

Santa Susana Field Laboratory (SSFL) Site-Wide Stormwater Public Meeting

PRESENTED BY

SSFL Surface Water Expert Panel | November 17, 2022

Meeting Orientation

Meeting Objectives

- Provide an opportunity for the Surface Water Expert Panel to provide an update on stormwater sampling results and management activities at SSFL and respond to questions raised in a recent public survey
- Provide interested members of the public an opportunity to ask additional questions of the Surface Water Expert Panel

Agenda

- 1:00 4:00 pm Site T
- 6:00 7:30 pm
- 7:30 8:00 pm

Site Tour at SSFL

Panel Presentation at Grand Vista HotelQuestions at Grand Vista Hotel

Meeting Orientation

Proposed Ground Rules

- Keep questions brief and focus on topics addressed by the Surface Water Expert Panel
- We will answer your questions after the presentation
 - If you are attending in person, please raise your hand and wait for the microphone
 - If you are watching online, please submit your questions using the Q&A feature on Zoom
 - If unable to use Q&A feature, please call 818-207-2196 to submit your questions for the Expert Panel
- Please treat everyone in the meeting with kindness and respect

Outline

- 1. Panel Introduction and Site Background
- 2. Public Survey Responses
- 3. 2021/22 Rainy Season Monitoring Results
- 4. Human Health Risks
- 5. Existing Structural Controls
- 6. Treatment Performance
- 7. Future BMPs

1 Panel Introduction and Site Background

Surface Water Expert Panel Introduction

- Dr. Bob Gearheart, PE, California State Polytechnic University, Humboldt
- Jon Jones, PE, Wright Water Engineers
- Dr. Michael Josselyn, WRA Consultants
- Dr. Bob Pitt, PE, University of Alabama, Emeritus
- Dr. Michael K. Stenstrom, PE, University of California, Los Angeles
- Panel consultant: Geosyntec Consultants

Panel's Ongoing Role and Scope

- Independent panel formed in response to the 2007 Cease and Desist Order from the RWQCB
 - "...a panel to review site conditions, modeled flow, contaminants of concern, and evaluate the BMPs capable of providing the required treatment to meet the final effluent limits."
 - Ordered Boeing to fund the panel as with other NPDES expenses

• Ongoing Charge (2015 Permit)

- Review NPDES compliance and BMP performance monitoring data
- Investigate site-wide stormwater pollutant sources
- Make recommendations for new BMPs or improvements to existing BMPs
- Review Stormwater Human Health Risk Assessment (HHRA)
- Public outreach
- Review of site cleanup Stormwater Pollution Prevention Plans (SWPPPs)

Memorandum of Understanding Regarding NPDES Permit

- Background Stormwater Thresholds
- Stormwater Modeling
- Post-Cleanup Stormwater Monitoring Plan

SSFL Overview

- Former rocket testing and energy research facility
- Industrial activities have ceased and facilities removal is underway
 - Nuclear energy research operations ceased in 1989
 - Rocket engine testing operations ended in 2006
- Current activities include environmental monitoring/sampling, remediation planning, and demolition
- Numerous stormwater Best Management Practices (BMPs) to treat stormwater from developed and undeveloped areas

NPDES Permit Overview

- Stormwater discharges at SSFL are regulated by the LARWQCB through an individual NPDES permit, which requires:
 - Composite sampling at 12 stormwater outfalls; and
 - Compliance with approximately 50 Numeric Effluent Limits (NELs) – protective of both human health and aquatic life
- NELs for a wide range of constituents, including:
 - Dioxins (TCDD TEQ): 0.00000028 µg/L (ppb)
 - Total Lead: 5.2 µg/L (ppb)
 - Gross Alpha: 15 pCi/L (drinking water limit)

IA REGIONAL WATER QUALITY CONTROL BOAF LOS ANGELES REGION

Monitored Parameters

- 32-44 parameters are lacksquareanalyzed at every surface water outfall during every storm that produces runoff.
- **Over 250 parameters** are analyzed at every outfall at least once annually.

1.1.1-Trichloroethan 1.1.2.2-Tetrachloroethane 1.1.2-Trichloroethane 1.1-Dichloroethane 1.1-Dichloroethene 1,2,3,4,6,7,8-HpCDD 1.2.3.4.6.7.8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1.2.3.4.7.8-HxCDF 1.2.3.6.7.8-HxCDD 1,2,3,6,7,8-HxCDF 123789-HyCDD 1,2,3,7,8,9-HxCDF 1.2.3.7.8-PeCDD 1.2.3.7.8-PeCDF 1.2.3-Trichloropropane 1.2.4-Trichlorobenzene 1.2-Dibromoethane (EDB) 1.2-Dichlorobenzene 1.2-Dichloroethane 1.2-Dichloropropane 1.2-Diphenylhydrazine 1,2-Diphenylhydrazine/Azobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 2.2"-oxybis(1-Chloropropane) 2.3.4.6.7.8-HxCDF 2,3,4,7,8-PeCDF 2 3 7 8-TCDD 2.3.7.8-TCDF 2.4.5-Trichlorophenol 2,4,6-Trichlorophenol 2.4-Dichlorophenol 2,4-Dimethylphenol 2.4-Dinitrophenol 2.4-Dinitrotoluene 2.6-Dinitrotoluene 2-Butanol 2-Chloroethyl vinyl ether 2-Chloroethylvinylether 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4 6-dinitropheno 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol 3.3"-Dichlorobenzidine 3 3'-Dichlorobenzidine 4.4"-DDD 44-000 4,4"-DDE 4.4'-DDE 4.4"-DDT 44'-DDT 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Bromophenylphenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chlorophenylphenylether 4-Nitrophenol Acenaphthene Acenaphthylene

