SDG 8696

SDG <u>8696</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America</u>, <u>Inc</u>.

Contract <u>IUK2640</u>

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES

Page 2

SUMMARY DATA SECTION

Page 2

SDG 8696

SDG	8696		
Contact	Joseph	Verville	
Contact	Joseph	verville	_

LAB SAMPLE SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUK2640</u>

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF CUSTODY	COLLECTED
S111064-01	IUK2640-02	Boeing - SSFL	WATER			IUK2640	11/20/11 17:50
S111064-02	IUK2640-03 (TRIP-BLANK)	Boeing - SSFL	WATER			IUK2640	11/21/11 00:00
S111064-03	Lab Control Sample		WATER				
S111064-04	Method Blank	•	WATER				
S111064-05	Duplicate (S111064-01)	Boeing - SSFL	WATER				11/20/11 17:5

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

SDG 8696

SDG <u>8696</u>
Contact <u>Joseph Verville</u>

QC SUMMARY

Client Test America, Inc.
Contract IUK2640

QC BATCH	CHAIN OF	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE	BASIS	DAYS SINCE RECEIVED COLL		DEPARTMENT SAMPLE ID
8696	IUK2640	IUK2640-02 IUK2640-03 (TRIP-BLANK)	WATER WATER		10.0 L 10.0 L			S111064-01 S111064-02	8696-001 8696-002
		Method Blank Lab Control Sample Duplicate (S111064-01)	WATER WATER WATER		10.0 L			S111064-04 S111064-03 S111064-05	8696-004 8696-003 8696-005

QC SUMMARY

Page 1 .

SUMMARY DATA SECTION

Page 4

SDG 8696

SDG 8696
Contact Joseph Verville

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUK2640</u>

		PREPARATION						QUALI-		
MATRIX	METHOD	ВАТСН	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Counting										
WATER	Radium-228 in Water	7281-188	10.4	2			1	1	1/1	
WATER	Strontium-90 in Water	7281-188	10.4	2			1	1	1/1	
Proportion	al Counting									
WATER	Gross Alpha in Water	7281-188	20.6	2			1	1	1/1	
WATER	Gross Beta in Water	7281-188	11.0	2			1	1	1/1	
Spectros	сору									
WATER	Gamma Emitters in Water	7281-188	7.0	2			1	1	1/1	
ic Phosph	orimetry, ug									
WATER	Uranium, Total	7281-188		2			1	1	1/1	
id Scintil	lation Counting						_			
WATER	Tritium in Water	7281-188	10.0	1			1	1	1/1	
n Counting					· · ·					
WATER	Radium-226 in Water	7281-188	16.4	2			1	1	1/1	
	WATER Proportion WATER WATER Spectros WATER TIC Phosph WATER Id Scintil WATER TO Counting	Counting WATER Radium-228 in Water WATER Strontium-90 in Water Proportional Counting WATER Gross Alpha in Water WATER Gross Beta in Water A Spectroscopy WATER Gamma Emitters in Water Tic Phosphorimetry, ug WATER Uranium, Total Id Scintillation Counting WATER Tritium in Water	MATRIX METHOD BATCH Counting WATER Radium-228 in Water 7281-188 WATER Strontium-90 in Water 7281-188 Proportional Counting WATER Gross Alpha in Water 7281-188 WATER Gross Beta in Water 7281-188 A Spectroscopy WATER Gamma Emitters in Water 7281-188 Cic Phosphorimetry, ug WATER Uranium, Total 7281-188 Id Scintillation Counting WATER Tritium in Water 7281-188	Counting WATER Radium-228 in Water 7281-188 10.4 WATER Strontium-90 in Water 7281-188 10.4 Proportional Counting WATER Gross Alpha in Water 7281-188 20.6 WATER Gross Beta in Water 7281-188 11.0 A Spectroscopy WATER Gamma Emitters in Water 7281-188 7.0 Cic Phosphorimetry, ug WATER Uranium, Total 7281-188 Id Scintillation Counting WATER Tritium in Water 7281-188 10.0	Counting WATER Radium-228 in Water 7281-188 10.4 2 WATER Strontium-90 in Water 7281-188 10.4 2 Proportional Counting WATER Gross Alpha in Water 7281-188 20.6 2 WATER Gross Beta in Water 7281-188 11.0 2 A Spectroscopy WATER Gamma Emitters in Water 7281-188 7.0 2 Tic Phosphorimetry, ug WATER Uranium, Total 7281-188 2 Id Scintillation Counting WATER Tritium in Water 7281-188 10.0 1	MATRIX METHOD BATCH 20 % CLIENT MORE Counting WATER Radium-228 in Water 7281-188 10.4 2 WATER Strontium-90 in Water 7281-188 10.4 2 Proportional Counting WATER Gross Alpha in Water 7281-188 20.6 2 WATER Gross Beta in Water 7281-188 11.0 2 A Spectroscopy WATER Gamma Emitters in Water 7281-188 7.0 2 This ic Phosphorimetry, ug WATER Uranium, Total 7281-188 2 Add Scintillation Counting WATER Tritium in Water 7281-188 10.0 1	MATRIX METHOD BATCH 20 % CLIENT MORE RE Counting WATER Radium-228 in Water 7281-188 10.4 2 WATER Strontium-90 in Water 7281-188 10.4 2 Proportional Counting WATER Gross Alpha in Water 7281-188 20.6 2 WATER Gross Beta in Water 7281-188 11.0 2 A Spectroscopy WATER Gamma Emitters in Water 7281-188 7.0 2 The Counting WATER Uranium, Total 7281-188 10.0 1	MATRIX METHOD BATCH 20% CLIENT MORE RE BLANK Counting WATER Radium-228 in Water 7281-188 10.4 2 1 WATER Strontium-90 in Water 7281-188 10.4 2 1 Proportional Counting WATER Gross Alpha in Water 7281-188 20.6 2 1 WATER Gross Beta in Water 7281-188 11.0 2 1 A Spectroscopy WATER Gamma Emitters in Water 7281-188 7.0 2 1 Cic Phosphorimetry, ug WATER Uranium, Total 7281-188 2 1 A Scintillation Counting WATER Tritium in Water 7281-188 10.0 1 1	MATRIX METHOD BATCH 20 % CLIENT MORE RE BLANK LCS Counting WATER Radium-228 in Water 7281-188 10.4 2 1 1 WATER Strontium-90 in Water 7281-188 10.4 2 1 1 Proportional Counting WATER Gross Alpha in Water 7281-188 20.6 2 1 1 WATER Gross Beta in Water 7281-188 11.0 2 1 1 A Spectroscopy WATER Gamma Emitters in Water 7281-188 7.0 2 1 1 Cic Phosphorimetry, ug WATER Uranium, Total 7281-188 2 2 1 1 A Scintillation Counting WATER Tritium in Water 7281-188 10.0 1 1 1	MATRIX METHOD BATCH 20 % CLIENT MORE RE BLANK LCS DUP/ORIG MS/ORIG COUNTING WATER Radium-228 in Water 7281-188 10.4 2

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

SDG 8696

SDG <u>8696</u>
Contact <u>Joseph Verville</u>

LAB WORK SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUK2640</u>

LAB SAMPLE	CLIENT SAMPLE ID								
COLLECTED RECEIVED	LOCATION CUSTODY SAS	MATRIX no	PLANCHET	TEST	SUF- FIX	ANALYZED	REVIEWED	вч	METHOD
S111064-01	IUK2640-02		8696-001	80A/80		12/05/11	12/07/11	KWP	Gross Alpha in Water
11/20/11	Boeing - SSFL	WATER	8696-001	80B/80		12/05/11	12/07/11	KWP	Gross Beta in Water
	IUK2640		8696-001	AC		12/06/11	12/07/11	KWP	Radium-228 in Water
			8696-001	GAM		11/29/11	12/01/11	CSS	Gamma Emitters in Water
			8696-001	Н		12/06/11	12/08/11	KWP	Tritium in Water
			8696-001	RA		12/06/11	12/08/11	KWP	Radium-226 in Water
			8696-001	SR		12/02/11	12/08/11	KWP	Strontium-90 in Water
			8696-001	U_T		12/01/11	12/01/11	css	Uranium, Total
111064-02	IUK2640-03 (TRIP-BLA	NK)	8696-002	80A/80		12/05/11	12/07/11	KWP	Gross Alpha in Water
11/21/11	Boeing - SSFL	WATER	8696-002	80B/80		12/05/11	12/07/11	KWP	Gross Beta in Water
	IUK2640		8696-002	AC		12/06/11	12/07/11	KWP	Radium-228 in Water
			8696-002	GAM		11/29/11	12/01/11	CSS	Gamma Emitters in Water
			8696-002	RA		12/06/11	12/08/11	KWP	Radium-226 in Water
			8696-002	SR		12/02/11	12/08/11	KWP	Strontium-90 in Water
			8696-002	U_T		12/01/11	12/01/11	CSS	Uranium, Total
111064-03	Lab Control Sample		8696-003	80A/80		12/06/11	12/07/11	KWP	Gross Alpha in Water
		WATER	8696-003	80B/80		12/06/11	12/07/11	KWP	Gross Beta in Water
			8696-003	AC		12/06/11	12/07/11	KWP	Radium-228 in Water
			8696-003	GAM		11/30/11	12/01/11	CSS	Gamma Emitters in Water
			8696-003	H		12/06/11	12/08/11	KWP	Tritium in Water
*			8696-003	RA		12/06/11	12/08/11	KWP	Radium-226 in Water
			8696-003	SR		12/02/11	12/08/11	KWP	Strontium-90 in Water
			8696-003	υ_ τ		12/01/11	12/01/11	CSS	Uranium, Total
111064-04	Method Blank		8696-004	80A/80		12/05/11	12/07/11	KWP	Gross Alpha in Water
		WATER	8696-004	80B/80		12/05/11	12/07/11	KWP	Gross Beta in Water
			8696-004	AC		12/06/11	12/07/11	KWP	Radium-228 in Water
			8696-004	GAM		11/30/11	12/01/11	CSS	Gamma Emitters in Water
			8696-004	Н		12/06/11	12/08/11	KWP	Tritium in Water
			8696-004	RA		12/06/11	12/08/11	KWP	Radium-226 in Water
			8696-004	SR		12/02/11	12/08/11	KWP	Strontium-90 in Water
			8696-004	U_T		12/01/11	12/01/11	CSS	Uranium, Total

WORK SUMMARY

Page 1

SUMMARY DATA SECTION

Page 6

SDG 8696

SDG	8696	
Contact	Joseph Ve	rville

WORK SUMMARY, cont.

Client Test America, Inc.
Contract IUK2640

LAB SAMPLE	CLIENT SAMPLE	ID								
COLLECTED	LOCATION		MATRIX			SUF-				
RECEIVED	CUSTODY	SAS no		PLANCHET	TEST	FIX	ANALYZED	REVIEWED	BY	METHOD
-										
S111064-05	Duplicate (S11	.1064-01)		8696-005	08\A08		12/05/11	12/07/11	KWP	Gross Alpha in Water
11/20/11	Boeing - SSFL		WATER	8696-005	80B/80		12/05/11	12/07/11	KWP	Gross Beta in Water
				8696-005	AC		12/06/11	12/07/11	KWP	Radium-228 in Water
				8696-005	GAM		11/30/11	12/01/11	CSS	Gamma Emitters in Water
				8696-005	Н		12/06/11	12/08/11	KWP	Tritium in Water
				8696-005	RA		12/06/11	12/08/11	K₩₽	Radium-226 in Water
				8696-005	SR		12/02/11	12/08/11	KWP	Strontium-90 in Water
				8696-005	U_T		12/01/11	12/01/11	CSS	Uranium, Total

TEST	SAS no	COUNTS	OF TESTS REFERENCE	BY	SAMPLE TYPE CLIENT MORE	RE	BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0		2		1	1	· 1	5
80B/80		Gross Beta in Water	900.0		2		1	1	1	5
AC		Radium-228 in Water	904.0		2		1	1	1	5
GAM		Gamma Emitters in Water	901.1		2		1	1	1	5
Н		Tritium in Water	906.0		1		1	1	1	4
RA		Radium-226 in Water	903.1		2		1	1	1	5
SR		Strontium-90 in Water	905.0		2		1	1	1	5
U_T		Uranium, Total	D5174		2		1	1	1	5
TOTALS				-	. 15		8	8	8	39

WORK SUMMARY Page 2

SUMMARY DATA SECTION

Page 7

8696-004

METHOD BLANK

Method Blank

SDG	8696	Client	Test America, Inc.	
Contact	Joseph Verville	Contract	<u>IUK2640</u>	
Lab sample id Dept sample id		Client sample id Material/Matrix		WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.070	0.28	0.504	3.00	υ	80A
Gross Beta	12587472	-0.245	0.49	0.833	4.00	U	80B
Tritium	10028178	-5.17	8.5	14.8	500	U	H
Radium-226	13982633	-0.053	0.36	0.674	1.00	U	RA
Radium-228	15262201	-0.138	0.22	0.609	1.00	U	AC
Strontium-90	10098972	-0.216	0.38	0.928	2.00	U	SR
Uranium, Total		0	0.007	0.017	1.00	U	UT
Potassium-40	13966002	υ		35.2	25.0	U	GAM
Cesium-137	10045973	υ		1.88	20.0	υ	GAM

QC-BLANK #80642

METHOD BLANKS

Page 1

SUMMARY DATA SECTION

Page 8

SDG 8696

8696-003

Lab Control Sample

LAB CONTROL SAMPLE

SDG <u>8696</u>
Contact <u>Joseph Verville</u>

Client Test America, Inc.

Contract IUK2640

Lab sample id <u>S111064-03</u>

Dept sample id <u>8696-003</u>

Client sample id Lab Control Sample

Material/Matrix _____

WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2ø ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCO
Gross Alpha	39.1	2.3	0.616	3.00		80A	33.7	1.3	116	75-125	70-130
Gross Beta	27.1	1.3	1.13	4.00		80B	28.6	1.1	95	88-112	70-130
Tritium	209	14	14.6	500	J	н	226	9.0	92	88-112	80-120
Radium-226	50.1	2.7	0.727	1.00		RA	55.7	2.2	90	84-116	80-120
Radium-228	5.92	0.42	0.614	1.00		AC	5.55	0.22	107	86-114	60-140
Strontium-90	19.4	1.5	0.669	2.00		SR	18.9	0.76	103	86-114	80-120
Uranium, Total	64.2	7.3	0.168	1.00		υ_T	62.5	2.5	103	88-112	80-120
Cobalt-60	133 -	3.8	1.85	10.0		GAM	136	5.4	98	92-108	80-120
Cesium-137	147	3.5	2.34	20.0		GAM	148	5.9	99	92-108	80-120

LAB CONTROL SAMPLES
Page 1

SUMMARY DATA SECTION

Page 9

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LCS

Version 3.06____

Report date <u>12/12/11</u>

SDG 8696

8696-005

DUPLICATE

IUK2640-02

SDG 8696

Contact Joseph Verville

DUPLICATE

Lab sample id <u>S111064-05</u>
Dept sample id <u>8696-005</u>

ORIGINAL

Lab sample id <u>S111064-01</u>
Dept sample id <u>8696-001</u>

Received ____

Client <u>Test America</u>, <u>Inc</u>.

Contract <u>IUK2640</u>

Client sample id <u>IUK2640-02</u>

Location/Matrix Boeing - SSFL WATER

Collected/Volume <u>11/20/11 17:50</u> 10.0 L

Chain of custody id <u>IUK2640</u>

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ TOT	DER σ
Gross Alpha	0.508	0.26	0.299	3.00	J	A08	0.368	0.19	0.209	J	32	119	0.8
Gross Beta	1.45	0.54	0.820	4.00	J	80B	1.64	0.60	0.912	J	12	82	0.5
Tritium	-39.2	88	152	500	υ	н	-20.4	89	152	υ	-		0.3
Radium-226	0.400	0.43	0.698	1.00	υ	RA	0.392	0.46	0.747	υ	-		0
Radium-228	0.042	0.32	0.753	1.00	Ü	AC	0.400	0.25	0.602	σ	-		1.8
Strontium-90	-0.067	0.34	0.781	2.00	Ü	SR	0.039	0.37	0.798	U	-		0.4
Uranium, Total	0.379	0.042	0.017	1.00	J	υ_τ	0.365	0.040	0.017	J	4	23	0.5
Potassium-40	Ū		22.5	25.0	U	GAM	U		18.0	U	-		0.3
Cesium-137	υ		1.08	20.0	U	GAM	υ		1.25	υ	-		0.2

QC-DUP#1 80643

DUPLICATES

Page 1

SUMMARY DATA SECTION

Page 10

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version Ver 1.0

Form DVD-DUP

Version 3.06

Report date <u>12/12/11</u>

8696-001

DATA SHEET

IUK2640-02

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.368	0.19	0.209	3.00	J	80A
Gross Beta	12587472	1.64	0.60	0.912	4.00	J	80B
Tritium	10028178	-20.4	89	152	500	U	H
Radium-226	13982633	0.392	0.46	0.747	1.00	U	RA
Radium-228	15262201	0.400	0.25	0.602	1.00	U	AC
Strontium-90	10098972	0.039	0.37	0.798	2.00	U	SR
Uranium, Total		0.365	0.040	0.017	1.00	J	$\mathbf{U}_{\mathbf{T}}$
Potassium-40	13966002	U		18.0	25.0	U	GAM
Cesium-137	10045973	υ		1.25	20.0	ប	GAM

DATA SHEETS

Page 1

SUMMARY DATA SECTION

Page 11

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-DS

 Version
 3.06

 Report date
 12/12/11

SDG 8696

8696-002

DATA SHEET

IUK2640-03 (TRIP-BLANK)

	8696 Joseph Verville	Client Contract	Test America, Inc. IUK2640
Lab sample id Dept sample id Received		Location/Matrix	11/21/11 00:00 10.0 L

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.018	0.11	0.246	3.00	υ	80A
Gross Beta	12587472	-0.153	0.44	0.757	4.00	U	80B
Radium-226	13982633	0.294	0.42	0.708	1.00	U	RA
Radium-228	15262201	-0.166	0.20	0.578	1.00	U	AC
Strontium-90	10098972	0.227	0.40	0.809	2.00	U	SR
Uranium, Total		. 0	0.007	0.017	1.00	U	U_T
Potassium-40	13966002	Ū		13.2	25.0	U	GAM
Cesium-137	10045973	U		1.15	20.0	U	GAM

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

SDG 8696

Test AC Matrix WATER
SDG 8696

Contact Joseph Verville

LAB METHOD SUMMARY

RADIUM-228 IN WATER
BETA COUNTING

Client Test America, Inc.
Contract IUK2640

RESULTS

Preparation batch	7281-188			
5111064-01	8696-001	IUK2640-02	υ	
S111064-02	8696-002	IUK2640-03 (TRIP-BLANK)	U .	
5111064-03	8696-003	Lab Control Sample	ok	
5111064-04	8696-004	Method Blank	U .	
S111064-05	8696-005	Duplicate (S111064-01)	- U	

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		\$ AIEITD	EFF %		FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 728	1-188 2σ prep error 1	0.4 % Rei	ference	Lab N	oteboo	k No.	7281	pg.132	2				•
S111064-01		IUK2640-02	0.602	1.80			100		150		16	12/06/11	12/06	GRB-201
S111064-02		IUK2640-03 (TRIP-BLANK)	0.578	1.80			81		150		15	12/06/11	12/06	GRB-202
S111064-03		Lab Control Sample	0.614	1.80			76		150			12/06/11	12/06	GRB-203
S111064-04		Method Blank	0.609	1.80			79		150			12/06/11	12/06	GRB-204
S111064-05		Duplicate (S111064-01)	0.753	1.80			80		150		 16	12/06/11	12/06	GRB-206
Nominal val	ues and li	mits from method	1.00	1.80			30-10	5	50		180			

PROCEDURES	REFERENCE	904.0
	DWP-894	Sequential Separation of Actinium-228 and
		Radium-226 in Drinking Water (>1 Liter Aliquot),
		rev 5 .

AVERAGES ± 2 SD	MDA _	0.631	±	0.139
FOR 5 SAMPLES	YIELD _	83 .	±	19

METHOD SUMMARIES
Page 1

SUMMARY DATA SECTION

Page 13

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 12/12/11

SDG 8696

Test <u>SR</u> Matrix <u>WATER</u> SDG <u>8696</u>

Contact Joseph Verville

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER
BETA COUNTING

Client <u>Test America, Inc.</u>
Contract <u>IUK2640</u>

RESULTS

LAB RAW SUF-

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Strontium-90	
Preparation h	batch 728	1-188	<u>-</u> ·	-	
S111064-01		8696-001	IUK2640-02	U	
S111064-02		8696-002	IUK2640-03 (TRIP-BLANK)	υ	
S111064-03		8696-003	Lab Control Sample	ok	
S111064-04		8696-004	Method Blank	U	
S111064-05		8696-005	Duplicate (S111064-01)	- U	

METHOD PERFORMANCE

LAB	RAW SUF-			MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAME	LE ID	pCi/L	L	FAC	TION	ક	と	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
 																
Preparation	batch 7281	188 2σ	prep error	10.4 % F	Reference	Lab N	Noteboo	k No.	7281	pg.132	2					
S111064-01		IUK2640-02		0.798	0.600			82		50			12	12/02/11	12/02	GRB-206
S111064-02		IUK2640-03	(TRIP-BLANK)	0.809	0.600			76		50			11	12/02/11	12/02	GRB-207
S111064-03		Lab Control	Sample	0.669	0.500			81		50				12/02/11	12/02	GRB-204
S111064-04		Method Blan	k	0.928	0.500			79		50				12/02/11	12/02	GRB-207
S111064-05		Duplicate (S111064-01)	0.781	0.600			79		50			12	12/02/11	12/02	GRB-207
-			 =													
Nominal val	ues and lim	nits from me	thod	2.00	0.500			30-10	5	50			180			

PROCEDURES REFERENCE 905.0

CP-380 Strontium in Water Samples, rev 5

AVERAGES ± 2 SD MDA 0.797 ± 0.184

FOR 5 SAMPLES YIELD 79 ± 5

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 14

SDG 8696

Test 80A Matrix WATER

SDG 8696

Contact Joseph Verville

LAB METHOD SUMMARY

Client Test America, Inc.
Contract IUK2640

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

RESULTS

SAMPLE ID	TEST FIX		CLIENT SAMPLE ID	Gross Alpha	
Preparation	batch 728	31-188			
S111064-01	80	8696-001	IUK2640-02	0.368 J	
S111064-02	80	8696-002	IUK2640-03 (TRIP-BLANK)	υ	
S111064-03	80	8696-003	Lab Control Sample	ok	
S111064-04	80	8696-004	Method Blank	υ	
S111064-05	80	8696-005	Duplicate (S111064-01)	ok J	

METHOD PERFORMANCE

LAB	RAW S	UF-			MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST F	'IX CLIENT	SAMP	LE ID	pCi/L	L	FAC	TION	mg	%	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch	7281-188	2σ	prep error	20.6 %	Reference	Lab	Noteboo	k No.	7281	pg.13	2					
S111064-01	80	IUK2640	0-02		0.20	9 0.300			14		400			15	12/01/11	12/05	GRB-101
S111064-02	80	IUK264	0-03	(TRIP-BLANK)	0.24	6 0.300			0		400			14	12/01/11	12/05	GRB-104
S111064-03	80	Lab Co	ntrol	Sample	0.61	6 0.300			64		400				12/01/11	12/06	GRB-107
S111064-04	80	Method	Blank	k'	0.50	4 0.300			64		400				12/01/11	12/05	GRB-111
S111064-05	80	Duplica	ate (S111064-01)	0.29	9 0.300			14		400			15	12/01/11	12/05	GRB-112
												-					
Nominal val	ues and	l limits fro	om me	thod	3.00	0.300			0-25	0	100			180			

PROCEDURES	REFERENCE	900.0											
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,											
		rev 10											

AVERAGES ± 2 SD	MDA _	0.375 ±	0.353
FOR 5 SAMPLES	RESIDUE _	31 ±	61

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 15

SDG 8696

Test 80B Matrix WATER
SDG 8696

Contact Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>IUK2640</u>

RESULTS

LAB SAMPLE ID	RAW SUF-		CLIENT SAMPLE ID	Gross B	eta		
Preparation	batch 728	31-188					
S111064-01	80	8696-001	IUK2640-02	1.64	J		
S111064-02	80	8696-002	IUK2640-03 (TRIP-BLANK)	υ			
S111064-03	80	8696-003	Lab Control Sample	ok			
S111064-04	80	8696-004	Method Blank	σ			
S111064-05	80	8696-005	Duplicate (S111064-01)	ok	J		

METHOD PERFORMANCE

LAB	RAW SUF-	-	MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	윻	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
	-		<u>_</u>												
Preparation	batch 728	31-188 2σ prep error 11	L.0 % Re:	ference	Lab N	lotebool	No.	7281	pg.132	2					
S111064-01	80	IUK2640-02	0.912	0.300			14		400			15	12/01/11	12/05	GRB-101
S111064-02	80	IUK2640-03 (TRIP-BLANK)	0.757	0.300			0		400			14	12/01/11	12/05	GRB-104
S111064-03	80	Lab Control Sample	1.13	0.300			64		400				12/01/11	12/06	GRB-107
S111064-04	80	Method Blank	0.833	0.300			64		400				12/01/11	12/05	GRB-111
S111064-05	80	Duplicate (S111064-01)	0.820	0.300			14		400			15	12/01/11	12/05	GRB-112
Nominal val	ues and li	imits from method	4.00	0.300			0-25	0	100			180			
	•														

