

CAGE Code 81205

737 Airplane Characteristics for Airport Planning

DOCUMENT NUMBER: REVISION: REVISION DATE:

D6-58325-6 Rev A September 2020

CONTENT OWNER:

Boeing Commercial Airplanes

All revisions to this document must be approved by the content owner before release.

Revision Record

Revision Letter Α

September 2020 **Revision Date** New document format

Changes in This Revision

All Models: ICAO Aerodrome Reference Code

Section 3.0 Airplane Performance

Table of Contents

1.0	S	COPE A	AND INTRODUCTION	1-1
	1.1	SCOF	PE	1-1
	1.2	INTR	ODUCTION	1-1
	1.3	A BR	IEF DESCRIPTION OF THE 737 FAMILY OF AIRPLANES	1-2
2.0	A	IRPLAI	NE DESCRIPTION	2-1
			ERAL CHARACTERISTICS	
		2.1.1	General Characteristics: Model 737-100	2-2
		2.1.2	General Characteristics: Model 737-200	2-3
		2.1.3	General Characteristics: Model 737-200, Convertible and Executive Airplanes	2-4
		2.1.4	General Characteristics: Model 737-200	
		2.1.5	General Characteristics: Model Advanced 737-200C, -200QC	2-6
		2.1.6	General Characteristics: Model 737-300	2-7
		2.1.7	General Characteristics: Model 737-400	2-8
		2.1.8	General Characteristics: Model 737-500	2-9
		2.1.9	General Characteristics: Model 737-600	2-10
		2.1.10	General Characteristics: Model 737-700, -700 With Winglets, -700C	2-11
		2.1.11	General Characteristics: Model 737-800, -800 With Winglets	2-12
		2.1.12	General Characteristics: Model 737-900, -900 With Winglets	2-13
		2.1.13	General Characteristics: Model 737-900er, -900er With Winglets	2-14
		2.1.14	General Characteristic Model 737 BBJ	2-15
		2.1.15	General Characteristics: Model 737 BBJ2	2-16
	2.2	GENI	ERAL DIMENSIONS	2-18
		2.2.1	General Dimensions: Model 737-100	2-18
		2.2.2	General Dimensions: Model 737-200	2-19
		2.2.3	General Dimensions: Model 737-300	2-20
		2.2.4	General Dimensions: Model 737-300 With Winglets	2-21
		2.2.5	General Dimensions: Model 737-400	2-22
		2.2.6	General Dimensions: Model 737-500	2-23
		2.2.7	General Dimensions: Model 737-600	2-24
		2.2.8	General Dimensions: Model 737-600 With Winglets	2-25
		2.2.9	General Dimensions: Model 737-700, -700C	2-26
		2.2.10	General Dimensions: Model 737-700 With Winglets, 737 BBJ	2-27
		2.2.11	General Dimensions: Model 737-800	2-28
		2.2.12	General Dimensions: Model 737-800 With Winglets, 737 BBJ2	2-29
		2.2.13	General Dimensions: Model 737-900, -900ER	2-30
		2.2.14	General Dimensions: Model 737-900, -900ER With Winglets	2-31
	2.3	GRO	UND CLEARANCES	2-32

	2.3.1	Ground Clearances: Model 737-100, -200, -200C	2-32
	2.3.2	Ground Clearances: Model 737-300, -400, -500	
	2.3.3	Ground Clearances: Model 737-600, -700, -700C	
	2.3.4	Ground Clearances: Model 737-800, -900, -900ER	
	2.3.5	Ground Clearances: Model 737-700, -800, -900, -900ER With	. 2 33
	2.3.3	Winglets, BBJ, BBJ2	. 2-36
2.4	INTE	RIOR ARRANGEMENTS	
	2.4.1	Interior Arrangements: Model 737-100	
	2.4.2	Interior Arrangements: Model 737-200	
	2.4.3	Interior Arrangements: Model 737-200, Mixed Class	
	2.4.4	Interior Arrangements: Model 737-200 Executive Interior Class	
	2.4.5	Interior Arrangements: Model 737-200 Passenger/Cargo	
		Configuration	. 2-41
	2.4.6	Interior Arrangements: Model 737-200C, All Cargo	
		Configuration	
	2.4.7	Interior Arrangements: Model 737-300	. 2-43
	2.4.8	Interior Arrangements: Model 737-400	. 2-44
	2.4.9	Interior Arrangements: Model 737-500	
	2.4.10	Interior Arrangements: Model 737-600	. 2-46
	2.4.11	Interior Arrangements: Model 737-700, -700 With Winglets	. 2-47
	2.4.12	Interior Arrangements: Model 737-700C	. 2-48
	2.4.13	Interior Arrangements: Model 737-800, -800 With Winglets	. 2-49
	2.4.14	Interior Arrangements: Model 737 BBJ, 737 BBJ2	. 2-50
	2.4.15	Interior Arrangements: Model 737-900, -900 With Winglets	. 2-51
	2.4.16	Interior Arrangements: Model 737-900ER, 900ER With Winglets	. 2-52
2.5	CABI	N CROSS SECTIONS	. 2-53
	2.5.1	Cabin Cross-Sections: Model 737-100, Six-Abreast Seating With	
		Hatrack-Type Stowage System	. 2-53
	2.5.2	Cabin Cross-Sections: Model 737-200, Four-Abreast Seating	
		With "Wide-Body Look" Interior	. 2-54
	2.5.3	Cabin Cross-Sections: Model 737-200, Five-Abreast Seating With	2.55
	2.5.4	Carry All Compartments	. 2-55
	2.5.4	Cabin Cross-Sections: Model 737-300, -400, -500600, -700, -	
		800, -900, BBJ1, BBJ2, Four-Abreast Model 737-200 With Advanced Technology Interior	2-56
	2.5.5	Cabin Cross-Sections: Model 737-200 With Advanced	. 2 30
	2.3.3	Technology Interior and Model 737-300, -400, -500600, -700,	
		-800, -900, Six-Abreast Seating	. 2-57
2.6	LOW	ER CARGO COMPARTMENTS	
	2.6.1	Lower Cargo Compartments: Model 737-100, All Models,	
		Dimensions	. 2-58
	2.6.2	Lower Cargo Compartments: Model 737-100, -200, Capacities	. 2-59

	2.6.3	Lower Cargo Compartments: Model 737-300, -400, -500, Capacities	2_59
	2.6.4	Lower Cargo Compartments: Model 737-600, -700, -800, -900,	2-37
	2.0.4	-900ER With and Without Winglets, Capacities	2-61
	2.6.5	Lower Cargo Compartments: Model 737BBJ, 737 BBJ2,	2 01
	2.0.0	Capacities	2-62
2.7	DOO	R CLEARANCES	
	2.7.1	Door Clearances: Model 737, All Models, Forward Main Entry Door No. 1	2-63
	2.7.2	Door Clearances: Model 737, All Models, Optional Forward Airstairs, Main Entry Door No 1	
	2.7.3	Door Clearances: Models 737-100, -200, -300, -400, -500, Locations of Sensors and Probes – Forward of Main Entry Door No 1	
	2.7.4	Door Clearances: Models 737-600, -700, -800, -900ER, -BBJ, -BBJ2, Locations of Sensors and Probes – Forward of Main Entry Door No 1	
	2.7.5	Door Clearances: Model 737, All Models, Forward Service Door	2-67
	2.7.6	Door Clearances: Model 737, All Models, Aft Entry Door and Aft Service Door	2-68
	2.7.7	Door Clearances: Model 737-100, 200, AFT Entry Door With Optional Airstair	2-69
	2.7.8	Door Clearances: Model 737-100, -200, -300, -400, -500, 600, 700, -800, -900, BBJ1, BBJ2, Lower Deck Cargo Compartments	
	2.7.9	Door Clearances: Model 737-200C, Main Deck Cargo Door	
	2.7.10	Door Clearances: Model 737-700C, Main Deck Cargo Door	
3.0 A	IDDI AI	NE PERFORMANCE	
3.1		ERAL INFORMATION	
		LOAD/RANGE FOR LONG RANGE CRUISE	
3.2	3.2.1	Payload/Range for Long Range Cruise: Model 737-100	5-2
	3.2.1	(JT8D-7 Engines)	3-2
	3.2.2	Payload/Range for Long Range Cruise: Model 737-200 (JT8D-9/9A Engines)	
	3.2.3	Payload/Range for Long Range Cruise: Model 737-200 (JT8D-15/15A Engines)	
	3.2.4	Payload/Range for Long Range Cruise: Model Advanced 737-200 (JT8D-17/17A Engines)	
	3.2.5	Payload/Range for Long Range Cruise: Model Advanced 737-200 (JT8D-17R/17AR Engines)	
	3.2.6	Payload/Range for Long Range Cruise: Model 737-300	
	3.2.7	Payload/Range for Long Range Cruise: Model 737-400	
	3.2.7	Payload/Range for Long Range Cruise: Model 737-500	
	5.4.0	1 dylodd/Range for Long Range Cluise. Wodel /3/-300	5-3

	3.2.9	Payload/Range for Long Range Cruise: Model 737-600	3-10
	3.2.10	Payload/Range for Long Range Cruise: Model 737-700	3-11
	3.2.11	Payload/Range for Long Range Cruise: Model 737-700ER	3-12
	3.2.12	Payload/Range for Long Range Cruise: Model 737-800	3-13
	3.2.13	Payload/Range for Long Range Cruise: Model 737-900	3-14
	3.2.14	Payload/Range for Long Range Cruise: Model 737-900ER	3-15
3.3	F.A.R	R. AND J.A.R. TAKEOFF RUNWAY LENGTH	
	REQU	UIREMENTS	3-16
	3.3.1	F.A.R. Takeoff Runway Length Requirements - Standard Day:	
		Model 737-100 (JT8D-7 Engines)	3-16
	3.3.2	F.A.R. Takeoff Runway Length Requirements - Standard Day +	
		27°F (STD + 15°C): Model 737-100 (JT8D-7 Engines)	3-17
	3.3.3	F.A.R. Takeoff Runway Length Requirements – Standard Day:	2 10
	2.2.4	Model 737-200 (JT8D-9/9A Engines)	3-18
	3.3.4	F.A.R. Takeoff Runway Length Requirements - Standard Day +	2 10
	225	27°F (STD + 15°C): Model 737-200 (JT8D-9/9A Engines)	3-19
	3.3.5	F.A.R. Takeoff Runway Length Requirements - Standard Day: Model Advanced 737-200 (JT8D-15/15A Engines)	3 20
	3.3.6	F.A.R. Takeoff Runway Length Requirements - Standard Day +	3-20
	3.3.0	27°F (STD + 15°C): Model Advanced 737-200 (JT8D-15/15A	
		Engines)	3-21
	3.3.7	F.A.R. Takeoff Runway Length Requirements - Standard Day:	
		Model Advanced 737-200 (JT8D-17/17A Engines)	3-22
	3.3.8	F.A.R. Takeoff Runway Length Requirements - Standard Day +	
		27°F (STD + 15°C): Model Advanced 737-200 (JT8D-17/17A	
		Engines)	3-23
	3.3.9	F.A.R. Takeoff Runway Length Requirements - Standard Day:	
		Model Advanced 737-200 (JT8D-17R/17AR Engines)	3-24
	3.3.10	F.A.R. Takeoff Runway Length Requirements - Standard Day +	
		27°F (STD + 15°C): Model Advanced 737-200 (JT8D-17R/17AR	2 25
	2 2 11	Engines)	3-23
	3.3.11	F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-300 (CFM56-3B1 Engines at 20,000 LB SLST)	3 26
	3.3.12	F.A.R. Takeoff Runway Length Requirements - Standard Day +	3-20
	3.3.12	27°F (STD + 15°C): Model 737-300 (CFM56-3B1 Engines at	
		20,000 LB SLST)	3-27
	3.3.13	F.A.R. Takeoff Runway Length Requirements - Standard Day:	
		Model 737-300 (CFM56-3B-2 Engines at 22,000 LB SLST)	3-28
	3.3.14	F.A.R. Takeoff Runway Length Requirements - Standard Day +	
		27°F (STD + 15°C): Model 737-300 (CFM56-3B-2 Engines at	
		22,000 LB SLST)	3-29
	3.3.15	F.A.R. Takeoff Runway Length Requirements - Standard Day:	
		Model 737-400 (CFM56-3B-2 Engines at 22,000 LB SLST)	3-30

3.3.16	F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-400 (CFM56-3B-2 Engines at 22,000 LB SLST)	. 3-31
3.3.17	F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-400 (CFM56-3C1 Engines at 23,500 LB SLST)	
3.3.18	F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-400 (CFM56-3C1 Engines at 23,500 LB SLST)	. 3-33
3.3.19	F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-500 (CFM56-3B-1 Engines at 20,000 LB SLST)	. 3-34
3.3.20	F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-500 (CFM56-3B-1 Engines at 20,000 LB SLST)	. 3-35
3.3.21	F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-500 (CFM56-3B-1 Engines at 18,500 LB SLST)	
3.3.22	F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-500 (CFM56-3B-1 Engines at 18,500 LB SLST)	. 3-37
3.3.23	F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)	. 3-38
3.3.24		
3.3.25	F.A.R. Takeoff Runway Length Requirements - Standard Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)	
3.3.26	F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)	
3.3.27	F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)	
3.3.28		
3.3.29	F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)	
3.3.30	,	

3.3.31	F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700 (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)	3-46
3.3.32	F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-700 (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)	3-47
3.3.33	F.A.R. Takeoff Runway Length Requirements - Standard Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-700 (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)	3-48
3.3.34	F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700 (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)	3-49
3.3.35		
3.3.36	<i>'</i>	
3.3.37	F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-700/-700W	
3.3.38	(CFM56-7B26 Engines at 26,000 LB SLST)	
3.3.39	(CFM56-7B26 Engines at 26,000 LB SLST)	
3.3.40	F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-700ER/-700EK/-700C/-700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB	
3.3.41	SLST)	3-55
3.3.42	20,000 LB SLST)	3-56
	63°F (STD + 35 °C), Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)	3-57
3.3.43	F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)	3-58
3.3.44		

	700C/-700CW/BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)	3-59
3.3.45	F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)	
3.3.46	F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)	
3.3.47	F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-800/-800W/BBJ2 (CFM56-7B27-B1 Engine at 26,000 LB SLST)	
3.3.48	F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-800/-800W/BBJ2 (CFM56-7B27-B1 Engine at 26,000 LB SLST)	3-63
3.3.49	F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-800/-800W/BBJ2 (CFM56-7B27-B1 Engine at 26,000 LB SLST)	
3.3.50	F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35°C), Dry Runway: Model 737-800/-800W/BBJ2 (CFM56-7B27-B1 Engine at 26,000 LB SLST)	
3.3.51	F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-800 / -800W / BBJ2 (CFM56-7B24/-	
3.3.52	7B26/-7B27 Engines at 26,000 LB SLST)	
3.3.53	F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-800 / -800W / BBJ2 (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)	
3.3.54	F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-800 / -800W /	
3.3.55	BBJ2 (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST) F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-900/-900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)	
3.3.56	F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-900/-900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)	
3.3.57	F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-900/-900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)	
	· · · · · · · · · · · · · · · · · · ·	

3	3.3.58	F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-900/-900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)	. 3-73
3	3.3.59	F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-900ER/-900ERW/BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)	
3	3.3.60	F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-900ER/-900ERW/BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)	. 3-75
3	3.3.61	F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-900ER/-900ERW/BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)	. 3-76
3	3.3.62	F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-900ER/-900ERW/BBJ3 (CFM56-7B26/-7B27 Engines at 6,000 LB SLST)	3_77
3	3.3.63	ICAO Aerodrome Reference Code – All Models	
		. AND J.A.R. LANDING RUNWAY LENGTH	. 5-70
J. T		JIREMENTS	. 3-79
3	_	F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-100	
3	3.4.2	F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-100	. 3-80
3	3.4.3	F.A.R. Landing Runway Length Requirements - Flaps 25: Model 737-100	. 3-81
3	3.4.4	F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-200, -200C	. 3-82
3	3.4.5	F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-200, -200C	. 3-83
3		F.A.R. Landing Runway Length Requirements - Flaps 25: Model 737-200, -200C	. 3-84
3	3.4.7	F.A.R. Landing Runway Length Requirements - Flaps 40: Model Advanced 737-200, -200C	. 3-85
3	3.4.8	F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-Advanced 737-200, -200C	. 3-86
3	3.4.9	F.A.R. Landing Runway Length Requirements - Flaps 15: Model Advanced 737-200, -200C	. 3-87
3	3.4.10	F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-300	. 3-88
3	3.4.11	F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-600	. 3-89
3	3.4.12	F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-300	

3.4.1	F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-400	3-91
3.4.1	4 F.A.R. Landing Runway Length Requirements - Flaps 30:	
2.4.1	Model 737-400	3-92
3.4.1	5 F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-400	3-93
3.4.1	6 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-500	3-94
3.4.1	7 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-500	3-95
3.4.1	8 F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-500	3-96
3.4.1	9 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-600	3-97
3.4.2		
3.4.2		
3.4.2		
3.4.2	F.A.R. Landing Runway Length Requirements - Flaps 30:	
	Model 737-900ER	3-101
40 AIRPI		
	ANE PERFORMANCE	4-1
4.1 GE	ANE PERFORMANCENERAL INFORMATION	4-1 4-1
4.1 GE 4.2 TU	ANE PERFORMANCENERAL INFORMATIONRNING RADII	4-1 4-1 4-2
4.1 GE	ANE PERFORMANCENERAL INFORMATIONRNING RADII	4-1 4-1 4-2
4.1 GE 4.2 TU 4.2.1	ANE PERFORMANCE NERAL INFORMATION RNING RADII Turning Radii – No Slip Angle: Model 737-100 Turning Radii – No Slip Angle: Model 737-200	4-1 4-1 4-2 4-3
4.1 GE 4.2 TU 4.2.1 4.2.2	ANE PERFORMANCE	4-1 4-1 4-2 4-2 4-3
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3	ANE PERFORMANCE NERAL INFORMATION RNING RADII Turning Radii – No Slip Angle: Model 737-100 Turning Radii – No Slip Angle: Model 737-200 Turning Radii – No Slip Angle: Model 737-300 Turning Radii – No Slip Angle: Model 737-300 With Winglets	4-1 4-2 4-2 4-3 4-4
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3 4.2.4	ANE PERFORMANCE	4-1 4-2 4-2 4-3 4-4 4-5
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	ANE PERFORMANCE	4-1 4-2 4-2 4-3 4-4 4-5 4-6
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	ANE PERFORMANCE	4-1 4-2 4-2 4-3 4-4 4-5 4-6 4-8
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7	ANE PERFORMANCE	4-1 4-2 4-2 4-3 4-4 4-5 4-6 4-7 4-8
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8	ANE PERFORMANCE	4-1 4-2 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9	ANE PERFORMANCE NERAL INFORMATION RNING RADII Turning Radii – No Slip Angle: Model 737-100 Turning Radii – No Slip Angle: Model 737-200 Turning Radii – No Slip Angle: Model 737-300 Turning Radii – No Slip Angle: Model 737-300 With Winglets Turning Radii – No Slip Angle: Model 737-400 Turning Radii – No Slip Angle: Model 737-500 Turning Radii – No Slip Angle: Model 737-600 Turning Radii – No Slip Angle: Model 737-600 With Winglets Turning Radii – No Slip Angle: Model 737-700 Turning Radii – No Slip Angle: Model 737-700 With Winglets, 737 BBJ	4-1 4-2 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.1	ANE PERFORMANCE NERAL INFORMATION RNING RADII Turning Radii – No Slip Angle: Model 737-100 Turning Radii – No Slip Angle: Model 737-200 Turning Radii – No Slip Angle: Model 737-300 Turning Radii – No Slip Angle: Model 737-300 With Winglets Turning Radii – No Slip Angle: Model 737-400 Turning Radii – No Slip Angle: Model 737-500 Turning Radii – No Slip Angle: Model 737-600 Turning Radii – No Slip Angle: Model 737-600 With Winglets Turning Radii – No Slip Angle: Model 737-700 Turning Radii – No Slip Angle: Model 737-700 With Winglets, 737 BBJ 1 Turning Radii – No Slip Angle: Model 737-800	4-14-24-24-34-44-54-64-74-84-94-10
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.1	ANE PERFORMANCE	4-14-24-24-34-44-54-64-74-84-104-11
4.1 GE 4.2 TU 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.1 4.2.1	ANE PERFORMANCE NERAL INFORMATION RNING RADII	4-14-24-24-34-44-54-64-74-84-104-114-12

	EARANCE RADII	4-16
4.3.1	Minimum Turning Radii – 3" Slip Angle: Model 737-100, -200	4-16
4.3.2	Minimum Turning Radii – 3" Slip Angle: Model 737-300, -300 With Winglets, -400, -500	4-17
4.3.3	Minimum Turning Radii – 3" Slip Angle: Model 737-600, -700, -800, -900, -900ER	4-18
4.3.4	Minimum Turning Radii – 3" Slip Angle: Model 737-600, -700, -800, -900, -900ER With Winglets, 737 BBJ, 737 BBJ2	4-19
4.4 VIS	SIBILITY FROM COCKPIT IN STATIC POSITION: MODEL 737,	1 17
	L MODELS	4-20
4.5 RU	NWAY AND TAXIWAY TURN PATHS	4-21
4.5.1	Runway and Taxiway Turn Paths - Runway-to-Taxiway, More Than 90 Degrees, Nose Gear Tracks Centerline: Model 737, All	
	Models	4-21
4.5.2	Runway and Taxiway Turn Paths - Runway-to-Taxiway, 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models	4-22
4.5.3	Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models	4-23
4.5.4	Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90 Degrees, Cockpit Tracks Centerline: Model 737, All Models	4-24
4.6 RU	NWAY HOLDING BAY: MODEL 737, ALL MODELS	
5.0 TERM	INAL SERVICING	5-1
5.1 AII	INAL SERVICING RPLANE SERVICING ARRANGEMENT - TYPICAL RNAROUND	
5.1 AII	RPLANE SERVICING ARRANGEMENT - TYPICAL RNAROUND	5-2
5.1 AII TU	RPLANE SERVICING ARRANGEMENT - TYPICAL RNAROUND	5-2 5-2
5.1 AII TU 5.1.1	Airplane Servicing Arrangement - Typical Turnaround: Model 737-100	5-2 5-2 5-3
5.1 AII TU 5.1.1 5.1.2	Airplane Servicing Arrangement - Typical Turnaround: Model 737-100	5-2 5-2 5-3
5.1 AII TU 5.1.1 5.1.2 5.1.3	Airplane Servicing Arrangement - Typical Turnaround: Model 737-100	5-2 5-2 5-3 5-4
5.1 AII TU 5.1.1 5.1.2 5.1.3	Airplane Servicing Arrangement - Typical Turnaround: Model 737-100	5-2 5-2 5-3 5-4 5-5
5.1 AII TU 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	Airplane Servicing Arrangement - Typical Turnaround: Model 737-100	5-2 5-2 5-3 5-4 5-5 5-6
5.1 AII TU 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	RPLANE SERVICING ARRANGEMENT - TYPICAL RNAROUND Airplane Servicing Arrangement - Typical Turnaround: Model 737-100 Airplane Servicing Arrangement - Typical Turnaround: Model 737-200 Airplane Servicing Arrangement - Typical Turnaround: Model 737-300 Airplane Servicing Arrangement - Typical Turnaround: Model 737-400 Airplane Servicing Arrangement - Typical Turnaround: Model 737-500 Airplane Servicing Arrangement - Typical Turnaround: Model 737-600 Airplane Servicing Arrangement - Typical Turnaround: Model 737-700 Airplane Servicing Arrangement - Typical Turnaround: Model 737-700 Airplane Servicing Arrangement - Typical Turnaround: Model	5-2 5-2 5-3 5-4 5-5 5-6 5-7
5.1 AII TU 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	RPLANE SERVICING ARRANGEMENT - TYPICAL RNAROUND Airplane Servicing Arrangement - Typical Turnaround: Model 737-100 Airplane Servicing Arrangement - Typical Turnaround: Model 737-200 Airplane Servicing Arrangement - Typical Turnaround: Model 737-300 Airplane Servicing Arrangement - Typical Turnaround: Model 737-400 Airplane Servicing Arrangement - Typical Turnaround: Model 737-500 Airplane Servicing Arrangement - Typical Turnaround: Model 737-600 Airplane Servicing Arrangement - Typical Turnaround: Model 737-700 Airplane Servicing Arrangement - Typical Turnaround: Model	5-2 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9

5.1.10	Airplane Servicing Arrangement - Typical Turnaround: Model 737-800 With Winglets, 737 BBJ2	5-11
5.1.11	Airplane Servicing Arrangement - Typical Turnaround: Model 737-900, -900ER	5-12
5.1.12	Airplane Servicing Arrangement - Typical Turnaround: Model 737-900, -900ER With Winglets	5-13
5.2 TER	MINAL OPERATIONS - TURNAROUND STATION	5-14
5.2.1	Terminal Operations - Turnaround Station: Model 737-100, -200	5-14
5.2.2	Terminal Operations - Turnaround Station – Passenger/Cargo: Model 737-200C	5-15
5.2.3	Terminal Operations - Turnaround Station – All Cargo: Model 737-200C	5-16
5.2.4	Terminal Operations – Turnaround Station: Model 737-300, -400, -500	5-17
5.2.5	Terminal Operations – Turnaround Station: Model 737-600	5-18
5.2.6	Terminal Operations – Turnaround Station: Model 737-700, -700 With Winglets	5-19
5.2.7	Terminal Operations – Turnaround Station: Model 737-800, -800 With Winglets	5-20
5.2.8	Terminal Operations – Turnaround Station: Model 737-900, - 900ER, With and Without Winglets	5-21
5.2.9	Terminal Operations – Turnaround Station: Model 737 BBJ, BBJ2	5-22
5.3 TER	MINAL OPERATIONS - EN ROUTE STATION	5-23
5.3.1	Terminal Operations - En Route Station: Model 737-100, -200, -300, -400, -500	5-23
5.3.2	Terminal Operations - En Route Station: Model 737-600	
5.3.3	Terminal Operations - En Route Station: Model 737-700, -700 With Winglets	
5.3.4	Terminal Operations - En Route Station: Model 737-800, -800 With Winglets	5-26
5.3.5	Terminal Operations - En Route Station: Model 737-900, -900ER, With and Without Winglets	
5.3.6	Terminal Operations - En Route Station: Model 737 BBJ, BBJ2	
5.4 GRO	OUND SERVICING CONNECTIONS	
5.4.1	Ground Service Connections: Model 737-100	5-29
5.4.2	Ground Service Connections: Model 737-200	5-30
5.4.3	Ground Service Connections: Model 737-300	5-31
5.4.4	Ground Service Connections: Model 737-400	5-32
5.4.5	Ground Service Connections: Model 737-500	5-33
5.4.6	Ground Service Connections: Model 737-600	5-34
5.4.7	Ground Service Connections: Model 737-700	

	5.4.8	Ground Service Connections: Model 737-700 With Winglets, 737 BBJ	5-36
	5.4.9	Ground Service Connections: Model 737-800	5-37
	5.4.10	Ground Service Connections: Model 737-800 With Winglets, 737 BBJ2	5-38
	5.4.11	Ground Service Connections: Model 737-900, -900ER	
	5.4.12	Ground Service Connections: Model 737-900, -900ER With Winglets	
	5.4.13	Ground Servicing Connections and Capacities: Model 737, All Models	
	5.4.14	Ground Servicing Connections and Capacities: Model 737, All Models	5-42
	5.4.15	Ground Servicing Connections and Capacities: Model 737, All Models	5-43
5.5	ENG	INE STARTING PNEUMATIC REQUIREMENTS	5-44
	5.5.1	Engine Start Pneumatic Requirements - Sea Level: Model 737-100, -200	
	5.5.2	Engine Start Pneumatic Requirements - Sea Level: Model 737-300, -400, -500	5-45
	5.5.3	Engine Start Pneumatic Requirements - Sea Level: Model 737-600, -700, -800, -900, 737 BBJ, 737 BBJ2	5-46
5.6	GRO	UND PNEUMATIC POWER REQUIREMENTS	
	5.6.1	Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-100, -200	
	5.6.2	Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-300, -500	5-48
	5.6.3	Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-400	
	5.6.4	Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-600, -700	
	5.6.5	Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-800, -900	
5.7	CON	DITIONED AIR REQUIREMENTS	
	5.7.1	Conditioned Air Flow Requirements: Model 737-100, -200	
	5.7.2	Conditioned Air Flow Requirements: Model 737-300, -500	
	5.7.3	Conditioned Air Flow Requirements: Model 737-400	
	5.7.4	Conditioned Air Flow Requirements: Model 737-600, -700	
	5.7.5	Conditioned Air Flow Requirements: Model 737-800, -900	5-56
5.8	GRO	UND TOWING REQUIREMENTS	
	5.8.1	Ground Towing Requirements - English Units: Model 737, All Models	
	5.8.2	Ground Towing Requirements - Metric Units: Model 737, All Models	

6.0 JET ENC	GINE WAKE AND NOISE DATA	6-1
6.1 JET I	ENGINE EXHAUST VELOCITIES AND TEMPERATURES	6-1
6.1.1	Predicted Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-100, -200	6-2
6.1.2	Predicted Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-300, -400, -500	6-3
6.1.3	Predicted Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-600, -700, -800, -900, All Models	6-4
6.1.4	Predicted Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-100, -200	6-5
6.1.5	Predicted Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-300, -400, -500	6-6
6.1.6	Predicted Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-600, -700, -800, -900 All Models	6-7
6.1.7	Predicted Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-100, -200	6-8
6.1.8	Predicted Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-300, -400, -500	6-9
6.1.9	Predicted Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-600, -700, -800, -900 All Models	. 6-10
6.1.10	Predicted Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-100, -200	. 6-11
6.1.11	Predicted Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-300, -400, -500	. 6-12
6.1.12	Predicted Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-600, -700, -800, -900 All Models	. 6-13
6.1.13	Predicted Jet Engine Exhaust Temperature Contours – Breakaway Thrust: Model 737-100, 200	
6.1.14	Predicted Jet Engine Exhaust Temperature Contours – Breakaway Thrust: Model 737-300, -400, -500	. 6-15
6.1.15	Predicted Jet Engine Exhaust Temperature Contours – Breakaway Thrust: Model 737-600, -700, -800, -900 All Models	. 6-16
6.1.16	Predicted Jet Engine Exhaust Temperature Contours – Takeoff Thrust: Model 737-100, -200	. 6-17
6.1.17	Predicted Jet Engine Exhaust Temperature Contours – Takeoff Thrust: Model 737-300, -400, -500	. 6-18
6.1.18	Predicted Jet Engine Exhaust Temperature Contours – Takeoff Thrust: Model 737-600, -700, -800, -900 All Models	. 6-19
6.2 AIRF	PORT AND COMMUNITY NOISE	
7.0 PAVEM	ENT DATA	7-1
	ERAL INFORMATION	
	DING GEAR FOOTPRINT	
7.2.1	Landing Gear Footprint: Model 737-100	7-4

	-	T 1 G F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	7.2.2	Landing Gear Footprint: Model 737-200	
	7.2.3	Landing Gear Footprint: Model Advanced 737-200	
	7.2.4	Landing Gear Footprint: Model Advanced 737-300, -400, -500	7-7
	7.2.5	Landing Gear Footprint: Model Advanced 737-600, -700, -800,	7.0
		-900, -900ER With and Without Winglets	
	7.2.6	Landing Gear Footprint: Model 737 BBJ, 737 BBJ2	7-9
7.3		IMUM PAVEMENT LOADS	
	7.3.1	Maximum Pavement Loads: Model 737-100, -200	
	7.3.2	Maximum Pavement Loads: Model 737-300, -400, -500	7-11
	7.3.3	Maximum Pavement Loads: Model 737-600, -700, -800, -900, -900ER With and Without Winglets	7-12
	7.3.4	Maximum Pavement Loads: Model 737 BBJ, 737 BBJ2	7-13
7.4	LAN	DING GEAR LOADING ON PAVEMENT	
	7.4.1	Landing Gear Loading on Pavement: Model 737-100	7-14
	7.4.2	Landing Gear Loading on Pavement: Model 737-200	7-15
	7.4.3	Landing Gear Loading on Pavement: Model 737-200 Advanced	7-16
	7.4.4	Landing Gear Loading on Pavement: Model 737-300	7-17
	7.4.5	Landing Gear Loading on Pavement: Model 737-400	
	7.4.6	Landing Gear Loading on Pavement: 737-500	7-19
	7.4.7	Landing Gear Loading on Pavement: 737-600	
	7.4.8	Landing Gear Loading on Pavement: Model 737-700, -700 With Winglets	
	7.4.9	Landing Gear Loading on Pavement: Model 737BBJ	
	7.4.10	Landing Gear Loading on Pavement: Model 737-800, -800 With Winglets	
	7.4.11	Landing Gear Loading on Pavement: Model 737-BBJ2	
	7.4.11	Landing Gear Loading on Pavement: Model 737-900, -900	1-24
	1.4.12	With Winglets	7-25
	7.4.13	Landing Gear Loading on Pavement: Model 737-900ER, -900ER	1 23
		With Winglets	7-26
7.5		XIBLE PAVEMENT REQUIREMENTS - U.S. ARMY CORPS OF INEERS METHOD S-77-1 AND FAA DESIGN METHOD	7-27
	7.5.1	Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-100, -200 to 104,000 LB (47,170 KG) MTW	7-28
	7.5.2	Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-100, -200, -200 ADV at 110,000 to 117,500 LB (49,895 to 53,297 KG) MTW	
	7.5.3	Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-	

200 ADV at 116,000 to 117,500 LB (52,617 to 53,297 KG) MTW, Low Pressure Tires	7-30
7.5.4 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-200 ADV at 120,000 to 128,600 LB (54,431 to 58,332 KG) MTW	
7.5.5 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-300, -400, -500	
7.5.6 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737	
BBJ, 737 BBJ2	
7.6.1 Flexible Pavement Requirements - LCN Method: Model 737-100, -200 at 140,000 LB (47,174 KG) MTW	
7.6.2 Flexible Pavement Requirements - LCN Method: Model 737-100, -200, -200 ADV at 110,000 to 117,500 LB (49,895 to	
53,297 KG) MTW	7-36
Low Pressure Tires	7-37
7.6.4 Flexible Pavement Requirements - LCN Method: Model 737-200 ADV at 120,000 to 128,600 LB (54,431 to 58,332 KG) MTW	
7.6.5 Flexible Pavement Requirements - LCN Method: Model 737-300, -400, -500	
7.6.6 Flexible Pavement Requirements - LCN Method: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737 BBJ, 737 BBJ2	
7.7 RIGID PAVEMENT REQUIREMENTS - PORTLAND CEMENT	/- 4 0
ASSOCIATION DESIGN METHOD	7-41
7.7.1 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-100, 200 to 104,000 LB (47,170KG)	7.40
7.7.2 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-100, -200 Advanced 737-200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW	
7.7.3 Rigid Pavement Requirements - Portland Cement Association Design Method: Model ADV 737-200 at 116,000 to 117,500 LB (52,610 to 53,290 KG) MTW (LOW PRESSURE TIRES)	
7.7.4 Rigid Pavement Requirements - Portland Cement Association Design Method: Model ADV 737-200 at 120,000 to 128,000 LB (54,430 to 58,330 KG) MTW	7-45
7.7.5 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-300, -400, -500	

7.7.6	Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-300, -400, -500 (Low Pressure Tires)	7-47
7.7.7	Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737 BBJ, 737 BBJ2	7-48
7.7.8	Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-600, -700 (Optional Tires)	7-49
7.8 RIGI	D PAVEMENT REQUIREMENTS - LCN CONVERSION	7-50
7.8.1	Radius of Relative Stiffness (Reference: Portland	
	Cement Association)	7-51
7.8.2	Rigid Pavement Requirements - LCN Conversion: Model 737-100, -200 to 104,000 LB (47,170 KG) MTW	7-52
7.8.3	Rigid Pavement Requirements - LCN Conversion: Model 737-100, 200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW	7-53
7.8.4	Rigid Pavement Requirements - LCN Conversion: Model ADV 737-200 at 116,000 to 117,500 LB (52,610 to 53,290 KG) MTW	7 51
7.8.5	(Low Pressure Tires)	
7.8.6	Rigid Pavement Requirements - LCN Conversion: Model 737-300, -400, -500	7-56
7.8.7	Rigid Pavement Requirements - LCN Conversion: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737 BBJ, 737 BBJ2	7 57
7.9 RIGI	D PAVEMENT REQUIREMENTS - FAA DESIGN METHOD	
7.9.1	Rigid Pavement Requirements – FAA Design Method: Model 737-100, -200	
7.9.2	Rigid Pavement Requirements – FAA Design Method: Model ADV 737-200 (Low Pressure Tires)	
7.9.3	Rigid Pavement Requirements – FAA Design Method: Model	/-00
1.7.5		7-61
7.9.4	Rigid Pavement Requirements – FAA Design Method: Model 737-300, -400, -500 (Low Pressure Tires)	
7.9.5	Rigid Pavement Requirements – FAA Design Method: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737 BBJ, 737 BBJ2	
7.9.6	Rigid Pavement Requirements – FAA Design Method: Model 737-600, -700 (Optional Tires)	
	PCN REPORTING SYSTEM - FLEXIBLE AND RIGID	
	EMENTS	/-65
7.10.1	Aircraft Classification Number - Flexible Pavement: Model 737-100, -200 to 104,000 LB (47,170 KG) MTW	7-66

7.10.2	Aircraft Classification Number - Flexible Pavement: Model 737-100, -200, ADV 737-200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW	7-67
7.10.3	Aircraft Classification Number - Flexible Pavement: Model 737-100, 200, ADV 737-200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW (Low Pressure Tires)	7-68
7.10.4	Aircraft Classification Number - Flexible Pavement: Model ADV 737-200 at 120,000 to 128,600 LB (54,300 to 58,330 KG) MTW	7-69
7.10.5	Aircraft Classification Number - Flexible Pavement: Model 737-300	7-70
7.10.6	Aircraft Classification Number - Flexible Pavement: Model 737-300 (Low Pressure Tires)	7-71
7.10.7	Aircraft Classification Number - Flexible Pavement: Model 737-400	7-72
7.10.8	Aircraft Classification Number - Flexible Pavement: Model 737-400 (Low Pressure Tires)	7-73
7.10.9	Aircraft Classification Number - Flexible Pavement: Model 737-500	7-74
7.10.10	Aircraft Classification Number - Flexible Pavement: Model 737-500 (Low Pressure Tires)	7-75
7.10.11	Aircraft Classification Number - Flexible Pavement: Model 737-600	7-76
7.10.12	Aircraft Classification Number - Flexible Pavement: Model 737-600 (Optional Tires)	
7.10.13	Aircraft Classification Number - Flexible Pavement: Model 737-700 With and Without Winglets	
7.10.14	Aircraft Classification Number - Flexible Pavement: Model 737-700 (Optional Tires) With and Without Winglets	
7.10.15	Aircraft Classification Number - Flexible Pavement: Model 737 BBJ	
7.10.16	Aircraft Classification Number - Flexible Pavement: Model 737-800 With and Without Winglets	
7.10.17	Aircraft Classification Number - Flexible Pavement: Model 737 BBJ2	
7.10.18	Aircraft Classification Number - Flexible Pavement: Model 737-900 With and Without Winglets	7-83
7.10.19	Aircraft Classification Number - Flexible Pavement: Model 737-900ER, -900ER With Winglets	
7.10.20	Aircraft Classification Number - Rigid Pavement: Model 737-100, -200 To 104,000 LB (47,170 KG) MTW	
7.10.21	Aircraft Classification Number - Rigid Pavement: Model 737-100, -200, ADV 737-200 at 110,000 to 117,500 LB (49,900 to	, 05
	53,290 KG) MTW	7-86

7.10.22	Aircraft Classification Number - Rigid Pavement: Model 737- 100, -200, Adv 737-200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW (Low Pressure Tires)	. 7-87
7.10.23	Aircraft Classification Number - Rigid Pavement: Model ADV 737-200 at 120,000 to 128,600 LB (54,300 to 58,330 KG) MTW	
7.10.24	Aircraft Classification Number - Rigid Pavement: Model 737-300	. 7-89
7.10.25	Aircraft Classification Number - Rigid Pavement: Model 737-300 (Low Pressure Tires)	. 7-90
7.10.26	Aircraft Classification Number - Rigid Pavement: Model 737-400	. 7-91
7.10.27	Aircraft Classification Number - Rigid Pavement: Model 737-400 (Low Pressure Tires)	. 7-92
7.10.28	Aircraft Classification Number - Rigid Pavement: Model 737-500	. 7-93
7.10.29	Aircraft Classification Number - Rigid Pavement: Model 737-500	
	(Low Pressure Tires)	. 7-94
7.10.30	Aircraft Classification Number - Rigid Pavement: Model 737-600	. 7-95
7.10.31	Aircraft Classification Number - Rigid Pavement: Model 737-600 (Optional Tires)	. 7-96
7.10.32	Aircraft Classification Number - Rigid Pavement: Model 737-700 With and Without Winglets)	. 7-97
7.10.33	Aircraft Classification Number - Rigid Pavement: Model 737-700 (Optional Tires) With and Without Winglets	
7.10.34	Aircraft Classification Number - Rigid Pavement: Model 737 BBJ	
7.10.35	Aircraft Classification Number - Rigid Pavement: Model 737-800 With and Without Winglets	7-100
7.10.36	Aircraft Classification Number - Rigid Pavement: Model 737 BBJ2	
7.10.37	Aircraft Classification Number - Rigid Pavement: Model 737-900 With and Without Winglets	7-102
7.10.38	Aircraft Classification Number - Rigid Pavement: Model 737-900ER With and Without Winglets	
7.11 TIRE	INFLATION CHART (737-100 THRU -500 ONLY)	7-104
7.11.1	Tire Inflation Chart: Model 737-100.	
7.11.2	Tire Inflation Chart: Model 737-100, -200	7-105
7.11.3	Tire Inflation Chart: Model ADV 737-200	7-106
7.11.4	Tire Inflation Chart: Model 737-200 (Low Pressure Tires)	7-107
7.11.5	Tire Inflation Chart: Model 737-300	7-108
7.11.6	Tire Inflation Chart: Model 737-400	7-109
7.11.7	Tire Inflation Chart: Model 737-500	7-110
FUTURE	737 DERIVATIVE AIRPLANES	8-1
SCALED	737 DRAWINGS	9-1
9.1 MOD	EL 737-100	
9.1.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-100	9-2

8.0

9.0

	9.1.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-100	9-3
	9.1.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-100	9-4
	9.1.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-100	
	9.1.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-100	9-6
	9.1.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-100	
	9.1.7	Scaled Drawings – 1:500: Model 737-100	
	9.1.8	Scaled Drawings – 1:500: Model 737-100	9-9
	9.1.9	Scaled Drawings – 1:1000: Model 737-100	9-10
	9.1.10	Scaled Drawings – 1:1000: Model 737-100	
9.2	MOD	EL 737-200	9-13
	9.2.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-200	9-13
	9.2.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-200	9-15
	9.2.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-200	9-16
	9.2.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-200	9-17
	9.2.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-200	9-18
	9.2.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-200	9-19
	9.2.7	Scaled Drawings – 1:500: Model 737-200	9-20
	9.2.8	Scaled Drawings – 1:500: Model 737-200	9-21
	9.2.9	Scaled Drawings – 1:1000: Model 737-200	9-22
	9.2.10	Scaled Drawings – 1:1000: Model 737-200	9-23
9.3	MOD	EL 737-300	9-24
	9.3.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-300	9-24
	9.3.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-300	9-26
	9.3.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-300	9-27
	9.3.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-300	9-28
	9.3.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-300	9-29
	9.3.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-300	9-30
	9.3.7	Scaled Drawings – 1:500: Model 737-300	9-31
	9.3.8	Scaled Drawings – 1:500: Model 737-300	9-32
	9.3.9	Scaled Drawings – 1:1000: Model 737-300	9-33
	9.3.10	Scaled Drawings – 1:1000: Model 737-300	9-34
9.4	MOD	EL 737-300 WITH WINGLETS	
	9.4.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-300 with Winglets	9-35
	9.4.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-300 with Winglets	9-36
	9.4.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-300 with Winglets	9-38
	9.4.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-300 with Winglets	9-40
	9.4.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-300 with Winglets	9-41
	9.4.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-300 with Winglets	9-42
	9.4.7	Scaled Drawings – 1:500: Model 737-300 with Winglets	9-43
	9.4.8	Scaled Drawings – 1:500: Model 737-300 with Winglets	9-44
	9.4.9	Scaled Drawings – 1:1000: Model 737-300 with Winglets	9-45

xxi

	9.4.10	Scaled Drawings – 1:1000: Model 737-300 with Winglets	. 9-46
9.5	5 MOD	EL 737-400	. 9-47
	9.5.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-400	. 9-47
	9.5.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-400	. 9-49
	9.5.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-400	. 9-50
	9.5.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-400	. 9-51
	9.5.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-400	. 9-52
	9.5.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-400	. 9-53
	9.5.7	Scaled Drawings – 1:500: Model 737-400	. 9-54
	9.5.8	Scaled Drawings – 1:500: Model 737-400	. 9-55
	9.5.9	Scaled Drawings – 1:1000: Model 737-400	. 9-56
	9.5.10	Scaled Drawings – 1:1000: Model 737-400	
9.6	6 MOD	PEL 737-500	. 9-58
	9.6.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-500	
	9.6.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-500	
	9.6.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-500	
	9.6.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-500	
	9.6.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-500	
	9.6.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-500	
	9.6.7	Scaled Drawings – 1:500: Model 737-500	
	9.6.8	Scaled Drawings – 1:500: Model 737-500	
	9.6.9	Scaled Drawings – 1:1000: Model 737-500	
	9.6.10	Scaled Drawings – 1:1000: Model 737-500	
9.7		PEL 737-600	
	9.7.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-600	
	9.7.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-600	
	9.7.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-600	
	9.7.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-600	
	9.7.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-600	
	9.7.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-600	
	9.7.7	Scaled Drawings – 1:500: Model 737-600	
	9.7.8	Scaled Drawings – 1:500: Model 737-600	
	9.7.9	Scaled Drawings – 1:1000: Model 737-600	
	9.7.10	Scaled Drawings – 1:1000: Model 737-600	
9.8		DEL 737-600 WITH WINGLETS	
	9.8.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-600 with Winglets	
	9.8.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-600 with Winglets	
	9.8.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-600 with Winglets	
	9.8.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-600 with Winglets	
	9.8.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-600 with Winglets	
	9.8.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-600 with Winglets	. 9-86

	9.8.7	Scaled Drawings – 1:500: Model 737-600 with Winglets	9-87
	9.8.8	Scaled Drawings – 1:500: Model 737-600 with Winglets	9-88
	9.8.9	Scaled Drawings – 1:1000: Model 737-600 with Winglets	9-89
	9.8.10	Scaled Drawings – 1:1000: Model 737-600 with Winglets	9-90
9.9	MOD	EL 737-700	9-91
	9.9.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-700	9-91
	9.9.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-700	9-92
	9.9.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-700	9-93
	9.9.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-700	9-94
	9.9.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-700	9-95
	9.9.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-700	9-96
	9.9.7	Scaled Drawings – 1:500: Model 737-700	9-97
	9.9.8	Scaled Drawings – 1:500: Model 737-700	9-98
	9.9.9	Scaled Drawings – 1:1000: Model 737-700	9-99
	9.9.10	Scaled Drawings – 1:1000: Model 737-700	. 9-101
9.1	0 MOD	EL 737-700 WITH WINGLETS, 737 BBJ	. 9-102
	9.10.1	Scaled Drawings 1 IN. = 32 FT: Model 737-700 With	
		Winglets, 737 BBJ	
	9.10.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-BBJ	. 9-103
	9.10.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-700 with Winglets, 737 BBJ	. 9-104
	9.10.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-700 with Winglets, 737 BBJ	. 9-105
	9.10.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-700 with Winglets, 737 BBJ	
	9.10.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-700 with	. > 100
	<i>y</i> .10.0	Winglets, 737 BBJ	. 9-107
	9.10.7	Scaled Drawings – 1:500: Model 737-700 with Winglets, 737	
		BBJ	. 9-108
	9.10.8	Scaled Drawings – 1:500: Model 737-700 with Winglets, 737	
		BBJ	. 9-109
	9.10.9	Scaled Drawings – 1:1000: Model 737-700 with Winglets, 737	
		BBJ	. 9-110
	9.10.10	Scaled Drawings – 1:1000: Model 737-700 with Winglets, 737	0 111
0.1	1 MOD	BBJ	
9.1		EL 737-800	
	9.11.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-800	
	9.11.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-800	
	9.11.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-800	
	9.11.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-800	
	9.11.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-800	
	9.11.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-800	. 9-117

	9.11.7	Scaled Drawings – 1:500: Model 737-800	9-118
	9.11.8	Scaled Drawings – 1:500: Model 737-800	9-119
	9.11.9	Scaled Drawings – 1:1000: Model 737-800	9-120
	9.11.10	Scaled Drawings – 1:1000: Model 737-800	9-122
9.12	MOD	EL 737-800 WITH WINGLETS, 737 BBJ2	9-123
	9.12.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-800 with Winglets, 737 BBJ2	9-123
	9.12.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-800 with Winglets, 737 BBJ2	9-124
	9.12.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-800 with Winglets, 737 BBJ2	9-125
	9.12.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-800 with Winglets, 737 BBJ2	9-126
	9.12.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-800 with Winglets, 737 BBJ2	9-127
	9.12.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-800 with Winglets, 737 BBJ2	9-128
	9.12.7	Scaled Drawings – 1:500: Model 737-800 with Winglets, 737 BBJ2	
	9.12.8	Scaled Drawings – 1:500: Model 737-800 with Winglets, 737 BBJ2	
	9.12.9	Scaled Drawings – 1:1000: Model 737-800 with Winglets, 737 BBJ2	
	9.12.10	Scaled Drawings – 1:1000: Model 737-800 with Winglets, 737 BBJ2	
9 13	R MOD	EL 737-900, -900ER	
	9.13.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-900, -900ER	
	9.13.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-900, -900ER	
	9.13.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-900, -900ER	
	9.13.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-900, -900ER	
	9.13.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-900, -900ER	
	9.13.6	Scaled Drawings – 1 IN. = 100 FT: Model 737-900, -900ER	
	9.13.7	Scaled Drawings – 1:500: Model 737-900, -900ER	9-139
	9.13.8	Scaled Drawings – 1:500: Model 737-900, -900ER	
	9.13.9	Scaled Drawings – 1:1000: Model 737-900, -900ER	9-141
	9.13.10	Scaled Drawings – 1:1000: Model 737-900, -900ER	9-142
9.14	4 MOD	EL 737-900, -900ER WITH WINGLETS	9-143
	9.14.1	Scaled Drawings – 1 IN. = 32 FT: Model 737-900 with Winglets	9-143
	9.14.2	Scaled Drawings – 1 IN. = 32 FT: Model 737-900 with Winglets	
	9.14.3	Scaled Drawings – 1 IN. = 50 FT: Model 737-900 with Winglets	
	9.14.4	Scaled Drawings – 1 IN. = 50 FT: Model 737-900 with Winglets	9-146
	9.14.5	Scaled Drawings – 1 IN. = 100 FT: Model 737-900 with Winglets	9-147

9.14.6	Scaled Drawings -	1 IN. = 100 FT: Model 737-900 with Winglets	9-148
9.14.7	Scaled Drawings -	1:500: Model 737-900 with Winglets	9-149
9.14.8	Scaled Drawings -	1:500: Model 737-900 with Winglets	9-150
9.14.9	Scaled Drawings -	1:1000: Model 737-900 with Winglets	9-151
9.14.10	Scaled Drawings –	1:1000: Model 737-900 with Winglets	9-152

1.0 SCOPE AND INTRODUCTION

1.1 SCOPE

This document provides, in a standardized format, airplane characteristics data for general airport planning. Since operational practices vary among airlines, specific data should be coordinated with the using airlines prior to facility design. Boeing Commercial Airplanes should be contacted for any additional information required.

Content of the document reflects the results of a coordinated effort by representatives from the following organizations:

- Aerospace Industries Association
- Airports Council International North America
- Air Transport Association of America
- International Air Transport Association

The airport planner may also want to consider the information presented in the "Commercial Aircraft Design Characteristics – Trends and Growth Projections," available from the US AIA, 1250 Eye St., Washington DC 20005, for long-range planning needs. This document is updated periodically and represents the coordinated efforts of the following organizations regarding future aircraft growth trends:

- International Coordinating Council of Aerospace Industries Associations
- Airports Council International North America
- Air Transport Association of America
- International Air Transport Association

1.2 INTRODUCTION

This document conforms to NAS 3601. It provides characteristics of the Boeing Model 737 airplanes for airport planners and operators, airlines, architectural and engineering consultant organizations, and other interested industry agencies. Airplane changes and available options may alter model characteristics. The data presented herein reflect typical airplanes in each model category.

For additional information contact:

Boeing Commercial Airplanes P.O. Box 3707 Seattle, Washington 98124-2207 U.S.A. Attention: Manager, Airport Technology

Mail Code 20-93

1.3 A BRIEF DESCRIPTION OF THE 737 FAMILY OF AIRPLANES

The 737 is a twin-engine airplane designed to operate over short to medium ranges from sea level runways of less than 6,000 ft (1,830 m) in length.

Significant features of interest to airport planners are described below:

- Underwing-mounted engines provide eye-level assessability. Nearly all system maintenance may be performed at eye level.
- Optional airstairs allow operation at airports where no passengers loading bridges or stairs are available.
- Auxiliary power unit can supply energy for engine starting, air conditioning, and electrical power while the airplane is on the ground or in flight.
- Servicing connections allow single-station pressure fueling and overwing gravity fueling.
- All servicing of the 737 is accomplished with standard ground equipment.

737-100

The 737-100 is the standard short body version of the 737 family. It is 94 ft (28.63 m) long from nose to the tip of the horizontal stabilizer.

737-200

The 737-200 is an extended body version of the 737 family and is 100 ft 2 in (30.53 m) long. Two sections were added to the 737-100 fuselage; a 36-in section forward of the wing and a 40-in section aft of the wing. All other dimensions are the same as the 737-100.

Advanced 737-200

The advanced 737-200 is a high gross weight airplane that has significant improvements over the 737-200, which result in improved performance, e.g. longer range, greater payload, and shorter runway requirement. The advanced 737-200 has dimensions identical to the 737-200.

737-200C, Adv 737-200C

The convertible version differs from the passenger model in that it has an 86 by 134-in (2.18 by 3.40 m) main deck cargo door, increased floor strength, and additional seat tracks. Either of two cargo handling systems, the cargo (C) or quick change (QC) can be

installed to allow conversion from a passenger configuration to a cargo or a mixed passenger/cargo configuration, and vice-versa.

737-200 Executive Airplane

The 737-200 and Adv 737-200 were also delivered with an executive interior. The interior comes in a variety of configurations depending on customer requirements. Some airplanes were delivered without any interior furnishings for customer installation of special interiors.

737-300

The 737-300 is a second-generation stretched version of the 737 family of airplanes and is 109 ft 7 in long. Two sections were added to the 737-200 fuselage; a 44-in section forward of the wing and a 60-in section aft of the wing. Wing and stabilizer spans are also increased. The 737-300 incorporates new aerodynamic and engine technologies in addition to the increased payload and range. The -300 can seat as many as 149 passengers in an all-economy configuration.

737-300 With Winglets

Winglets are installed on some 737-300 airplanes as an after-market airline option. Data for this airplane is included for dimensional information only.

737-400

The 737-400 is 120 inches longer that the -300. Two sections were added to the -300 fuselage; a 72-in section forward of the wing and a 48-in section aft of the wing. The -400 can seat as many as 168 passengers in all-economy configuration.

737-500

The 737-500 is the shortened version of the 737-300. The -500 is 101 ft 9 in long and can seat up to 132 passengers in an all-economy configuration.

737-600

The 737-600, along with the 737-700, -800, and -900 is the latest derivative in the 737 family of airplanes. This airplane has the same fuselage as the 737-500 and fitted with new wing, stabilizer, and tail sections. This enables the airplane to fly over longer distances. The 737-600 is 102 ft 6 in long and can carry up to 130 passengers in an alleconomy configuration.

737-700

The 737-700 has the same fuselage as the 737-300 and is fitted with the new wing, stabilizer, and tail sections. The 737-700 is 110 ft 4 in long and can carry up to 148 passengers in an all-economy configuration.

737-800

The 737-800 has a slightly longer fuselage than the 737-400 and is fitted with the new wing, stabilizer, and tail sections. The 737-800 is 129 ft 6 in long and can carry up to 184 passengers in an all-economy configuration.

737-900

The 737-900 is a derivative of the -800 and is 96 inches longer that the -800. Two sections were added to the -800 fuselage; a 54-in section forward of the wing and a 42-in section aft of the wing. The -900 can seat as many as 189 passengers in alleconomy configuration.

737 BBJ

The Boeing Business Jet is a 737-700 airplane that is delivered without any interior furnishings. The customer installs specific interior configurations. This 737-700 model airplane is equipped with a 737-800 landing gear configuration and has weight and performance capabilities as the -800. One unique feature of the 737 BBJ is the addition of winglets to provide improved cruise performance capabilities.

737 BBJ2

The Boeing Business Jet Two is a 737-800 airplane that is delivered without any interior furnishings. The customer installs specific interior configurations. Like the 737 BBJ, the BBJ2 is equipped with winglets to provide improved cruise performance capabilities.

737-600, -700, -800, -900 With Winglets

The 737-700, -800, and -900 airplanes are also delivered with winglets. Interior configurations are similar to the base airplane models. Like the BBJ airplanes, the winglets provide improved cruise performance capabilities. Winglets are installed on some 737-600 airplanes as an after-market airline option. Data for this airplane is included for dimensional information only.

737-900ER, **-900ER** With Winglets

The 737-900ER airplanes are long-range derivatives of the 737-900 and -900 with winglets and designed for higher capacity seating. Additional exit doors are installed aft of the wing to provide exit capability for the additional passenger capacity. The 737-900ER and -900ER with winglets are capable of carrying up to 215 passengers with the additional exit doors.

Engines

The 737-100 and -200 airplanes were equipped with JT8D-7 engines. The -9, -5, -17, and -17R engines reflect successive improvements in nose reduction, thrust, and maintenance costs. Other optional engines include the -9A, -15A, -17A, and -17AR.