Acroleir

Aldrin

Acrylonitrile

alpha-BHC

Aluminum

Anthracene

Aniline

Arocle

Arock

Arocic

Arocle

Arocle

Aroclo

Arocle

Aroclo

Aroclo

Arocle

Arocle

Arocle

Arocle

Aroclo

Arocle

Arseni

Arseni

Asbes

Benze

Benzio

Benzo

Benzo

Benzi

Benzo

Benzo

Benzo

Benzy

Bervlli

Berylli

beta-B

bis (2-

bis (2-

bis(2-0

bis(2-

bis(2-

bis(2-0

bis(2-l

Boron

Bromo

Brom

Bromo

Bromo

Butyl I

Butylt

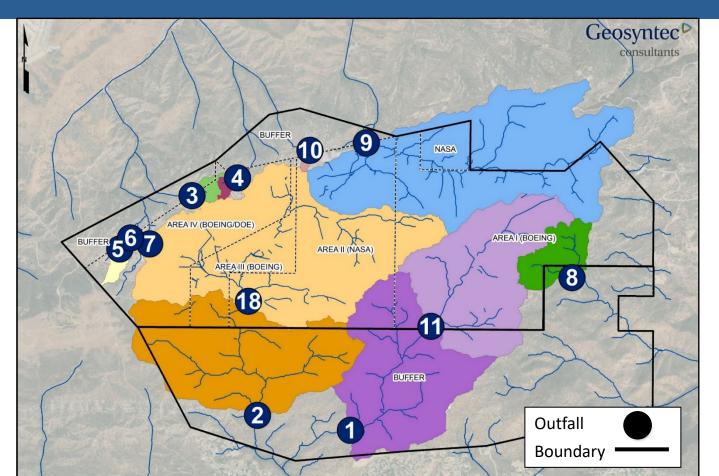
Cadmi

Calciur Calcium, I

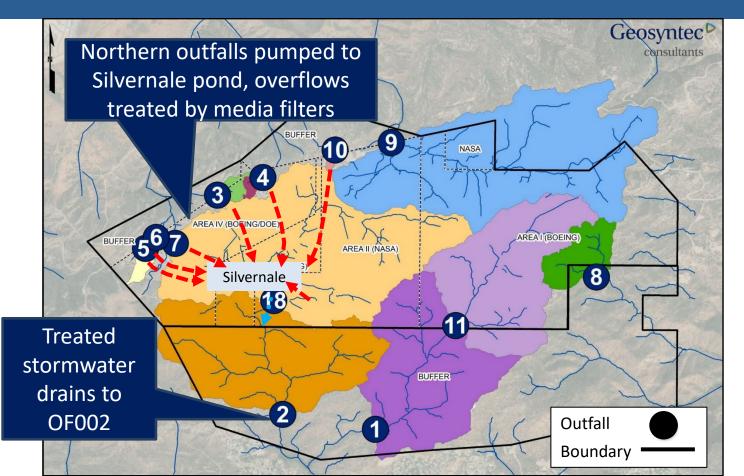
Cesium-137

Chloroform Chloroform (Trichloromethane) Aluminum, dissolved Chloromethane Chloromethane (Methyl Chloride) Chlorpyrifos Antimony dissolved Chromium Aroclor 1016 Chromium (Hex) Aroclor 1221 Chromium VI Aroclor 1232 Chromium VI (Hexavalent) Aroclor 1242 Chromium dissolved Aroclor 1248 Chrysene cis-1 2-Dichloroethene Aroclor 1254 Dette Di bis (2-Chloroethyl) ether bis (2-ethylhexyl) Phthalate bis(2-Chloroethoxy) methane bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroisopropyl) ether bis(2-Ethylhexyl)phthalate Boron, dissolved Bromodichloromethane Bromoform Bromomethane Bromomethane (Methyl Bromide) Butyl benzylphthalate Butylbenzylphthalate Cadmium, dissolved Calcium Calcium, Dissolved Carbon Tetrachloride Cesium 137 Cesium-137 Carbon Tetrachloride Iron, dissolved Cesium 137 Isophorone

