,8-PeCDF	N	-	0.00000250	50		13C-2,3,4,7,8-PeCDF	eCDF.	50.5	21 - 178	
2,3,4,7,8-PeCDF	ND		0.00000244	4		13C-1,2,3,4,7,8-HxCDF	-HxCDF	44.9	26 - 152	
1,2,3,4,7,8-HxCDF	N		0.00000117	17		13C-1,2,3,6,7,8-HxCDF	-HxCDF	44.6	26 - 123	
1,2,3,6,7,8-HxCDF	ND		0.00000130	30		13C-2,3,4,6,7,8-HxCDF	-HxCDF	46.9	28 - 136	
2,3,4,6,7,8-HxCDF	Q		0.00000149	49		13C-1,2,3,7,8,9-HxCDF	-HxCDF	50.0	29 - 147	
1,2,3,7,8,9-HxCDF	2		0.00000205	95		13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	42.0	28 - 143	
1,2,3,4,6,7,8-HpCDF	N		0.00000485	35		13C-1,2,3,4,7,8,9-HpCDF	,9-HpCDF	42.7	26 - 138	
1,2,3,4,7,8,9-HpCDF	N		0.00000390	06		13C-OCDF		38.2	17 - 157	
OCDF	Ø	>	0.0000211			CRS 37CI-2,3,7,8-TCDD	CDD	93.3	35 - 197	
Totals						Footnotes				
Fotal TCDD	ND	5	0.00000103)3		a. Sample specific estimated detection limit.	ed detection limit.			
Total PeCDD	ND	_	0.00000483	33		b. Estimated maximum possible concentration,	ssible concentration.			
Total HxCDD	N		0.00000446	91		c. Method detection limit.				
Total HpCDD	R		0.0000122			d. Lower control limit - upper control limit.	per control limit.			
Total TCDF	NO.	-	0.0000000962	162						
Total PeCDF	ND		0.00000247	7						
Total HxCDF	ND		0.00000148	8						
Total HpCDF	ND	7	0.00000541							

LEVEL IV

Projet 31222

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 010

Report Number: IRK2832

Sampled: 11/26/08

Received: 11/26/08

MCAWW 245.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK2832-01 (Outfal	ll 010 - Water) - cont.								
Reporting Units: ug/L									
Mercury UT/*III	MCAWW 245.1	8336128	0.027	0.2	ND	1	12/01/08	12/01/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 010

Report Number: IRK2832

Sampled: 11/26/08

Received: 11/26/08

MCAWW 245.1 Diss

Analyte	Method Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK2832-01 (Outfall	010 - Water) - cont.							
Reporting Units: ug/L								
Mercury-diss W/XIII	MCAWW 245.1 Diss 8336136	0.027	0.2	ND	1	12/01/08	12/01/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

TestAmerica Irvine

Client Sample ID: IRK2832-01

Radiochemistry

outfall 010

Lab Sample ID Work Order:

Matrix:

Lab Sample ID: F8L030243-001

K309X WATER Date Collected:

11/26/08 0915

Date Received:

11/29/08 0915

	1 5		Total Uncert.		197	Prep Date	Analysis Date
Parameter	Result	Qual	(2 σ+/-)	RL	mdc	Dace	Date
Gamma Cs-137 & 1	Hits by EPA 901	.1 MOD	p	Ci/L	Batch	# 8344329	Yld %
Cesium 137	(₩ -1.1	σ	9.5	20.0	17	12/09/08	12/21/08
Potassium 40	-100	σ	710		290	12/09/08	12/21/08
Gross Alpha/Bet	a EPA 900		p	Ci/L	Batch	# 8339115	Yld %
Gross Alpha J	H,C 2.4	J	1.3	3.0	1.5	12/04/08	12/07/08
Gross Beta J	H 17.3		2.1	4.0	1.2	12/04/08	12/07/08
Radium 226 by	EPA 903.0 MOD		p	Ci/L	Batch	# 8338402	Yld % 69
Radium (226)	·/ ₩ 0.083	U	0.086	1.00	0.13	12/03/08	12/26/08
Radium 228 by G	FPC EPA 904 MOD	1	p	Ci/L	Batch	# 8338404	Yld % 45
Radium 228 UJ	(→ 0.52	υ	0.79	1.00	1.3	12/03/08	12/24/08
TRITIUM (Distil	l) by EPA 906.0	MOD	p	Ci/L	Batch	# 8352094	Yld %
Tritium U	-90	σ	160	500	290	12/17/08	12/19/08
SR-90 BY GFPC	EPA-905 MOD		p	Ci/L	Batch	# 8338424	Yld % 68
Strontium 90 U	J/H-0.10	σ	0.33	3.00	0.58	12/03/08	12/15/08
Total Uranium b	KPA ASTM 5174	-91	p	Ci/L	Batch	# 8345026	Yld %
	H 0.524	J	0.054	0.693	0.21	and representation	12/12/08

KKS 1/29/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

APPENDIX G

Section 15

Outfall 010, November 26, 2008
Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Semi-Annual Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 11/26/08

Received: 11/26/08

Issued: 01/29/09 13:27

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

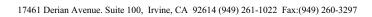
SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This report has been revised to correct the Total Uranium units to pCi/L per client request (the original

incorrect report from TestAmerica St. Louis Laboratory has been removed).


LABORATORY ID CLIENT ID MATRIX
IRK2832-01 Outfall 010 Water

Reviewed By:

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

history

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832

Received: 11/26/08

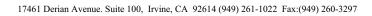
METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK2832-01 (Outfall 010 -	· Water)								
Reporting Units: ug/l									
Antimony	EPA 200.8	8L03086	0.20	2.0	0.67	1	12/03/08	12/06/08	J
Cadmium	EPA 200.8	8L03086	0.11	1.0	0.24	1	12/03/08	12/06/08	J
Copper	EPA 200.8	8L03086	0.75	2.0	5.8	1	12/03/08	12/06/08	В
Lead	EPA 200.8	8L03086	0.30	1.0	2.0	1	12/03/08	12/06/08	
Thallium	EPA 200.8	8L03086	0.20	1.0	ND	1	12/03/08	12/06/08	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly


Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832 Received: 11/26/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK2832-01 (Outfall 010 -	Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	8L03087	0.20	2.0	0.58	1	12/03/08	12/07/08	J
Cadmium	EPA 200.8-Diss	8L03087	0.11	1.0	0.12	1	12/03/08	12/07/08	J
Copper	EPA 200.8-Diss	8L03087	0.75	2.0	3.1	1	12/03/08	12/07/08	
Lead	EPA 200.8-Diss	8L03087	0.30	1.0	ND	1	12/03/08	12/07/08	
Thallium	EPA 200.8-Diss	8L03087	0.20	1.0	ND	1	12/03/08	12/07/08	