PROCEDURES	REFERENCE	900.0
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,
		rev 10

AVERAGES ± 2 SD	MDA _	0.890	±	0.290
FOR 5 SAMPLES	RESIDUE _	31	±	61

METHOD SUMMARIES
Page 4

rage 4

SUMMARY DATA SECTION

Page 16

SDG 8696

Test GAM Matrix WATER
SDG 8696
Contact Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

Client Test America, Inc.
Contract IUK2640

RESULTS

	RAW SUF- TEST FIX PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium-137	7
Preparation 1	batch 7281-188				
S111064-01	8696-001	IUK2640-02		υ	
S111064-02	8696-002	IUK2640-03 (TRIP-BLANK)		υ	
S111064-03	8696-003	Lab Control Sample	ok	ok	
S111064-04	8696-004	Method Blank		U	
S111064-05	8696-005	Duplicate (S111064-01)		- U	

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CL	TENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		YIELD	EFF %	COUNT	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7281-1	.88 2σ prep error	7.0 % I	Reference	Lab 1	Notebool	No.	7281	pg.132	:				
S111064-01	IU	JK2640-02		2.00					752		9	11/28/11	11/29	01,04,00
S111064-02	IU	K2640-03 (TRIP-BLANK)		2.00					734		8	11/28/11	11/29	MB,08,00
S111064-03	La	ab Control Sample		2.00					1040			11/28/11	11/30	01,01,00
S111064-04	Me	thod Blank		2.00					1041			11/28/11	11/30	MB,05,00
S111064-05	Du	plicate (S111064-01)		2.00					1040		10	11/28/11	11/30	01,02,00
Nominal values and limits from method 6.00 2.00 400 180											-			

PROCEDURES	REFERENCE	901.1
	DWP-100	Preparation of Drinking Water Samples for Gamma
		Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 17

SDG 8696

Test	<u>U T</u>	Matrix	WATER
SDG	8696		
Contact	Joset	nh Verv	ille

LAB METHOD SUMMARY

URANIUM, TOTAL

KINETIC PHOSPHORIMETRY, UG

Client Test America, Inc. Contract IUK2640

RESULTS

	AW SUF- EST FIX PLANCHET	CLIENT SAMPLE ID	Oranium, Total
Preparation b	atch 7281-188		
S111064-01	8696-001	IUK2640-02	0.365 J
S111064-02	8696-002	IUK2640-03 (TRIP-BLANK)	υ
S111064-03	8696-003	Lab Control Sample	ok .
S111064-04	8696-004	Method Blank	U
S111064-05	8696-005	Duplicate (S111064-01)	ok J

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	왐	왐	min	keV	KeV	HELLD	PREPARED	YZED	DETECTOR
Preparation	batch 728	1-188 2ø prep error	Re	ference	Lab I	Notebool	k No.	7281	pg.132	2				<u> </u>	·
S111064-01		IUK2640-02	0.017	0.0200								11	12/01/11	12/01	KPA-001
S111064-02		IUK2640-03 (TRIP-BLANK)	0.017	0.0200								10	12/01/11	12/01	KPA-001
S111064-03		Lab Control Sample	0.168	0.0200									12/01/11	12/01	KPA-001
S111064-04		Method Blank	0.017	0.0200									12/01/11	12/01	KPA-001
S111064-05		Duplicate (S111064-01)	0.017	0.0200								11	12/01/11	12/01	KPA-001
										_					
Nominal val	ues and li	mits from method	1.00	0.0200								180			

PROCEDURES REFERE	NCE D5174		AVERAGES ± 2 SD	MDA
L.		J	FOR 5 SAMPLES	YIELD

0.047 ± 0.135

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 18

SDG 8696

Test H Matrix WATER

SDG 8696

Contact Joseph Verville

LAB METHOD SUMMARY

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

Client Test America, Inc.
Contract IUK2640

RESULTS

RAW SUF-SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Tritium Preparation batch 7281-188 IUK2640-02 S111064-01 8696-001 S111064-03 8696-003 Lab Control Sample ok J S111064-04 8696-004 Method Blank Ū S111064-05 8696-005 Duplicate (S111064-01) Ū Nominal values and limits from method RDLs (pCi/L) 500

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD	EFF %	COUNT	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7281-188 2g prep erro	r 10.0 %	Reference	Lab !	Noteboo.	k No. '	7281	pg.132	2				
S111064-01	IUK2640-02	152	0.0100			100		150		16	12/05/11	12/06	LSC-007
S111064-03	Lab Control Sample	14.6	1.00			10		150			12/05/11	12/06	LSC-007
S111064-04	Method Blank	14.8	1.00			10		150			12/05/11	12/06	LSC-007
S111064-05	Duplicate (S111064-01) 152	0.0100			100		150		16	12/05/11	12/06	LSC-007
Nominal val	ues and limits from method	500	0.0100					100		 180			

PROCEDURES REFERENCE 906.0

DWP-212 Tritium in Drinking Water by Distillation, rev 8

AVERAGES ± 2 SD MDA 83.4 ± 159

FOR 4 SAMPLES YIELD 55 ± 104

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 19

SDG 8696

Test RA Matrix WATER SDG 8696 Contact Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER RADON COUNTING

Client Test America, Inc. Contract <u>IUK2640</u>

RESULTS

SAMPLE ID TEST	FIX PLANCHET	CLIENT SAMPLE ID	Radium-226	
Preparation batch	7281-188			
S111064-01	8696-001	IUK2640-02	Ū	
S111064-02	8696-002	IUK2640-03 (TRIP-BLANK)	U	
S111064-03	8696-003	Lab Control Sample	ok	
S111064-04	8696-004	Method Blank	υ	
S111064-05	8696-005	Duplicate (S111064-01)	- U	

METHOD PERFORMANCE

LAB	RAW SUF	·-		MDA	ALIQ	PREP	DILU-	ALEID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT	SAMPLE ID	pCi/L	L	FAC	TION	ક	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 72	81-188	2σ prep error	16.4 % Re	ference	Lab N	Noteboo!	k No.	7281	pg.13	2					
S111064-01		IUK264	0-02	0.747	0.100			100		82			16	12/06/11	12/06	RN-010
S111064-02		IUK264	0-03 (TRIP-BLANK)	0.708	0.100			100		82			15	12/06/11	12/06	RN-012
S111064-03		Lab Co	ntrol Sample	0.727	0.100			100		80				12/06/11	12/06	RN-014
S111064-04		Method	Blank	0.674	0.100			100		121				12/06/11	12/06	RN-016
S111064-05		Duplica	ate (S111064-01)	0.698	0.100			100		121		•	16	12/06/11	12/06	RN-015
																
Nominal val	ues and l	imits fr	om method	1.00	0.100					100			180			

PROCEDURES	REFERENCE	903.1
	DWP-881A	Ra-226 Screening in Drinking Water, rev 6

AVERAGES ± 2 SD	MDA <u>0.711</u> ± <u>0</u>	.056
FOR 5 SAMPLES	YIELD 100 ±	0

METHOD SUMMARIES Page 8

SUMMARY DATA SECTION

Page 20

Lab id EAS Protocol TA Version <u>Ver 1.0</u> Form DVD-LMS Version 3.06 Report date <u>12/12/11</u>

SDG 8696

SDG <u>8696</u>
Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract IUK2640

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices
 - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- * All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES
Page 1
SUMMARY DATA SECTION

Page 21

SDG 8696

SDG <u>8696</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 22

SDG 8696

SDG <u>8696</u>
Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 23

SDG 8696

SDG <u>8696</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES

Page 4

SUMMARY DATA SECTION

Page 24

SDG 8696

SDG <u>8696</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>IUK2640</u>

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES

Page 5
SUMMARY DATA SECTION

Page 25

SDG 8696

SDG <u>8696</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 26

SDG 8696

SDG <u>8696</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES

Page 7

SUMMARY DATA SECTION

Page 27

SDG 8696

SDG <u>8696</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES

Page 8

SUMMARY DATA SECTION

Page 28

SDG 8696

SDG <u>8696</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

DUPLICATE

- A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 29

SDG 8696

SDG <u>8696</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 30

SDG 8696

SDG <u>8696</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 31

SDG 8696

SDG <u>8696</u>
Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>IUK2640</u>

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES

Page 12

SUMMARY DATA SECTION

Page 32

SDG 8696

SDG	8696		
Contact	Joseph	Verville	

GUIDE, cont.

Client	<u>Test</u>	America,	Inc.
Contract	IUK26	540	

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 33

SDG 8696

SDG <u>8696</u>
Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUK2640</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like ' $1\div3$ ' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 34

SDG 8696

SDG <u>8696</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract IUK2640 _____

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 35

Subcontract Order - TestAmerica Irvine (IUK2640)

8696

	r: N		118	10	1 4	BO	PΔ	TO	RY:	
₹	FN	NŁ.	ж	٧G	LA	טשו	TC-	U	RI.	

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Debby Wilson

RECEIVING LABORATORY:

Eberline Services - SUB 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438

Project Location: California

Receipt Temperature:

Ice: Y / N

°C

Standard TAT is request	ed unless specific due d	late is requested. => Due Date:	Initials:
Analysis	Units	Expires	Comments
Sample ID: IUK2640-02 (C	outfall 009 (Composite)	- Water) Sampled: 11/20/11 17:5	50
Gamma Spec-O	mg/kg	11/19/12 17:50	Out Eberline, k-40 and cs-137 only, DO NOT FILTER!
Gross Alpha-O	pCi/L	05/18/12 17:50	Out Eberline, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	05/18/12 17:50	Out Eberline Boeing permit, DO NOT FILTER!
Radium, Combined-O	pCi/L	11/19/12 17:50	Out Eberline Boeing permit, DO NOT FILTER!
Strontium 90-0	pCi/L	11/19/12 17:50	Out Eberline, Boeing permit, DO NOT FILTER!
Tritium-O	pCi/L	11/19/12 17:50	Out Eberline, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	·pCi/L	11/19/12 17:50	Out Eberline, Boeing permit, DO NOT FILTER!
Containers Supplied:			
2.5 gal Poly (I)	500 mL Amber (J)		
Sample ID: IUK2640-03 (Гrip Blank - Water)	Sampled: 11/21/11 00:	00
Gamma Spec-O	mg/kg	11/20/12 00:00	Out Eberline, k-40 and cs-137 only, DO NOT FILTER!
Gross Alpha-O	pCi/L	05/19/12 00:00	Out Eberline, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	05/19/12 00:00	Out Eberline Boeing permit, DO NOT FILTER!
Radium, Combined-O	pCi/L	11/20/12 00:00	Out Eberline Boeing permit, DO NOT FILTER!
Strontium 90-O	pCi/L	11/20/12 00:00	Out Eberline, Boeing permit, DO NOT FILTER!
Tritium-O	pCi/L	11/20/12 00:00	Out Eberline, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	11/20/12 00:00	Out Eberline, Boeing permit, DO NOT FILTER!

Released By

Released By

Containers Supplied: 2.5 gal Poly (A)

FEDEX

Date/Time

Date/Time

Received By

Date/T

9:37 Page 1 of 1

Received By

te/Time Page 1 of

O E BERLIZE

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client: TEST AMERICA City IRV	INE	State	CA	
Date/Time received 11/28/11 09:3 Coc No. 14K2	640			
Commainer L.D. No. ice Chest Requested TAT (Days)	2/ P.D. Rec	eived Yes i] Np[]	
Comminer L.D. No. 100 Occap Registration (1977)			<u> </u>	
) JUN	Yes ()	No[] N/A	, ,
Custody seals on shipping container intact?	7	` ',	ND[] N/A [
2. Custody seals on shipping container dated & signed	:		ND [] A/A [
3. Custody seats on sample containers intact?	· ·	• •		
4. Custody seals on sample containers dated & signed			Dry [] 1/	. /
5. Packing material is: 6. Number of samples in shipping container:	Sample Manix	WATE	e	
and the second s	(Or see CoC	<u>/</u>)		
	Yes (V	ND []		
a. Sattiples are in conservations.	• •	• •		,
	ad labels [] A	opropriate sam	pie labels [V	
leaking	[] Broken (Container ()	Missing []	
11. Samples are: In good contained (*) Leading 12. Samples are: Preserved (*) Not preserved (*)	pH 46 Pres	ervative		·
12. Describe any anomalies:		•		
				· .
Yes	r 3 kl- f			
1 14. VVES F. N. Hounted of diff. Ziterinoune.	• • • • • • • • • • • • • • • • • • • •			
1	L 1	: 10-	(TC)	
15. Inspected by Date:	.11/23/1/ Time		Ion Champer	wipe
15. Inspected by Date:	11/28/11 Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wide
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wipe
15. Inspected by Date:	.11/23/1/ Time	Beta/Gamma	Ion Chamber	wide
Customer Beta/Gamma ion Chamber Mine ALL Jacque 280	Customer Sample No.		Ion Chamber mR/hr	wipe
15. Inspected by Date:	Customer Sample No.	Beta/Gamma Dm	Ion Chamber mR/hr	wide
Customer Beta/Gamma ion Chamber Mine ALL Jacque 280	Customer Sample No.	Beta/Gamma Dm	Ion Chamber mR/hr	

APPENDIX G

Section 9

Outfall 009 – December 12, 2011

MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IUL1224

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IUL1224

Project Manager: B. Kelly Matrix: Water

QC Level: IV

No. of Samples: 2
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009 (Grab)	IUL1224-01	N/A	Water	12/12/2011 11:00:00 AM	1664A
Outfall 009 (Composite)	IUL1224-02	G1L160426-001	Water		300.0, 900. 901.1, 903.1, 904, 905, 906, 245.1, 245.1 Diss, 1613B, ASTM D5174, SM 2540C, SM2540D, SM 4500CN-E

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. One cross-out on the COC was not initialed or dated. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: January 5, 2012

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects above the EDL for all target compounds and totals with the exception of 2,3,7,8-TCDD, 2,3,7,8-TCDF, and their associated totals. Some method blank results were reported as EMPCs; however, due to the extent of the method blank contamination, the reviewer deemed it appropriate to use all method blank results to qualify sample results. The method blank concentration of OCDD was insufficient to

DATA VALIDATION REPORT SPICE SSFL NPDES
SDG: IUL1224

qualify the sample result. Sample results for the remaining individual isomer method blank contaminants were qualified as nondetected, "U," at the EDL if reported below the EDL, or at the level of contamination. With the exception of total HpCDF, detected total results were also qualified as nondetected, "U," as the peaks comprising the totals in the sample were present at comparable concentrations in the method blank. Total HpCDF was qualified as estimated, "J," as only a portion of the total was considered method blank contamination.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The labeled internal standard recoveries for the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Individual isomer EMPCs qualified as nondetected for method blank contamination were not further qualified as EMPCs. The total for HpCDF was qualified as estimated, "J," as the total included an individual isomer originally reported as an EMPC. Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHODS 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 5, 2012

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8, 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Thallium was detected in a bracketing CCB at 0.20 ®g/L; therefore, total thallium
 in the sample was qualified was nondetected, "U," at the reporting limit. Method blanks
 and CCBs had no other detects.
- Interference Check Samples: Recoveries were within the laboratory-established control limits. Copper and cadmium were detected in the ICSA at concentrations above the reporting limits. The reviewer could not confirm that these detections were due to contaminations in the ICSA solution.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: A matrix spike was performed for the total 6020 analytes and MS/MSD analyses were performed for all dissolved analytes. Recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 60-125% of the intensity in the calibration blank.

DATA VALIDATION REPORT SPICE SSFL NPDES
SDG: IUL1224

Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: January 10, 2012

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were preserved within five days of collection.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was marginally below 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J." The remaining detector efficiencies were greater than 20%. The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

Blanks: There were no analytes detected in the method blanks or the KPA CCBs.

DATA VALIDATION REPORT SSFL NPDES
SDG: IUL1224

 Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG. All RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: January 5, 2012

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods SM 2540C, SM 2540D, SM 4500CN-E, 300.0 and 1664A, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times were met.
- Calibration: Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. The cyanide reporting limit check sample recovery was 43%; therefore, nondetected cyanide in the sample was qualified as estimated, "UJ." The remaining reporting limit check samples recoveries affecting site sample results were within the reasonable control limits of 70-130%. Balance calibration check logs were acceptable.

Blanks: Method blanks and CCBs had no applicable detects.

 Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The 1664A LCS/LCSD RPD was within the laboratory-established control limit.

- Laboratory Duplicates: No laboratory duplicate analyses were performed on the samples in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the samples in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms IUL1224

Analysis Metho Sample Name	od 8697 Outfall 009 (0	omposite) Matr	іх Туре:	WATER	1	Validation Le	vel: IV
Lab Sample Name:	IUL1224-02	•	ple Date:		11 2:47:00 PM		anuation Le	vci. 1
-			-		11 2.47.00 11	v1		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total		0.05	1	0.016	pCi/L	Jb	J	DNQ
Analysis Metho	ed 900							
Sample Name	Outfall 009 (C	Composite) Matr	ix Type:	WATER	V	Validation Le	vel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	0.621	3	0.409	pCi/L	Jb	J	C, DNQ
Gross Beta	12587472	1.59	4	0.896	pCi/L	Jb	J	DNQ
Analysis Metho	od 901.1							
Sample Name	Outfall 009 (0	Composite) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	ND	20	1.6	pCi/L	U	U	
Potassium-40	13966002	ND	25	19.5	pCi/L	U	U	
Analysis Metho	od 903.1							
Sample Name	Outfall 009 (C	Composite) Matr	ix Type:	WATER	1	Validation Le	vel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.078	1	0.563	pCi/L	U	U	
Analysis Metho	od 904							
Sample Name	Outfall 009 (C	Composite) Matr	ix Type:	WATER	1	Validation Le	vel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-228	15262201	0.035	1	0.451	pCi/L	U	U	

Analysis Method 905

Sample Name	Outfall 009 (Composite) Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PM	Л		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	0.094	2	1.05	pCi/L	U	U	
Analysis Method	d 906							
Sample Name	Outfall 009 (0	Composite) Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PM	Л		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028178	-33.7	500	156	pCi/L	U	U	
Analysis Method	d EPA	1664A						
Sample Name	Outfall 009 (0	Grab)	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUL1224-01	Sam	ple Date:	12/12/20	11 11:00:00 A	ΔM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Hexane Extractable Material & Grease)	(Oil	ND	4.7	1.3	mg/l		U	
Analysis Method	d EPA	200.8						
Sample Name	Outfall 009 (0	Composite) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PM	Л		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Antimony	7440-36-0	0.67	2.0	0.30	ug/l	Ja	J	DNQ
Cadmium	7440-43-9	ND	1.0	0.10	ug/l		U	
Copper	7440-50-8	2.3	2.0	0.50	ug/l			
Lead	7439-92-1	1.3	1.0	0.20	ug/l			
Thallium	7440-28-0	ND	1.0	0.20	ug/l	Ja	U	В

Analysis Method EPA 200.8-Diss

Sample Name	Outfall 009 (C	omposite) Matri	ix Type:	Water	V	Validation Le	evel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PI	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Antimony	7440-36-0	0.55	2.0	0.30	ug/l	Ja	J	DNQ
Cadmium	7440-43-9	ND	1.0	0.10	ug/l		U	
Copper	7440-50-8	1.5	2.0	0.50	ug/l	Ja	J	DNQ
Lead	7439-92-1	0.21	1.0	0.20	ug/l	Ja	J	DNQ
Thallium	7440-28-0	ND	1.0	0.20	ug/l		U	
Analysis Metho	od EPA 2	245.1						
Sample Name	Outfall 009 (C	omposite) Matri	ix Type:	Water		alidation Le	evel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PI	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 2	245.1-L	Diss					
Sample Name	Outfall 009 (C	omposite) Matri	ix Type:	Water	V	alidation Le	evel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PI	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 3	800.0						
Sample Name	Outfall 009 (C	omposite) Matri	ix Type:	Water	1	Validation Le	evel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PI	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Chloride	16887-00-6	1.2	0.50	0.30	mg/l			
Nitrate/Nitrite-N	NA	0.40	0.26	0.15	mg/l			
Sulfate	14808-79-8	36	0.50	0.30	mg/l			

Analysis Method EPA-5 1613B

Sample Name	Outfall 009 (C	omposite) Matri	x Type:	WATER	7	alidation Le	vel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/2011	2:47:00 PI	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000006	ug/L	J, B	U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000008	ug/L	J, Q, B	U	В
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000011	ug/L	J, B	U	В
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.000001	ug/L	J, B	U	В
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000011	ug/L	J, B	U	В
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000009	ug/L	J, B	U	В
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.000001	ug/L	J, B	U	В
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000008	ug/L	J, B	U	В
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000011	ug/L	J, B	U	В
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000019	ug/L	J, Q, B	U	В
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000027	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000008	ug/L	J, B	U	В
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000032	ug/L	J, B	U	В
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000011	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000021	ug/L		U	
OCDD	3268-87-9	0.0002	0.0001	0.0000026	ug/L	В		
OCDF	39001-02-0	ND	0.0001	0.0000013	ug/L	J, B	U	В
Total HpCDD	37871-00-4	ND	0.00005	0.0000006	ug/L	J, B	U	В
Total HpCDF	38998-75-3	0.000018	0.00005	0.0000009	ug/L	J, Q, B	J	B, DNQ, *III
Total HxCDD	34465-46-8	ND	0.00005	0.0000009	ug/L	J, Q, B	U	В
Total HxCDF	55684-94-1	ND	0.00005	0.000001	ug/L	J, B	U	В
Total PeCDD	36088-22-9	ND	0.00005	0.0000019	ug/L	J, Q, B	U	В
Total PeCDF	30402-15-4	ND	0.00005	0.000003	ug/L	J, B	U	В
Total TCDD	41903-57-5	ND	0.00001	0.0000011	ug/L		U	
Total TCDF	55722-27-5	ND	0.00001	0.0000021	ug/L		U	
Analysis Metho	d SM 25	540D						
Sample Name	Outfall 009 (C	omposite) Matri	x Type:	Water	,	alidation Le	vel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/2011	2:47:00 PI	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes

TSS

6.0

10

1.0

mg/l

Ja

Total Suspended Solids

DNQ

J

Analysis Method SM2540C

Sample Name	Outfall 009 (0	Composite)) Matri	ix Type:	Water	7	Validation Le	evel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 Pi	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Total Dissolved Solids	NA	69	10	1.0	mg/l			
Analysis Metho	od SM45	500CN-1	E					
Sample Name	Outfall 009 (Composite) Matr	ix Type:	Water	1	alidation Le	evel: IV
Lab Sample Name:	IUL1224-02	Sam	ple Date:	12/12/20	11 2:47:00 PI	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Γotal Cyanide	57-12-5	ND	5.0	2.2	ug/l		UJ	R

APPENDIX G

Section 10

Outfall 009 – December 12, 13, & 14, 2011 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Routine Outfall 009

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 12/12/11-12/14/11

Received: 12/12/11

Issued: 01/09/12 13:50

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag

Some analytes are reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

CLIENT ID	MATRIX
Outfall 009 (Grab)	Water
Outfall 009 (Composite)	Water
Trip Blank	Water
	Outfall 009 (Grab) Outfall 009 (Composite)

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

TestAmerica Irvine

Debby Wilson

Debby Wilson Project Manager

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Routine Outfall 009 Sampled: 12/12/11-12/14/11

Arcadia, CA 91007 Report Number: IUL1224 Received: 12/12/11

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-01 (Outfall 009 (Grab) - Water)					Sample	ed: 12/12/11	l		
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	11L3591	1.3	4.7	ND	1	DA	12/28/11	
Grease)									

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Routine Outfall 009 Sampled: 12/12/11-12/14/11

Arcadia, CA 91007 Report Number: IUL1224 Received: 12/12/11

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water)					Sample	ed: 12/12/11			
Reporting Units: ug/l					_				
Mercury	EPA 245.1	11L2451	0.10	0.20	ND	1	DB	12/19/11	
Antimony	EPA 200.8	11L2241	0.30	2.0	0.67	1	kb1	12/17/11	Ja
Cadmium	EPA 200.8	11L2241	0.10	1.0	ND	1	kb1	12/17/11	
Copper	EPA 200.8	11L2241	0.50	2.0	2.3	1	kb1	12/17/11	
Lead	EPA 200.8	11L2241	0.20	1.0	1.3	1	kb1	12/17/11	
Thallium	EPA 200.8	11L2241	0.20	1.0	0.23	1	kb1	12/17/11	Ja

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 12/12/11-12/14/11

Report Number: IUL1224 Received: 12/12/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-02 (Outfall 009 (Co			Sample	ed: 12/12/11					
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	11L2458	0.10	0.20	ND	1	DB	12/20/11	
Antimony	EPA 200.8-Diss	11L2298	0.30	2.0	0.55	1	RDC	12/19/11	Ja
Cadmium	EPA 200.8-Diss	11L2298	0.10	1.0	ND	1	RDC	12/19/11	
Copper	EPA 200.8-Diss	11L2298	0.50	2.0	1.5	1	RDC	12/19/11	Ja
Lead	EPA 200.8-Diss	11L2298	0.20	1.0	0.21	1	RDC	12/19/11	Ja
Thallium	EPA 200.8-Diss	11L2298	0.20	1.0	ND	1	RDC	12/19/11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 12/12/11-12/14/11