Lead, dissolved

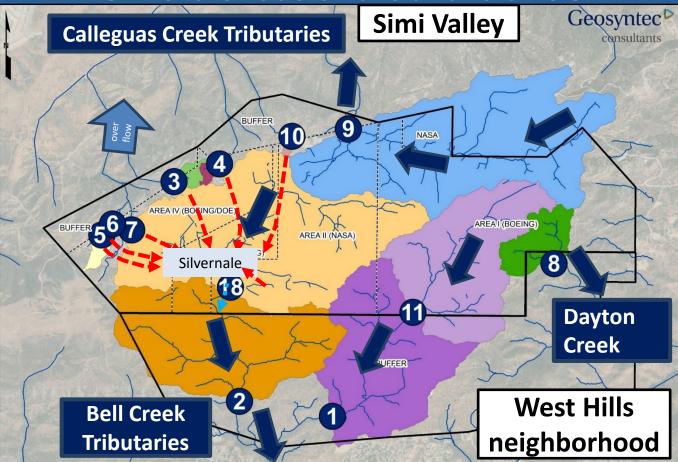

Chlordane

Chlorobenzene


Chloroethane

Lindane (gamma-BHC) Magnesium Magnesium, Dissolved Mercury, dissolved Methoxychlor Methylene Chloride Methyl-tert-butyl ether m-Nitroaniline Naphthalene Nickel, dissolved Nitrite/Nitrate Nitrobenzene n-Nitrosodimethylamine N-Nitrosodi-n-propylamine n-Nitroso-di-n-propylamine Fluoranthene Fluorene gamma-BHC (Lindane) Gross Alpha Analytes Gross Beta Analytes Hardness Hardness as CaCO3 Hardness as CaCO3, dissolved Hardness, dissolved Heptachlor Heptachlor epoxide Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Iron Iron, dissolved Isophorone Lead, dissolved Xylenes (Total Zinc Zinc, Dissolved

NPDES Watersheds and Outfalls at SSFL



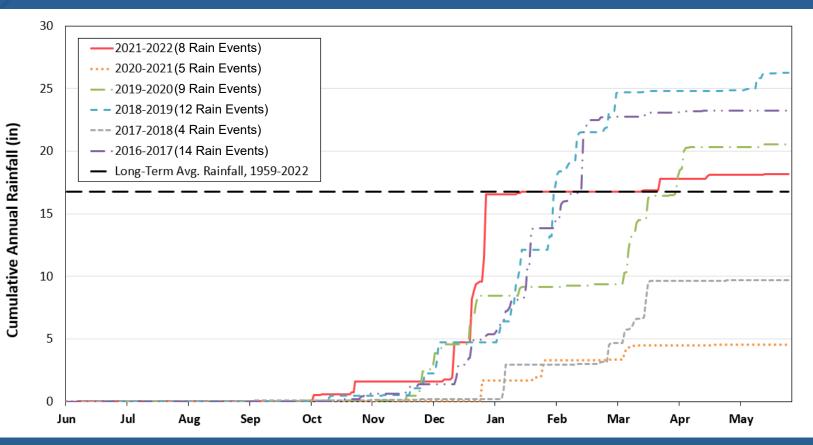
NPDES Watersheds and Outfalls at SSFL

BG 12

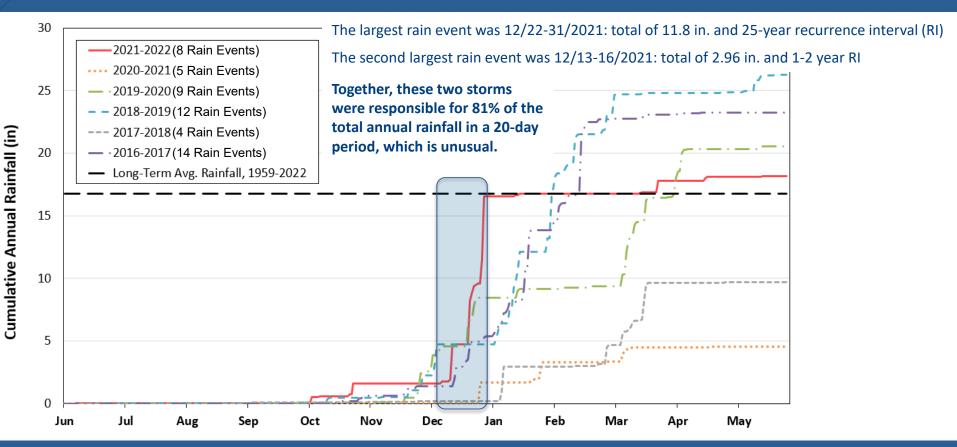
Surface Water Flow through NPDES Watersheds and Outfalls at SSFL