The 737-300, -400, and -500 airplanes are equipped with new high bypass ratio engines (CFM56-3) that are economical to operate and maintain. These are quiet engines that meet FAR 36 Stage 3 and ICAO Annex 16 Chapter 3 noise standards. With these higher thrust engines and modified flight control surfaces, runway length requirement is reduced.

The 737-600, -700, -800, and -900 airplanes are equipped with advanced derivatives of the 737-300, -400, and -500 engines. These engines (CFM56-7) generate more thrust and exhibit noise characteristics that are below the current noise standards.

737 Gravel Runway Capability

The optional gravel runway capability allows the 737-200 to operate on remote unimproved runways. The gravel kit includes gravel deflectors for the nose and main gears, vortex dissipators for each engine nacelle, and special protective finishes. Low-pressure tires are also required for operation on low strength runways.

The special environment of the gravel runway dictates changes in operating procedures and techniques for maximum safety and economy. Boeing Commercial Airplanes and the FAA have specified procedural changes for operating the 737-200 on gravel runways. Organizations interested in operational details are referred to the using airline or to Boeing.

Passenger Cabin Interiors

Early 737s were equipped with hatrack-type overhead stowage. Later models were equipped with a "wide-body look" interior that incorporates stowage bins in the sidewall and ceiling panels to simulate a superjet interior. More recent configurations include carryall compartments and the advanced technology interior. These interiors provide more stowage above the passenger seats.

Integral Airstairs

Optional airstairs allow passenger loading and unloading at airports where there are no loading bridges or stairs. The forward airstairs are mounted under the cabin floor just below the forward entry door. The aft airstairs are mounted on a special aft entry door and are deployed when the door is opened. The aft airstairs option is available only on the 737-100 and 737-200 airplanes.

Auxiliary Fuel Tanks

Optional auxiliary fuel tanks installed in the lower cargo compartments, provide extra range capability. Although this option increases range, it decreases payload.

Document Page Applicability

Several configurations have been developed for the 737 family of airplanes to meet varied airline requirements. Configurations shown in this document are typical and

individual airlines may have different combinations of options. The airlines should be consulted for specific airplane configuration.

Document Applicability

This document contains information on all 737 models.

Information on the 737-100, -200, 200C, Adv 737-200, and Adv 737-200C formerly contained in Document D6-58325, Revision D, 737 Airplane Characteristics for Airport Planning is now included in this document. Document D6-58325 is superseded and should be discarded.

Information on the 737-300, -400, and -500 model airplanes formerly contained in Document D6-58325-2 Revision A, 737-300/400/500 Airplane Characteristics for Airport Planning is now included in this document. Document D6-58325-2 is superseded and should be discarded.

Information on the 737-600, -700, -800, and -900 model airplanes formerly contained in Document D6-58325-3, 737-600/700/800/900 Airplane Characteristics for Airport Planning is now included in this document. Document D6-58325-3 is superseded and should be discarded.

Information on the 737-700, -800, and -900 model airplanes with winglets formerly contained in Document D6-58325-5, 737-700/800/900 (With Winglets) Airplane Characteristics for Airport Planning is now included in this document. Document D6-58325-5 is superseded and should be discarded.

Information on the Boeing Business Jet airplanes formerly contained in Document D6-58325-4, 737-BBJ Airplane Characteristics for Airport Planning is now included in this document. Document D6-58325-4 is superseded and should be discarded.

2.0 AIRPLANE DESCRIPTION

2.1 GENERAL CHARACTERISTICS

<u>Maximum Design Taxi Weight (MTW)</u>. Maximum weight for ground maneuver as limited by aircraft strength and airworthiness requirements. (It includes weight of taxi and run-up fuel.)

<u>Maximum Design Takeoff Weight (MTOW)</u>. Maximum weight for takeoff as limited by aircraft strength and airworthiness requirements. (This is the maximum weight at start of the takeoff run.)

<u>Maximum Design Landing Weight (MLW)</u>. Maximum weight for landing as limited by aircraft strength and airworthiness requirements.

<u>Maximum Design Zero Fuel Weight (MZFW)</u>. Maximum weight allowed before usable fuel and other specified usable agents must be loaded in defined sections of the aircraft as limited by strength and airworthiness requirements.

<u>Operating Empty Weight (OEW)</u>. Weight of structure, powerplant, furnishing systems, unusable fuel and other unusable propulsion agents, and other items of equipment that are considered an integral part of a particular airplane configuration. Also included are certain standard items, personnel, equipment, and supplies necessary for full operations, excluding usable fuel and payload.

Maximum Payload. Maximum design zero fuel weight minus operational empty weight.

<u>Maximum Seating Capacity</u>. The maximum number of passengers specifically certificated or anticipated for certification.

<u>Maximum Cargo Volume</u>. The maximum space available for cargo.

Usable Fuel. Fuel available for aircraft propulsion.

2.1.1 General Characteristics: Model 737-100

CHARACTERISTICS	UNITS	MODEL 737-100		
MAX DESIGN	POUNDS	97,800	104,000	111,000
- TAXI WEIGHT	KILOGRAMS	44,361	47,174	50,349
MAX DESIGN	POUNDS	97,000	103,000	110,000
- TAKEOFF WEIGHT	KILOGRAMS	43,998	46,720	49,895
MAX DESIGN	POUNDS	89,700	98,000	99,000
- LANDING WEIGHT	KILOGRAMS	40,687	44,452	44,906
MAX DESIGN	POUNDS	81,700	85,000	90,000
- ZERO FUEL WEIGHT	KILOGRAMS	37,058	38,555	40,823
OPERATING	POUNDS	58,600	59,000	62,000
- EMPTY WEIGHT (1)	KILOGRAMS	26,581	26,762	28,123
MAX STRUCTURAL	POUNDS	23,100	26,000	28,000
- PAYLOAD (1)	KILOGRAMS	10,478	11,793	12,701
SEATING CAPACITY (1)	TWO-CLASS	85: 12 FIRST CLASS AND 73 ECONOMY		
	ALL- ECONOMY	96 AT SIX ABREAST; FAA EXIT LIMIT: 124		
MAX CARGO VOLUME	CUBIC FEET	650	650	650
- LOWER DECK	CUBIC METERS	18.4	18.4	18.4
USABLE FUEL	US GALLONS	3,540	3,540	4,720
	LITERS	13,399	13,399	17,865
	POUNDS	23,718	23,718	31,624
	KILOGRAMS	10,758	10,758	14,345

NOTE:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

2.1.2 General Characteristics: Model 737-200

CHARACTERISTICS	UNITS	MODEL 737-200					
MAX DESIGN	POUNDS	100,800	104,000	110,000	111,000	116,000	
- TAXI WEIGHT	KILOGRAMS	45,722	47,174	49,895	50,349	52,617	
MAX DESIGN - TAKEOFF WEIGHT	POUNDS	100,000	103,000	109,000	110,000	115,500	
	KILOGRAMS	45,359	46,720	49,442	49,895	52,390	
MAX DESIGN - LANDING WEIGHT	POUNDS	95,000	95,000	98,000	99,000	103,000	
	KILOGRAMS	43,091	43,091	44,452	44,906	46,720	
MAX DESIGN - ZERO FUEL WEIGHT	POUNDS	85,000	85,000	88,000	92,000	95,000	
	KILOGRAMS	38,555	38,555	39,916	41,731	43,091	
OPERATING - EMPTY WEIGHT (1)	POUNDS	59,900	60,900	60,800	61,800	59,800	
	KILOGRAMS	27,170	27,624	27,578	28,032	27,125	
MAX STRUCTURAL - PAYLOAD (1)	POUNDS	25,100	24,100	27,200	30,200	35,200	
	KILOGRAMS	11,385	10,932	12,338	13,698	15,966	
SEATING CAPACITY (1)	TWO-CLASS	97: 24 FIRST CLASS AND 73 ECONOMY					
	ALL-ECONOMY	90 AT FIVE ABREAST, OR 124 AT SIX ABREAST; FAA EXIT LIMIT: 136					
MAX CARGO VOLUME - LOWER DECK	CUBIC FEET	875	875	875	875	875	
	CUBIC METERS	24.8	24.8	24.8	24.8	24.8	
USABLE FUEL	U.S. GALLONS	3,460	4,190	4,230	4,780	4,780	
	LITERS	13,096	15,859	16,011	18,092	18,092	
	POUNDS	23,182	28,073	28,341	32,026	32,026	
	KILOGRAMS	10,515	12,734	12,855	14,527	14,527	

NOTE:

1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

REV A September 2020 2-3

2.1.3 General Characteristics: Model 737-200, Convertible and Executive Airplanes

CHARACTERISTICS	UNITS	MODEL 737-200					
			EXECUTIVE				
MAX DESIGN	POUNDS	110,000	111,000	111,000	116,000	116,000	
- TAXI WEIGHT	KILOGRAMS	49,895	50,349	50,349	52,617	52,617	
MAX DESIGN - TAKEOFF WEIGHT	POUNDS	109,000	110,000	110,000	115,500	115,500	
	KILOGRAMS	49,442	49,895	49,895	52,390	52,390	
MAX DESIGN - LANDING WEIGHT	POUNDS	98,000	99,000	103,000	103,000	103,000	
	KILOGRAMS	44,452	44,906	46,720	46,720	46,720	
MAX DESIGN - ZERO FUEL WEIGHT	POUNDS	88,000	92,000	95,000	95,000	95,000	
	KILOGRAMS	39,916	41,731	43,091	43,091	43,091	
OPERATING - EMPTY WEIGHT (1)	POUNDS	61,100	64,900	69,700	66,800	54,900	
	KILOGRAMS	27,714	29,438	31,615	30,300	24,902	
MAX STRUCTURAL - PAYLOAD	POUNDS	26,900	27,100	25,300	28,200	40,100	
	KILOGRAMS	12,202	12,292	11,476	12,791	18,189	
SEATING CAPACITY (1)	TWO-CLASS	110: 8 FI	EXECUTIVE INTERIOR VARIES				
	ALL-ECONOMY	117 AT SIX ABREAST (2) ; FAA EXIT LIMIT: 136					
MAX CARGO VOLUME - MAIN DECK	CUBIC FEET	2,760 (3)	2,760 (3)	2,760 (3)	2,760 (3)	WITH	
	CUBIC METERS	78.2 (3)	78.2 (3)	78.2 (3)	78.2 (3)	CUSTOMER OPTION	
MAX CARGO VOLUME - LOWER DECK	CUBIC FEET	875	875	875	875	875	
	CUBIC METERS	24.8	24.8	24.8	24.8	24.8	
USABLE FUEL	U.S. GALLONS	4,200	4,750	3,500	4,780	4,720	
	LITERS	15,897	17,979	13,248	18,092	17,865	
	POUNDS	28,140	31,825	23,450	32,026	31,624	
	KILOGRAMS	12,764	14,436	10,637	14,527	14,345	

NOTES:

- OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. AIRPLANE IN ALL-PASSENGER CONFIGURATION
- 3. AIRPLANE IN ALL-CARGO CONFIGURATION WITH THE "QC" CARGO SYSTEM 88×125 IN (2.24 \times 3.18 M) PALLETS

2.1.4 General Characteristics: Model 737-200

CHARACTERISTICS	UNITS	MODEL 737-200					
MAX DESIGN - TAXI WEIGHT	POUNDS	116,000	117,500	120,000	125,000	128,600	
	KILOGRAMS	52,617	53,297	54,431	56,699	58,332	
MAX DESIGN - TAKEOFF WEIGHT	POUNDS	115,500	117,000	119,500	124,500	128,100	
	KILOGRAMS	52,390	53,070	54,204	56,472	58,105	
MAX DESIGN - LANDING WEIGHT	POUNDS	103,000	105,000	105,000	107,000	107,000	
	KILOGRAMS	46,720	47,627	47,627	48,534	48,534	
MAX DESIGN - ZERO FUEL WEIGHT	POUNDS	95,000	95,000	95,000	95,000	95,000	
	KILOGRAMS	43,091	43,091	43,091	43,091	43,091	
OPERATING - EMPTY WEIGHT (1)	POUNDS	62,600	64,500	63,100	63,900	65,300	
	KILOGRAMS	28,395	29,257	28,622	28,985	29,620	
MAX STRUCTURAL - PAYLOAD	POUNDS	32,400	30,500	31,900	31,100	29,700	
	KILOGRAMS	14,696	13,835	14,470	14,107	13,472	
SEATING CAPACITY (1)	TWO-CLASS	102: 14 FIRST CLASS AND 88 ECONOMY					
	ALL-ECONOMY	93 AT FIVE ABREAST, OR 130 AT SIX ABREAST; FAA EXIT LIMIT: 136					
MAX CARGO VOLUME - LOWER DECK	CUBIC FEET	875	875	875	745 (2)	640 (3)	
	CUBIC METERS	24.8	24.8	24.8	21.1 (2)	18.1 (3)	
USABLE FUEL	U.S. GALLONS	5,160	5,160	5,160	5,550 (2)	5,970 (3)	
	LITERS	19,531	19,531	19,531	21,007 (2)	22,596 (3)	
	POUNDS	34,572	34,572	34,572	37,185 (2)	39,999 (3)	
	KILOGRAMS	15,682	15,682	15,682	16,867 (2)	18,143 (3)	

NOTES:

- 1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. AIRPLANE WITH 390 GAL (1,475 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 3. AIRPLANE WITH 810 GAL (3,065 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

2.1.5 General Characteristics: Model Advanced 737-200C, -200QC

CHARACTERISTICS	UNITS		MODE	L 737-200C, -:	200QC	
MAX DESIGN	POUNDS	116,000	117,500	120,000	125,000	128,600
- TAXI WEIGHT	KILOGRAMS	52,617	53,297	54,431	56,699	58,332
MAX DESIGN	POUNDS	115,500	117,000	119,500	124,500	128,100
- TAKEOFF WEIGHT	KILOGRAMS	52,390	53,070	54,204	56,472	58,105
MAX DESIGN	POUNDS	103,000	105,000	105,000	107,000	107,000
- LANDING WEIGHT	KILOGRAMS	46,720	47,627	47,627	48,534	48,534
MAX DESIGN	POUNDS	95,000	96,500	95,000	99,000	99,000
- ZERO FUEL WEIGHT	KILOGRAMS	43,091	43,772	43,091	44,906	44,906
OPERATING	POUNDS	65,700	69,800	66,500	67,000	65,700
- EMPTY WEIGHT (1)	KILOGRAMS	29,801	31,661	30,164	30,391	29,801
MAX STRUCTURAL	POUNDS	29,300	26,700	28,500	32,000	33,300
- PAYLOAD	KILOGRAMS	13,290	12,111	12,927	14,515	15,105
SEATING CAPACITY (2)	TWO-CLASS	,	102: 14 FIRST	CLASS AND	88 ECONOMY	,
	ALL-ECONOMY	93 A	T FIVE ABRE	AST, OR 130 A A EXIT LIMIT:		AST;
MAX CARGO VOLUME	CUBIC FEET	2,760	2,760	2,760	2,760	2,760
- MAIN DECK (3)	CUBIC METERS	78.2	78.2	78.2	78.2	78.2
MAX CARGO VOLUME	CUBIC FEET	875	875	875	875	875
- LOWER DECK	CUBIC METERS	24.8	24.8	24.8	24.8	24.8
USABLE FUEL	U.S. GALLONS	5,160	5,160	5,160	5,160	5,160
	LITERS	19,531	19,531	19,531	19,531	19,531
	POUNDS	34,572	34,572	34,572	34,572	34,572
	KILOGRAMS	15,682	15,682	15,682	15,682	15,682

- OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. AIRPLANE IN ALL-PASSENGER CONFIGURATION
- 3. AIRPLANE IN ALL-CARGO CONFIGURATION, SEVEN PALLETS 88 x 125 IN (2.24 x 3.18 M) EACH

2.1.6 General Characteristics: Model 737-300

		MODEL 737-300					
CHARACTERISTICS	UNITS		M56-3B1 EN0 20,000 LB SL		CFM56-3B2 ENGINES (22,000 LB SLST)		
MAX DESIGN	POUNDS	125,000	130,500	135,500	137,500	140,000	140,000
- TAXI WEIGHT	KILOGRAMS	56,699	59,194	61,462	62,369	63,503	63,503
MAX DESIGN	POUNDS	124,500	130,000	135,000	137,000	139,500	139,500
- TAKEOFF WEIGHT	KILOGRAMS	56,472	58,967	61,235	62,142	63,276	63,276
MAX DESIGN	POUNDS	114,000	114,000	114,000	114,000	116,600	116,600
- LANDING WEIGHT	KILOGRAMS	51,710	51,710	51,710	51,710	52,889	52,889
MAX DESIGN	POUNDS	105,000	105,000	106,500	106,500	109,600	109,600
- ZERO FUEL WEIGHT	KILOGRAMS	47,627	47,627	48,308	48,308	49,714	49,714
OPERATING	POUNDS	69,400	71,870	72,540	72,540	72,540	72,540
- EMPTY WEIGHT (1)	KILOGRAMS	31,479	32,600	32,904	32,904	32,904	32,904
MAX STRUCTURAL	POUNDS	35,600	33,130	33,960	33,960	33,960	33,960
- PAYLOAD	KILOGRAMS	16,148	15,028	15,404	15,404	15,404	15,404
SEATING CAPACITY	TWO-CLASS		128: 8 F	FIRST CLAS	S AND 120 E	CONOMY	
	ALL-ECONOMY		134 AT S	SIX ABREAS	T; FAA EXIT	LIMIT: 149	
MAX CARGO VOLUME	CUBIC FEET	1,068	929 (2)	841 (3)	917 (4)	792 (5)	792 (5)
- LOWER DECK	CUBIC METERS	30.2	26.3 (2)	23.8 (3)	26.0 (4)	22.4 (5)	22.4 (5)
USABLE FUEL	U.S. GALLONS	5,311	5,701 (2)	6,121 (3)	5,803 (4)	6,295 (5)	6,295 (5)
	LITERS	20,102	21,578 (2)	23,168 (3)	21,964 (4)	23,827 (5)	23,827 (5)
	POUNDS	35,584	38,197 (2)	41,011 (3)	38,880 (4)	42,177 (5)	42,177 (5)
	KILOGRAMS	16,141	17,326 (2)	18,602 (3)	17,636 (4)	19,131 (5)	19,131 (5)

- OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. AIRPLANE WITH 390 GAL (1,475 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 3. AIRPLANE WITH 810 GAL (3,065 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 4. AIRPLANE WITH 500 GAL (1,893 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 5. AIRPLANE WITH 1,000 GAL (3,785 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

2.1.7 General Characteristics: Model 737-400

		MODEL 737-400					
CHARACTERISTICS	UNITS		M56-3B2 EN 22,000 LB SI		CFM56-3C ENGINES (23,500 LB SLST)		
MAX DESIGN	POUNDS	139,000	143,000	150,500	143,000	144,000	150,500
- TAXI WEIGHT	KILOGRAMS	63,049	64,864	68,266	64,864	65,317	68,266
MAX DESIGN	POUNDS	138,500	142,500	150,000	142,500	143,500	150,000
- TAKEOFF WEIGHT	KILOGRAMS	62,823	64,637	68,039	64,637	65,091	68,039
MAX DESIGN	POUNDS	121,000	121,000	124,000	124,000	124,000	124,000
- LANDING WEIGHT	KILOGRAMS	54,885	54,885	56,245	56,245	56,245	56,245
MAX DESIGN	POUNDS	113,000	113,000	117,000	117,000	117,000	117,000
- ZERO FUEL WEIGHT	KILOGRAMS	51,256	51,256	53,070	53,070	53,070	53,070
OPERATING	POUNDS	73,170	73,170	73,170	74,170	74,170	74,170
- EMPTY WEIGHT (1)	KILOGRAMS	33,189	33,189	33,189	33,643	33,643	33,643
MAX STRUCTURAL	POUNDS	39,830	39,830	43,830	42,830	42,830	42,830
- PAYLOAD	KILOGRAMS	18,067	18,067	19,881	19,427	19,427	19,427
SEATING CAPACITY	TWO-CLASS		146: 8 F	FIRST CLAS	S AND 138 E	CONOMY	
	ALL-ECONOMY		159 AT S	SIX ABREAS	T; FAA EXIT	LIMIT: 189	
MAX CARGO VOLUME	CUBIC FEET	1,373	1,234 (2)	1,146 (3)	1,222 (4)	1,097 (5)	1,097 (5)
- LOWER DECK	CUBIC METERS	38.9	34.9 (2)	32.5 (3)	34.6 (4)	31.1 (5)	31.1 (5)
USABLE FUEL	U.S. GALLONS	5,311	5,701 (2)	6,121 (3)	5,803 (4)	6,295 (5)	6,295 (5)
	LITERS	20,102	21,578 (2)	23,168 (3)	21,964 (4)	23,827 (5)	23,827 (5)
	POUNDS	35,584	38,197 (2)	41,011 (3)	38,880 (4)	42,177 (5)	42,177 (5)
	KILOGRAMS	16,141	17,326 (2)	18,602 (3)	17,636 (4)	19,131 (5)	19,131 (5)

- OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. AIRPLANE WITH 390 GAL (1,475 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 3. AIRPLANE WITH 810 GAL (3,065 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 4. AIRPLANE WITH 500 GAL (1,893 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 5. AIRPLANE WITH 1,000 GAL (3,785 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

2.1.8 General Characteristics: Model 737-500

CHARACTERISTICS	UNITS	MODEL 737-500					
		CFM56-3B1 ENGINES (18,500 LB SLST)			CFM56-3B1 ENGINES (20,000 LB SLST)		
MAX DESIGN	POUNDS	116,000	125,000	134,000	125,000	136,500	
- TAXI WEIGHT	KILOGRAMS	52,617	56,699	60,781	56,699	61,915	
MAX DESIGN	POUNDS	115,500	124,500	133,500	133,500	136,000	
- TAKEOFF WEIGHT	KILOGRAMS	52,390	56,472	60,555	60,555	61,689	
MAX DESIGN	POUNDS	110,000	110,000	110,000	110,000	110,000	
- LANDING WEIGHT	KILOGRAMS	49,8965	49,895	49,895	49,895	49,895	
MAX DESIGN	POUNDS	102,500	102,500	102,500	102,500	103,000	
- ZERO FUEL WEIGHT	KILOGRAMS	46,493	46,493	46,493	46,493	46,720	
OPERATING	POUNDS	69,030	69,030	69,030	69,030	69,030	
- EMPTY WEIGHT (1)	KILOGRAMS	31,311	31,311	31,311	31,311	31,311	
MAX STRUCTURAL	POUNDS	33,470	33,470	33,470	33,470	33,470	
- PAYLOAD	KILOGRAMS	15,182	15,182	15,182	15,182	15,182	
SEATING CAPACITY	TWO-CLASS	108: 8 FIRST CLASS AND 100 ECONOMY					
	ALL-ECONOMY	122 AT SIX ABREAST; FAA EXIT LIMIT: 149					
MAX CARGO VOLUME	CUBIC FEET	822	683 (2)	595 (3)	671 (4)	546 (5)	
- LOWER DECK	CUBIC METERS	23.3	19.3 (2)	16.8 (3)	19.0 (4)	15.5 (5)	
USABLE FUEL	U.S. GALLONS	5,311	5,701 (2)	6,121 (3)	5,803 (4)	6,295 (5)	
	LITERS	20,102	21,578 (2)	23,168 (3)	21,964 (4)	23,827 (5)	
	POUNDS	35,584	38,197 (2)	41,011 (3)	38,880 (4)	42,177 (5)	
	KILOGRAMS	16,141	17,326 (2)	18,602 (3)	17,636 (4)	19,131 (5)	

- 1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. AIRPLANE WITH 390 GAL (1,475 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 3. AIRPLANE WITH 810 GAL (3,065 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 4. AIRPLANE WITH 500 GAL (1,893 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT
- 5. AIRPLANE WITH 1,000 GAL (3,785 L) AUXILIARY FUEL TANK IN AFT CARGO COMPARTMENT

2.1.9 General Characteristics: Model 737-600

CHARACTERISTICS	UNITS	N	ODEL 737-60	0
MAX DESIGN	POUNDS	124,500	144,000	145,000
- TAXI WEIGHT	KILOGRAMS	56,472	65,317	65,771
MAX DESIGN	POUNDS	124,000	143,500	144,500
- TAKEOFF WEIGHT	KILOGRAMS	56,245	65,091	65,544
MAX DESIGN	POUNDS	120,500	120,500	121,500
- LANDING WEIGHT	KILOGRAMS	54,658	54,658	55,111
MAX DESIGN	POUNDS	113,500	113,500	114,500
- ZERO FUEL WEIGHT	KILOGRAMS	51,483	51,483	51,936
OPERATING	POUNDS	80,200	80,200	80,200
- EMPTY WEIGHT (1)	KILOGRAMS	36,378	36,378	36,378
MAX STRUCTURAL	POUNDS	33,300	33,300	34,300
- PAYLOAD	KILOGRAMS	15,105	15,105	15,558
SEATING CAPACITY (1)	TWO-CLASS	108	108	108
	ALL-ECONOMY	130	130	130
MAX CARGO VOLUME	CUBIC FEET	720	720	720
- LOWER DECK	CUBIC METERS	20.4	20.4	20.4
USABLE FUEL	US GALLONS	6875	6875	6875
	LITERS	26,022	26,022	26,022
	POUNDS	46,063	46,063	46,063
	KILOGRAMS	20,894	20,894	20,894

NOTE:

2.1.10 General Characteristics: Model 737-700, -700 With Winglets, -700C

CHARACTERISTICS	UNITS		L 737-700, -700 INGLETS -700	
MAX DESIGN	POUNDS	133,500	153,500	155,000
- TAXI WEIGHT	KILOGRAMS	60,555	69,626	70,307
MAX DESIGN	POUNDS	133,000	153,000	154,500
- TAKEOFF WEIGHT	KILOGRAMS	60,328	69,400	70,080
MAX DESIGN	POUNDS	128,000	128,000	129,200
- LANDING WEIGHT	KILOGRAMS	58,060	58,060	58,604
MAX DESIGN	POUNDS	120,500	120,500	121,700
- ZERO FUEL WEIGHT	KILOGRAMS	54,658	54,658	55,202
OPERATING	POUNDS	83,000	83,000	83,000
- EMPTY WEIGHT (1)	KILOGRAMS	37,648	37,648	37,648
MAX STRUCTURAL	POUNDS	37,500	37,500	38,700
- PAYLOAD	KILOGRAMS	17,010	17,010	17,554
SEATING CAPACITY (1)	TWO-CLASS	128	128	128
	ALL-ECONOMY	148	148	148
MAX CARGO VOLUME	CUBIC FEET	966	966	966
- LOWER DECK	CUBIC METERS	27.4	27.4	27.4
USABLE FUEL	US GALLONS	6875	6875	6875
	LITERS	26,022	26,022	26,022
	POUNDS	46,063	46,063	46,063
	KILOGRAMS	20,894	20,894	20,894

NOTE:

2.1.11 General Characteristics: Model 737-800, -800 With Winglets

CHARACTERISTICS	UNITS	MODE	L 737-800, -800 WINGLETS	0 WITH
MAX DESIGN	POUNDS	156,000	173,000	174,900
- TAXI WEIGHT	KILOGRAMS	70,760	78,471	79,333
MAX DESIGN	POUNDS	155,500	172,500	174,200
- TAKEOFF WEIGHT	KILOGRAMS	70,534	78,245	79,016
MAX DESIGN	POUNDS	144,000	144,000	146,300
- LANDING WEIGHT	KILOGRAMS	65,317	65,317	66,361
MAX DESIGN	POUNDS	136,000	136,000	138,300
- ZERO FUEL WEIGHT	KILOGRAMS	61,689	61,689	62,732
OPERATING	POUNDS	91,300	91,300	91,300
- EMPTY WEIGHT (1)	KILOGRAMS	41,413	41,413	41,413
MAX STRUCTURAL	POUNDS	44,700	44,700	47,000
- PAYLOAD	KILOGRAMS	20,276	20,276	21,319
SEATING CAPACITY (1)	TWO-CLASS	160	160	160
	ALL-ECONOMY	184	184	184
MAX CARGO VOLUME	CUBIC FEET	1555	1555	1555
- LOWER DECK	CUBIC METERS	44.1	44.1	44.1
USABLE FUEL	US GALLONS	6875	6875	6875
	LITERS	26,022	26,022	26,022
	POUNDS	46,063	46,063	46,063
	KILOGRAMS	20,894	20,894	20,894

NOTE:

2.1.12 General Characteristics: Model 737-900, -900 With Winglets

CHARACTERISTICS	UNITS	MODEL 737-9 WING	-
MAX DESIGN	POUNDS	164,500	174,700
- TAXI WEIGHT	KILOGRAMS	74,616	79,243
MAX DESIGN	POUNDS	164,000	174,200
- TAKEOFF WEIGHT	KILOGRAMS	74,389	79,016
MAX DESIGN	POUNDS	146,300	147,300
- LANDING WEIGHT	KILOGRAMS	66,361	66,814
MAX DESIGN	POUNDS	138,300	140,300
- ZERO FUEL WEIGHT	KILOGRAMS	62,732	63,639
OPERATING	POUNDS	94,580	94,580
- EMPTY WEIGHT (1)	KILOGRAMS	42,901	42,901
MAX STRUCTURAL	POUNDS	43,720	45,720
- PAYLOAD	KILOGRAMS	19,831	20,738
SEATING CAPACITY (1)	TWO-CLASS	177	177
	ALL-ECONOMY	189	189
MAX CARGO VOLUME	CUBIC FEET	1,835	1,835
- LOWER DECK	CUBIC METERS	52.0	52.0
USABLE FUEL	US GALLONS	6875	6875
	LITERS	26,022	26,022
	POUNDS	46,063	46,063
	KILOGRAMS	20,894	20,894

NOTE:

2.1.13 General Characteristics: Model 737-900er, -900er With Winglets

CHARACTERISTICS	UNITS	MODEL 737-900E WING			OER WITH
MAX DESIGN	POUNDS	164,500		188,200	
- TAXI WEIGHT	KILOGRAMS	74,616			85,366
MAX DESIGN	POUNDS	164,000)	,	187,700
- TAKEOFF WEIGHT	KILOGRAMS	74,389			85,139
MAX DESIGN	POUNDS	146,300)	,	157,300
- LANDING WEIGHT	KILOGRAMS	66,361			71,350
MAX DESIGN	POUNDS	138,300)	,	149,300
- ZERO FUEL WEIGHT	KILOGRAMS	62,732			67,721
OPERATING	POUNDS	98,495		98,495	
- EMPTY WEIGHT (1)	KILOGRAMS	44,677		44,677	
MAX STRUCTURAL	POUNDS	39,308		50,805	
- PAYLOAD	KILOGRAMS	17,830		23,045	
SEATING CAPACITY (1)	TWO-CLASS	177		177	
	ALL-ECONOMY			XIT DO	OOR, 215: T
AUXILIARY FUEL OPTIONS	SEE NOTES	(2)	(;	3)	(4)
MAX CARGO	CUBIC FEET	1,826	1,6	676	1,587
- LOWER DECK	CUBIC METERS	51.7	47	'.5	44.9
USABLE FUEL	US GALLONS	6,875	7,3	390	7,837
	LITERS	26,025	27,	974	29,666
	POUNDS	46,063	49,	513	52,508
	KILOGRAMS	20,894	22,	459	23,817

- 1. OPERATING EMPTY WEIGHT FOR BASELINE MIXED CLASS CONFIGURATION. CONSULT WITH AIRLINE FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.
- 2. WITH NO AUXILIARY FUEL TANK
- 3. WITH ONE AUXILIARY FUEL TANK
- 4. WITH TWO AUXILIARY FUEL TANKS

2.1.14 General Characteristic Model 737 BBJ

CHARACTERISTICS	UNITS	MODEL 737 BBJ
MAX DESIGN	POUNDS	171,500
- TAXI WEIGHT	KILOGRAMS	77,791
MAX DESIGN	POUNDS	171,000
- TAKEOFF WEIGHT	KILOGRAMS	77,564
MAX DESIGN	POUNDS	134,000
- LANDING WEIGHT	KILOGRAMS	60,781
MAX DESIGN	POUNDS	126,000
- ZERO FUEL WEIGHT	KILOGRAMS	57,152

NUMBER OF AUXILIARY	FUEL TANKS	3	4	5	6	7	8	9
SPEC OPERATING	POUNDS	92,345	92,722	93,393	93,785	94,056	94,352	94,570
- EMPTY WEIGHT (1)	KILOGRAMS	41,887	42,058	42,362	43,540	42,663	42,797	42,896
MAX STRUCTURAL	POUNDS	33,655	33,278	32,607	32,215	31,944	31,648	31,430
- PAYLOAD	KILOGRAMS	15,300	15,126	14,821	14,609	14,520	14,385	14,286
MAX CARGO	CUBIC FEET	611	515	415	319	268	214	160
- LOWER DECK	CUBIC METERS	17.3	14.6	11.7	9.0	7.6	6.1	4.6
USEABLE FUEL	US GALLONS	8,360	8,897	9,399	9,917	10,213	10,457	10,697
	LITERS	31,646	33,611	35,579	37,540	38,660	39,584	40,485
	POUNDS	56,012	59,610	62,973	66,444	68,427	70,062	71,670
	KILOGRAMS	25,460	27,095	28,624	30,202	31,103	31,846	32,577

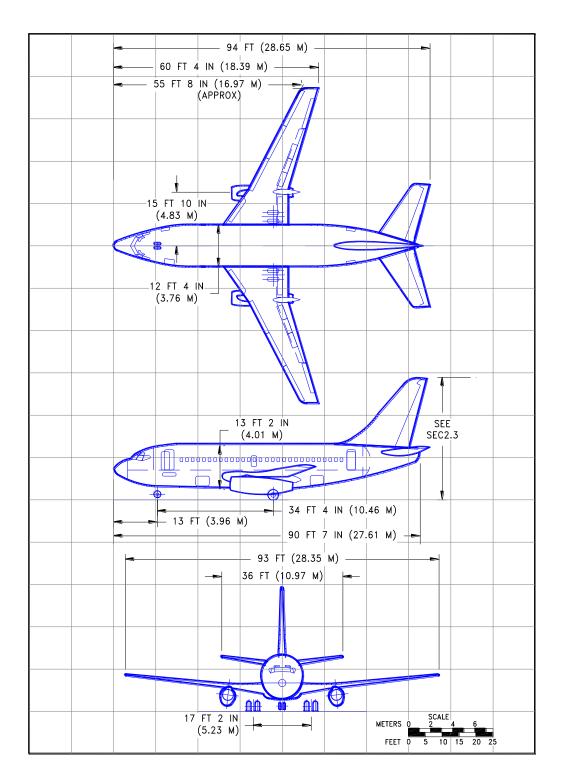
NOTE:

1. SPEC WEIGHT FOR NUMBER OF AUXILIARY FUEL TANKS SHOWN. CONSULT WITH AIRCRAFT OPERATOR FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

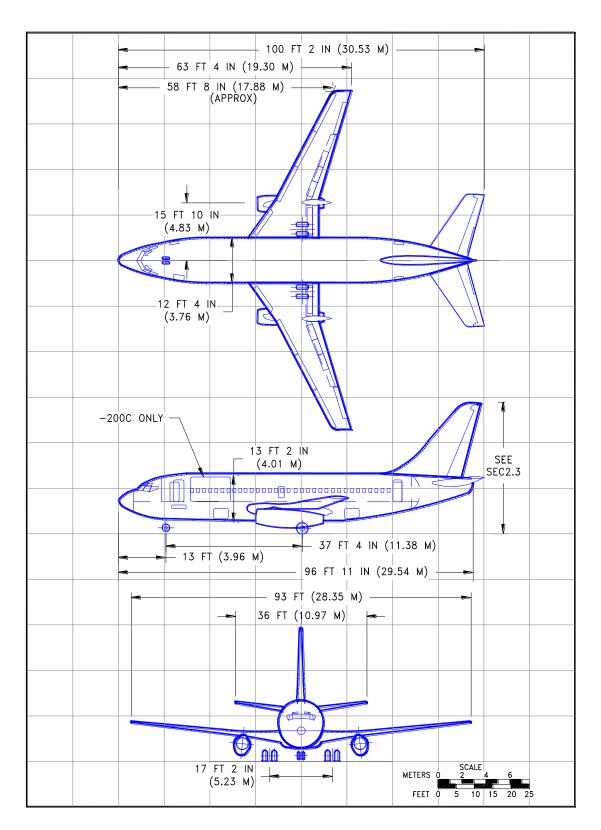
2.1.15 General Characteristics: Model 737 BBJ2

CHARACTERISTICS	UNITS	MODEL 737 BBJ2
MAX DESIGN	POUNDS	174,700
- TAXI WEIGHT	KILOGRAMS	79,245
MAX DESIGN	POUNDS	174,200
- TAKEOFF WEIGHT	KILOGRAMS	79,015
MAX DESIGN	POUNDS	146,300
- LANDING WEIGHT	KILOGRAMS	66,360
MAX DESIGN	POUNDS	138,300
- ZERO FUEL WEIGHT	KILOGRAMS	62,730

NUMBER OF AUXILIARY FUEL TANKS			1	2	3	4	5	6	7
SPEC OPERATING	POUNDS	96,727	97,372	97,821	98,344	98,722	99,393	99,785	100,312
- EMPTY WEIGHT (1)	KILOGRAMS	43,875	44,167	44,371	44,608	44,780	45,084	45,262	45,501
MAX STRUCTURAL	POUNDS	41,573	40,928	40,479	39,356	39,578	38,907	38,515	37,988
- PAYLOAD	KILOGRAMS	18,859	18,570	18,366	18,130	17,960	17,563	17,475	17,236
MAX CARGO	CUBIC FEET	1,546	1,423	1,331	1,224	1,116	1,029	922	814
- LOWER DECK	CUBIC METERS	43.8	40.3	37.7	34.7	31.6	29.2	26.1	23.1
USEABLE FUEL	US GALLONS	6,875	7,395	7,837	8,360	8,879	9,399	9,917	10,443
	LITERS	26,025	27,992	29,665	31,645	33,609	35,578	37,538	39,530
	POUNDS	46,080	49,546	52,508	56,012	59,489	62,973	66,571	69,968
	KILOGRAMS	20,910	22,480	23,824	25,414	26,992	28,572	30,214	31,746

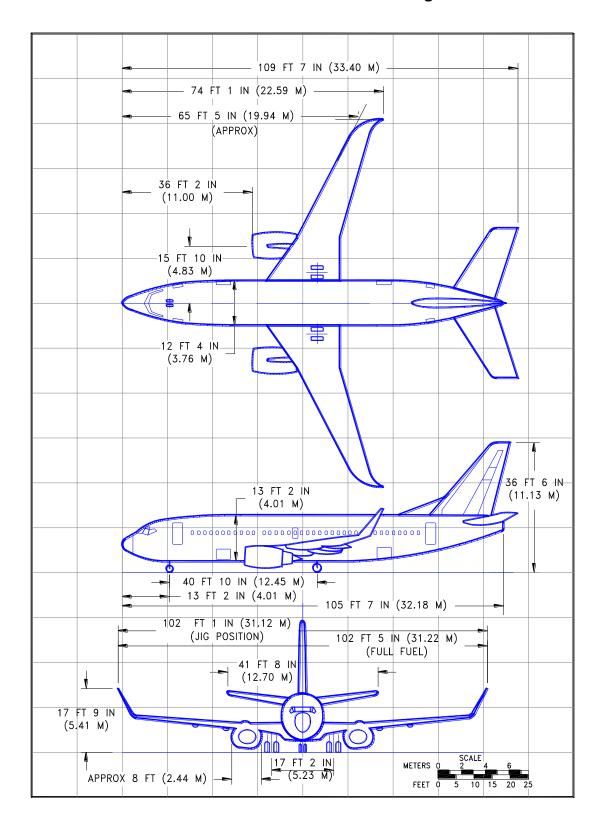

NOTE:

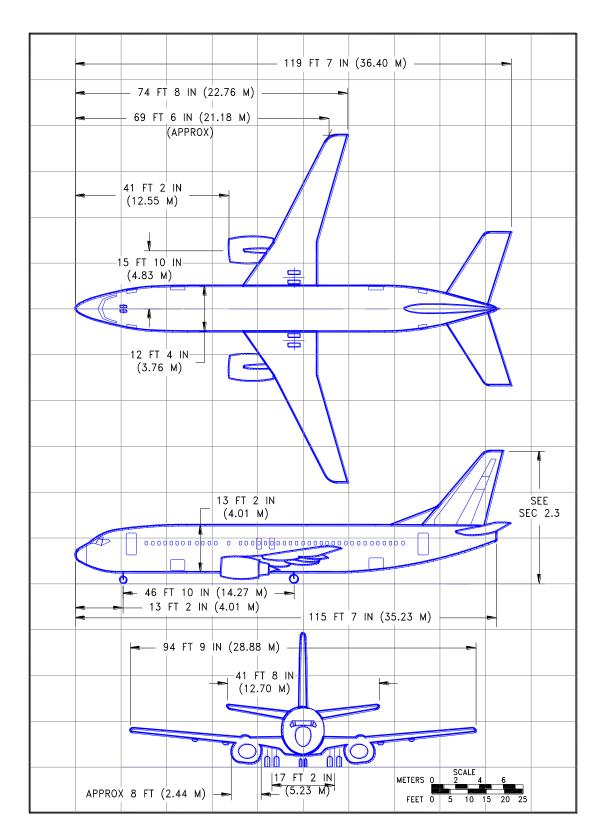
1. SPEC WEIGHT FOR NUMBER OF AUXILIARY FUEL TANKS SHOWN. CONSULT WITH AIRCRAFT OPERATOR FOR SPECIFIC WEIGHTS AND CONFIGURATIONS.

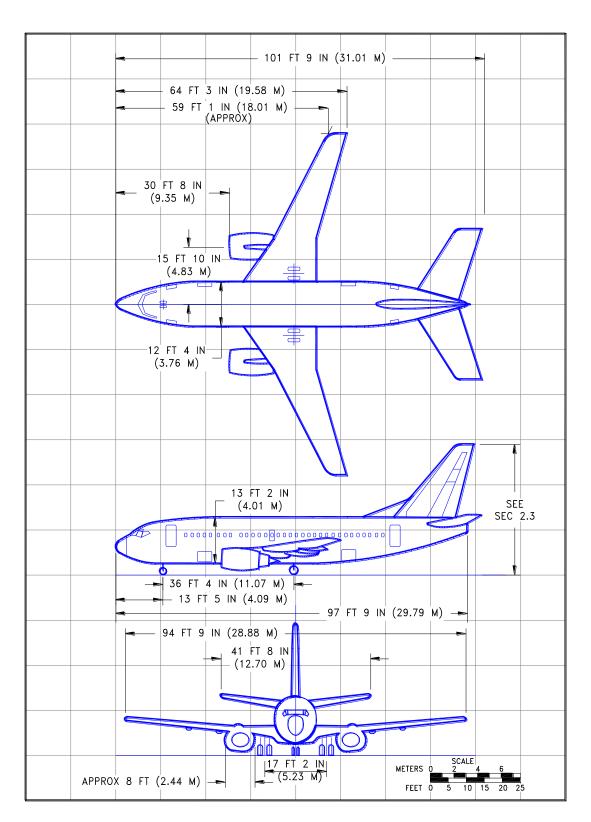

	D6-58325-6
REV A	September 2020

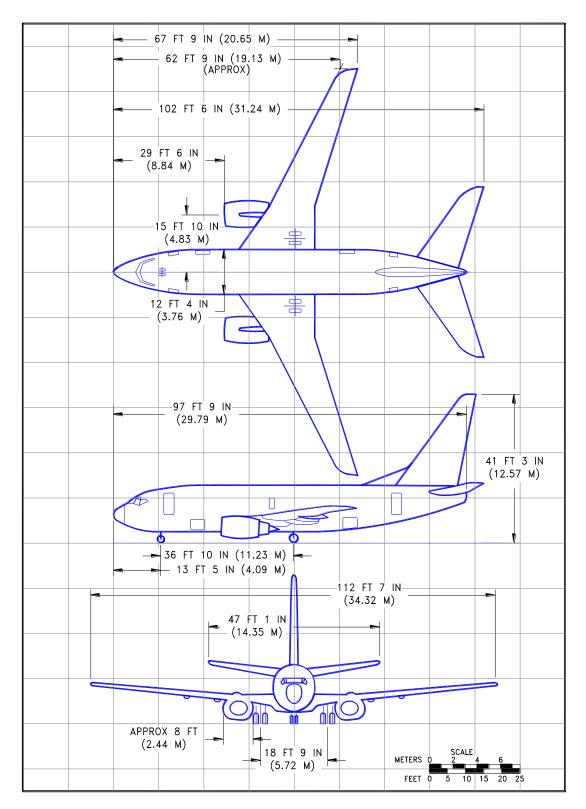
2.2 GENERAL DIMENSIONS

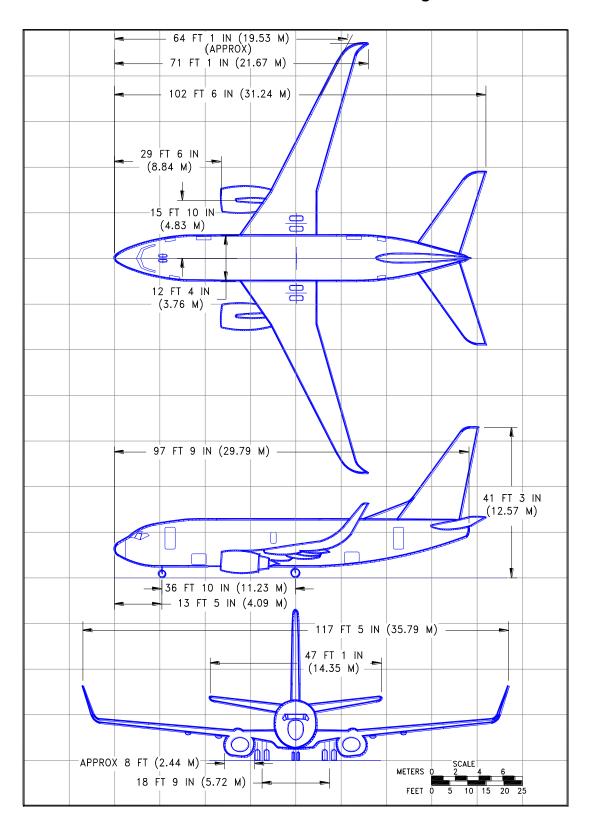
2.2.1 General Dimensions: Model 737-100

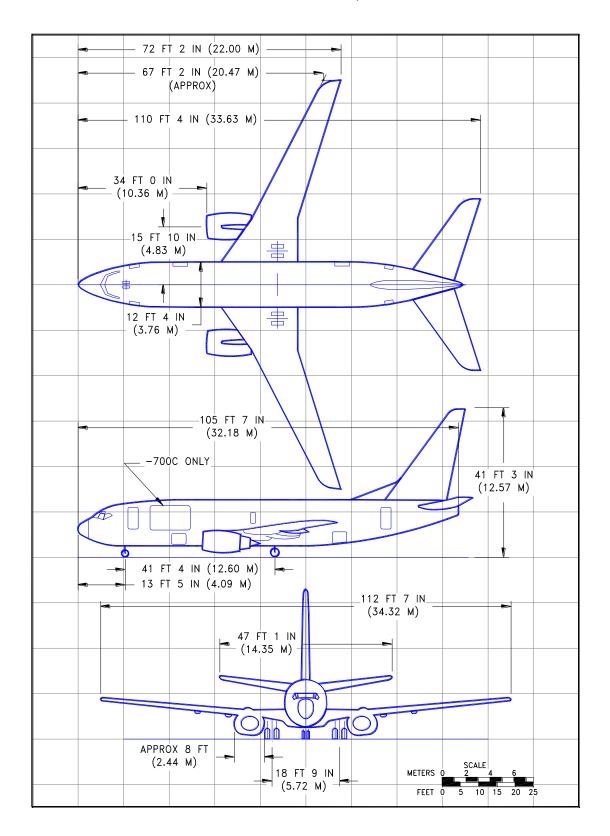

2.2.2 General Dimensions: Model 737-200

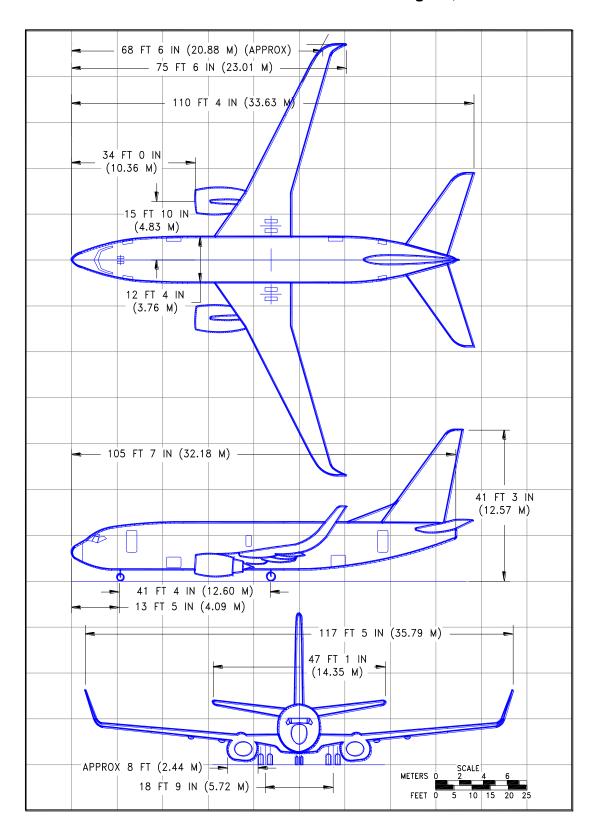

2.2.3 General Dimensions: Model 737-300

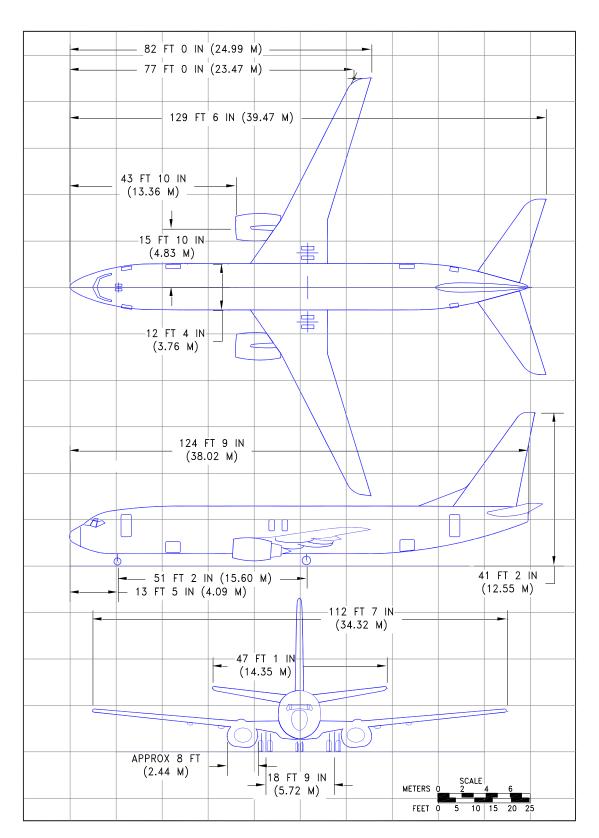

2.2.4 General Dimensions: Model 737-300 With Winglets

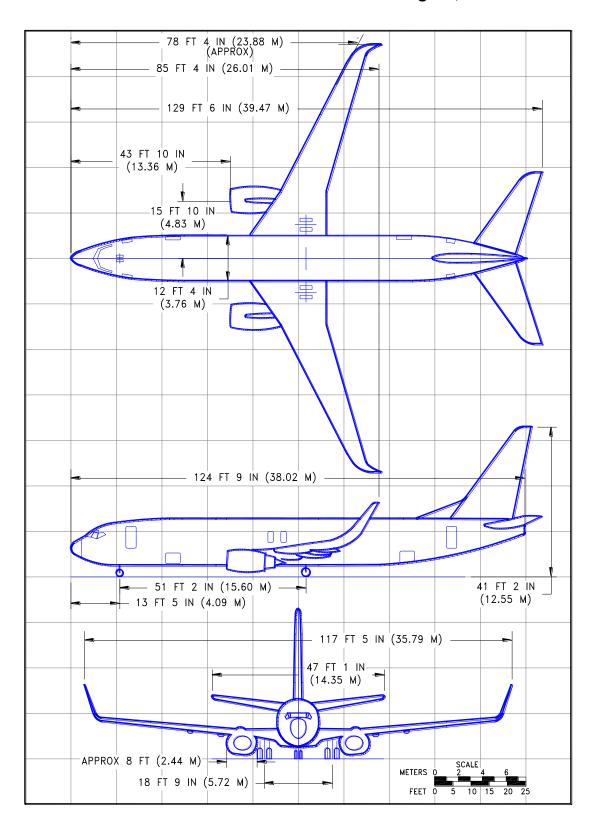

2.2.5 General Dimensions: Model 737-400

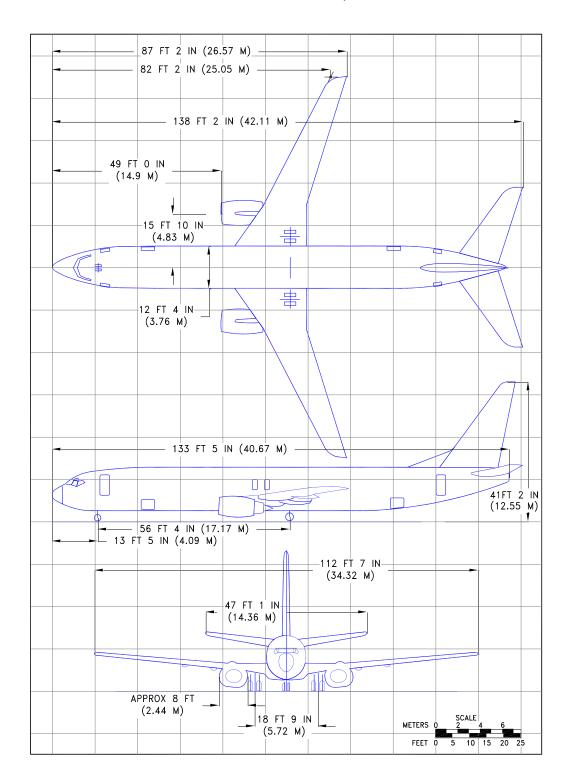

2.2.6 General Dimensions: Model 737-500

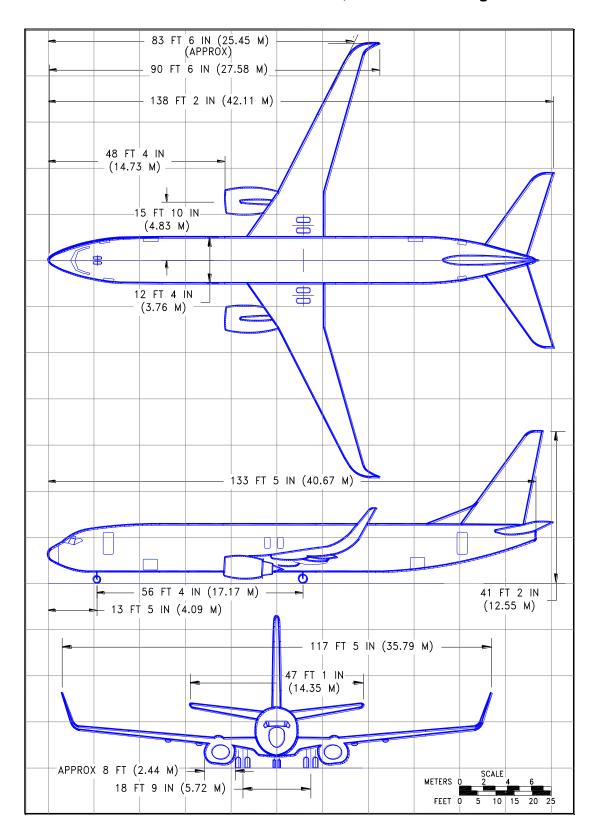

2.2.7 General Dimensions: Model 737-600


2.2.8 General Dimensions: Model 737-600 With Winglets


2.2.9 General Dimensions: Model 737-700, -700C


2.2.10 General Dimensions: Model 737-700 With Winglets, 737 BBJ


2.2.11 General Dimensions: Model 737-800

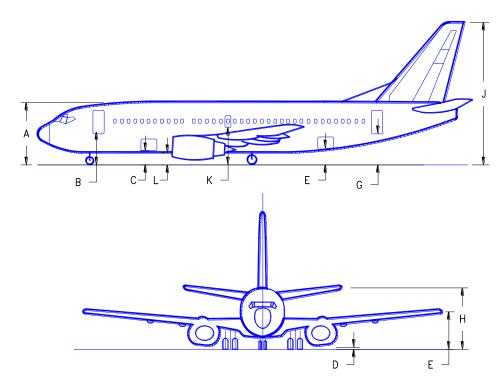

2.2.12 General Dimensions: Model 737-800 With Winglets, 737 BBJ2

2.2.13 General Dimensions: Model 737-900, -900ER



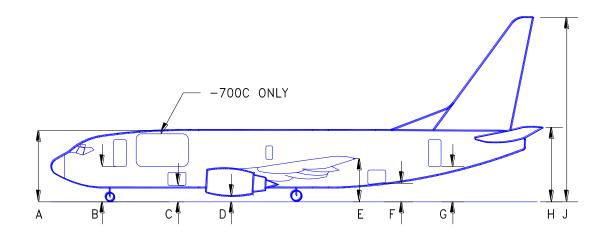
2.2.14 General Dimensions: Model 737-900, -900ER With Winglets

2.3 GROUND CLEARANCES


2.3.1 Ground Clearances: Model 737-100, -200, -200C

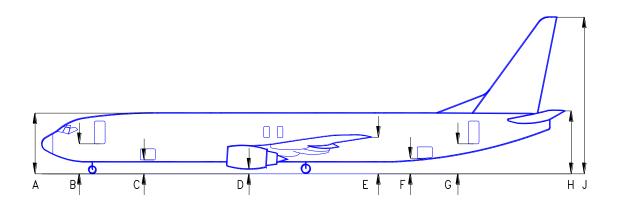
			737-200, -200C						
	DESCRIPTION	MAX (AT OEW) MIN (AT MTW)			MAX (A	T OEW)	MIN (A	MIN (AT MTW)	
		FT - IN	М	FT - IN	М	FT - IN	М	FT - IN	М
Α	TOP OF FUSELAGE	16 – 9	5.11	16 – 5	5.00	16 – 9	5.11	16 – 4	4.98
В	ENTRY DOOR NO 1	8 – 8	2.64	8 – 1	2.46	8 – 7	2.62	8 – 1	2.46
С	FWD CARGO DOOR	4 – 3	1.30	3 – 10	1.17	4 – 3	1.30	3 – 10	1.17
D	ENGINE	1 – 11	0.58	1 – 8	0.51	1 -11	0.58	1 – 8	0.51
Е	WINGTIP	10 – 2	3.09	10 – 0	3.05	10 – 2	3.09	10 – 0	3.05
F	AFT CARGO DOOR	5 – 1	1.55	5 – 0	1.52	4 – 9	1.45	4 – 9	1.45
G	ENTRY DOOR NO 2	9 – 0	2.74	9 – 1	2.77	9 – 0	2.74	9 – 2	2.79
Н	STABILIZER	16 – 8	5.08	17 – 0	5.18	16 – 8	5.08	17 – 1	5.21
J	VERTICAL TAIL	36 – 10	11.23	37 – 2	11.33	36 – 10	11.23	37 – 3	11.35
K	OVERWING EXIT DOOR	10 – 5	3.18	10 – 3	3.12	10 – 5	3.18	10 – 3	3.12
L	BOTTOM OF FUSELAGE	3 – 7	1.09	3 – 1	0.94	3 – 6	1.07	3 – 0	0.91
М	MAIN DECK CARGO DOOR	-	-	-	1	8 – 7	2.62	8 – 1	2.46

NOTES: CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.