Report Number: IUL1224 Received: 12/12/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water) - cont.					Sample	ed: 12/12/11	l		
Reporting Units: mg/l									
Chloride	EPA 300.0	11L1659	0.30	0.50	1.2	1	NN	12/14/11	
Nitrate/Nitrite-N	EPA 300.0	11L1659	0.15	0.26	0.40	1	NN	12/14/11	
Sulfate	EPA 300.0	11L1659	0.30	0.50	36	1	NN	12/14/11	
Total Dissolved Solids	SM2540C	11L1739	1.0	10	69	1	MC	12/14/11	
Total Suspended Solids	SM 2540D	11L2132	1.0	10	6.0	1	DK1	12/16/11	Ja
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water) Reporting Units: ug/l					Sample	ed: 12/12/11	l		
Total Cyanide	SM4500CN-E	11L2744	2.2	5.0	ND	1	PxI	12/20/11	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11 Received: 12/12/11

EPA-5 1613Bx

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-02 (Outfall 009 (C	Composite) - Water)	- cont.			Sample	d: 12/12/11	[
Reporting Units: ug/L	. , ,				~ p - v				
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	1353086	0.0000006	6 0.00005	0.000019	0.97	SO	12/21/11	J, B
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	1353086	0.0000008	1 0.00005	0.000008	0.97	SO	12/21/11	J, Q, B
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	1353086	0.0000011	0.00005	0.0000048	0.97	SO	12/21/11	J, B
1,2,3,4,7,8-HxCDD	EPA-5 1613B	1353086	0.000001	0.00005	0.0000043	0.97	SO	12/21/11	J, B
1,2,3,4,7,8-HxCDF	EPA-5 1613B	1353086	0.0000011	0.00005	0.0000033	0.97	SO	12/21/11	J, B
1,2,3,6,7,8-HxCDD	EPA-5 1613B	1353086	0.0000009	0.00005	0.0000046	0.97	SO	12/21/11	J, B
1,2,3,6,7,8-HxCDF	EPA-5 1613B	1353086	0.000001	0.00005	0.0000027	0.97	SO	12/21/11	J, B
1,2,3,7,8,9-HxCDD	EPA-5 1613B	1353086	0.0000008	1 0.00005	0.000004	0.97	SO	12/21/11	J, B
1,2,3,7,8,9-HxCDF	EPA-5 1613B	1353086	0.0000011	0.00005	0.0000034	0.97	SO	12/21/11	J, B
1,2,3,7,8-PeCDD	EPA-5 1613B	1353086	0.0000019	0.00005	0.000002	0.97	SO	12/21/11	J, Q, B
1,2,3,7,8-PeCDF	EPA-5 1613B	1353086	0.0000027	7 0.00005	ND	0.97	SO	12/21/11	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	1353086	0.0000008	7 0.00005	0.0000034	0.97	SO	12/21/11	J, B
2,3,4,7,8-PeCDF	EPA-5 1613B	1353086	0.0000032	2 0.00005	0.0000022	0.97	SO	12/21/11	J, B
2,3,7,8-TCDD	EPA-5 1613B	1353086	0.0000011	0.00001	ND	0.97	SO	12/21/11	
2,3,7,8-TCDF	EPA-5 1613B		0.0000021		ND	0.97	SO	12/21/11	
OCDD	EPA-5 1613B		0.0000026		0.0002	0.97	SO	12/21/11	В
OCDF	EPA-5 1613B		0.0000013		0.000021	0.97	SO	12/21/11	J, B
Total HpCDD	EPA-5 1613B			6 0.00005	0.00004	0.97	SO	12/21/11	J, B
Total HpCDF	EPA-5 1613B			6 0.00005	0.000018	0.97	SO	12/21/11	J, Q, B
Total HxCDD	EPA-5 1613B			0.00005	0.000015	0.97	SO	12/21/11	J, Q, B
Total HxCDF	EPA-5 1613B		0.000001		0.000013	0.97	SO	12/21/11	J, B
Total PeCDD	EPA-5 1613B		0.0000019		0.000002	0.97	SO	12/21/11	J, Q, B
Total PeCDF	EPA-5 1613B		0.000003		0.0000022		SO	12/21/11	J, B
Total TCDD	EPA-5 1613B		0.0000011		ND	0.97	SO	12/21/11	
Total TCDF	EPA-5 1613B	1353086	0.0000021	0.00001	ND	0.97	SO	12/21/11	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2)					86 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (26					79 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (20					84 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-					78 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-					75 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-					80 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-					78 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-					85 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18	*				85 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-18					79 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28					83 % 74 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-17					74 %				
Surrogate: 13C-2,3,7,8-TCDD (25-164%)					83 %				
Surrogate: 13C-2,3,7,8-TCDF (24-169% Surrogate: 13C-OCDD (17-157%)	<i>)</i>				82 % 78 %				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-197	70/)				78 % 98 %				
Tark and a Later 1	/0/				90 /0				

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

\mathbf{a}		
v	6U /	

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water) - cont.					Sample	ed: 12/12/1	1		
Reporting Units: pCi/L Uranium, Total	8697	8697	0.016	1	0.05	1	CSS	12/28/11	Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

			8697	'					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-03 (Trip Blank	k - Water)				Sample	ed: 12/14/1	1		
Reporting Units: pCi/L									
Uranium, Total	8697	8697	0.016	1	0.003	1	CSS	12/28/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

			900						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water)					Sample	ed: 12/12/1	1		
Reporting Units: pCi/L									
Gross Alpha	900	8697	0.409	3	0.621	1	DVP	12/29/11	Jb
Gross Beta	900	8697	0.896	4	1.59	1	DVP	12/29/11	Jb
Sample ID: IUL1224-03 (Trip Blank -	Water)				Sample	ed: 12/14/1	1		
Reporting Units: pCi/L									
Gross Alpha	900	8697	0.274	3	-0.03	1	DVP	12/29/11	U
Gross Beta	900	8697	1.07	4	-0.317	1	DVP	12/29/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

			901.1						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water)					Sample	ed: 12/12/1	1		
Reporting Units: pCi/L									
Cesium-137	901.1	8697	1.6	20	ND	1	LS	12/27/11	U
Potassium-40	901.1	8697	19.5	25	ND	1	LS	12/27/11	U
Sample ID: IUL1224-03 (Trip Blank	- Water)				Sample	ed: 12/14/1	1		
Reporting Units: pCi/L									
Cesium-137	901.1	8697	1.21	20	ND	1	LS	12/27/11	U
Potassium-40	901.1	8697	24.9	25	ND	1	LS	12/27/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Routine Outfall 009

Arcadia, CA 91007

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

			903.1	-					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water)					Sample	ed: 12/12/1	1		
Reporting Units: pCi/L									
Radium-226	903.1	8697	0.563	1	0.078	1	TM	12/29/11	U
Sample ID: IUL1224-03 (Trip Blank - Water)					Sample	ed: 12/14/1	1		
Reporting Units: pCi/L									
Radium-226	903.1	8697	0.566	1	-0.033	1	TM	12/29/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

			904						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water)					Sample	ed: 12/12/1	1		
Reporting Units: pCi/L Radium-228	904	8697	0.451	1	0.035	1	ASM	01/03/12	U
Sample ID: IUL1224-03 (Trip Blank - W	ater)				Sample	d: 12/14/1	1		
Reporting Units: pCi/L Radium-228	904	8697	0.448	1	-0.123	1	ASM	01/03/12	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

			905								
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers		
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water)			Sampled: 12/12/11								
Reporting Units: pCi/L Strontium-90	905	8697	1.05	2	0.094	1	WL	12/29/11	U		
Sample ID: IUL1224-03 (Trip Blank - Water)					Sample	d: 12/14/11	1				
Reporting Units: pCi/L Strontium-90	905	8697	0.994	2	-0.139	1	WL	12/29/11	U		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

906										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers	
Sample ID: IUL1224-02 (Outfall 009 (Composite) - Water)					Sample	ed: 12/12/11	l			
Reporting Units: pCi/L Tritium	906	8697	156	500	-33.7	1	WL	12/21/11	U	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 12/12/11-12/14/11

Report Number: IUL1224 Received: 12/12/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 009 (Composite) (IUL12)	Hold Time (in days) 24-02) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 300.0	2	12/12/2011 14:47	12/12/2011 18:15	12/13/2011 22:00	12/14/2011 00:57
Filtration	1	12/12/2011 14:47	12/12/2011 18:15	12/14/2011 15:17	12/14/2011 15:35

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11L3591 Extracted: 12/28/11	_											
Blank Analyzed: 12/28/2011 (11L3591-B	LK1)											
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l	DA							
LCS Analyzed: 12/28/2011 (11L3591-BS	1)											MNR1
Hexane Extractable Material (Oil & Grease)	19.0	5.0	1.4	mg/l	DA	20.0		95	78-114			
LCS Dup Analyzed: 12/28/2011 (11L359	1-BSD1)											
Hexane Extractable Material (Oil & Grease)	18.5	5.0	1.4	mg/l	DA	20.0		92	78-114	3	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

METALS

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11L2241 Extracted: 12/16/11	Į											
	_											
Blank Analyzed: 12/17/2011 (11L2241-B	LK1)											
Antimony	ND	2.0	0.30	ug/l	kb1							
Cadmium	ND	1.0	0.10	ug/l	kb1							
Copper	ND	2.0	0.50	ug/l	kb1							
Lead	ND	1.0	0.20	ug/l	kb1							
Thallium	ND	1.0	0.20	ug/l	kb1							
LCS Analyzed: 12/17/2011 (11L2241-BS	1)											
Antimony	83.4	2.0	0.30	ug/l	kb1	80.0		104	85-115			
Cadmium	81.1	1.0	0.10	ug/l	kb1	80.0		101	85-115			
Copper	83.2	2.0	0.50	ug/l	kb1	80.0		104	85-115			
Lead	75.7	1.0	0.20	ug/l	kb1	80.0		95	85-115			
Thallium	75.8	1.0	0.20	ug/l	kb1	80.0		95	85-115			
Matrix Spike Analyzed: 12/17/2011 (11I	.2241-MS1)					Source:	IUL1234	-08				
Antimony	85.5	2.0	0.30	ug/l	kb1	80.0	0.671	106	70-130			
Cadmium	82.3	1.0	0.10	ug/l	kb1	80.0	ND	103	70-130			
Copper	83.8	2.0	0.50	ug/l	kb1	80.0	2.30	102	70-130			
Lead	79.0	1.0	0.20	ug/l	kb1	80.0	0.850	98	70-130			
Thallium	79.4	1.0	0.20	ug/l	kb1	80.0	0.229	99	70-130			
Matrix Spike Analyzed: 12/17/2011 (11I	.2241-MS2)					Source:	IUL1224	-02				
Antimony	86.3	2.0	0.30	ug/l	kb1	80.0	0.671	107	70-130			
Cadmium	82.7	1.0	0.10	ug/l	kb1	80.0	ND	103	70-130			
Copper	85.4	2.0	0.50	ug/l	kb1	80.0	2.33	104	70-130			
Lead	81.8	1.0	0.20	ug/l	kb1	80.0	1.27	101	70-130			
Thallium	81.9	1.0	0.20	ug/l	kb1	80.0	0.233	102	70-130			
Matrix Spike Dup Analyzed: 12/17/2011	(11L2241-N	MSD1)				Source:	IUL1234	-08				
Antimony	84.1	2.0	0.30	ug/l	kb1	80.0	0.671	104	70-130	2	20	
Cadmium	80.7	1.0	0.10	ug/l	kb1	80.0	ND	101	70-130	2	20	
Copper	84.7	2.0	0.50	ug/l	kb1	80.0	2.30	103	70-130	1	20	
Lead	79.8	1.0	0.20	ug/l	kb1	80.0	0.850	99	70-130	1	20	
Thallium	80.6	1.0	0.20	ug/l	kb1	80.0	0.229	100	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

METALS

]	Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11L2451 Extracted: 12/18/11	<u>L</u>											
Blank Analyzed: 12/19/2011 (11L2451-B	BLK1)											
Mercury	ND	0.20	0.10	ug/l	DB							
LCS Analyzed: 12/19/2011 (11L2451-BS	51)											
Mercury	8.26	0.20	0.10	ug/l	DB	8.00		103	85-115			
Matrix Spike Analyzed: 12/19/2011 (11I	.2451-MS1)					Source:	IUL1331	-01				
Mercury	7.80	0.20	0.10	ug/l	DB	8.00	ND	98	70-130			
Matrix Spike Dup Analyzed: 12/19/2011	(11L2451-M	ISD1)				Source:	IUL1331	-01				
Mercury	7.76	0.20	0.10	ug/l	DB	8.00	ND	97	70-130	0.5	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11L2298 Extracted: 12/16/11	[
Blank Analyzed: 12/19/2011 (11L2298-B	SLK1)											
Antimony	ND	2.0	0.30	ug/l	RDC							
Cadmium	ND	1.0	0.10	ug/l	RDC							
Copper	ND	2.0	0.50	ug/l	RDC							
Lead	ND	1.0	0.20	ug/l	RDC							
Thallium	ND	1.0	0.20	ug/l	RDC							
LCS Analyzed: 12/19/2011 (11L2298-BS	51)											
Antimony	80.8	2.0	0.30	ug/l	RDC	80.0		101	85-115			
Cadmium	79.1	1.0	0.10	ug/l	RDC	80.0		99	85-115			
Copper	76.4	2.0	0.50	ug/l	RDC	80.0		96	85-115			
Lead	81.8	1.0	0.20	ug/l	RDC	80.0		102	85-115			
Thallium	73.8	1.0	0.20	ug/l	RDC	80.0		92	85-115			
Matrix Spike Analyzed: 12/19/2011 (11I	.2298-MS1)					Source:	IUL1224	-02				
Antimony	83.3	2.0	0.30	ug/l	RDC	80.0	0.548	103	70-130			
Cadmium	80.0	1.0	0.10	ug/l	RDC	80.0	ND	100	70-130			
Copper	78.6	2.0	0.50	ug/l	RDC	80.0	1.50	96	70-130			
Lead	81.3	1.0	0.20	ug/l	RDC	80.0	0.206	101	70-130			
Thallium	72.6	1.0	0.20	ug/1	RDC	80.0	ND	91	70-130			
Matrix Spike Analyzed: 12/19/2011 (11I	.2298-MS2)					Source:	IUL1234	-10				
Antimony	80.8	2.0	0.30	ug/l	RDC	80.0	0.586	100	70-130			
Cadmium	79.4	1.0	0.10	ug/l	RDC	80.0	ND	99	70-130			
Copper	79.1	2.0	0.50	ug/l	RDC	80.0	2.83	95	70-130			
Lead	80.7	1.0	0.20	ug/l	RDC	80.0	0.330	101	70-130			
Thallium	76.0	1.0	0.20	ug/l	RDC	80.0	ND	95	70-130			
Matrix Spike Dup Analyzed: 12/19/2011	(11L2298-I	MSD1)				Source:	IUL1224	-02				
Antimony	84.5	2.0	0.30	ug/l	RDC	80.0	0.548	105	70-130	2	20	
Cadmium	80.8	1.0	0.10	ug/l	RDC	80.0	ND	101	70-130	1	20	
Copper	79.8	2.0	0.50	ug/l	RDC	80.0	1.50	98	70-130	2	20	
Lead	82.2	1.0	0.20	ug/1	RDC	80.0	0.206	103	70-130	1	20	
Thallium	74.1	1.0	0.20	ug/l	RDC	80.0	ND	93	70-130	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

DISSOLVED METALS

	1	Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11L2458 Extracted: 12/19/13	<u>L</u>											
Blank Analyzed: 12/20/2011 (11L2458-E	BLK1)											
Mercury	ND	0.20	0.10	ug/l	DB							
LCS Analyzed: 12/20/2011 (11L2458-BS	51)											
Mercury	8.56	0.20	0.10	ug/l	DB	8.00		107	85-115			
Matrix Spike Analyzed: 12/20/2011 (11I	L2458-MS1)					Source:	IUL1224	-02				
Mercury	8.62	0.20	0.10	ug/l	DB	8.00	ND	108	70-130			
Matrix Spike Dup Analyzed: 12/20/2011	(11L2458-M	ISD1)				Source:	IUL1224	-02				
Mercury	8.62	0.20	0.10	ug/l	DB	8.00	ND	108	70-130	0.03	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

INORGANICS

]	Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11L1659 Extracted: 12/13/11	<u></u>											
												
Blank Analyzed: 12/13/2011 (11L1659-B	LK1)											
Chloride	ND	0.50	0.30	mg/l	NN							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l	NN							
Sulfate	ND	0.50	0.30	mg/l	NN							
LCS Analyzed: 12/13/2011 (11L1659-BS	1)											
Chloride	4.84	0.50	0.30	mg/l	NN	5.00		97	90-110			M-3
Sulfate	9.76	0.50	0.30	mg/l	NN	10.0		98	90-110			
Matrix Spike Analyzed: 12/13/2011 (11L	1659-MS1)					Source:	IUL1265	-01				
Chloride	92.1	5.0	3.0	mg/l	NN	50.0	43.0	98	80-120			
Sulfate	159	5.0	3.0	mg/l	NN	100	64.1	95	80-120			
Matrix Spike Analyzed: 12/13/2011 (11L	1659-MS2)					Source:	IUL1358-	-01				
Sulfate	25.1	0.50	0.30	mg/l	NN	10.0	14.4	107	80-120			
Matrix Spike Dup Analyzed: 12/13/2011	(11L1659-M	ISD1)				Source:	IUL1265	-01				
Chloride	91.1	5.0	3.0	mg/l	NN	50.0	43.0	96	80-120	1	20	
Sulfate	159	5.0	3.0	mg/l	NN	100	64.1	95	80-120	0.3	20	
Batch: 11L1739 Extracted: 12/14/11	_											
Blank Analyzed: 12/14/2011 (11L1739-B	LK1)											
Total Dissolved Solids	ND	10	1.0	mg/l	MC							
LCS Analyzed: 12/14/2011 (11L1739-BS	1)											
Total Dissolved Solids	1000	10	1.0	mg/l	MC	1000		100	90-110			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

INORGANICS

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11L1739 Extracted: 12/14/11	_											
	_											
Duplicate Analyzed: 12/14/2011 (11L173	9-DUP1)					Source: 1	IUL1316-	02				
Total Dissolved Solids	566	10	1.0	mg/l	MC		571			0.9	10	
Batch: 11L2132 Extracted: 12/16/11	_											
Blank Analyzed: 12/16/2011 (11L2132-B	LK1)											
Total Suspended Solids	ND	10	1.0	mg/l	DK1							
LCS Analyzed: 12/16/2011 (11L2132-BS	1)											
Total Suspended Solids	990	10	1.0	mg/l	DK1	1000		99	85-115			
Duplicate Analyzed: 12/16/2011 (11L213	2-DUP1)					Source:	IUL1234-	03				
Total Suspended Solids	10.0	10	1.0	mg/l	DK1		10.0			0	10	
Batch: 11L2744 Extracted: 12/20/11	_											
Blank Analyzed: 12/20/2011 (11L2744-B	LK1)											
Total Cyanide	ND	5.0	2.2	ug/l	PxI							
LCS Analyzed: 12/20/2011 (11L2744-BS	1)											
Total Cyanide	95.6	5.0	2.2	ug/l	PxI	100		96	90-110			
Matrix Spike Analyzed: 12/20/2011 (11L	2744-MS1))				Source:	IUL1262-	01				
Total Cyanide	92.6	5.0	2.2	ug/l	PxI	100	ND	93	70-115			
Matrix Spike Dup Analyzed: 12/20/2011	(11L2744-	MSD1)				Source: 1	IUL1262-	01				
Total Cyanide	99.4	5.0	2.2	ug/l	PxI	100	ND	99	70-115	7	15	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IUL1224

Reporting

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 12/12/11-12/14/11

Spike Source

Received: 12/12/11

%REC

RPD

Data

METHOD BLANK/QC DATA

EPA-5 1613Bx

Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1353086 Extracted: 12/1	9/11											
Blank Analyzed: 12/20/2011 (G1L19	90000086B)					Source:						
1,2,3,4,6,7,8-HpCDD	0.000015	0.00005	.000001	ug/L	SO				-			J
1,2,3,4,6,7,8-HpCDF	0.000017	0.00005	.000001	ug/L	SO				-			J
1,2,3,4,7,8,9-HpCDF	0.000015	0.00005	.000002	ug/L	SO				-			J
1,2,3,4,7,8-HxCDD	0.0000092	0.00005	.000001	ug/L	SO				-			J, Q
1,2,3,4,7,8-HxCDF	0.000012	0.00005	.000002	ug/L	SO							J
1,2,3,6,7,8-HxCDD	0.000011	0.00005	.000001	ug/L	SO							J
1,2,3,6,7,8-HxCDF	0.00001	0.00005	.000002	ug/L	SO				-			J
1,2,3,7,8,9-HxCDD	0.0000099	0.00005	.000001	ug/L	SO				-			J
1,2,3,7,8,9-HxCDF	0.000011	0.00005	.000002	ug/L	SO				-			J
1,2,3,7,8-PeCDD	0.000008	0.00005	.000003	ug/L	SO				-			J
1,2,3,7,8-PeCDF	0.0000086	0.00005	.000006	ug/L	SO				-			J, Q
2,3,4,6,7,8-HxCDF	0.000011	0.00005	.000002	ug/L	SO				-			J
2,3,4,7,8-PeCDF	0.0000069	0.00005	.000006	ug/L	SO				-			J, Q
2,3,7,8-TCDD	ND	0.00001	.000003	ug/L	SO				-			
2,3,7,8-TCDF	ND	0.00001	.000006	ug/L	SO				-			
OCDD	0.000035	0.0001	.000003	ug/L	SO				-			J
OCDF	0.000033	0.0001	.000002	ug/L	SO				-			J
Total HpCDD	0.000017	0.00005	.000001	ug/L	SO				-			J
Total HpCDF	0.000032	0.00005	.000002	_	SO				-			J
Total HxCDD	0.00003	0.00005	.000001	ug/L	SO				-			J, Q
Total HxCDF	0.000044	0.00005	.000002	ug/L	SO				-			J
Total PeCDD	0.000008	0.00005	.000003	-	SO				-			J
Total PeCDF	0.000015	0.00005	.000006	ug/L	SO				-			J, Q
Total TCDD	ND	0.00001	.000003	ug/L	SO				-			
Total TCDF	ND	0.00001	.000006	ug/L	SO				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0011			ug/L	SO	0.002		54	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0011			ug/L	SO	0.002		53	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.001			ug/L	SO	0.002		52	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0012			ug/L	SO	0.002		60	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0011			ug/L	SO	0.002		53	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.001			ug/L	SO	0.002		52	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00099			ug/L	SO	0.002		50	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0011			ug/L	SO	0.002		56	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0012			ug/L	SO	0.002		61	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0011			ug/L	SO	0.002		53	24-185			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224 Receiv

Spike Source

Received: 12/12/11

%REC

Sampled: 12/12/11-12/14/11

RPD

Data

METHOD BLANK/QC DATA

EPA-5 1613Bx

Reporting

		Reporting	,			Spike	Source		OREC		IXI D	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1353086 Extracted: 12/19	<u>9/11</u>											
Blank Analyzed: 12/20/2011 (G1L19	0000086B)					Source:						
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0011			ug/L	SO	0.002		56	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0011			ug/L	SO	0.002		53	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0011			ug/L	SO	0.002		54	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.001			ug/L	SO	0.002		52	24-169			
Surrogate: 13C-OCDD	0.002			ug/L	SO	0.004		51	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00077			ug/L	SO	0.0008		97	35-197			
LCS Analyzed: 12/20/2011 (G1L190	000086C)					Source:						
1,2,3,4,6,7,8-HpCDD	0.00105	0.00005	.000003	ug/L	SO	0.001		105	70-140			В
1,2,3,4,6,7,8-HpCDF	0.00106	0.00005	.000008	ug/L	SO	0.001		106	82-122			B
1,2,3,4,7,8,9-HpCDF	0.0011	0.00005).000011	ug/L	SO	0.001		110	78-138			B
1,2,3,4,7,8-HxCDD	0.00101	0.00005	.000002	ug/L	SO	0.001		101	70-164			B
1,2,3,4,7,8-HxCDF	0.00107	0.00005	.000003	ug/L	SO	0.001		107	72-134			B
1,2,3,6,7,8-HxCDD	0.000982	0.00005	0.000002	ug/L	SO	0.001		98	76-134			B
1,2,3,6,7,8-HxCDF	0.00103	0.00005	.000003	ug/L	SO	0.001		103	84-130			B
1,2,3,7,8,9-HxCDD	0.000966	0.00005	.000001	ug/L	SO	0.001		97	64-162			B
1,2,3,7,8,9-HxCDF	0.00105	0.00005	.000003	ug/L	SO	0.001		105	78-130			B
1,2,3,7,8-PeCDD	0.000972	0.00005	.000006	ug/L	SO	0.001		97	70-142			B
1,2,3,7,8-PeCDF	0.00104	0.00005	.000008	ug/L	SO	0.001		104	80-134			B
2,3,4,6,7,8-HxCDF	0.00105	0.00005	.000002	ug/L	SO	0.001		105	70-156			B
2,3,4,7,8-PeCDF	0.00109	0.00005	.000009	ug/L	SO	0.001		109	68-160			B
2,3,7,8-TCDD	0.000206	0.00001	.000004	ug/L	SO	0.0002		103	67-158			
2,3,7,8-TCDF	0.000233	0.00001	.000007	ug/L	SO	0.0002		117	75-158			
OCDD	0.00206	0.0001	.000005	ug/L	SO	0.002		103	78-144			B
OCDF	0.002	0.0001	.000004	ug/L	SO	0.002		100	63-170			B
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.000838			ug/L	SO	0.002		42	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.000727			ug/L	SO	0.002		36	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.000774			ug/L	SO	0.002		39	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.000848			ug/L	SO	0.002		42	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.000763			ug/L	SO	0.002		38	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.000796			ug/L	SO	0.002		40	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.000746			ug/L	SO	0.002		37	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.000784			ug/L	SO	0.002		39	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.000916			ug/L	SO	0.002		46	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.000783			ug/L	SO	0.002		39	21-192			
				Ü								