2 Public Survey Responses

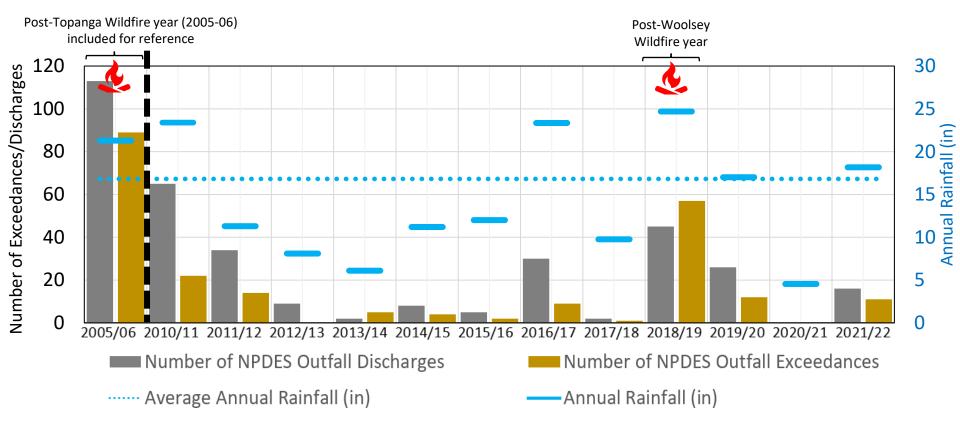
Public Survey Responses


Top 5 ranked interest in stormwater topics:

- 1. Human health risk associated with stormwater
- 2. Description of existing structural stormwater control measures and treatment systems
- 3. 2021/2022 rainy season exceedances and source analysis summary
- 4. Treatment performance of stormwater control measures
- 5. 2021/2022 rainy season monitoring results summary


3 2021/22 Reporting Year

- Rainy season summary
- Monitoring results summary
- Exceedances and source analysis


2021/2022 Rainfall

2021/2022 Rainfall

Historical Overview – NPDES Sampling All SSFL Outfalls

Historical Overview – 2015 Permit Term NPDES Sampling 2015-2022 Limit & Benchmark Exceedance Summary

Analyte	Sample Count	Single Sample Exceedance Count	% of Samples Exceeding	
Iron	70	26	37%	Orange shaded analytes only
TCDD TEQ (no DNQ)	124	14	11%	exceeded in the first winter
Lead	124	13	10%	following the Woolsey
Manganese	46	12	26%	Wildfire
Copper	124	6*	5%	
Gross Alpha	124	3	2%	Gross alpha single sample
Zinc	124	3	2%	exceedance triggers
Nitrate + Nitrite as Nitrogen (N)	103	2	2%	speciation of radionuclides
рН	123	2	2%	which indicated natural
Nitrate as Nitrogen (N)	79	2	3%	sources
Arsenic	55	2	4%	
Chronic Toxicity, Selenastrum	63	2*	3%	
Selenium	124	1	1%	* 2021/22 result was a
Nickel	74	1	1%	suspected lab error
Biochemical Oxygen Demand (BOD)	72	1*	1%	
Sulfate	103	1	1%	
Cyanide	98	1	1%	

2021/2022 Exceedance Summary

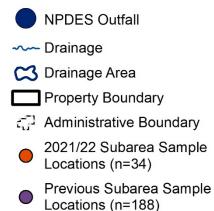
Parameter	Criteria Basis	Outfall 001	Outfall 002	Outfall 009	Outfall 011	Outfall 018	Total*
Biochemical Oxygen Demand (BOD)	Wastewater Treatment Technology-Based	0	0	0	0	1**	1
Chronic Toxicity, Selenastrum	Aquatic life	0	0	1**	0	0	1
Copper	Aquatic life	0	0	1	0	0	1
Iron	Aesthetic (taste/odor)	1	1	NR	1	1	4
Manganese	Aesthetic (taste/odor)	1	0	NR	1	0	2
TCDD TEQ (no DNQ)	Human health (fish consumption)	1	0	0	1	0	2
Total		3	1	2	3	2	11

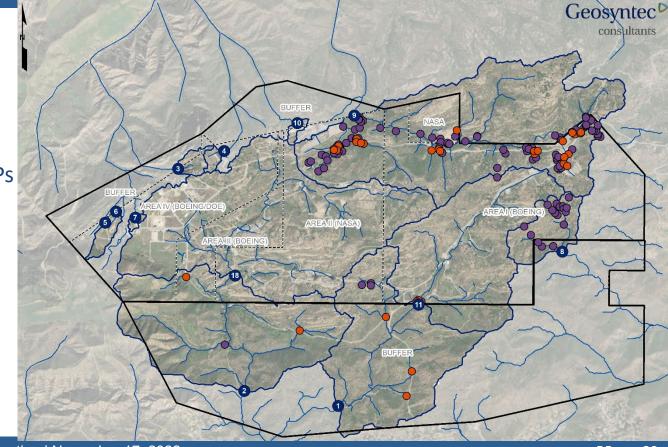
NR = this parameter does not have a Permit Limit or Benchmark at this outfall

* Note this total reflects exceedances of concentration-based limits at Outfalls 001-018. Mass-based limits at outfalls and offsite Arroyo Simi results were not considered here. 98.8% of all onsite outfall samples and analytes were in compliance.