			737-300, -400, -500								
	DESCRIPTION	MAX (A	AT OEW)	MIN (AT	MTW)						
		FT - IN	M	FT - IN	M						
Α	TOP OF FUSELAGE	17 – 3	5.26	16 – 10	5.13						
В	ENTRY DOOR NO 1	9 – 1	2.77	8 – 7	2.62						
С	FWD CARGO DOOR	4 – 7	1.40	4 – 2	1.27						
D	ENGINE	1 – 9	0.53	1 – 6	0.46						
Е	WINGTIP	10 - 2	3.09	10 – 0	3.05						
F	AFT CARGO DOOR	4 – 6	1.37	4 – 6	1.37						
G	ENTRY DOOR NO 2	8 – 7	2.62	8 – 9	2.67						
Н	STABILIZER	16 – 3	4.95	16 – 8	5.08						
J	VERTICAL TAIL	36 – 4	11.07	36 – 7	11.15						
K	OVERWING EXIT DOOR	10 – 6	3.20	10 – 4	3.15						
L	BOTTOM OF FUSELAGE	3 – 10	1.17	3 – 4	1.02						

NOTES: CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.


2.3.3 Ground Clearances: Model 737-600, -700, -700C

			737	-600		737-700, -700C					
	DESCRIPTION	MAX (AT OEW)		MIN (A	г мтw)	MAX (A	T OEW)	MIN (AT MTW)			
		FT - IN	М	FT - IN	М	FT - IN	М	FT - IN	М		
Α	TOP OF FUSELAGE	18 - 2	5.54	17 - 8	5.38	18 - 3	5.56	17 - 9	5.41		
В	ENTRY DOOR NO 1	9 - 0	2.74	8 - 6	2.59	9 - 0	2.74	8 - 6	2.59		
С	FWD CARGO DOOR	4 - 9	1.45	4 - 3	1.30	4 - 9	1.45	4 - 3	1.30		
D	ENGINE	2 - 0	0.61	1 - 6	0.46	2 - 0	0.61	1 - 6	0.46		
Е	WINGTIP	12 - 9	3.89	11 - 11	3.63	12 - 9	3.89	11 - 11	3.63		
F	AFT CARGO DOOR	5 - 10	1.78	5 - 4	1.63	5 - 10	1.78	5 - 4	1.63		
G	ENTRY DOOR NO 2	10 - 2	3.10	9 - 8	2.95	10 - 2	3.10	9 - 8	2.95		
Н	STABILIZER	18 - 5	5.61	17 - 11	5.46	18 - 5	5.61	17 - 11	5.46		
J	VERTICAL TAIL	41 - 8	12.70	40 - 10	12.45	41 - 7	12.67	40 - 10	12.45		

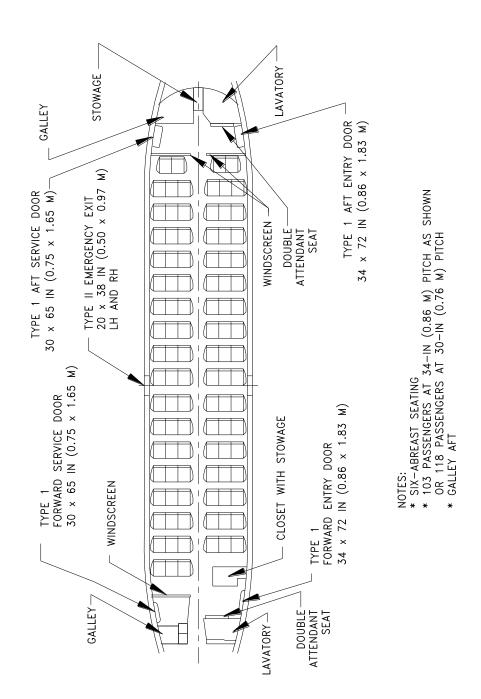
NOTES: CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.

2.3.4 Ground Clearances: Model 737-800, -900, -900ER

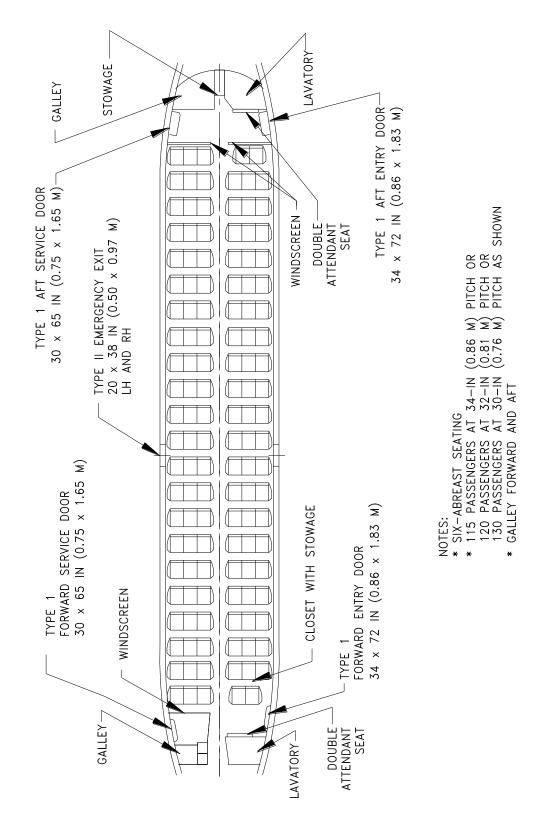
			737-	-800		737-900					
	DESCRIPTION	MAX (A	T OEW)	MIN (A	Г MTW)	MAX (A	T OEW)	MIN (AT MTW)			
		FT - IN	М	FT - IN	М	FT - IN	М	FT - IN	М		
Α	TOP OF FUSELAGE	18 - 3	5.56	17 - 9	5.41	18 - 4	5.59	17 - 10	5.44		
В	ENTRY DOOR NO 1	9 - 0	2.74	8 - 6	2.59	9 - 0	2.74	8 - 6	2.59		
С	FWD CARGO DOOR	4 - 9	1.45	4 - 3	1.30	4 - 9	1.45	4 - 3	1.30		
D	ENGINE	2 - 1	0.64	1 - 7	0.48	2 - 1	0.64	1 - 7	0.48		
Е	WINGTIP	12 - 10	3.91	12 - 0	3.66	12 - 10	3.91	12 - 0	3.66		
F	AFT CARGO DOOR	5 - 11	1.80	5 - 5	1.65	5 - 11	1.80	5 - 5	1.65		
G	ENTRY DOOR NO 2	10 - 3	3.12	9 - 9	2.97	10 - 3	3.12	9 - 9	2.97		
Н	STABILIZER	18 - 6	5.64	18- 0	5.49	18 - 7	5.66	18 - 1	5.51		
J	VERTICAL TAIL	41 - 5	12.62	40 - 7	12.37	41 - 5	12.62	40 - 7	12.37		

NOTES: CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.

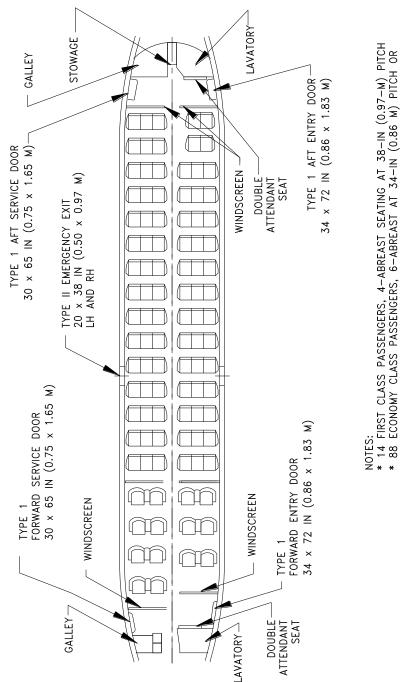
2.3.5 Ground Clearances: Model 737-700, -800, -900, -900ER With Winglets, BBJ, BBJ2



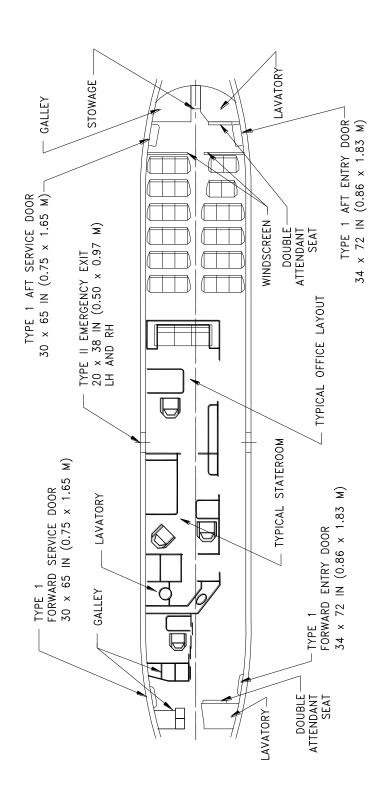
		737-700 WITH WINGLETS, BBJ			737-800 WITH WINGLETS, BBJ2				737-900 WITH WINGLETS					
	DESCRIPTION	MAX (MAX (OEW)		MIN (MTW)		MAX (OEW)		MIN (MTW)		MAX (OEW)		MIN (MTW)	
		FT - IN	М	FT - IN	M	FT - IN	М	FT - IN	M	FT - IN	M	FT - IN	М	
Α	TOP OF FUSELAGE	18 - 3	5.56	17 - 9	5.41	18 - 3	5.56	17 - 9	5.41	18 - 4	5.59	17 - 10	5.41	
В	ENTRY DOOR NO 1	9 - 0	2.74	8 - 6	2.59	9 - 0	2.74	8 - 6	2.59	9 - 0	2.74	8 - 6	2.59	
С	FWD CARGO DOOR	4 - 9	1.45	4 - 3	1.30	4 - 9	1.45	4 - 3	1.30	4 - 9	1.45	4 - 3	1.30	
D	ENGINE	2 - 0	0.61	1 - 6	0.46	2 - 1	0.64	1 - 7	0.48	2 - 1	0.64	1 - 7	0.48	
Е	WINGTIP	21 - 9	6.63	21 - 3	6.48	22 - 2	6.76	21 - 4	6.50	22 - 2	6.76	21 - 4	6.50	
F	AFT CARGO DOOR	5 - 10	1.78	5 - 4	1.63	5 - 11	1.80	5 - 5	1.65	5 - 11	1.80	5 - 5	1.65	
G	ENTRY DOOR NO 2	10 - 2	3.10	9 - 8	2.95	10 - 3	3.12	9 - 9	2.97	10 - 3	3.12	9 - 9	2.97	
Н	STABILIZER	18 - 5	5.61	17 - 11	5.46	18 - 6	5.64	18 - 0	5.49	18 - 7	5.66	18 - 1	5.51	
J	VERTICAL TAIL	41 - 7	12.67	40 - 10	12.45	41 - 5	12.62	40 - 7	12.37	41 - 5	12.62	40 - 7	12.37	
K	BOTTOM OF WINGLET (APPR0OX)	13 - 9	4.19	13 - 3	4.04	14 - 2	4.32	13 - 4	4.06	14 - 2	4.32	13 - 4	4.06	


NOTES: CLEARANCES SHOWN ARE NOMINAL. ADD PLUS OR MINUS 3 INCHES TO ACCOUNT FOR VARIATIONS IN LOADING, OLEO AND TIRE PRESSURES, CENTER OF GRAVITY, ETC.

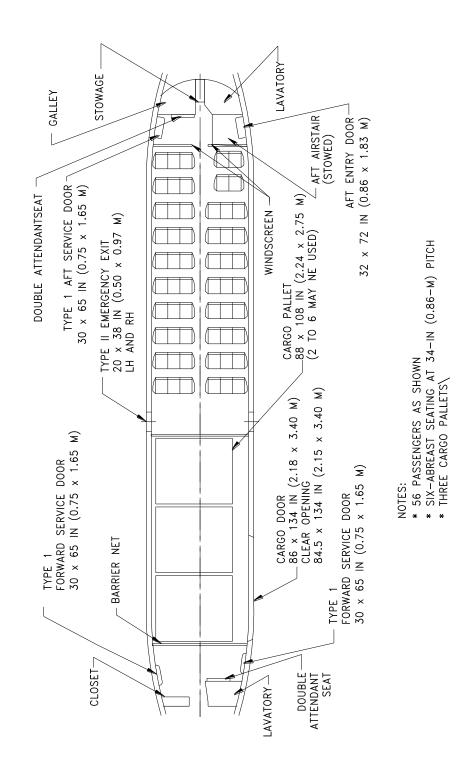
2.4 INTERIOR ARRANGEMENTS


2.4.1 Interior Arrangements: Model 737-100

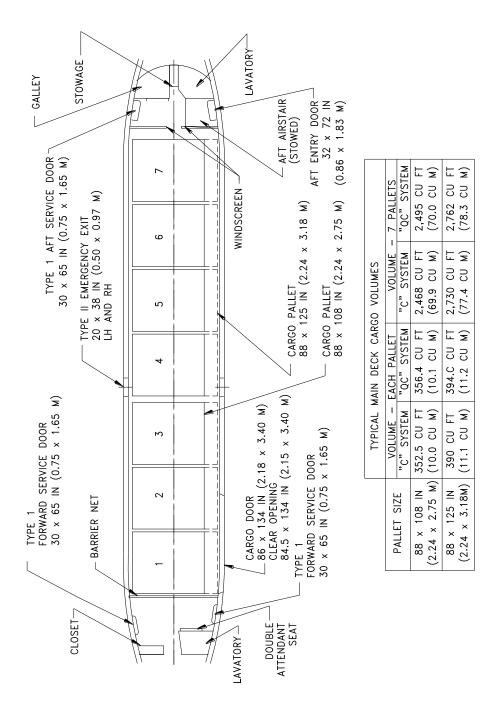
2.4.2 Interior Arrangements: Model 737-200



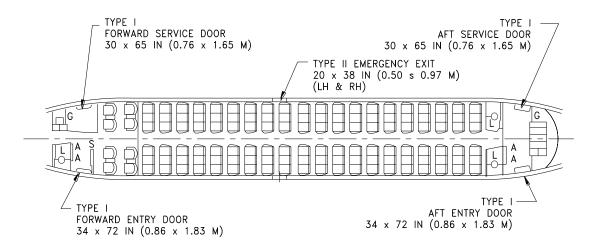
2.4.3 Interior Arrangements: Model 737-200, Mixed Class



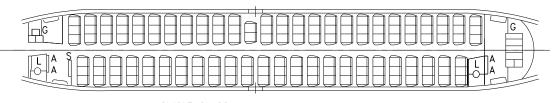
2-39


2.4.4 Interior Arrangements: Model 737-200 Executive Interior Class

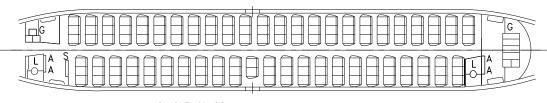
2.4.5 Interior Arrangements: Model 737-200 Passenger/Cargo Configuration



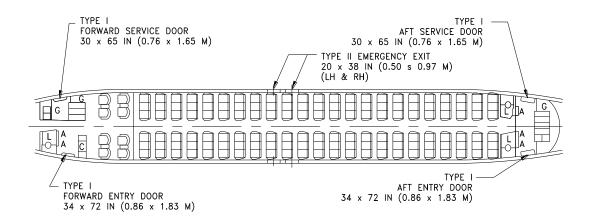
2.4.6 Interior Arrangements: Model 737-200C, All Cargo Configuration



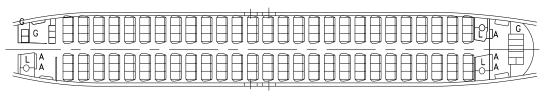
REV A


2.4.7 Interior Arrangements: Model 737-300

MIXED CLASS
8 FIRST CLASS SEATS AT 36-IN PITCH
120 ECONOMY CLASS SEATS AT 32-IN PITCH



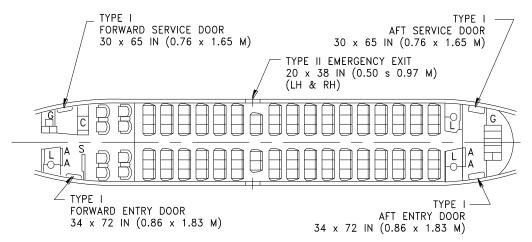
SINGLE CLASS 149 ECONOMY CLASS SEATS AT 30-IN PITCH



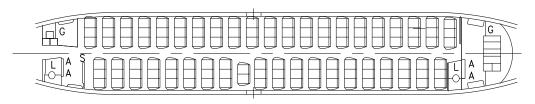
SINGLE CLASS 140 ECONOMY CLASS SEATS AT 32-IN PITCH

2.4.8 Interior Arrangements: Model 737-400

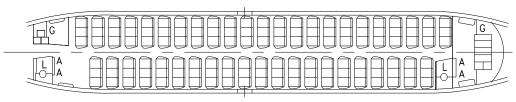
MIXED CLASS 8 FIRST CLASS SEATS AT 36-IN (0.91 M)PITCH 138 ECONOMY CLASS SEATS AT 32-IN (0.81 M) PITCH



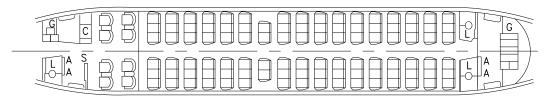
SINGLE CLASS 168 ECONOMY CLASS SEATS AT 30-IN (0.76 M) PITCH



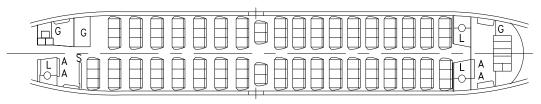
SINGLE CLASS 159 ECONOMY CLASS SEATS AT 32-IN PITCH


2.4.9 Interior Arrangements: Model 737-500

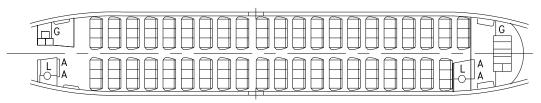
MIXED CLASS
8 FIRST CLASS SEATS AT 36-IN PITCH
100 ECONOMY CLASS SEATS AT 32-IN PITCH



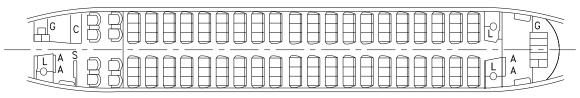
SINGLE CLASS 122 ECONOMY CLASS SEATS AT 32-IN PITCH



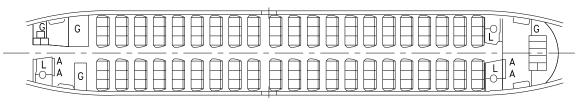
SINGLE CLASS
132 ECONOMY CLASS SEATS AT 30-IN PITCH


2.4.10 Interior Arrangements: Model 737-600

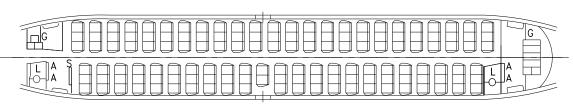
MIXED CLASS
8 FIRST CLASS SEATS AT 36-IN PITCH
100 ECONOMY CLASS SEATS AT 32-IN PITCH



MIXED CLASS
70 BUSINESS CLASS SEATS AT 34-IN PITCH
39 ECONOMY CLASS SEATS AT 32-IN PITCH



SINGLE CLASS
123 ECONOMY CLASS SEATS AT 32-IN PITCH (SHOWN)
OR 130 ECONOMY CLASS SEATS AT 30-IN PITCH

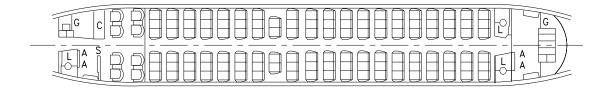

2.4.11 Interior Arrangements: Model 737-700, -700 With Winglets

MIXED CLASS 8 FIRST CLASS SEATS AT 36-IN PITCH 120 ECONOMY CLASS SEATS AT 32-IN PITCH

MIXED CLASS
90 BUSINESS CLASS SEATS AT 34-IN PITCH
36 ECONOMY CLASS SEATS AT 32-IN PITCH

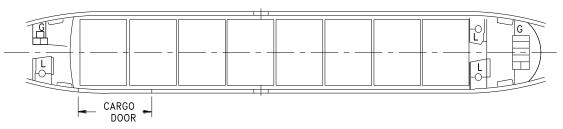
SINGLE CLASS
140 ECONOMY CLASS SEATS AT 32-IN PITCH (SHOWN)
OR 148 ECONOMY CLASS SEATS AT 30-IN PITCH

A ATTENDANT


C CLOSET

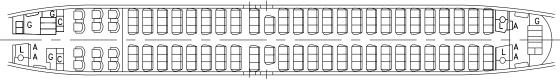
G GALLEY

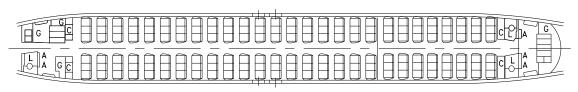
L LAVATORY


S STOWAGE

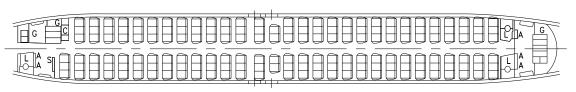
2.4.12 Interior Arrangements: Model 737-700C

PASSENGER CONFIGURATION - MIXED CLASS


8 FIRST CLASS SEATS AT 36-IN PITCH
118 ECONOMY CLASS SEATS AT 32-IN PITCH


CARGO CONFIGURATION

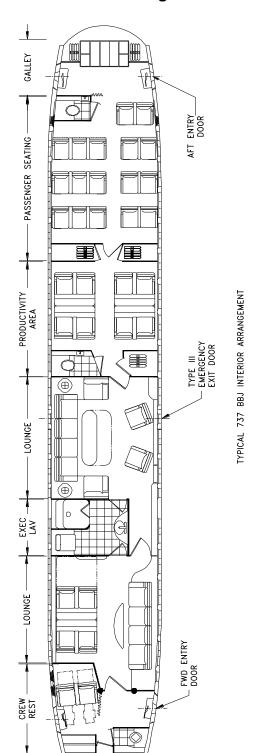
EIGHT 88 X 125 IN (2.24 X 3.18 M) PALLETS AS SHOWN OR EIGHT 88 X 108 IN (2.24 X 2.64 M)

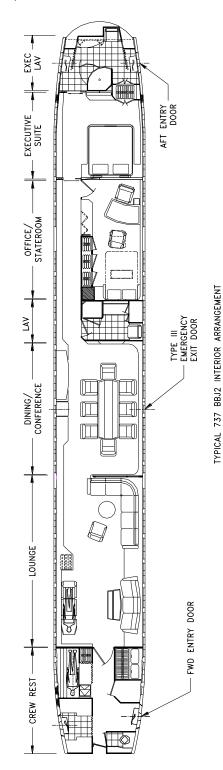

2.4.13 Interior Arrangements: Model 737-800, -800 With Winglets

MIXED CLASS
12 FIRST CLASS SEATS AT 36-IN PITCH
148 ECONOMY CLASS SEATS AT 32-IN PITCH

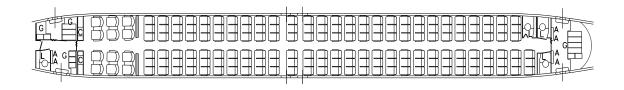
MIXED CLASS 108 BUSINESS CLASS SEATS AT 34-IN PITCH 54 ECONOMY CLASS SEATS AT 32-IN PITCH

SINGLE CLASS
175 ECONOMY CLASS SEATS AT 32-IN PITCH (SHOWN)
OR 184 ECONOMY CLASS SEATS AT 30-IN PITCH

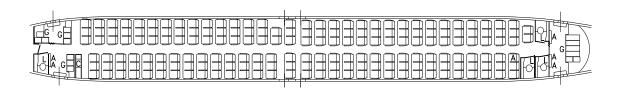

A ATTENDANT C CLOSET


G GALLEY

L LAVATORY

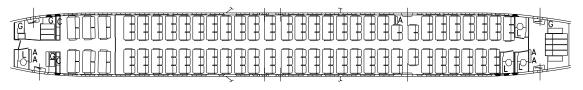

S STOWAGE

2.4.14 Interior Arrangements: Model 737 BBJ, 737 BBJ2



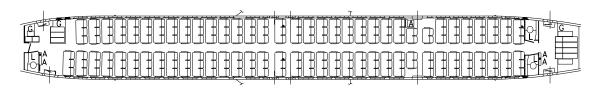
2.4.15 Interior Arrangements: Model 737-900, -900 With Winglets

MIXED CLASS
12 FIRST CLASS SEATS AT 36-IN PITCH
165 ECONOMY CLASS SEATS AT 32-IN PITCH

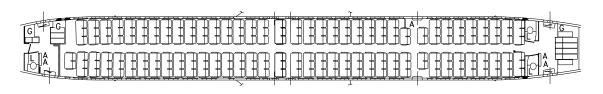

SINGLE CLASS
177 ECONOMY CLASS SEATS AT 32-IN PITCH (SHOWN)
OR 189 ECONOMY CLASS SEATS AT 31-IN PITCH

A ATTENDANT C CLOSET

G GALLEY


L LAVATORY

2.4.16 Interior Arrangements: Model 737-900ER, 900ER With Winglets


MIXED CLASS

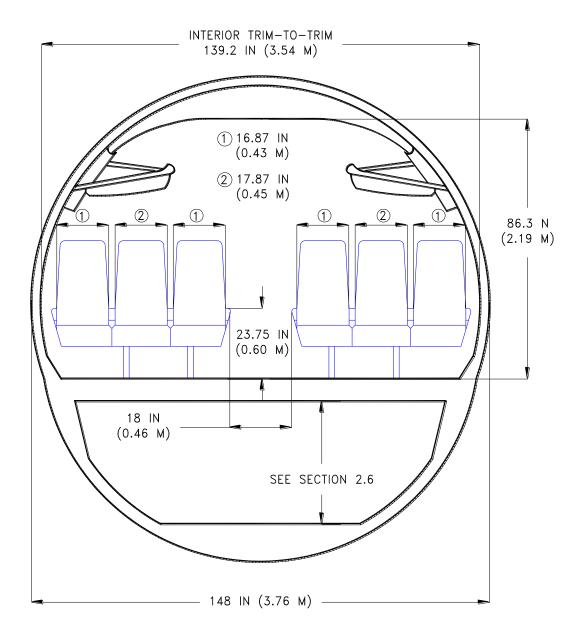
12 FIRST CLASS SEATS AT 36-IN PITCH 162 ECONOMY CLASS SEATS AT 32-IN PITCH

SINGLE CLASS

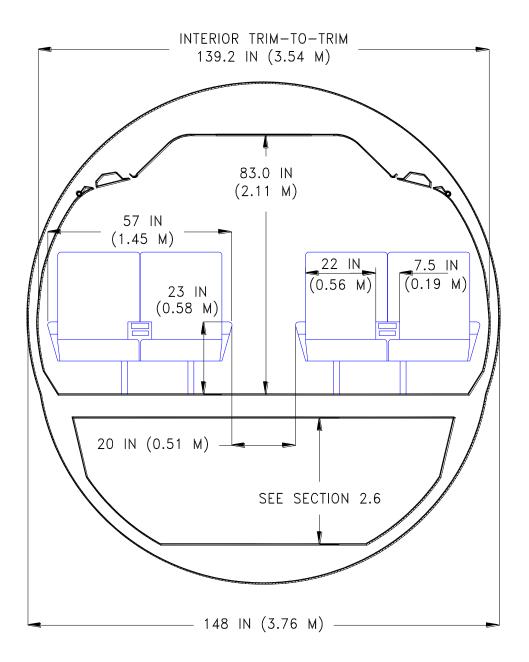
204 ECONOMY CLASS SEATS AT 30-IN PITCH

SINGLE CLASS (HIGH-DENSITY SEATING)
215 ECONOMY CLASS SEATS AT 28-IN PITCH

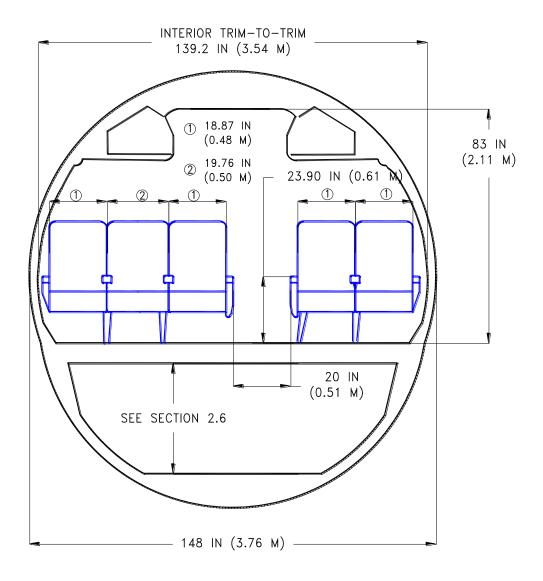
A ATTENDANT

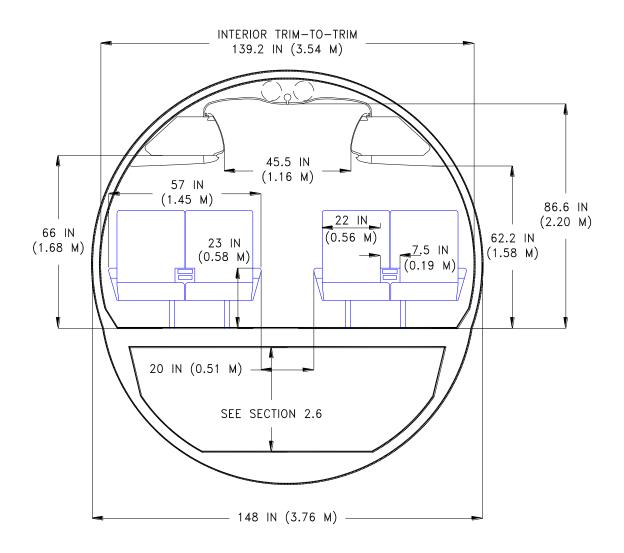

G GALLEY

L LAVATORY

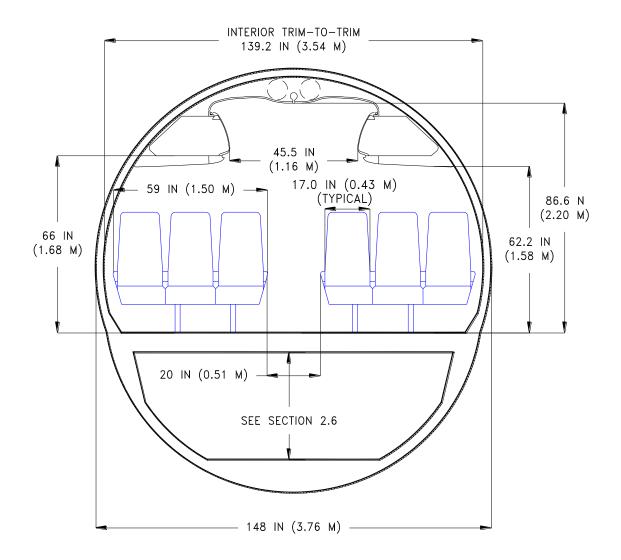

C CLOSET

2.5 CABIN CROSS SECTIONS

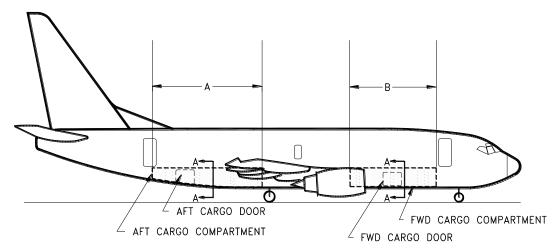

2.5.1 Cabin Cross-Sections: Model 737-100, Six-Abreast Seating With Hatrack-Type Stowage System


2.5.2 Cabin Cross-Sections: Model 737-200, Four-Abreast Seating With "Wide-Body Look" Interior

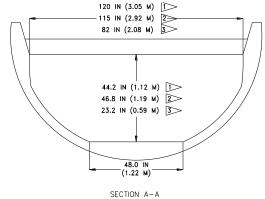
2.5.3 Cabin Cross-Sections: Model 737-200, Five-Abreast Seating With Carry All Compartments



2.5.4 Cabin Cross-Sections: Model 737-300, -400, -500. -600, -700, -800, -900, BBJ1, BBJ2, Four-Abreast Model 737-200 With Advanced Technology Interior

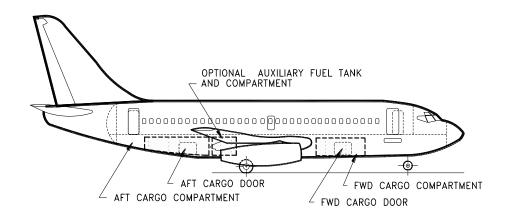

NOTE: CABIN INTERIOR FOR BBJ1 AND BBJ2 AIRPLANES ARE DEPENDENT ON CUSTOMER OPTION.

2.5.5 Cabin Cross-Sections: Model 737-200 With Advanced Technology Interior and Model 737-300, -400, -500. -600, -700, -800, -900, Six-Abreast Seating

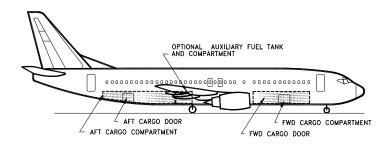

2.6 LOWER CARGO COMPARTMENTS

2.6.1 Lower Cargo Compartments: Model 737-100, All Models, **Dimensions**

RIGHT SIDE VIEW


AIRPLANE MODEL	DIMENSION A	DIMENSION B
737-100	18 FT 3 IN (5.56 M)	11 FT 7 IN (3.53 M)
737-200	21 FT 5 IN (6.53 M)	14 FT 7 IN (4.45 M)
737-300	26 FT 5 IN (8.05 M)	16 FT 8 IN (5.08 M)
737-400	30 FT 5 IN (9.27 M)	22 FT 8 IN (6.91 M)
737-500	23 FT 1 IN (7.04 M)	12 FT 2 IN (3.71 M)
737-600	23 FT 0 IN (7.01 M)	10 FT 10 IN (3.30 M)
737-700, BBJ	26 FT 4 IN (8.03 M)	15 FT 4 IN (4.68 M)
737-800, BBJ2	35 FT 8 IN (10.87 M)	25 FT 2 IN (7.67 M)
737-900	39 FT 2 IN (11.94 M)	30 FT 4 IN (9.25 M)

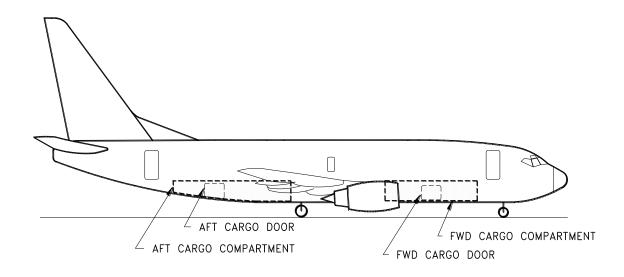
FWD CARGO COMPARTMENT 2>AFT CARGO COMPARTMENT, FWD BULKHEAD


3>AFT CARGO COMPARTMENT, AFT BULKHEAD

2.6.2 Lower Cargo Compartments: Model 737-100, -200, Capacities

	AFT CARGO COMPARTMENT			FORWARD	
AIRPLANE MODEL	BULK CARGO	AUXILIARY FUEL TANK CAPACITY	AUXILIARY FUEL TANK COMPARTMENT	COMPARTMENT BULK CARGO	TOTAL BULK CARGO
737-100	370 CU FT (10.48 CU M)	0	0	280 CU FT (7.93 CU M)	650 CU FT (18.41 CU M)
737-200 AND	505 CU FT (14.31 CU M)	0	0		875 CU FT (24.79 CU M)
ADVANCED 737-200	370 CU FT (10.48 CU M)	390 GAL (1,475 L)	135 CU FT (3.83 CU M)	370 CU FT	740 CU FT (20.96 CU M)
	270 CU FT (7.65 CU M)	810 GAL (3,065 L)	235 CU FT (6.66 CU M)	(10.48 CU M)	640 CU FT (18.13 CU M)

2.6.3 Lower Cargo Compartments: Model 737-300, -400, -500, Capacities

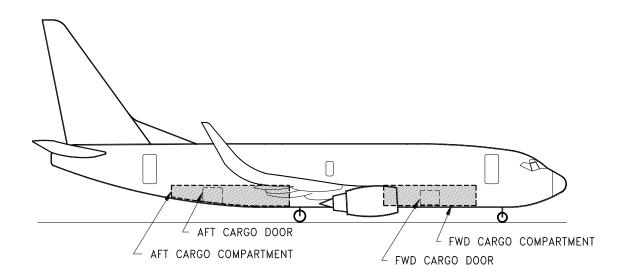

AIRPLANE AFT CARGO COMPARTMENT	FORWARD	TOTAL BULK	NOTES
--------------------------------	---------	------------	-------

MODEL	BULK CARGO	AUXILIARY FUEL TANK CAPACITY	AUXILIARY FUEL TANK COMPARTMENT CAPACITY	COMPARTMENT BULK CARGO	CARGO	
737-300	643 CU FT (18.2 CU M)	0	0		1,068 CU FT (30.2 CU M)	(1)
	504 CU FT (14.3 CU M)	390 GAL (1,475 L)	139 CU FT (3.9 CU M)		929 CU FT (26.3 CU M)	(2)
	416 CU FT (11.8 CU M)	810 GAL (3,065 L)	227 CU FT (6.4 CU M)	425 CU FT (12.0 CU M)	841 CU FT (23.8 CU M)	(2)
	492 CU FT (13.9 CU M)	500 GAL (1,893 L)	151 CU FT (5.3 CU M)		917 CU FT (26.0 CU M)	(3)
	367 CU FT (10.4 CU M)	1,000 GAL (3,785 L)	276 CU FT (7.8 CU M)		792 CU FT (22.4 CU M)	(3)
737-400	766 CU FT (21.7 CU M)	0	0		1,373 CU FT (38.9 CU M)	(1)
	627 CU FT (17.7 CU M)	390 GAL (1,475 L)	139 CU FT (3.9 CU M)		1,234 CU FT (34.9 CU M)	(2)
	539 CU FT (15.3 CU M)	810 GAL (3,065 L)	227 CU FT (6.4 CU M)	607 CU FT (17.2 CU M)	1,146 CU FT (32.4 CU M)	(2)
	615 CU FT (17.4 CU M)	500 GAL (1,893 L)	151 CU FT (5.3 CU M)		1,222 CU FT (34.6 CU M)	(3)
	490 CU FT (13.9 CU M)	1,000 GAL (3,785 L)	276 CU FT (7.8 CU M)		1,097 CU FT (31.0 CU M)	(3)
737-500	535 CU FT (15.1 CU M)	0	0		822 CU FT (233.3 CU M)	(1)
	396 CU FT (11.2 CU M)	390 GAL (1,475 L)	139 CU FT (3.9 CU M)		683 CU FT (19.3 CU M)	(2)
	308 CU FT (8.7 CU M)	810 GAL (3,065 L)	227 CU FT (6.4 CU M)	287 CU FT (8.1 CU M)	595 CU FT (16.8 CU M)	(2)
	384 CU FT (10.9 CU M)	500 GAL (1,893 L)	151 CU FT (5.3 CU M)		671 CU FT (19.0 CU M)	(3)
	259 CU FT (7.3 CU M)	1,000 GAL (3,785 L)	276 CU FT (7.8 CU M)		546 CU FT (15.5 CU M)	(3)

NOTES

- 1. WITHOUT AUXILIARY FUEL TANK
- 2. WITH BOEING-INSTALLED AUXILIARY FUEL TANK
- 3. WITH ROGERSON-INSTALLED AUXILIARY FUEL TANK

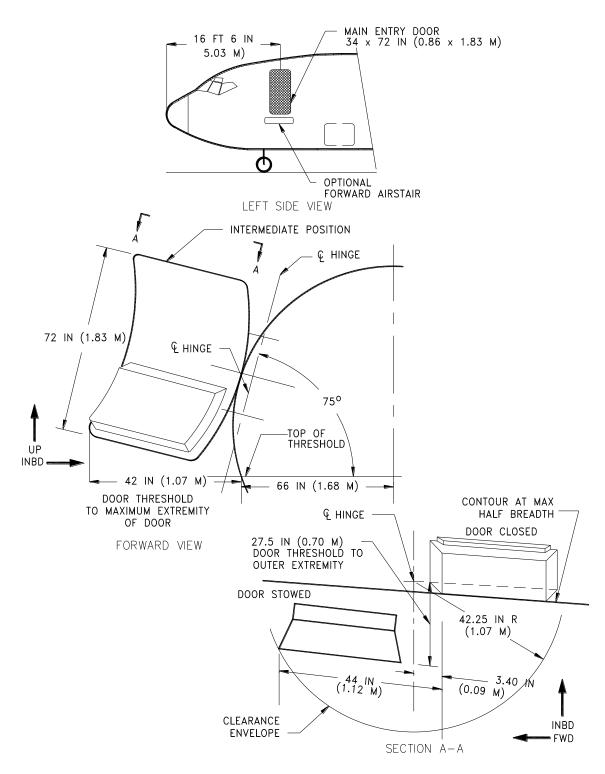
2.6.4 Lower Cargo Compartments: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, Capacities



	AFT CARGO COMPARTMENT		ARTMENT			
AIRPLANE MODEL	BULK CARGO	AUXILIARY FUEL TANK CAPACITY	AUXILIARY FUEL TANK COMPARTMENT CAPACITY	FORWARD COMPARTMENT BULK CARGO	TOTAL BULK CARGO	NOTES
737-600	488 CU FT (13.8 CU M)	0	0	268 CU FT (7.6 CU M)	756 CU FT (21.4 CU M)	(1)
737-700	596 CU FT (16.9 CU M)	0	0	406 CU FT (11.5 CU M)	1,002 CU FT (28.4 CU M)	(1)
737-800	899 CU FT (25.5 CU M)	0	0	692 CU FT (19.6 CU M)	1,591 CU FT (45.1 CU M)	(1)
737-900	1,012 CU FT (28.7 CU M)	0	0	840 CU FT (23.8 CU M)	1,852 CU FT (52.5 CU M)	(1)
737-900ER	996 CU FT (28.2 CU M)	0	0	830 CU FT (23.5 CU M)	1,826 CU FT (51.7 CU M)	(2)
737-900ER	843 CU FT (23.9 CU M)	520 GAL (1,968 L)	153 CU FT (4.3 CU M)	830 CU FT (23.5 CU M)	1,673 CU FT (47.7 CU M)	(3)
737-900ER	755 CU FT (21.4 CU M)	962 GAL (3,641 L)	241 CU FT (6.8 CU M)	830 CU FT (23.5 CU M)	1,585 CU FT (44.9 CU M)	(4)

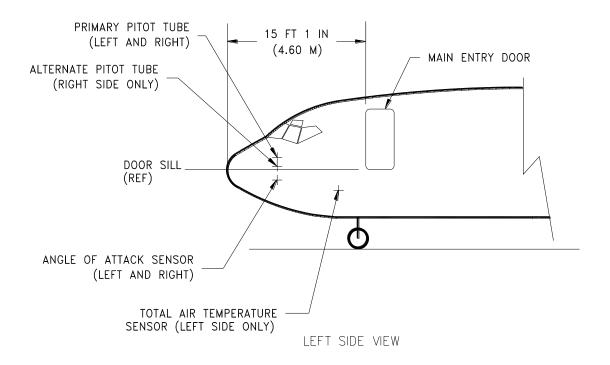
NOTES:

- 1. NO AUXILIARY FUEL TANK
- 2. USEABLE CAPACITY, NO AUXILIARY FUEL TANK PRELIMINARY ESTIMATES
- 3. USEABLE CAPACITY, WITH ONE AUXILIARY FUEL TANK PRELIMINARY ESTIMATES
- 4. USEABLE CAPACITY, WITH TWO AUXILIARY FUEL TANKS PRELIMINARY ESTIMATES

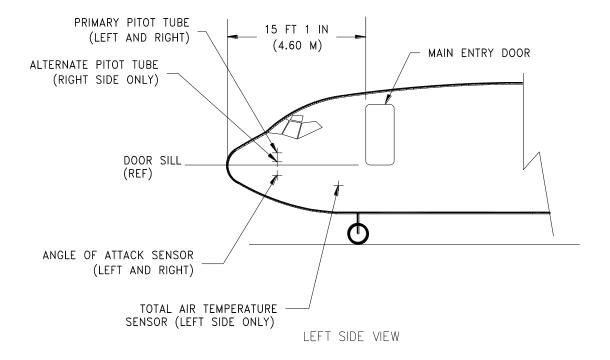

2.6.5 Lower Cargo Compartments: Model 737BBJ, 737 BBJ2, Capacities


	FWD CARGO COMPARTMENT			AFT CA	AFT CARGO COMPARTMENT			TOTAL CARGO	
AIRPLANE MODEL	NO OF			NO OF	CAPACITY	' AVAILABLE	CAPACITY AVAILABLE		
WODEL	FUEL TANKS	CU FT	CU M	FUEL TANKS	CU FT	CU M	CU FT	CU M	
737 BBJ	0	377	10.7	3	234	6.6	611	17.3	
	0	377	10.7	4	138	3.9	515	14.6	
	2	181	5.1	3	234	6.6	415	11.7	
	2	181	5.1	4	138	3.9	319	9.0	
	2	181	5.1	5	87	2.5	268	7.6	
	3	127	3.6	5	87	2.5	214	6.1	
	4	73	2.1	5	87	2.5	160	4.6	
737 BBJ2	0	985	27.9	3	561	15.9	1,546	43.8	
	0	985	27.9	3	454	12.8	1,423	40.3	
	0	985	27.9	5	346	9.8	1,331	37.7	
	1	662	18.8	3	561	15.9	1,224	34.7	
	1	662	18.8	4	454	12.8	1,116	31.6	
	2	468	13.3	3	561	15.9	1,029	29.2	
	2	468	13.3	4	454	12.8	922	26.1	
	2	468	13.3	5	346	9.8	814	23.1	

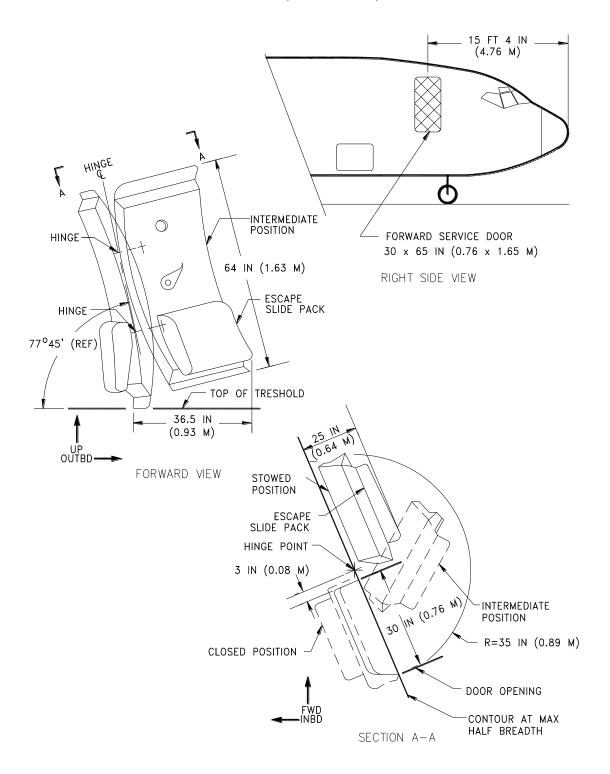
2.7 DOOR CLEARANCES


2.7.1 Door Clearances: Model 737, All Models, Forward Main Entry Door No. 1

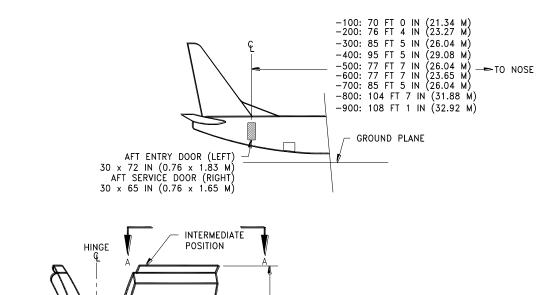
2.7.2 Door Clearances: Model 737, All Models, Optional Forward Airstairs, Main Entry Door No 1

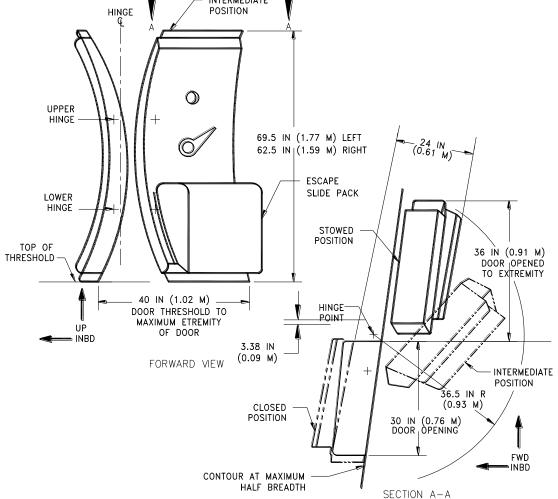

2.7.3 Door Clearances: Models 737-100, -200, -300, -400, -500, Locations of Sensors and Probes – Forward of Main Entry Door No 1

Correction to existing erroneous data; jpc 11 December 2012

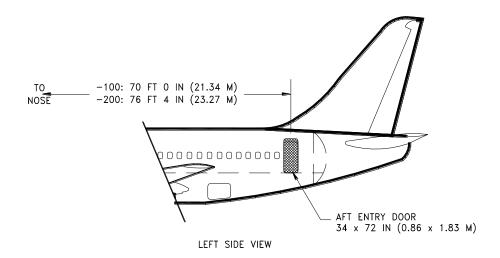

NAME OF SENSOR	DISTANCE AFT OF NOSE	DISTANCE ABOVE (+) OR BELOW (-) DOOR SILL REFERENCE LINE	PROTRUSION FROM AIRPLANE SKIN
PRIMARY PITOT-STATIC (L/R)	9 FT 10 IN (3.0 M)	+10 IN (0.25 M)	6 IN (0.15 M)
ALTERNATE PITOT-STATIC (R)	9 FT 10 IN (3.0 M)	-9 IN (-0.23 M)	6 IN (0.15 M)
ANGLE OF ATTACK (L/R)	9 FT 10 IN (3.0 M)	-1 IN (-0.03 M)	4 IN (0.10 M)
TOTAL AIR TEMPERATURE (L)	11 FT 6 IN (3.51 M)	+ 1 FT 6 IN (0.46 M)	4 IN (0.10 M)

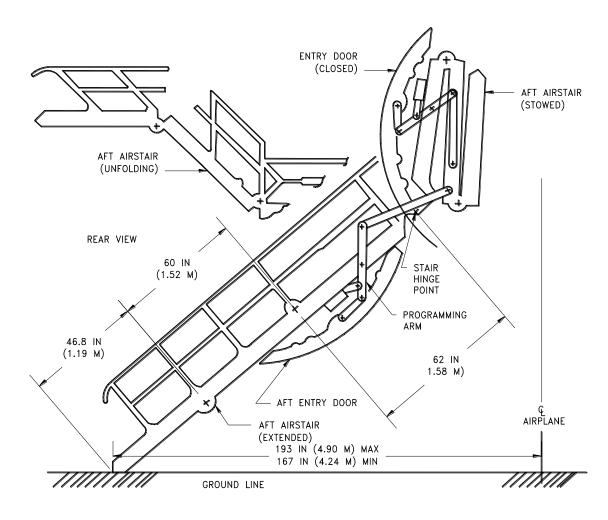
2.7.4 Door Clearances: Models 737-600, -700, -800, -900ER, -BBJ, -BBJ2, Locations of Sensors and Probes – Forward of Main Entry Door No 1

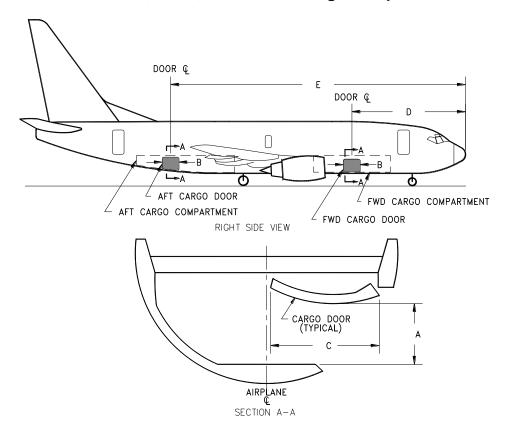



NAME OF SENSOR	DISTANCE AFT OF NOSE	DISTANCE ABOVE (+) OR BELOW (-) DOOR SILL REFERENCE LINE	PROTRUSION FROM AIRPLANE SKIN
PRIMARY PITOT-STATIC (L/R)	5 FT 2 IN (1.57 M)	+1 FT 3 IN (0.38 M)	6 IN (0.15 M)
ALTERNATE PITOT-STATIC (R)	5 FT 2 IN (1.57 M)	+ 3 IN (0.08 M)	6 IN (0.15 M)
ANGLE OF ATTACK (L/R)	5 FT 2 IN (1.57 M)	-6 IN (-0.15 M)	4 IN (0.10 M)
TOTAL AIR TEMPERATURE (L)	11 FT 6 IN (3.50 M)	+ 1 FT 6 IN (0.46 M)	4 IN (0.10 M)

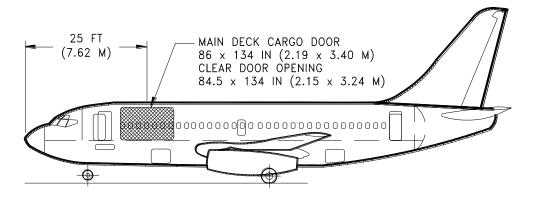
2.7.5 Door Clearances: Model 737, All Models, Forward Service Door



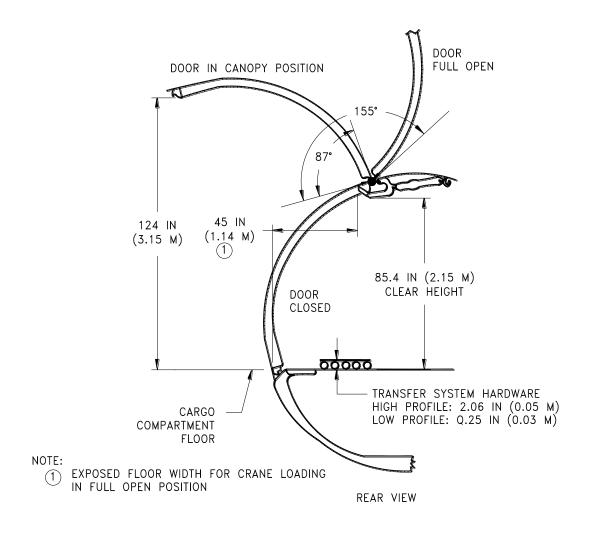

2.7.6 Door Clearances: Model 737, All Models, Aft Entry Door and Aft Service Door



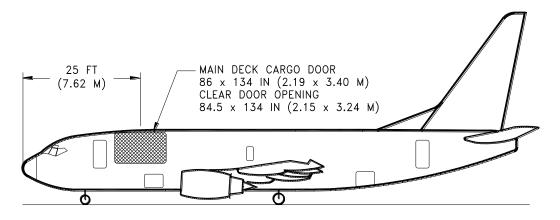
2.7.7 Door Clearances: Model 737-100, 200, AFT Entry Door With Optional Airstair

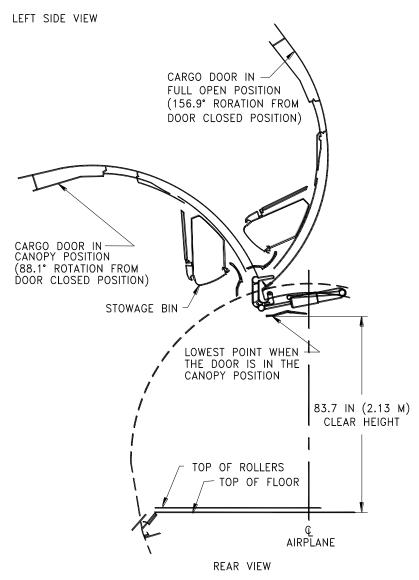


2.7.8 Door Clearances: Model 737-100, -200, -300, -400, -500, 600, 700, -800, -900, BBJ1, BBJ2, Lower Deck Cargo Compartments



	FORWARD CARGO DOOR			AFT CARGO DOOR			
AIRPLANE MODEL	DOOR SIZE (C x B)	CLEAR OPENING (A x B)	DISTANCE FROM NOSE TO DOOR CL (D)	DOOR SIZE (C x B)	CLEAR OPENING (A x B)	DISTANCE FROM NOSE TO DOOR CL (E)	
737-100	51 x 48 IN	35 x 48 IN	26 FT 4.5 IN	48 x 48 IN	33 x 48 IN	60 FT 3.5 IN	
	(1.30 x 1.22 M)	(0.89 x 1.22 M)	(8.03 M)	(1.22 x 1.22 M)	(0.84 x 1.22 M)	(18.37 M)	
737-200	51 x 48 IN	35 x 48 IN	28 FT 0.25 IN	48 x 48 IN	33 x 48 IN	63 FT 10.5 IN	
	(1.30 x 1.22 M)	(0.89 x 1.22 M)	(8.54 M)	(1.22 x 1.22 M)	(0.84 x 1.22 M)	(19.47 M)	
737-300	51 x 48 IN	35 x 48 IN	28 FT 0.25 IN	48 x 48 IN	33 x 48 IN	72 FT 6.5 IN	
	(1.30 x 1.22 M)	(0.89 x 1.22 M)	(8.54 M)	(1.22 x 1.22 M)	(0.84 x 1.22 M)	(22.11 M)	
737-400	51 x 48 IN	35 x 48 IN	28 FT 0.25 IN	48 x 48 IN	33 x 48 IN	82 FT 6.5 IN	
	(1.30 x 1.22 M)	(0.89 x 1.22 M)	(8.54 M)	(1.22 x 1.22 M)	(0.84 x 1.22 M)	(25.16 M)	
737-500	51 x 48 IN	35 x 48 IN	24 FT 8.25 IN	48 x 48 IN	33 x 48 IN	64 FT 8.5 IN	
	(1.30 x 1.22 M)	(0.89 x 1.22 M)	(7.52 M)	(1.22 x 1.22 M)	(0.84 x 1.22 M)	(19.72 M)	
737-600	51 x 48 IN	35 x 48 IN	24 FT 8.25 IN	48 x 48 IN	33 x 48 IN	64 FT 8.5 IN	
	(1.30 x 1.22 M)	(0.89 x 1.22 M)	(7.52 M)	(1.22 x 1.22 M)	(0.84 x 1.22 M)	(19.72 M)	
737-700	51 x 48 IN	35 x 48 IN	28 FT 0.25 IN	48 x 48 IN	33 x 48 IN	72 FT 6.5 IN	
737 BBJ1	(1.30 x 1.22 M)	(0.89 x 1.22 M)	(8.54 M)	(1.22 x 1.22 M)	(0.84 x 1.22 M)	(22.11 M)	
737-800	51 x 48 IN	35 x 48 IN	28 FT 0.25 IN	48 x 48 IN	33 x 48 IN	91 FT 8.5 IN	
737 BBJ2	(1.30 x 1.22 M)	(0.89 x 1.22 M)	(8.54 M)	(1.22 x 1.22 M)	(0.84 x 1.22 M)	(27.95 M)	
737-900	51 x 48 IN	35 x 48 IN	28 FT 0.25 IN	48 x 48 IN	33 x 48 IN	100 FT 4.5 IN	
	(1.30 x 1.22 M)	(0.89 x 1.22 M)	(8.54 M)	(1.22 x 1.22 M)	(0.84 x 1.22 M)	(30.59 M)	


2.7.9 Door Clearances: Model 737-200C, Main Deck Cargo Door



LEFT SIDE VIEW

2.7.10 Door Clearances: Model 737-700C, Main Deck Cargo Door

3.0 AIRPLANE PERFORMANCE

3.1 GENERAL INFORMATION

The graphs in Section 3.2 provide information on operational empty weight (OEW) and payload, trip range, brake release gross weight, and fuel limits for airplane models with the different engine options. To use these graphs, if the trip range and zero fuel weight (OEW + payload) are known, the approximate brake release weight can be found, limited by fuel quantity.