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Reporting

Sampled: 12/12/11-12/14/11

RPD

Data

Received: 12/12/11

%REC

Spike Source

METHOD BLANK/QC DATA

EPA-5 1613Bx

Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 1353086 Extracted: 12/19	<u> </u>											
LCS Analyzed: 12/20/2011 (G1L190	000086C)					Source:						
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.000786			ug/L	SO	0.002		39	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.000757			ug/L	SO	0.002		38	13-328			
Surrogate: 13C-2,3,7,8-TCDD	0.000803			ug/L	SO	0.002		40	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.000774			ug/L	SO	0.002		39	22-152			
Surrogate: 13C-OCDD	0.00171			ug/L	SO	0.004		43	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000784			ug/L	SO	0.0008		98	31-191			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8697 Extracted: 12/28/11												
LCS Analyzed: 12/28/2011 (S112037-03)						Source:						
Uranium, Total	57	1	0.158	pCi/L	CSS	56.5		101	80-120			
Blank Analyzed: 12/28/2011 (S112037-04	4)					Source:						
Uranium, Total	ND	1	0.016	pCi/L	CSS				-			U
Duplicate Analyzed: 12/28/2011 (S11203	7-05)					Source: 1	IUL1224	-02				
Uranium, Total	0.045	1	0.016	pCi/L	CSS		0.05		-	11		Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Analyst	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8697 Extracted: 12/28/11												
LCS Analyzed: 12/29/2011 (S112037-03))					Source:						
Gross Alpha	41.9	3	0.485	pCi/L	DVP	33.7		124	70-130			
Gross Beta	26.4	4	0.821	pCi/L	DVP	28.5		93	70-130			
Blank Analyzed: 01/03/2012 (S112037-04	4)					Source:						
Gross Alpha	0.002	3	0.549	pCi/L	DVP				-			U
Gross Beta	-0.237	4	0.822	pCi/L	DVP				-			U
Duplicate Analyzed: 12/29/2011 (S11203	7-05)					Source:	IUL1224	-02				
Gross Alpha	0.58	3	0.401	pCi/L	DVP		0.621		-	7		Jb
Gross Beta	1.81	4	0.822	pCi/L	DVP		1.59		-	13		Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

901.1

Analyte	Result	Reporting Limit	MDL	Units	Analyst	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8697 Extracted: 12/22/11												
LCS Analyzed: 12/27/2011 (S112037-03)						Source:						
Cobalt-60	106	10	2.03	pCi/L	LS	112		95	80-120			
Cesium-137	119	20	2.39	pCi/L	LS	124		96	80-120			
Blank Analyzed: 12/27/2011 (S112037-04	•)					Source:						
Cesium-137	ND	20	1.27	pCi/L	LS				-			U
Potassium-40	ND	25	18.5	pCi/L	LS				-			U
Duplicate Analyzed: 12/27/2011 (S11203'	7-05)					Source:	IUL1224	-02				
Cesium-137	ND	20	1.16	pCi/L	LS		0		-	0		U
Potassium-40	ND	25	12.4	pCi/L	LS		0		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

903.1

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8697 Extracted: 12/29/11												
LCS Analyzed: 12/29/2011 (S112037-03))					Source:						
Radium-226	63	1	0.79	pCi/L	TM	55.7		113	80-120			
Blank Analyzed: 12/29/2011 (S112037-0	4)					Source:						
Radium-226	-0.005	1	0.594	pCi/L	TM				-			U
Duplicate Analyzed: 12/29/2011 (S11203	37-05)					Source: 1	IUL1224	-02				
Radium-226	0.057	1	0.541	pCi/L	TM		0.078		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8697 Extracted: 01/03/12												
LCS Analyzed: 01/03/2012 (S112037-03)						Source:						
Radium-228	5.47	1	0.448	pCi/L	ASM	5.5		99	60-140			
Blank Analyzed: 01/03/2012 (S112037-04	•)					Source:						
Radium-228	-0.183	1	0.439	pCi/L	ASM				-			U
Duplicate Analyzed: 01/03/2012 (S11203'	7-05)					Source: 1	IUL1224	-02				
Radium-228	0.091	1	0.43	pCi/L	ASM		0.035		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8697 Extracted: 12/28/11												
LCS Analyzed: 12/28/2011 (S112037-03)						Source:						
• ` ` ′		2	0.550	C:/T	33.71			106	00.120			
Strontium-90	20	2	0.559	pCi/L	WL	18.8		106	80-120			
Blank Analyzed: 12/29/2011 (S112037-04	()					Source:						
Strontium-90	0.118	2	0.99	pCi/L	WL				-			U
Duplicate Analyzed: 12/29/2011 (S11203 '	7-05)					Source: 1	IUL1224	-02				
Strontium-90	0.344	2	1	pCi/L	WL		0.094		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Routine Outfall 009

Report Number: IUL1224

Sampled: 12/12/11-12/14/11

Received: 12/12/11

METHOD BLANK/QC DATA

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8697 Extracted: 12/20/11												
LCS Analyzed: 12/21/2011 (S112037-03)						Source:						
Tritium	224	500	15.6	pCi/L	WL	226		99	80-120			Jb
Blank Analyzed: 12/21/2011 (S112037-04	1)					Source:						
Tritium	-1.57	500	15.9	pCi/L	WL				-			U
Duplicate Analyzed: 12/21/2011 (S11203	7-05)					Source: 1	IUL1224	-02				
Tritium	8	500	163	pCi/L	WL		-33.7		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Routine Outfall 009 Sampled: 12/12/11-12/14/11

Arcadia, CA 91007 Report Number: IUL1224 Received: 12/12/11

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IUL1224-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0	4.7	15

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IUL1224-02	Cadmium-200.8	Cadmium	ug/l	0.057	1.0	3.1
IUL1224-02	Chloride - 300.0	Chloride	mg/l	1.18	0.50	150
IUL1224-02	Copper-200.8	Copper	ug/l	2.33	2.0	14
IUL1224-02	Lead-200.8	Lead	ug/l	1.27	1.0	5.2
IUL1224-02	Nitrogen, NO3+NO2 -N I	EPA 300.0 Nitrate/Nitrite-N	mg/l	0.40	0.26	8
IUL1224-02	Sulfate-300.0	Sulfate	mg/l	36	0.50	300
IUL1224-02	TDS - SM2540C	Total Dissolved Solids	mg/l	69	10	950

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 12/12/11-12/14/11

Report Number: IUL1224 Received: 12/12/11

Arcadia, CA 91007 Report Number: IUL122
Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

В	Method blank contamination.	The associated	l method blanl	k contains t	he target ana	lyte at a reporta	ble leve	tl.
---	-----------------------------	----------------	----------------	--------------	---------------	-------------------	----------	-----

J Estimated result. Result is less than the reporting limit.

Ja Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

Q Estimated maximum possible concentration (EMPC).

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the

limit.

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 12/12/11-12/14/11

Report Number: IUL1224 Received: 12/12/11

Arcadia, CA 91007 Report Number: IUL12.
Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Method	Matrix	Nelac	California
EPA 1664A	Water	X	X
EPA 200.8-Diss	Water	X	N/A
EPA 200.8	Water	X	N/A
EPA 245.1-Diss	Water	X	N/A
EPA 245.1	Water	X	N/A
EPA 300.0	Water	X	N/A
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2540C	Water	X	N/A
SM4500CN-E	Water	X	N/A

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 12/12/11-12/14/11

Report Number: IUL1224 Received: 12/12/11

Attention: Bronwyn Kelly Eberline Services - SUB

MWH-Pasadena/Boeing

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IUL1224-02, IUL1224-03

Analysis Performed: Gross Alpha

Samples: IUL1224-02, IUL1224-03

Analysis Performed: Gross Beta Samples: IUL1224-02, IUL1224-03

Analysis Performed: Radium, Combined Samples: IUL1224-02, IUL1224-03

Analysis Performed: Strontium 90 Samples: IUL1224-02, IUL1224-03

Analysis Performed: Tritium Samples: IUL1224-02

Analysis Performed: Uranium, Combined Samples: IUL1224-02, IUL1224-03

Method Performed: 8697

Samples: IUL1224-02, IUL1224-03

Method Performed: 900

Samples: IUL1224-02, IUL1224-03

Method Performed: 901.1

Samples: IUL1224-02, IUL1224-03

Method Performed: 903.1

Samples: IUL1224-02, IUL1224-03

Method Performed: 904

Samples: IUL1224-02, IUL1224-03

Method Performed: 905

Samples: IUL1224-02, IUL1224-03

Method Performed: 906 Samples: IUL1224-02

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Routine Outfall 009 Sampled: 12/12/11-12/14/11

Report Number: IUL1224 Received: 12/12/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: IUL1224-02

TestAmerica Irvine

																工工	UL	-133	4		
Client Name/A	Address:			Project:											A۱	IALYSIS	REQUI	RED			
MWH-Arcad	dia			Boeing-SSFL N																	
618 Michillind	a Ave, S	uite 200		Routine Outfa	II 009				1							1		,			Field readings:
Arcadia, CA 9	91007			GRAB																	(Log in and include in
				Stormwater at	SW-13			ĺ							}						report Temp and pH)
Test America	Contact:	Debby Wil	son						1												-20
							ξ	 													Temp °F = 53 ©
Project Manag	ger: Broi	nwyn Kelly		Phone Number			Grease (1664-HEM)														pH = 6 , 9
				(626) 568-669			190	1	Ì					'				İ			Time of readings =
Sampler: R	とたら	ANAGI	7	Fax Number:	•		Se								l						11:00
Campier.				(626) 568-651	5		Lea													1	11.00
Sample	Sample	Container	# of	Sampling	Preservative	Bottle #	Oil & G														Comments
Description Outfall 009	Matrix W	Type 1L Amber	Cont.	Date/Time /ユール・みの //		1A, 1B	X	-	-												Commonto
Outtail 009	VV	TL Amber		11:00	HCI I	IA, IB	^	-													
	<u> </u>																				
			-	<u> </u>																	
			<u> </u>							-								ļ .		W	
					-		-		-	ļ	-								1	100 ×	
			 			· · · · · · · · · · · · · · · · · · ·		<u> </u>	-									7		(D	
							-	<u> </u>	1									12	1		
							-														
			ļ					ļ	╁┈	 				 -					 		
			-						 	 		\vdash									
			 							<u>-</u>											
			 					<u> </u>	 -	-	.,	<u> </u>									
	<u>_</u>	hese Samp	oles a	l are the Grab Po	ortion of Ou	utfall 009 fo	r this	sto	rm ev	ent. 💃	Comp	osite	sam	ples v	will fo	llow and	are to	be adde	d to this	work or	der.
Relinguished By	_]	Date/T	ime: /) - /)	-2011	Received By		_		/ Jat	e/Time	171	7.1	/	Turn-ar	ound time: (C	heck)				
1/ is				14:2		Man	1		wy		ĺ	υ/:	2.1		24 Hou	r:		72 Hour: 5 Dav:			10 Day:
Relinquished By		7	Date/J			Redeived By	4		-{//		e/Time							-			
1/1	4/	Pum		ime: 12'12' [[:1					V			1			Sample	Integrity: (Cr	eck)	On Ice:	\sim		
Kelingdished By	1 U	1/3	ate/T	<u> </u>	,	Receited By	<u> </u>	-	Λ	Dat	e/Ţime	+-	7 (3		intact:			onice. 🖊			
L		φ				SHO	M	NU	办	NM	12	11/	1 P	15		equirements:	(Check)	All Level IV	:		NPDES Level IV:
L													<u> </u>	-	L						

43°

CHAIN OF CUSTODY FORM

Client Name/A	ddress:			Project:	<u> </u>									A	NALY	SIS RE	UIRED				
MWH-Arcac				Boeing-SSFL N	IPDES								T	Ţ							
618 Michillinda		uite 200		Routine Outfa	II 009 , _	,,	Ρb,				,), ctal , 7, 8									
Arcadia, CA 9	1007					17	, Cu,			ľ	Pb.	0.0 7. 0.3 3.0)									
				Stormwater at	SW-13		, Cd,				Co	(90 10 10 10 10 10 10 10 10 10 10 10 10 10		1							
Test America	Contact:	Debby Wils	son				Sb, C				Cd,	m (H								
							S				<u>ب</u> ب	ss B 30 () 303 miu (1.									
							stals	ers			.: (3)	Sr. Sr. 6 (6 (9 001									Comments
Droinet Manas	nor: Pro	nuan Kallu		Phone Number	.,		Recoverable Metals:	(and all congeners)	N-2		etal	bha(900.0), Gross Beta(900.0), 1-3) (906.0), Sr-90 (905.0), Total d Radium 226 (903.0 or 903.1) & 228 (904.0), Uranium (908.0), K- 37 (901.0 or 901.1)									Comments
Project Manag	jei. bio	nwyn Kelly		(626) 568-669			gp e	8	8		Ž	906. 906. 904 91.0									l i
Sampler: R	- 4	20.00	n	1 '			Ver	a	03+		ě	8 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9	Į į								
Sampler:	CKL	י אין אי,ראכ	77	Fax Number:	-		8	and	Ž	TSS	sso	(구) 137 137	P								
Comple	Camala	Cantainan		(626) 568-6515)			0	°OS	ĭ	Ē⊨	s A multiplication of the second of the seco	₽	l iğ							
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Total Hg, T	тсрр	CI, SO ₄ , NO ₃ +NO ₂ -N	TDS,	Total Dissolved Metals: Sb, Cd, Cu, Hg, Tl	Gross Alpha(900.0), G Tritium (H-3) (906.0), Combined Radium 22 Radium 228 (904.0), 40, CS-137 (901.0 or	Chomic	Cyanide							
Outfall 009	w	1L Poly	1	12-12-2011	. HNO ₃	2A	X														
Outfall 009 Dup	w	1L Poly	1	1777	HNO ₃	2B	X						T								
Outfall 009	w	1L Amber	2		None	3A, 3B		х													
Outfall 009	w	500 mL Poly	2		None	4A, 4B			х												
Outfall 009	W	500 mL Poly	1		None	5				×			П								
Outfall 009	w	1L Poly	1	117	None	6					х		П								Filter w/in 24hrs of receipt at lab
		2.5 Gal Cube	1	12-12-2011	None	7A															Jnfiltered and unpreserved
Outfall 009	W	500 mL Amber	1	14:47	None	7B	· · · · · · · · · · · · · · · · · · ·				-	×									analysis
		OGO IIIE 7 IIIIDGI		1 . 7	THORE	,,,							╁						ļ		Only test if first or second rain.
Outrail 009	VV	I Gal Poly	-+		· None	- 8							1							•	events of the year
Outfall 009	W	500 mL Poly	1	17-17-2011	NaOH	9							П	Х							
													Н	1							
													П								
													П								
					coc	Page 2	of 2 list	the (Comp	osite	Samp	les for Outfall	009	for thi	s stor	m even	t.			•	
				The	se must be	added to	the s	yne y	vork	orde	for CO	OC Page 1 of 2	for	Outfal	I 009 1	or the s	ame ev	ent.			
Relinquished By	1		ate/Ti	me: 12 - 13 - 1	1	Received B		\Box	1.		te/Time:					und time: (Check)				
6/- //	= -			(ν)		////	KI	III	W	Y //	•	ر اس	/		24 Hour			72 Hour: 5 Day:			10 Day:
Pmg.	7	<u> </u>	1	15:15		/4 W	w (X'		///		[5-7.)		48 Hour			5 Day:			10 Day: Normal:
Relinquished By		0 /	ate/Ti	me: 7 · r 7 · (/		Received B	y		U	Da	ite/Time:					/					,
1/11	41/	/www/	_	10071	,	-				•					Sample	Integrity: (C	heck)				
19 w.	74		<u>/_</u>	18:4	·/										Intact:		heck) On Ice:	<u>x</u> _			
Relinquished By	C		ate/Ti	me:		Received B	y \		. ,	ν Da	ite/Time:		١	an T							
					İ		DV	MY) y [)-#	ועה	n 12119 i		Y/U		quirements I IV:	(Check)	Alliantin			NPDES Level IV:
						UT	711	/ 1		' / ا) v 4)	' ' '	' • '	~	No Leve	I IV;		All Level IV:			NPDES Level IV:

1.5°C

13/104

EBERLINE ANALYTICAL CORPORATION
2038 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

January 9, 2012

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine IUL1224

Eberline Analytical Report S112037-8697

Sample Delivery Group 8697

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Job No. IUL1224. The samples were received on December 15, 2011.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

Joseph Verville

Client Services Manager

NJV/kwp

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

January 9, 2012

1.0 General Comments

Sample delivery group 8697 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The samples were received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the samples as received i.e. the samples were not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, and duplicate analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2σ error (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

Case Narrative, page 2

January 9, 2012

4.0 Analysis Notes

- **4.1 Gross Alpha/Gross Beta Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4** Radium-226 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.7 Gamma Spectroscopy** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

Joseph Verville

Client Services Manager

1/9/12 Date

SDG <u>8697</u>
Contact <u>Joseph Verville</u>

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

SUMMARY DATA SECTION

TABLE OF	СО	N T	E N	T S	
About this section	•	•		•	1
Sample Summaries	•		•	•	3
Prep Batch Summary	•		•	•	5
Work Summary	•	•	•	•	6
Method Blanks		•		•	8
Lab Control Samples	•	•	•		9
Duplicates	•	•	•	•	10
Data Sheets	•	•	•	•	11
Method Summaries	•	•	•	•	13
Report Guides	•	•			21
End of Section	•		•	•	35

Prepared by

Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06
Report date 01/09/12

SDG 8697

SDG <u>8697</u>

Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract IUL1224

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES
Page 1
SUMMARY DATA SECTION

Page 1

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/09/12</u>

SDG 8697

SDG <u>8697</u> Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 2

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 01/09/12

SDG 8697

SDG <u>8697</u>
Contact <u>Joseph Verville</u>

LAB SAMPLE SUMMARY

Client Test America, Inc.
Contract IUL1224

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF CUSTODY	COLLECTED
S112037-01	IUL1224-02	Boeing - SSFL	WATER			IUL1224	12/12/11 14:47
S112037-02	IUL1224-03 (TRIP-BLANK)	Boeing - SSFL	WATER			IUL1224	12/14/11 12:00
S112037-03	Lab Control Sample		WATER				
S112037-04	Method Blank		WATER				
S112037-05	Duplicate (S112037-01)	Boeing - SSFL	WATER				12/12/11 14:47

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LS</u>

Version <u>3.06</u>

Report date <u>01/09/12</u>

SDG 8697

SDG <u>8697</u>
Contact <u>Joseph Verville</u>

QC SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUL1224</u>

QC BATCH	CHAIN OF	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS SINCE		DEPARTMENT SAMPLE ID
8697	IUL1224	IUL1224-02 IUL1224-03 (TRIP-BLANK)	WATER WATER		10.0 L 10.0 L		_	S112037-01 S112037-02	8697-001 8697-002
		Method Blank Lab Control Sample Duplicate (S112037-01)	WATER WATER WATER		10.0 L			S112037-04 S112037-03 S112037-05	8697-004 8697-003 8697-005

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-QS</u>

Version <u>3.06</u>

Report date <u>01/09/12</u>

SDG 8697

SDG	8697
Contact	Joseph Verville

PREP BATCH SUMMARY

Client Test America, Inc.
Contract IUL1224

			PREPARATION	N ERROR			- PLA	QUALI-			
TEST	MATRIX	METHOD	ватсн	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Beta	Counting			-							
AC	WATER	Radium-228 in Water	7281-204	10.4	2			1	1	1/1	
SR	WATER	Strontium-90 in Water	7281-204	10.4	2			1	1	1/1	
Gas I	roportiona	al Counting									
A08	WATER	Gross Alpha in Water	7281-204	20.6	2			1	1	1/1	
80B	WATER	Gross Beta in Water	7281-204	11.0	2			1	1	1/1	
Gamma	Spectroso	сору									
GAM	WATER	Gamma Emitters in Water	7281-204	7.0	2			1	1	1/1	
Kinet	ic Phospho	orimetry, ug									
U_T	WATER	Uranium, Total	7281-204		2			1	1	1/1	
Liqui	d Scintil	lation Counting									
Н	WATER	Tritium in Water	7281-204	10.0	1			1	1	1/1	
Rador	Counting										
RA	WATER	Radium-226 in Water	7281-204	16.4	2			1	1	1/1	-

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

SDG 8697

SDG 8697
Contact Joseph Verville

LAB WORK SUMMARY

Client <u>Test America</u>, <u>Inc</u>.

Contract IUL1224

LAB SAMPLE COLLECTED RECEIVED	CLIENT SAMPLE ID LOCATION CUSTODY SA	MATRIX AS no	PLANCHET	TEST	SUF- Flx	ANALYZED	REVIEWED	ву	METHOD	
S112037-01	IUL1224-02		8697-001	80A/80		12/29/11	01/04/12	ВW	Gross Alpha in Water	
12/12/11	Boeing - SSFL	WATER	8697-001	80B/80		12/29/11	01/04/12	BW	Gross Beta in Water	
	IUL1224		8697-001	AC		01/03/12	01/04/12	KWP	Radium-228 in Water	
			8697-001	GAM		12/27/11	12/29/11	BW	Gamma Emitters in Water	
			8697-001	H		12/21/11	12/27/11	BW	Tritium in Water	
			8697-001	RA		12/29/11	12/29/11	BW	Radium-226 in Water	
			8697-001	SR		12/29/11	01/05/12	BW	Strontium-90 in Water	
			8697-001	U_T		12/28/11	12/29/11	BW	Uranium, Total	
S112037-02	IUL1224-03 (TRIP-F	BLANK)	8697-002	80A/80		12/29/11	01/04/12	BW	Gross Alpha in Water	
12/14/11	Boeing ~ SSFL	WATER	8697-002	80B/80		12/29/11	01/04/12	BW	Gross Beta in Water	
	IUL1224		8697-002	AC		01/03/12	01/04/12	KWP	Radium-228 in Water	
			8697-002	GAM	4	12/27/11	12/29/11	BW	Gamma Emitters in Water	
•			8697-002	RA		12/29/11	12/29/11	BW	Radium-226 in Water	
			8697-002	SR		12/29/11	01/05/12	BW	Strontium-90 in Water	
			8697-002	U_T		12/28/11	12/29/11	BW	Uranium, Total	
S112037-03	Lab Control Sample	2	8697-003	80A/80		12/29/11	01/04/12	BW	Gross Alpha in Water	
		WATER	8697-003	80B/80		12/29/11	01/04/12	BW	Gross Beta in Water	
			8697-003	AC		01/03/12	01/04/12	KWP	Radium-228 in Water	
			8697-003	GAM		12/27/11	12/29/11	BW	Gamma Emitters in Water	•
			8697-003	н		12/21/11	12/27/11	BW	Tritium in Water	
			8697-003	RA		12/29/11	12/29/11	BW	Radium-226 in Water	
			8697-003	SR		12/28/11	01/05/12	BW	Strontium-90 in Water	
			8697-003	U_T		12/28/11	12/29/11	BW	Uranium, Total	
S112037-04	Method Blank		8697-004	80A/80		01/03/12	01/04/12	BW	Gross Alpha in Water	
		WATER	8697-004	80B/80		01/03/12	01/04/12	BW	Gross Beta in Water	
			8697-004	, AC		01/03/12	01/04/12	KWP	Radium-228 in Water	
			8697-004	GAM		12/27/11	12/29/11	BW	Gamma Emitters in Water	
			8697-004	Н		12/21/11	12/27/11	BW	Tritium in Water	
	•		8697-004	RA		12/29/11	12/29/11	BW .	Radium-226 in Water	
			8697-004	SR		12/29/11	01/05/12	BW	Strontium-90 in Water	
			8697-004	U_T		12/28/11	12/29/11	BW	Uranium, Total	

WORK SUMMARY
Page 1

SUMMARY DATA SECTION

Page 6

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-LWS

Version 3.06

Report date 01/09/12

SDG 8697

SDG 8697
Contact Joseph Verville

WORK SUMMARY, cont.