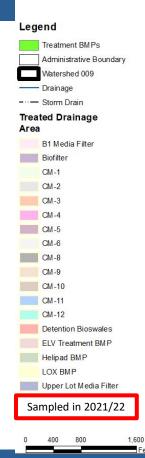
** Both the original and baseline toxicity tests were conducted outside of the prescribed hold time.

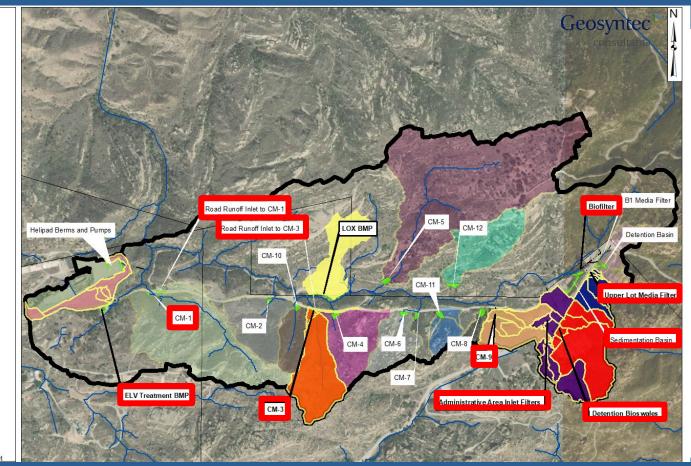
2021/2022 Exceedance Source Investigation


Parameter	Date	Outfall	Exceedance Sources with Most Weight of Evidence
Biochemical Oxygen Demand	12/28/2021	018	inconclusive, likely lab error
Chronic Toxicity	12/26/2021	009	inconclusive, repeat analysis was non-toxic
Iron	12/26/2021	001	natural background soils
Iron	12/30/2021	011	natural background soils
Iron	1/5/2022	018	inconclusive
Manganese	12/26/2021	001	natural background soils
Manganese	12/30/2021	011	natural background soils
Copper	12/15/2021	009	inconclusive, likely lab error
TCDD TEQ (no DNQ)	12/26/2021	001	natural background soils, impacted soils**, treated wood poles, pavement solids
TCDD TEQ (no DNQ)	12/30/2021	011	natural background soils, impacted soils**, treated wood poles, pavement solids


12/30/2021 received 6.22 inches of rainfall, which corresponds to a 25-year storm event, exceeding the design storm ****Where impacted soils could not be ruled out as a source, new BMPs or improvements were recommended**

2021/2022 Subarea Monitoring Summary


- Over 200 internal stormwater monitoring locations to identify potential source areas
- Subareas target potential areas for stormwater BMPs


Legend

Distributed Controls in Watershed 009

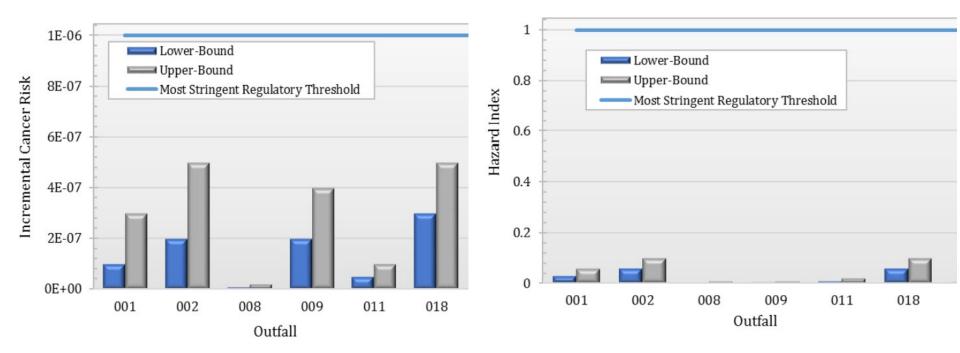
4 Human Health Risks

Stormwater Human Health Risk Assessment (HHRA) Drinking Water Risk Analysis

Human Health Risk Assessment

- The stormwater Human Health Risk Assessment (HHRA) found low health risks from exposure to SSFL stormwater based on stormwater conditions present from 2009-2016 (less than the risk level of 1:1,000,000)
- <u>Stormwater HHRA</u> was reviewed and approved by Office of Environmental Health Hazard Assessment (OEHHA)
- Exposure pathways included:
 - Dermal contact
 - Inhalation
 - Incidental ingestion (e.g., splashing)

Human Health Risk Assessment


- Exposure rates assumed:
 - Up to 26 exposures per year at stormwater outfalls (outfall flow dependent)
 - 30 years of exposure