The graphs in Section 3.3 provide information on F.A.R. takeoff runway length requirements with the different engines at different pressure altitudes. Maximum takeoff weights shown on the graphs are the heaviest for the particular airplane models with the corresponding engines. Standard day temperatures for pressure altitudes shown on the F.A.R. takeoff graphs are given below:

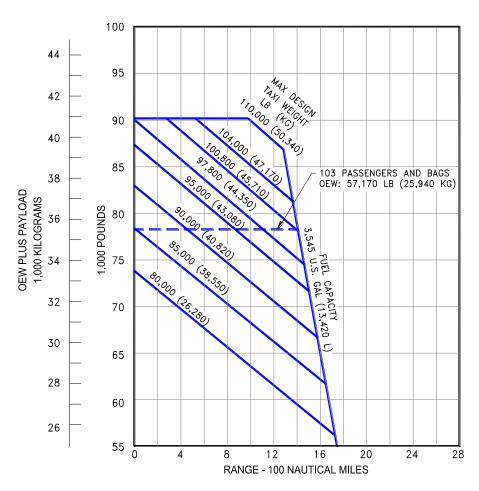
PRESSURI	E ALTITUDE	STANDARD DAY TEMP		
FEET	METERS	°F	°C	
0	0	59.0	15.00	
2,000	610	51.9	11.04	
4,000	1,219	44.7	7.06	
6,000	1,829	37.6	3.11	
8,000	2,438	30.5	-0.85	

For airplanes which are governed by the European Joint Airworthiness Authorities (JAA), the wet runway performance is shown in accordance with JAR-OPS 1 Subpart F, with wet runways defined in Paragraph 1.480(a)(10). Skid-resistant runways (grooved or PFC treated) per FAA or ICAO specifications exhibit runway length requirements that remove some or all of the length penalties associated with smooth (non-grooved) runways. Under predominantly wet conditions, the wet runway performance characteristics may be used to determine runway length requirements, if it is longer than the dry runway performance requirements.

The graphs in Section 3.4 provide information on landing runway length requirements for different airplane weights and airport altitudes. The maximum landing weights shown are the heaviest for the particular airplane model.

3.2 PAYLOAD/RANGE FOR LONG RANGE CRUISE

3.2.1 Payload/Range for Long Range Cruise: Model 737-100 (JT8D-7 Engines)

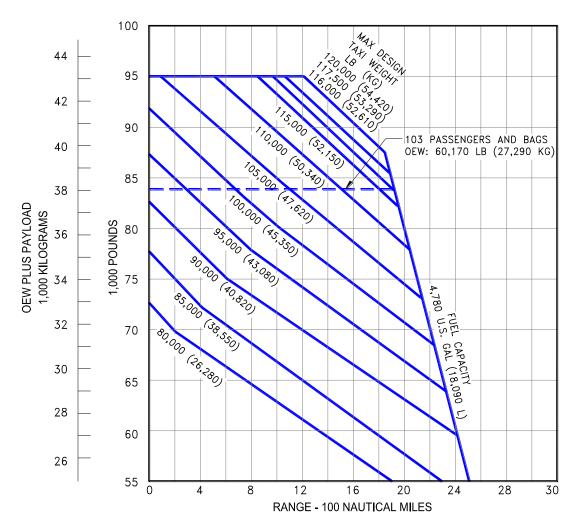

NOTES:

- * DOMESTIC RESERVES
- * JT9D-7 ENGINES

- * STANDARD DAY, ZERO WIND

 * LRC AT 30,000 FEET (9,150 METERS)

 * CONSULT WITH USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

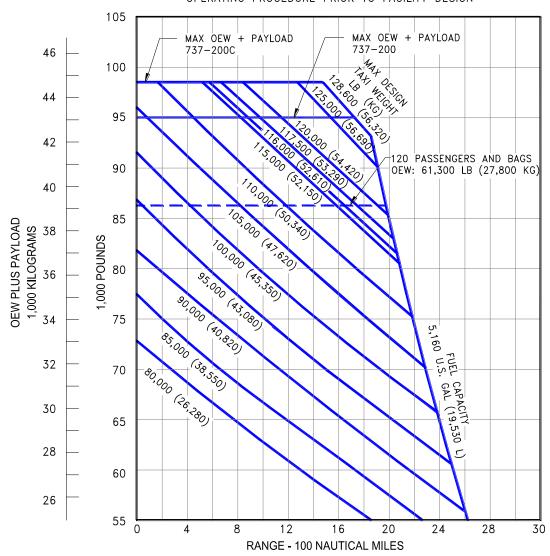


* FOR TAKEOFF WEIGHT, SUBTRACT 500 LB (227 KG) FROM TAXI WEIGHT

3.2.2 Payload/Range for Long Range Cruise: Model 737-200 (JT8D-9/9A Engines)

NOTES:

- * DOMESTIC RESERVES
- * JT9D-9/9A ENGINES
- * STANDARD DAY, ZERO WIND
- * LRC AT 30,000 FEET (9,150 METERS)
- * CONSULT WITH USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

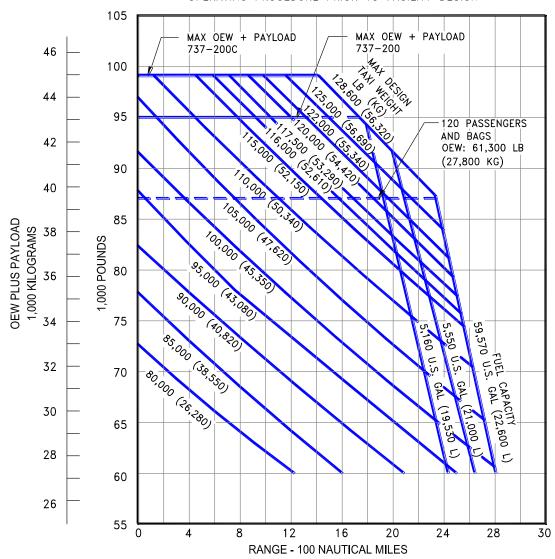


* FOR TAKEOFF WEIGHT, SUBTRACT 500 LB (227 KG) FROM TAXI WEIGHT

3.2.3 Payload/Range for Long Range Cruise: Model 737-200 (JT8D-15/15A Engines)

NOTES:

- * DOMESTIC RESERVES * JT9D-15/15A ENGINES * STANDARD DAY, ZERO WIND
- * LRC AT 30,000 FEET (9,150 METERS)
- * CONSULT WITH USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

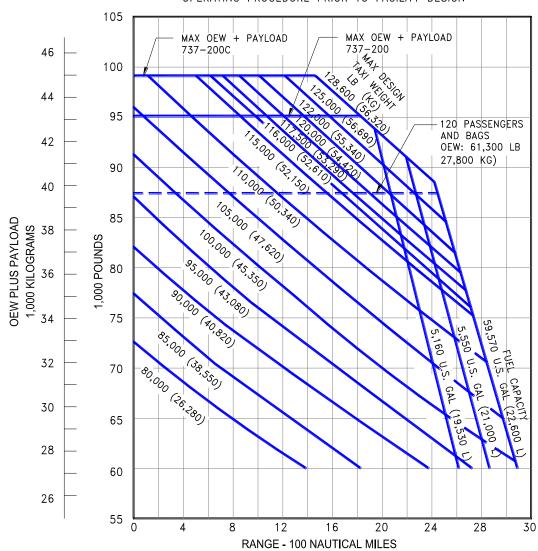


* FOR TAKEOFF WEIGHT, SUBTRACT 500 LB (227 KG) FROM TAXI WEIGHT

3.2.4 Payload/Range for Long Range Cruise: Model Advanced 737-200 (JT8D-17/17A Engines)

NOTES:

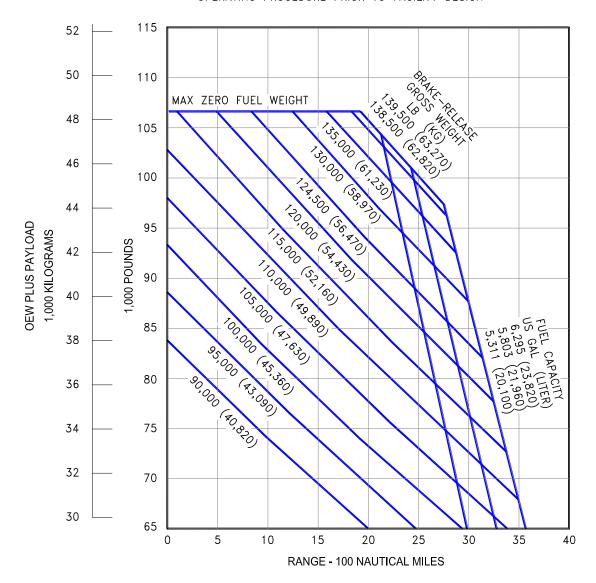
- * DOMESTIC RESERVES
- JT9D-17/17A ENGINES
- STANDARD DAY, ZERO WIND
- LRC AT 30,000 FEET (9,150 METERS)
 CONSULT WITH USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN



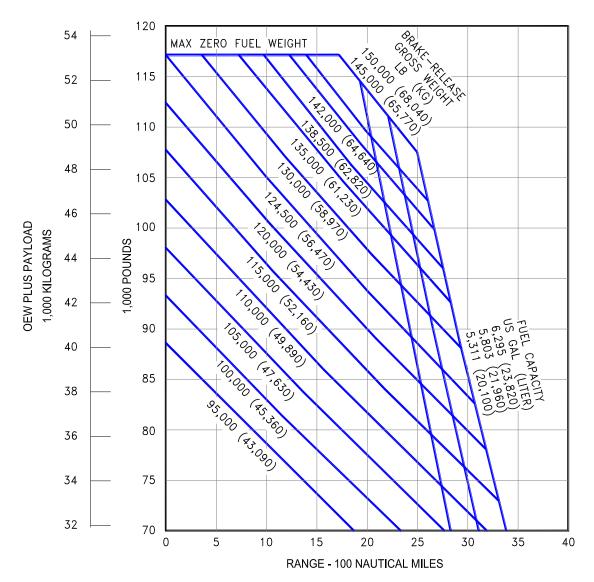
* FOR TAKEOFF WEIGHT, SUBTRACT 500 LB (227 KG) FROM TAXI WEIGHT

3.2.5 Payload/Range for Long Range Cruise: Model Advanced 737-200 (JT8D-17R/17AR Engines)

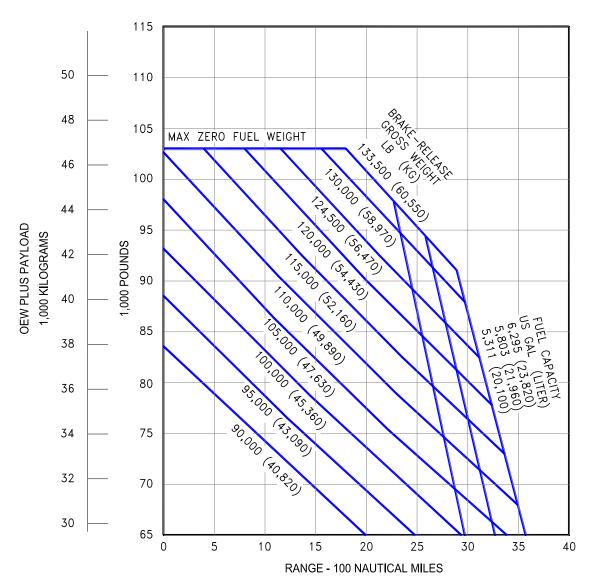
NOTES:


- * DOMESTIC RESERVES
- JT9D-17R/17AR ENGINES
- STANDARD DAY, ZERO WIND
- * LRC AT 30,000 FEET (9,150 METERS)
 * CONSULT WITH USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

* FOR TAKEOFF WEIGHT, SUBTRACT 500 LB (227 KG) FROM TAXI WEIGHT


3.2.6 Payload/Range for Long Range Cruise: Model 737-300

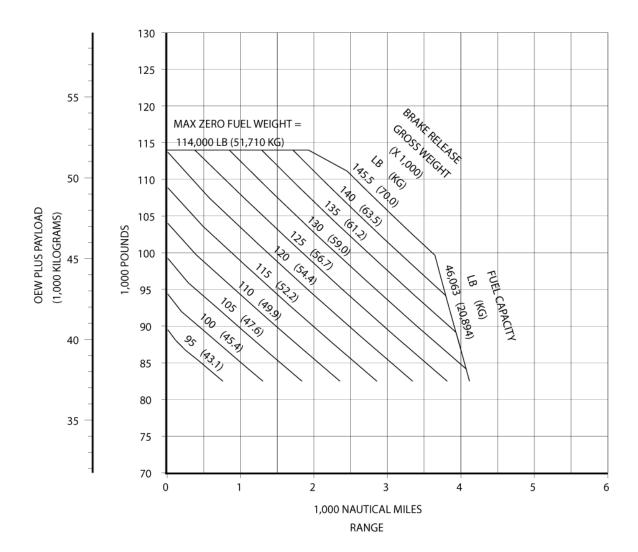
- * DOMESTIC RESERVES
- * CFM56-3B-1 OR CFM56-3B-2 ENGINES
- * STANDARD DAY, ZERO WIND
- * LRC AT 31,000/35,000 FEET
- * CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN


Payload/Range for Long Range Cruise: Model 737-400 3.2.7

- * DOMESTIC RESERVES
- * CFM56-3B-2 OR CFM56-3C-1 ENGINES
- * STANDARD DAY, ZERO WIND
- * LRC AT 31,000/35,000 FEET * CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

Payload/Range for Long Range Cruise: Model 737-500 3.2.8

- * DOMESTIC RESERVES
- * CFM56-3B-1 ENGINES
- * STANDARD DAY, ZERO WIND
- * LRC AT 31,000/35,000 FEET * CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

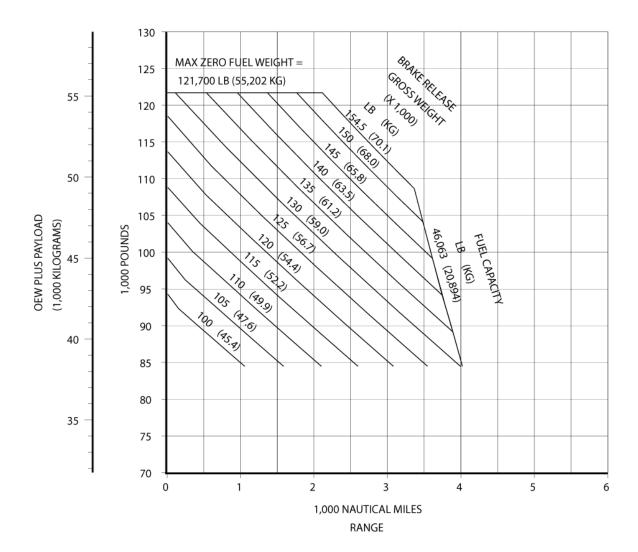


3.2.9 Payload/Range for Long Range Cruise: Model 737-600

DO NOT USE FOR DISPATCH

Payload/Range 737-600 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEED
- TYPICAL MISSION RULES
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.

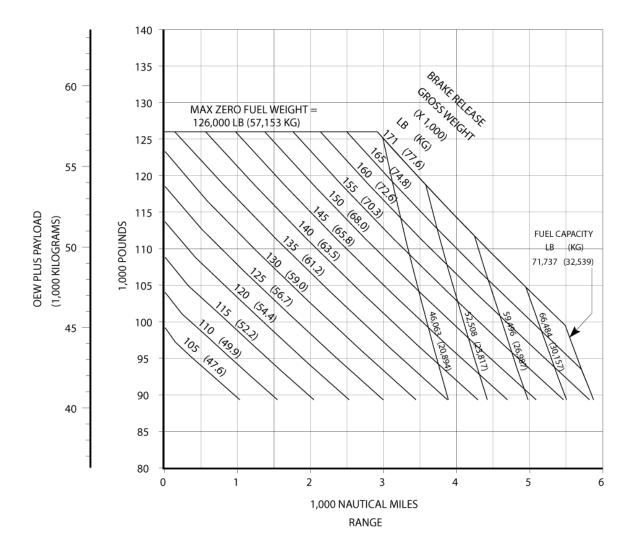


3.2.10 Payload/Range for Long Range Cruise: Model 737-700

DO NOT USE FOR DISPATCH

Payload/Range 737-700/-700W (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.

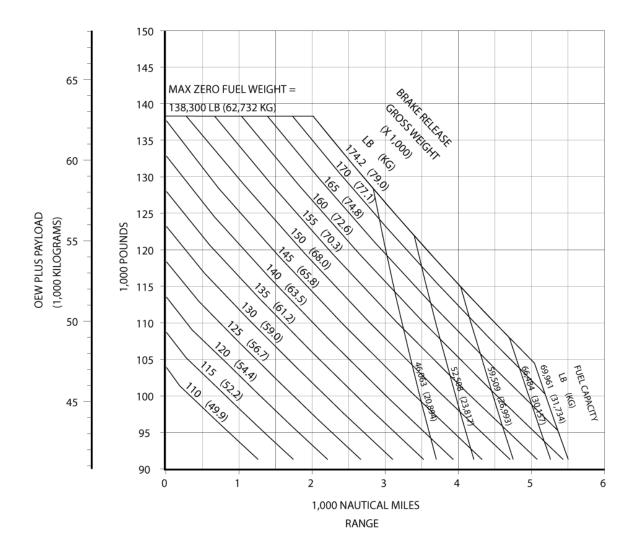


3.2.11 Payload/Range for Long Range Cruise: Model 737-700ER

DO NOT USE FOR DISPATCH

Payload/Range 737-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.

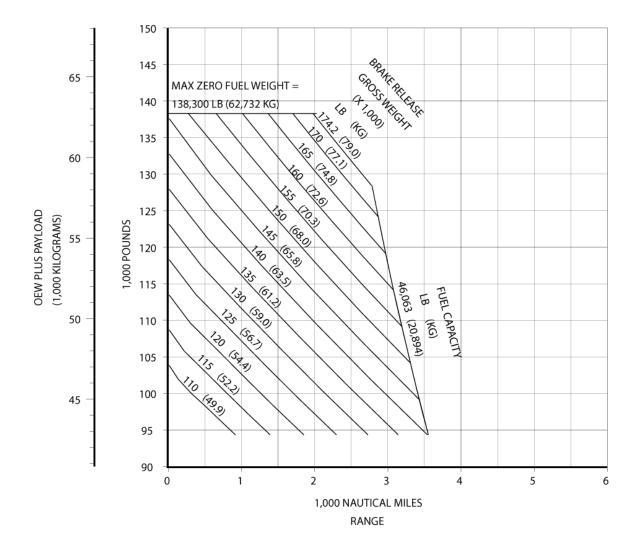


3.2.12 Payload/Range for Long Range Cruise: Model 737-800

DO NOT USE FOR DISPATCH

Payload/Range 737-800/800W/BBJ2 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.

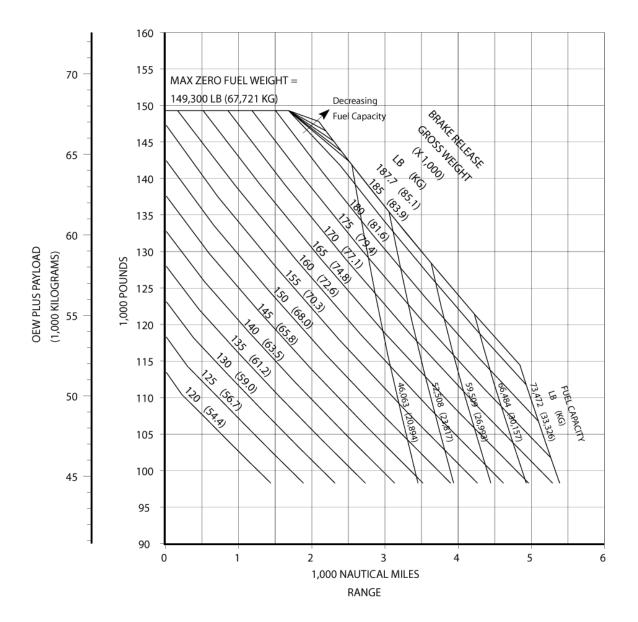


3.2.13 Payload/Range for Long Range Cruise: Model 737-900

DO NOT USE FOR DISPATCH

Payload/Range 737-900/-900W (CFM56-7B Series)

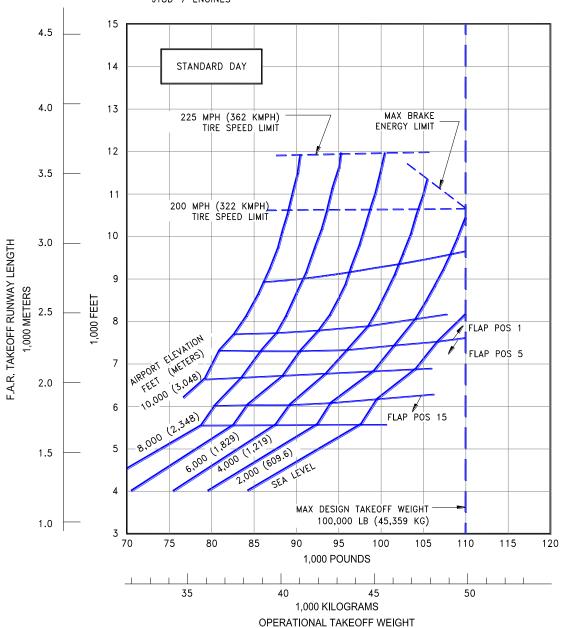
- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.



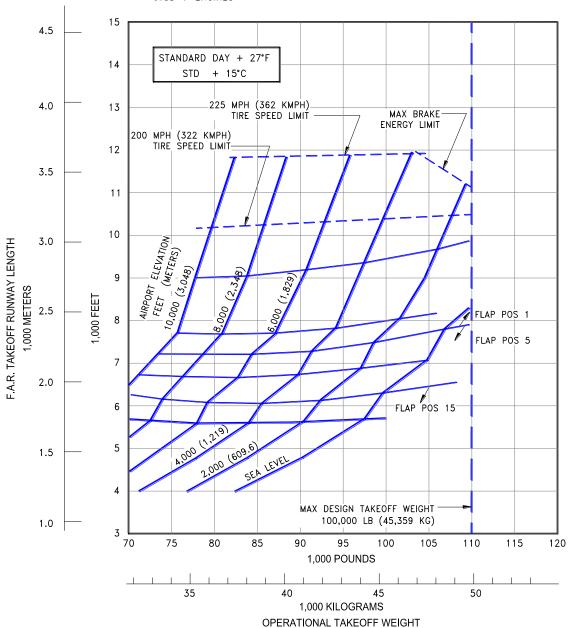
3.2.14 Payload/Range for Long Range Cruise: Model 737-900ER

DO NOT USE FOR DISPATCH

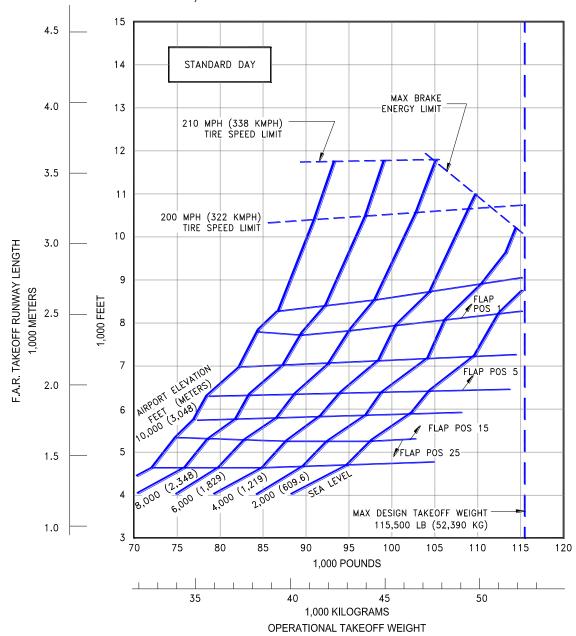
Payload/Range 737-900ER/900ERW/BBJ3 (CFM56-7B Series)


- STANDARD DAY, ZERO WIND
- CRUISE MACH = LRC
- NORMAL POWER EXTRACTION AND AIR CONDITIONING BLEEDS
- TYPICAL MISSION RULES
- NON-WINGLET PERFORMANCE SHOWN. WINGLET AIRCRAFT WILL HAVE SLIGHTLY GREATER RANGE.
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN.

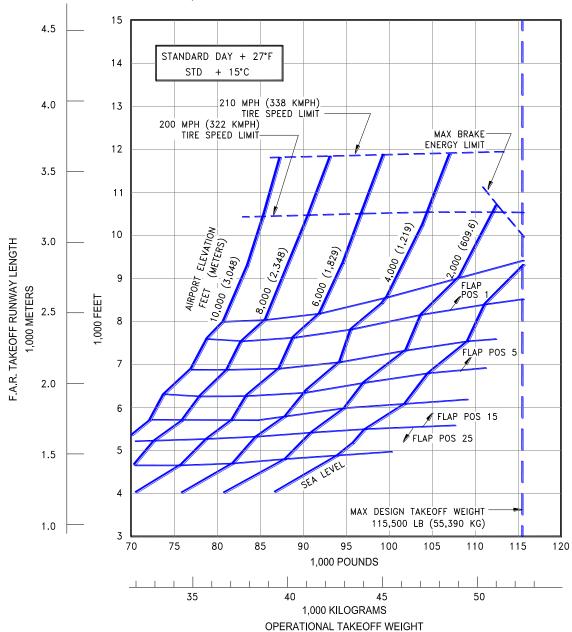
3.3 F.A.R. AND J.A.R. TAKEOFF RUNWAY LENGTH REQUIREMENTS


3.3.1 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-100 (JT8D-7 Engines)

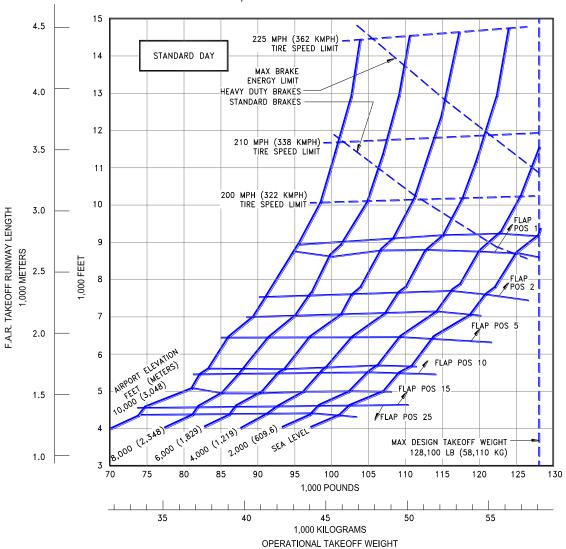
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * JT8D-7 ENGINES


3.3.2 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-100 (JT8D-7 Engines)

- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * JT8D-7 ENGINES

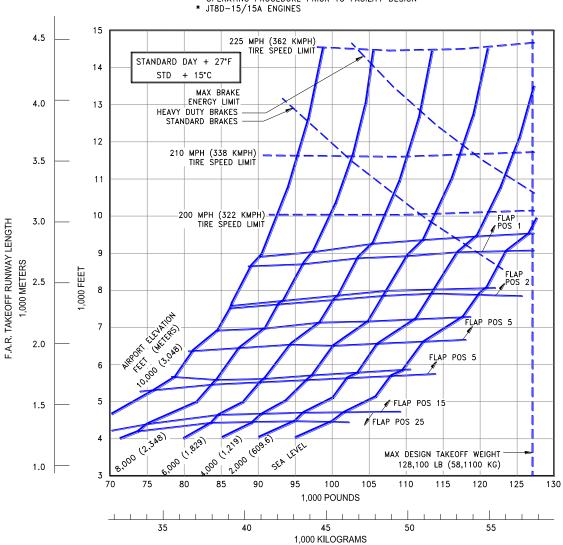

3.3.3 F.A.R. Takeoff Runway Length Requirements – Standard Day: Model 737-200 (JT8D-9/9A Engines)

- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * JT8D-9/9A ENGINES


3.3.4 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-200 (JT8D-9/9A Engines)

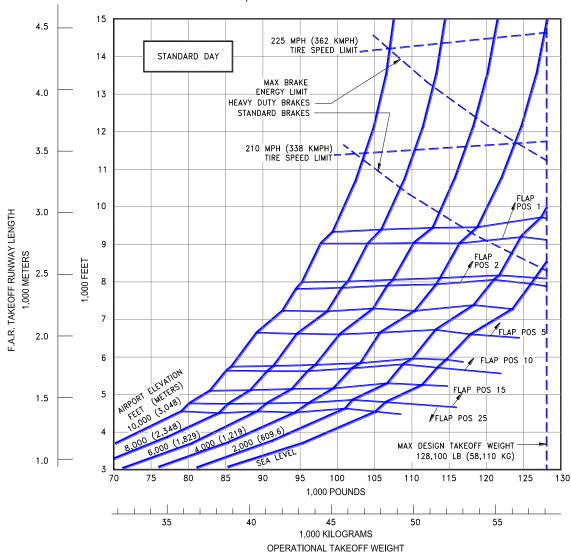
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * JT8D-9/9A ENGINES

3.3.5 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model **Advanced 737-200 (JT8D-15/15A Engines)**

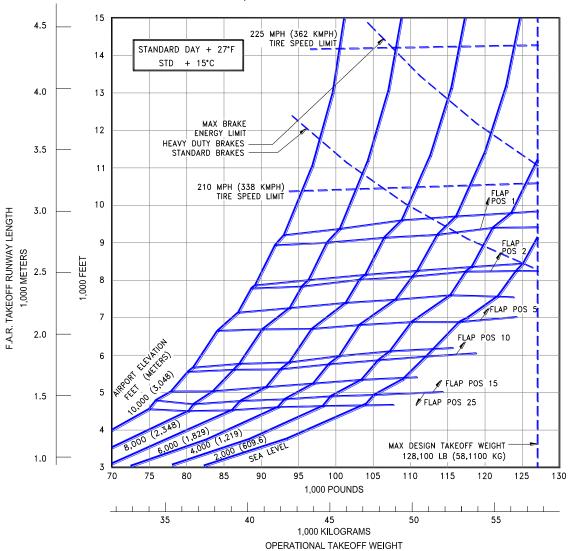

- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
 * JT8D-15/15A ENGINES

3.3.6 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model Advanced 737-200 (JT8D-15/15A Engines)

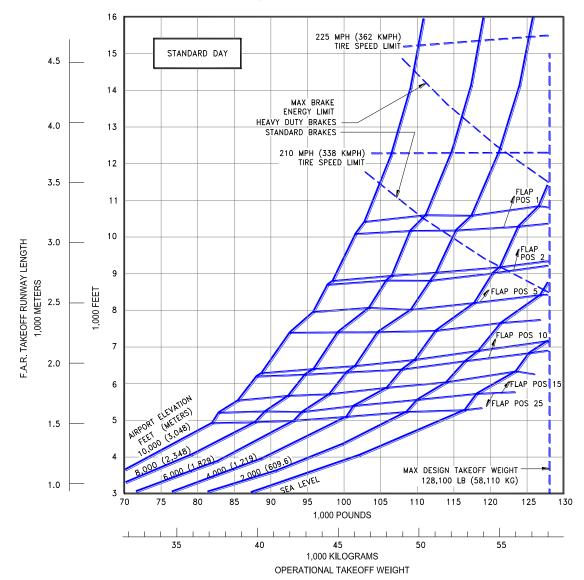
NOTES:


- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

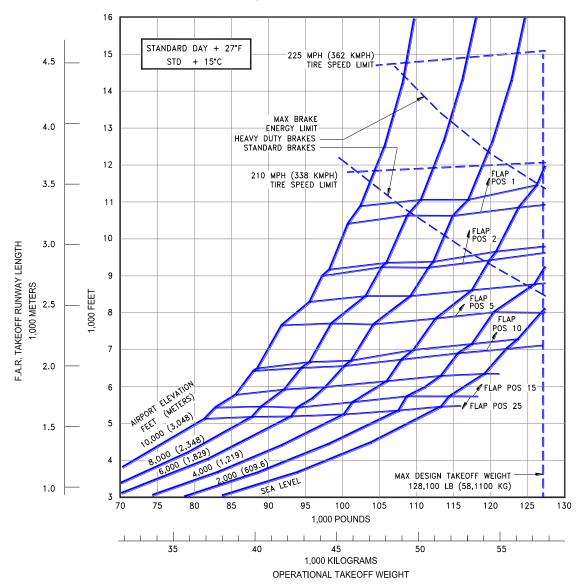
OPERATIONAL TAKEOFF WEIGHT


3.3.7 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model Advanced 737-200 (JT8D-17/17A Engines)

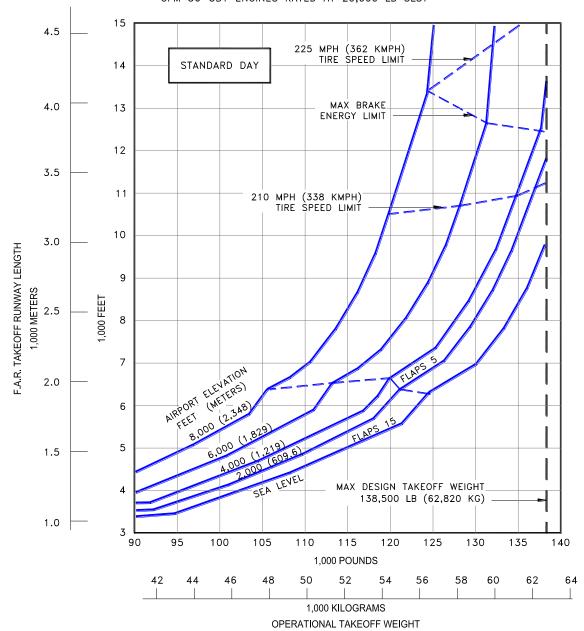
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * JT8D-17/17A ENGINES


3.3.8 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model Advanced 737-200 (JT8D-17/17A Engines)

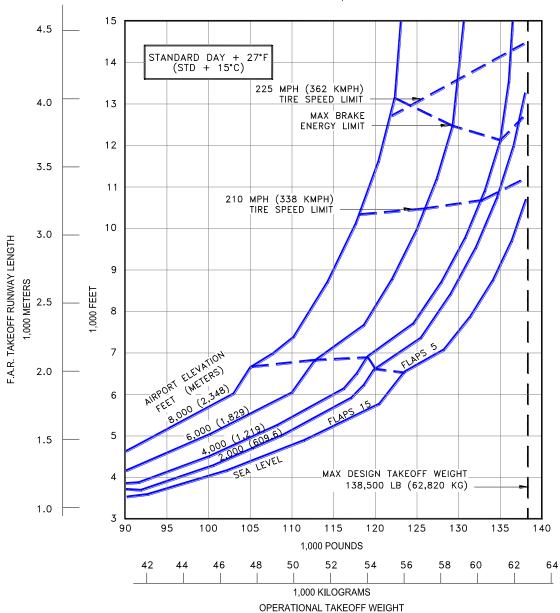
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
 * JT8D-17/17A ENGINES


F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 3.3.9 Advanced 737-200 (JT8D-17R/17AR Engines)

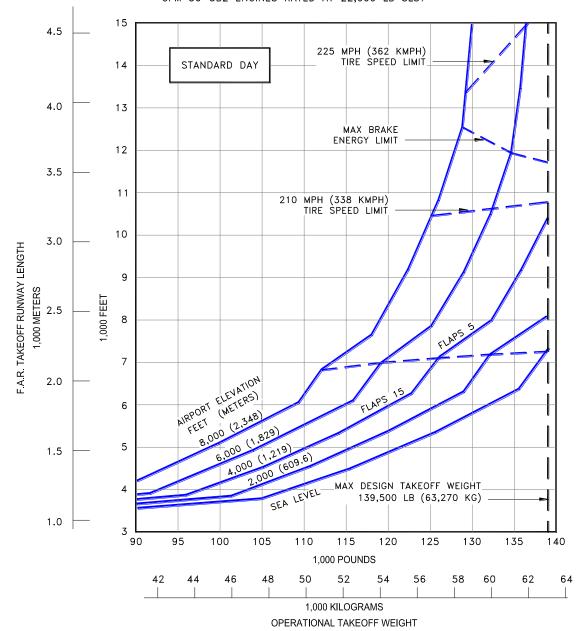
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
 * JT8D-17R/17AR ENGINES


3.3.10 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model Advanced 737-200 (JT8D-17R/17AR Engines)

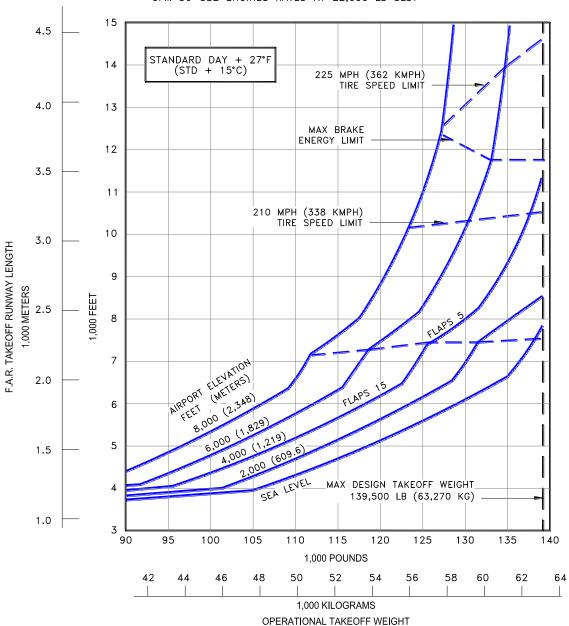
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * JT8D-17R/17AR ENGINES


3.3.11 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-300 (CFM56-3B1 Engines at 20,000 LB SLST)

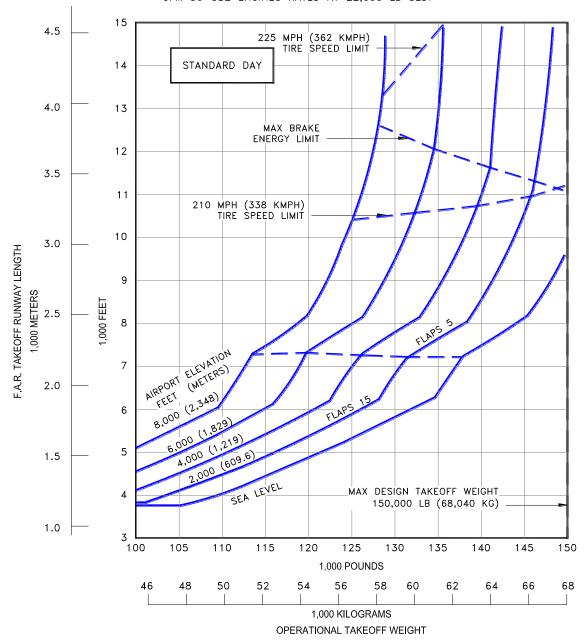
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3B1 ENGINES RATED AT 20,000 LB SLST


3.3.12 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-300 (CFM56-3B1 Engines at 20,000 LB SLST)

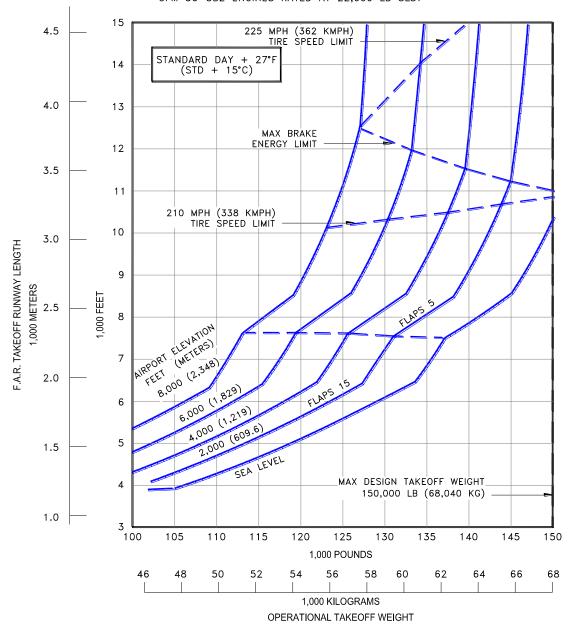
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3B1 ENGINES RATED AT 20,000 LB SLST


3.3.13 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-300 (CFM56-3B-2 Engines at 22,000 LB SLST)

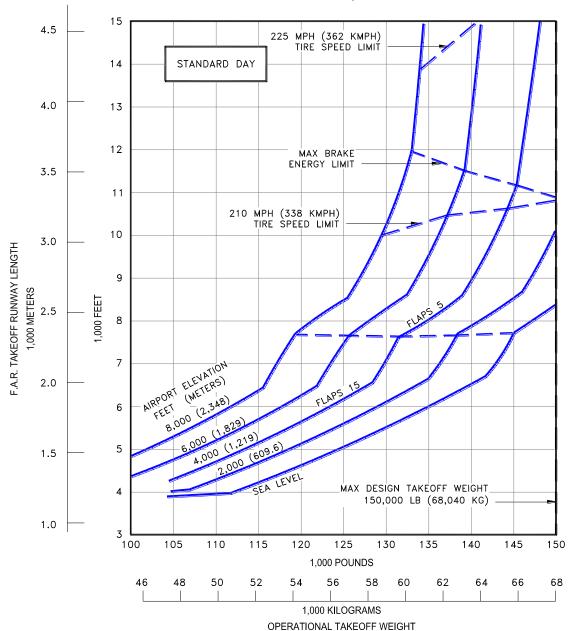
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3B2 ENGINES RATED AT 22,000 LB SLST


3.3.14 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-300 (CFM56-3B-2 Engines at 22,000 LB SLST)

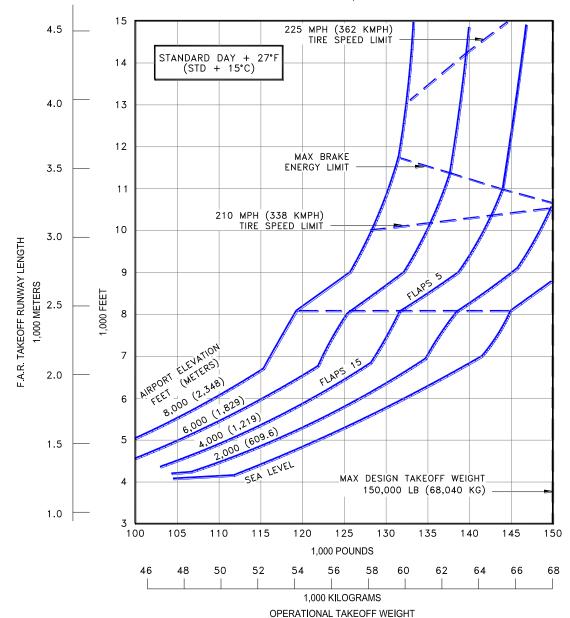
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3B2 ENGINES RATED AT 22,000 LB SLST


3.3.15 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-400 (CFM56-3B-2 Engines at 22,000 LB SLST)

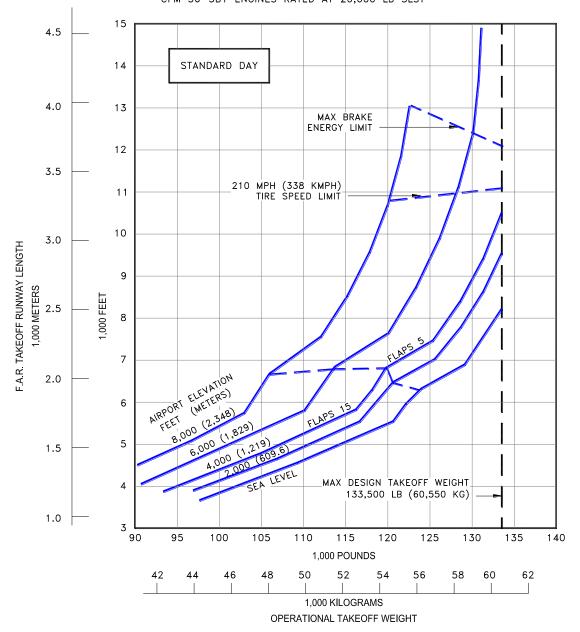
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3B2 ENGINES RATED AT 22,000 LB SLST


3.3.16 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-400 (CFM56-3B-2 Engines at 22,000 LB SLST)

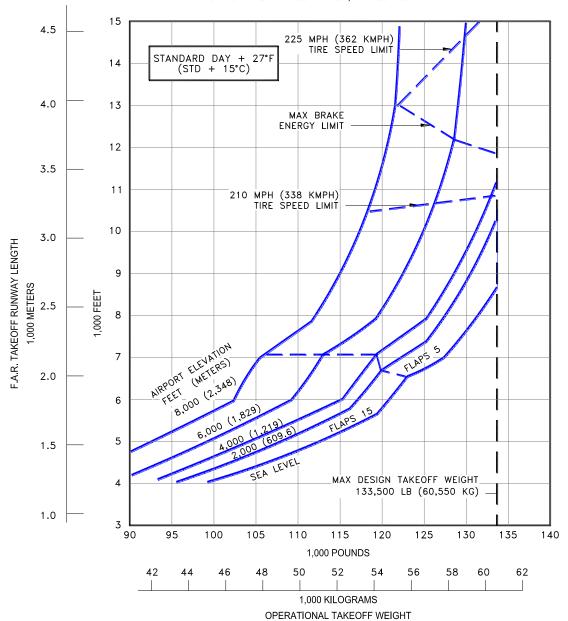
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3B2 ENGINES RATED AT 22,000 LB SLST


3.3.17 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-400 (CFM56-3C1 Engines at 23,500 LB SLST)

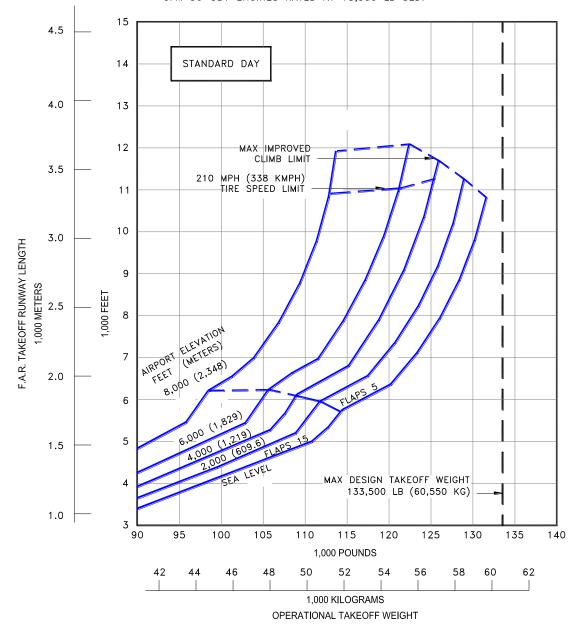
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN * CFM 56-3C1 ENGINES RATED AT 23,500 LB SLST


3.3.18 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-400 (CFM56-3C1 Engines at 23,500 LB SLST)

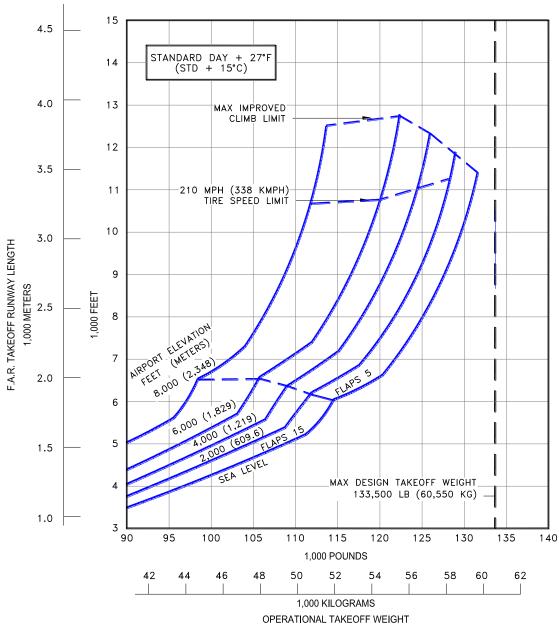
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3C1 ENGINES RATED AT 23,500 LB SLST


3.3.19 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-500 (CFM56-3B-1 Engines at 20,000 LB SLST)

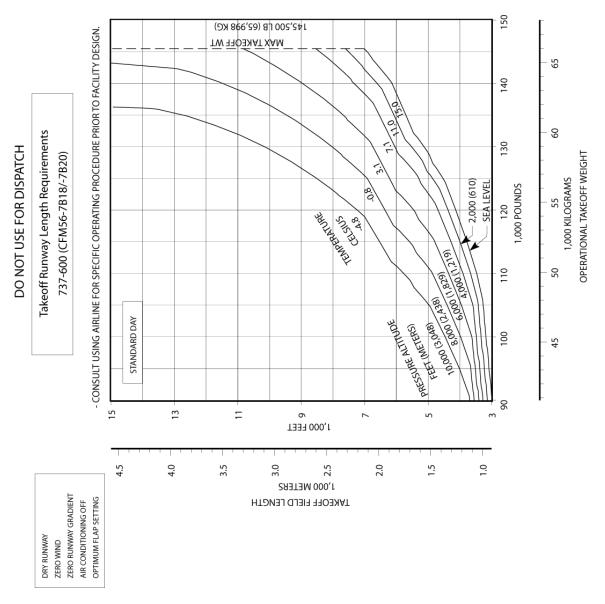
- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN * CFM 56-3B1 ENGINES RATED AT 20,000 LB SLST


3.3.20 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-500 (CFM56-3B-1 Engines at 20,000 LB SLST)

- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3B1 ENGINES RATED AT 20,000 LB SLST

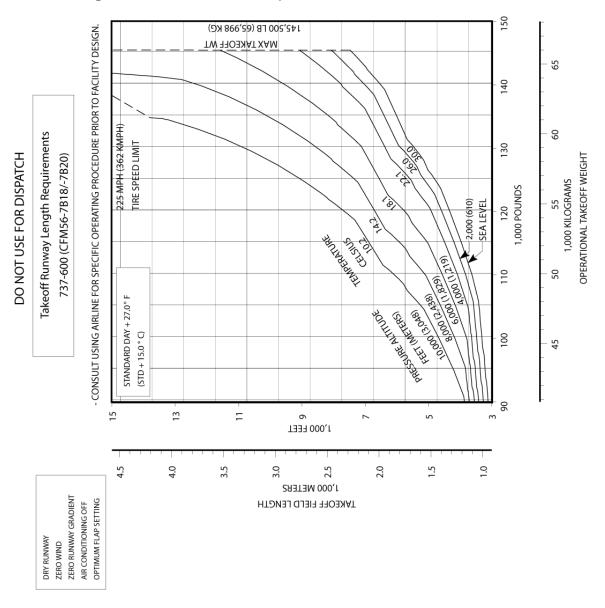

3.3.21 F.A.R. Takeoff Runway Length Requirements - Standard Day: Model 737-500 (CFM56-3B-1 Engines at 18,500 LB SLST)

- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3B1 ENGINES RATED AT 18,500 LB SLST

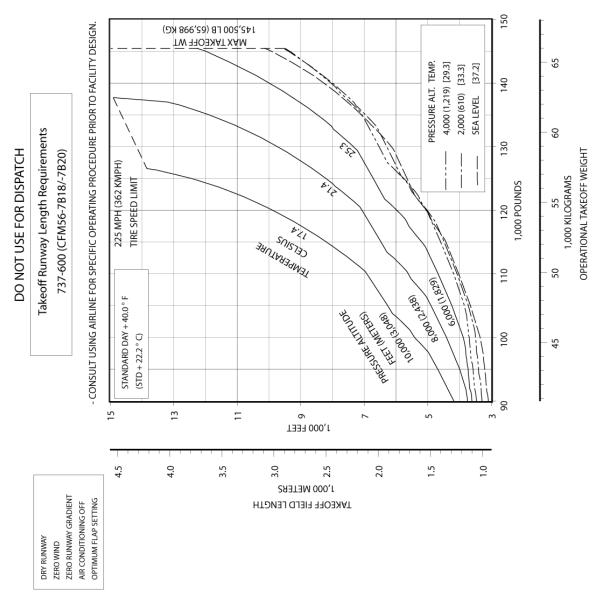


3.3.22 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C): Model 737-500 (CFM56-3B-1 Engines at 18,500 LB SLST)

- * NO ENGINE AIRBLEED FOR AIR CONDITIONING
- * ZERO WIND, ZERO RUNWAY GRADIENT
- * CONSULT USING AIRLINE FOR SPECIFIC
- OPERATING PROCEDURE PRIOR TO FACILITY DESIGN
- * CFM 56-3B1 ENGINES RATED AT 18,500 LB SLST

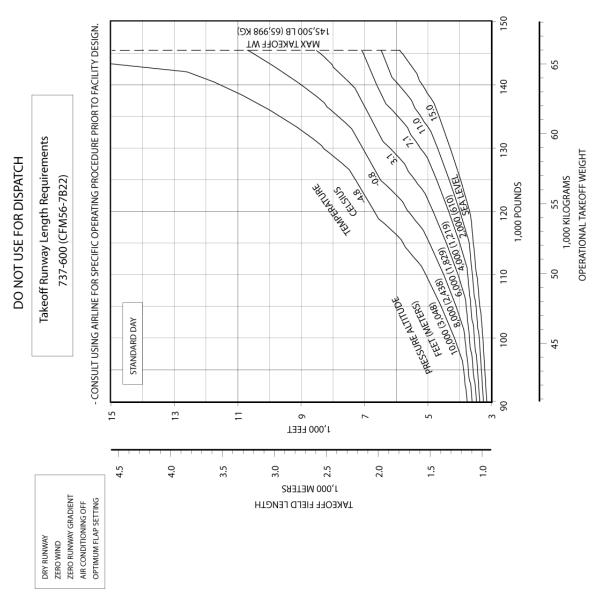


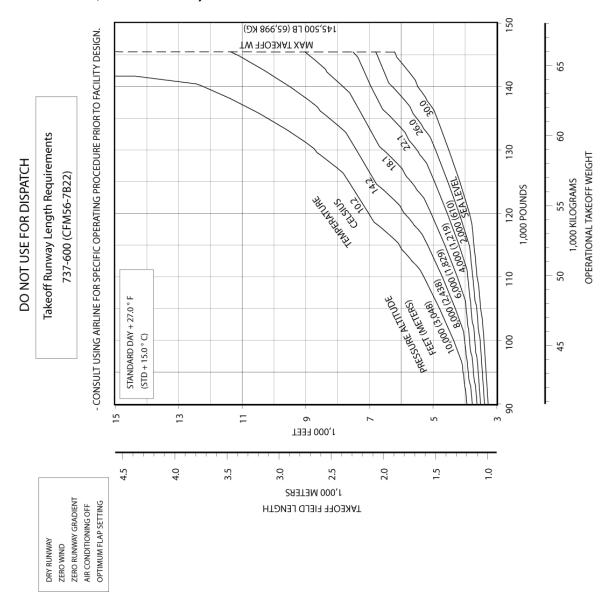
3.3.23 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)