Client Test America, Inc.
Contract <u>IUL1224</u>

LAB SAMPLE COLLECTED	CLIENT SAMPLE I	ED.	MATRIX			SUF-				
RECEIVED	CUSTODY	SAS no		PLANCHET	TEST	FIX	ANALYZED	REVIEWED	BY	METHOD
S112037-05	Duplicate (S112	037-01)		8697-005	80A/80		12/29/11	01/04/12	BW	Gross Alpha in Water
12/12/11	Boeing - SSFL		WATER	8697-005	80B/80		12/29/11	01/04/12	BW	Gross Beta in Water
				8697-005	AC		01/03/12	01/04/12	KWP	Radium-228 in Water
				8697-005	GAM		12/27/11	12/29/11	BW	Gamma Emitters in Water
				8697-005	Н		12/21/11	12/27/11	BW	Tritium in Water
				8697-005	RA		12/29/11	12/29/11	BW	Radium-226 in Water
				8697-005	SR		12/29/11	01/05/12	BW	Strontium-90 in Water
				8697-005	U_T		12/28/11	12/29/11	BW	Uranium, Total

TEST	SAS no	COUNTS	OF TESTS B	Y SAMPLE TYPE CLIENT MORE	RE BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0	2	1	1	1	5
80B/80		Gross Beta in Water	900.0	2	1	1	1	5
AC		Radium-228 in Water	904.0	2	1	1	1	5
GAM		Gamma Emitters in Water	901.1	2	1	1	1	5
Н		Tritium in Water	906.0	1	1	1	1	4
RA		Radium-226 in Water	903.1	2	1	1	1	5
SR		Strontium-90 in Water	905.0	2	1	1	1	5
U_T		Uranium, Total	D5174	2	1	1	1	5
TOTALS				15	8	8	8	39

WORK SUMMARY
Page 2
SUMMARY DATA SECTION
Page 7

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LWS</u>

Version <u>3.06</u>

Report date <u>01/09/12</u>

8697-004

METHOD BLANK

Method Blank

	8697 Joseph Verville	Client Contract	Test America, IUL1224	Inc.	
Lab sample id Dept sample id		Client sample id Material/Matrix			WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.002	0.30	0.549	3.00	Ū	80A
Gross Beta	12587472	-0.237	0.49	0.822	4.00	U	80B
Tritium	10028178	-1.57	9.3	15.9	500	υ	H
Radium-226	13982633	-0.005	0.33	0.594	1.00	Ū	RA
Radium-228	15262201	-0.183	0.20	0.439	1.00	U	AC
Strontium-90	10098972	0.118	0.45	0.990	2.00	U	SR
Uranium, Total		0	0.007	0.016	1.00	U	$\mathtt{U}_\mathtt{T}$
Potassium-40	13966002	υ		18.5	25.0	U	GAM
Cesium-137	10045973	บ		1.27	20.0	Ū	GAM

QC-BLANK #80753

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>
Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>01/09/12</u>

SDG 8697

8697-003

LAB CONTROL SAMPLE

Lab Control Sample

SDG 8697 Client Test America, Inc.
Contact Joseph Verville Contract IUL1224

Lab sample id S112037-03 Client sample id Lab Control Sample

Dept sample id 8697-003 Material/Matrix WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCO:
Gross Alpha	41.9	2.3	0.485	3.00		80A	33.7	1.3	124	73-127	70-130
Gross Beta	26.4	1.1	0.821	4.00		80B	28.5	1.1	93	88-112	70-130
Tritium	224	15	15.6	500	J	н	226	9.0	99	87-113	80-120
Radium-226	63.0	2.3	0.790	1.00		RA	55.7	2.2	113	81-119	80-120
Radium-228	5.47	0.32	0.448	1.00		AC	5.50	0.22	99	87-113	60-140
Strontium-90	20.0	1.4	0.559	2.00		SR	18.8	0.75	106	86-114	80-120
Uranium, Total	57.0	6.4	0.158	1.00		U_T	56.5	2.3	101	88-112	80-120
Cobalt-60	106	3.8	2.03	10.0		GAM	112	4.5	95	92-108	80-120
Cesium-137	119	3.6	2.39	20.0		GAM	124	5.0	96	92-108	80-120

QC-LCS #80752

LAB CONTROL SAMPLES
Page 1
SUMMARY DATA SECTION
Page 9

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LCS

 Version
 3.06

 Report date
 01/09/12

SDG 8697

8697-005

DUPLICATE

IUL1224-02

SDG 8697

Contact Joseph Verville

DUPLICATE

Lab sample id <u>S112037-05</u>

Dept sample id <u>8697-005</u>

ORIGINAL

Lab sample id <u>S112037-01</u>

Dept sample id <u>8697-001</u>

Received ____

Client <u>Test America</u>, <u>Inc</u>.

Contract IUL1224

Client sample id <u>IUL1224-02</u>

Location/Matrix Boeing - SSFL

Collected/Volume <u>12/12/11 14:47</u> <u>10.0 L</u>

Chain of custody id <u>IUL1224</u>

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ TOT	
Gross Alpha	0.580	0.32	0.401	3.00	J	80A	0.621	0.32	0.409	J	7	121	0.2
Gross Beta	1.81	0.55	0.822	4.00	J	80B	1.59	0.59	0.896	J	13	75	0.5
Tritium	8.00	96	163	500	υ	н	-33.7	91	156	υ	-		0.6
Radium-226	0.057	0.30	0.541	1.00	σ	RA	0.078	0.32	0.563	U	-		0.1
Radium-228	0.091	0.16	0.430	1.00	Ü	AC	0.035	0.17	0.451	U	-		0.5
Strontium-90	0.344	0.49	1.00	2.00	υ	SR	0.094	0.48	1.05	U	-		0.7
Uranium, Total	0.045	0.009	0.016	1.00	J	U_T	0.050	0.009	0.016	J	11	40	0.8
Potassium-40	υ		12.4	25.0	U	GAM	υ		19.5	σ	-		0.6
Cesium-137	Ū		1.16	20.0	υ	GAM	ט		1.60	υ	_		0.4

QC-DUP#1 80754

DUPLICATES Page 1

SUMMARY DATA SECTION

Page 10

Lab id EAS Protocol <u>TA</u>

Version Ver 1.0

Form DVD-DUP

Version 3.06

Report date <u>01/09/12</u>

8697-001

DATA SHEET

IUL1224-02

1	8697 Joseph Verville	Client Contract	Test America, Inc. IUL1224	
Lab sample id Dept sample id Received	8697-001	Client sample id Location/Matrix Collected/Volume Chain of custody id	Boeing - SSFL 12/12/11 14:47 10.0 L	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.621	0.32	0.409	3.00	J	80A
Gross Beta	12587472	1.59	0.59	0.896	4.00	J	80B
Tritium	10028178	-33.7	91	156	500	U	H
Radium-226	13982633	0.078	0.32	0.563	1.00	U	RA
Radium-228	15262201	0.035	0.17	0.451	1.00	U	AC
Strontium-90	10098972	0.094	0.48	1.05	2.00	บ	SR
Uranium, Total		0.050	0.009	0.016	1.00	J	$\mathbf{U}_{\mathbf{T}}$
Potassium-40	13966002	ប		19.5	25.0	U	GAM
Cesium-137	10045973	U		1.60	20.0	U	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-DS
Version 3.06Report date 01/09/12

SDG 8697

8697-002

DATA SHEET

IUL1224-03 (TRIP-BLANK)

	8697 Joseph Verville	Client Contract	Test America, Inc	
Lab sample id Dept sample id Received	8697-002	Location/Matrix	12/14/11 12:00 10.0 L	

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.030	0.14	0.274	3.00	U	80A
Gross Beta	12587472	-0.317	0.65	1.07	4.00	U	80B
Radium-226	13982633	-0.033	0.31	0.566	1.00	U	RA
Radium-228	15262201	-0.123	0.16	0.448	1.00	U	AC
Strontium-90	10098972	-0.139	0.39	0.994	2.00	U	SR
Uranium, Total		0.003	0.007	0.016	1.00	U	$\mathbf{U}_{\mathbf{T}}$
Potassium-40	13966002	ប		24.9	25.0	U	GAM
Cesium-137	10045973	Ū		1.21	20.0	υ	GAM

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

SDG 8697

Test AC Matrix WATER .

SDG 8697

Contact Joseph Verville

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client <u>Test America, Inc.</u>
Contract <u>IUL1224</u>

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX PLANCHET	CLIENT SAMPLE ID	Radium-228	
Preparation	n batch 7281-204			
S112037-01	8697-001	IUL1224-02	υ	
S112037-02	8697-002	IUL1224-03 (TRIP-BLANK)	υ	
S112037-03	8697-003	Lab Control Sample	ok .	
S112037-04	8697-004	Method Blank	υ	
S112037-05	8697-005	Duplicate (S112037-01)	- U	

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	왐	왐	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	n batch 7281-204 2σ prep error 10	.4 % Ref	ference	Lab N	ioteboo!	k 7281	pg.	204						
S112037-01	IUL1224-02	0.451	1.80			81		150			22	01/03/12	01/03	GRB-217
S112037-02	IUL1224-03 (TRIP-BLANK)	0.448	1.80			80		150			20	01/03/12	01/03	GRB-220
S112037-03	Lab Control Sample	0.448	1.80			80		150				01/03/12	01/03	GRB-221
S112037-04	Method Blank	0.439	1.80			75		150				01/03/12	01/03	GRB-222
S112037-05	Duplicate (S112037-01)	0.430	1.80			82		150			22	01/03/12	01/03	GRB-223
Nominal val	lues and limits from method	1.00	1.80			30-10	5	50			180			

١	PROCEDURES	REFERENCE	904.0
		DWP-894	Sequential Separation of Actinium-228 and
١			Radium-226 in Drinking Water (>1 Liter Aliquot),
١			rev 5
ı			

AVERAGES ± 2 SD	MDA .	0.443	±	0.017
FOR 5 SAMPLES	YIELD .	80	±	5

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 13

SDG 8697

Test SR Matrix WATER

SDG 8697

Contact Joseph Verville

LAB METHOD SUMMARY

Client Test America, Inc.
Contract IUL1224

STRONTIUM-90 IN WATER
BETA COUNTING

RESULTS

	SUF-		.	
SAMPLE ID TEST	FIX PLANCHET	CLIENT SAMPLE ID	Strontium-90	 ····
Preparation bate	th 7281-204			
S112037-01	8697-001	IUL1224-02	σ	•
S112037-02	8697-002	IUL1224-03 (TRIP-BLANK)	ū	
S112037-03	8697-003	Lab Control Sample	ok	
S112037-04	8697-004	Method Blank	υ	
S112037-05	8697-005	Duplicate (S112037-01)	- σ	

METHOD PERFORMANCE

LAB	RAW SUF	-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	용	왐	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
													 		
Preparation	batch 72	81-204 2σ prep error 1	.0.4 % Re	ference	Lab N	otebool	7281	pg.	204						
S112037-01		IUL1224-02	1.05	0.500			95		50			17	12/28/11	12/29	GRB-201
S112037-02		IUL1224-03 (TRIP-BLANK)	0.994	0.500			88		50			15	12/28/11	12/29	GRB-202
S112037-03		Lab Control Sample	0.559	0.500			92		50				12/28/11	12/28	GRB-220
S112037-04		Method Blank	0.990	0.500			90		50				12/28/11	12/29	GRB-204
S112037-05		Duplicate (S112037-01)	1.00	0.500			93		50			17	12/28/11	12/29	GRB-225
															
Nominal val	ues and 1	imits from method	2.00	0.500			30-105	5	50			180			

PROCEDURES	REFERENCE	905.0
	CP-380	Strontium in Water Samples, rev 5

AVERAGES ± 2 SD	MDA 0.919 ± 0.405
FOR 5 SAMPLES	YIELD 92 ± 5

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 14

SDG 8697

Test <u>80A</u> Matrix <u>WATER</u> SDG <u>8697</u>

Contact Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>IUL1224</u>

RESULTS

SAMPLE ID	RAW SUF-		CLIENT SAMPLE ID	Gross Alpha	
Preparation	batch 72	31-204			
S112037-01	80	8697-001	IUL1224-02	0.621 J	
S112037-02	80	8697-002	IUL1224-03 (TRIP-BLANK)	υ	
S112037-03	80	8697-003	Lab Control Sample	ok ·	
S112037-04	80	8697-004	Method Blank	υ	
S112037-05	80	8697-005	Duplicate (S112037-01)	ok J	•

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	왐	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
															
Preparation	batch 728	1-204 2σ prep error 2	20.6 % Re	ference	Lab N	lotebook	7281	pg.	204						
S112037-01	80	IUL1224-02	0.409	0.300			20		400			17	12/28/11	12/29	GRB-105
S112037-02	80	IUL1224-03 (TRIP-BLANK)	0.274	0.300			0		400			15	12/28/11	12/29	GRB-107
S112037-03	80	Lab Control Sample	0.485	0.300			60		400				12/28/11	12/29	GRB-109
S112037-04	80	Method Blank	0.549	0.300			60		400				12/28/11	01/03	GRB-109
S112037-05	80	Duplicate (S112037-01)	0.401	0.300			20		400			17	12/28/11	12/29	GRB-112
· · · ·													····		
Nominal val	ues and li	mits from method	3.00	0.300			0-250)	100			180			

PROCEDURES	REFERENCE	900.0
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,
		rev 10

AVERAGES ± 2 SD	MDA	0.424	±	0.206
FOR 5 SAMPLES	RESIDUE	32	±	54

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 15

SDG 8697

Test 80B Matrix WATER

SDG 8697

Contact Joseph Verville

LAB METHOD SUMMARY

Client Test America, Inc.
Contract <u>IUL1224</u>

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

RESULTS

RAW SUF-LAB SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Gross Beta Preparation batch 7281-204 S112037-01 80 8697-001 IUL1224-02 1.59 J S112037-02 80 8697-002 IUL1224-03 (TRIP-BLANK) U S112037-03 80 8697-003 Lab Control Sample ok S112037-04 80 8697-004 Method Blank U 8697-005 Duplicate (S112037-01) ok J S112037-05 80 Nominal values and limits from method RDLs (pCi/L) 4.00

METHOD PERFORMANCE

LAB	RAW SUF	-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT	SAMPLE ID	pCi/L	L	FAC	TION	mg	왕	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
																
Preparation	batch 72	81-204	2σ prep error	11.0 % Re	ference	Lab N	Noteboo	k 7281	pg.	204						
S112037-01	80	IUL1224	4-02	0.896	0.300			20		400			17	12/28/11	12/29	GRB-105
S112037-02	80	IUL1224	4-03 (TRIP-BLANK)	1.07	0.300			0		400			15	12/28/11	12/29	GRB-107
S112037-03	80	Lab Cor	ntrol Sample	0.821	0.300			60		400				12/28/11	12/29	GRB-109
S112037-04	80	Method	Blank	0.822	0.300			60		400				12/28/11	01/03	GRB-109
S112037-05	80	Duplica	ate (S112037-01)	0.822	0.300			20		400			17	12/28/11	12/29	GRB-112
					-											
Nominal valu	ues and l	imits fro	om method	4.00	0.300			0-25	0 .	100			180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water, rev 10

AVERAGES ± 2 SD MDA 0.886 ± 0.215
FOR 5 SAMPLES RESIDUE 32 ± 54

METHOD SUMMARIES
Page 4

SUMMARY DATA SECTION

Page 16

SDG 8697

Test GAM Matrix WATER SDG 8697 Contact Joseph Verville

LAB METHOD SUMMARY

Client Test America, Inc. Contract <u>IUL1224</u>

GAMMA EMITTERS IN WATER GAMMA SPECTROSCOPY

RESULTS

LAB RAW SUF-SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Cobalt-60 Cesium-137 Preparation batch 7281-204 8697-001 U S112037-01 IUL1224-02 S112037-02 8697-002 IUL1224-03 (TRIP-BLANK) U ok S112037-03 8697-003 Lab Control Sample ok 8697-004 Method Blank Ū S112037-04 Duplicate (S112037-01) U S112037-05 8697-005 Nominal values and limits from method RDLs (pCi/L) 10.0 20.0

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	% YIEID	EFF %		FWHM keV			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7281-204 2σ prep erro	7.0 % R	eference	Lab N	iotebool	k 7281	pg.	204						
S112037-01	IUL1224-02		2.00					400			15	12/22/11	12/27	MB,08,00
S112037-02	IUL1224-03 (TRIP-BLAN	c)	2.00					794			13	12/22/11	12/27	01,02,00
S112037-03	Lab Control Sample		2.00					795				12/22/11	12/27	01,03,00
S112037-04	Method Blank		2.00					795				12/22/11	12/27	01,04,00
S112037-05	Duplicate (S112037-01	F	2.00					7 95			15	12/22/11	12/27	MB,08,00
Nominal val	ues and limits from method	6.00	2.00	<u>.</u>				400		-	180			

PROCEDURES	REFERENCE	901.1
	DWP-100	Preparation of Drinking Water Samples for Gamma
		Spectroscopy, rev 5

METHOD SUMMARIES Page 5

SUMMARY DATA SECTION

Page 17

Lab id EAS__ Protocol TA_ Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>01/09/12</u>

SDG 8697

Test	<u>u t</u>	Matrix	WATER	
SDG	8697			
ontact	Josep	h Verv	ille	

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUL1224</u>

URANIUM, TOTAL
KINETIC PHOSPHORIMETRY, UG

RESULTS

LAB	RAW SUF-		Uranium,	
SAMPLE ID	TEST FIX PLANCH	T CLIENT SAMPLE ID	Total	
Preparation	batch 7281-204			
S112037-01	8697-00	1 IUL1224-02	0.050 J	
S112037-02	8697-00	2 IUL1224-03 (TRIP-BLANK)	ΰ	
S112037-03	8697-00	3 Lab Control Sample	ok	
S112037-04	8697-0	4 Method Blank	υ	
S112037-05	8697-0	5 Duplicate (S112037-01)	ok J	

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	8	윰	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 728	1-204 2ø prep error	Re	ference	Lab 1	Notebool	k 7281	pg.	204						
S112037-01		IUL1224-02	0.016	0.0200								16	12/28/11	12/28	KPA-001
S112037-02		IUL1224-03 (TRIP-BLANK)	0.016	0.0200								14	12/28/11	12/28	KPA-001
S112037-03		Lab Control Sample	0.158	0.0200									12/28/11	12/28	KPA-001
S112037-04		Method Blank	0.016	0.0200									12/28/11	12/28	KPA-001
S112037-05		Duplicate (S112037-01)	0.016	0.0200								16	12/28/11	12/28	KPA-001
Nominal val	lues and li	mits from method	1.00	0.0200								180			

PROCEDURES REFERENCE D5174

AVERAGES ± 2 SD MDA 0.044 ± 0.127

FOR 5 SAMPLES YIELD ±

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 18

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 01/09/12

SDG 8697

Test	H Matrix WATER
SDG	8697
Contact	Joseph Verville_

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>IUL1224</u>

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

RESULTS

RAW SUF-LAB Tritium SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Preparation batch 7281-204 S112037-01 8697-001 IUL1224-02 U J S112037-03 8697-003 Lab Control Sample ok S112037-04 8697-004 Method Blank υ Duplicate (S112037-01) U S112037-05 8697-005 Nominal values and limits from method RDLs (pCi/L) 500

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	% YIELD	EFF %		FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 728	1-204 2ø prep error	10.0 %	Reference	Lab 1	Noteboo!	c 7281	pg.	204					
S112037-01		IUL1224-02	156	0.0100			100		150		9	12/20/11	12/21	LSC-004
S112037-03		Lab Control Sample	15.6	1.00			10		150			12/20/11	12/21	LSC-004
S112037-04		Method Blank	15.9	1.00			10		150			12/20/11	12/21	LSC-004
S112037-05		Duplicate (S112037-01)	163	0.0100			100		150		9	12/20/11	12/21	LSC-004
Nominal val	ues and li	mits from method	500	0.0100					100		180			

PROCEDURES	REFERENCE	906.0	
	DWP-212	Tritium in Drinking Water by Distillation, rev 8	t

AVERAGES ± 2 SD MDA 87.6 ± 166

FOR 4 SAMPLES YIELD 55 ± 104

METHOD SUMMARIES
Page 7
SUMMARY DATA SECTION

Page 19

SDG 8697

Test RA Matrix WATER
SDG 8697
Contact Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER
RADON COUNTING

Client Test America, Inc.
Contract IUL1224

RESULTS

RAW SUF-SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Radium-226 Preparation batch 7281-204 8697-001 S112037-01 IUL1224-02 U S112037-02 8697-002 IUL1224-03 (TRIP-BLANK) U S112037-03 8697-003 Lab Control Sample ok 8697-004 Method Blank S112037-04 S112037-05 8697-005 Duplicate (S112037-01) Nominal values and limits from method RDLs (pCi/L) 1.00

METHOD PERFORMANCE

LAB	RAW SU	₹~	MDA	ALIQ	PREP	DILU-	AIETD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FI	K CLIENT SAMPLE ID	pCi/L	L	FAC	TION	8	왐	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
															
Preparation	batch 7	281-204 2σ prep	error 16.4 %	Reference	Lab I	Noteboo!	7281	pg.	204						
S112037-01		IUL1224-02	0.56	3 0.100			100		160			17	12/29/11	12/29	RN-012
S112037-02		IUL1224-03 (TRIP	-BLANK) 0.56	6 0.100			100		160			15	12/29/11	12/29	RN-013
S112037-03		Lab Control Samp	le 0.79	0 0.100			100		160				12/29/11	12/29	RN-009
S112037-04		Method Blank	0.59	4 0.100			100		160	-			12/29/11	12/29	RN-010
S112037-05		Duplicate (S1120	37-01) 0.54	1 0.100			100		160			17	12/29/11	12/29	RN-014
		-			-										
Nominal val	ues and	limits from method	1.00	0.100					100			180			

PROCEDURES REFERENCE 903.1

DWP-881A Ra-226 Screening in Drinking Water, rev 6

AVERAGES ± 2 SD MDA 0.611 ± 0.204

FOR 5 SAMPLES YIELD 100 ± 0

METHOD SUMMARIES

Page 8.

SUMMARY DATA SECTION

Page 20

SDG 8697

SDG <u>8697</u> Contact Joseph Verville

REPORT GUIDE

Client Test America, Inc.
Contract IUL1224

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
 - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- * All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES

Page 1
SUMMARY DATA SECTION

Page 21

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 01/09/12

SDG 8697

SDG <u>8697</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 22

SDG 8697

SDG <u>8697</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract IUL1224

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 23

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 01/09/12

SDG 8697

SDG 8697 Contact Joseph Verville

GUIDE REPORT

Client Test America, Inc. Contract IUL1224

SHEET DATA

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- TEST is a code for the method used to measure an analyte. the TEST is empty, no data is available; the analyte was not analyzed for.
- The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES Page 4 SUMMARY DATA SECTION Page 24

Lab id EAS Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date 01/09/12

SDG 8697

SDG <u>8697</u> Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION

Page 25

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 01/09/12

SDG 8697

SDG <u>8697</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 26

SDG 8697

SDG <u>8697</u>
Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION

Page 27

SDG 8697

SDG <u>8697</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 28

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 01/09/12

SDG 8697

SDG <u>8697</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract IUL1224

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES

Page 9

SUMMARY DATA SECTION

Page 29

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-RG

Version 3.06

Report date 01/09/12

SDG 8697

SDG <u>8697</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION

Page 30

SDG 8697

SDG <u>8697</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 31

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 01/09/12

SDG 8697

SDG <u>8697</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 32

Lab id EAS
Protocol \overline{TA} Version \overline{Ver} 1.0
Form $\overline{DVD-RG}$ Version $\overline{3.06}$ Report date $\overline{01/09/12}$

SDG 8697

SDG <u>8697</u> Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>IUL1224</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 33

SDG 8697

SDG <u>8697</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract IUL1224

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1 \div 3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 34

SDG 8697

SDG <u>8697</u> Contact Joseph Verville

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract <u>IUL1224</u>

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION

Page 35

Subcontract Order - TestAmerica Irvine (IUL1224)

SENDING LABORATORY:

17461 Derian Avenue. Suite 100

TestAmerica Irvine

Irvine, CA 92614

2.5 gal Poly (A)

RECEIVING LABORATORY:

Eberline Services - SUB

2030 Wright Avenue

Richmond, CA 94804

8697 - SI-12-37

Page 1 of 1

Phone: (949) 261-1022		Phone :(510) 235-2633					
Fax: (949) 260-3297		Fax: (510) 235-0438	to the second and				
Project Manager: Debb	y Wilson	Project Location: California					
		Receipt Temperature:	°C				
	· ·						
Standard TAT is reques	sted unless specific due da	te is requested. => Due Date:	Initials:				
Analysis	Units	Expires	Comments				
Sample ID: IUL1224-02 (6	Outfall 009 (Composite) - \	Water)					
		Sampled: 12/12/11 14:47	0.451 5 1.40 1.40 1.00				
Gamma Spec-O	mg/kg	12/11/12 14:47	Out Eberline, k-40 and cs-137 only, DO NOT FILTER!				
Gross Alpha-O	pCi/L	06/09/12 14:47	Out Eberline, Boeing permit, DO NOT FILTER!				
Gross Beta-O	pCi/L	06/09/12 14:47	Out Eberline Boeing permit, DO NOT FILTER!				
Radium, Combined-O	pCi/L	12/11/12 14:47	Out Eberline Boeing permit, DO NOT FILTER!				
Strontium 90-O	pCi/L	12/11/12 14:47	Out Eberline, Boeing permit, DO NOT FILTER!				
Tritium-O	pCi/L	12/11/12 14:47	Out Eberline, Boeing permit, DO NOT FILTER!				
Uranium, Combined-O	pCi/L	12/11/12 14:47	Out Eberline, Boeing permit, DO NOT FILTER!				
Containers Supplied:			¥				
2.5 gal Poly (I)	500 mL Amber (J)						
Sample ID: IUL1224-03 (1	Гrip Blank - Water)	Sampled: 12/14/11 12:00					
Gamma Spec-O	mg/kg	12/13/12 12:00	Out Eberline, k-40 and cs-137 only, DO				
			NOT FILTER!				
Gross Alpha-Q	pCi/L	06/11/12 12:00	Out Eberline, Boeing permit, DO NOT FILTER!				
_Gross.Beta-O	pCi/L	_06/11/12-12:00	- Out-Eberline-Boeing-permit, DO-NOT FILTER!				
Radium, Combined-O	pCi/L	12/13/12 12:00	Out Eberline Boeing permit, DO NOT FILTER!				
Strontium 90-0	pCi/L	12/13/12 12:00	Out Eberline, Boeing permit, DO NOT FILTER!				
Uranium, Combined-O	pCi/L	12/13/12 12:00	Out Eberline, Boeing permit, DO NOT FILTER!				
Containers Supplied:							

Date/Time

	Ξ	3	=	₹		7.	
ne i							_

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Slient TEST AMETUCA City	IRUINE SLATE CA								
Dare/Time received 2 15 11 8370 Coc No. UL	1224								
Commission I No I CE ONEST Requested TAT (Day	container L.D. No. 16 OKST Requested TAT (Days) STD P.D. Received Yes [] No []								
	INSPECTION								
1. Custody seals on shipping container intact?	, , , , , , , , , , , , , , , , , , , ,								
2. Custody seals on shipping container dated & sign	ned? Yes[] ND[] N/A (x) Yes[] ND[] N/A (x)								
3. Custody seals on sample containers intact?	,								
4. Custody seals on sample containers dated & sign	*								
 5. Packing material is: 6. Number of samples in shipping container: 	Wet[] Dry[x]								
7. Number of containers per sample:	Yes (1) No ()								
8. Samples are in corred container	Yes [x] No[]								
g. Paperwork agrees with samples?	Rad labels [] Appropriate sample labels [X] ?								
11. Samples are: in good condition (*) Leal	King () Shoken committee #1002								
12. Samples are: Preserved (L.) Not preserved	[+] ph								
13. Describe any anomalies:	EL ON TRIP BLANK								
NO SAMPLE ID LAND									
	Yes (,) (No.[] Date								
177	12/15/11 - 1120								
15. Inspected by Dat									
Customer Beta/Gartina ton Champer Sample No. com mR/hr Wide	Customer Beta/Gamma ton Charmoer Sample No. com mR/hr wide								
he shapes L80									
1100 31/00/00 7 7 700									
1 1 1									
Ion Champer Ser. No.	Salibration days								
Ion Chamber Ser. No. Alpha Meter Ser. No. Beta/Damma Meter Ser. No. 99 \$74	Calibration date Calibration date Calibration date Calibration date								

APPENDIX G

Section 11

Outfall 019 – October 19 & 20, 2011

MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IUJ2388

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES
SDG: IUJ2388

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IUJ2388

Project Manager: B. Kelly
Matrix: Water

QC Level: IV No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 019 (Composite)	IUJ2388-03	8692-001, G1J240410-001	Water	10/20/2011 1:41:00 PM	314.0, 8692, 900. 901.1, 903.1, 904, 905, 906, 200.7, 200.7-Diss, 245.1, 245.1 Diss, 300.0, 1613B, SM 2540C, SM5310B, SM2340B, SM2340B Diss, ASTM 5174
Outfall 019 (Grab)	IUJ2388-01	N/A	Water	10/19/2011 1:30:00 PM	EPA 120.1

II. Sample Management

No anomalies were observed regarding sample management. The samples were received within the temperature limit at TestAmerica-Irvine. The sub-contracted samples in this SDG were received at TestAmerica-West Sacramento within the temperature limits of 4°C ±2°C. Eberline did not note the temperature upon receipt; however, due to the nonvolatile nature of the analytes, no qualifications were required. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon receipt at TestAmerica-West Sacramento and Eberline. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Project: SSFL NPDES SDG: IUJ2388

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Project: SSFL NPDES SDG: IUJ2388

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
T	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Revision 0

Project: SSFL NPDES SDG: IUJ2388

DATA VALIDATION REPORT

Qualification Code Reference Table Cont.