	Outfall – Exposure Frequency - Days per Year							
Exposure Frequency Estimate	001	002	008	009	011	018		
Lower-bound	3	9	5	13	1	6		
Upper-bound	6	18	10	26	2	12		

Human Health Risk Assessment

Cumulative Incremental Cancer Risk Estimates by Outfall

Cumulative Hazard Index Estimates by Outfall

Drinking Water Risk Assessment

- Drinking water pathway (i.e., stormwater infiltrating offsite to groundwater that's used for untreated drinking) has now also been evaluated in recognition of questions from public
- Exposure point concentration calculated consistent with HHRA, but for the entire monitoring period from 1998-2022
- Exposure point concentrations were compared to primary maximum contaminant levels (MCLs), which assume consumption of drinking water for a lifetime

Drinking Water Risk Assessment

Based on a preliminary assessment of all monitoring data since 1998 (including post-wildfire years), three analytes have a potential exposure point concentration (EPC) above the primary MCL using conservative assumptions:

- Aluminum based on 95UCL
- bis (2-ethylhexyl) Phthalate based on maximum detected concentration
- Pentachlorophenol based on maximum detected concentration

			Calleguas Creek Watershed		LA River Watershed			
		Primary	Sample	Detection		Sample	Detection	
Analyte	Units	MCL	Count	Count	EPC	Count	Count	EPC
Constituents with EPC of Potentia	al Concerr	ו						
Aluminum	µg/L	1000	42	41	3022	16	16	7640
bis (2-ethylhexyl) Phthalate (DEHP)	μg/L	4	99	1	10.6	173	18	1.716
Pentachlorophenol (PCP)	μg/L	1	99	1	1.46	173	5	0.984
Other Selected Constituents out of	of 70 with	MCLs evalua	ated					
2,3,7,8-TCDD	μg/L	3E-05	306	6	2.3E-06	208	4	5.1E-06
Arsenic	μg/L	10	105	11	2.358	130	48	2.973
Gross Alpha	pCi/L	15	287	182	0.498	209	82	10.53
		50						
Gross Beta	pCi/L	(4 mrem/yr)	290	247	8.874	205	139	9.427
Lead	μg/L	15	317	240	4.561	260	147	3.704
Perchlorate	µg/L	6	218	2	4.26	266	20	1.145

Drinking Water Risk Assessment: Many factors of safety make drinking water safe

- Concentrations in stormwater that infiltrates to groundwater offsite would be blended with ambient groundwater
- These stormwater concentrations are for all time (pre-BMPs, post-BMPs, post-wildfire), but recent data would reflect effects of BMPs that lower these levels
- These are total concentrations, whereas dissolved concentrations are much less, and dissolved levels better reflect what would reach groundwater (and be biologically available)
- Finally, most drinking water is treated at municipal water treatment plants, which would further reduce these concentrations

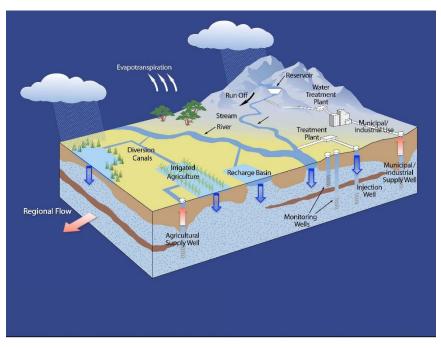
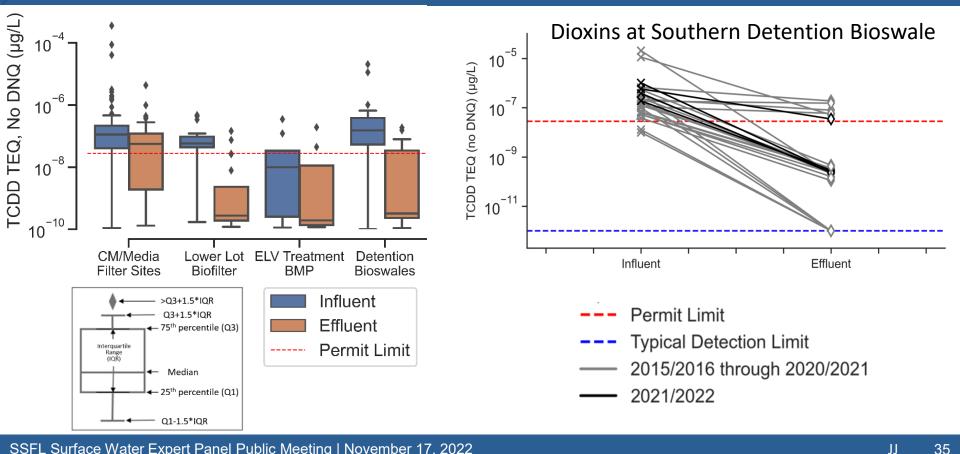