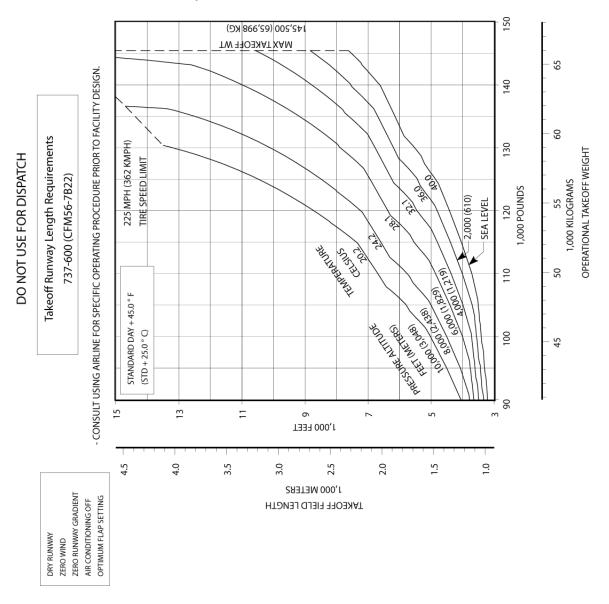


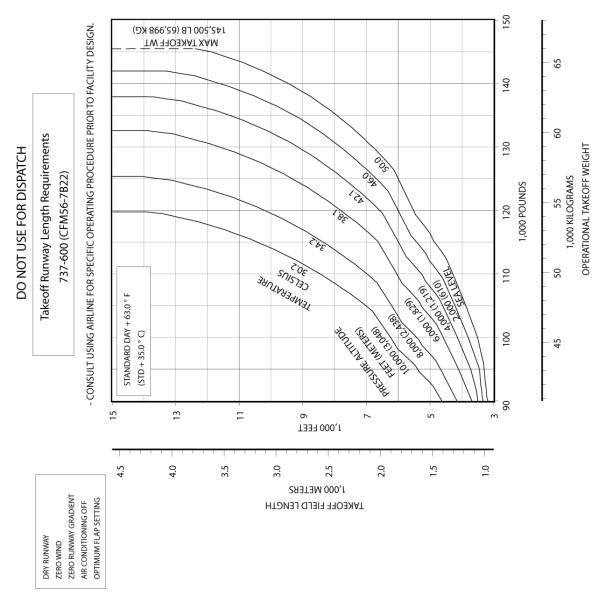
3-38

3.3.24 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)

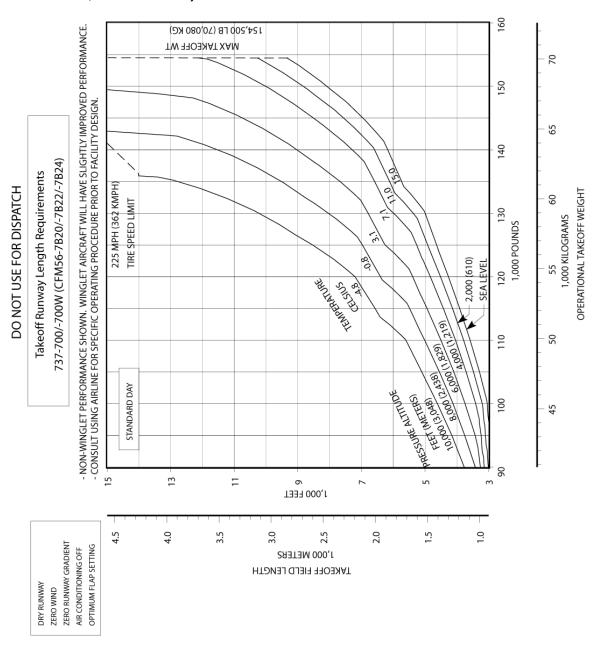

3.3.25 F.A.R. Takeoff Runway Length Requirements - Standard Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)


3.3.26 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-600 (CFM56-7B18/-7B20 Engines at 20,000 LB SLST)

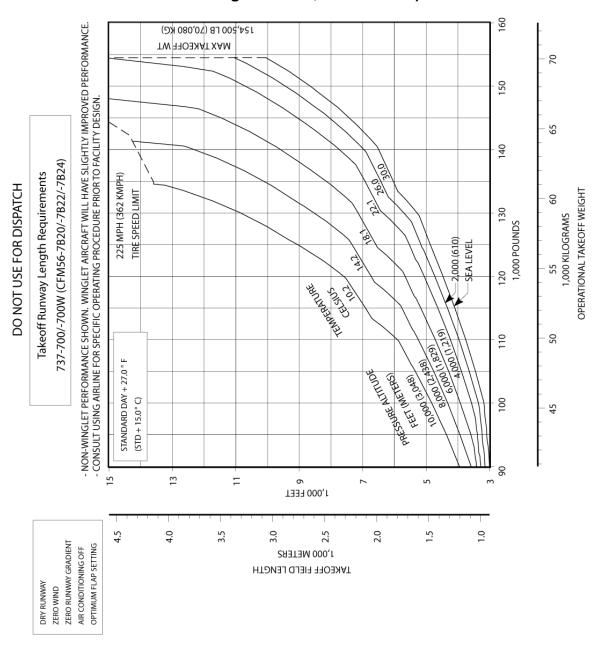

3.3.27 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)


3.3.28 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)

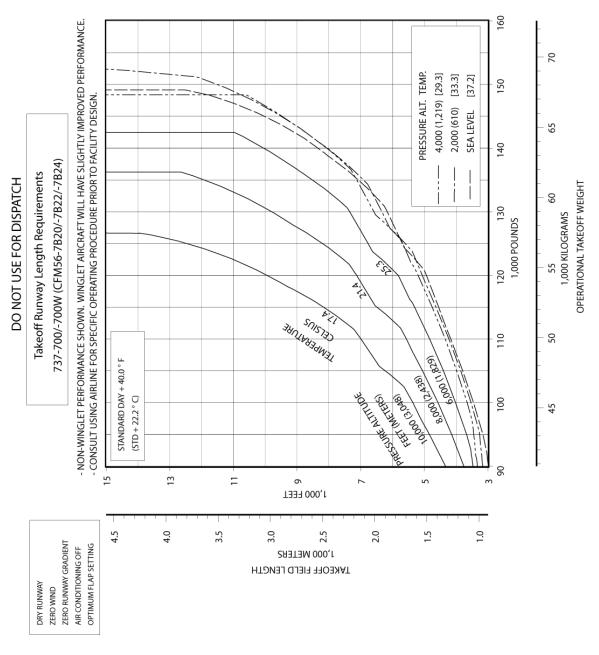
3.3.29 F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)

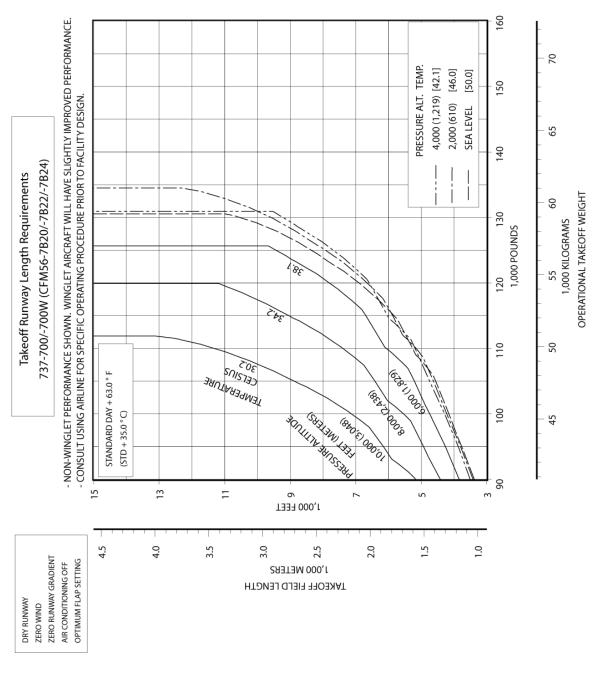


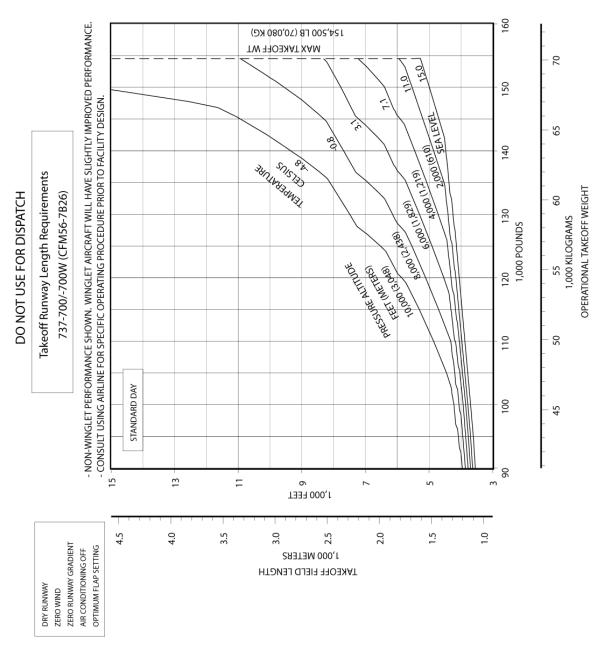
3.3.30 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-600 (CFM56-7B22 Engines at 22,000 LB SLST)

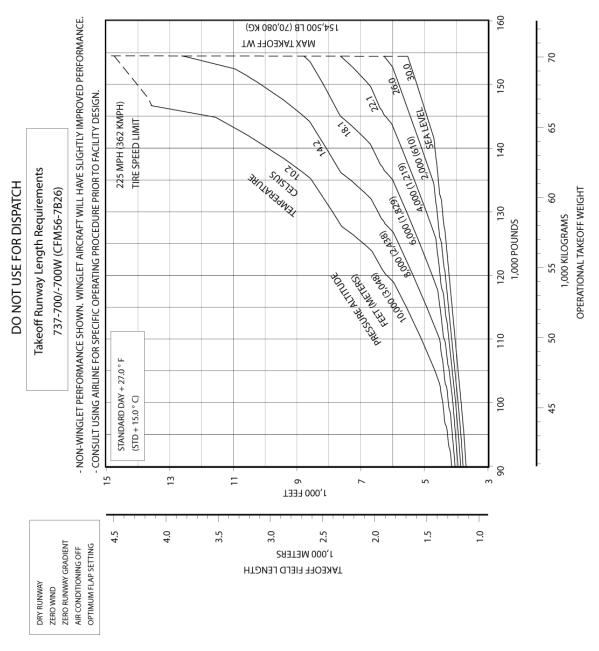


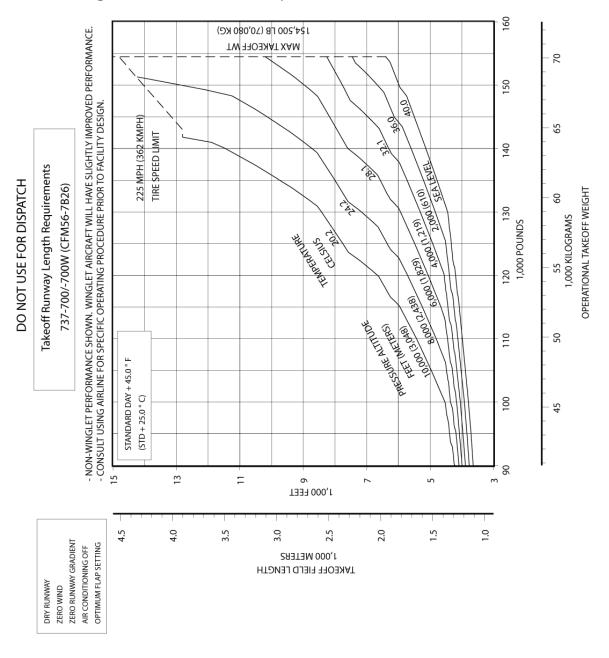
3-45

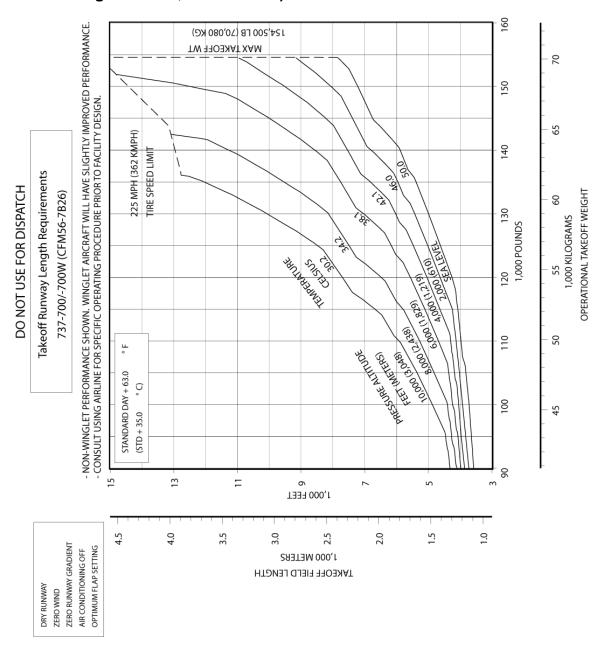

3.3.31 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700 (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

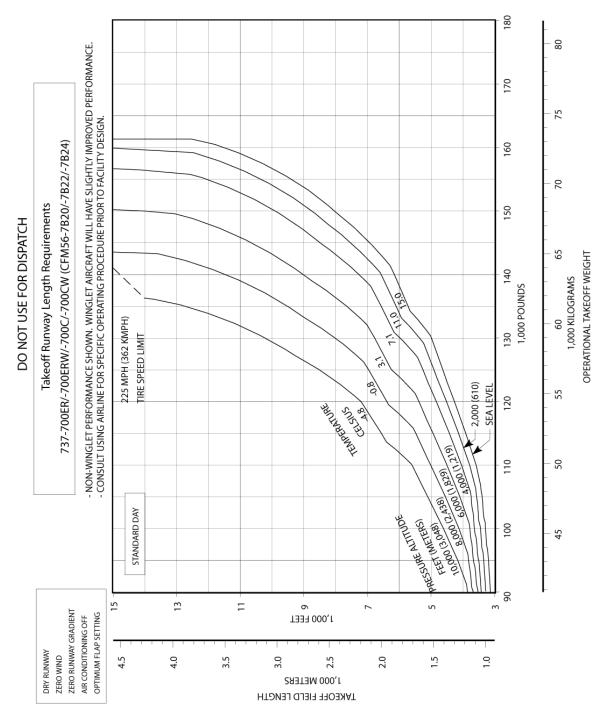

3.3.32 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-700 (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

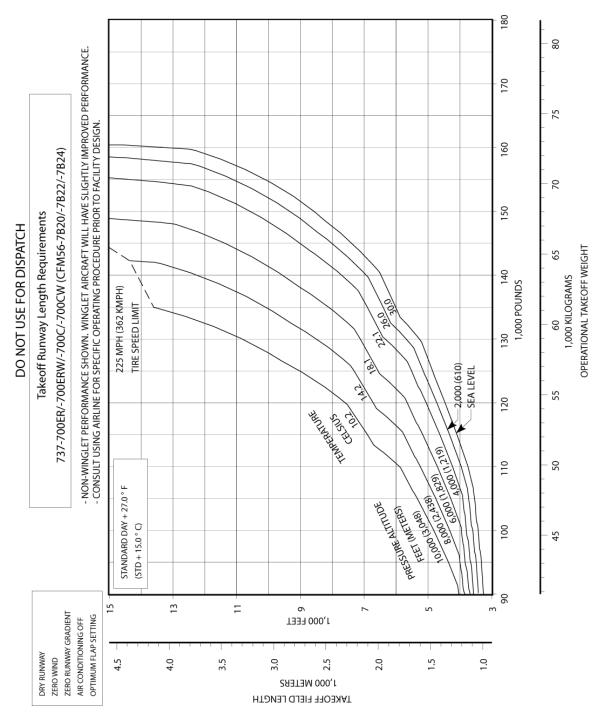

3.3.33 F.A.R. Takeoff Runway Length Requirements - Standard Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-700 (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

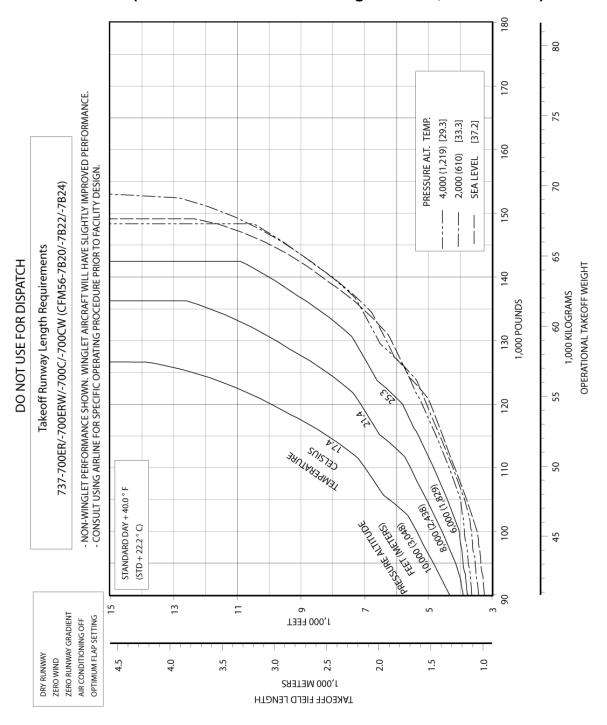

3.3.34 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700 (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)


3.3.35 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700/-700W (CFM56-7B26 Engines at 26,000 LB SLST

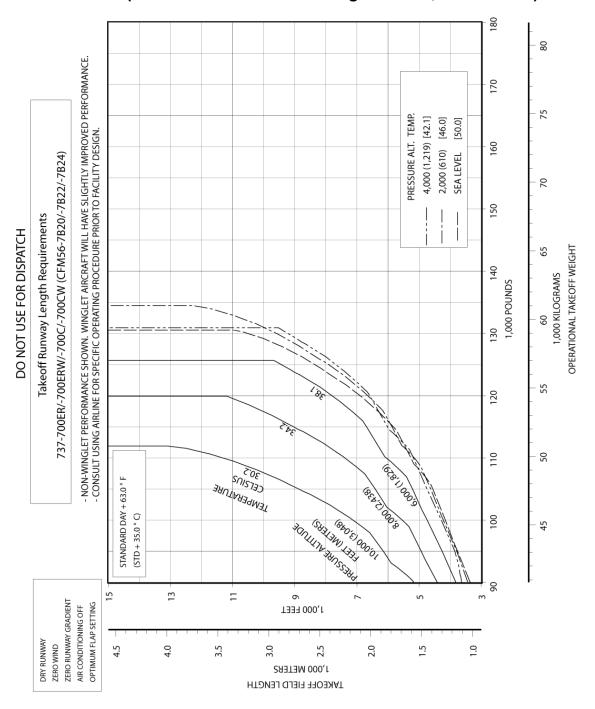

3.3.36 F.A.R. Takeoff Runway Length Requirements - Standard Day, +27°F (STD + 15°C), Dry Runway: Model 737-700/-700W (CFM56-7B26 Engines at 26,000 LB SLST


3.3.37 F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-700/-700W (CFM56-7B26 Engines at 26,000 LB SLST)

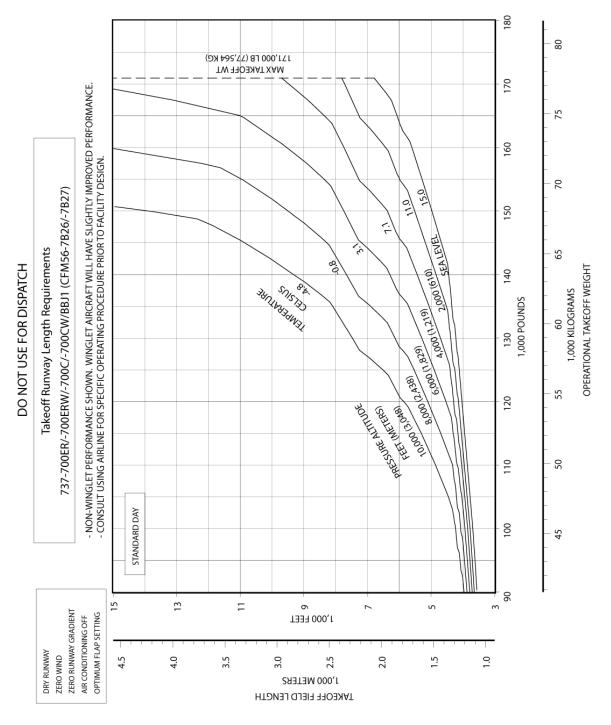

3.3.38 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700/-700W (CFM56-7B26 Engines at 26,000 LB SLST)


3.3.39 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

3.3.40 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

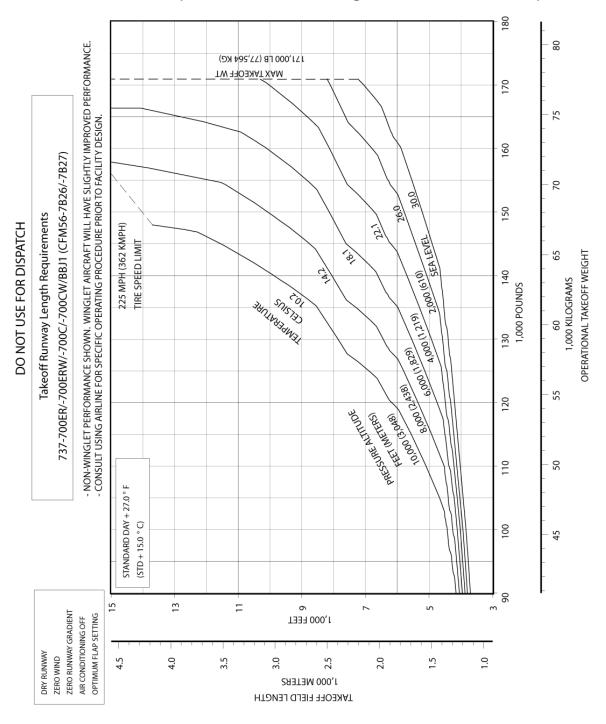


3.3.41 F.A.R. Takeoff Runway Length Requirements - Standard Day + 40°F (STD + 22.2°C), Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

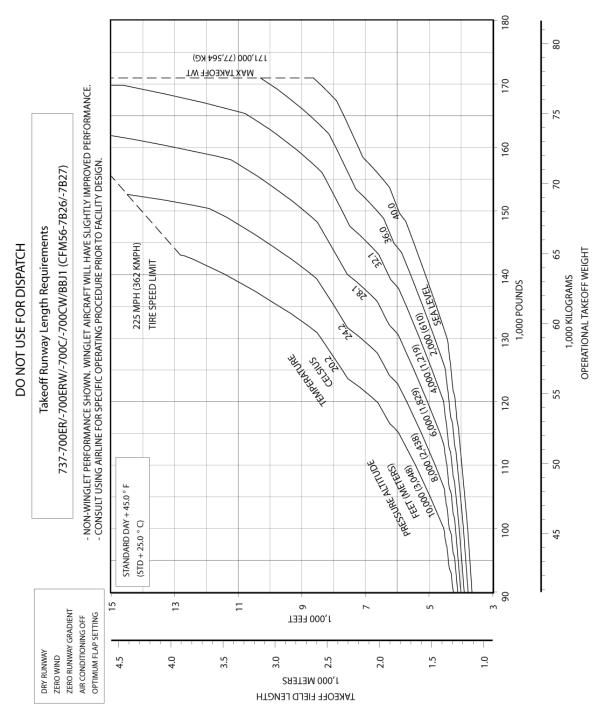


3-56

3.3.42 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW (CFM56-7B20/-7B22/-7B24 Engines at 20,000 LB SLST)

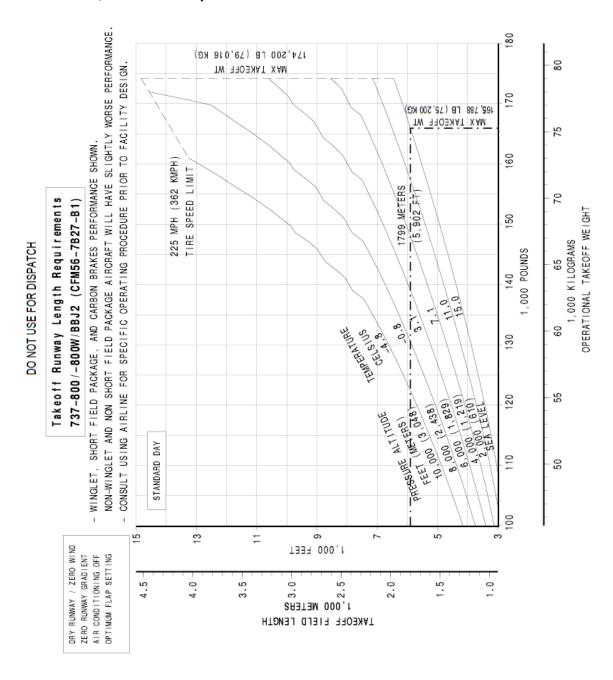


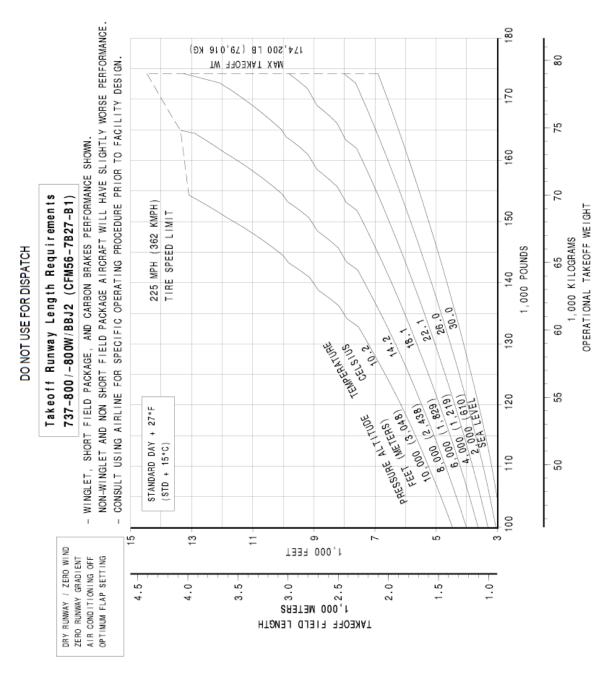
3.3.43 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

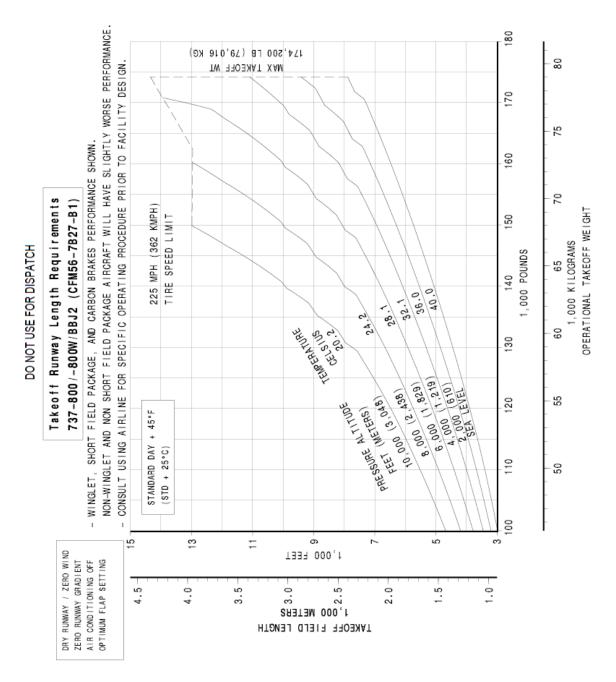


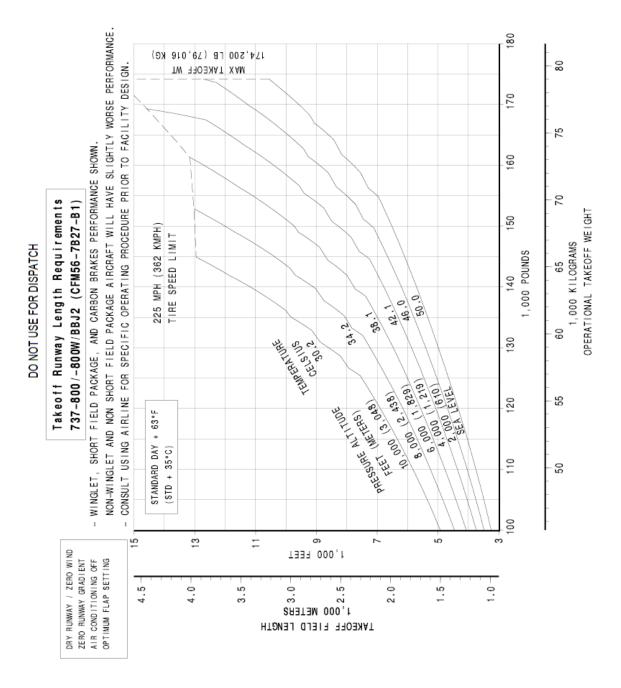
3-58

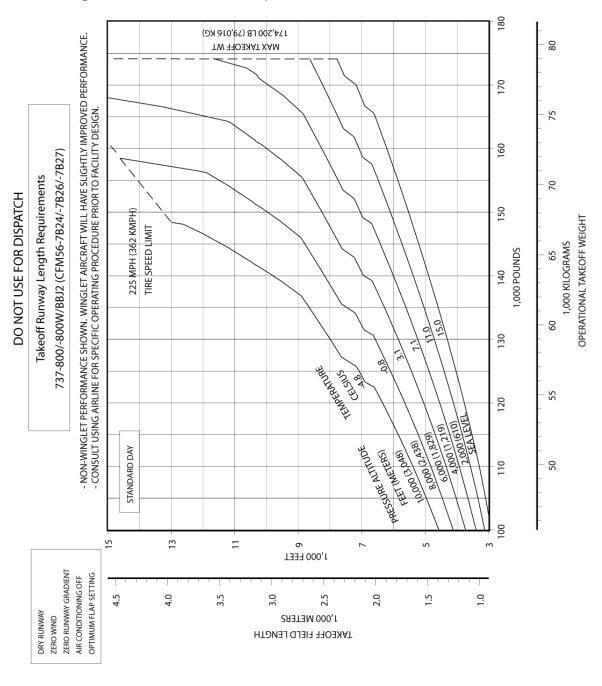

3.3.44 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

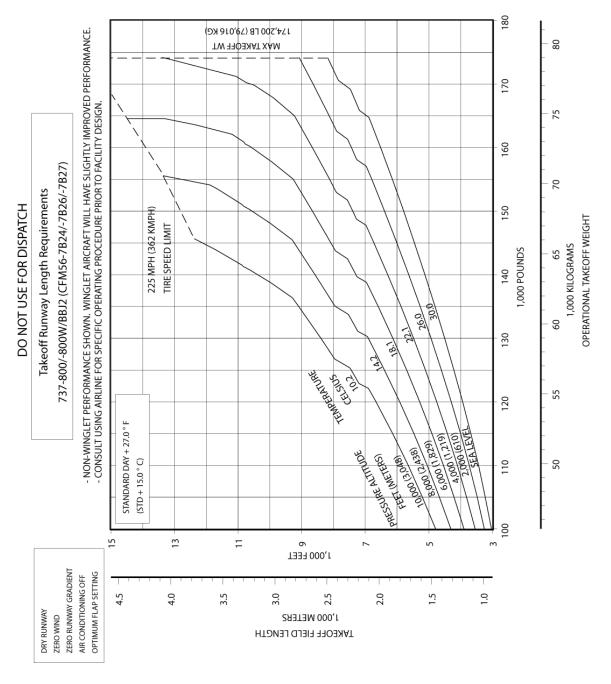

3.3.45 F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

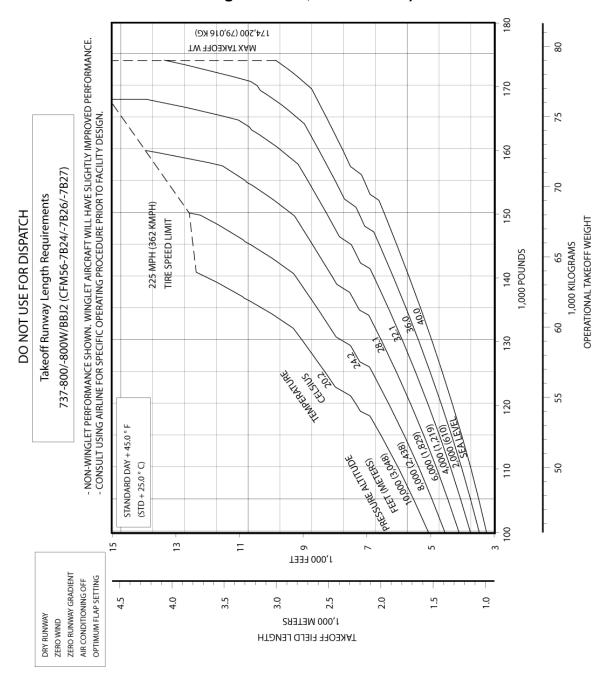

3.3.46 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

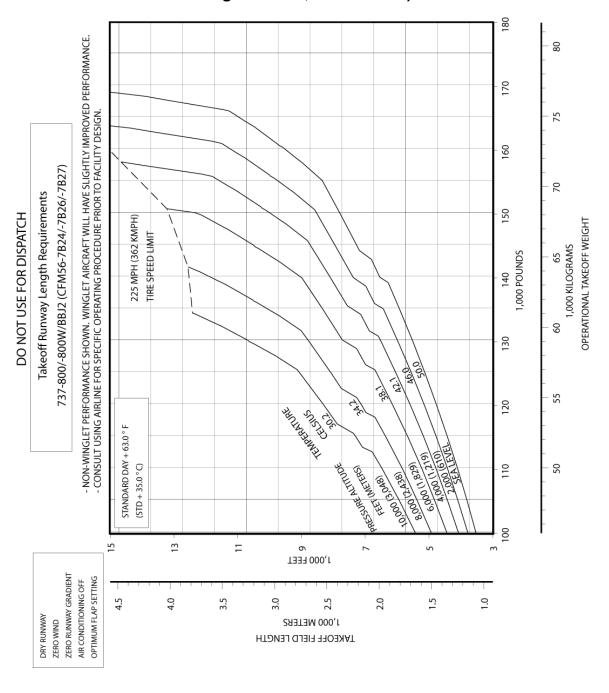

3.3.47 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-800/-800W/BBJ2 (CFM56-7B27-B1 Engine at 26,000 LB SLST)


3.3.48 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-800/-800W/BBJ2 (CFM56-7B27-B1 Engine at 26,000 LB SLST)

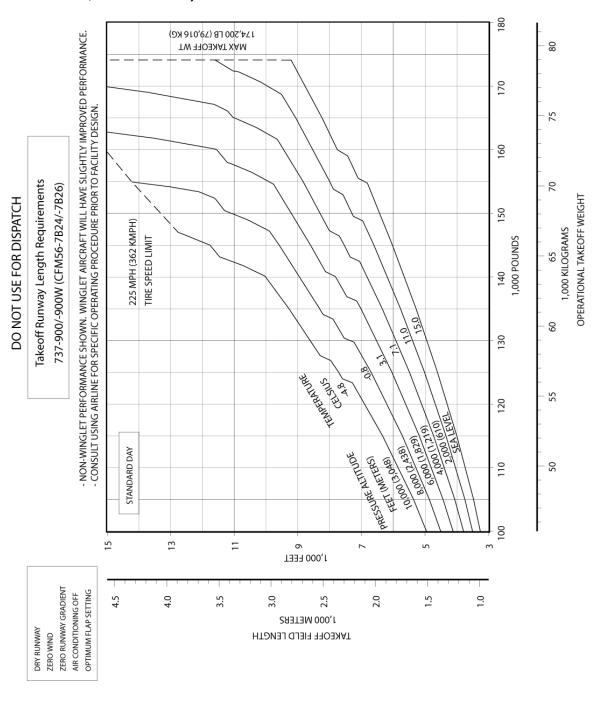

3.3.49 F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-800/-800W/BBJ2 (CFM56-7B27-B1 Engine at 26,000 LB SLST)


3.3.50 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35°C), Dry Runway: Model 737-800/-800W/BBJ2 (CFM56-7B27-B1 Engine at 26,000 LB SLST)

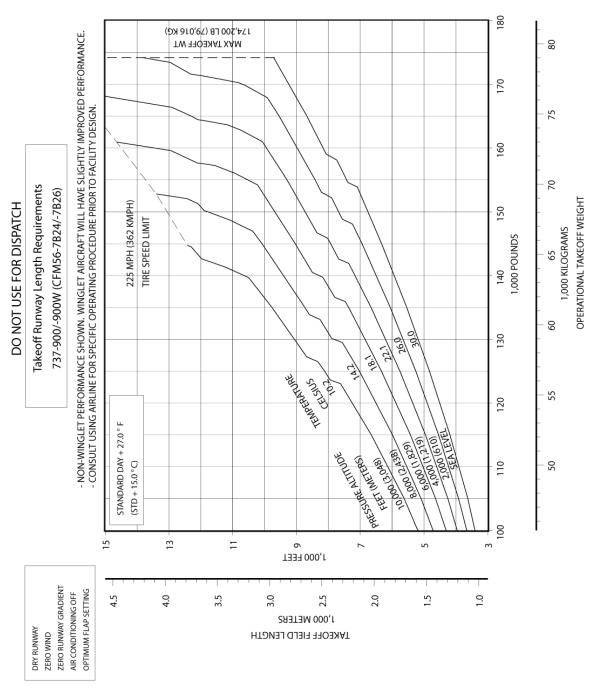

3.3.51 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-800 / -800W / BBJ2 (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)


3.3.52 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-800 / -800W / BBJ2 (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)

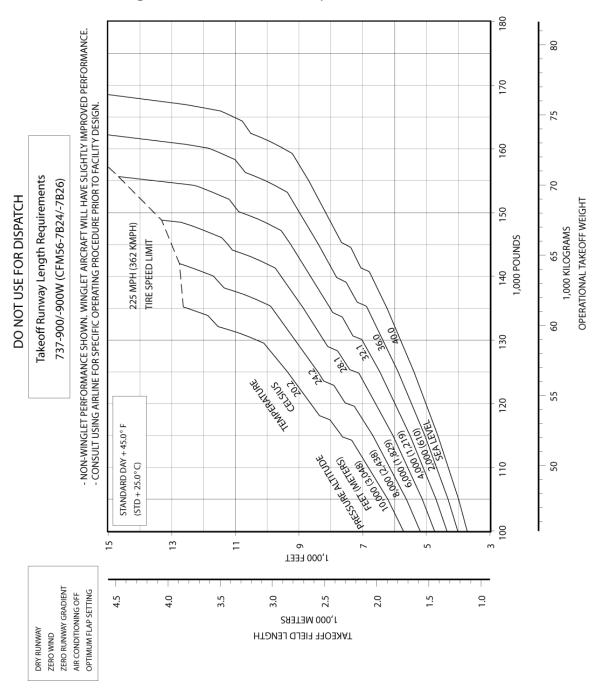
3.3.53 F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-800 / -800W / BBJ2 (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)

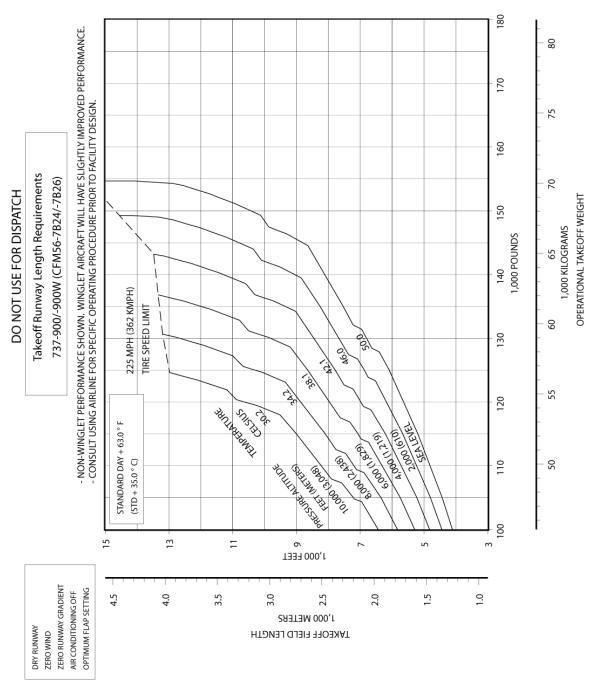


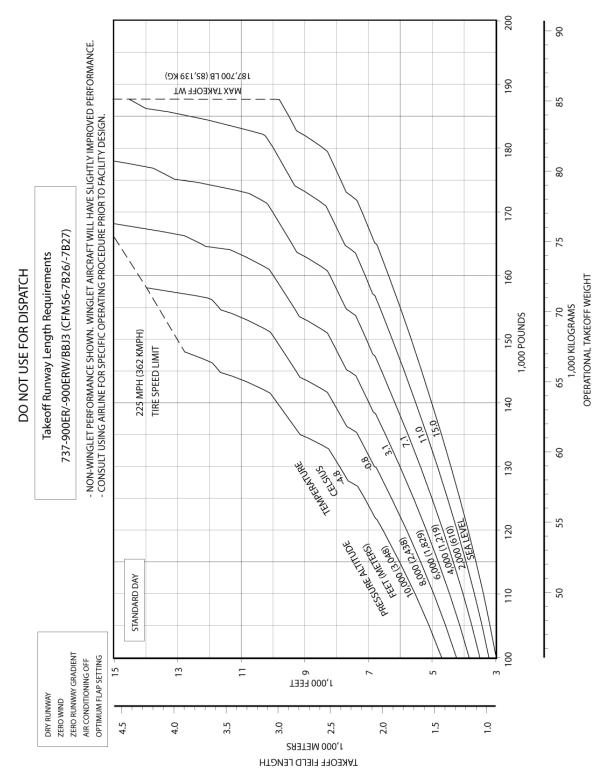
3.3.54 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-800 / -800W / BBJ2 (CFM56-7B24/-7B26/-7B27 Engines at 26,000 LB SLST)

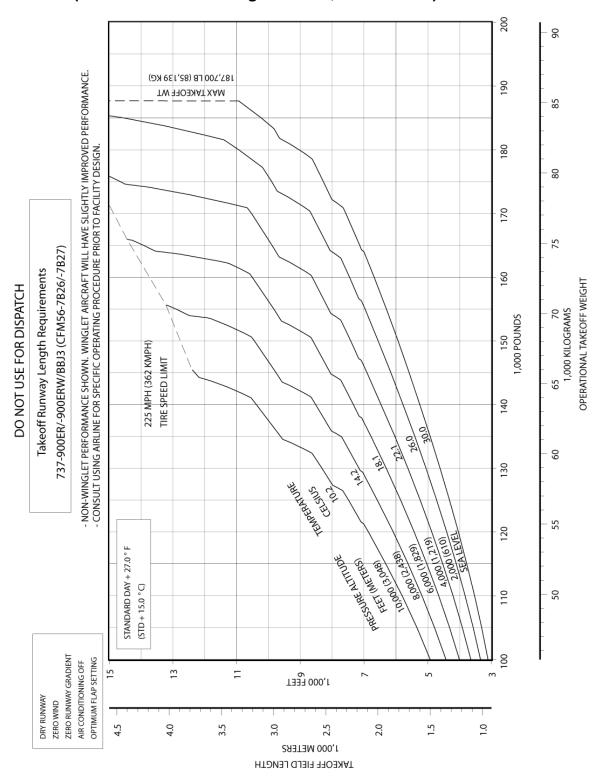


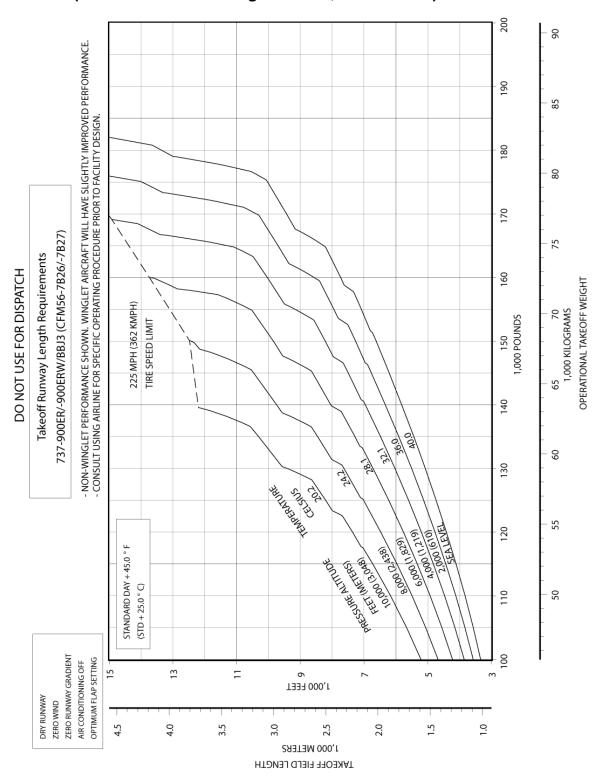
3-69

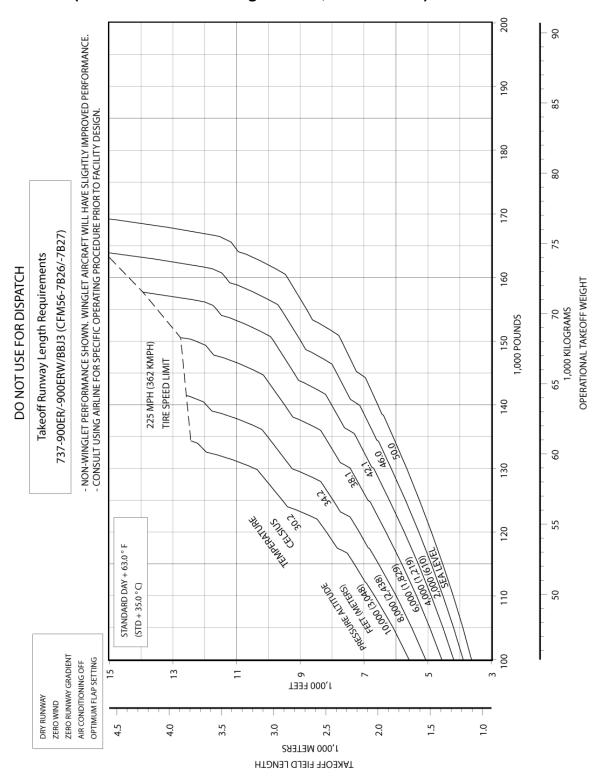

3.3.55 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-900/-900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)


3.3.56 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-900/-900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)


3.3.57 F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-900/-900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)


3.3.58 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-900/-900W (CFM56-7B24/-7B26 Engines at 24,000 LB SLST)


3.3.59 F.A.R. Takeoff Runway Length Requirements - Standard Day, Dry Runway: Model 737-900ER/-900ERW/BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)


3.3.60 F.A.R. Takeoff Runway Length Requirements - Standard Day + 27°F (STD + 15°C), Dry Runway: Model 737-900ER/-900ERW/BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

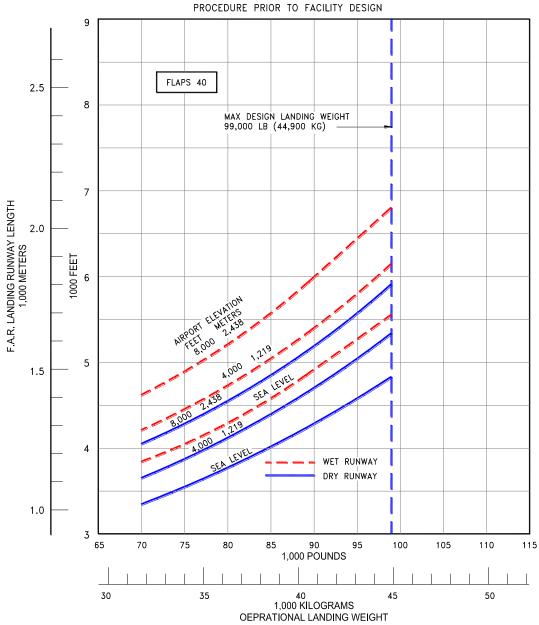
3.3.61 F.A.R. Takeoff Runway Length Requirements - Standard Day + 45°F (STD + 25°C), Dry Runway: Model 737-900ER/-900ERW/BBJ3 (CFM56-7B26/-7B27 Engines at 26,000 LB SLST)

3.3.62 F.A.R. Takeoff Runway Length Requirements - Standard Day + 63°F (STD + 35 °C), Dry Runway: Model 737-900ER/-900ERW/BBJ3 (CFM56-7B26/-7B27 Engines at 6,000 LB SLST)

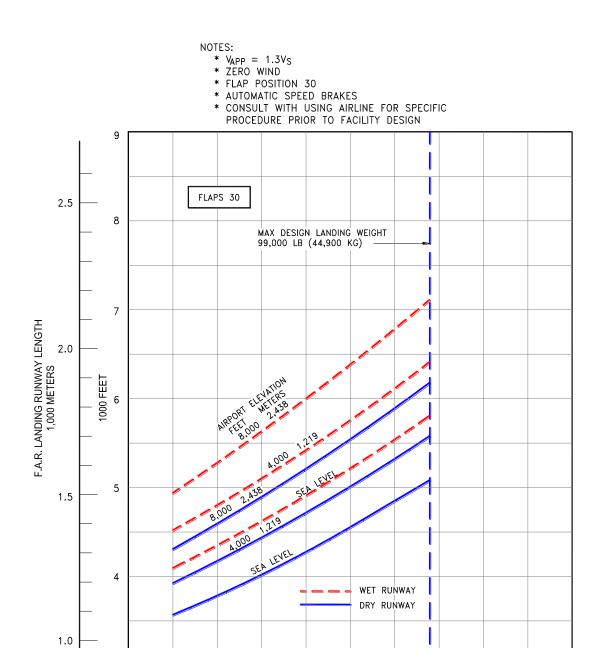
3.3.63 ICAO Aerodrome Reference Code - All Models

The airplane is certified to operate up to its maximum takeoff weight (MTOW). The airplane flight manual provides field length requirements up to MTOW. The airplane reference code can vary for some models based on the airplane takeoff weight up to MTOW.

The following table shows the ICAO Aerodrome Reference Code classification for all models.


AIRPLANE MODEL	TAKEOFF WEIGHT LB (KG)	AERODROME REFERENCE CODE
737-600	145,500 (65,997)	3C
737-700	154,500 (70,080)	3C
737-800	165,788 (75,200)	3C
737-800	174,200 (79,016)	4C
737-900	143,400 (65,000)	3C
737-900	174,200 (79,016)	4C

The reference takeoff weights are given for information only and not intended for dispatch purposes. Consult airline for specific operating procedures prior to facility design.