D The analysis with this flag should not The analysis with this flag should not be used because another more be used because another more technically sound analysis is technically sound analysis is available. available. Ρ Instrument performance for Post Digestion Spike recovery was pesticides was poor. not within control limits. **DNQ** The reported result is above the The reported result is above the method detection limit but is less than method detection limit but is less than the reporting limit. the reporting limit. *11, *111 Unusual problems found with the Unusual problems found with the data that have been described in data that have been described in Section II, "Sample Management," or Section II, "Sample Management," Section III, "Method Analyses." The or Section III, "Method Analyses." number following the asterisk (*) will The number following the asterisk indicate the report section where a (*) will indicate the report section description of the problem can be where a description of the problem found. can be found.

4 Revision 0

Project: SSFL NPDES

DATA VALIDATION REPORT SDG: IUJ2388

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: December 1, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects above the EDL for most target compounds (all except 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, 2,3,7,8-TCDD, 2,3,7,8-TCDF and the associated totals). Most method blank results were reported as EMPCs; however, due to the extent of the method blank contamination, the reviewer deemed it appropriate to use all method blank results to qualify sample results. Sample results for

5 Revision 0

DATA VALIDATION REPORT Project: SSFL NPDES
SDG: IUJ2388

the individual isomer method blank contaminants were qualified as nondetected, "U," at the level of contamination. Results for total HxCDF and total HxCDD were also qualified as nondetected, "U," as the peaks comprising the totals in the sample were present at comparable concentrations in the method blank. The remaining total results were qualified as estimated, "J," as only a portion of the total was considered method blank contamination.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613, and RPDs were within the laboratory control limit of ≤50%.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled internal standard recoveries for the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." All individual isomers reported as EMPCs were subsequently qualified as nondetected for method blank contamination, and were therefore not further qualified as EMPCs. The totals for HpCDD and HpCDF were qualified as estimated, "J," as the totals included individual isomers originally reported as EMPCs. Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

Project: SSFL NPDES

DATA VALIDATION REPORT SDG: IUJ2388

B. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: December 1, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 2007 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding times, six months for ICP metals and 28 days for mercury, were met.
- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995. Initial and continuing calibration recoveries were within 90-110% for the ICP metals and 85-115% for mercury. CRI/CRA recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for dissolved calcium, magnesium, and zinc, and total zinc. Control limits do not apply to samples with native concentrations greater than 4× the spike value. Recoveries and RPDs were within the method-established control limits. Mercury method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with

Project: SSFL NPDES

DATA VALIDATION REPORT SDG: IUJ2388

"DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: December 1, 2011

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were preserved within five days of collection and analyzed within 180 days of collection.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as estimated, "UJ." The remaining detector efficiencies were greater than 20%. The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG. All RPDs were within the laboratory-established control limits.

DATA VALIDATION REPORT Project: SSFL NPDES

SDG: IUJ2388

 Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.

- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: December 1, 2011

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 180.1, 300.0, 314.0 and SM2540C, SM5310B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times were met.
- Calibration: Calibration criteria were met. All Initial calibration r² values were ≥0.995. The perchlorate IPC-MA recovery was within the control limits of 80-120%. The perchlorate ICCS recovery was within 75-125% and the perchlorate ICV and CCV recoveries were within 85-115%. The remaining ICV and CCV recoveries were within 90-110%. The balance calibration check log was acceptable.
- Blanks: The method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Perchlorate recoveries were within 85-115%. The remaining recoveries were within laboratory-established QC limits.

Project: SSFL NPDES

DATA VALIDATION REPORT SDG: IUJ2388

• Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for turbidity. The RPD was within the laboratory-established control limits.

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the anions. Both sulfate recoveries were below the control limit, both nitrate recoveries were above the control limit; therefore, sulfate and nitrate detected in the sample were qualified as estimated, "J." Nitrite was detected above the control limit in the MS, but was not detected in the sample. Method accuracy for perchlorate was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms 1UJ2388

Analysis Metho	od 900								
Sample Name	Outfall 019 (0	Composite) Matri	x Type:	WATER	V	Validation Le	vel: IV	
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Gross Alpha	12587461	1.7	3	3.04	pCi/L	U	UJ	С	
Gross Beta	12587472	11.8	4	1.9	pCi/L				
Analysis Metho	od 901.1								
Sample Name	Outfall 019 (0	Composite) Matri	x Type:	WATER	1	alidation Le	vel: IV	
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Cesium-137	10045973	ND	20	2.15	pCi/L	U	U		
Potassium-40	13966002	ND	25	41.3	pCi/L	U	U		
Analysis Metho	od 903.1								
Sample Name Outfall 019 (Composite) Matrix Type: WATER Validation Level: IV									
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Radium-226	13982633	0.5	1	0.676	pCi/L	U	U		
Analysis Metho	od 904								
Sample Name	Outfall 019 (0	Composite) Matri	x Type:	WATER	V	alidation Le	vel: IV	
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier		Validation Notes	
Radium-228	15262201	0.178	1	0.529	pCi/L	U	U		
Analysis Metho	od 905								
Sample Name	Outfall 019 (0	Composite) Matri	x Type:	WATER		alidation Le	vel: IV	
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Strontium-90	10098972	0.245	2	1.01	pCi/L	U	U		

Analysis Method 906

Sample Name	Outfall 019 (0	Composite) Matri	x Type:	WATER	1	Validation Le	vel: IV
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028178	-130	500	185	pCi/L	U	U	
Analysis Metho	od D517	4						
Sample Name	Outfall 019 (0	Composite) Matri	x Type:	WATER	1	alidation Le	vel: IV
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total		0.221	1	0.019	pCi/L	Jb	J	DNQ
Analysis Metho	od EPA	120.1						
Sample Name	Outfall 019 (0	Grab)	Matri	x Type:	Water	1	alidation Le	vel: IV
Lab Sample Name:	IUJ2388-01	Sam	ple Date:	10/19/20	11 1:30:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Specific Conductance	NA	1100	1.0	1.0	umhos/c			
Analysis Metho	od EPA	180.1						
Sample Name	Outfall 019 (0	Composite) Matri	x Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Turbidity	Turb	0.070	1.0	0.040	NTU	Ja	J	DNQ
Analysis Metho	od EPA .	200.7						
Sample Name	Outfall 019 (Composite) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Calcium	7440-70-2	210	0.10	0.050	mg/l	B-1		
Magnesium	7439-95-4	24	0.020	0.012	mg/l			
Zinc	7440-66-6	11.6	20.0	6.00	ug/l	Ja	J	DNQ

Analysis Method EPA 200.7-Diss

Sample Name	Outfall 019 (C	Composite) Mat	rix Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUJ2388-03	Sam	ple Date	10/20/20	11 1:41:00 P	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Calcium	7440-70-2	200	0.10	0.050	mg/l	MHA		
Magnesium	7439-95-4	23	0.020	0.012	mg/l			
Zinc	7440-66-6	12.1	20.0	6.00	ug/l	Ja	J	DNQ
Analysis Metho	od EPA 2	245.1						
Sample Name	Outfall 019 (C	Composite) Mat	rix Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUJ2388-03	Sam	ple Date	10/20/20	11 1:41:00 P	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 2	245.1-1	Diss					
Sample Name	Outfall 019 (C	Composite) Mat	rix Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUJ2388-03	Sam	ple Date	10/20/20	11 1:41:00 P	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 3	300.0						
Sample Name	Outfall 019 (C	Composite) Mat	rix Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	IUJ2388-03	Sam	ple Date	10/20/20	11 1:41:00 P	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Chloride	16887-00-6	250	25	15	mg/l	MHA		
Nitrate/Nitrite-N	NA	ND	1.3	0.75	mg/l		Ŭ	
Nitrate-N	14797-55-8	0.13	0.11	0.060	mg/l	M1	J	Q
Nitrite-N	14797-65-0	ND	0.75	0.45	mg/l	M1, RL3	U	
Sulfate	14808-79-8	150	25	15	mg/l	M2	J	Q
Analysis Metho	od EPA 3	314.0						
Sample Name	Outfall 019 (C	Composite) Mat	rix Type:	Water	\	alidation Le	vel: IV
Lab Sample Name:	IUJ2388-03	Sam	ple Date	10/20/20	11 1:41:00 PI	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Perchlorate	14797-73-0	ND	4.0	0.95	ug/l		Ū	

Analysis Method EPA-5 1613B

Sample Name	ple Name Outfall 019 (Composite) Matrix Type: WATER				WATER	Validation Level: IV				
Lab Sample Name:	IUJ2388-03	Samj	ple Date:	10/20/2011	1:41:00 PM	М				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000009	ug/L	J, Ba	U	В		
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000007	ug/L	J, Ba	U	В		
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.000001	ug/L	J, Q, Ba	U	В		
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000017	ug/L	J, Ba	U	В		
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000013	ug/L	J, Q, Ba	U	В		
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000017	ug/L	J, Ba	U	В		
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000013	ug/L	J, Q, Ba	U	В		
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000014	ug/L	J, Q, Ba	U	В		
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000013	ug/L	J, Ba	U	В		
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000059	ug/L		U			
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000038	ug/L		U			
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000011	ug/L	J, Ba	U	В		
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.000004	ug/L		U			
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000025	ug/L		U			
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000018	ug/L		U			
OCDD	3268-87-9	ND	0.0001	0.0000033	ug/L	J, Q, Ba	U	В		
OCDF	39001-02-0	ND	0.0001	0.0000026	ug/L	J, Ba	U	В		
Total HpCDD	37871-00-4	0.000012	0.00005	0.0000009	ug/L	J, Q, Ba	J	B, DNQ, *III		
Total HpCDF	38998-75-3	0.000014	0.00005	0.0000008	ug/L	J, Q, Ba	J	B, DNQ, *III		
Total HxCDD	34465-46-8	ND	0.00005	0.0000016	ug/L	J, Q, Ba	U	В		
Total HxCDF	55684-94-1	ND	0.00005	0.0000013	ug/L	J, Q, Ba	U	В		
Total PeCDD	36088-22-9	ND	0.00005	0.0000059	ug/L		U			
Total PeCDF	30402-15-4	ND	0.00005	0.0000038	ug/L		U			
Total TCDD	41903-57-5	ND	0.00001	0.0000025	ug/L		U			
Total TCDF	55722-27-5	ND	0.00001	0.0000018	ug/L		U			
Analysis Metho	od SM23	40B								
Sample Name	Outfall 019 (C	omposite)) Matri	x Type:	Water	•	alidation Le	vel: IV		
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/2011	1:41:00 PI	М				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
Hardness (as CaCO3)	NA	630	0.33	0.17	mg/l					

Analysis Method SM2340B-Diss

Sample Name	Outfall 019 (0	Composite)	Matri	іх Туре:	Water	V	alidation Le	vel: IV		
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
Hardness as CaCO3		580	0.33	0.17	mg/l					
Analysis Method SM2540C										
Sample Name	Outfall 019 (0	Composite	Matri	ix Type:	Water	V	alidation Le	vel: IV		
Lab Sample Name: IUJ2388-03 Sample Date: 10/20/2011 1:41:00 PM										
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
Total Dissolved Solids	NA	1100	10	1.0	mg/l					
Analysis Metho	od SM53	310B								
Sample Name	Outfall 019 (C	Composite	Matri	ix Type:	Water		alidation Le	vel: IV		
Lab Sample Name:	IUJ2388-03	Sam	ple Date:	10/20/20	11 1:41:00 PM	М				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		

APPENDIX G

Section 12

Outfall 019 – October 19, 20, & 21, 2011
Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Quarterly Outfall 019

618 Michillinda Avenue, Suite 200 Quarterly Outfall 019

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 10/19/11-10/21/11

Received: 10/19/11

Issued: 11/17/11 11:37

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag.

Some analytes in the associated Method Blank are reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 019

618 Michillinda Avenue, Suite 200 Quarterly Outfall 019 Sampled: 10/19/11-10/21/11

Arcadia, CA 91007 Report Number: IUJ2388 Received: 10/19/11

Attention: Bronwyn Kelly

LABORATORY IDCLIENT IDMATRIXIUJ2388-01Outfall 019 (Grab)WaterIUJ2388-02Trip BlanksWaterIUJ2388-03Outfall 019 (Composite)WaterIUJ2388-04Trip BlankWater

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

TestAmerica Irvine

Debby Wilson

Debby Wilson Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-01 (Outfall 019 (G	Grab) - Water)				Sample	ed: 10/19/1	1		
Reporting Units: ug/l	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Sampio	.u. 10/17/1	1		
Benzene	EPA 624	11J3705	0.28	0.50	ND	1	VS	10/30/11	
Carbon tetrachloride	EPA 624	11J3705	0.28	0.50	ND	1	VS	10/30/11	L, C
Chloroform	EPA 624	11J3705	0.33	0.50	ND	1	VS	10/30/11	,
1,1-Dichloroethane	EPA 624	11J3705	0.40	0.50	ND	1	VS	10/30/11	
1,2-Dichloroethane	EPA 624	11J3705	0.28	0.50	ND	1	VS	10/30/11	
1,1-Dichloroethene	EPA 624	11J3705	0.42	0.50	ND	1	VS	10/30/11	
cis-1,2-Dichloroethene	EPA 624	11J3705	0.32	0.50	ND	1	NA	10/30/11	
Ethylbenzene	EPA 624	11J3705	0.25	0.50	ND	1	VS	10/30/11	
Tetrachloroethene	EPA 624	11J3705	0.32	0.50	ND	1	VS	10/30/11	
Toluene	EPA 624	11J3705	0.36	0.50	ND	1	VS	10/30/11	
1,1,1-Trichloroethane	EPA 624	11J3705	0.30	0.50	ND	1	VS	10/30/11	L
1,1,2-Trichloroethane	EPA 624	11J3705	0.30	0.50	ND	1	VS	10/30/11	
Trichloroethene	EPA 624	11J3705	0.26	0.50	ND	1	VS	10/30/11	
Trichlorofluoromethane	EPA 624	11J3705	0.34	0.50	ND	1	VS	10/30/11	L
Trichlorotrifluoroethane (Freon 113)	EPA 624	11J3705	0.50	5.0	ND	1	VS	10/30/11	
Vinyl chloride	EPA 624	11J3705	0.40	0.50	ND	1	VS	10/30/11	
Xylenes, Total	EPA 624	11J3705	0.90	1.5	ND	1	VS	10/30/11	
Surrogate: 4-Bromofluorobenzene (80-12	20%)				102 %				
Surrogate: Dibromofluoromethane (80-1	20%)				106 %				
Surrogate: Toluene-d8 (80-120%)					104 %				
Sample ID: IUJ2388-02 (Trip Blanks -	Water)				Sample	ed: 10/19/1	1		
Reporting Units: ug/l					-				
Benzene	EPA 624	11J3705	0.28	0.50	ND	1	VS	10/29/11	
Carbon tetrachloride	EPA 624	11J3705	0.28	0.50	ND	1	VS	10/29/11	L, C
Chloroform	EPA 624	11J3705	0.33	0.50	ND	1	VS	10/29/11	
1,1-Dichloroethane	EPA 624	11J3705	0.40	0.50	ND	1	VS	10/29/11	
1,2-Dichloroethane	EPA 624	11J3705	0.28	0.50	ND	1	VS	10/29/11	
1,1-Dichloroethene	EPA 624	11J3705	0.42	0.50	ND	1	VS	10/29/11	
cis-1,2-Dichloroethene	EPA 624	11J3705	0.32	0.50	ND	1	NA	10/29/11	
Ethylbenzene	EPA 624	11J3705	0.25	0.50	ND	1	VS	10/29/11	
Tetrachloroethene	EPA 624	11J3705	0.32	0.50	ND	1	VS	10/29/11	
Toluene	EPA 624	11J3705	0.36	0.50	ND	1	VS	10/29/11	
1,1,1-Trichloroethane	EPA 624	11J3705	0.30	0.50	ND	1	VS	10/29/11	L
1,1,2-Trichloroethane	EPA 624	11J3705	0.30	0.50	ND	1	VS	10/29/11	
Trichloroethene	EPA 624	11J3705	0.26	0.50	ND	1	VS	10/29/11	
Trichlorofluoromethane	EPA 624	11J3705	0.34	0.50	ND	1	VS	10/29/11	L
Trichlorotrifluoroethane (Freon 113)	EPA 624	11J3705	0.50	5.0	ND	1	VS	10/29/11	
Vinyl chloride	EPA 624	11J3705	0.40	0.50	ND	1	VS	10/29/11	
Xylenes, Total	EPA 624	11J3705	0.90	1.5	ND	1	VS	10/29/11	
Surrogate: 4-Bromofluorobenzene (80-12	20%)				103 %				

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 019

Quarterly Outfall 019 Sampled: 10/19/11-10/21/11

Report Number: IUJ2388 Received: 10/19/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

PURGEABLES BY GC/MS (EPA 624)

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Analyst Analyzed Qualifiers

Sample ID: IUJ2388-02 (Trip Blanks - Water) - cont. Sampled: 10/19/11

Reporting Units: ug/l

Surrogate: Dibromofluoromethane (80-120%)

Surrogate: Toluene-d8 (80-120%)

103 %

102 %

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 019

Quarterly Outfall 019 Sampled: 10/19/11-10/21/11

Report Number: IUJ2388 Received: 10/19/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
•							•	J	
Sample ID: IUJ2388-03 (Outfall 019 (Composite) - Water)					Sample	d: 10/20/11	1		
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	11J3644	1.62	4.76	1.70	0.952	UP\	11/01/11	B, Ja
2,4-Dinitrotoluene	EPA 625	11J3644	0.190	4.76	ND	0.952	UP\	11/01/11	
N-Nitrosodimethylamine	EPA 625	11J3644	0.0952	4.76	ND	0.952	UP\	11/01/11	
Pentachlorophenol	EPA 625	11J3644	0.0952	4.76	ND	0.952	UP\	11/01/11	
2,4,6-Trichlorophenol	EPA 625	11J3644	0.0952	5.71	ND	0.952	UP\	11/01/11	
Surrogate: 2,4,6-Tribromophenol (40-120%)					103 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					84 %				
Surrogate: 2-Fluorophenol (30-120%)					74 %				
Surrogate: Nitrobenzene-d5 (45-120%)					85 %				
Surrogate: Phenol-d6 (35-120%)					81 %				
Surrogate: Terphenyl-d14 (50-125%)					98 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019 (Comp	osite) - Water)	- cont.			Sample	d: 10/20/11			
Reporting Units: ug/l									
alpha-BHC	EPA 608	11J3042	0.0024	0.0095	ND	0.952	DXD	10/24/11	
Surrogate: Decachlorobiphenyl (45-120%)					84 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					74 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 019

Quarterly Outfall 019 Sampled: 10/19/11-10/21/11

Report Number: IUJ2388 Received: 10/19/11

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-01 (Outfall 019 (Grab) - Water)					Sample	ed: 10/19/11	l		
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	11K0186	1.3	4.7	ND	1	DA	11/02/11	
Grease)									

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 019

Quarterly Outfall 019 Sampled: 10/19/11-10/21/11

Report Number: IUJ2388 Received: 10/19/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 01	9 (Composite) - Water)				Sample	ed: 10/20/11	l		
Reporting Units: mg/l									
Hardness (as CaCO3)	SM2340B	[CALC]		0.33	630	1	NH	10/26/11	
Calcium	EPA 200.7	11J3030	0.050	0.10	210	1	NH	10/26/11	B-1
Magnesium	EPA 200.7	11J3030	0.012	0.020	24	1	NH	10/26/11	
Sample ID: IUJ2388-03 (Outfall 01	9 (Composite) - Water)				Sample	ed: 10/20/11	l		
Reporting Units: ug/l									
Mercury	EPA 245.1	11J2772	0.10	0.20	ND	1	DB	10/27/11	
Cadmium	EPA 200.8	11J3745	0.10	1.0	ND	1	NH	11/02/11	
Zinc	EPA 200.7	11J3674	6.00	20.0	11.6	1	NH	10/28/11	Ja
Copper	EPA 200.8	11J3745	0.500	2.00	ND	1	NH	11/02/11	
Lead	EPA 200.8	11J3745	0.20	1.0	0.37	1	NH	11/02/11	Ja
Selenium	EPA 200.8	11J3745	0.50	2.0	ND	1	NH	11/02/11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 019

Quarterly Outfall 019 Sampled: 10/19/11-10/21/11

Report Number: IUJ2388 Received: 10/19/11

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019 ((Composite) - Water) -	cont.			Sample	ed: 10/20/11	1		
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B-Diss	[CALC]		0.33	580	1	NH	10/25/11	
Calcium	EPA 200.7-Diss	11J3066	0.050	0.10	200	1	NH	10/25/11	MHA
Magnesium	EPA 200.7-Diss	11J3066	0.012	0.020	23	1	NH	10/25/11	
Sample ID: IUJ2388-03 (Outfall 019 ((Composite) - Water)				Sample	ed: 10/20/11	1		
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	11J2606	0.10	0.20	ND	1	DB	10/27/11	
Cadmium	EPA 200.8-Diss	11J3746	0.10	1.0	ND	1	KB1	11/01/11	
Zinc	EPA 200.7-Diss	11J3066	6.00	20.0	12.1	1	NH	10/25/11	Ja
Copper	EPA 200.8-Diss	11J3746	0.500	2.00	0.794	1	RDC	11/02/11	Ja
Lead	EPA 200.8-Diss	11J3746	0.20	1.0	0.32	1	KB1	11/01/11	Ja
Selenium	EPA 200.8-Diss	11J3746	0.50	2.0	ND	1	KB1	11/01/11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 019

Quarterly Outfall 019 Sampled: 10/19/11-10/21/11

Report Number: IUJ2388 Received: 10/19/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