Image from https://mavensnotebook.com/2017/09/20/dr-andy-fisherenhancing-groundwater-recharge-with-stormwater/

5 Existing Structural Controls

- Stormwater control measures
- Active stormwater treatment systems (Outfalls 011 and 018)

Existing Structural Controls


- Distributed Passive Treatment BMPs
 - Filter media mix developed for SSFL BMPs consisting of sand, zeolite, and granulated activated carbon (GAC)
 - Located throughout Outfall 009 Watershed
 - Variety of formats depending on space available
 - Culvert Modifications (CMs) and Media Filters
 - Lower Lot Biofilter
 - Detention Bioswales
 - ELV Treatment BMP
 - Active stormwater treatment systems (SWTS)
 - Coagulation, sedimentation, and filtration plants in Outfall 011 and 018 watersheds

6 Treatment Performance

- Stormwater control measures
- Active stormwater treatment systems (Outfalls 011 and 018)

Treatment Performance: Distributed Passive BMPs

Treatment Performance: Distributed Passive BMPs

ВМР	Parameter	% Above Outfall 009 Permit Limit			
		Influent	Effluent		
B-1	Lead	33%	8.7%		
D-1	TCDD TEQ no DNQ	86%	68%		
CM-1	Lead	31%	17%		
	TCDD TEQ no DNQ	58%	48%		
СМ-9	Lead	42%	24%		
	TCDD TEQ no DNQ	49%	24%		
Linney Let Medie Filter	Lead	11%	0%		
Upper Lot Media Filter	TCDD TEQ no DNQ	79%	58%		
	Lead	29%	0%		
CM-3	TCDD TEQ no DNQ	0%	0%		

JJ

Treatment Performance: Advanced SWTS

	Daily Units Maximum Permit Limit	Outfa	ıll 018	Outfall 011		
Analyte		Maximum	Untreated SWTS Influent Sample	Treated Discharge Sample	Untreated SWTS Influent Sample	Treated Discharge Sample
			12/25/2021	12/26/2021	1/10/2022	1/18/2022
Oil & Grease	mg/L	15	0.74 J	ND < 0.54	710	ND < 0.53
Mercury	μg/L	0.1	0.11 J	ND < 0.12	ND < 0.12	ND < 0.12
TCDD TEQ (no DNQ)	μg/L	2.8E-08	6.1E-08	ND	1.3E-08	ND
Iron	mg/L	0.3	2.2	ND < 0.05	1.2	0.092
Manganese	μg/L	50	77	15	19 J	25
Perchlorate	μg/L	6.0	ND < 9.1	ND < 0.91	3.9	ND < 0.95
Trichloroethylene (TCE)	μg/L	5	ND < 0.17	ND < 0.17	ND < 0.17	ND < 0.17
Gross Alpha	pCi/L	15	4.46+/-2.73	2.1+/-1.82	1.92+/-1.27	0.55+/-1.39
Gross Beta	pCi/L	50	4.17+/-1.75	4.07+/-1.12	3.68+/-0.904	2.81+/-1.01
Lead	μg/L	5.2	3.2	ND < 0.5	0.87	ND < 0.5

Green cells indicate concentrations were not detected above the Outfall Permit Limit

Orange cells indicate concentrations were detected above the Outfall Permit Limit

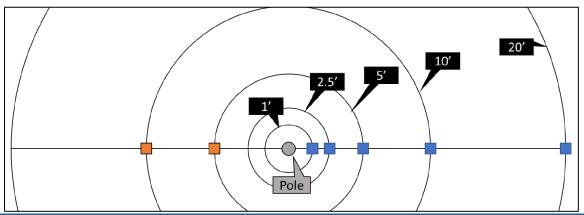
All other analytes were not detected above the Outfall Permit Limit

SSFL Surface Water Expert Panel Public Meeting | November 17, 2022

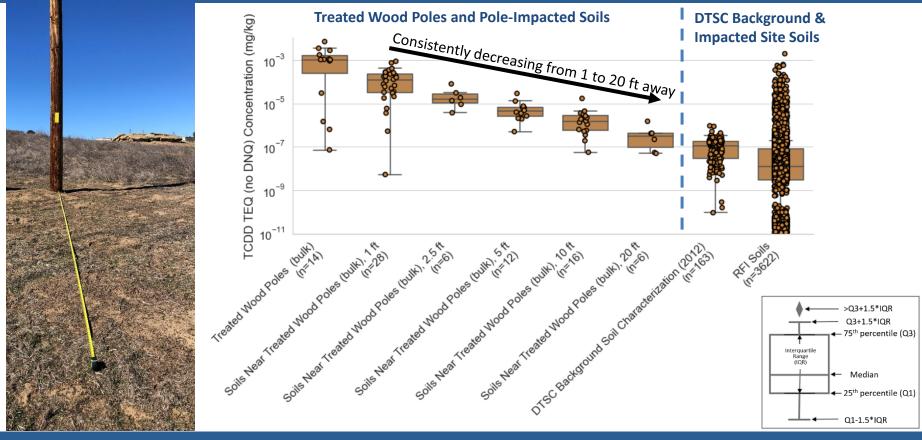
JJ

7 Future BMPs

- New BMPs to address recent exceedances where impacted soils could not be ruled out
- Stormwater management at imminent and substantial endangerment (ISE) cleanups
- Additional detailed pond water balance and infiltration study