3.4 F.A.R. AND J.A.R. LANDING RUNWAY LENGTH REQUIREMENTS

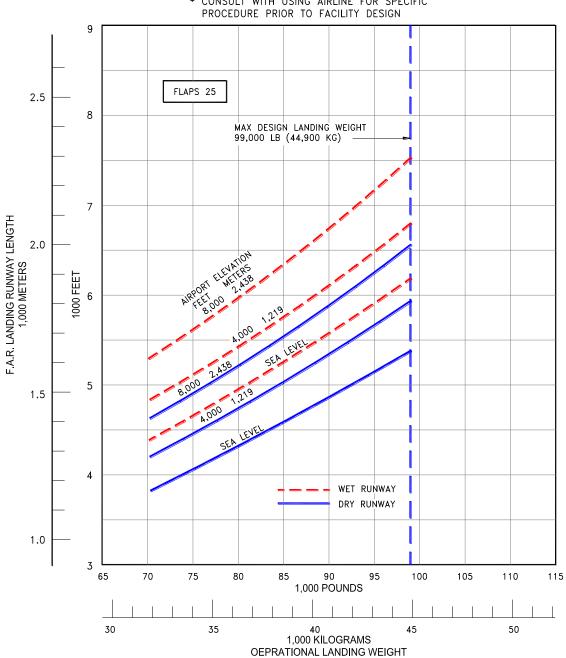
3.4.1 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-100

- $V_{APP} = 1.3V_{S}$
- * ZERO WIND
- * FLAP POSITION 40
- * AUTOMATIC SPEED BRAKES
- * CONSULT WITH USING AIRLINE FOR SPECIFIC PROCEDURE PRIOR TO FACILITY DESIGN

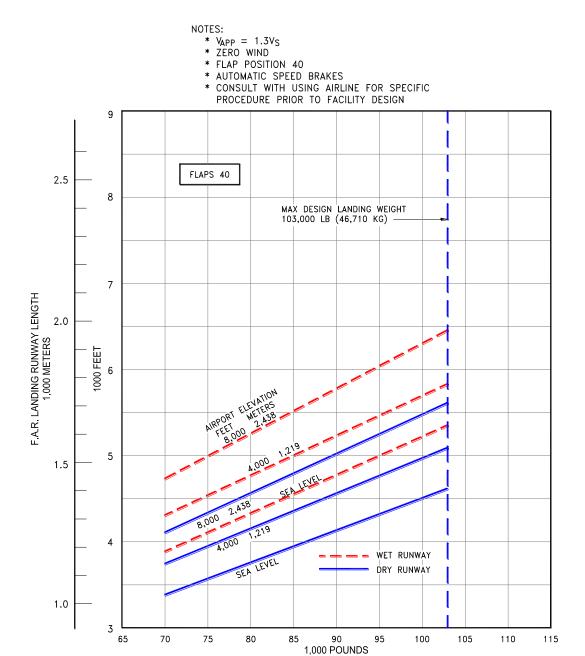
3.4.2 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-100

1,000 POUNDS

1,000 KILOGRAMS

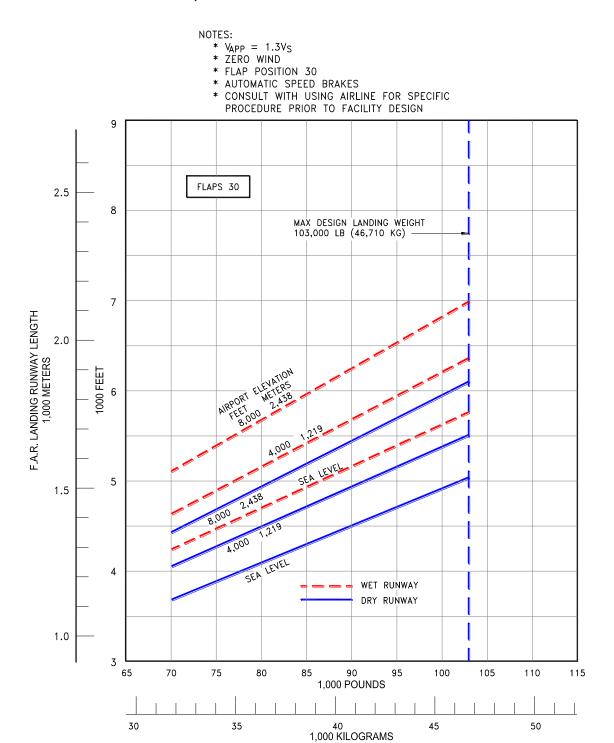

OEPRATIONAL LANDING WEIGHT

3.4.3 F.A.R. Landing Runway Length Requirements - Flaps 25: Model 737-100



- * V_{APP} = 1.3V_S * ZERO WIND * FLAP POSITION 25
- * AUTOMATIC SPEED BRAKES
- * CONSULT WITH USING AIRLINE FOR SPECIFIC

3.4.4 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-200, -200C

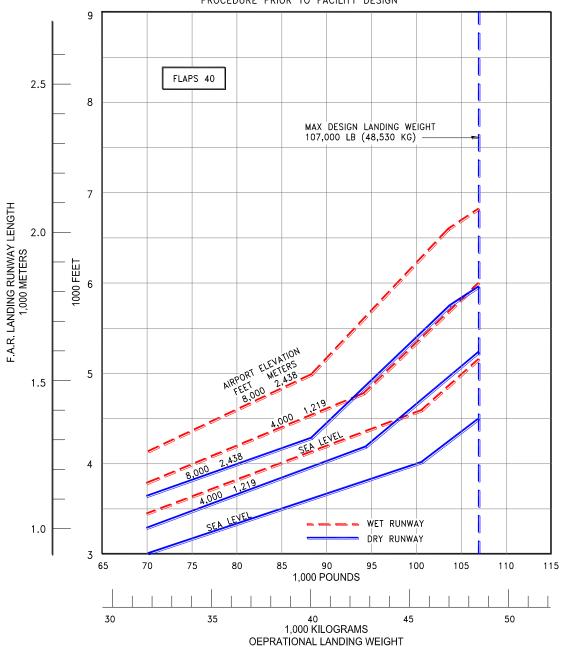

35

40 1,000 KILOGRAMS

OEPRATIONAL LANDING WEIGHT

45

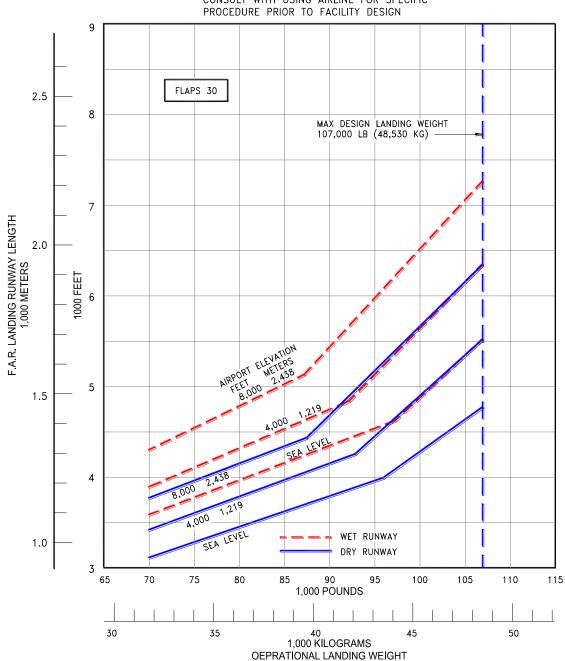
3.4.5 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-200, -200C


OEPRATIONAL LANDING WEIGHT

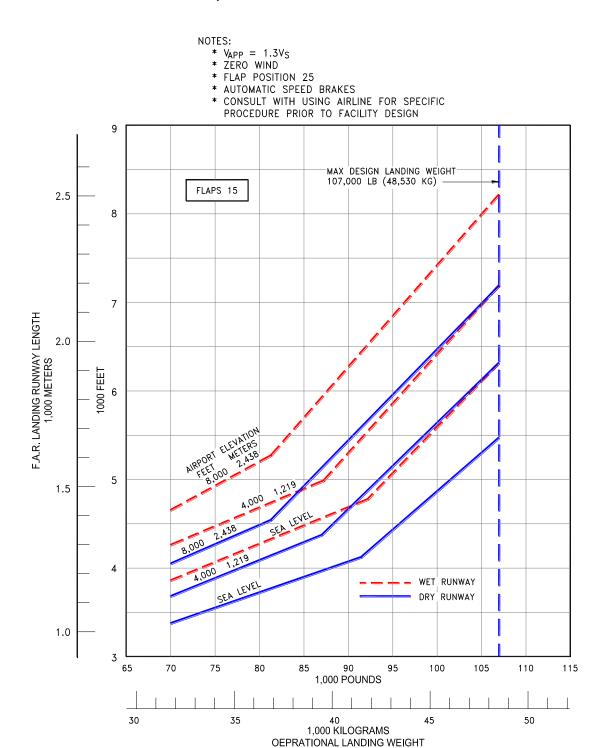
3.4.6 F.A.R. Landing Runway Length Requirements - Flaps 25: Model 737-200, -200C

F.A.R. Landing Runway Length Requirements - Flaps 40: 3.4.7 Model Advanced 737-200, -200C

- * $V_{APP} = 1.3V_S$
- * ZERO WIND
- * FLAP POSITION 40 * AUTOMATIC SPEED BRAKES
- * CONSULT WITH USING AIRLINE FOR SPECIFIC PROCEDURE PRIOR TO FACILITY DESIGN

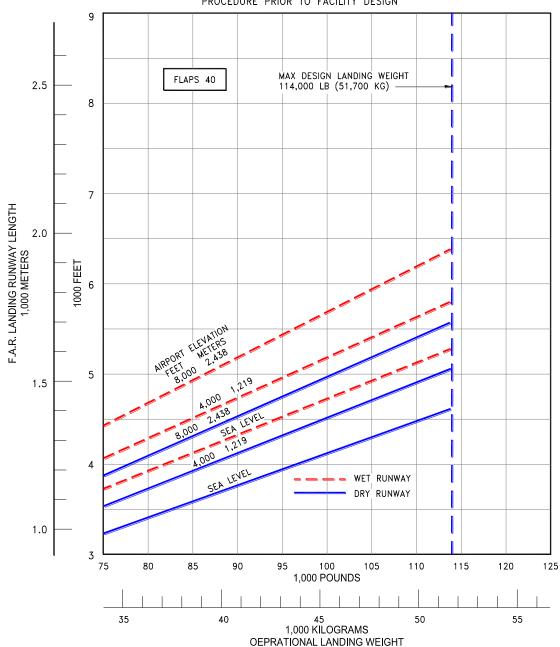


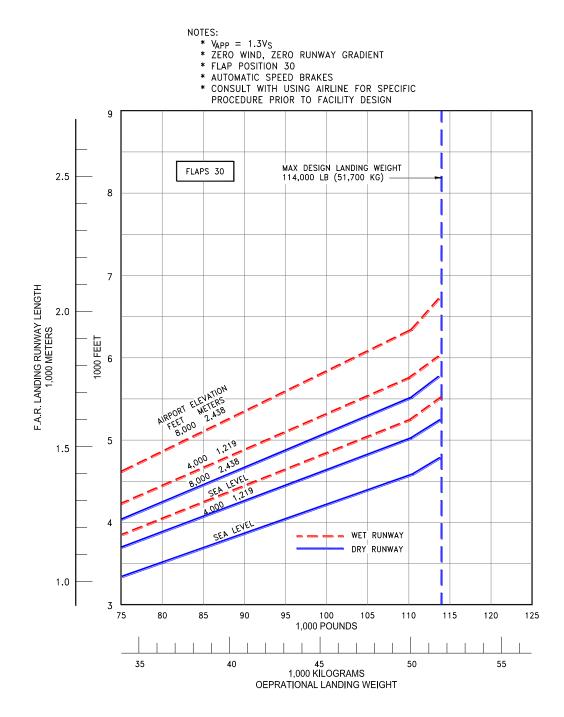
3.4.8 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-Advanced 737-200, -200C



- NOTES: * V_{APP} = 1.3V_S * ZERO WIND

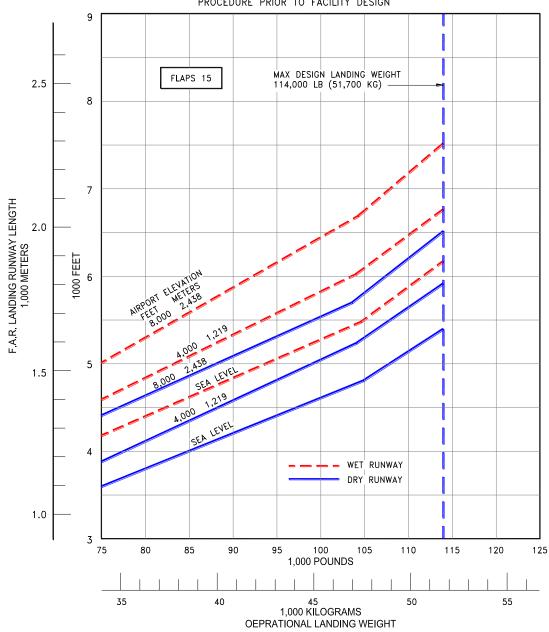
 - * FLAP POSITION 30
 - * AUTOMATIC SPEED BRAKES
 - * CONSULT WITH USING AIRLINE FOR SPECIFIC PROCEDURE PRIOR TO FACILITY DESIGN


3.4.9 F.A.R. Landing Runway Length Requirements - Flaps 15: Model Advanced 737-200, -200C

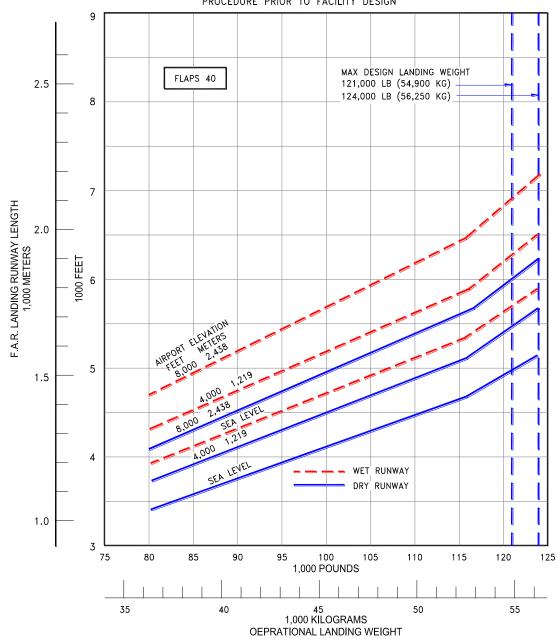

3.4.10 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-300

- * V_{APP} = 1.3V_S * ZERO WIND, ZERO RUNWAY GRADIENT * FLAP POSITION 40

- * AUTOMATIC SPEED BRAKES
 * CONSULT WITH USING AIRLINE FOR SPECIFIC PROCEDURE PRIOR TO FACILITY DESIGN


3.4.11 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-600

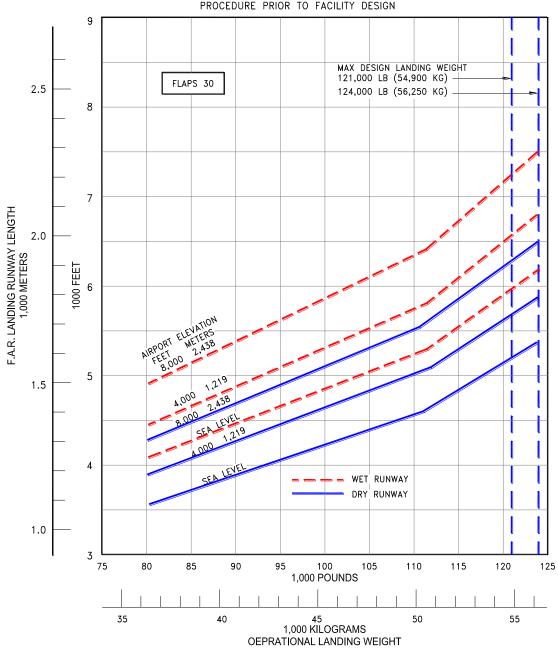
3.4.12 F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-300


- * V_{APP} = 1.3V_S * ZERO WIND, ZERO RUNWAY GRADIENT * FLAP POSITION 15

- * AUTOMATIC SPEED BRAKES
 * CONSULT WITH USING AIRLINE FOR SPECIFIC PROCEDURE PRIOR TO FACILITY DESIGN

3.4.13 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-400

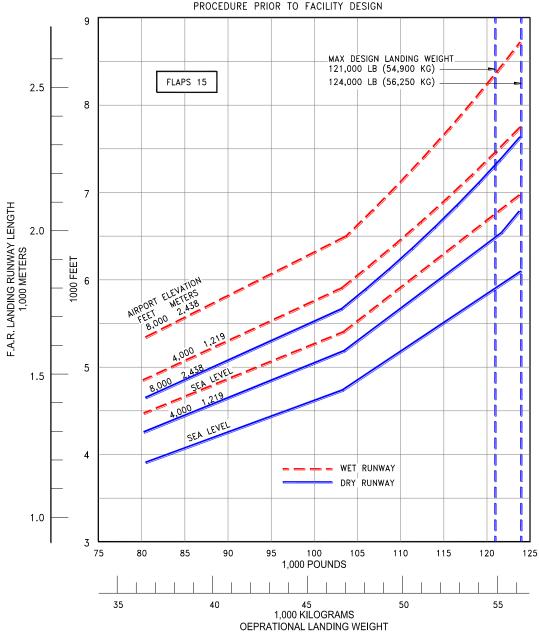
- * V_{APP} = 1.3V_S * ZERO WIND, ZERO RUNWAY GRADIENT * FLAP POSITION 40
- * AUTOMATIC SPEED BRAKES
- * CONSULT WITH USING AIRLINE FOR SPECIFIC PROCEDURE PRIOR TO FACILITY DESIGN

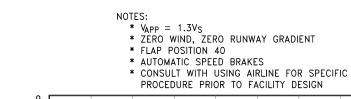


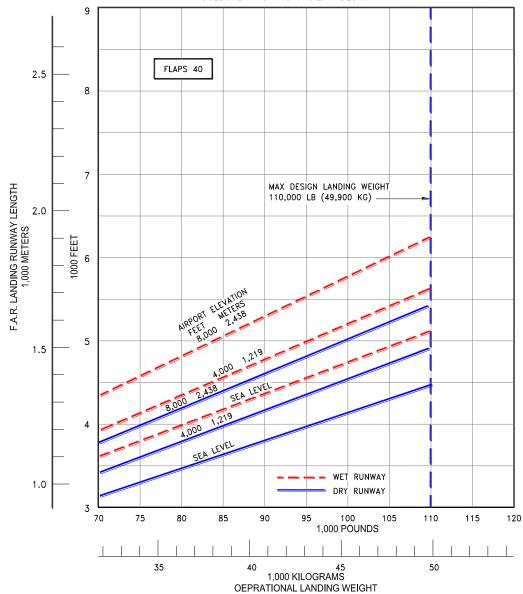
3.4.14 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-400

- * V_{APP} = 1.3V_S * ZERO WIND, ZERO RUNWAY GRADIENT * FLAP POSITION 30

- * AUTOMATIC SPEED BRAKES


 * CONSULT WITH USING AIRLINE FOR SPECIFIC PROCEDURE PRIOR TO FACILITY DESIGN


3.4.15 F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-400



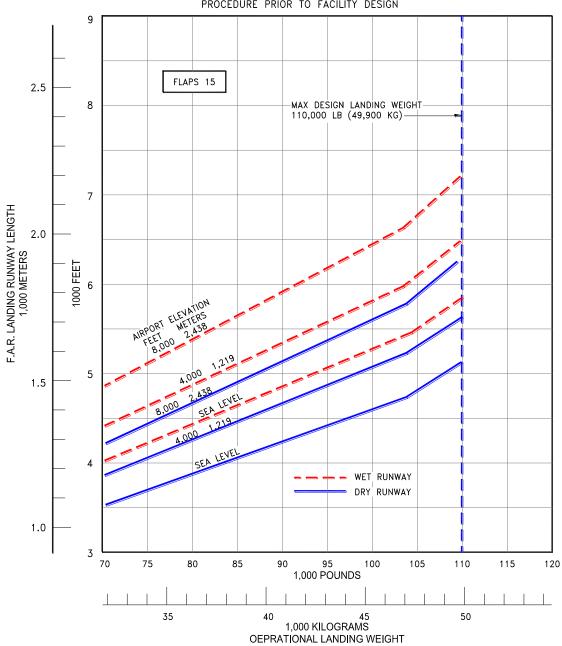
- * V_{APP} = 1.3V_S * ZERO WIND, ZERO RUNWAY GRADIENT * FLAP POSITION 15
- * AUTOMATIC SPEED BRAKES
- * CONSULT WITH USING AIRLINE FOR SPECIFIC PROCEDURE PRIOR TO FACILITY DESIGN

3.4.16 F.A.R. Landing Runway Length Requirements - Flaps 40: Model 737-500

3.4.17 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-500

- * V_{APP} = 1.3V_S * ZERO WIND, ZERO RUNWAY GRADIENT * FLAP POSITION 30

- AUTOMATIC SPEED BRAKES
 CONSULT WITH USING AIRLINE FOR SPECIFIC
 PROCEDURE PRIOR TO FACILITY DESIGN


3.4.18 F.A.R. Landing Runway Length Requirements - Flaps 15: Model 737-500

- * V_{APP} = 1.3V_S * ZERO WIND, ZERO RUNWAY GRADIENT
- * FLAP POSITION 15
- * AUTOMATIC SPEED BRAKES

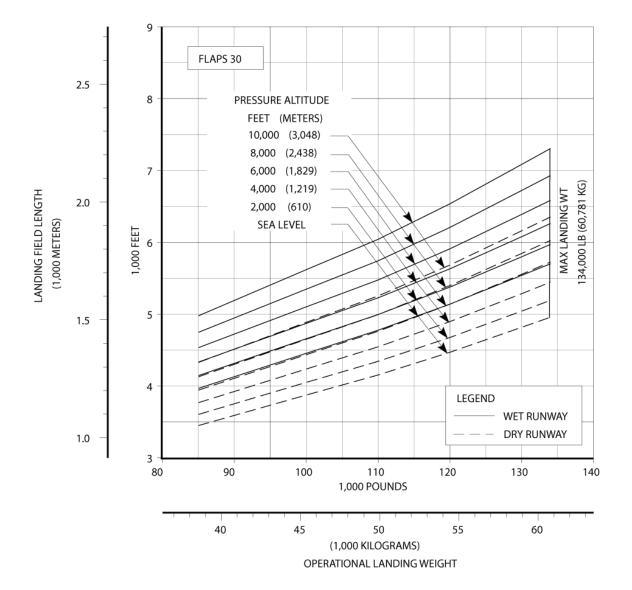
 * CONSULT WITH USING AIRLINE FOR SPECIFIC PROCEDURE PRIOR TO FACILITY DESIGN

3.4.19 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-600

DO NOT USE FOR DISPATCH

Landing Field Length 737-600 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- AUTO SPOILERS OPERATIVE
- ANTI-SKID OPERATIVE
- ZERO RUNWAY GRADIENT
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

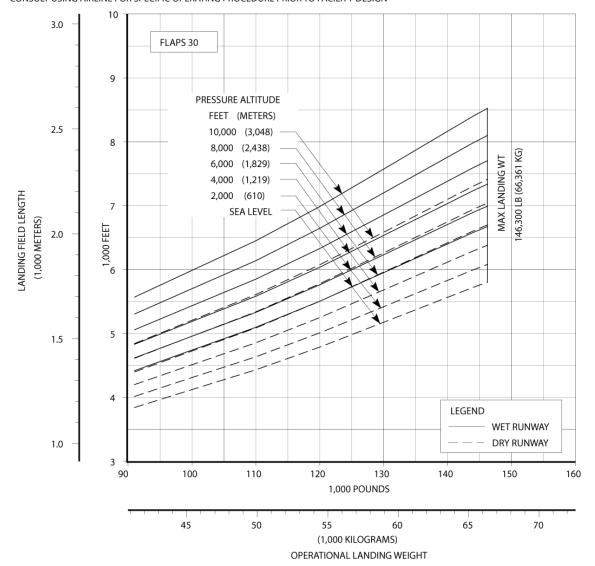


3.4.20 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-700ER

DO NOT USE FOR DISPATCH

Landing Field Length 737-700/-700W/-700ER/-700ERW/-700C/-700CW/BBJ1 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- AUTO SPOILERS OPERATIVE
- ANTI-SKID OPERATIVE
- ZERO RUNWAY GRADIENT
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

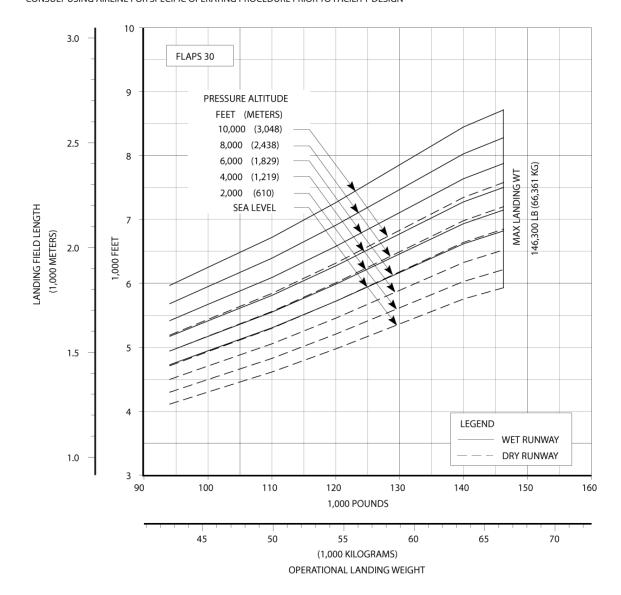

3.4.21 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-800

DO NOT USE FOR DISPATCH

Landing Field Length

737-800/-800W/BBJ2 (CFM56-7B Series)

- STANDARD DAY, ZERO WIND
- AUTO SPOILERS OPERATIVE
- ANTI-SKID OPERATIVE
- ZERO RUNWAY GRADIENT
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN



3.4.22 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-900

DO NOT USE FOR DISPATCH

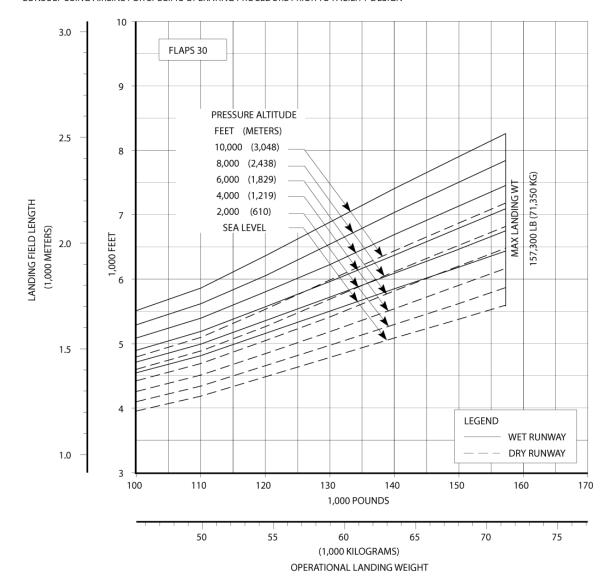
- STANDARD DAY, ZERO WIND
- AUTO SPOILERS OPERATIVE
- ANTI-SKID OPERATIVE
- ZERO RUNWAY GRADIENT

- Landing Field Length 737-900/-900W (CFM56-7B Series)
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

3.4.23 F.A.R. Landing Runway Length Requirements - Flaps 30: Model 737-900ER

DO NOT USE FOR DISPATCH Landing Field Length

- STANDARD DAY, ZERO WIND


- AUTO SPOILERS OPERATIVE

737-900ER/-900ERW/BBJ3 (CFM56-7B Series)

- ANTI-SKID OPERATIVE

- ZERO RUNWAY GRADIENT

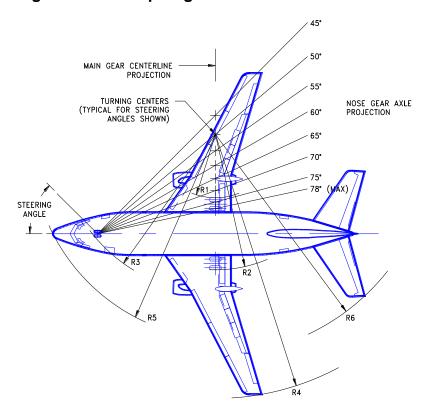
- CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE PRIOR TO FACILITY DESIGN

4.0 AIRPLANE PERFORMANCE

4.1 GENERAL INFORMATION

The 737 landing gear system is a conventional tricycle-type. The main gear consists of two dual wheel assemblies, one on each side of the fuselage. The nose gear is a dual-wheel assembly.

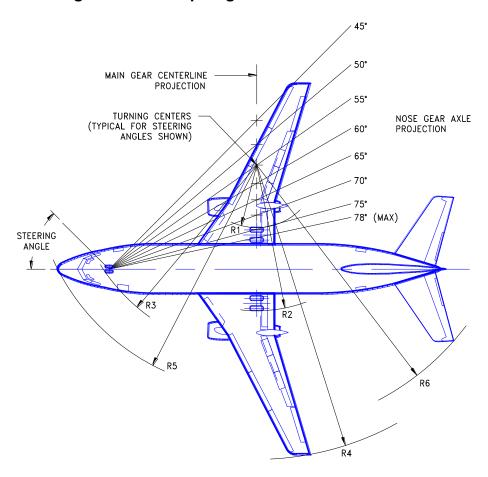
Sections 4.2 and 4.3 show turning radii for various nose gear steering angles. Radii for the main and nose gears are measured from the outside edge of the tire, rather than from the center of the wheel strut.


Section 4.4 shows the range of pilot's visibility from the cockpit within the limits of ambinocular vision through the windows. Ambinocular vision is defined as the total field of vision seen by both eyes at the same time.

The runway-taxiway turns in Section 4.5 show models 737-100 and 737-900 on a 100-ft (30-m) runway and 50-ft (15-m) taxiway system. Main gear tire tracks for the other airplane models will be between the tracks of the -100 and -900 models. Boeing 737 Series aircraft are able to operate on 100-foot wide runways worldwide. However, the FAA recommends the runway width criteria for the 737-700/-800/-900 is 150 ft (45 m) due to its maximum certificated takeoff weight.

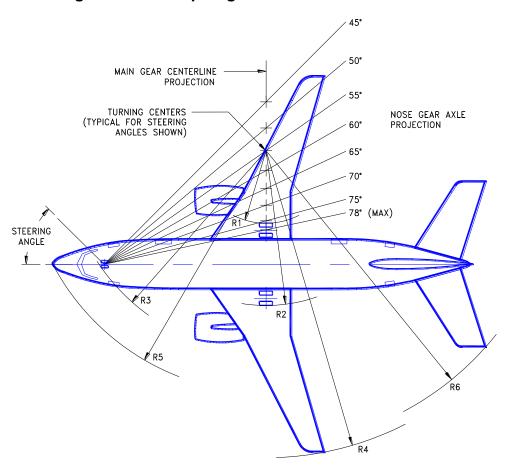
Section 4.6 shows minimum holding apron requirements for the 737 airplane models. Holding aprons for larger aircraft should be adequate for the 737.

4.2 TURNING RADII


4.2.1 Turning Radii - No Slip Angle: Model 737-100

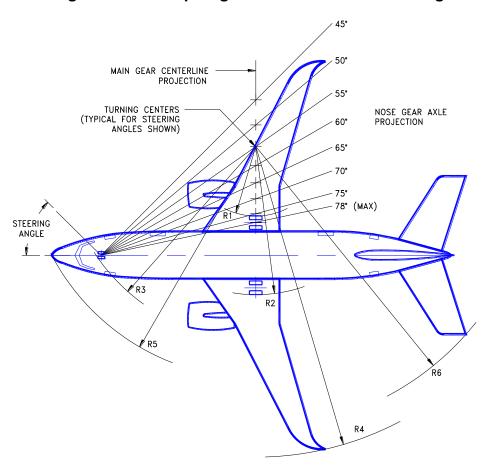
NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR		_	IOSE AR	R WIN	4 GTIP		5 SE		AIL
(DEG)	FT	М	FT	М	FT	M	FT	М	FT	М	FT	М
30	49.0	14.9	69.9	21.3	69.5	21.2	106.7	32.5	75.9	23.1	90.4	27.6
35	38.5	11.7	59.4	18.1	60.8	18.5	96.4	29.4	68.1	20.8	81.7	24.9
40	30.4	9.3	51.3	15.6	54.3	16.6	88.3	26.9	62.5	19.1	75.1	22.9
45	23.8	7.3	44.7	13.6	49.5	15.1	81.8	24.9	58.4	17.8	70.1	21.4
50	18.3	5.6	39.2	12.0	45.7	13.9	76.4	23.3	55.4	16.9	66.1	20.1
55	13.6	4.1	34.5	10.5	42.8	13.1	71.7	21.9	53.0	16.2	62.8	19.1
60	9.4	2.9	30.3	9.2	40.6	12.4	67.6	20.6	51.3	15.6	60.1	18.3
65	5.5	1.7	26.4	8.1	38.8	11.8	63.8	19.5	49.9	15.2	57.8	17.6
70	2.0	.6	22.9	7.0	37.5	11.4	60.4	18.4	48.9	14.9	55.8	17.0
75	1.3	.4	19.6	6.0	36.5	11.1	57.2	17.4	48.2	14.7	54.0	16.5
78 (MAX)	3.2	1.0	17.7	5.4	36.0	11.0	55.3	16.9	47.9	14.6	53.1	16.2


4.2.2 Turning Radii - No Slip Angle: Model 737-200

NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR		_	IOSE AR		4 GTIP		5 SE		AIL
(DEG)	FT	М	FT	М	FT	M	FT	М	FT	М	FT	M
30	54.2	16.5	75.1	22.9	75.5	23.0	111.9	34.1	81.9	25.0	96.4	29.4
35	42.8	13.1	63.7	19.4	66.0	20.1	100.6	30.7	73.3	22.3	86.9	26.5
40	34.0	10.4	54.9	16.7	59.0	18.0	91.9	28.0	67.1	20.5	79.8	24.3
45	26.8	8.2	47.7	14.6	53.7	16.4	84.8	25.8	62.6	19.1	74.4	22.7
50	20.8	6.4	41.7	12.7	49.6	15.1	78.9	24.0	59.2	18.1	70.0	21.3
55	15.7	4.8	36.6	11.1	46.5	14.2	73.8	22.5	56.7	17.3	66.5	20.3
60	11.1	3.4	32.0	9.7	44.0	13.4	69.3	21.1	54.7	16.7	63.5	19.4
65	6.9	2.1	27.8	8.5	42.1	12.8	65.2	19.9	53.2	16.2	61.0	18.6
70	3.1	1.0	24.0	7.3	40.6	12.4	61.5	18.7	52.1	15.9	58.9	17.9
75	0.5	.1	20.4	6.2	39.6	12.1	58.0	17.7	51.3	15.6	57.0	17.4
78 (MAX)	2.5	.8	18.4	5.6	39.1	11.9	56.0	17.1	50.9	15.5	56.1	17.1


4.2.3 Turning Radii – No Slip Angle: Model 737-300

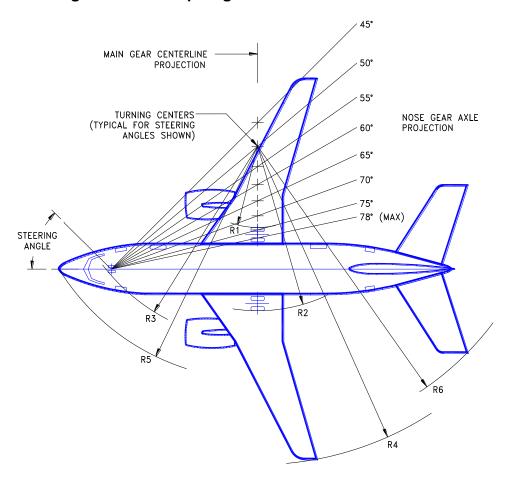
NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR		_	IOSE AR	R WING			5 SE		6 NL
(DEG)	FT	М	FT	М	FT	М	FT	М	FT	М	FT	M
30	60.2	18.4	81.1	24.7	82.5	25.2	119.0	36.3	88.9	27.1	107.1	32.6
35	47.8	14.6	68.7	20.9	72.1	22.0	106.7	32.5	79.4	24.2	96.7	29.5
40	38.2	11.6	59.1	18.0	64.4	19.6	97.2	29.6	72.7	22.1	89.0	27.1
45	30.3	9.3	51.2	15.6	58.6	17.9	89.5	27.3	67.7	20.6	83.0	25.3
50	23.8	7.2	44.7	13.6	54.2	16.5	83.0	25.3	63.9	19.5	78.3	23.9
55	18.1	5.5	39.0	11.9	50.8	15.5	77.4	23.6	61.1	18.6	74.4	22.7
60	13.1	4.0	34.0	10.4	48.1	14.6	72.5	22.1	58.9	18.0	71.2	21.7
65	8.6	2.6	29.5	9.0	46.0	14.0	68.1	20.8	57.3	17.5	68.4	20.9
70	4.4	1.3	25.3	7.7	44.4	13.5	64.0	19.5	56.0	17.1	66.1	20.1
75	0.5	.1	21.4	6.5	43.2	13.2	60.2	18.4	55.1	16.8	64.0	19.5
78 (MAX)	1.8	.5	19.1	5.8	42.7	13.0	58.0	17.7	54.7	16.7	63.0	19.2


4.2.4 Turning Radii – No Slip Angle: Model 737-300 With Winglets

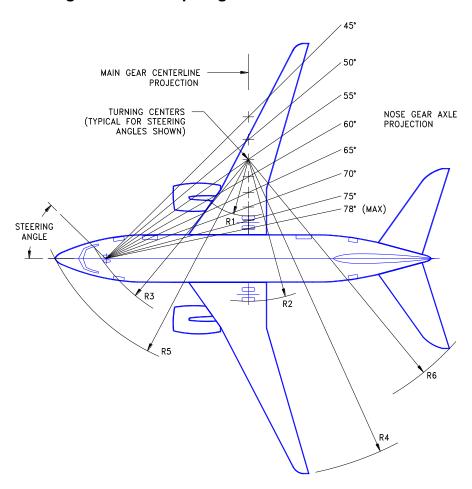
NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE		INER AR		UTER AR		IOSE AR	R WING	-		R5 NOSE		6 JL
(DEG)	FT	М	FT	M	FT	M	FT	М	FT	М	FT	M
30	60.2	18.4	81.1	24.7	82.5	25.2	123.6	37.3	88.9	27.1	107.1	32.6
35	47.8	14.6	68.7	20.9	72.1	22.0	111.3	33.9	79.4	24.2	96.7	29.5
40	38.2	11.6	59.1	18.0	64.4	19.6	101.9	31.1	72.7	22.1	89.0	27.1
45	30.3	9.3	51.2	15.6	58.6	17.9	94.2	28.7	67.7	20.6	83.0	25.3
50	23.8	7.2	44.7	13.6	54.2	16.5	87.8	26.8	63.9	19.5	78.3	23.9
55	18.1	5.5	39.0	11.9	50.8	15.5	82.3	25.1	61.1	18.6	74.4	22.7
60	13.1	4.0	34.0	10.4	48.1	14.6	77.5	23.6	58.9	18.0	71.2	21.7
65	8.6	2.6	29.5	9.0	46.0	14.0	73.1	22.3	57.3	17.5	68.4	20.9
70	4.4	1.3	25.3	7.7	44.4	13.5	69.1	21.1	56.0	17.1	66.1	20.1
75	0.5	.1	21.4	6.5	43.2	13.2	65.4	19.9	55.1	16.8	64.0	19.5
78 (MAX)	1.8	.5	19.1	5.8	42.7	13.0	63.2	19.3	54.7	16.7	63.0	19.2


4.2.5 Turning Radii – No Slip Angle: Model 737-400

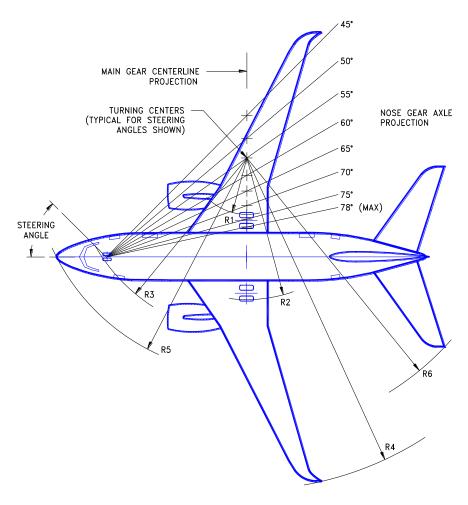
NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR		_	IOSE AR	R WING			5 SE	R TA	6 NL
(DEG)	FT	М	FT	М	FT	M	FT	М	FT	М	FT	M
30	70.7	21.5	91.6	27.9	94.7	28.8	129.3	39.4	100.9	30.8	118.1	36.0
35	56.4	17.2	77.3	23.6	82.6	25.2	115.2	35.1	89.8	27.4	106.0	32.3
40	45.3	13.8	66.3	20.2	73.8	22.5	104.2	31.8	81.9	25.0	97.1	29.6
45	36.4	11.1	57.3	17.5	67.2	20.5	95.3	29.1	76.1	23.2	90.2	27.5
50	28.8	8.8	49.8	15.2	62.1	18.9	87.9	26.8	71.7	21.9	84.6	25.8
55	22.3	6.8	43.3	13.2	58.2	17.7	81.5	24.8	68.4	20.8	80.2	24.4
60	16.6	5.1	37.5	11.4	55.1	16.8	75.8	23.1	65.8	20.1	76.4	23.3
65	11.4	3.5	32.3	9.8	52.7	16.1	70.8	21.6	63.9	19.5	73.3	22.3
70	6.6	2.0	27.5	8.4	50.8	15.5	66.1	20.1	62.4	19.0	70.6	21.5
75	2.1	0.6	23.0	7.0	49.5	15.1	61.7	18.8	61.3	18.7	68.3	20.8
78 (MAX)	-0.5	-0.2	20.4	6.2	48.9	14.9	59.2	18.0	60.8	18.5	67.1	20.4


4.2.6 Turning Radii – No Slip Angle: Model 737-500

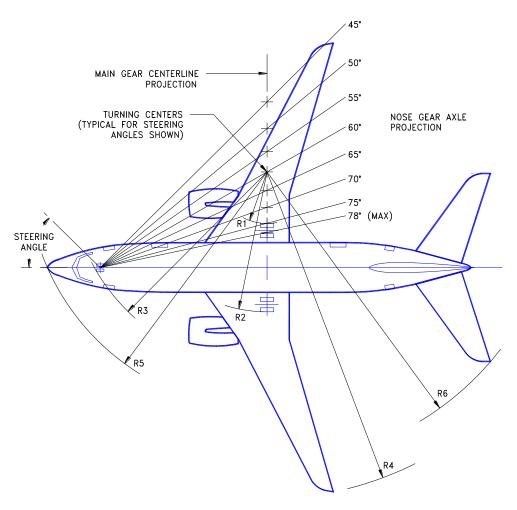
NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR		_	IOSE AR		4 3 TIP		5 SE		6 NL
(DEG)	FT	М	FT	M	FT	M	FT	М	FT	М	FT	М
30	52.4	16.0	73.3	22.3	73.5	22.4	111.3	33.9	80.0	24.4	98.7	30.1
35	41.4	12.6	62.3	19.0	64.2	19.6	100.4	30.6	71.7	21.8	89.6	27.3
40	32.8	10.0	53.7	16.4	57.4	17.5	91.9	28.0	65.7	20.0	82.7	25.2
45	25.8	7.9	46.7	14.2	52.3	15.9	85.0	25.9	61.4	18.7	77.5	23.6
50	20.0	6.1	40.9	12.5	48.3	14.7	79.3	24.2	58.1	17.7	73.3	22.3
55	15.0	4.6	35.9	10.9	45.3	13.8	74.3	22.7	55.6	17.0	69.8	21.3
60	10.5	3.2	31.4	9.6	42.9	13.1	70.0	21.3	53.8	16.4	67.0	20.4
65	6.5	2.0	27.4	8.3	41.0	12.5	66.1	20.1	52.3	15.9	64.5	19.7
70	2.8	.8	23.7	7.2	39.6	12.1	62.4	19.0	51.2	15.6	62.4	19.0
75	0.7	.2	20.2	6.1	38.5	11.7	59.1	18.0	50.4	15.4	60.6	18.5
78 (MAX)	2.7	.8	18.2	5.5	38.1	11.6	57.1	17.4	50.1	15.3	59.6	18.2


4.2.7 Turning Radii – No Slip Angle: Model 737-600

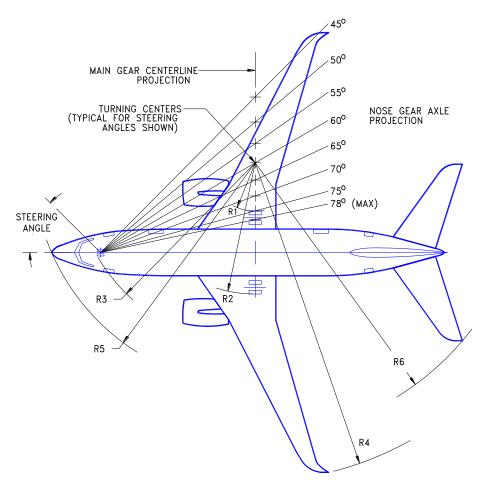
NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR		_	IOSE AR	R WING			5 SE		6 NL
(DEG)	FT	М	FT	М	FT	М	FT	М	FT	М	FT	М
30	52.1	15.9	75.2	22.9	74.0	22.6	121.2	36.9	81.0	24.7	101.7	31.0
35	40.9	12.5	64.0	19.5	64.6	19.7	110.2	33.6	72.6	22.1	92.3	28.1
40	32.2	9.8	55.3	16.9	57.8	17.6	101.6	31.0	66.6	20.3	85.3	26.0
45	25.2	7.7	48.3	14.7	52.7	16.1	94.7	28.9	62.2	19.0	79.9	24.3
50	26.2	5.9	42.4	12.9	48.7	14.9	88.8	27.1	58.9	17.9	75.5	23.0
55	14.2	4.3	37.3	11.4	45.7	13.9	83.8	25.6	56.4	17.2	71.9	21.9
60	9.7	2.9	32.8	10.0	43.3	13.2	79.4	24.2	54.5	16.6	68.9	21.0
65	5.6	1.7	28.7	8.7	41.4	12.6	75.5	23.0	53.0	16.2	66.3	20.2
70	1.8	0.6	24.9	7.6	40.0	12.2	71.8	21.9	51.9	15.8	64.1	19.5
78 (MAX)	-3.7	-1.1	19.4	5.9	38.5	11.7	66.4	20.2	50.8	15.5	61.0	18.6


4.2.8 Turning Radii - No Slip Angle: Model 737-600 With Winglets

NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

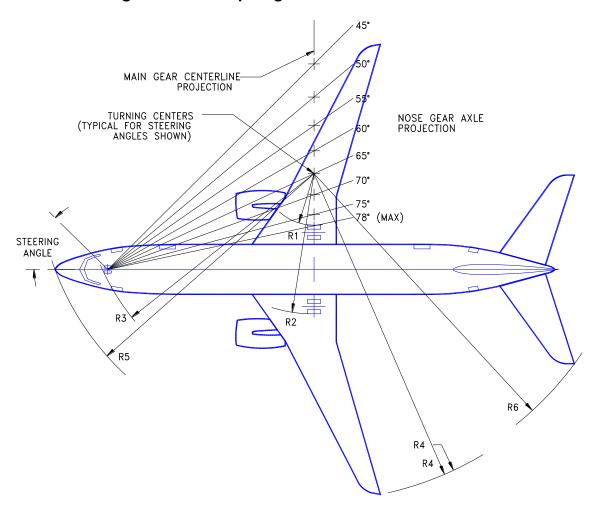
STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR		_	IOSE AR	R WING			5 SE	R TA	6 AIL
(DEG)	FT	М	FT	M	FT	M	FT	М	FT	М	FT	M
30	52.7	16.1	75.8	23.1	75.1	22.9	124.7	38.0	81.7	24.9	75.8	23.1
35	41.4	12.6	64.5	19.7	65.6	20.0	113.5	34.6	73.2	22.3	64.5	19.7
40	32.7	10.0	55.8	17.0	58.7	17.9	104.9	32.0	67.1	20.5	55.8	17.0
45	25.5	7.8	48.6	14.8	53.4	16.3	98.0	29.9	62.7	19.1	48.6	14.8
50	19.6	6.0	42.7	13.0	49.4	15.1	92.1	28.1	59.3	18.1	42.7	13.0
55	14.4	4.4	37.5	11.4	46.2	14.1	87.1	26.6	56.8	17.3	37.5	11.4
60	9.9	3.0	33.0	10.0	43.8	13.3	82.7	25.2	54.9	16.7	33.0	10.0
65	5.7	1.8	28.8	8.8	41.9	12.8	78.7	24.0	53.4	16.3	28.8	8.8
70	2.0	.6	25.1	7.6	40.4	12.3	75.1	22.9	52.3	15.9	25.1	7.6
78 (MAX)	3.7	1.1	19.4	5.9	38.9	11.9	69.7	21.2	51.1	15.6	19.4	5.9


4.2.9 Turning Radii - No Slip Angle: Model 737-700

NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR		_	IOSE AR	R WING			5 SE		6 NL
(DEG)	FT	М	FT	М	FT	M	FT	М	FT	М	FT	М
30	59.9	18.3	83.0	25.3	83.0	25.3	128.9	39.3	90.0	27.4	110.1	33.6
35	47.4	14.4	70.5	21.5	72.5	22.1	116.5	35.5	80.4	24.5	99.5	30.3
40	37.6	11.5	60.7	18.5	64.8	19.8	106.9	32.6	73.5	22.4	91.6	27.9
45	29.7	9.1	52.8	16.1	59.0	18.0	99.1	30.2	68.5	20.9	85.5	26.0
50	23.0	7.0	46.2	14.1	54.6	16.7	92.6	28.2	64.7	19.7	80.5	24.5
55	17.3	5.3	40.4	12.3	51.2	15.6	86.9	26.5	61.8	18.8	76.5	23.3
60	12.3	3.7	35.4	10.8	48.5	14.8	82.0	25.0	59.6	18.2	73.1	22.3
65	7.7	2.3	30.8	9.4	46.4	14.2	77.5	23.6	58.0	17.7	70.2	21.4
70	3.5	1.1	26.6	8.2	44.8	13.7	73.4	22.4	56.7	17.3	67.7	20.6
78 (MAX)	-2.8	-0.8	20.3	6.2	43.1	13.1	67.3	20.5	55.4	16.9	64.4	19.6

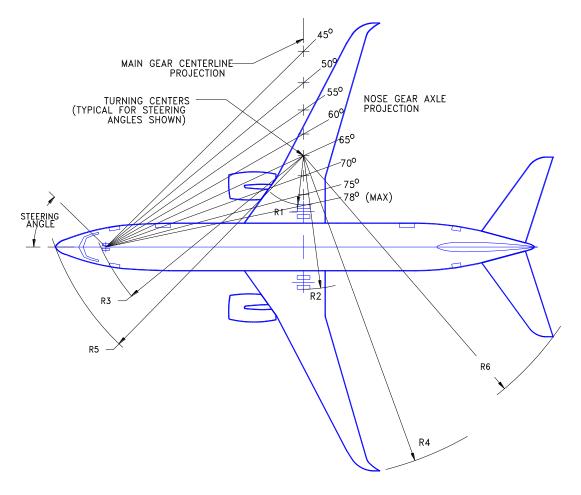
4.2.10 Turning Radii – No Slip Angle: Model 737-700 With Winglets, 737 BBJ



NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN

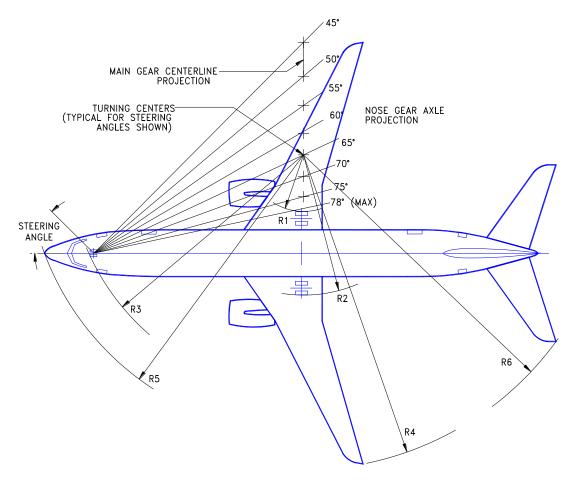
^{*} CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR		_	IOSE AR	R WING			5 SE		6 NL
(DEG)	FT	М	FT	М	FT	М	FT	М	FT	M	FT	М
30	59.9	18.3	83.0	25.3	83.5	25.5	131.8	40.2	90.0	27.4	110.1	33.6
35	47.4	14.4	70.5	21.5	72.5	22.1	119.4	36.4	80.4	24.5	99.5	30.3
40	37.6	11.5	60.7	18.5	64.8	19.8	109.8	33.5	73.5	22.4	91.6	27.9
45	29.7	9.1	52.8	16.1	59.0	18.0	102.0	31.1	68.5	20.9	85.5	26.0
50	23.0	7.0	46.2	14.1	54.6	16.7	95.5	29.1	64.7	19.7	80.5	24.5
55	17.3	5.3	40.4	12.3	51.2	15.6	89.9	27.4	61.8	18.8	76.5	23.3
60	12.3	3.7	35.4	10.8	48.5	14.8	85.0	25.9	59.6	18.2	73.1	22.3
65	7.7	2.3	30.8	9.4	46.4	14.2	80.5	24.5	58.0	17.7	70.2	21.4
70	3.5	1.1	26.6	8.1	44.8	13.7	76.4	23.3	56.7	17.3	67.7	20.6
78 (MAX)	-2.8	-0.8	20.3	6.2	43.1	13.1	70.4	21.5	55.4	16.9	64.4	19.6


4.2.11 Turning Radii - No Slip Angle: Model 737-800

NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

STEERING ANGLE	R1 INNER GEAR		R2 OUTER GEAR			IOSE AR	R WING	-	R NO	5 SE	R TA	-
(DEG)	FT	М	FT	М	FT	M	FT	М	FT	М	FT	M
30	76.9	23.4	100.0	30.5	102.7	31.3	145.8	44.4	109.5	33.4	129.5	39.5
35	61.4	18.7	84.5	25.8	89.6	27.3	130.4	39.7	97.4	29.7	116.4	35.5
40	49.3	15.0	72.4	22.1	80.1	24.4	118.5	36.1	88.7	27.0	106.6	32.5
45	39.5	12.0	62.6	19.1	72.9	22.2	108.8	33.2	82.3	25.1	99.0	30.2
50	18.2	9.5	54.4	16.6	67.4	20.6	100.7	30.7	77.4	23.6	93.0	28.3
55	24.2	7.4	47.3	14.4	63.2	19.3	93.7	28.6	73.8	22.5	88.0	26.8
60	17.9	5.5	41.0	12.5	59.8	18.3	87.5	26.7	70.9	21.6	83.9	25.6
65	12.3	3.7	35.4	10.8	57.3	17.5	82.0	25.0	68.8	21.0	80.4	24.5
70	7.0	2.1	30.1	9.2	55.3	16.9	76.9	23.4	67.1	20.5	77.5	23.6
78 (MAX)	-0.7	-0.2	22.4	6.8	53.2	16.2	69.4	21.1	65.4	19.9	73.6	22.4


4.2.12 Turning Radii – No Slip Angle: Model 737-800 With Winglets, 737 BBJ2

NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

	R	1	R	R2		3	R	4	R	5	R	6
STEERING ANGLE	INNER GEAR		OU ¹ GE		_	SE AR	WII Ti	NG P	NOSE		TAIL	
(DEGREES)	FT	М	FT	М	FT	М	FT	М	FT	М	FT	M
30	77.5	23.6	100.6	30.7	103.7	31.6	149.1	45.4	110.1	33.6	129.8	39.6
35	61.9	18.9	85.0	25.9	90.6	27.6	133.6	4.07	97.9	29.8	116.6	35.5
40	49.7	15.2	72.8	22.2	80.9	24.7	121.6	37.1	89.2	27.2	106.7	32.5
45	39.8	12.1	62.9	19.2	73.6	22.4	111.9	34.1	82.7	25.2	99.0	30.2
50	31.6	9.6	54.7	16.7	68.0	20.7	103.8	31.6	77.8	23.7	92.9	28.3
55	24.4	7.4	47.5	14.5	63.7	19.43	96.8	29.5	74.1	22.6	87.9	26.8
60	18.1	5.5	41.2	12.6	60.3	18.4	90.6	27.6	71.3	21.7	83.8	25.5
65	12.4	3.8	35.8	10.8	57.7	17.6	85.1	25.9	69.1	21.1	80.3	24.5
70	7.2	2.2	30.3	9.2	55.6	17.0	80.0	24.4	67.4	20.6	77.3	23.6
78 (MAX)	-0.6	-0.2	22.5	6.9	53.5	16.3	72.5	22.1	65.7	20.0	73.3	22.3

4.2.13 Turning Radii - No Slip Angle: Model 737-900, -900ER

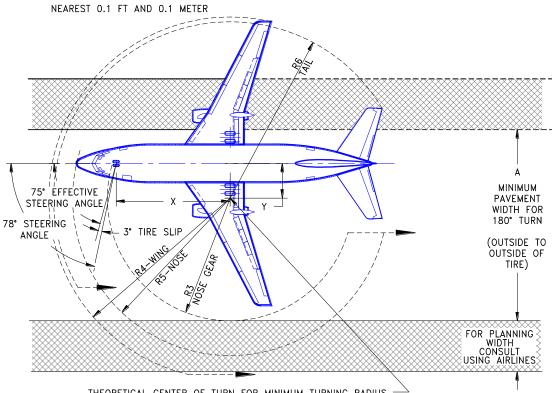
NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

	R	11	R	R2		3	R	4	R	5	R6		
STEERING ANGLE	INNER GEAR		OU ⁻ GE	TER AR	NO GE	SE AR	WI T	NG IP	NO	NOSE		\IL	
(DEGREES)	FT	M	FT	М	FT	М	FT	М	FT	М	FT	M	
30	86.0	26.2	109.1	33.2	113.5	34.6	154.8	47.2	119.9	36.5	138.8	42.3	
35	68.9	21.0	92.0	28.0	99.1	30.2	137.8	42.0	106.4	32.4	124.1	37.8	
40	55.5	16.9	78.6	24.0	88.5	27.0	124.6	38.0	96.7	29.5	113.2	34.5	
45	44.7	13.6	67.8	20.7	80.6	24.6	113.9	34.7	89.6	27.3	104.8	31.9	
50	35.7	10.9	58.8	17.9	74.4	22.7	105.0	32.0	84.2	25.7	98.0	29.9	
55	27.9	8.9	51.0	15.5	69.7	21.2	97.3	29.7	80.1	24.4	92.5	28.2	
60	21.0	6.4	44.1	13.4	66.0	20.1	90.5	27.6	76.9	23.4	88.0	26.9	
65	14.7	4.5	37.8	11.5	63.1	19.2	84.4	25.7	74.5	22.7	84.1	25.6	
70	8.9	2.7	32.0	9.8	60.9	18.6	78.7	24.0	72.6	22.1	80.8	24.6	
78 (MAX)	0.4	0.1	23.5	7.2	58.5	17.8	70.4	21.5	70.7	21.5	76.5	23.4	

4.2.14 Turning Radii – No Slip Angle: Model 737-900, -900ER With Winglets

NOTES: * ACTUAL OPERATING TURNING RADII MAY BE GREATER THAN SHOWN * CONSULT WITH AIRLINE FOR SPECIFIC OPERATING PROCEDURE

	R	1	R	R2		3	R	4	R	5	R6	
STEERING ANGLE	INNER GEAR		OU ¹ GE		NO GE	-	WI T	NG IP	NOSE		TAIL	
(DEGREES)	FT	М	FT	М	FT	М	FT	М	FT	М	FT	M
30	86.0	26.2	109.1	33.2	113.5	34.6	157.6	48.0	119.9	36.5	138.8	42.3
35	68.9	21.0	92.0	28.0	99.1	30.2	140.6	42.9	106.4	32.4	124.1	37.8
40	55.5	16.9	78.6	24.0	88.5	27.0	127.5	38.8	96.7	29.5	113.2	34.5
45	44.7	13.6	67.8	20.7	80.6	24.6	118.8	35.6	89.6	27.3	104.8	31.9
50	35.7	10.9	58.8	17.9	74.4	22.7	107.9	32.9	84.2	25.7	98.0	29.9
55	27.9	8.9	51.0	15.5	69.7	21.2	100.2	30.6	80.1	24.4	92.5	28.2
60	21.0	6.4	44.1	13.4	66.0	20.1	93.5	28.5	76.9	23.4	88.0	26.9
65	14.7	4.5	37.8	11.5	63.1	19.2	87.4	26.6	74.5	22.7	84.1	25.6
70	8.9	2.7	32.0	9.8	60.9	18.6	81.8	24.9	72.6	22.1	80.8	24.6
78 (MAX)	0.4	0.1	23.5	7.2	58.5	17.8	73.6	22.4	70.7	21.5	76.5	23.4


4.3 CLEARANCE RADII

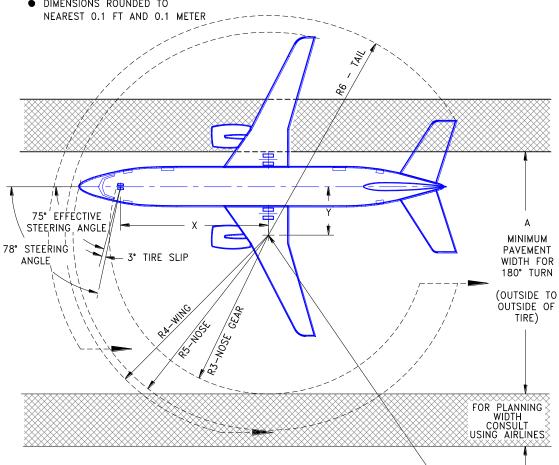
4.3.1 Minimum Turning Radii - 3" Slip Angle: Model 737-100, -200

NOTES:

- 3° TIRE SLIP ANGLE APPROXIMATE
- ONLY FOR 78° STEERING ANGLE

 CONSULT WITH AIRLINE FOR ACTUAL
 OPERATING DATA
- DIMENSIONS ROUNDED TO

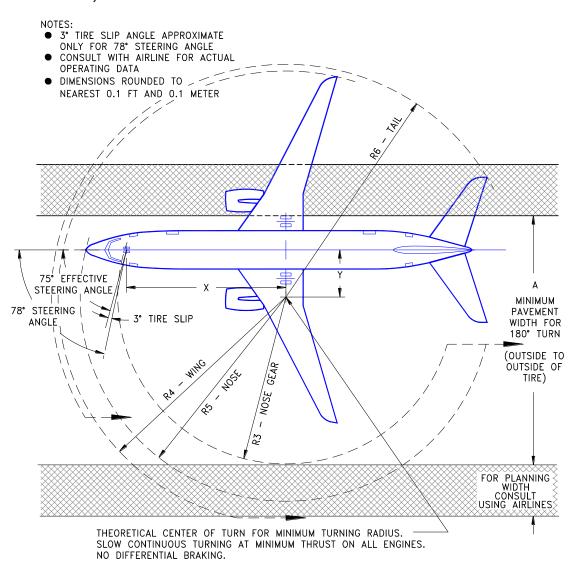
THEORETICAL CENTER OF TURN FOR MINIMUM TURNING RADIUS. — SLOW CONTINUOUS TURNING AT MINIMUM THRUST ON ALL ENGINES. NO DIFFERENTIAL BRAKING.