618 Michillinda Avenue, Suite 200

nda Avenue, Suite 200

Sampled: 11/26/08 Report Number: IRK2832 Received: 11/26/08

Attention: Bronwyn Kelly

Arcadia, CA 91007

INORGANICS

Project ID: Semi-Annual Outfall 010

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK2832-01 (Outfall 010 - V	Vater) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8L09056	1.3	4.7	1.7	1	12/09/08	12/09/08	J
Grease)									
Chloride	EPA 300.0	8K26165	5.0	10	41	20	11/26/08	11/27/08	
Nitrate/Nitrite-N	EPA 300.0	8K26165	0.15	0.26	3.0	1	11/26/08	11/27/08	
Sulfate	EPA 300.0	8K26165	0.20	0.50	42	1	11/26/08	11/27/08	
Total Dissolved Solids	SM2540C	8L01069	10	10	310	1	12/01/08	12/01/08	
Sample ID: IRK2832-01 (Outfall 010 - V	Vater)								
Reporting Units: ug/l									
Perchlorate	EPA 314.0	8L02046	0.90	4.0	ND	1	12/02/08	12/02/08	

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 010

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRK2832

Sampled: 11/26/08
Received: 11/26/08

Attention: Bronwyn Kelly

DIOXIN (EPA 1613)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK2832-01 (Outfall 0	10 - Water) - cont.								
Reporting Units: ug/L									
2,3,7,8-TCDD	1613-Dioxin-HR Alta	1751	0.0000010	30.00000486	ND	1	12/09/08	12/11/08	
1,2,3,7,8-PeCDD	1613-Dioxin-HR Alta	1751	0.0000048	330.0000243	ND	1	12/09/08	12/11/08	
1,2,3,4,7,8-HxCDD	1613-Dioxin-HR Alta	1751	0.0000048	330.0000243	ND	1	12/09/08	12/11/08	
1,2,3,6,7,8-HxCDD	1613-Dioxin-HR Alta	1751	0.0000043	330.0000243	ND	1	12/09/08	12/11/08	
1,2,3,7,8,9-HxCDD	1613-Dioxin-HR Alta	1751	0.0000042	240.0000243	ND	1	12/09/08	12/11/08	
1,2,3,4,6,7,8-HpCDD	1613-Dioxin-HR Alta	1751	0.000012	2 0.0000243	ND	1	12/09/08	12/11/08	
OCDD	1613-Dioxin-HR Alta	1751	0.0000024	150.0000486	0.0000686	1	12/09/08	12/11/08	
2,3,7,8-TCDF	1613-Dioxin-HR Alta	1751).0000009	6D.00000486	ND	1	12/09/08	12/11/08	
1,2,3,7,8-PeCDF	1613-Dioxin-HR Alta	1751	0.000002	5 0.0000243	ND	1	12/09/08	12/11/08	
2,3,4,7,8-PeCDF	1613-Dioxin-HR Alta	1751	0.0000024	140.0000243	ND	1	12/09/08	12/11/08	
1,2,3,4,7,8-HxCDF	1613-Dioxin-HR Alta	1751	0.000001	170.0000243	ND	1	12/09/08	12/11/08	
1,2,3,6,7,8-HxCDF	1613-Dioxin-HR Alta	1751	0.000001	3 0.0000243	ND	1	12/09/08	12/11/08	
2,3,4,6,7,8-HxCDF	1613-Dioxin-HR Alta	1751	0.0000014	190.0000243	ND	1	12/09/08	12/11/08	
1,2,3,7,8,9-HxCDF	1613-Dioxin-HR Alta	1751	0.0000020	050.0000243	ND	1	12/09/08	12/11/08	
1,2,3,4,6,7,8-HpCDF	1613-Dioxin-HR Alta	1751	0.0000048	350.0000243	ND	1	12/09/08	12/11/08	
1,2,3,4,7,8,9-HpCDF	1613-Dioxin-HR Alta	1751	0.000003	9 0.0000243	ND	1	12/09/08	12/11/08	
OCDF	1613-Dioxin-HR Alta	1751	0.000021	1 0.0000486	ND	1	12/09/08	12/11/08	
Total TCDD	1613-Dioxin-HR Alta	1751	.0000010	30.00000486	ND	1	12/09/08	12/11/08	
Total PeCDD	1613-Dioxin-HR Alta	1751	.0000048	3 0.0000243	ND	1	12/09/08	12/11/08	
Total HxCDD	1613-Dioxin-HR Alta	1751	.0000042	4 0.0000243	ND	1	12/09/08	12/11/08	
Total HpCDD	1613-Dioxin-HR Alta	1751	.0000122	2 0.0000243	ND	1	12/09/08	12/11/08	
Total TCDF	1613-Dioxin-HR Alta	1751	.00000096	520.00000486	ND	1	12/09/08	12/11/08	
Total PeCDF	1613-Dioxin-HR Alta	1751	.0000024	4 0.0000243	ND	1	12/09/08	12/11/08	
Total HxCDF	1613-Dioxin-HR Alta	1751	.0000011	7 0.0000243	ND	1	12/09/08	12/11/08	
Total HpCDF	1613-Dioxin-HR Alta	1751	.0000039	0.0000243	ND	1	12/09/08	12/11/08	
Surrogate: 13C-2,3,7,8-TCDD (25-1	164%)				67.5 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (2	25-181%)				48.4 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD	(32-141%)				45.3 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD	(28-130%)				52.3 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCD	D (23-140%)				46.4 %				
Surrogate: 13C-OCDD (17-157%)					35.2 %				
Surrogate: 13C-2,3,7,8-TCDF (24-1	(69%)				72 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (2	4-185%)				49.4 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (2	1-178%)				50.5 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF					44.9 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF					44.6 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF	(28-136%)				46.9 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF					50 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCD					42 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCD	F (26-138%)				42.7 %				
Surrogate: 13C-OCDF (17-157%)					38.2 %				

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832 Received: 11/26/08

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DIOXIN (EPA 1613)

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: IRK2832-01 (Outfall 010 - Water) - cont.