New BMPs: Stormwater Control Measures

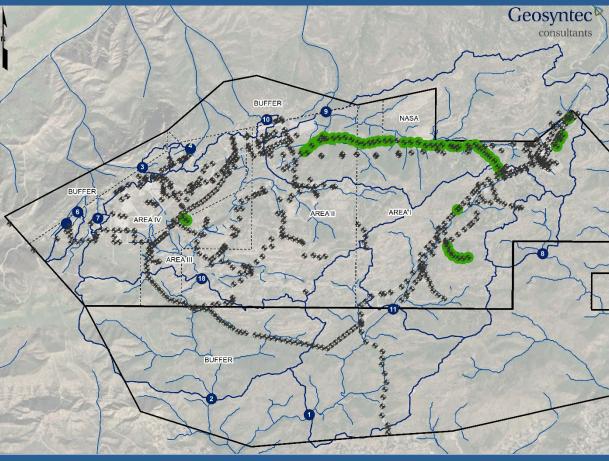
• R1 Pond berm repair completed in November 2022


New BMPs: Source Control Measures & Identifying Sources

- Sampled soil at various distances from treated wood utility poles
- Distinct relationship between distance from pole and dioxin concentration in soil
- Recommended removing unnecessary poles
- Updated BMP guidance to stabilize soils within a 10 ft radius of poles

New BMPs: Source Control Measures & Identifying Sources

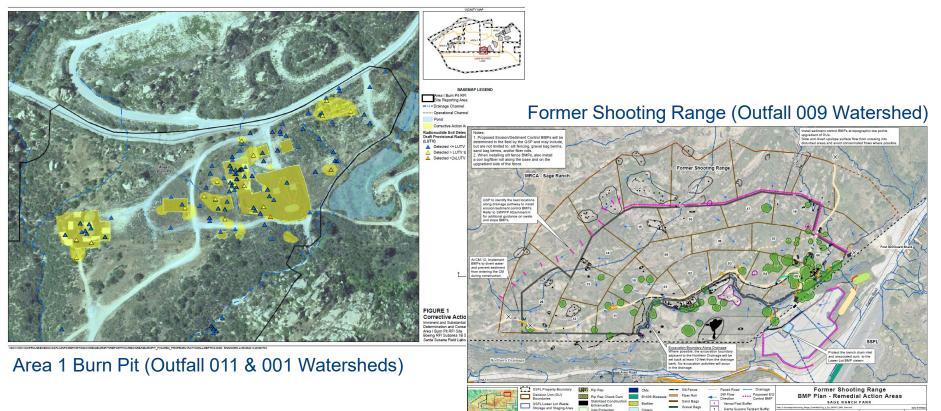
SSFL Surface Water Expert Panel Public Meeting | November 17, 2022


BP 41

New BMPs: Treated Pole Control Measures

Removed **42** unused treated wood utility poles off Boeing and **12** poles off NASA property, between April-June 2022. More are being evaluated for removal.

Legend



Imminent and Substantial Endangerment (ISE) Cleanup Areas

- Two early cleanup actions have been ordered by DTSC
- Scheduled to start soil removal in 2023 after the rainy season
- The Panel is reviewing the SWPPPs and recommending stormwater BMPs for during and after cleanup

Imminent and Substantial Endangerment (ISE) Cleanup Areas

utfall 009 Sub-Watershe

Carave

Rip Ra

SSFL Surface Water Expert Panel Public Meeting | November 17, 2022

Stantec

Figure B-3

Rip Rap Berr

Sage Ranch Trai

Water Bar

*

lummer's Mariposa Lily voidance Buffer

Thank you for attending

- Questions
 - Please raise your hand and the microphone will be brought to you
 - Enter your questions via Q&A on Zoom
- SSFL Stormwater Information (e.g., Annual Report, Panel Presentations, NPDES Permit, and Technical Reports) Available Online:

www.boeing.com/principles/environment/santa-susana

- Additional Information Available Online:
 - Groundwater factsheet: <u>08.16.21_Santa Susana Groundwater_081621A.pdf (boeing.com)</u>
 - MOU FAQs: <u>Santa Susana Field Laboratory FAQ (ca.gov)</u>
 - DTSC SSFL Myths and facts: <u>Myths & Facts Regarding Boeing's Comprehensive Cleanup Framework at SSFL</u>
 - DTSC FAQs: Boeing Settlement Agreement FAQs | Department of Toxic Substances Control (ca.gov)