INORGANICS

MDL Reporting Sample Dilution Date Data Method Batch Limit Limit Result Factor Analyst Analyzed Qualifiers
nposite) - Water) - cont. Sampled: 10/20/11
SM4500NH3-C 11J3426 0.500 0.500 0.840 1 NCP 10/26/11
SM5210B 11J2761 0.50 2.0 ND 1 XL 10/26/11
EPA 300.0 11J2645 15 25 250 50 NN 10/21/11 MHA
EPA 300.0 11J2645 0.060 0.11 0.13 1 NN 10/21/11 M1
EPA 300.0 11J2645 0.45 0.75 ND 5 NN 10/21/11 M1, RL3
EPA 300.0 11J2645 0.75 1.3 ND 5 NN 10/21/11
EPA 300.0 11J2645 15 25 150 50 NN 10/21/11 M2
SM5540-C 11J2650 0.050 0.10 ND 1 NCP 10/20/11
SM2540C 11J3111 1.0 10 1100 1 MC 10/25/11
SM5310B 11J3296 0.50 1.0 0.55 1 FZ 10/26/11 Ja
SM 2540D 11J3262 1.0 10 ND 1 MC 10/25/11
SM4500NH3-C 11J3426 0.500 0.500 0.840 1 NCP 10/26/11 SM5210B 11J2761 0.50 2.0 ND 1 XL 10/26/11 EPA 300.0 11J2645 15 25 250 50 NN 10/21/11 M EPA 300.0 11J2645 0.060 0.11 0.13 1 NN 10/21/11 M EPA 300.0 11J2645 0.45 0.75 ND 5 NN 10/21/11 M1, EPA 300.0 11J2645 0.75 1.3 ND 5 NN 10/21/11 M1, EPA 300.0 11J2645 15 25 150 50 NN 10/21/11 EPA 300.0 11J2645 15 25 150 50 NN 10/21/11 EPA 300.0 11J2645 15 25 150 50 NN 10/21/11 SM5540-C 11J2650 0.050 0.10 ND 1 NCP 10/20/11 SM2540C 11J3111 1.0 10 1100 1 MC 10/25/11 SM5310B 11J3296 0.50 1.0 0.55 1 FZ 10/26/11

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 019

618 Michillinda Avenue, Suite 200 Quarterly Outfall 019 Sampled: 10/19/11-10/21/11

Arcadia, CA 91007 Report Number: IUJ2388 Received: 10/19/11

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers		
Sample ID: IUJ2388-01 (Outfall 019 (Grab) - Water)				Sampled: 10/19/11							
Reporting Units: ml/l											
Total Settleable Solids	SM2540F	11J2550	0.10	0.10	ND	1	RRZ	10/20/11			
Sample ID: IUJ2388-03 (Outfall 019 (Cor Reporting Units: NTU	mposite) - Water)				Sample	ed: 10/20/11	1				
Turbidity	EPA 180.1	11J2746	0.040	1.0	0.070	1	LA	10/21/11	Ja		
Sample ID: IUJ2388-03 (Outfall 019 (Co	mposite) - Water)				Sample	ed: 10/20/11	l				
Reporting Units: ug/l											
Perchlorate	EPA 314.0	11J2665	0.95	4.0	ND	1	mn	10/21/11			
Total Cyanide	SM4500CN-E	11K0164	2.2	5.0	ND	1	SLA	11/01/11			
Sample ID: IUJ2388-01 (Outfall 019 (Grab) - Water) Reporting Units: umhos/cm @ 25C					Sample	ed: 10/19/11	l				
Specific Conductance	EPA 120.1	11J2465	1.0	1.0	1100	1	MC	10/20/11			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

618 Michillinda Avenue, Suite 200

Quarterly Outfall 019

Arcadia, CA 91007

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

8692

			00/=						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019 (C Reporting Units: pCi/L	Composite) - Water))			Sample	d: 10/20/11	l		
Uranium, Total	8692	8692		1	0.221	1	CSS	11/03/11	Jb
Sample ID: IUJ2388-04 (Trip Blank - V Reporting Units: pCi/L	Water)				Sample	d: 10/21/11	l		
Uranium, Total	8692	8692		1	ND	1	CSS	11/03/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

			900						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019		Sampled: 10/20/11							
Reporting Units: pCi/L									
Gross Alpha	900	8692		3	1.7	1	DVP	11/09/11	U
Gross Beta	900	8692		4	11.8	1	DVP	11/09/11	
Sample ID: IUJ2388-04 (Trip Blank	- Water)				Sample	ed: 10/21/1	1		
Reporting Units: pCi/L									
Gross Alpha	900	8692		3	-0.006	1	DVP	11/09/11	U
Gross Beta	900	8692		4	-0.174	1	DVP	11/09/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

618 Michillinda Avenue, Suite 200

Quarterly Outfall 019

Arcadia, CA 91007

Quarterly Outlan

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

901.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019 (Composite) - Water)					Sample	ed: 10/20/11	1		
Reporting Units: pCi/L									
Cesium-137	901.1	8692		20	ND	1	RTM	11/01/11	U
Potassium-40	901.1	8692		25	ND	1	RTM	11/01/11	U
Sample ID: IUJ2388-04 (Trip Blank - Water)					Sample	ed: 10/21/11	1		
Reporting Units: pCi/L									
Cesium-137	901.1	8692		20	ND	1	RTM	11/02/11	U
Potassium-40	901.1	8692		25	ND	1	RTM	11/02/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

903.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019 (Comp	osite) - Water)				Sample	ed: 10/20/11	l		
Reporting Units: pCi/L Radium-226	903.1	8692		1	0.5	1	TM	11/08/11	IJ
		0072		1		1		11/00/11	C
Sample ID: IUJ2388-04 (Trip Blank - Water Reporting Units: pCi/L	er)				Sample	ed: 10/21/11			
Radium-226	903.1	8692		1	0.209	1	TM	11/08/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

			904						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019 (Composite) - Water)					Sample	ed: 10/20/1	1		
Reporting Units: pCi/L									
Radium-228	904	8692		1	0.178	1	ASM	11/07/11	U
Sample ID: IUJ2388-04 (Trip Blank - Wa	ater)				Sample	ed: 10/21/1	1		
Reporting Units: pCi/L									
Radium-228	904	8692		1	-0.055	1	ASM	11/07/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

			705						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019 Reporting Units: pCi/L	(Composite) - Water))			Sample	d: 10/20/11	l		
Strontium-90	905	8692		2	0.245	1	DVP	11/04/11	U
Sample ID: IUJ2388-04 (Trip Blank Reporting Units: pCi/L	- Water)				Sample	d: 10/21/11	l		
Strontium-90	905	8692		2	-0.147	1	DVP	11/04/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Quarterly Outfall 019 Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Λ		١.	_
u		84	h
7	u	,,	

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019 (Composite) - Water)					Sample	d: 10/20/11	l		
Reporting Units: pCi/L Tritium	906	8692		500	-130	1	WK	10/28/11	U

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

EPA-5 1613Bx

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: IUJ2388-03 (Outfall 019 (C	omnosite) - Water)	- cont			Cample	d. 10/20/11	ı		
Reporting Units: ug/L	omposite) water)	cont.			Sample	d: 10/20/11	L		
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	1300117	0.0000009	8 0.00005	0.0000088	1.01	LH	10/28/11	J, Ba
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B			6 0.00005	0.0000077		LH	10/28/11	J, Ba
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B		0.000001		0.0000042		LH	10/28/11	J, Q, Ba
1,2,3,4,7,8-HxCDD	EPA-5 1613B			0.00005	0.0000033		LH	10/28/11	J, Ba
1,2,3,4,7,8-HxCDF	EPA-5 1613B			0.00005	0.0000039		LH	10/28/11	J, Q, Ba
1,2,3,6,7,8-HxCDD	EPA-5 1613B	1300117	0.0000017	0.00005	0.0000058	1.01	LH	10/28/11	J, Ba
1,2,3,6,7,8-HxCDF	EPA-5 1613B	1300117	0.0000013	0.00005	0.0000043	1.01	LH	10/28/11	J, Q, Ba
1,2,3,7,8,9-HxCDD	EPA-5 1613B	1300117	0.0000014	0.00005	0.0000024	1.01	LH	10/28/11	J, Q, Ba
1,2,3,7,8,9-HxCDF	EPA-5 1613B	1300117	0.0000013	0.00005	0.0000051	1.01	LH	10/28/11	J, Ba
1,2,3,7,8-PeCDD	EPA-5 1613B	1300117	0.0000059	0.00005	ND	1.01	LH	10/28/11	
1,2,3,7,8-PeCDF	EPA-5 1613B	1300117	0.0000038	0.00005	ND	1.01	LH	10/28/11	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	1300117	0.0000011	0.00005	0.0000042	1.01	LH	10/28/11	J, Ba
2,3,4,7,8-PeCDF	EPA-5 1613B	1300117	0.000004	0.00005	ND	1.01	LH	10/28/11	
2,3,7,8-TCDD	EPA-5 1613B	1300117	0.0000025	0.00001	ND	1.01	LH	10/28/11	
2,3,7,8-TCDF	EPA-5 1613B	1300117	0.0000018	0.00001	ND	1.01	LH	10/28/11	
OCDD	EPA-5 1613B	1300117	0.0000033	0.0001	0.000034	1.01	LH	10/28/11	J, Q, Ba
OCDF	EPA-5 1613B	1300117	0.0000026	0.0001	0.000013	1.01	LH	10/28/11	J, Ba
Total HpCDD	EPA-5 1613B	1300117	0.0000009	8 0.00005	0.000012	1.01	LH	10/28/11	J, Q, Ba
Total HpCDF	EPA-5 1613B	1300117	0.0000008	9 0.00005	0.000014	1.01	LH	10/28/11	J, Q, Ba
Total HxCDD	EPA-5 1613B	1300117	0.0000016	0.00005	0.000012	1.01	LH	10/28/11	J, Q, Ba
Total HxCDF	EPA-5 1613B	1300117	0.0000013	0.00005	0.000018	1.01	LH	10/28/11	J, Q, Ba
Total PeCDD	EPA-5 1613B	1300117	0.0000059	0.00005	ND	1.01	LH	10/28/11	
Total PeCDF	EPA-5 1613B			0.00005	ND	1.01	LH	10/28/11	
Total TCDD	EPA-5 1613B		0.0000025		ND	1.01	LH	10/28/11	
Total TCDF	EPA-5 1613B	1300117	0.0000018	3 0.00001	ND	1.01	LH	10/28/11	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (23					79 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28					79 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (26					82 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-					79 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-1					84 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-					77 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-1	· · · · · · · · · · · · · · · · · · ·				73 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-1					80 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18					61 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-18.					61 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-1	,				82 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-17)					64 %				
Surrogate: 13C-2,3,7,8-TCDD (25-164%)					65 %				
Surrogate: 13C-2,3,7,8-TCDF (24-169%))				64 %				
Surrogate: 13C-OCDD (17-157%) Surrogate: 37Cl4-2,3,7,8-TCDD (35-197	(0/)				79 % 87 %				
Surrogate. 5/C14-2,5,7,0-1CDD (55-19/	/0)				0/ 70				

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 019

Quarterly Outfall 019 Sampled: 10/19/11-10/21/11

Report Number: IUJ2388 Received: 10/19/11

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 019 (Grab) (IUJ2388-	` ' '	zump.vu	110001100	2	1 21111 2 2 4 4
SM2540F	2	10/19/2011 13:30	10/19/2011 18:40	10/20/2011 08:08	10/20/2011 08:08
Sample ID: Outfall 019 (Composite) (IUJ	(2388-03) - Water				
EPA 180.1	2	10/20/2011 13:41	10/19/2011 18:40	10/21/2011 18:45	10/21/2011 18:45
EPA 300.0	2	10/20/2011 13:41	10/19/2011 18:40	10/20/2011 22:00	10/21/2011 13:04
Nitrate-N				10/20/2011 22:00	10/21/2011 06:24
Nitrite-N				10/20/2011 22:00	10/21/2011 13:04
Filtration	1	10/20/2011 13:41	10/19/2011 18:40	10/21/2011 19:44	10/21/2011 19:47
SM5210B	2	10/20/2011 13:41	10/19/2011 18:40	10/21/2011 13:00	10/26/2011 10:00
SM5540-C	2	10/20/2011 13:41	10/19/2011 18:40	10/20/2011 21:36	10/20/2011 22:31

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Spike Source

Report Number: IUJ2388

Reporting

Sampled: 10/19/11-10/21/11

RPD

Data

Received: 10/19/11

%REC

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J3705 Extracted: 10/29	<u>//11_</u>											
Blank Analyzed: 10/29/2011 (11J370:	5-BLK1)											
Benzene	ND	0.50	0.28	ug/l	VS							
Carbon tetrachloride	ND	0.50	0.28	ug/l	VS							
Chloroform	ND	0.50	0.33	ug/l	VS							
1,1-Dichloroethane	ND	0.50	0.40	ug/l	VS							
1,2-Dichloroethane	ND	0.50	0.28	ug/l	VS							
1,1-Dichloroethene	ND	0.50	0.42	ug/l	VS							
cis-1,2-Dichloroethene	ND	0.50	0.32	ug/l	NA							
Ethylbenzene	ND	0.50	0.25	ug/l	VS							
Tetrachloroethene	ND	0.50	0.32	ug/l	VS							
Toluene	ND	0.50	0.36	ug/l	VS							
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l	VS							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l	VS							
Trichloroethene	ND	0.50	0.26	ug/l	VS							
Trichlorofluoromethane	ND	0.50	0.34	ug/l	VS							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l	VS							
Vinyl chloride	ND	0.50	0.40	ug/l	VS							
Xylenes, Total	ND	1.5	0.90	ug/l	VS							
Surrogate: 4-Bromofluorobenzene	26.1			ug/l	VS	25.0		104	80-120			
Surrogate: Dibromofluoromethane	26.7			ug/l	VS	25.0		107	80-120			
Surrogate: Toluene-d8	25.7			ug/l	VS	25.0		103	80-120			
LCS Analyzed: 10/29/2011 (11J3705-	-BS1)											
Benzene	26.4	0.50	0.28	ug/l	VS	25.0		105	70-120			
Carbon tetrachloride	41.2	0.50	0.28	ug/l	VS	25.0		165	65-140			L
Chloroform	31.0	0.50	0.33	ug/l	VS	25.0		124	70-130			
1,1-Dichloroethane	26.7	0.50	0.40	ug/l	VS	25.0		107	70-125			
1,2-Dichloroethane	34.4	0.50	0.28	ug/l	VS	25.0		138	60-140			
1,1-Dichloroethene	26.4	0.50	0.42	ug/l	VS	25.0		106	70-125			
cis-1,2-Dichloroethene	28.6	0.50	0.32	ug/l	NA	25.0		114	70-125			
Ethylbenzene	28.8	0.50	0.25	ug/l	VS	25.0		115	75-125			
Tetrachloroethene	28.2	0.50	0.32	ug/l	VS	25.0		113	70-125			
Toluene	28.4	0.50	0.36	ug/l	VS	25.0		114	70-120			
1,1,1-Trichloroethane	34.1	0.50	0.30	ug/l	VS	25.0		136	65-135			L
1,1,2-Trichloroethane	28.2	0.50	0.30	ug/l	VS	25.0		113	70-125			
Trichloroethene	29.1	0.50	0.26	ug/l	VS	25.0		116	70-125			
Trichlorofluoromethane	36.7	0.50	0.34	ug/l	VS	25.0		147	65-145			L

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J3705 Extracted: 10/29/2	11											
												
LCS Analyzed: 10/29/2011 (11J3705-E	BS1)											
Vinyl chloride	31.8	0.50	0.40	ug/l	VS	25.0		127	55-135			
Xylenes, Total	87.8	1.5	0.90	ug/l	VS	75.0		117	70-125			
Surrogate: 4-Bromofluorobenzene	27.5			ug/l	VS	25.0		110	80-120			
Surrogate: Dibromofluoromethane	28.0			ug/l	VS	25.0		112	80-120			
Surrogate: Toluene-d8	26.4			ug/l	VS	25.0		106	80-120			
Matrix Spike Analyzed: 10/30/2011 (1	1J3705-MS1)					Source:	IUJ2836-	02				
Benzene	23.8	0.50	0.28	ug/l	VS	25.0	ND	95	65-125			
Carbon tetrachloride	37.1	0.50	0.28	ug/l	VS	25.0	ND	149	65-140			<i>M</i> 7
Chloroform	27.1	0.50	0.33	ug/l	VS	25.0	ND	109	65-135			
1,1-Dichloroethane	23.6	0.50	0.40	ug/l	VS	25.0	ND	94	65-130			
1,2-Dichloroethane	29.9	0.50	0.28	ug/l	VS	25.0	ND	120	60-140			
1,1-Dichloroethene	24.6	0.50	0.42	ug/l	VS	25.0	0.900	95	60-130			
cis-1,2-Dichloroethene	25.1	0.50	0.32	ug/l	NA	25.0	ND	100	65-130			
Ethylbenzene	26.9	0.50	0.25	ug/l	VS	25.0	ND	108	65-130			
Tetrachloroethene	27.2	0.50	0.32	ug/l	VS	25.0	0.800	105	65-130			
Toluene	25.1	0.50	0.36	ug/l	VS	25.0	ND	100	70-125			
1,1,1-Trichloroethane	31.1	0.50	0.30	ug/l	VS	25.0	ND	124	65-140			
1,1,2-Trichloroethane	23.5	0.50	0.30	ug/l	VS	25.0	ND	94	65-130			
Trichloroethene	26.3	0.50	0.26	ug/l	VS	25.0	0.460	104	65-125			
Trichlorofluoromethane	33.3	0.50	0.34	ug/l	VS	25.0	ND	133	60-145			
Vinyl chloride	28.2	0.50	0.40	ug/l	VS	25.0	ND	113	45-140			
Xylenes, Total	80.3	1.5	0.90	ug/l	VS	75.0	ND	107	60-130			
Surrogate: 4-Bromofluorobenzene	27.1			ug/l	VS	25.0		108	80-120			
Surrogate: Dibromofluoromethane	27.0			ug/l	VS	25.0		108	80-120			
Surrogate: Toluene-d8	25.8			ug/l	VS	25.0		103	80-120			
Matrix Spike Dup Analyzed: 10/30/20	11 (11J3705-I	MSD1)				Source:	IUJ2836-	02				
Benzene	23.7	0.50	0.28	ug/l	VS	25.0	ND	95	65-125	0.3	20	
Carbon tetrachloride	36.8	0.50	0.28	ug/l	VS	25.0	ND	147	65-140	1	25	<i>M</i> 7
Chloroform	26.7	0.50	0.33	ug/l	VS	25.0	ND	107	65-135	1	20	
1,1-Dichloroethane	23.2	0.50	0.40	ug/l	VS	25.0	ND	93	65-130	2	20	
1,2-Dichloroethane	29.5	0.50	0.28	ug/l	VS	25.0	ND	118	60-140	1	20	
1,1-Dichloroethene	23.9	0.50	0.42	ug/l	VS	25.0	0.900	92	60-130	3	20	
cis-1,2-Dichloroethene	24.6	0.50	0.32	ug/l	NA	25.0	ND	98	65-130	2	20	
Ethylbenzene	26.4	0.50	0.25	ug/l	VS	25.0	ND	106	65-130	2	20	

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Analyst	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11J3705 Extracted: 10/29/	<u>11</u>											
Matrix Spike Dup Analyzed: 10/30/20	11 (11J3705-	MSD1)				Source:	IUJ2836-	02				
Tetrachloroethene	26.8	0.50	0.32	ug/l	VS	25.0	0.800	104	65-130	1	20	
Toluene	25.0	0.50	0.36	ug/l	VS	25.0	ND	100	70-125	0.4	20	
1,1,1-Trichloroethane	29.8	0.50	0.30	ug/l	VS	25.0	ND	119	65-140	4	20	
1,1,2-Trichloroethane	24.1	0.50	0.30	ug/l	VS	25.0	ND	96	65-130	2	25	
Trichloroethene	26.1	0.50	0.26	ug/l	VS	25.0	0.460	103	65-125	0.8	20	
Trichlorofluoromethane	32.1	0.50	0.34	ug/l	VS	25.0	ND	128	60-145	4	25	
Vinyl chloride	27.8	0.50	0.40	ug/l	VS	25.0	ND	111	45-140	2	30	
Xylenes, Total	78.9	1.5	0.90	ug/l	VS	75.0	ND	105	60-130	2	20	
Surrogate: 4-Bromofluorobenzene	27.2			ug/l	VS	25.0		109	80-120			
Surrogate: Dibromofluoromethane	26.6			ug/l	VS	25.0		106	80-120			
Surrogate: Toluene-d8	25.7			ug/l	VS	25.0		103	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Analyst	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 11J3644 Extracted: 10/27/11												
	_											
Blank Analyzed: 11/01/2011 (11J3644-B	LK1)											
Bis(2-ethylhexyl)phthalate	2.02	5.00	1.70	ug/l	UP\							Ja
2,4-Dinitrotoluene	ND	5.00	0.200	ug/l	UP\							
N-Nitrosodimethylamine	ND	5.00	0.100	ug/l	UP\							
Pentachlorophenol	ND	5.00	0.100	ug/l	UP\							
2,4,6-Trichlorophenol	ND	6.00	0.100	ug/l	UP\							
Surrogate: 2,4,6-Tribromophenol	13.9			ug/l	UP\	20.0		70	40-120			
Surrogate: 2-Fluorobiphenyl	7.86			ug/l	UP\	10.0		79	50-120			
Surrogate: 2-Fluorophenol	14.3			ug/l	UP\	20.0		71	30-120			
Surrogate: Nitrobenzene-d5	7.32			ug/l	UP\	10.0		73	45-120			
Surrogate: Phenol-d6	15.4			ug/l	UP\	20.0		77	35-120			
Surrogate: Terphenyl-d14	9.48			ug/l	UP\	10.0		95	50-125			
LCS Analyzed: 11/01/2011 (11J3644-BS	1)											MNR1
Bis(2-ethylhexyl)phthalate	10.3	5.00	1.70	ug/l	UP\	10.0		103	65-130			
2,4-Dinitrotoluene	9.54	5.00	0.200	ug/l	UP\	10.0		95	65-120			
N-Nitrosodimethylamine	8.38	5.00	0.100	ug/l	UP\	10.0		84	45-120			
Pentachlorophenol	9.56	5.00	0.100	ug/l	UP\	10.0		96	24-121			
2,4,6-Trichlorophenol	10.0	6.00	0.100	ug/l	UP\	10.0		100	55-120			
Surrogate: 2,4,6-Tribromophenol	20.0			ug/l	UP\	20.0		100	40-120			
Surrogate: 2-Fluorobiphenyl	9.00			ug/l	UP\	10.0		90	50-120			
Surrogate: 2-Fluorophenol	14.8			ug/l	UP\	20.0		74	30-120			
Surrogate: Nitrobenzene-d5	8.54			ug/l	UP\	10.0		85	45-120			
Surrogate: Phenol-d6	16.1			ug/l	UP\	20.0		80	35-120			
Surrogate: Terphenyl-d14	9.98			ug/l	UP\	10.0		100	50-125			
LCS Dup Analyzed: 11/01/2011 (11J364	4_RSD1)											
Bis(2-ethylhexyl)phthalate	9.78	5.00	1.70	ug/l	UP\	10.0		98	65-130	6	20	
2,4-Dinitrotoluene	8.72	5.00	0.200	ug/l	UP\	10.0		87	65-120	9	20	
N-Nitrosodimethylamine	7.42	5.00	0.100	ug/l	UP\	10.0		74	45-120	12	20	
Pentachlorophenol	9.60	5.00	0.100	ug/l	UP\	10.0		96	24-121	0.4	25	
2,4,6-Trichlorophenol	9.06	6.00	0.100	ug/l	UP\	10.0		91	55-120	10	30	
Surrogate: 2,4,6-Tribromophenol	19.6	0.00	0.100	ug/l	UP\	20.0		98	40-120	10	50	
Surrogate: 2-Fluorobiphenyl	7.96			ug/l	UP\	10.0		80	50-120			
Surrogate: 2-Fluorophenol	12.0			ug/l ug/l	UP\	20.0		60	30-120			
Surrogate: Nitrobenzene-d5	7.60			ug/l ug/l	UP\	10.0		76	45-120			
Surrogate: Phenol-d6	14.1			ug/l ug/l	UP\	20.0		70	35-120			
Tost A maring Luring	14.1			ug/i	OI'\	20.0		70	33-120			

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Reporting Spike Source %REC RPD Data
Analyte Result Limit MDL Units Analyst Level Result %REC Limits RPD Limit Qualifiers

Batch: 11J3644 Extracted: 10/27/11

LCS Dup Analyzed: 11/01/2011 (11J3644-BSD1)

Surrogate: Terphenyl-d14 8.96 ug/l $UP \setminus 10.0$ 90 50-125

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J3042 Extracted: 10/24/11	_											
Blank Analyzed: 10/24/2011 (11J3042-B)	LK1)											
alpha-BHC	ND	0.010	0.0025	ug/l	DXD							
Surrogate: Decachlorobiphenyl	0.403			ug/l	DXD	0.500		81	45-120			
Surrogate: Tetrachloro-m-xylene	0.368			ug/l	DXD	0.500		74	35-115			
LCS Analyzed: 10/24/2011 (11J3042-BS)	1)											MNR1
alpha-BHC	0.403	0.010	0.0025	ug/l	DXD	0.500		81	45-115			
Surrogate: Decachlorobiphenyl	0.455			ug/l	DXD	0.500		91	45-120			
Surrogate: Tetrachloro-m-xylene	0.410			ug/l	DXD	0.500		82	35-115			
LCS Dup Analyzed: 10/24/2011 (11J3042	2-BSD1)											
alpha-BHC	0.394	0.010	0.0025	ug/l	DXD	0.500		79	45-115	2	30	
Surrogate: Decachlorobiphenyl	0.454			ug/l	DXD	0.500		91	45-120			
Surrogate: Tetrachloro-m-xylene	0.402			ug/l	DXD	0.500		80	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11K0186 Extracted: 11/02/11	<u>_</u>											
Blank Analyzed: 11/02/2011 (11K0186-B	LK1)											
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l	DA							
LCS Analyzed: 11/02/2011 (11K0186-BS	1)											MNR1
Hexane Extractable Material (Oil & Grease)	17.9	5.0	1.4	mg/l	DA	20.0		90	78-114			
LCS Dup Analyzed: 11/02/2011 (11K018	6-BSD1)											
Hexane Extractable Material (Oil & Grease)	18.5	5.0	1.4	mg/l	DA	20.0		92	78-114	3	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