Reporting Units: ug/L

Surrogate: 37Cl-2,3,7,8-TCDD (35-197%) 93.3 %

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRK2832
Attention: Bronwyn Kelly

Sampled: 11/26/08

Received: 11/26/08

MCAWW 245.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK2832-01 (Outfall 010 - V	Vater) - cont.								
Reporting Units: ug/L									
Mercury	MCAWW 245.1	8336128	0.027	0.2	ND	1	12/01/08	12/01/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Semi-Annual Outfall 010

618 Michillinda Avenue, Suite 200

Report Number: IRK2832 Sampled: 11/26/08
Received: 11/26/08

Arcadia, CA 91007 Attention: Bronwyn Kelly

MCAWW 245.1 Diss

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRK2832-01 (Outfall 010	- Water) - cont.							v	
Reporting Units: ug/L Mercury-diss	MCAWW 245.1 Diss	8336136	0.027	0.2	ND	1	12/01/08	12/01/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832

Received: 11/26/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 010 (IRK2832-01) - Wat	er				
EPA 300.0	2	11/26/2008 09:15	11/26/2008 20:45	11/26/2008 22:00	11/27/2008 05:21

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832 Received: 11/26/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Units	Level	Result	/0KEC	Lillits	KI D	Lillit	Quanners
Batch: 8L03086 Extracted: 12/03/08	_										
Blank Analyzed: 12/08/2008 (8L03086-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	1.45	2.0	0.75	ug/l							J
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 12/06/2008-12/08/2008 (8	L03086-BS1)									
Antimony	79.9	2.0	0.20	ug/l	80.0		100	85-115			
Cadmium	78.8	1.0	0.11	ug/l	80.0		98	85-115			
Copper	75.8	2.0	0.75	ug/l	80.0		95	85-115			
Lead	78.9	1.0	0.30	ug/l	80.0		99	85-115			
Thallium	79.4	1.0	0.20	ug/l	80.0		99	85-115			
Matrix Spike Analyzed: 12/06/2008 (8L0	3086-MS1)				Sou	rce: IRK	2649-01				
Antimony	82.2	2.0	0.20	ug/l	80.0	0.520	102	70-130			
Cadmium	77.9	1.0	0.11	ug/l	80.0	ND	97	70-130			
Copper	81.1	2.0	0.75	ug/l	80.0	1.49	99	70-130			
Lead	76.8	1.0	0.30	ug/l	80.0	ND	96	70-130			
Thallium	78.4	1.0	0.20	ug/l	80.0	0.227	98	70-130			
Matrix Spike Analyzed: 12/06/2008 (8L0	3086-MS2)				Sou	rce: IRK	2879-04				
Antimony	83.8	2.0	0.20	ug/l	80.0	0.362	104	70-130			
Cadmium	76.6	1.0	0.11	ug/l	80.0	0.791	95	70-130			
Copper	91.4	2.0	0.75	ug/l	80.0	3.23	110	70-130			
Lead	76.4	1.0	0.30	ug/l	80.0	2.29	93	70-130			
Thallium	76.6	1.0	0.20	ug/l	80.0	0.232	95	70-130			
Matrix Spike Dup Analyzed: 12/06/2008	(8L03086-M	SD1)			Sou	rce: IRK	2649-01				
Antimony	84.8	2.0	0.20	ug/l	80.0	0.520	105	70-130	3	20	
Cadmium	79.7	1.0	0.11	ug/l	80.0	ND	100	70-130	2	20	
Copper	81.0	2.0	0.75	ug/l	80.0	1.49	99	70-130	0	20	
Lead	77.2	1.0	0.30	ug/l	80.0	ND	97	70-130	1	20	
Thallium	78.8	1.0	0.20	ug/l	80.0	0.227	98	70-130	1	20	

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832

Received: 11/26/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Cints	Level	Result	/UKEC	Limits	KI D	Limit	Quanners
Batch: 8L03087 Extracted: 12/03/08	-										
Blank Analyzed: 12/06/2008 (8L03087-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 12/06/2008 (8L03087-BS	1)										
Antimony	85.8	2.0	0.20	ug/l	80.0		107	85-115			
Cadmium	82.7	1.0	0.11	ug/l	80.0		103	85-115			
Copper	84.8	2.0	0.75	ug/l	80.0		106	85-115			
Lead	79.7	1.0	0.30	ug/l	80.0		100	85-115			
Thallium	82.4	1.0	0.20	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 12/06/2008 (8L0	3087-MS1)				Sou	rce: IRK	2490-02				
Antimony	84.7	2.0	0.20	ug/l	80.0	0.428	105	70-130			
Cadmium	79.2	1.0	0.11	ug/l	80.0	ND	99	70-130			
Copper	77.4	2.0	0.75	ug/l	80.0	1.01	95	70-130			
Lead	74.9	1.0	0.30	ug/l	80.0	ND	94	70-130			
Thallium	77.4	1.0	0.20	ug/l	80.0	0.201	96	70-130			
Matrix Spike Analyzed: 12/07/2008 (8L0	3087-MS2)				Sou	rce: IRK	2847-01				
Antimony	83.3	2.0	0.20	ug/l	80.0	0.347	104	70-130			
Cadmium	76.8	1.0	0.11	ug/l	80.0	ND	96	70-130			
Copper	76.9	2.0	0.75	ug/l	80.0	1.71	94	70-130			
Lead	71.2	1.0	0.30	ug/l	80.0	ND	89	70-130			
Thallium	73.9	1.0	0.20	ug/l	80.0	0.206	92	70-130			
Matrix Spike Dup Analyzed: 12/06/2008	(8L03087-M	SD1)			Sou	rce: IRK	2490-02				
Antimony	96.7	2.0	0.20	ug/l	80.0	0.428	120	70-130	13	20	
Cadmium	89.9	1.0	0.11	ug/l	80.0	ND	112	70-130	13	20	
Copper	89.0	2.0	0.75	ug/l	80.0	1.01	110	70-130	14	20	
Lead	85.3	1.0	0.30	ug/l	80.0	ND	107	70-130	13	20	
Thallium	88.4	1.0	0.20	ug/l	80.0	0.201	110	70-130	13	20	

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832

Received: 11/26/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8K26165 Extracted: 11/26/08	<u> </u>										
Blank Analyzed: 11/27/2008 (8K26165-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 11/27/2008 (8K26165-BS	1)										
Chloride	4.60	0.50	0.25	mg/l	5.00		92	90-110			
Sulfate	9.39	0.50	0.20	mg/l	10.0		94	90-110			
Matrix Spike Analyzed: 11/27/2008 (8K2	(6165-MS1)				Sou	rce: IRK	2828-01				
Chloride	89.3	10	5.0	mg/l	50.0	43.9	91	80-120			
Sulfate	135	10	4.0	mg/l	100	47.0	88	80-120			
Matrix Spike Analyzed: 11/27/2008 (8K2	(6165-MS2)				Sou	rce: IRK	2848-01				
Chloride	60.1	10	5.0	mg/l	50.0	13.2	94	80-120			
Sulfate	105	10	4.0	mg/l	100	8.27	97	80-120			
Matrix Spike Dup Analyzed: 11/27/2008	(8K26165-MS	D 1)			Sou	rce: IRK	2828-01				
Chloride	88.7	10	5.0	mg/l	50.0	43.9	89	80-120	1	20	
Sulfate	139	10	4.0	mg/l	100	47.0	92	80-120	2	20	
Batch: 8L01069 Extracted: 12/01/08	_										
Blank Analyzed: 12/01/2008 (8L01069-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
Total Dissolved Solids	ND	10	10	111g/1							
LCS Analyzed: 12/01/2008 (8L01069-BS	1)										
Total Dissolved Solids	996	10	10	mg/l	1000		100	90-110			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832