AIRPLANE MODEL	EFFECTIVE)	(Υ	,	ŀ	4	R	3	R	4	R	5	R	16
	TURNING ANGLE (DEG)	FT	М	FT	M	FT	М								
737-100	75	34.3	10.5	9.2	2.8	56.1	17.1	36.5	11.1	57.2	17.4	48.2	14.7	54.0	16.5
737-200	75	41.3	11.4	10.0	3.0	60.0	18.3	39.6	12.1	58.0	17.7	51.3	15.6	57.0	18.3

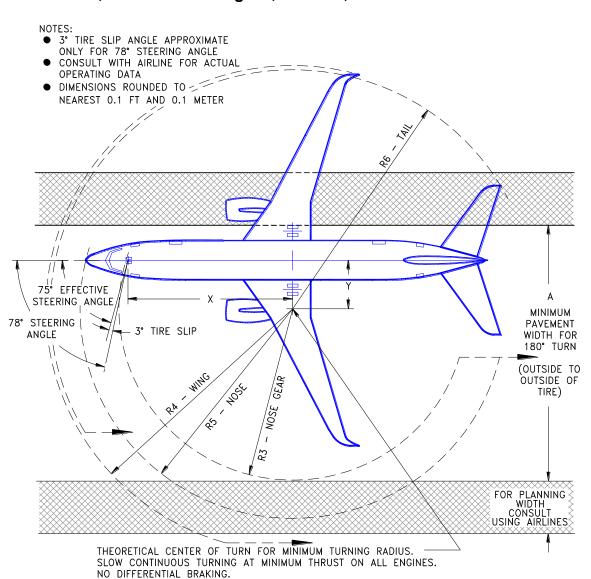
4.3.2 Minimum Turning Radii - 3" Slip Angle: Model 737-300, -300 With Winglets, -400, -500

- NOTES:

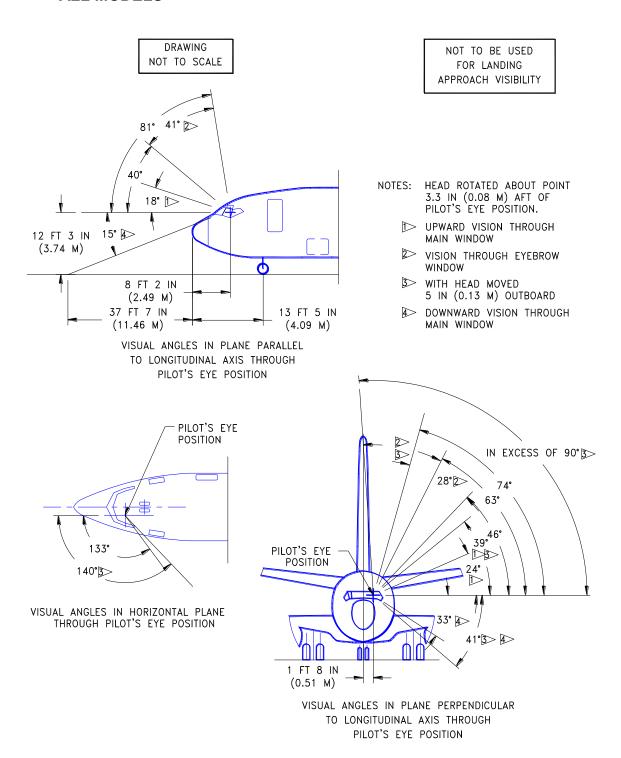
 3° TIRE SLIP ANGLE APPROXIMATE
 ONLY FOR 78° STEERING ANGLE
 CONSULT WITH AIRLINE FOR ACTUAL


 - OPERATING DATA
- DIMENSIONS ROUNDED TO

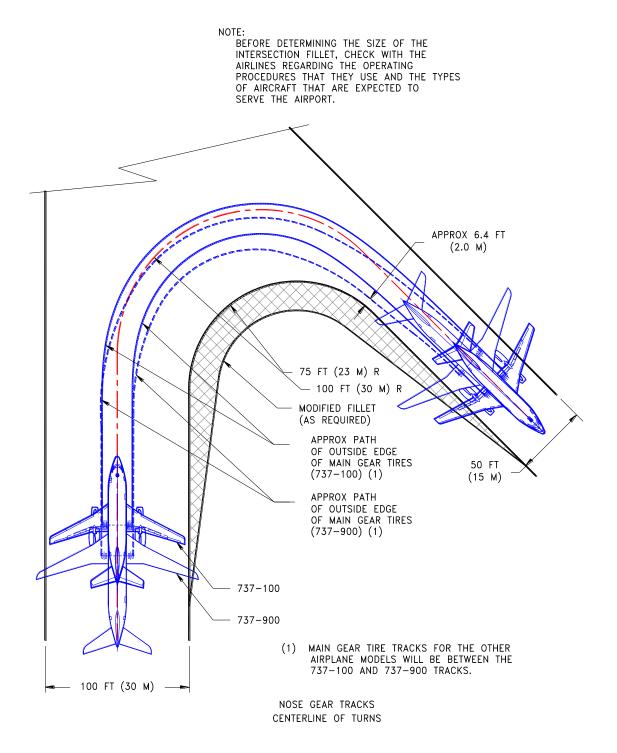
THEORETICAL CENTER OF TURN FOR MINIMUM TURNING RADIUS. — SLOW CONTINUOUS TURNING AT MINIMUM THRUST ON ALL ENGINES. NO DIFFERENTIAL BRAKING.


AIRPLANE	EFFECTIVE)	(Y	,	ļ	4	R	3	R	4	R	5	R	6
MODEL	TURNING ANGLE (DEG)	FT	М	FT	M	FT	М								
737-300	75	40.8	12.4	10.9	3.3	64.6	19.7	43.2	13.2	60.2	18.4	55.1	16.8	64.0	19.5
737-300 WITH WINGLETS	75	40.8	12.4	10.9	3.3	64.6	19.7	43.2	13.2	65.4	19.9	55.1	16.8	64.0	19.5
737-400	75	46.8	14.3	12.5	3.8	72.4	22.1	49.4	15.1	61.8	18.8	61.3	18.7	68.3	20.8
737-500	75	36.3	11.1	9.7	3.0	58.7	17.9	38.5	11.7	59.1	18.0	50.4	15.4	60.6	18.5

4.3.3 Minimum Turning Radii – 3" Slip Angle: Model 737-600, -700, -800, -900, -900ER

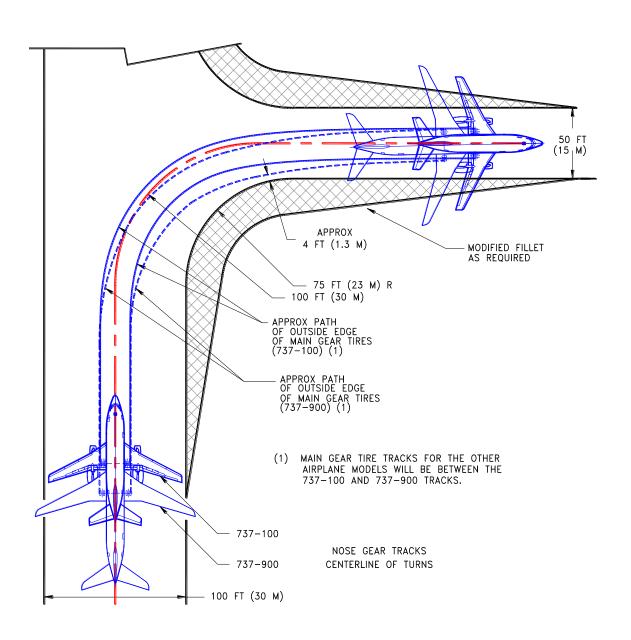

AIRPLANE	EFFECTIVE)	(Y	,	A	1	R	3	R	4	R5		R	6
MODEL	TURNING ANGLE (DEG)	FT	М	FT	M	FT	М								
737-600	75	36.8	11.2	9.9	3.0	60.8	18.5	39.6	12.1	68.4	20.9	51.2	15.6	62.0	18.9
737-700	75	41.3	12.6	11.1	3.4	66.9	20.4	44.3	13.5	69.6	21.2	55.9	17.0	65.5	20.0
737-800	75	51.2	15.6	13.7	4.2	79.7	24.3	54.5	16.6	72.1	22.0	66.0	20.1	74.8	22.8
737-900, -900ER	75	56.3	17.2	15.1	4.6	86.4	26.3	59.8	18.2	73.5	22.4	71.4	21.8	78.6	23.9

4.3.4 Minimum Turning Radii – 3" Slip Angle: Model 737-600, -700, -800, -900, -900ER With Winglets, 737 BBJ, 737 BBJ2


EFFECTIVE Χ Α R3 R4 R5 R6 **AIRPLANE TURNING MODEL** FT M FT M FT М FT M FT M FT M FT М **ANGLE (DEG)** 737-600 75 36.8 11.2 9.9 3.0 60.8 18.5 39.6 12.1 71.7 21.8 51.2 15.6 62.0 18.9 737-700 41.3 20.4 22.2 20.0 75 12.6 11.1 3.4 66.9 44.3 13.5 72.8 55.9 17.0 65.5 737BBJ 737-800 75 51.2 15.6 13.7 4.2 79.7 24.3 54.5 16.6 75.3 23.0 66.0 20.1 74.8 22.8 737 BBJ2 737-900. 75 56.3 17.2 15.1 4.6 86.4 26.3 59.8 18.2 76.7 23.4 71.4 21.8 78.6 23.9 -900ER

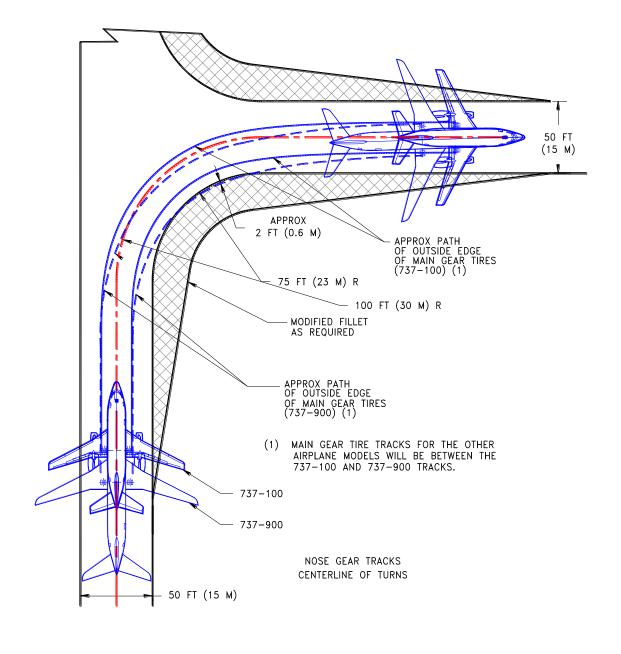
4.4 VISIBILITY FROM COCKPIT IN STATIC POSITION: MODEL 737, ALL MODELS

4.5 RUNWAY AND TAXIWAY TURN PATHS


4.5.1 Runway and Taxiway Turn Paths - Runway-to-Taxiway, More Than 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models

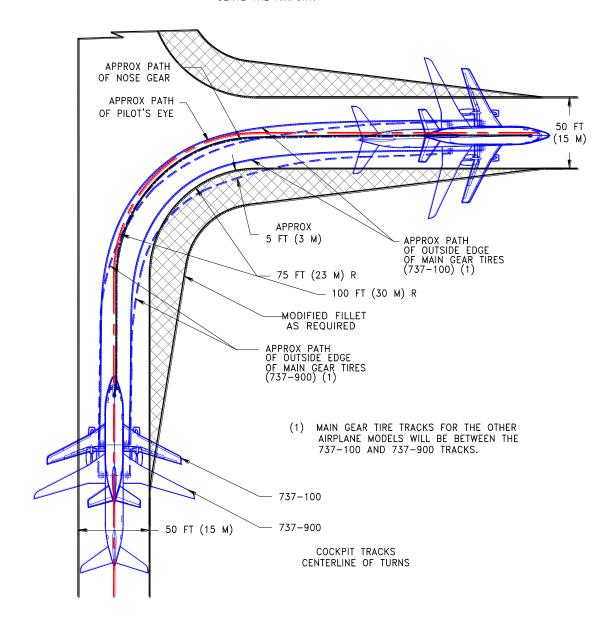
4.5.2 Runway and Taxiway Turn Paths - Runway-to-Taxiway, 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models

NOTE:


BEFORE DETERMINING THE SIZE OF THE INTERSECTION FILLET, CHECK WITH THE AIRLINES REGARDING THE OPERATING PROCEDURES THAT THEY USE AND THE TYPES OF AIRCRAFT THAT ARE EXPECTED TO SERVE THE AIRPORT.

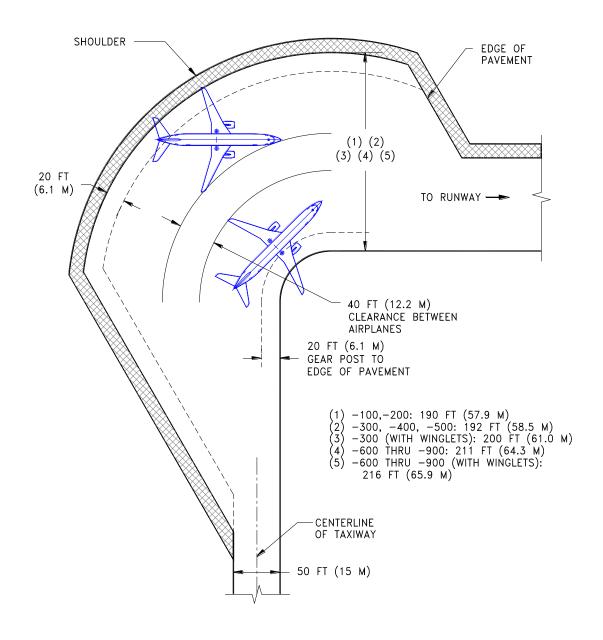
4.5.3 Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90 Degrees, Nose Gear Tracks Centerline: Model 737, All Models

NOTE:


BEFORE DETERMINING THE SIZE OF THE INTERSECTION FILLET, CHECK WITH THE AIRLINES REGARDING THE OPERATING PROCEDURES THAT THEY USE AND THE TYPES OF AIRCRAFT THAT ARE EXPECTED TO SERVE THE AIRPORT.

4.5.4 Runway and Taxiway Turn Paths - Taxiway-to-Taxiway, 90 Degrees, Cockpit Tracks Centerline: Model 737, All Models

NOTE:


BEFORE DETERMINING THE SIZE OF THE INTERSECTION FILLET, CHECK WITH THE AIRLINES REGARDING THE OPERATING PROCEDURES THAT THEY USE AND THE TYPES OF AIRCRAFT THAT ARE EXPECTED TO SERVE THE AIRPORT.

4.6 RUNWAY HOLDING BAY: MODEL 737, ALL MODELS

NOTE: BEFORE DETERMINING THE SIZE OF THE PAVEMENT AND SHOULDER, CHECK WITH THE AIRLINES REGARDING THE OPERATING PROCEDURES THAT THEY USE AND THE AIRCRAFT TYPES THAT ARE EXPECTED

TO SERVE THE AIRPORT.

5.0 TERMINAL SERVICING

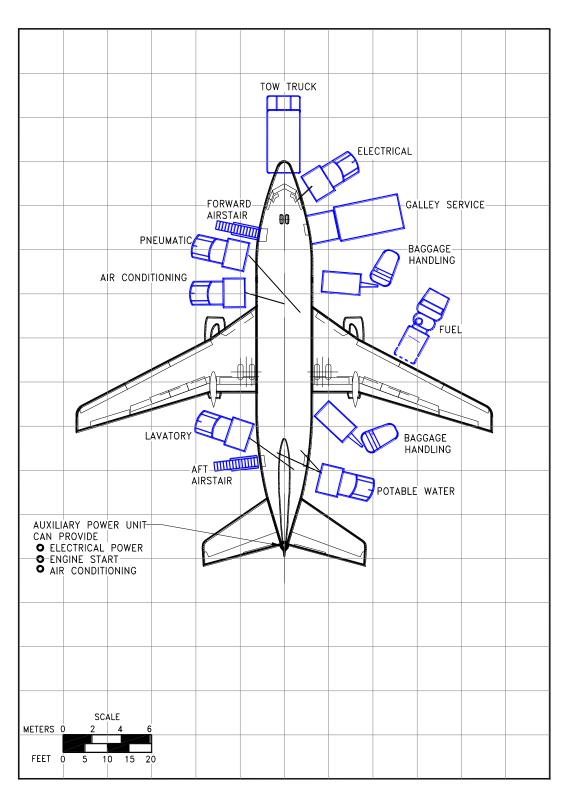
During turnaround at the terminal, certain services must be performed on the aircraft, usually within a given time, to meet flight schedules. This section shows service vehicle arrangements, schedules, locations of service points, and typical service requirements. The data presented in this section reflect ideal conditions for a single airplane. Service requirements may vary according to airplane condition and airline procedure.

Section 5.1 shows typical arrangements of ground support equipment during turnaround. As noted, if the auxiliary power unit (APU) is used, the electrical, air start, and air-conditioning service vehicles would not be required. Passenger loading bridges or portable passenger stairs could be used to load or unload passengers.

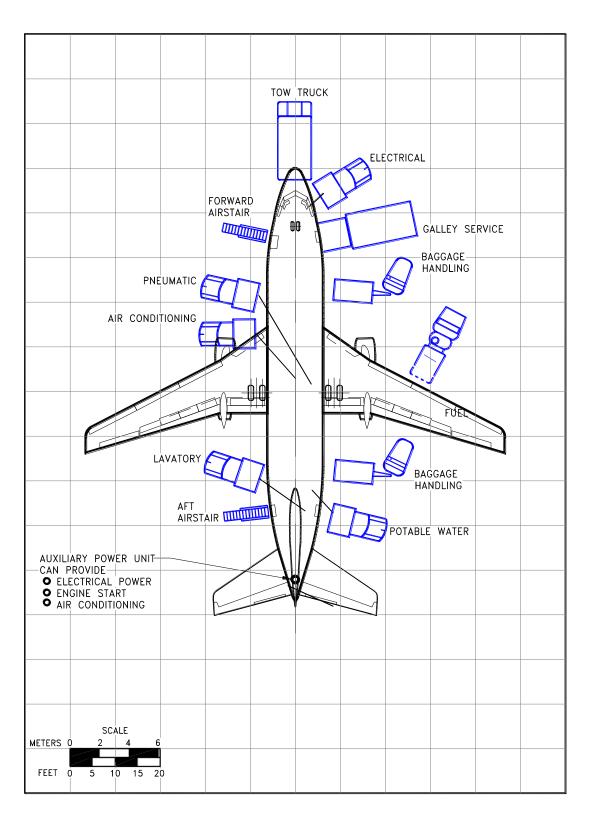
Sections 5.2 and 5.3 show typical service times at the terminal. These charts give typical schedules for performing service on the airplane within a given time. Service times could be rearranged to suit availability of personnel, airplane configuration, and degree of service required.

Section 5.4 shows the locations of ground service connections in graphic and in tabular forms. Typical capacities and service requirements are shown in the tables. Services with requirements that vary with conditions are described in subsequent sections.

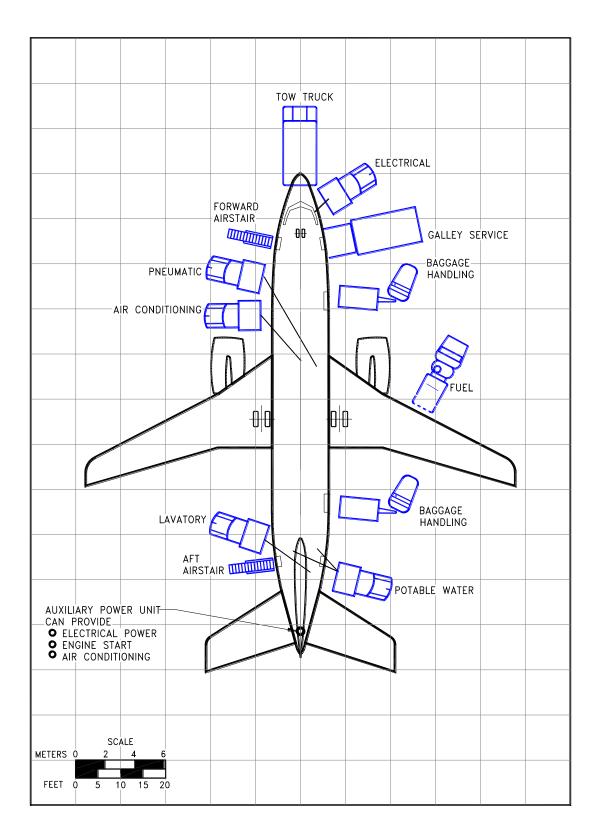
Section 5.5 shows typical sea level air pressure and flow requirements for starting different engines. The curves are based on an engine start time of 90 seconds.

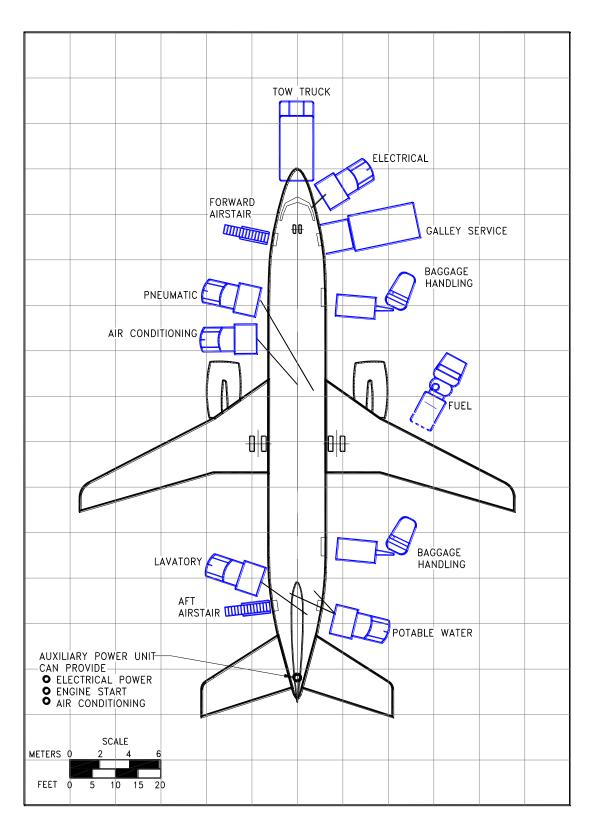

Section 5.6 shows pneumatic requirements for heating and cooling (air conditioning) using high pressure air to run the air cycle machine. The curves show airflow requirements to heat or cool the airplane within a given time and ambient conditions. Maximum allowable pressure and temperature for air cycle machine operation are 60 psia and 450°F, respectively.

Section 5.7 shows pneumatic requirements for heating and cooling the airplane, using low pressure conditioned air. This conditioned air is supplied through an 8-in ground air connection (GAC) directly to the passenger cabin, bypassing the air cycle machines.

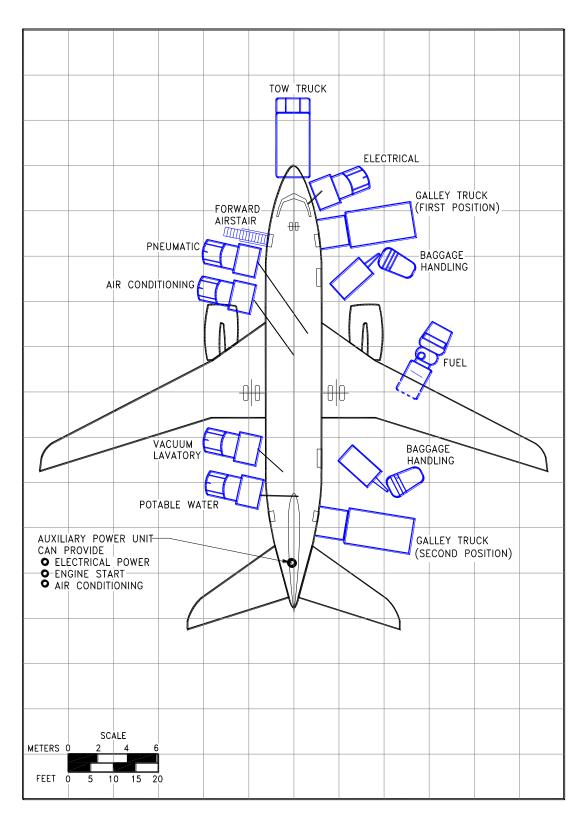

Section 5.8 shows ground towing requirements for various ground surface conditions.

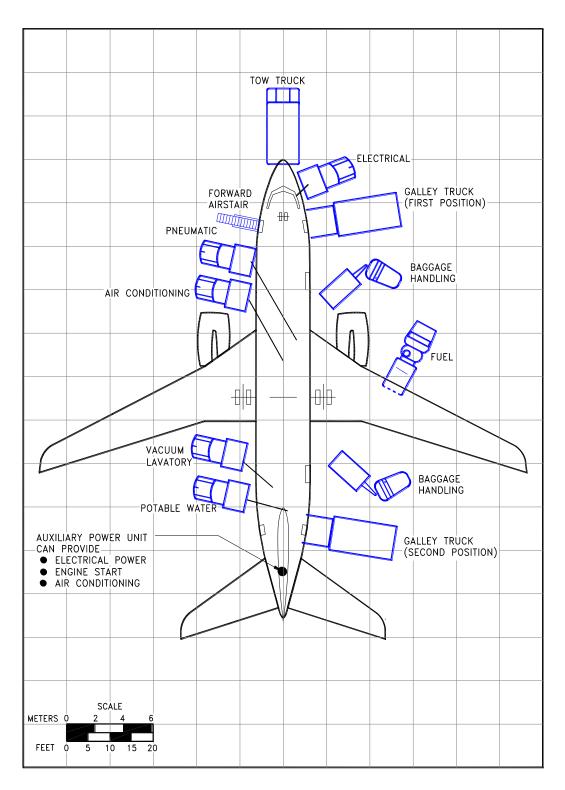
5.1 AIRPLANE SERVICING ARRANGEMENT - TYPICAL TURNAROUND

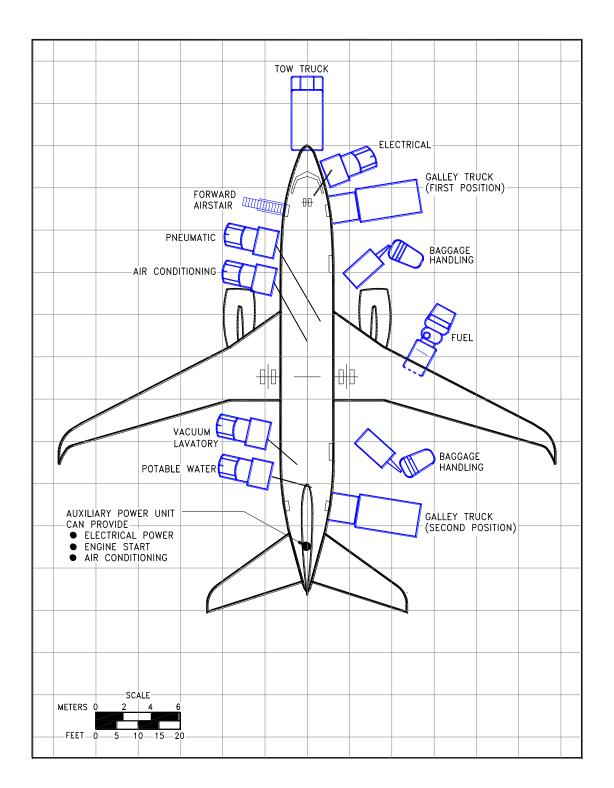

5.1.1 Airplane Servicing Arrangement - Typical Turnaround: Model 737-100


5.1.2 Airplane Servicing Arrangement - Typical Turnaround: Model 737-200

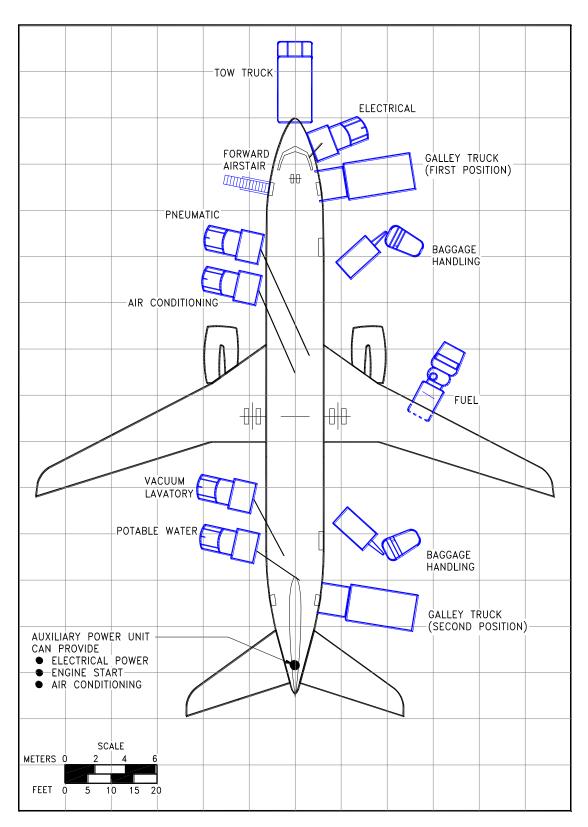
5.1.3 Airplane Servicing Arrangement - Typical Turnaround: Model 737-300


5.1.4 Airplane Servicing Arrangement - Typical Turnaround: Model 737-400

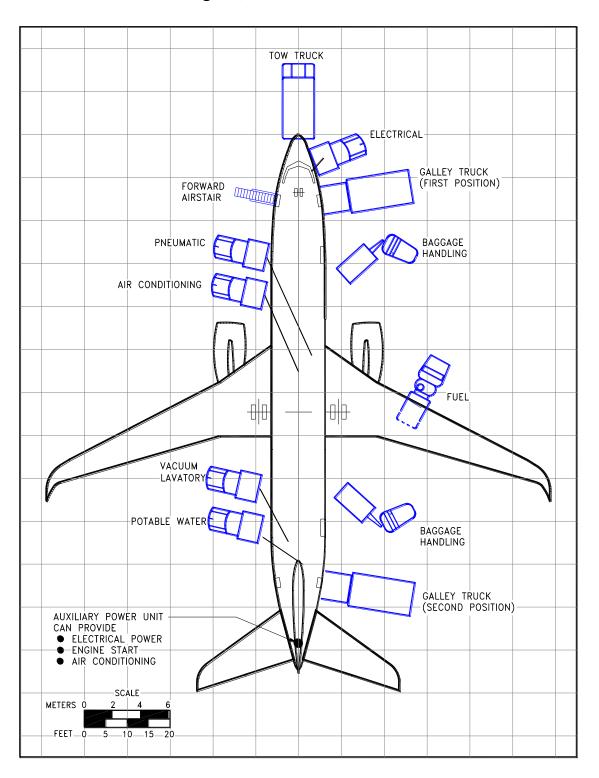

5.1.5 Airplane Servicing Arrangement - Typical Turnaround: Model 737-500


5.1.6 Airplane Servicing Arrangement - Typical Turnaround: Model 737-600

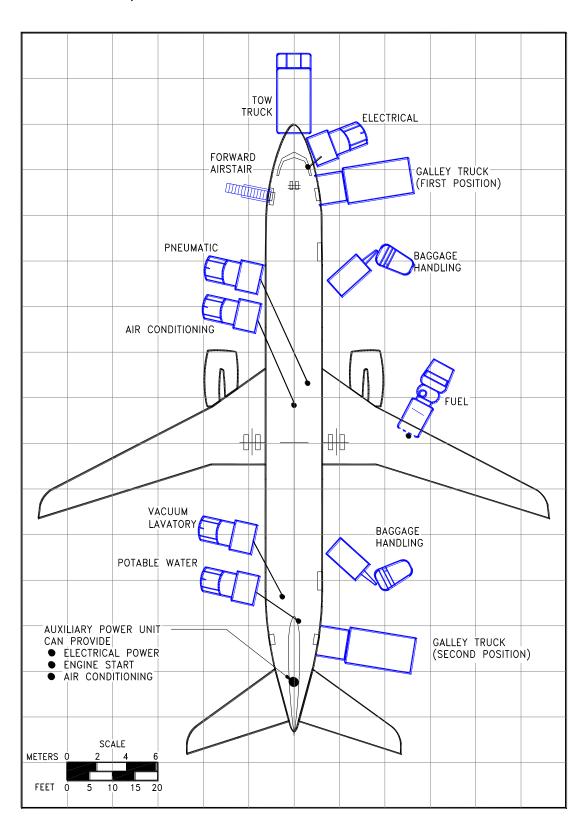
5.1.7 Airplane Servicing Arrangement - Typical Turnaround: Model 737-700



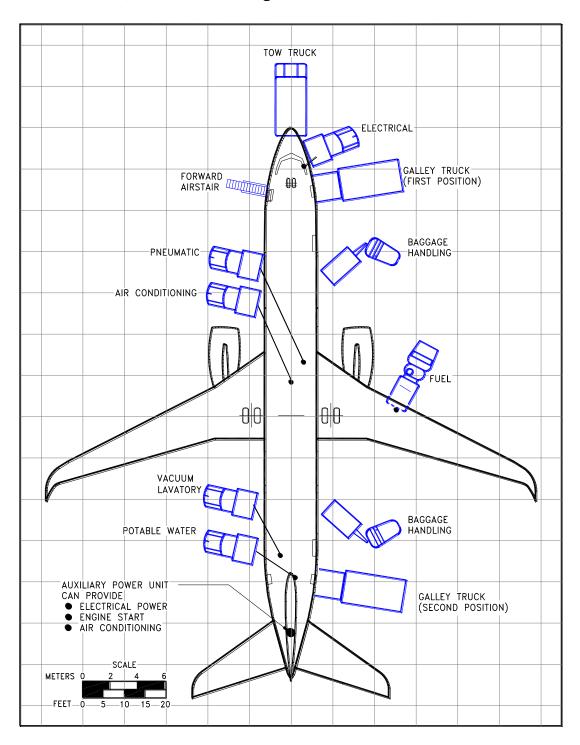
5.1.8 Airplane Servicing Arrangement - Typical Turnaround: Model 737-700 With Winglets, 737 BBJ



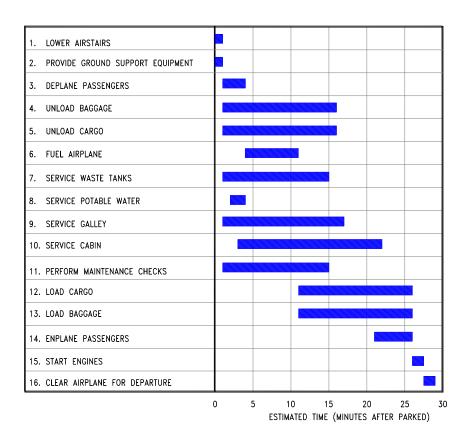
5-9


5.1.9 Airplane Servicing Arrangement - Typical Turnaround: Model 737-800

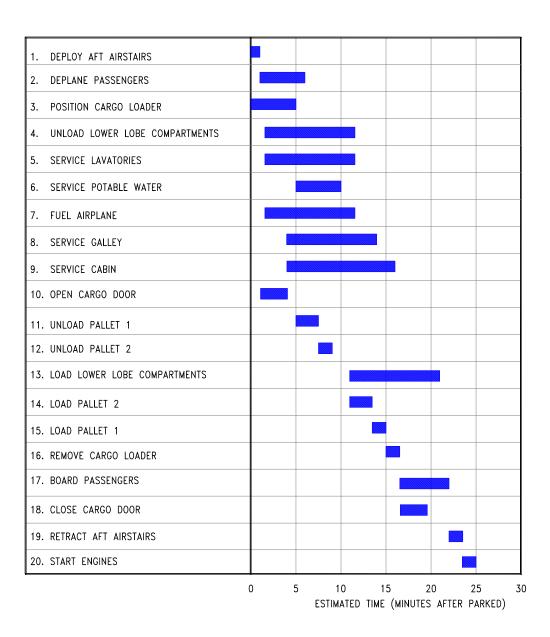
5.1.10 Airplane Servicing Arrangement - Typical Turnaround: Model 737-800 With Winglets, 737 BBJ2



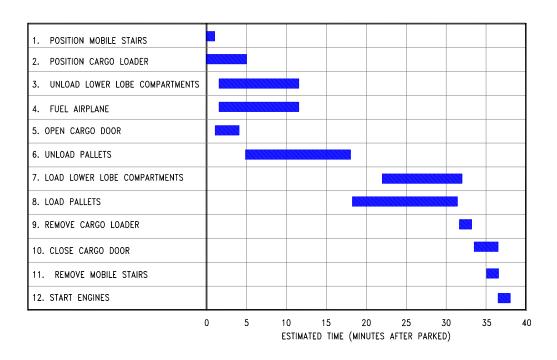
5.1.11 Airplane Servicing Arrangement - Typical Turnaround: Model 737-900, -900ER


5-12

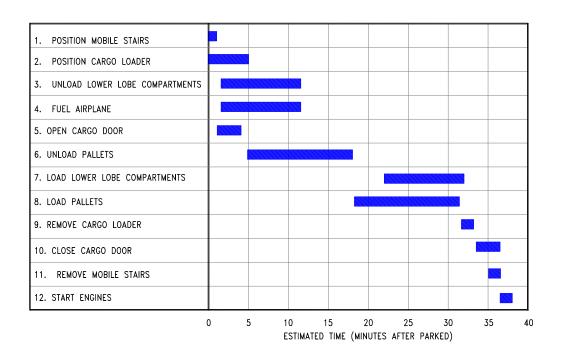
5.1.12 Airplane Servicing Arrangement - Typical Turnaround: Model 737-900, -900ER With Winglets


5.2 TERMINAL OPERATIONS - TURNAROUND STATION

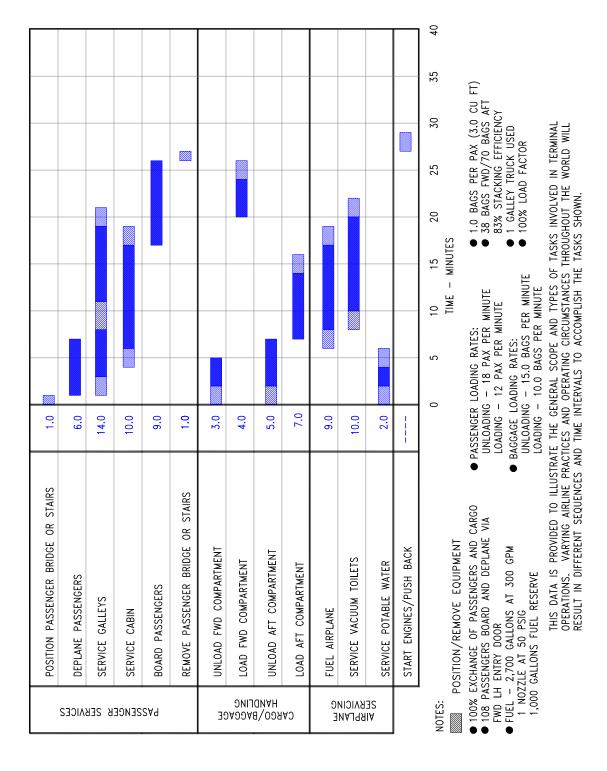
5.2.1 Terminal Operations - Turnaround Station: Model 737-100, -200


- 1. ESTIMATES BASED ON MIXED-CLASS CONFIGURATION, 65% LOAD FACTOR
- 2. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 3. TOTAL TIME ON THE RAMP IS 30 MINUTES
- 4. BOTH FORWARD AND AFT DOORS ARE USED
- 5. 100% PASSENGER EXCHANGE
- 6. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 7. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING

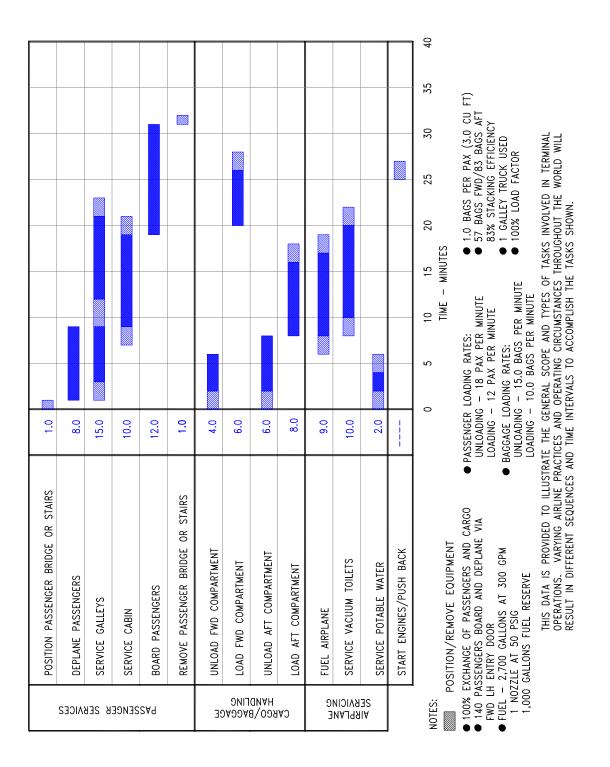
5.2.2 Terminal Operations - Turnaround Station - Passenger/Cargo: Model 737-200C


- ESTIMATES BASED ON 76-PASSENGER/TWO MAIN DECK PALLET CONFIGURATION 100% LOAD FACTOR AND FULL PASSENGER/BAGGAGE EXCHANGE
- 2. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 3. TOTAL TIME ON THE RAMP IS 25 MINUTES
- 4. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 5. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING

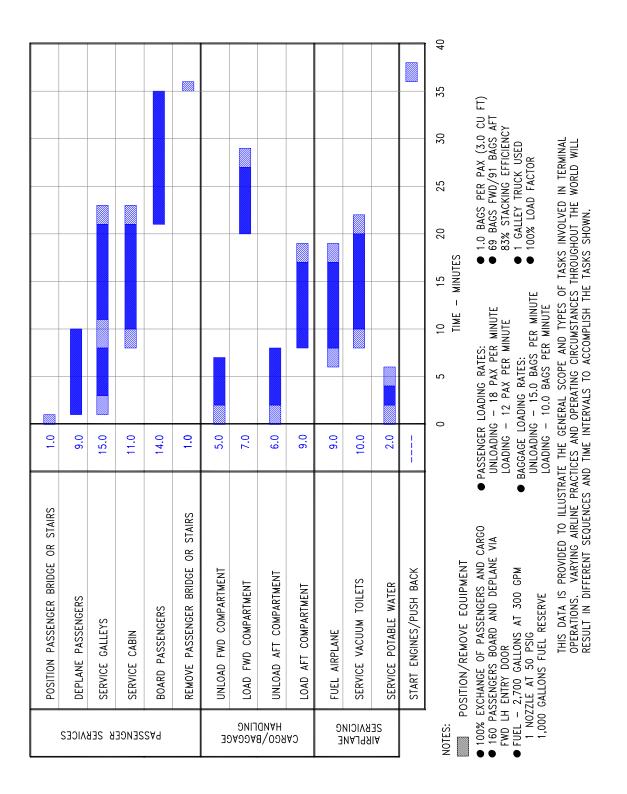
5.2.3 Terminal Operations - Turnaround Station - All Cargo: Model 737-200C


- 1. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 2. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 3. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING

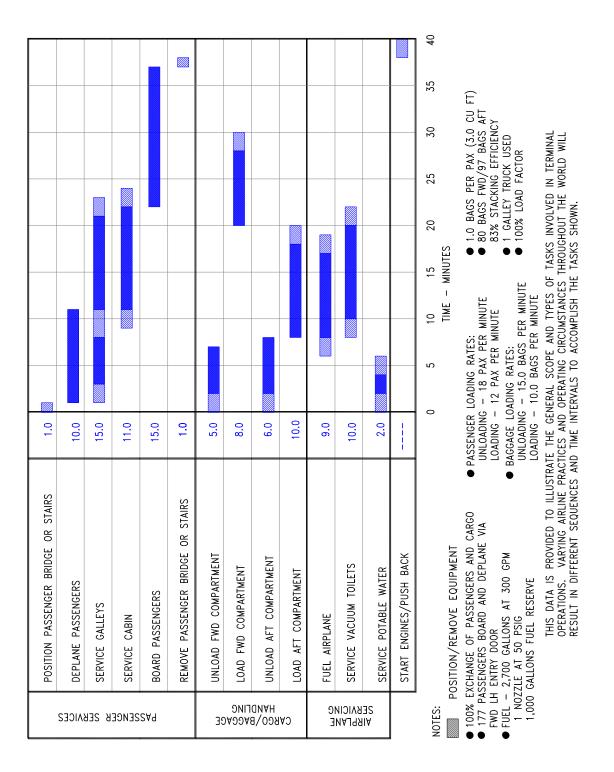
5.2.4 Terminal Operations – Turnaround Station: Model 737-300, -400, -500



- 1. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 2. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 3. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING


5.2.5 Terminal Operations – Turnaround Station: Model 737-600

5.2.6 Terminal Operations – Turnaround Station: Model 737-700, -700 With Winglets



5.2.7 Terminal Operations – Turnaround Station: Model 737-800, -800 With Winglets

REV A September 2020 5-20

5.2.8 Terminal Operations – Turnaround Station: Model 737-900, -900ER, With and Without Winglets

5.2.9 Terminal Operations – Turnaround Station: Model 737 BBJ, BBJ2

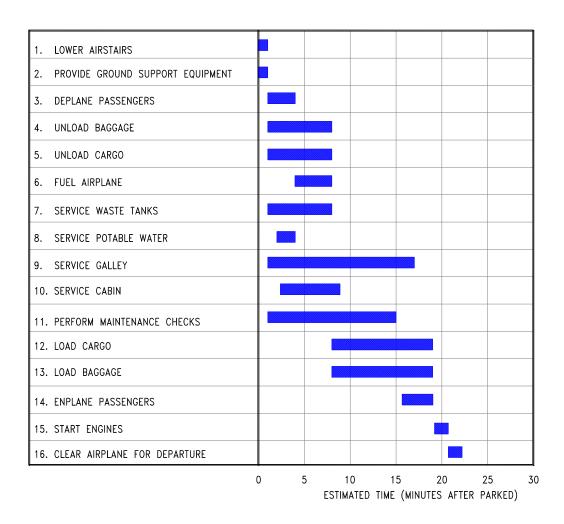
NOTE

ARE NOT INCLUDED IN THIS DOCUMENT

BECAUSE THE DIFFERENT CONFIGURATIONS

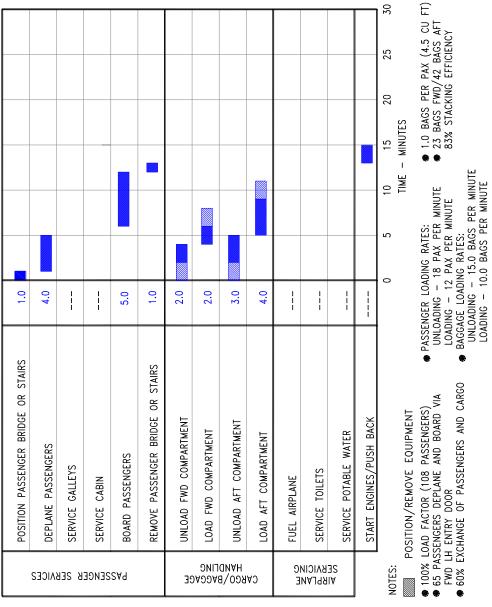
OF BOEING BUSINESS JET AIRPLANES

HAVE INDIVIDUAL REQUIREMENTS.

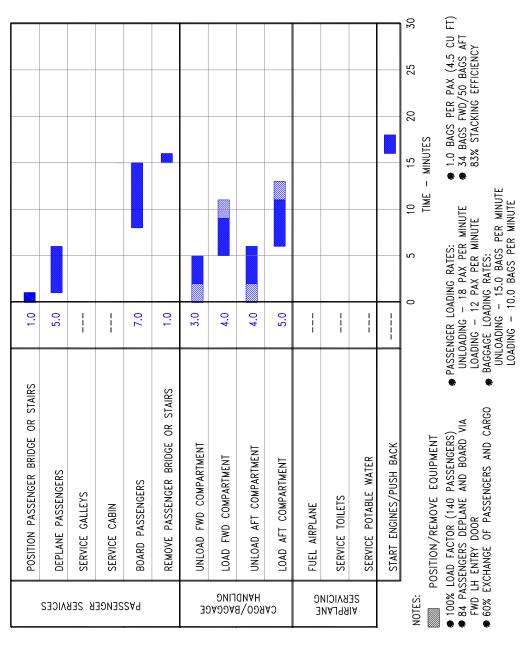

CONSULT AIRCRAFT USER/OPERATOR FOR CURRENT

REQUIREMENTS

REV A September 2020 5-22

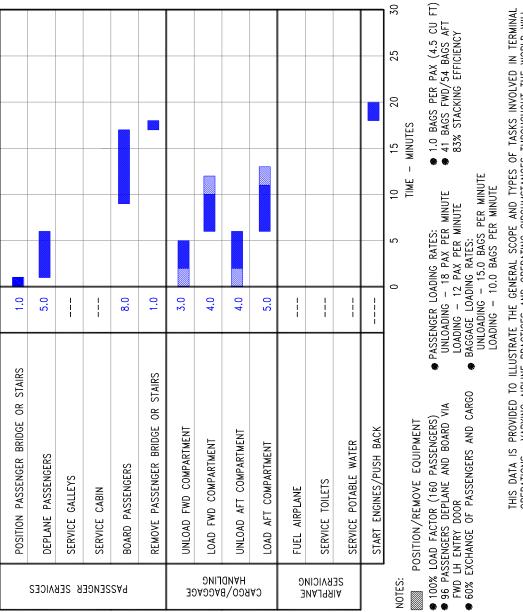

5.3 TERMINAL OPERATIONS - EN ROUTE STATION

5.3.1 Terminal Operations - En Route Station: Model 737-100, -200, -300, -400, -500

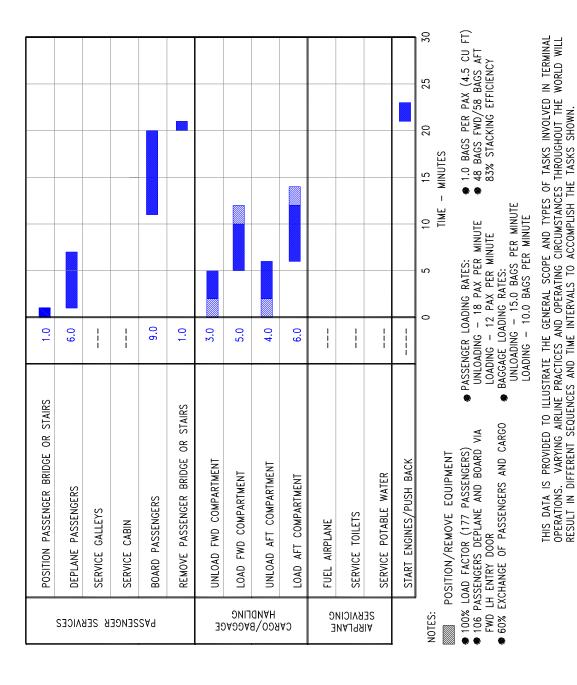


- 1. ESTIMATES BASED ON MIXED-CLASS CONFIGURATION, 65% LOAD FACTOR
- 2. IT IS ASSUMED THAT ALL EQUIPMENT FUNTION PROPERLY AND THAT NO ABNORMAL WEATHER CONDITIONS EXIST.
- 3. TOTAL TIME ON THE RAMP IS 25 MINUTES
- 4. BOTH FORWARD AND AFT DOORS ARE USED
- 5. 75% PASSENGER EXCHANGE
- 6. THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.
- 7. GROUND OPERATIONS REQUIREMENTS SHOULD BE COORDINATED WITH USING AIRLINES PRIOR TO RAMP PLANNING

5.3.2 Terminal Operations - En Route Station: Model 737-600



5.3.3 Terminal Operations - En Route Station: Model 737-700, -700 With Winglets


THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.

5.3.4 Terminal Operations - En Route Station: Model 737-800, -800 With Winglets

THIS DATA IS PROVIDED TO ILLUSTRATE THE GENERAL SCOPE AND TYPES OF TASKS INVOLVED IN TERMINAL OPERATIONS. VARYING AIRLINE PRACTICES AND OPERATING CIRCUMSTANCES THROUGHOUT THE WORLD WILL RESULT IN DIFFERENT SEQUENCES AND TIME INTERVALS TO ACCOMPLISH THE TASKS SHOWN.

5.3.5 Terminal Operations - En Route Station: Model 737-900, -900ER, With and Without Winglets

5.3.6 Terminal Operations - En Route Station: Model 737 BBJ, BBJ2

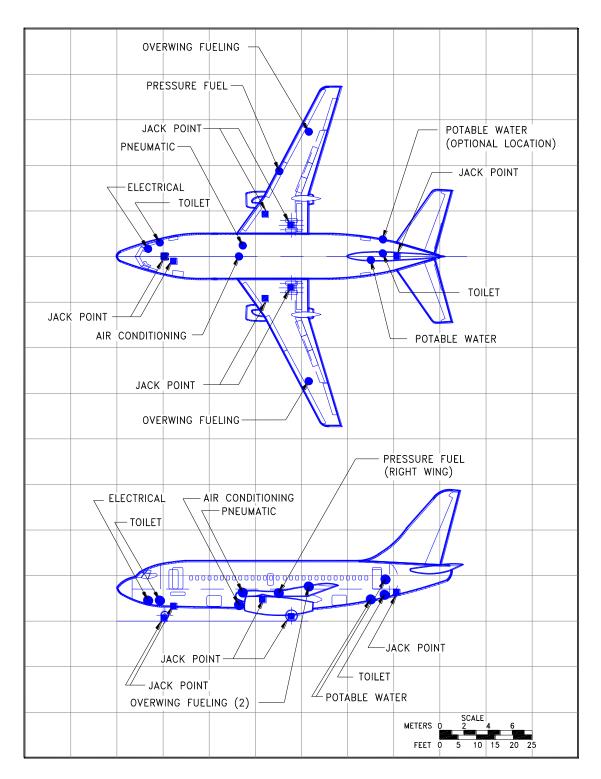
NOTE

ENROUTE TERMINAL OPERATIONS TIME CHARTS

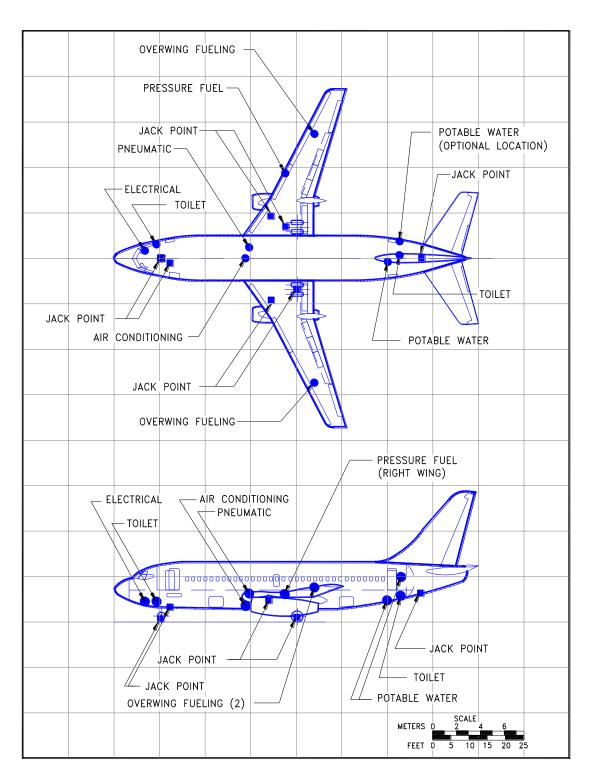
ARE NOT INCLUDED IN THIS DOCUMENT

BECAUSE THE DIFFERENT CONFIGURATIONS

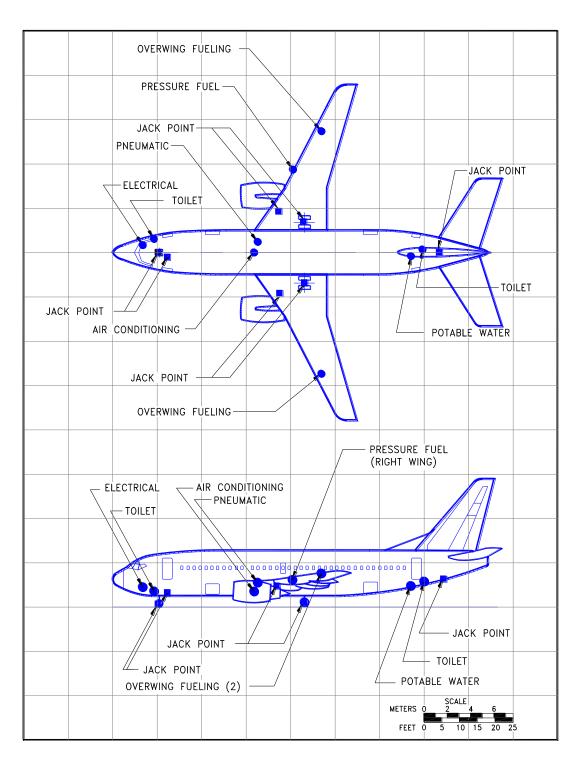
OF BOEING BUSINESS JET AIRPLANES

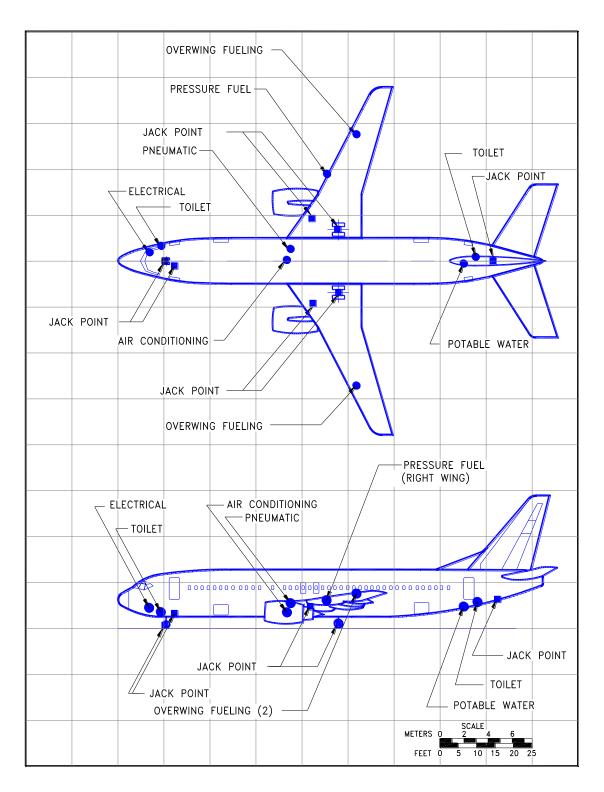

HAVE INDIVIDUAL REQUIREMENTS.