METALS

	J	Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J2772 Extracted: 10/21/11	_											
Blank Analyzed: 10/27/2011 (11J2772-Bl	LK1)											
Mercury	ND	0.20	0.10	ug/l	DB							
LCS Analyzed: 10/27/2011 (11J2772-BS1	1)											
Mercury	7.56	0.20	0.10	ug/l	DB	8.00		95	85-115			
Matrix Spike Analyzed: 10/27/2011 (11J	2772-MS1)					Source: 1	IUJ2600-	14				
Mercury	7.65	0.20	0.10	ug/l	DB	8.00	ND	96	70-130			
Matrix Spike Dup Analyzed: 10/27/2011	(11J2772-M	SD1)				Source: 1	IUJ2600-	14				
Mercury	7.60	0.20	0.10	ug/l	DB	8.00	ND	95	70-130	0.6	20	
Batch: 11J3030 Extracted: 10/24/11	_											
Blank Analyzed: 10/26/2011 (11J3030-Bl	LK1)											
Calcium	0.0506	0.10	0.050	mg/l	NH							Ja
Magnesium	ND	0.020	0.012	mg/l	NH							
LCS Analyzed: 10/26/2011 (11J3030-BS1	1)											
Calcium	2.64	0.10	0.050	mg/l	NH	2.50		105	85-115			
Magnesium	2.60	0.020	0.012	mg/l	NH	2.50		104	85-115			
Matrix Spike Analyzed: 10/26/2011 (11J	3030-MS1)					Source: 1	IUJ2238-	01				
Calcium	73.1	0.10	0.050	mg/l	NH	2.50	69.3	156	70-130			MHA
Magnesium	54.9	0.020	0.012	mg/l	NH	2.50	51.7	127	70-130			MHA
Matrix Spike Analyzed: 10/26/2011 (11J.	3030-MS2)					Source: 1	IUJ2238-	02				
Magnesium	187	0.020	0.012	mg/l	NH	2.50	185	79	70-130			MHA

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

METALS

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J3030 Extracted: 10/24/11	<u>L</u>											
	_											
Matrix Spike Dup Analyzed: 10/26/2011	(11J3030-N	MSD1)				Source:	IUJ2238-	-01				
Calcium	71.8	0.10	0.050	mg/l	NH	2.50	69.3	102	70-130	2	20	MHA
Magnesium	53.2	0.020	0.012	mg/l	NH	2.50	51.7	57	70-130	3	20	MHA
Batch: 11J3674 Extracted: 10/27/11	_											
Blank Analyzed: 10/28/2011 (11J3674-B	LK1)											
Zinc	ND	20.0	6.00	ug/l	NH							
LCS Analyzed: 10/28/2011 (11J3674-BS	1)											
Zinc	501	20.0	6.00	ug/l	NH	500		100	85-115			
Matrix Spike Analyzed: 10/28/2011 (11J	(3674-MS1)					Source:	IUJ2388-	-03				
Zinc	518	20.0	6.00	ug/l	NH	500	11.6	101	70-130			
Matrix Spike Dup Analyzed: 10/28/2011	(11J3674-N	MSD1)				Source:	IUJ2388-	-03				
Zinc	528	20.0	6.00	ug/l	NH	500	11.6	103	70-130	2	20	
Batch: 11J3745 Extracted: 10/28/11												
Blank Analyzed: 11/02/2011 (11J3745-B	LK1)											
Cadmium	ND	1.0	0.10	ug/l	NH							
Copper	ND	2.00	0.500	ug/l	NH							
Lead	ND	1.0	0.20	ug/l	NH							
Selenium	ND	2.0	0.50	ug/l	NH							
LCS Analyzed: 11/02/2011 (11J3745-BS	1)											
Cadmium	84.8	1.0	0.10	ug/l	NH	80.0		106	85-115			
Copper	89.6	2.00	0.500	ug/l	NH	80.0		112	85-115			
Lead	87.3	1.0	0.20	ug/l	NH	80.0		109	85-115			
Selenium	88.9	2.0	0.50	ug/l	NH	80.0		111	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

METALS

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J3745 Extracted: 10/28/11	-											
Matrix Spike Analyzed: 11/02/2011 (11J	3745-MS1)					Source:	IUJ2388-	03				
Cadmium	86.3	1.0	0.10	ug/l	NH	80.0	ND	108	70-130			
Copper	87.3	2.00	0.500	ug/l	NH	80.0	ND	109	70-130			
Lead	86.0	1.0	0.20	ug/l	NH	80.0	0.371	107	70-130			
Selenium	89.0	2.0	0.50	ug/l	NH	80.0	ND	111	70-130			
Matrix Spike Analyzed: 11/02/2011 (11J	3745-MS2)					Source:	IUJ2882-	01				
Cadmium	84.4	1.0	0.10	ug/l	NH	80.0	ND	106	70-130			
Copper	85.7	2.00	0.500	ug/l	NH	80.0	1.93	105	70-130			
Lead	89.3	1.0	0.20	ug/l	NH	80.0	ND	112	70-130			
Selenium	90.2	2.0	0.50	ug/l	NH	80.0	1.11	111	70-130			
Matrix Spike Dup Analyzed: 11/02/2011	(11J3745-M	ISD1)				Source:	IUJ2388-	03				
Cadmium	81.5	1.0	0.10	ug/l	NH	80.0	ND	102	70-130	6	20	
Copper	80.6	2.00	0.500	ug/l	NH	80.0	ND	101	70-130	8	20	
Lead	79.5	1.0	0.20	ug/l	NH	80.0	0.371	99	70-130	8	20	
Selenium	87.0	2.0	0.50	ug/l	NH	80.0	ND	109	70-130	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Analyst	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11J2606 Extracted: 10/20/11	_											
Blank Analyzed: 10/27/2011 (11J2606-B	LK1)											
Mercury	ND	0.20	0.10	ug/l	DB							
LCS Analyzed: 10/27/2011 (11J2606-BS)	1)											
Mercury	7.88	0.20	0.10	ug/l	DB	8.00		98	85-115			
Matrix Spike Analyzed: 10/27/2011 (11J	2606-MS1)					Source:	IUJ2441-	39				
Mercury	7.79	0.20	0.10	ug/l	DB	8.00	ND	97	70-130			
Matrix Spike Dup Analyzed: 10/27/2011	(11J2606-M	ISD1)				Source:	IUJ2441-	39				
Mercury	7.73	0.20	0.10	ug/l	DB	8.00	ND	97	70-130	0.8	20	
Batch: 11J3066 Extracted: 10/24/11	_											
Blank Analyzed: 10/25/2011 (11J3066-B	LK1)											
Calcium	ND	0.10	0.050	mg/l	NH							
Magnesium	ND	0.020	0.012	mg/l	NH							
Zinc	ND	20.0	6.00	ug/l	NH							
LCS Analyzed: 10/25/2011 (11J3066-BS)	1)											
Calcium	2.63	0.10	0.050	mg/l	NH	2.50		105	85-115			
Magnesium	2.57	0.020	0.012	mg/l	NH	2.50		103	85-115			
Zinc	500	20.0	6.00	ug/l	NH	500		100	85-115			
Matrix Spike Analyzed: 10/25/2011 (11J	3066-MS1)					Source:	IUJ2388-	03				
Calcium	205	0.10	0.050	mg/l	NH	2.50	197	350	70-130			MHA
Magnesium	25.8	0.020	0.012	mg/l	NH	2.50	22.8	121	70-130			
Zinc	513	20.0	6.00	ug/l	NH	500	12.1	100	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Analyst	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Ziiiii	IDE	Chits	1 mary st	Lever	resure	/ UILL	Limits	I II D	Limit	Qualifiers
Batch: 11J3066 Extracted: 10/24/11	_											
Matrix Spike Dup Analyzed: 10/25/2011	(11J3066-M	ISD1)				Source:	IUJ2388-	03				
Calcium	199	0.10	0.050	mg/l	NH	2.50	197	106	70-130	3	20	MHA
Magnesium	25.1	0.020	0.012	mg/l	NH	2.50	22.8	95	70-130	3	20	
Zinc	510	20.0	6.00	ug/l	NH	500	12.1	100	70-130	0.7	20	
Batch: 11J3746 Extracted: 10/28/11	_											
Blank Analyzed: 11/01/2011-11/02/2011	(11J3746-B)	LK1)										
Cadmium	ND	1.0	0.10	ug/l	KB1							
Copper	ND	2.00	0.500	ug/l	RDC							
Lead	ND	1.0	0.20	ug/l	KB1							
Selenium	ND	2.0	0.50	ug/l	KB1							
LCS Analyzed: 11/01/2011-11/02/2011 (1	1 J3746-BS 1	1)										
Cadmium	80.1	1.0	0.10	ug/l	KB1	80.0		100	85-115			
Copper	80.5	2.00	0.500	ug/l	RDC	80.0		101	85-115			
Lead	77.4	1.0	0.20	ug/l	KB1	80.0		97	85-115			
Selenium	75.1	2.0	0.50	ug/l	KB1	80.0		94	85-115			
Matrix Spike Analyzed: 11/01/2011-11/0	2/2011 (11J:	3746-MS1)				Source:	IUJ2924-	03				
Cadmium	79.2	1.0	0.10	ug/l	KB1	80.0	ND	99	70-130			
Copper	74.8	2.00	0.500	ug/l	RDC	80.0	ND	94	70-130			
Lead	77.5	1.0	0.20	ug/l	KB1	80.0	ND	97	70-130			
Selenium	77.6	2.0	0.50	ug/l	KB1	80.0	0.653	96	70-130			
Matrix Spike Analyzed: 11/01/2011-11/0	2/2011 (11J:	3746-MS2)				Source:	IUJ3102-	05				
Cadmium	79.9	1.0	0.10	ug/l	KB1	80.0	ND	100	70-130			
Copper	74.7	2.00	0.500	ug/l	RDC	80.0	ND	93	70-130			
Lead	77.0	1.0	0.20	ug/l	KB1	80.0	ND	96	70-130			
Selenium	77.6	2.0	0.50	ug/l	KB1	80.0	1.20	96	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

DISSOLVED METALS

]	Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J3746 Extracted: 10/28/11	-											
Matrix Spike Dup Analyzed: 11/01/2011-	11/02/2011	(11 J3746- N	MSD1)			Source:	IUJ2924-	03				
Cadmium	81.3	1.0	0.10	ug/l	KB1	80.0	ND	102	70-130	3	20	
Copper	76.0	2.00	0.500	ug/l	RDC	80.0	ND	95	70-130	2	20	
Lead	79.4	1.0	0.20	ug/l	KB1	80.0	ND	99	70-130	2	20	
Selenium	78.5	2.0	0.50	ug/l	KB1	80.0	0.653	97	70-130	1	20	
Matrix Spike Dup Analyzed: 11/01/2011-	11/02/2011	(11 J3746 -1	MSD2)			Source:	IUJ3102-	05				
Cadmium	80.1	1.0	0.10	ug/l	KB1	80.0	ND	100	70-130	0.3	20	
Copper	74.8	2.00	0.500	ug/l	RDC	80.0	ND	93	70-130	0.2	20	
Lead	78.7	1.0	0.20	ug/l	KB1	80.0	ND	98	70-130	2	20	
Selenium	77.9	2.0	0.50	ug/l	KB1	80.0	1.20	96	70-130	0.3	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

INORGANICS

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J2465 Extracted: 10/20/11	_											
	-											
Blank Analyzed: 10/20/2011 (11J2465-Bl	LK1)											
Specific Conductance	ND	1.0	1.0	os/cm @	MC							
LCS Analyzed: 10/20/2011 (11J2465-BS)	.)											
Specific Conductance	1360	1.0	1.0	os/cm @	MC	1410		96	90-110			
Duplicate Analyzed: 10/20/2011 (11J246	5-DUP1)					Source:	IUJ2402-	01				
Specific Conductance	907	1.0	1.0	os/cm @	MC		921			2	5	
Batch: 11J2645 Extracted: 10/20/11	_											
	-											
Blank Analyzed: 10/21/2011 (11J2645-Bl	LK1)											
Chloride	ND	0.50	0.30	mg/l	NN							
Nitrate-N	ND	0.11	0.060	mg/l	NN							
Nitrite-N	ND	0.15	0.090	mg/l	NN							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l	NN							
Sulfate	ND	0.50	0.30	mg/l	NN							
LCS Analyzed: 10/21/2011 (11J2645-BS)	.)											
Chloride	4.72	0.50	0.30	mg/l	NN	5.00		94	90-110			
Nitrate-N	1.07	0.11	0.060	mg/l	NN	1.13		95	90-110			
Nitrite-N	1.44	0.15	0.090	mg/l	NN	1.52		94	90-110			
Sulfate	9.45	0.50	0.30	mg/l	NN	10.0		95	90-110			
Matrix Spike Analyzed: 10/21/2011 (11J	2645-MS1)					Source:	IUJ2388-	03				
Chloride	294	25	15	mg/l	NN	50.0	249	89	80-120			MHA
Nitrate-N	14.0	5.5	3.0	mg/l	NN	11.3	0.131	122	80-120			M1
Nitrite-N	18.6	7.5	4.5	mg/l	NN	15.2	ND	122	80-120			M1
Sulfate	230	25	15	mg/l	NN	100	151	79	80-120			M2

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

INORGANICS

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J2645 Extracted: 10/20/11	<u>_</u>											
Matrix Spike Dup Analyzed: 10/21/2011	(11J2645-M	ISD1)				Source:	IUJ2388-	03				
Chloride	289	25	15	mg/l	NN	50.0	249	81	80-120	1	20	MHA
Nitrate-N	13.8	5.5	3.0	mg/l	NN	11.3	0.131	121	80-120	0.8	20	M1
Nitrite-N	17.9	7.5	4.5	mg/l	NN	15.2	ND	118	80-120	4	20	
Sulfate	227	25	15	mg/l	NN	100	151	76	80-120	1	20	M2
Batch: 11J2650 Extracted: 10/20/11												
	_											
Blank Analyzed: 10/20/2011 (11J2650-B	LK1)											
Surfactants (MBAS)	ND	0.10	0.050	mg/l	NCP							
LCS Analyzed: 10/20/2011 (11J2650-BS	1)											
Surfactants (MBAS)	0.257	0.10	0.050	mg/l	NCP	0.250		103	90-110			
Matrix Spike Analyzed: 10/20/2011 (11J	2650-MS1)					Source:	IUJ2394-	01				
Surfactants (MBAS)	0.281	0.10	0.050	mg/l	NCP	0.250	ND	113	50-125			
Matrix Spike Dup Analyzed: 10/20/2011	(11J2650-M	ISD1)				Source:	IUJ2394-	01				
Surfactants (MBAS)	0.266	0.10	0.050	mg/l	NCP	0.250	ND	106	50-125	6	20	
Batch: 11J2665 Extracted: 10/21/11												
	_											
Blank Analyzed: 10/21/2011 (11J2665-B	LK1)											
Perchlorate	ND	4.0	0.95	ug/l	mn							
LCS Analyzed: 10/21/2011 (11J2665-BS	1)											
Perchlorate	25.1	4.0	0.95	ug/l	mn	25.0		100	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit		Units	Analyst	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDE	Cints	Zinaryst	Level	Result	/UKLC	Limits	МЪ	Lillie	Quantiers
Batch: 11J2665 Extracted: 10/21/11	<u> </u>											
Matrix Spike Analyzed: 10/21/2011 (11J	J2665-MS1)					Source:	IUJ2345-	01				
Perchlorate	25.3	4.0	0.95	ug/l	mn	25.0	ND	101	80-120			
Matrix Spike Dup Analyzed: 10/21/2011	l (11J2665-N	(ISD1)				Source:	IUJ2345-	01				
Perchlorate	25.2	4.0	0.95	ug/l	mn	25.0	ND	101	80-120	0.3	20	
Batch: 11J2746 Extracted: 10/21/11	<u>L</u>											
	_											
Blank Analyzed: 10/21/2011 (11J2746-B												
Turbidity	ND	1.0	0.040	NTU	LA							
Duplicate Analyzed: 10/21/2011 (11J274	16-DUP1)					Source:	IUJ2388-	03				
Turbidity	0.0700	1.0	0.040	NTU	LA		0.0700			0	20	Ja
Batch: 11J2761 Extracted: 10/21/11	<u>L</u>											
Blank Analyzed: 10/26/2011 (11J2761-B	SLK1)											
Biochemical Oxygen Demand	ND	2.0	0.50	mg/l	XL							
LCS Analyzed: 10/26/2011 (11J2761-BS	1)											
Biochemical Oxygen Demand	202	100	25	mg/l	XL	198		102	85-115			
LCS Dup Analyzed: 10/26/2011 (11J276	1-BSD1)											
Biochemical Oxygen Demand	206	100	25	mg/l	XL	198		104	85-115	2	20	
Batch: 11J3111 Extracted: 10/25/11	<u>L</u>											
Blank Analyzed: 10/25/2011 (11J3111-B	SLK1)											
Total Dissolved Solids	ND	10	1.0	mg/l	MC							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

INORGANICS

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11J3111 Extracted: 10/25/11	_											
	_											
LCS Analyzed: 10/25/2011 (11J3111-BS	1)											
Total Dissolved Solids	1000	10	1.0	mg/l	MC	1000		100	90-110			
Duplicate Analyzed: 10/25/2011 (11J311	1-DUP1)					Source:	IUJ2739-	-06				
Total Dissolved Solids	393	10	1.0	mg/l	MC		399			2	10	
Patah. 11 12262 Extracted. 10/25/11												
Batch: 11J3262 Extracted: 10/25/11	_											
Blank Analyzed: 10/25/2011 (11J3262-B	LK1)											
Total Suspended Solids	ND	10	1.0	mg/l	MC							
LCS Analyzed: 10/25/2011 (11J3262-BS)	1)											
Total Suspended Solids	1020	10	1.0	mg/l	MC	1000		102	85-115			
D E 4 A	2 DUD1)			C		C	11112402	0.4				
Duplicate Analyzed: 10/25/2011 (11J326)		10	1.0	/1	140	Source:	IUJ2403-	∙04		2	10	
Total Suspended Solids	144	10	1.0	mg/l	MC		148			3	10	
Batch: 11J3296 Extracted: 10/26/11	_											
Blank Analyzed: 10/26/2011 (11J3296-B												
Total Organic Carbon	ND	1.0	0.50	mg/l	FZ							
LCS Analyzed: 10/26/2011 (11J3296-BS	1)											
Total Organic Carbon	9.76	1.0	0.50	mg/l	FZ	10.0		98	90-110			
Matrix Spike Analyzed: 10/26/2011 (11J	3296-MS1)				Source:	IUJ2588-	-06				
Total Organic Carbon	1050	200	100	mg/l	FZ	5.00	1110	-1170	80-120			MHA

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

INORGANICS

]	Reporting				Spike	Source		%REC		RPD	Data			
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers			
Batch: 11J3296 Extracted: 10/26/11															
	= '														
Matrix Spike Dup Analyzed: 10/26/2011	(11J3296-M	(11J3296-MSD1)						Source: IUJ2588-06							
Total Organic Carbon	1030	200	100	mg/l	FZ	5.00	1110	-1590	80-120	2	20	MHA			
Batch: 11J3426 Extracted: 10/26/11	_														
Blank Analyzed: 10/26/2011 (11J3426-B	LK1)														
Ammonia-N (Distilled)	ND	0.500	0.500	mg/l	NCP										
LCS Analyzed: 10/26/2011 (11J3426-BS	1)														
Ammonia-N (Distilled)	9.80	0.500	0.500	mg/l	NCP	10.0		98	80-115						
Matrix Spike Analyzed: 10/26/2011 (11J	3426-MS1)					Source:	IUJ2388-	03							
Ammonia-N (Distilled)	10.1	0.500	0.500	mg/l	NCP	10.0	0.840	92	70-120						
Matrix Spike Dup Analyzed: 10/26/2011	(11J3426-M	(SD1)				Source:	IUJ2388-	03							
Ammonia-N (Distilled)	10.4	0.500	0.500	mg/l	NCP	10.0	0.840	95	70-120	3	15				
Batch: 11K0164 Extracted: 11/01/13	<u>L</u>														
Blank Analyzed: 11/01/2011 (11K0164-E	BLK1)														
Total Cyanide	ND	5.0	2.2	ug/l	SLA										
LCS Analyzed: 11/01/2011 (11K0164-BS	51)														
Total Cyanide	104	5.0	2.2	ug/l	SLA	100		104	90-110						
Matrix Spike Analyzed: 11/01/2011 (11k	X0164-MS1)					Source:	IUJ2388-	03							
Total Cyanide	103	5.0	2.2	ug/l	SLA	100	ND	103	70-115						

TestAmerica Irvine

107

5.0

2.2

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Total Cyanide

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

15

Received: 10/19/11

METHOD BLANK/QC DATA

INORGANICS

Analysta	Dogult	Reporting Limit		Units	Amalwat	Spike	Source	%REC	%REC	RPD	RPD Limit	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	70REC	Limits	KPD	Limit	Qualifiers
Batch: 11K0164 Extracted: 11/01/11	<u>_</u>											
Matrix Spike Dup Analyzed: 11/01/2011 (11K0164-MSD1)						Source:	IUJ2388-	03				

ug/l

SLA

100

ND

107

70-115

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

8692

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8692 Extracted: 11/03/11												
LCS Analyzed: 11/03/2011 (S110124-03)						Source:						
Uranium, Total	57	1	N/A	pCi/L	CSS	56.5		101	80-120			
Blank Analyzed: 11/03/2011 (S110124-04	1)					Source:						
Uranium, Total	ND	1	N/A	pCi/L	CSS				-			U
Duplicate Analyzed: 11/03/2011 (S11012	4-05)					Source:	IUJ2388-	03				
Uranium, Total	0.252	1	N/A	pCi/L	CSS		0.221		-	13		Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

900

Analyte	Result	Reporting Limit	MDL	Units	Analyst	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8692 Extracted: 11/09/11												
LCS Analyzed: 11/09/2011 (S110124-03)						Source:						
Gross Alpha	38.2	3	N/A	pCi/L	DVP	33.7		113	70-130			
Gross Beta	26.8	4	N/A	pCi/L	DVP	28.6		94	70-130			
Blank Analyzed: 11/09/2011 (S110124-04	4)					Source:						
Gross Alpha	-0.111	3	N/A	pCi/L	DVP				-			U
Gross Beta	-0.509	4	N/A	pCi/L	DVP				-			U
Duplicate Analyzed: 11/09/2011 (S11012	4-05)					Source:	IUJ2388-	03				
Gross Alpha	1.4	3	N/A	pCi/L	DVP		1.7		-	0		U
Gross Beta	10.4	4	N/A	pCi/L	DVP		11.8		-	13		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

901.1

Analyte	Result	Reporting Limit	MDL	Units	Analyst	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8692 Extracted: 10/31/11												
LCS Analyzed: 11/04/2011 (S110124-03)						Source:						
Cobalt-60	111	10	N/A	pCi/L	RTM	115		97	80-120			
Cesium-137	119	20	N/A	pCi/L	RTM	124		96	80-120			
Blank Analyzed: 11/04/2011 (S110124-04	4)					Source:						
Cesium-137	ND	20	N/A	pCi/L	RTM				-			U
Potassium-40	ND	25	N/A	pCi/L	RTM				-			U
Duplicate Analyzed: 11/04/2011 (S11012	4-05)					Source:	IUJ2388-	03				
Cesium-137	ND	20	N/A	pCi/L	RTM		0		-	0		U
Potassium-40	ND	25	N/A	pCi/L	RTM		0		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

903.1

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8692 Extracted: 11/08/11												
LCS Analyzed: 11/08/2011 (S110124-03)						Source:						
Radium-226	45.9	1	N/A	pCi/L	TM	50.1		92	80-120			
Blank Analyzed: 11/08/2011 (S110124-04	4)					Source:						
Radium-226	0.087	1	N/A	pCi/L	TM				-			U
Duplicate Analyzed: 11/08/2011 (S11012	4-05)					Source:	IUJ2388-	03				
Radium-226	0.372	1	N/A	pCi/L	TM		0.5		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 019

Quarterly Outfall 019

Report Number: IUJ2388

Sampled: 10/19/11-10/21/11

Received: 10/19/11

METHOD BLANK/QC DATA

904

		Reporting				Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Analyst	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8692 Extracted: 11/07/11												
LCS Analyzed: 11/07/2011 (S110124-03)						Source:						
Radium-228	4.74	1	N/A	pCi/L	ASM	5.61		84	60-140			
Blank Analyzed: 11/07/2011 (S110124-04	4)					Source:						
Radium-228	-0.013	1	N/A	pCi/L	ASM				-			U
Duplicate Analyzed: 11/07/2011 (S11012	4-05)					Source: 1	IUJ2388-	03				
Radium-228	0.481	1	N/A	pCi/L	ASM		0.178		-	0		U