Received: 11/26/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8L01069 Extracted: 12/01	1/08										
Duplicate Analyzed: 12/01/2008 (8L0)1069-DUP1)				Sou	ırce: IRK	2818-01				
Total Dissolved Solids	192	10	10	mg/l		195			2	10	
Batch: 8L02046 Extracted: 12/02	2/08										
Blank Analyzed: 12/02/2008 (8L0204	6-BLK1)										
Perchlorate	ND	4.0	0.90	ug/l							
LCS Analyzed: 12/02/2008 (8L02046	-BS1)										
Perchlorate	26.8	4.0	0.90	ug/l	25.0		107	85-115			
Matrix Spike Analyzed: 12/02/2008 (8L02046-MS1)				Sou	ırce: IRK	2692-04				
Perchlorate	27.1	4.0	0.90	ug/l	25.0	ND	109	80-120			
Matrix Spike Dup Analyzed: 12/02/2	008 (8L02046-M	ISD1)			Sou	ırce: IRK	2692-04				
Perchlorate	27.5	4.0	0.90	ug/l	25.0	ND	110	80-120	1	20	
Batch: 8L09056 Extracted: 12/09	9/08										
Blank Analyzed: 12/09/2008 (8L0905	66-BLK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 12/09/2008 (8L09056	-BS1)										MNR1
Hexane Extractable Material (Oil & Grease)	19.4	5.0	1.4	mg/l	20.2		96	78-114			
LCS Dup Analyzed: 12/09/2008 (8L0	9056-BSD1)										
Hexane Extractable Material (Oil & Grease)	19.4	5.0	1.4	mg/l	20.2		96	78-114	0	11	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832 Received: 11/26/08

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 1751 Extracted: 12/09/08											C
Batch: 1/31 Extracted: 12/09/06											
Blank Analyzed: 12/11/2008 (MB001)					Sou	rce:					
2,3,7,8-TCDD	ND	0.00000500 0.0	00000105	ug/L				50-150		25	
1,2,3,7,8-PeCDD	ND	0.0000250 0.0	00000167	ug/L				50-150		25	
1,2,3,4,7,8-HxCDD	ND	0.0000250 0.0	00000324	ug/L				50-150		25	
1,2,3,6,7,8-HxCDD	ND	0.0000250 0.0	00000316	ug/L				50-150		25	
1,2,3,7,8,9-HxCDD	ND	0.0000250 0.0	00000297	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDD	ND	0.0000250 0.0	00000531	ug/L				50-150		25	
OCDD	ND	0.0000500 0.0	0000127	ug/L				50-150		25	
2,3,7,8-TCDF	ND	0.00000500).00	30800000	ug/L				50-150		25	
1,2,3,7,8-PeCDF	ND	0.0000250 0.0	00000202	ug/L				50-150		25	
2,3,4,7,8-PeCDF	ND	0.0000250 0.0	00000222	ug/L				50-150		25	
1,2,3,4,7,8-HxCDF	ND	0.0000250 0.0	00000133	ug/L				50-150		25	
1,2,3,6,7,8-HxCDF	ND	0.0000250 0.0	00000143	ug/L				50-150		25	
2,3,4,6,7,8-HxCDF	ND	0.0000250 0.0	0000016	ug/L				50-150		25	
1,2,3,7,8,9-HxCDF	ND	0.0000250 0.0	00000216	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDF	ND	0.0000250 0.0	00000199	ug/L				50-150		25	
1,2,3,4,7,8,9-HpCDF	ND	0.0000250 0.0	0000024	ug/L				50-150		25	
OCDF	ND	0.0000500 0.0	0000046	ug/L				50-150		25	
Total TCDD	ND	0.00000500 .0	0000105	ug/L				50-150		25	
Total PeCDD	ND	0.0000250 .00	0000167	ug/L				50-150		25	
Total HxCDD	ND	0.0000250 .00	0000297	ug/L				50-150		25	
Total HpCDD	ND	0.0000250 .00	0000531	ug/L				50-150		25	
Total TCDF	ND	0.00000500 .00	8080000	ug/L				50-150		25	
Total PeCDF	ND	0.0000250 .00	0000202	ug/L				50-150		25	
Total HxCDF	ND	0.0000250 .00	0000133	ug/L				50-150		25	
Total HpCDF	ND	0.0000250 .00	0000199	ug/L				50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	0.00163			ug/L	2000		82	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00144			ug/L	2000		72	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00146			ug/L	2000		73	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00161			ug/L	2000		80	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00154			ug/L	2000		77	50-150			
Surrogate: 13C-OCDD	0.00246			ug/L	4000		62	50-150			
Surrogate: 13C-2,3,7,8-TCDF	0.00170			ug/L	2000		85	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00141			ug/L	2000		71	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00148			ug/L	2000		74	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00136			ug/L	2000		68	50-150			

TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

%REC

RPD

Data

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08 Received: 11/26/08

Spike

Source

Report Number: IRK2832

Reporting

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting			Spike	Source		OILL		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1751 Extracted: 12/09/08											
Blank Analyzed: 12/11/2008 (MB001))				Sou	ırce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00135			ug/L	2000		67	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00146			ug/L	2000		73	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00151			ug/L	2000		76	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00135			ug/L	2000		67	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00147			ug/L	2000		74	50-150			
Surrogate: 13C-OCDF	0.00243			ug/L	4000		61	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	0.000803			ug/L	800		100	50-150			
LCS Analyzed: 12/11/2008 (OPR001)					Sou	ırce:					
2,3,7,8-TCDD	9.24	5.00	0.840	ug/L	10		92	50-150		25	
1,2,3,7,8-PeCDD	47.8	25.0	1.59	ug/L	50		96	50-150		25	
1,2,3,4,7,8-HxCDD	47.7	25.0	1.18	ug/L	50		95	50-150		25	
1,2,3,6,7,8-HxCDD	48.5	25.0	1.69	ug/L	50		97	50-150		25	
1,2,3,7,8,9-HxCDD	47.8	25.0	1.18	ug/L	50		96	50-150		25	
1,2,3,4,6,7,8-HpCDD	46.5	25.0	2.01	ug/L	50		93	50-150		25	
OCDD	94.5	50.0	2.45	ug/L	100		95	50-150		25	
2,3,7,8-TCDF	9.29	5.00	0.970	ug/L	10		93	50-150		25	
1,2,3,7,8-PeCDF	44.8	25.0	1.09	ug/L	50		90	50-150		25	
2,3,4,7,8-PeCDF	44.8	25.0	1.48	ug/L	50		90	50-150		25	
1,2,3,4,7,8-HxCDF	46.0	25.0	1.06	ug/L	50		92	50-150		25	
1,2,3,6,7,8-HxCDF	46.8	25.0	0.730	ug/L	50		94	50-150		25	
2,3,4,6,7,8-HxCDF	46.2	25.0	1.26	ug/L	50		92	50-150		25	
1,2,3,7,8,9-HxCDF	46.5	25.0	0.940	ug/L	50		93	50-150		25	
1,2,3,4,6,7,8-HpCDF	47.4	25.0	1.70	ug/L	50		95	50-150		25	
1,2,3,4,7,8,9-HpCDF	48.2	25.0	0.960	ug/L	50		96	50-150		25	
OCDF	84.1	50.0	3.66	ug/L	100		84	50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	70.4			ug/L	100		70	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	60.3			ug/L	100		60	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	66.5			ug/L	100		67	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	75.3			ug/L	100		75	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	65.4			ug/L	100		65	50-150			
Surrogate: 13C-OCDD	89.0			ug/L	200		45	50-150			
Surrogate: 13C-2,3,7,8-TCDF	74.5			ug/L	100		75	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	57.2			ug/L	100		57	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	61.8			ug/L	100		62	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	62.2			ug/L	100		62	50-150			
Toot A marias Invins											

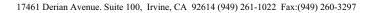
TestAmerica Irvine

Trupti Mistry For Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010


Sampled: 11/26/08 Received: 11/26/08

Report Number: IRK2832

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1751 Extracted: 12/09/08											
LCS Analyzed: 12/11/2008 (OPR001)					Sou	rce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	63.7			ug/L	100		64	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	65.7			ug/L	100		66	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	66.9			ug/L	100		67	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	59.7			ug/L	100		60	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	55.5			ug/L	100		56	50-150			
Surrogate: 13C-OCDF	83.9			ug/L	200		42	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	30.7			ug/L	40		77	50-150			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832

Received: 11/26/08

METHOD BLANK/QC DATA

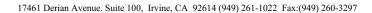
MCAWW 245.1

Analyte	I Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•	Result	Lillit	MIDL	Cilits	Level	Kesuit	/OKEC	Limits	KI D	Limit	Quanners
Batch: 8336128 Extracted: 12/01/08											
Matrix Spike Dup Analyzed: 12/01/2008	(D8K29011000	1D)			Sou	rce: IRK2	2832-01				
Mercury	5.41	0.2	0.027	ug/L	5	ND	108	90-110	0	10	
Matrix Spike Analyzed: 12/01/2008 (D8K	(290110001S)				Sour	rce: IRK2	2832-01				
Mercury	5.41	0.2	0.027	ug/L	5	ND	108	90-110	0	10	
Blank Analyzed: 12/01/2008 (D8L010000	128B)				Sour	rce:					
Mercury	ND	0.2	0.027	ug/L				-			
LCS Analyzed: 12/01/2008 (D8L0100001	28C)				Sour	rce:					
Mercury	5.27	0.2	0.027	ug/L	5		105	90-110			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08


Report Number: IRK2832

Received: 11/26/08

METHOD BLANK/QC DATA

MCAWW 245.1 Diss

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8336136 Extracted: 12/01/08											
Matrix Spike Dup Analyzed: 12/01/2008	(D8K29011000	1D)			Sou	rce: IRK	2832-01				
Mercury-diss	5.33	0.2	0.027	ug/L	5	ND	107	90-110	2	10	
Matrix Spike Analyzed: 12/01/2008 (D8F	(290110001S)				Sou	rce: IRK	2832-01				
Mercury-diss	5.43	0.2	0.027	ug/L	5	ND	109	90-110	2	10	
Blank Analyzed: 12/01/2008 (D8L010000	136B)				Sou	rce:					
Mercury-diss	ND	0.2	0.027	ug/L				-			
LCS Analyzed: 12/01/2008 (D8L0100001	36C)				Sou	rce:					
Mercury-diss	5.16	0.2	0.027	ug/L	5		103	90-110			

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 010

618 Michillinda Avenue, Suite 200 Sampled: 11/26/08

Arcadia, CA 91007 Report Number: IRK2832 Received: 11/26/08

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IRK2832-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.71	4.7	15
IRK2832-01	Antimony-200.8	Antimony	ug/l	0.67	2.0	6
IRK2832-01	Cadmium-200.8	Cadmium	ug/l	0.24	1.0	4
IRK2832-01	Chloride - 300.0	Chloride	mg/l	41	10	150
IRK2832-01	Copper-200.8	Copper	ug/l	5.83	2.0	14
IRK2832-01	Lead-200.8	Lead	ug/l	2.00	1.0	5.2
IRK2832-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	3.00	0.26	10
IRK2832-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRK2832-01	Sulfate-300.0	Sulfate	mg/l	42	0.50	250
IRK2832-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	309	10	850
IRK2832-01	Thallium-200.8	Thallium	ug/l	0.063	1.0	2

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 010

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRK2832

Sampled: 11/26/08
Received: 11/26/08

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Sampled: 11/26/08

Report Number: IRK2832

Received: 11/26/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 1664A	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical Perspectives

2714 Exchange Drive - Wilmington, NC 28405

Method Performed: 1613-Dioxin-HR Alta

Samples: IRK2832-01

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IRK2832-01

TestAmerica Denver

4955 Yarrow Street - Arvada, CO 80002

Method Performed: MCAWW 245.1

Samples: IRK2832-01

Method Performed: MCAWW 245.1 Diss

Samples: IRK2832-01

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Semi-Annual Outfall 010

618 Michillinda Avenue, Suite 200 Sampled: 11/26/08

Arcadia, CA 91007 Report Number: IRK2832 Received: 11/26/08

Attention: Bronwyn Kelly TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Analysis Performed: Gamma Spec

Samples: IRK2832-01

Analysis Performed: Gross Alpha

Samples: IRK2832-01

Analysis Performed: Gross Beta

Samples: IRK2832-01

Analysis Performed: Radium, Combined

Samples: IRK2832-01

Analysis Performed: Strontium 90

Samples: IRK2832-01

Analysis Performed: Tritium

Samples: IRK2832-01

Analysis Performed: Uranium, Combined

Samples: IRK2832-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRK2832-01

CHAIN OF CUSTODY FORM

Test first and second rain event of the year Unfiltered and unpreserved analysis TRK2832 Page 1 of Filter w/in 24hrs of receipt at lab Lime of readings = らい Sample Integrity: (check)
Intact
On Ice: Comments 5 Days 10 Days Normal Data Requirements: (check)
No Level IV _____ All Level Turn around Time: (check) Temp = /6,3 08'2 =Hd Field readings: NPDES Level IV 48 Hours 72 Hours 24 Hours ANALYSIS REQUIRED Cq, Cu, Pb, Hg, TI × Total Dissolved Metals: Sb, 240 Chronic Toxicity × (1.10e to 0.10e) Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K-40, CS-137 (901.0 or 901.1) 1,400 × N 26-08 Date/Time: Date/Time: **TDS** × Perchlorate Cl.' 20t' NO3+NO5-N' Oil & Grease (1664-HEM) × TCDD (and all congeners) × SP' Cq' Cn' bP' Ha' II × Total Recoverable Metals: Received By Received By 3A, 3B 4A, 4B Bottle # 2A, 2B Stormwater at Building 203 ₹ 6B ω Semi-Annual Outfall 010 Project: Boeing-SSFL NPDES Preservative Sampling Preserv Date/Time (626) 568-6515 (626) 568-6691 Phone Number **HNO**3 None None None None None None ᄗ Fax Number: Date/Time: //- ユモ-08 Date/Time: Date/Time Test America version 12/20/07 Project Manager: Bronwyn Kelly 1×1 Test America Contact: Joseph Doak 618 Michillinda Avenue, Suite 200 2.5 Gal Cube 500 ml Amber K BONBGN Container Type 1 Gal Poly Sampler J MARISCA 1L Amber 1L Amber 1L Poly 1L Poly 1L Poly 500 ml Poly 500 ml Poly Client Name/Address: Sample Matrix MWH-Arcadia Arcadia, CA 91007 ≥ ≥ ≷ ≥ ≥ ≥ Relinquished By eliapulished By Description Outfall 010 Outfall 010-Outfall 010 Ontfall 010 Outfall 010 Outfall 010 Outfall 010 Outfall 010 Outfall 010 ٩

PPC VORDED BALL 1GAL CONTAINON NO * DELIJERE

Test first and second rain event of the year unilitered and unpreserved analysis Page 1 of Filter win 24hrs of receipt at lab Time of readings = 915 Comments Sample Integrity: (check) Intact On Ice: 10 Days_ 5 Days Data Requirements: (check)
No Level IV _____ All Level IV Normal Tum around Time: (check) 08'2 =Hd Field readings: Temp = NPDES Level IV 48 Hours 72 Hours **ANALYSIS REQUIRED** Cd, Cu, Pb, Hg, Ti Total Dissolved Metals: Sb, USCI 30-92-11 Chronic Toxicity (1.10e to 0.10e) (608:0)' K-40' C2-131 228 (904.0), Uranium Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) Beta(900.0), Sr-90 (905.0), Total Combined Radium 2S6 Combined Radium 286 (903.0 or 903.1) & Radium **CHAIN OF CUSTODY FORM** SQT Perchlorate CL' 20°1 NO3+NO5-N' Oil & Grease (1664-HEM) TCDD (and all congeners) Total Recoverable Metals: Sb, Cd, Cu, Pb, Hg, Tl Received By Received By Received B 2A, 2B 3A, 3B Bottle # 4A, 4B Stormwater at Building 203 9 ₹ Semi-Annual Outfall 010 88 Boeing-SSFL NPDES Preservative (626) 568-6515 (626) 568-6691 Phone Number 11-76-58 HNO3 S N N None None None None None Pore F Fax Number: Date/Time: //- えん-0 9 Sampling Date/Time Project Test America version 12/20/07 Project Manager: Bronwyn Kelly Test America Contact: Joseph Doak 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 1300BGW 2.5 Gal Cube 500 ml Amber Sampler. J. MA R. Sc & 1 Container 1 Gal Poly It Amber 1t Ambe Type 1L Poly 1L Poly 500 ml Poly 500 ml 香香 Poly Client Name/Address Sample **MWH-Arcadia** Matrix \$ 000 mm **★ 010 | ★** ≥ Relinquished By Description Oto Tetho Outfall 010-Outfall 010 Outfall 010 Projection of Sample Outfall 010 Outfall 010 4-3

938

LABORATORY REPORT

Date:

December 5, 2008

Client:

TestAmerica - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-08112608-001

Sample ID.:

IRK2832-01 (Outfall 010)

Sample Control:

The sample was received by ATL within the recommended hold time, in a chilled

state, and with the chain of custody record attached. Testing was conducted on only

one sample per client instruction.

Date Sampled:

11/26/08

Date Received:

11/26/08

Temp. Received: Chlorine (TRC):

6°C 0.0 mg/l

Date Tested:

11/27/08 to 12/04/08

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Chronic:

NOEC 100%

TUc

Ceriodaphnia Survival: Ceriodaphnia Reproduction:

100%

1.0 1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08112608-001

Date Tested: 11/27/08 to 12/04/08

Client/ID: Test America – IRK2832-01 (Outfall 010)

TEST SUMMARY

Test type: Daily static-renewal.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

QA/QC Batch No.: RT-081104.

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day.

Test solution volume: 15 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Percent Survival	Mean Number of Young Per Female
100%	22.5
100%	25.8
	100%

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (22.5 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 8.0%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

Ceriodaphnia Survival and Reproduction Test-7 Day Survival

Start Date: 11/27/2008 15:00 Test ID: 8112608

Sample ID:

Outfall 010 EFF2-Industrial

End Date:

12/4/2008 16:00

Lab ID: CAATL-Aquatic Testing Labs Sample Type: Sample Date: 11/26/2008 09:15 Protocol: FWCH 4TH-EPA-821-R-02-0 Test Species:

CD-Ceriodaphnia dubia

Comments:

Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

				Not			Fisher's	Isoto	Isotonic		
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean	
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000	
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000	

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	100	>100		1	
Trootmonto un D. Control					

Treatments	vs D-Control					
			Lin	near Interpolatio	n (200 Resamples)	
Point	%	SD	95% CL	Skew		
IC05	>100					, , , , , , , , , , , , , , , , , , , ,
IC10	>100					
IC15	>100				1.0	ALL LAND CONTRACTOR OF THE PARTY OF THE PART
IC20	>100				4	
IC25	>100				0.9 -	ļ
IC40	>100				0.8	
IC50	>100				4	
				**************************************	0.7	
					Response - 0.6 - 1	
					Š 0.5]	
					G]	
					& 0.4 -	
					0.3 🕽	
					0.2	

0.0

50

100

Dose %

150

Ceriodaphnia Survival and Reproduction Test-Reproduction

Start Date:

11/27/2008 15:00

Test ID: 8112608

Sample ID:

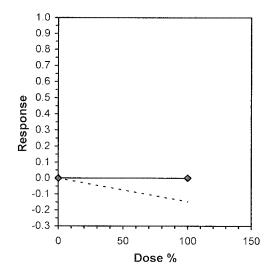
Outfall 010

End Date:

12/4/2008 16:00

Lab ID: CAATL-Aquatic Testing Labs Sample Type: Sample Date: 11/26/2008 09:15 Protocol: FWCH 4TH-EPA-821-R-02-0 Test Species: EFF2-Industrial CD-Ceriodaphnia dubia

Comments:


Conc-%	11	22	3	4	5	6	7	8	9	10
D-Control	24.000	20.000	23.000	25.000	20.000	25.000	22.000	21.000	23.000	22.000
100	29 000	24 000	25 000	26 000	22 000	26 000	30 000	22 000	26 000	28 000

			_		Transform: Untransformed					1-Tailed	Isotonic		
_	Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
	D-Control	22.500	1.0000	22.500	20.000	25.000	8.182	10				24.150	1.0000
	100	25.800	1.1467	25.800	22.000	30.000	10.464	10	-3.194	1.734	1.792	24.150	1.0000

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.9724		0.905		0.0074	-0.6194
F-Test indicates equal variances (p = 0.27)	2.15082		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	1.79187	0.07964	54.45	5.33889	0.00503	1, 18
Treatments vs D-Control						

Linear Interpolation (200 Resamples)

Point	%	SD	95% CL	Skew
IC05	>100			
IC10	>100			
IC15	>100			
IC20	>100			
IC25	>100			
IC40	>100			
IC50	>100			

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-08112608-001

DO pH

Control

Client ID: TestAmerica - IRK2832-01 Outfall 010 Start Date: 11/27/2008 DAY 1 DAY 2 DAY 3 DAY 4 DAY 6 DAY 5 24hr 0 hr 24hr Analyst Initials: 1200 Time of Readings:

	Temp	242	240	24.7	24.2	24.8	24.5	24.2	243	243	24.0	25.3	24./	245	24.2
"	DO	8.0	8.4	8.2	8.5	8-6	8-2	9-1	8.1	9,2	9.1	10.5	9:3	10.6	8.4
100%	рН	7.2	7.6	7.0	7.8	6.9	7.7	6.5	7.7	6-9	7.7	6.8	7.7	6.8	28
	Temp	24.1	240	24.8	24.0	24.9	241	248	242	24-6	24.4	25.3	24.5	25./	24.2
Additional Parameters								Cor	itrol				100% San	nple	
Conductivity (umohms)							3 (11)				275				

Additional Parameters	Control	100% Sample
Conductivity (umohms)	300	375
Alkalinity (mg/l CaCO ₃)	65	48
Hardness (mg/l CaCO ₃)	96	71
Ammonia (mg/l NH ₃ -N)	20-1	0-1

				Source of	Neonates					
Replicate:	Α	В	С	D	Е	F	G	Н	I	J
Brood ID:	6B	41	6F	6E	50	3B	aß	30	265	13

Samula	D				Num	ber of Y	oung Pr	oduced				Total Live	No. Live	Analyst
Sample	Day	A	В	С	D	E	F	G	Н	I	J	Young	Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0		10	R
	2	0	0	0	0	0	0	0	0	0	0	0	10	R
	3	0	3	<u>}</u>	0	0	3	0	0	0	(ب	9	10	
Control	4	4	0	0	3	4	0	5	ч	3	U	27	10	
Control	5	8	0	\supset	7	6)	6	7	つ	6	61	10	
	6	0	7	0	$\dot{\mathcal{O}}$	Ò	15	0	0	0	\bigcirc	22	10	0
	7	12	10	13	15	10	0	1	10	13	12	106	10	9
	Total	24	20	23	25	20	25	22	21	23	22	225	iu	
	1	0	0	0	0	0	0	0	0	0	0	0	10	R
	2	0	0	0	0	0	0	0	0	0	0	\cup	10	2
	3	3	0	0	2	0	0	0	3	0	0	8	10	h
1000/	4	0	4	3	0	7	5	4	0	ч	3	27	10	
100%	5	2	B	6	6	Ŕ	7	. 1	6	8	\supset	70-	10	7
	6	0	0	0	0	0	0	Ô	Ö	0	$\dot{\mathcal{O}}$	0	io	200
	7	19	12	16	18	10	14	19	13	14	18	153	10	h
	Total	29	24	25	26	20	26	30	22	26	28	258	10	1/

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

DEL MAR ANALYTICAL CACI UNDER

NO. 210 P. 1

TestAmerica Irvine

IRK2832

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine; CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003

Phone :(805) 650-0546 Fax: (805) 650-0756

Project Location: CA - CALIFORNIA

Receipt Temperature:_

ce: 🕢 N

Analysis	Units	Due	Expires	Comments
Sample ID: IRK2832-01	Water		Sampled: 11/26/08 09:15	Instant Nofication
Bioassay-7 dy Chmic	N/A	12/09/08	11/27/08 21:15	Cerio, EPA/821-R02-013, Sub to Aquatic testing
Containers Supplied: 1 gal Poly (L)				

Released By Date/Time

Date/Time

Released By

Regard By

Date/Time

Received By

Date/Time

Page 1 of 1

Test first and second rain event of the year Unfiltered and unpreserved analysis Filter-win-24hrs of receipt at lab Page 1 of Time of readings = 915 Sample Integrity: (check)
Intact On loe: 10 Days_ Data Requirements: (check)
No Level IV All Level IV Comments Normal Turn around Time: (check) Temp = /6,3 Field readings: NPDES Level IV 72 Hours 48 Hours ANALYSIS REQUIRED Cq' Cn' bp' Ha' II × Total Dissolved Metals: Sb, 126-05 1330 Chronic Toxicity × (1.109 10 0.109) (808.0), K-40, CS-137 Muins1U (0.409) 822 muibsA & (1.609 to 0.609) Combined Radium 226 Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Date/Time: Gross Alpha(900.0), Gross 76/64 CHAIN OF CUSTODY FORM **SQT** Perchlorate CL' 8O⁴' NO³+NO⁵-N' Oil & Grease (1664-HEM) TCDD (and all congeners) Sb, Cd, Cu, Pb, Hg, TI Total Recoverable Metals: Received By Received By Bottle # 2A, 2B 3A, 3B 4A, 4B Stormwater at Building 203 ₩ 68 68 ф 7 Boeing-SSFL NPDES Semi-Annual Outfall 010 Preservative (626) 568-6691 Fax Number: Phone Number: (626) 568-6515 Sampling Presert Date/Time 1.2-25 HNO3 HNO3 None None None None None None Date/Time: //- えん-08 Project Test America version 12/20/07 Project Manager: Bronwyn Kelly # of Cont. Test America Contact: Joseph Doak 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 2.5 Gal Cube 500 ml Amber BANGE M Container Type 1 Gal Poly Sampler: J M B A, SCA 1 rt Amber 1L Ambe 1L Poly IL Poly 4- Pely Poly 500 ml 500 ml Poly Client Name/Address: Sample Matrix MWH-Arcadia Outfall 610 W W-010 Helling Outfall 010 W W Order Relinquished By Outfall 010 Description Outfall 010 Outfall 010-Outfall 010 Outfall 010

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-081104

Date Tested: 11/04/08 to 11/11/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survi	ival	Mean Number of Young Per Female		
Control	100%		22.5		
0.25 g/l	100%		23.0		
0.5 g/l	100%		21.9		
1.0 g/l	100%		15.8	*	
2.0 g/l	100%		4.4	*	
4.0 g/l	0%	*	0	**	

^{*} Statistically significantly less than control at P = 0.05 level

** Reproduction data from concentrations greater than survival NOEC are

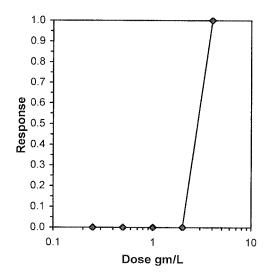
excluded from statistical analysis.

CHRONIC TOXICITY

Survival LC50	2.8 g/l
Reproduction IC25	0.90 g/l

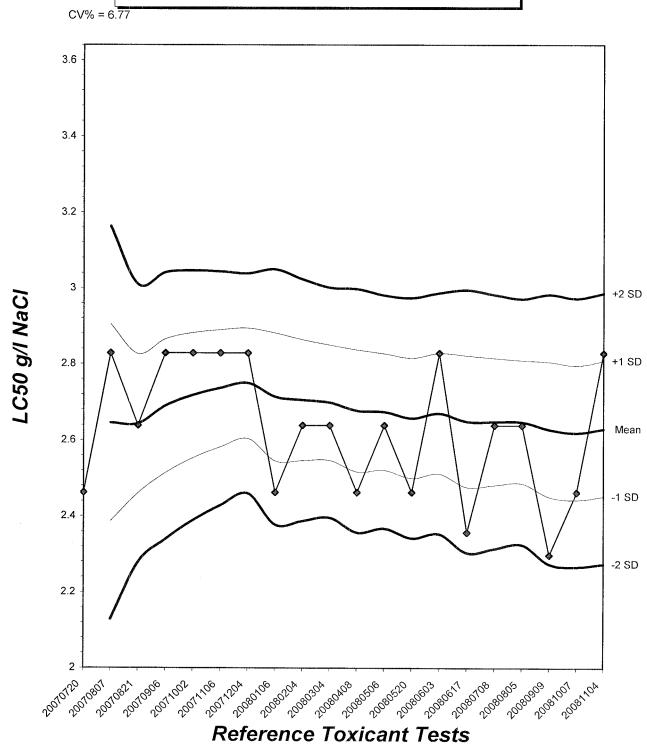
QA/QC TEST ACCEPTABILITY

Parameter Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (22.5 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD < 47% for reproduction	Pass (PMSD = 9.8%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. relative difference = 29.8%)
Concentration response relationship acceptable	Pass (Response curve normal)


Ceriodaphnia Survival and Reproduction Test-7 Day Survival											
Start Date:	11/4/2008	15:00		RT-08110			Sample ID		REF-Ref	oxicant	
End Date:	11/11/2008 15:00 Lab ID:		Lab ID:	CAATL-Ac	uatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	lium chloride	
Sample Date:	11/4/2008		Protocol:	FWCH 4T	H-EPA-82	1-R-02-0	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
4	0.0000	0.0000	10	0	10	10			10	10

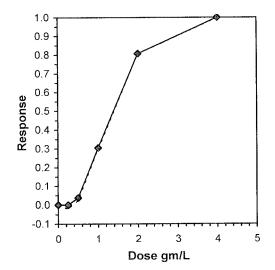
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					


		Graphical Method
Trim Level	EC50	
0.0%	2.8284	

2.8284

Reviewed by: 948

Ceriodaphnia Chronic Survival Laboratory Control Chart


			Cerioda	aphnia Su	rvival and				duction	
Start Date:	11/4/2008	15:00	1001101	RT-08110	-		Sample ID		REF-Ref T	
End Date:	11/11/2008	3 15:00		CAATL-Ac						lium chloride
Sample Date:	11/4/2008		Protocol:	FWCH 4T	H-EPA-82	1-R-02-0	Test Speci	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	23.000	20.000	23.000	22.000	23.000	22.000	26.000	21.000	22.000	23.000
0.25	19.000	23.000	22.000	25.000	25.000	22.000	25.000	23.000	24.000	22.000
0.5	21.000	24.000	20.000	25.000	18.000	23.000	22.000	20.000	22.000	24.000
1	9.000	15.000	18.000	10.000	18.000	17.000	16.000	19.000	19.000	17.000
2	2.000	4.000	6.000	5.000	6.000	4.000	5.000	4.000	4.000	4.000
4		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		W.	Transform: Untransformed				Rank	1-Tailed	Isoto	Isotonic	
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		N-Mean
D-Control	22.500	1.0000	22.500	20.000	26.000	7.027	10			22.750	1.0000
0.25	23.000	1.0222	23.000	19.000	25.000	8.198	10	115.50	76.00	22.750	1.0000
0.5	21.900	0.9733	21.900	18.000	25.000	9.969	10	98.50	76.00	21.900	0.9626
*1	15.800	0.7022	15.800	9.000	19.000	22.486	10	55.00	76.00	15.800	0.6945
*2	4.400	0.1956	4.400	2.000	6.000	26.677	10	55.00	76.00	4.400	0.1934
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution	$(p \le 0.05)$		0.93086	0.947	-1.0207	1.76892
Bartlett's Test indicates equal var					12.1425	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711					
Transference D. Control								

Treatments vs D-Control

Point	gm/L	SD	95%	Skew	
IC05	0.5236	0.0738	0.3349	0.6024	-1.1597
IC10	0.6168	0.0540	0.4824	0.7162	-0.7556
IC15	0.7100	0.0536	0.6133	0.8309	-0.1240
1C20	0.8033	0.0606	0.7087	0.9480	0.2967
IC25	0.8965	0.0688	0.7913	1.0519	0.2677
IC40	1.1886	0.0706	1.0517	1.3109	-0.5676
IC50	1.3882	0.0549	1.2688	1.4826	-0.6239