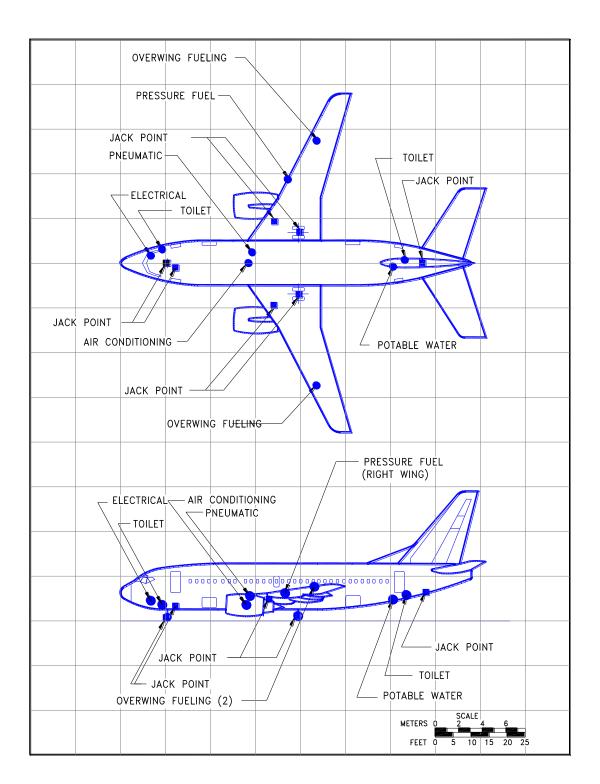
CONSULT AIRCRAFT USER/OPERATOR FOR CURRENT

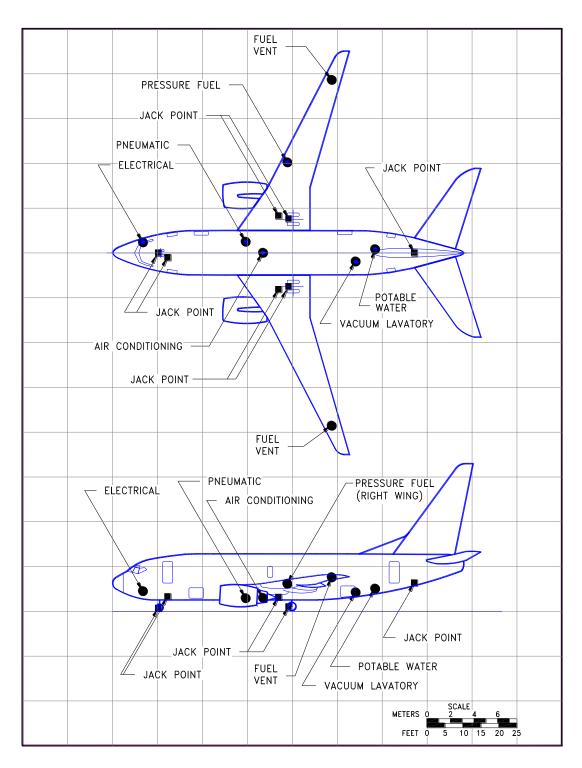

REQUIREMENTS

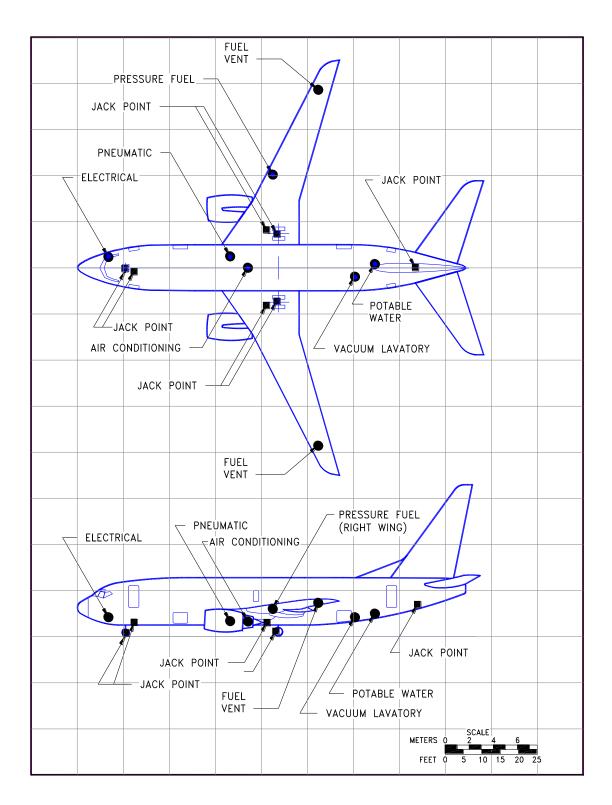
5.4 GROUND SERVICING CONNECTIONS

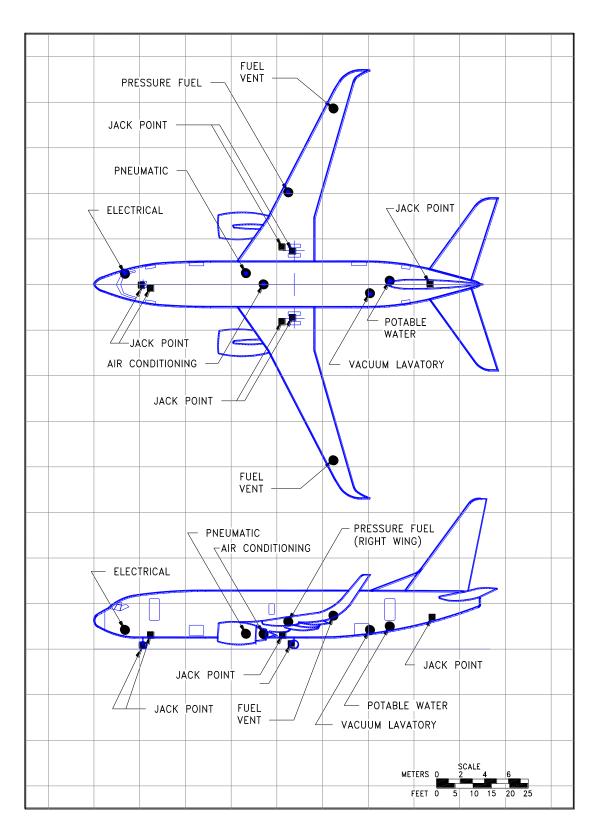

5.4.1 Ground Service Connections: Model 737-100

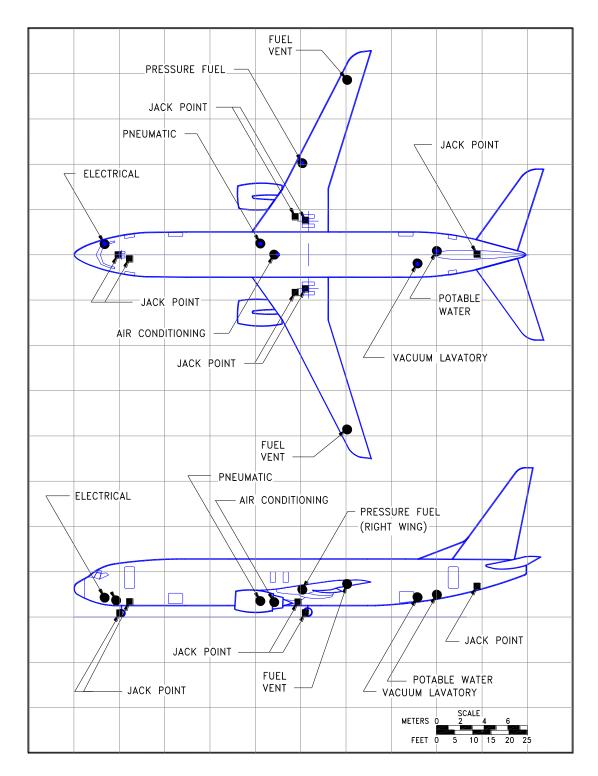

5.4.2 Ground Service Connections: Model 737-200

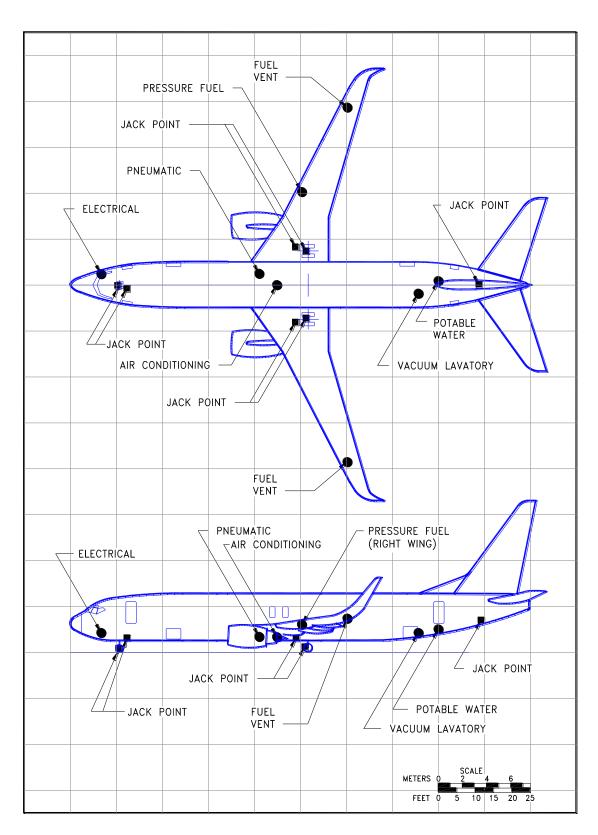

5.4.3 Ground Service Connections: Model 737-300

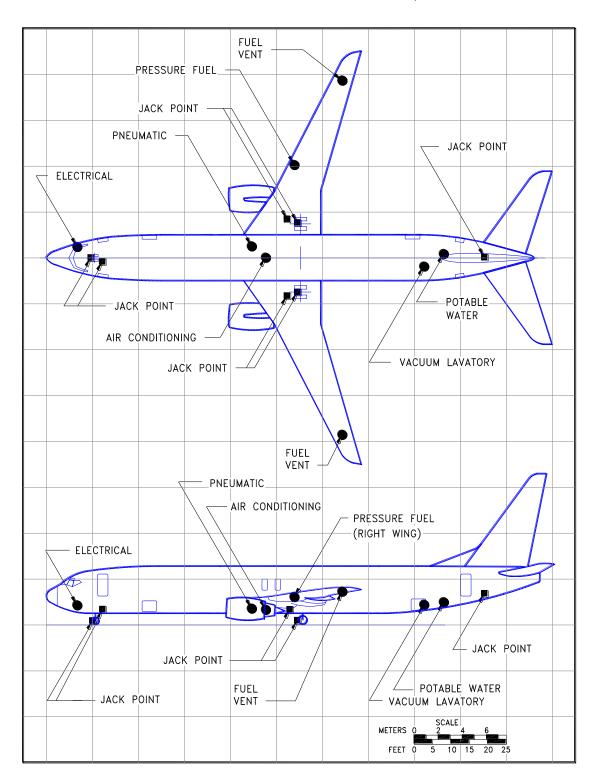

5.4.4 Ground Service Connections: Model 737-400

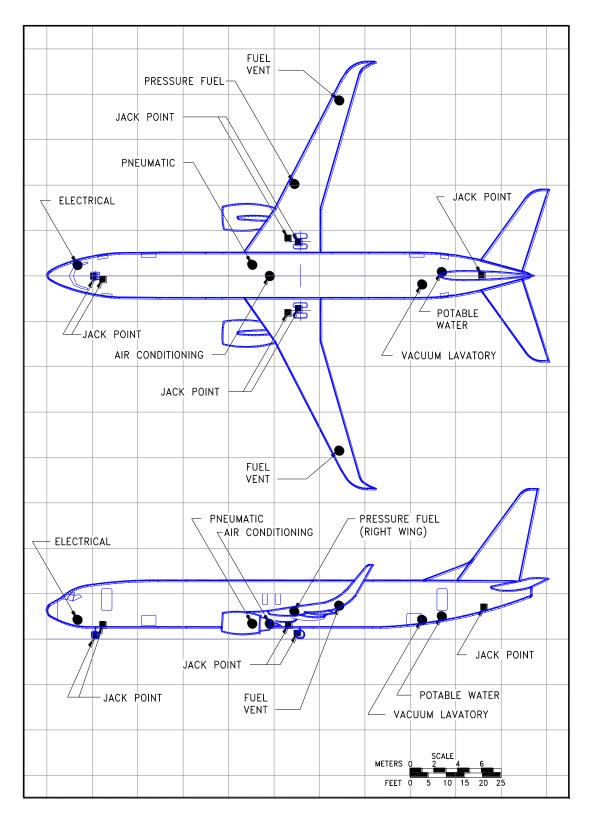

5.4.5 Ground Service Connections: Model 737-500


5.4.6 Ground Service Connections: Model 737-600


5.4.7 Ground Service Connections: Model 737-700


5.4.8 Ground Service Connections: Model 737-700 With Winglets, 737 BBJ


5.4.9 Ground Service Connections: Model 737-800


5.4.10 Ground Service Connections: Model 737-800 With Winglets, 737 BBJ2

5.4.11 Ground Service Connections: Model 737-900, -900ER

5.4.12 Ground Service Connections: Model 737-900, -900ER With Winglets

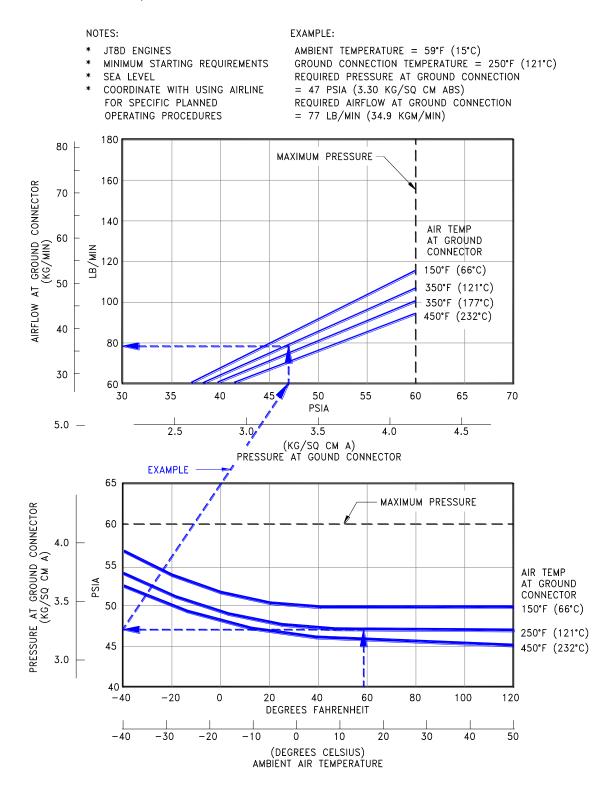
5.4.13 Ground Servicing Connections and Capacities: Model 737, All Models

		DISTANCE AFT OF NOSE		DISTANCE FROM AIRPLANE CENTERLINE				MAX HEIGHT ABOVE	
SYSTEM	MODEL			LH SIDE		RH SIDE		GROUND	
		FT-IN	М	FT-IN	М	FT-IN	М	FT-IN	М
CONDITIONED AIR ONE 8-IN (20.3 CM) PORT	737-100	33 - 2	10.1	0	0	0	0	3-3	1.0
	737-200	36 – 2	11.0	0	0	0	0	3-3	1.0
	737-300	39 - 10	12.1	0	0	0	0	3-3	1.0
	737-400	45 - 10	14.0	0	0	0	0	3-3	1.0
	737-500	36 - 2	11.0	0	0	0	0	3-3	1.0
	737-600	35 - 3	10.7	0	0	0	0	3-10	1.2
	737-700	39 - 9	12.1	0	0	0	0	3-10	1.2
	737-800	49 - 7	15.1	0	0	0	0	3-10	1.2
	737-900	54 - 1	16.5	0	0	0	0	3-10	1.2
ELECTRICAL ONE CONNECTION - 60 KVA, 200/115 V AC 400 HZ, 3-PHASE EACH	737-100 THRU 737-500	8 - 6	2.6	-	-	2 - 11	0.9	5 - 4	1.6
	737-600 THRU 737-900	8 - 6	2.6	-	-	3 - 1	0.9	6 - 4	1.9
FUEL	737-100	44 – 1	13.4	-	ı	23 - 6	7.2	8 - 0	2.4
ONE UNDERWING- PRESSURE CONNECTOR	737-200	47 – 1	14.4	-	-	23 - 6	7.2	8 - 0	2.4
ON RIGHT WING (SEE SEC 2.1 FOR CAPACITY)	737-300	50 – 9	15.5	-	-	23 - 6	7.2	8 - 0	2.4
	737-400	56 – 9	17.3	-	-	23 - 6	7.2	8 - 0	2.4
	737-500	47 – 1	14.4	-	-	23 - 6	7.2	8 - 0	2.4
	737-600	48 - 8	14.8	-	-	25 - 3	7.2	9 – 5	2.9
	737-700	53 - 2	16.2	-	ı	25 - 3	7.2	9 – 5	2.9
	737-800	63 - 0	19.2	-	-	25 - 3	7.2	9 - 5	2.9
	737-900	67 - 6	20.6	-	-	25 - 3	7.2	9 - 5	2.9
FUEL TWO OVERWING FUEL PORTS	737-100	52 - 1	15.8	34 – 3	10.4	34 – 3	10.4	9 – 4	2.8
	737-200	55 – 1	16.8	34 – 3	10.4	34 – 3	10.4	9 – 4	2.8
	737-300	58 – 9	17 9	34 – 3	10.4	34 – 3	10.4	9 – 4	2.8
	737-400	64 – 9	19.7	34 – 3	10.4	34 – 3	10.4	9 – 4	2.8
	737-500	55 - 1	16.8	34 – 3	10.4	34 – 3	10.4	9 – 4	2.8
FUEL FUEL VENT ON UNDERSIDE OF BOTH WINGTIPS	737-600	61 - 0	18.6	48 - 3	14.7	48 - 3	14.7		
	737-700	65 - 6	20.0	48 - 3	14.7	48 - 3	14.7	UNDERSIDE OF WING	
	737-800	75 - 4	22.0	48 - 3	14.7	48 - 3	14.7		
	737-900	80 - 6	24.5	48 - 3	14.7	48 - 3	14.7		

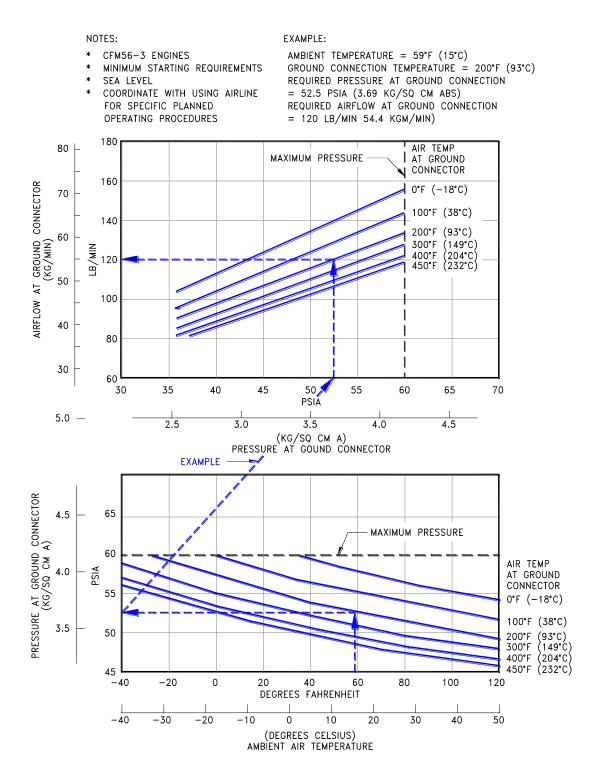
5.4.14 Ground Servicing Connections and Capacities: Model 737, All Models

					_	CE FROM	MAX HEIGHT ABOVE		
SYSTEM	MODEL	NOSE		LH S		RH SIDE		GROUND	
		FT-IN	M	FT- IN	М	FT-IN	M	FT-IN	M
LAVATORY	737-100	11 – 8	3.6	-	-	3 - 10	1.2	5 – 10	1.8
ONE PRESSURE		72 - 2	22.0	-	-	0 - 10	0.3	7 – 10	2.4
CONNECTION FOR DRAINING, FLUSHING,	737-200	11 – 8	3.6	-	-	3 - 10	1.2	5 – 10	1.8
AND CHEMICAL FILLING –		78 - 6	23.9	-	-	0 - 10	0.3	7 – 10	2.4
17 GAL (64.3 L) CAPACITY 10-GPM (37.9 LPM) 20-PSIG	737-300	11 – 8	3.6	-	-	3 - 10	1.2	5 – 10	1.8
(1.4 KG/SQ CM) SERVICE		88 - 0	26.8	-	-	0 - 10	0.3	7 – 10	2.4
REQUIRED	737-400	11 – 8	3.6	-	-	3 - 10	1.2	5 – 10	1.8
		98 - 0	29.9	-	-	0 - 10	0.3	7 – 10	2.4
	737-500	11 - 8	3.6	-	-	3 - 10	1.2	5 – 10	1.8
		78 - 6	23.9	-	-	0 - 10	0.3	7 – 10	2.4
LAVATORY	737-600	67 - 9	20.7	2 - 7	0.8	-	-	5 - 10	1.8
ONE CONNECTION FOR	737-700	75 - 7	23.1	2 - 7	0.8	-	-	5 - 10	1.8
VACUUM LAVATORY	737-800	94 - 9	28.9	2 - 7	0.8	-	-	5 - 11	1.8
	737-900	102 - 9	31.3	2 - 7	0.8	-	-	5 - 11	1.8
OXYGEN	737-100	21 – 8	6.6	-	-	5 – 0	1.5	6 – 3	1.9
ONE SERVICE CONNECTION FOR OXYGEN FILL – 153 CU FT (4.3 CU M) AT 3,000 PSIG (211 KG/SQ CM) OR 190 CU FT (5.4 CU M) WITH SECOND OBSERVER SEAT.	737-200	21 - 8	6.6	-	-	5 - 0	1.5	6 - 3	1.9
OXYGEN INDIVIDUAL CANISTERS IN	737-300 THRU								
EACH PASSENGER SERVICE UNIT	737-900								
PNEUMATIC	737-100	34 – 2	10.4	-	-	3 – 0	0.9	3 – 8	1.2
ONE 3-IN (7.6-CM) PORT FOR ENGINE START AND	737-200	37–3	11.3	-	-	3 – 0	0.9	3 – 8	1.2
AIRCONDITIONING PACKS	737-300	40 - 10	12.5	-	-	3 – 0	0.9	3 – 8	1.2
	737-400	46 - 10	14.3	-	-	3 – 0	0.9	3 – 8	1.2
	737-500	37 - 2	11.3	-	-	3 - 0	0.9	3 - 8	1.2
	737-600	37 - 1	11.3	-	-	3 - 0	0.9	4 - 2	1.3
	737-700	41 - 7	12.7	-	-	3 - 0	0.9	4 - 3	1.3
	737-800	51 - 5	15.7	-	-	3 - 0	0.9	4 - 3	1.3
	737-900	55 - 11	17.1	-	-	3 - 0	0.9	4 - 3	1.3

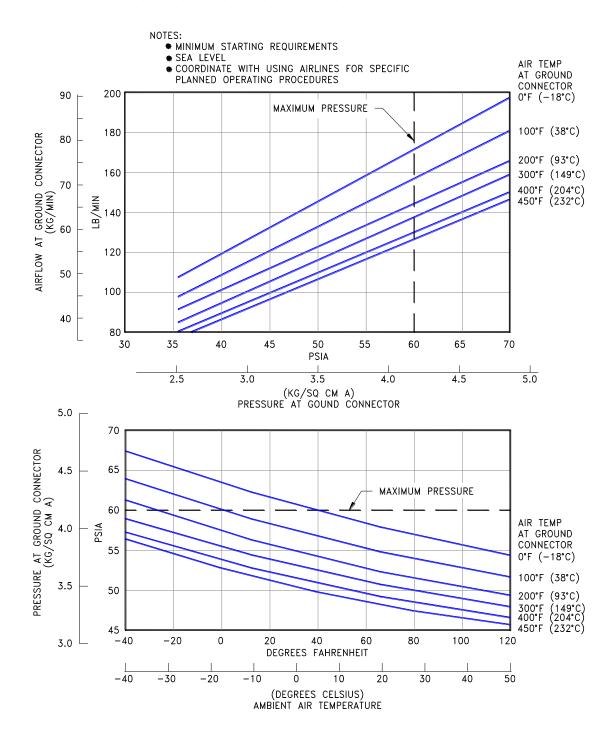
5.4.15 Ground Servicing Connections and Capacities: Model 737, All Models


	MODEL	DISTANCE AFT OF NOSE			STANCI ANE CI	MAX HEIGHT ABOVE			
SYSTEM				LH SIDE		RH SIDE		GROUND	
		FT-IN	М	FT-IN	М	FT- IN	М	FT-IN	М
POTABLE WATER	737-100	68 -11	21.0	1 – 0	0.3	-	-	6 – 4	1.9
TWO SERVICE		72 – 1	22.0	-	-	4 –8	1.4	10 – 4	3.2
CONNECTIONS 0.75-IN (1.9 CM)	737-200	75 – 3	22.9	1 – 0	0.3	-	-	6 – 4	1.9
AFT LOCATION OPTIONAL		78 – 6	23.9	-	-	4 – 8	1.4	10 – 4	3.2
POTABLE WATER	737-300	84 – 9	25.8	1 – 0	0.3	4 - 8	1.4	10 – 4	3.2
ONE SERVICE CONNECTION 0.75-IN (1.9 CM)	737-400	94 – 9	28.9	1 – 0	0.3	4 – 8	1.4	10 – 4	3.2
	737-500	75 - 3	22.9	1 - 0	0.3	4 - 8	1.4	10 – 6	3.2
	737-600	73 - 1	22.3	-	-	1 - 0	0.3	6 - 4	1.9
	737-700	80 - 11	24.7	-	-	1 - 0	0.3	6 - 4	1.9
	737-800	100 - 1	30.5	-	-	1 - 0	0.3	6 - 5	2.0
	737-900	108 - 1	33.9	-	-	1 - 0	0.3	6 - 5	2.0

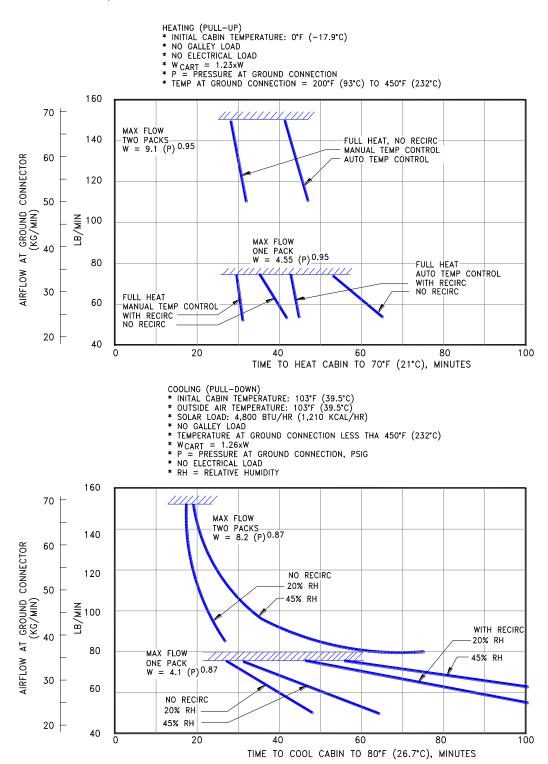
NOTES:


- DISTANCES ROUNDED TO THE NEAREST INCH AND 0.1 METER.
- AIRPLANE MODEL DESIGNATIONS ALSO INCLUDE ALL DERIVATIVES.

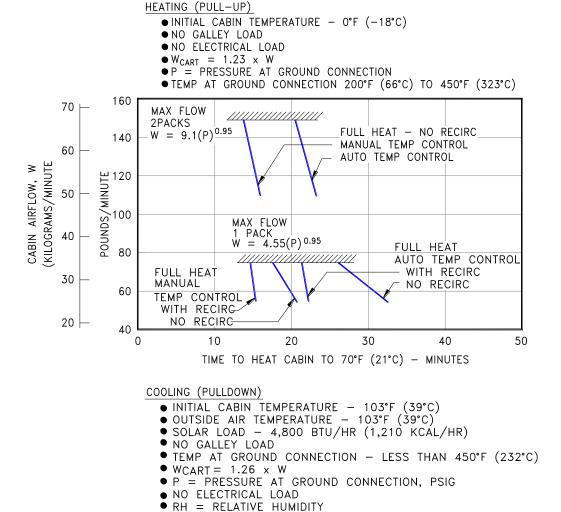
5.5 ENGINE STARTING PNEUMATIC REQUIREMENTS

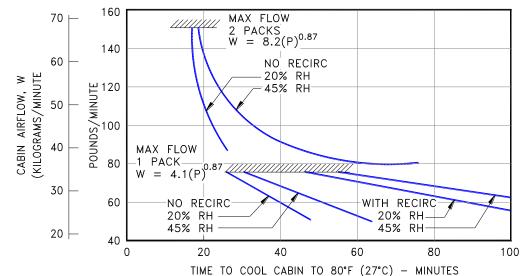

5.5.1 Engine Start Pneumatic Requirements - Sea Level: Model 737-100, -200

5.5.2 Engine Start Pneumatic Requirements - Sea Level: Model 737-300, -400, -500

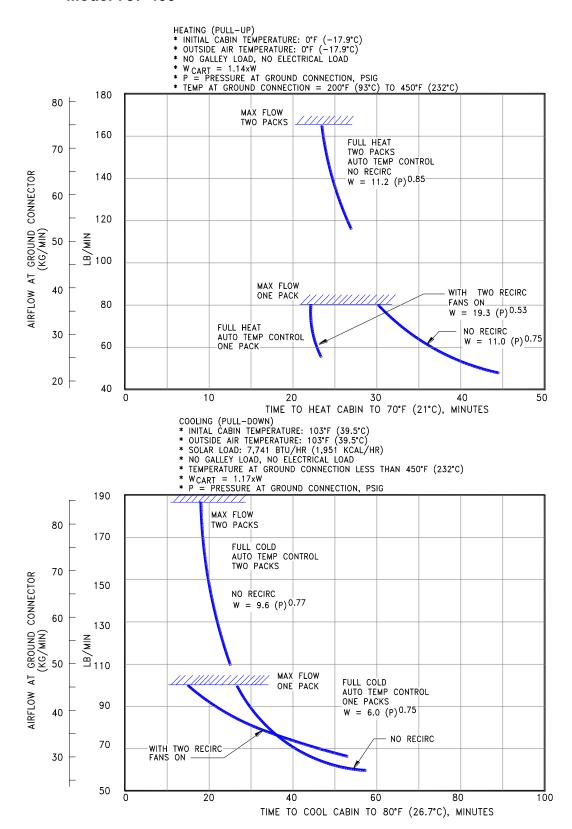


5.5.3 Engine Start Pneumatic Requirements - Sea Level: Model 737-600, -700, -800, -900, 737 BBJ, 737 BBJ2

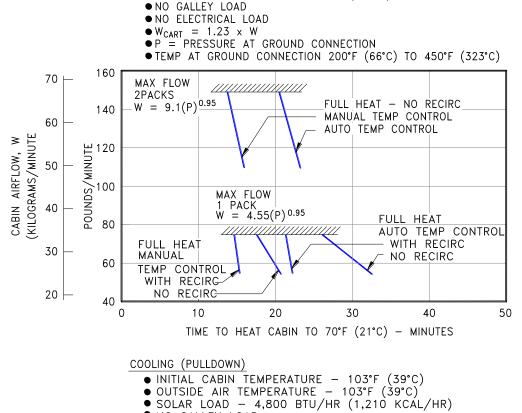



5.6 GROUND PNEUMATIC POWER REQUIREMENTS

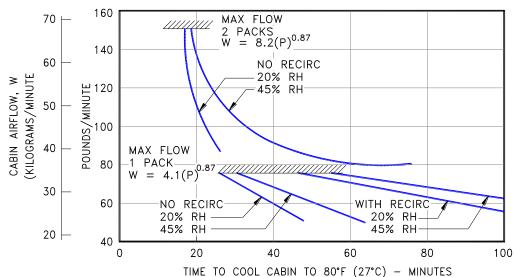
5.6.1 Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-100, -200



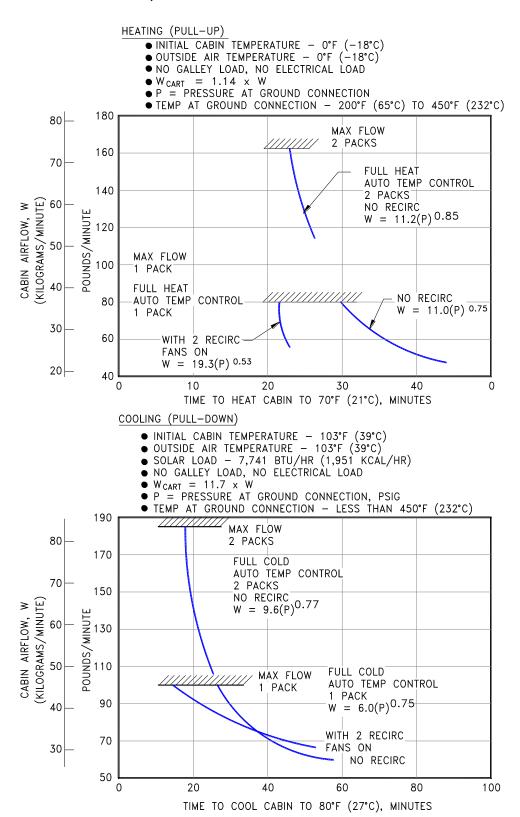
5.6.2 Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-300, -500



5.6.3 Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-400


5.6.4 **Ground Pneumatic Power Requirements - Heating/Cooling:** Model 737-600, -700

HEATING (PULL-UP)



INITIAL CABIN TEMPERATURE - 0°F (-18°C)

- NO GALLEY LOAD
- TEMP AT GROUND CONNECTION LESS THAN 450°F (232°C)
- WCART = 1.26 x W
- P = PRESSURE AT GROUND CONNECTION, PSIG
- NO ELECTRICAL LOAD
- RH = RELATIVE HUMIDITY

5.6.5 Ground Pneumatic Power Requirements - Heating/Cooling: Model 737-800, -900

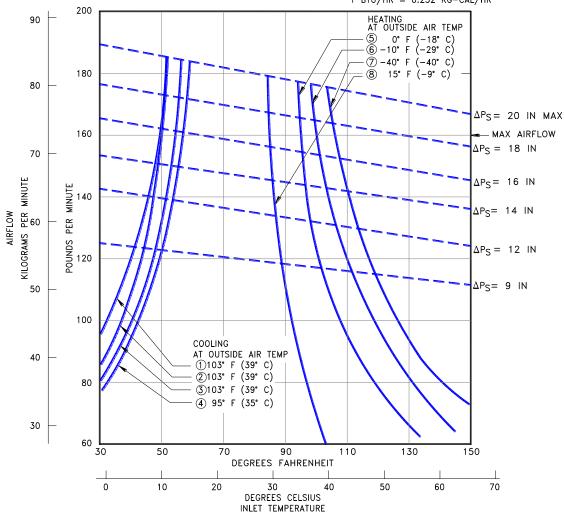
5.7 CONDITIONED AIR REQUIREMENTS

5.7.1 Conditioned Air Flow Requirements: Model 737-100, -200

COOLING: ① CABIN AT 75° F (24° C); 90 PASSENGERS AND CREW; NO GALLEY LOAD; SOLAR LOAD 5,570 BTU/HR; ELECTRICAL LOAD 6,340 BTU/HR. ② CABIN AT 80° F (27° C); OTHERWISE SAME AS IN ①.

- ③ CABIN AT 70° F (21° C); 3 CREW MEMBERS; GALLEY LOAD 8,200 BTU/HR; SOLAR LOAD 5,570 BTU/HR; ELECTRICAL LOAD 6,340 BTU/HR.
- 4 CABIN AT 80° F (27° C); 65 PASSENGERS AND CREW; NO GALLEY LOAD; SOLAR LOAD 5,570 BTU/HR; ELECTRICAL LOAD 6,340 BTU/HR. PRECONDITIONED AIRPLANE.

HEATING:


- © CABIN AT 75° F (24° C); NO CREW OR
 PASSENGERS; NO OTHER HEAT LOADS.
 © CABIN AT 75° F (24° C); NO CREW OR
- PASSENGERS; NO OTHER HEAT LOADS.
- 7 CABIN AT 75° F (24° C); NO CREW OR PASSENGERS; NO OTHER HEAT LOADS.

 8 CABIN AT 75° F (24° C); 65 PASSENGERS AND CREW; NO GALLEY LOAD; NO SOLAR LOAD; ELECTRICAL LOAD 6,430 BTU/HR; PRECONDITIONED AIRPLANE.

5-52

 $\Delta P_S = \text{GAGE STATIC PRESSURE IN INCHES}$ OF WATER AT GROUND CONNECTION.

1 BTU/HR = 0.252 KG-CAL/HR

- OIES:

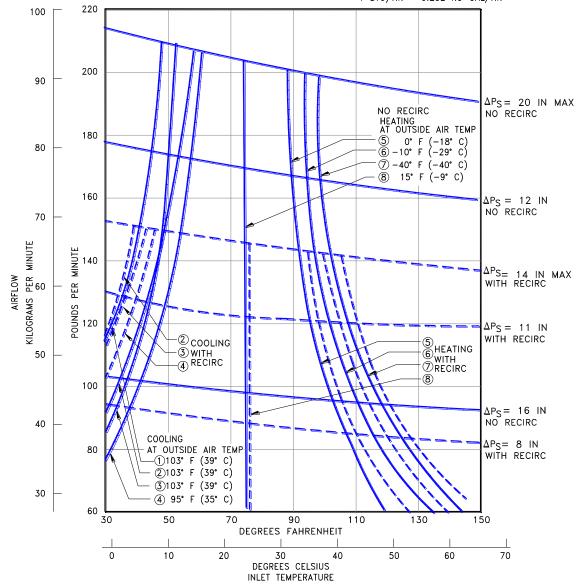
 AIRFLOW REQUIREMENTS ARE SHOWN FOR THE 737-200 AIRPLANE AND ARE
 APPROXIMATELY 5 TO 10 LB/MIN GREATER THAN FOR THE 737-100,
 DEPENDING ON CONDITIONS AND LOADING

 MAXIMUM RECOMMENDED AIRFLOW = 160 LB/MIN (72 KG/MIN TO AVOID
 OPENING OF THE DISTRIBUTION RELIEF VALVE

5.7.2 Conditioned Air Flow Requirements: Model 737-300, -500

COOLING: 1 CABIN AT 75° F (24° C); 138 PASSENGERS AND CREW; NO GALLEY LOAD; SOLAR LOAD 4,800 BTU/HR; ELECTRICAL LOAD 6,984 BTU/HR.

- 2 CABIN AT 80° F (27° C); OTHERWISE SAME AS IN (1).
- ③ CABIN AT 70° F (21° C); 2 CREW MEMBERS; GALLEY LOAD 8,200 BTU/HR; SOLAR LOAD 4,800 BTU/HR; ELECTRICAL LOAD 6,984 BTU/HR.
- (4) CABIN AT 80° F (27° C); 98 PASSENGERS AND CREW; NO GALLEY LOAD; SOLAR LOAD 4,800 BTU/HR; ELECTRICAL LOAD 6,984 BTU/HR. PRECONDITIONED AIRPLANE.


HEATING:

- (S) CABIN AT 75° F (24° C); NO CREW OR PASSENGERS; NO OTHER HEAT LOADS.
 (G) CABIN AT 75° F (24° C); NO CREW OR
- PASSENGERS; NO OTHER HEAT LOADS.
- 7 CABIN AT 75° F (24° C); NO CREW OR PASSENGERS; NO OTHER HEAT LOADS.

 8 CABIN AT 75° F (24° C); 98 PASSENGERS AND CREW; NO GALLEY LOAD; NO SOLAR LOAD; ELECTRICAL LOAD 6,984 BTU/HR; PRECONDITIONED AIRPLANE.

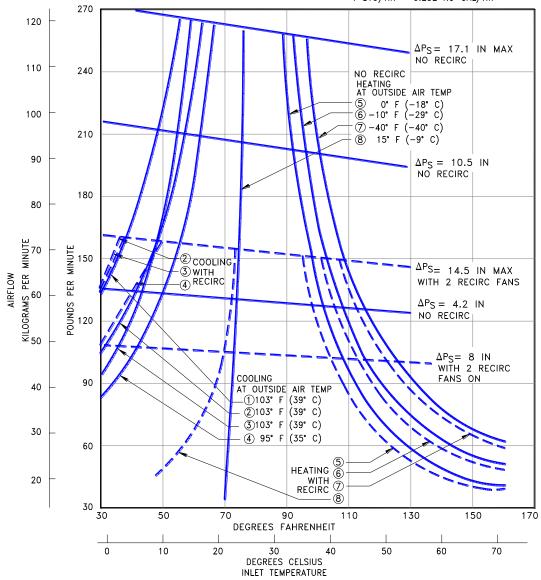
 $\Delta P_S = \text{GAGE STATIC PRESSURE IN INCHES}$ OF WATER AT GROUND CONNECTION.

1 BTU/HR = 0.252 KG-CAL/HR

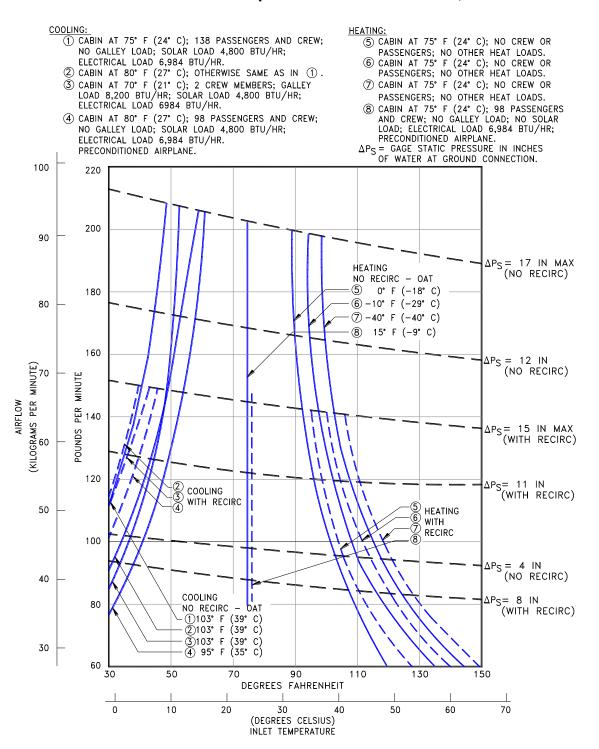
5.7.3 Conditioned Air Flow Requirements: Model 737-400

COOLING:

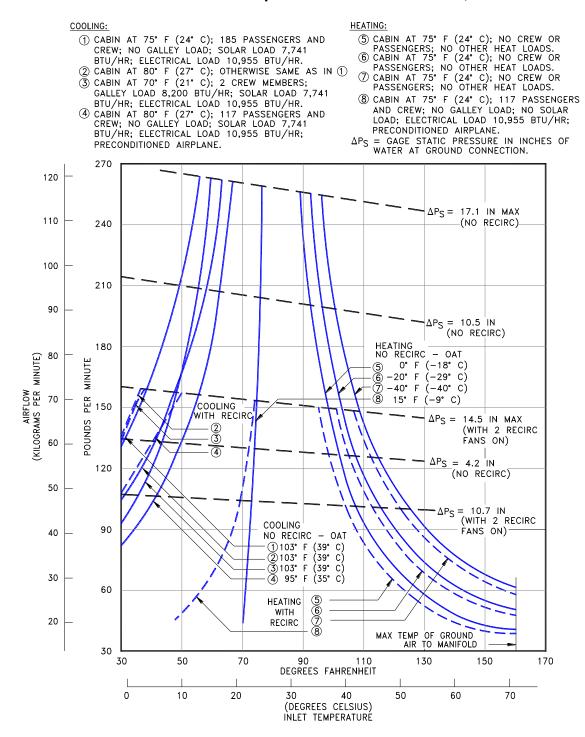
- (1) CABIN AT 75° F (24° C); 165 PASSENGERS AND CREW; NO GALLEY LOAD; SOLAR LOAD 7,741 BTU/HR; ELECTRICAL LOAD 10,955 BTU/HR.
- ② CABIN AT 80° F (27° C); OTHERWISE SAME AS IN ①.
- (2) CABIN AT 70° F (21° C); 2 CREW MEMBERS; GALLEY LOAD 8,200 BTU/HR; SOLAR LOAD 7,741 BTU/HR; ELECTRICAL LOAD 10,955 BTU/HR.
- (4) CABIN AT 80° F (27° C); 117 PASSENGERS AND CREW; NO GALLEY LOAD; SOLAR LOAD 7,741 BTU/HR; ELECTRICAL LOAD 10,955 BTU/HR. PRECONDITIONED AIRPLANE.


HEATING:

- (5) CABIN AT 75° F (24° C); NO CREW OR PASSENGERS; NO OTHER HEAT LOADS.
- 6 CABIN AT 75° F (24° C); NO CREW OR PASSENGERS; NO OTHER HEAT LOADS.
- 7 CABIN AT 75° F (24° C); NO CREW OR PASSENGERS; NO OTHER HEAT LOADS.

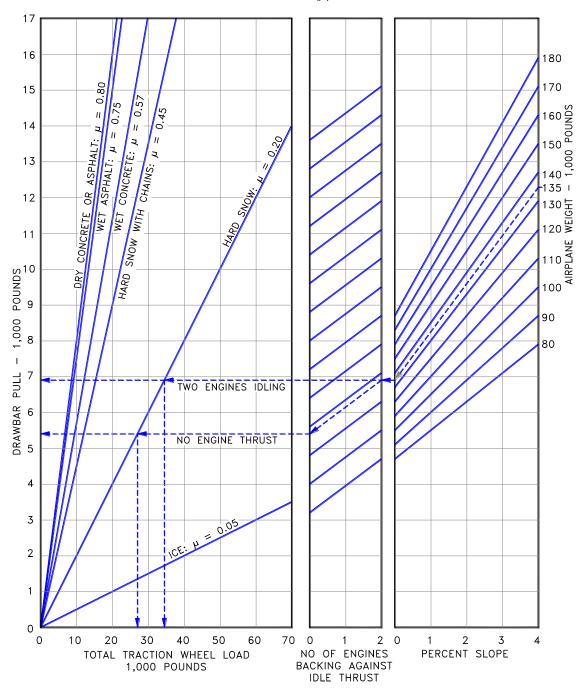

 8 CABIN AT 75° F (24° C); 117 PASSENGERS AND CREW; NO GALLEY LOAD; NO SOLAR LOAD; ELECTRICAL LOAD 10,955 BTU/HR; PRECONDITIONED AIRPLANE.

 $\Delta P_S = GAGE STATIC PRESSURE IN INCHES$ OF WATER AT GROUND CONNECTION.


1 BTU/HR = 0.252 KG-CAL/HR

5.7.4 Conditioned Air Flow Requirements: Model 737-600, -700

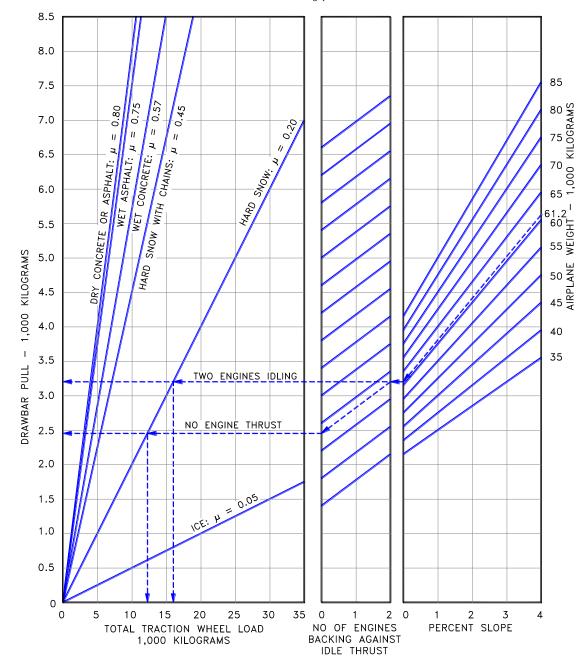
5.7.5 Conditioned Air Flow Requirements: Model 737-800, -900



5.8 GROUND TOWING REQUIREMENTS

5.8.1 Ground Towing Requirements - English Units: Model 737, **All Models**

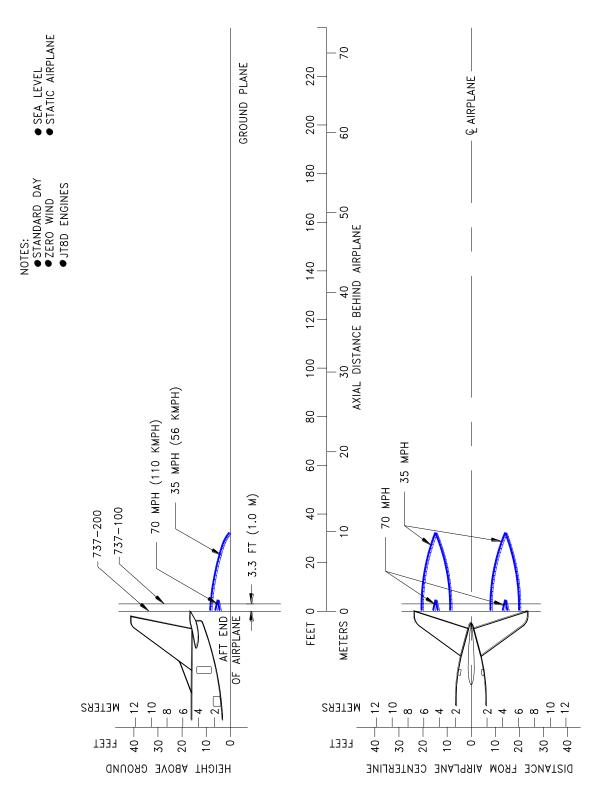
NOTES:


- UNUSUAL BREAKAWAY CONDITIONS NOT REFLECTED
 ESTIMATED FOR RUBBER-TIRED TOW VEHICLES
 COEFFICIENT OF FRICTION (µ) APPROXIMATE

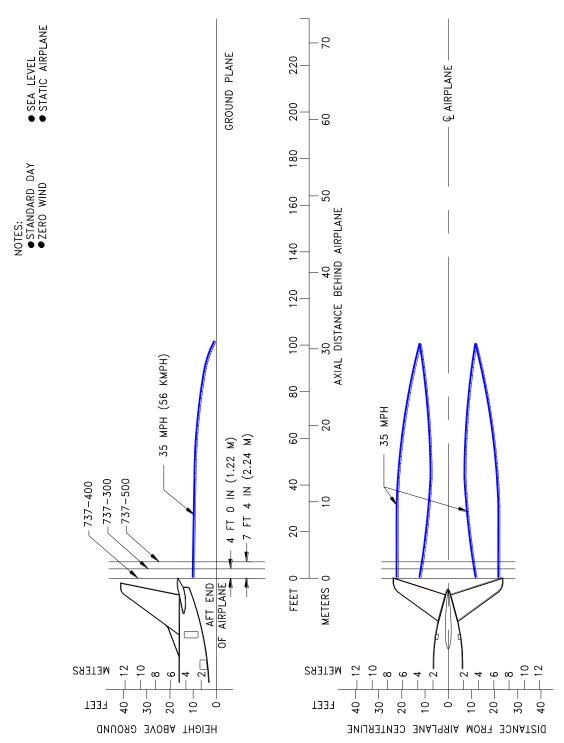
Ground Towing Requirements - Metric Units: Model 737, All Models 5.8.2

NOTES:

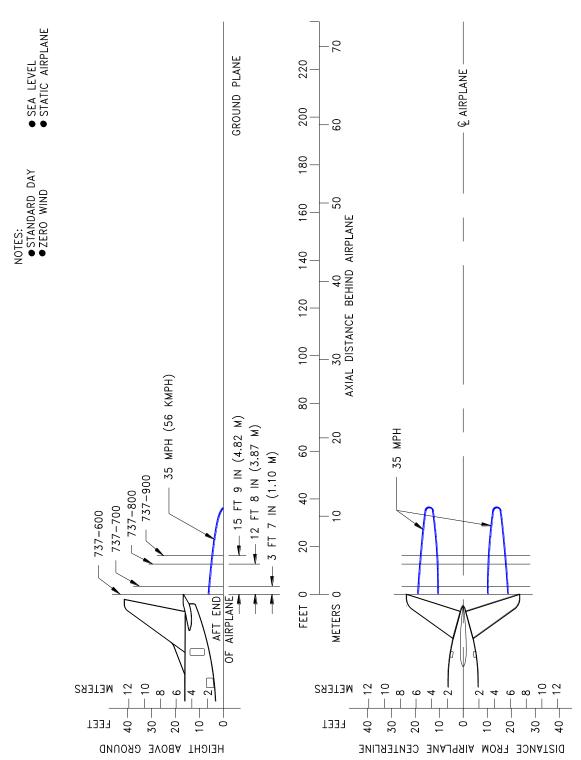
- UNUSUAL BREAKAWAY CONDITIONS NOT REFLECTED
 ESTIMATED FOR RUBBER—TIRED TOW VEHICLES
 COEFFICIENT OF FRICTION (µ) APPROXIMATE

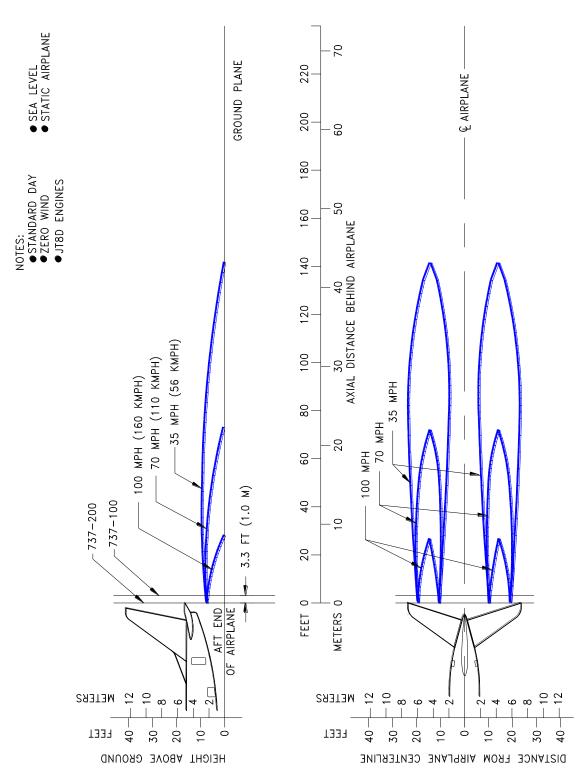

6.0 JET ENGINE WAKE AND NOISE DATA

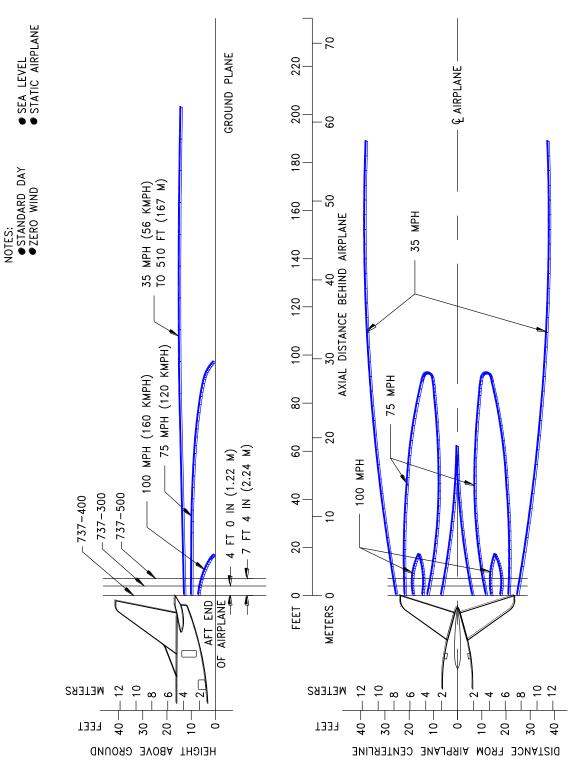
6.1 JET ENGINE EXHAUST VELOCITIES AND TEMPERATURES

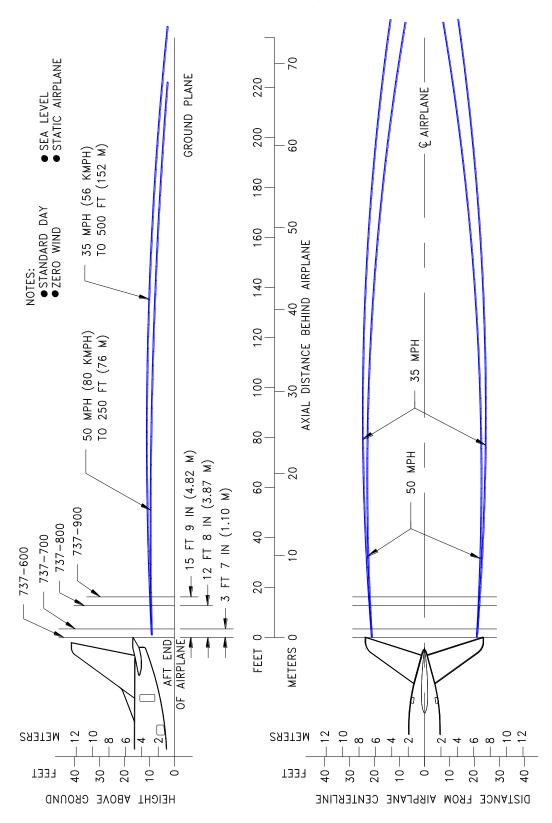

This section shows exhaust velocity and temperature contours aft of the 737 airplanes. The contours were calculated from a standard computer analysis using three-dimensional viscous flow equations with mixing of primary, fan, and free-stream flow. The presence of the ground plane is included in the calculations as well as engine tilt and toe-in. Mixing of flows from the engines is also calculated. The analysis does not include thermal buoyancy effects which tend to elevate the jet wake above the ground plane. The buoyancy effects are considered to be small relative to the exhaust velocity and therefore are not included.

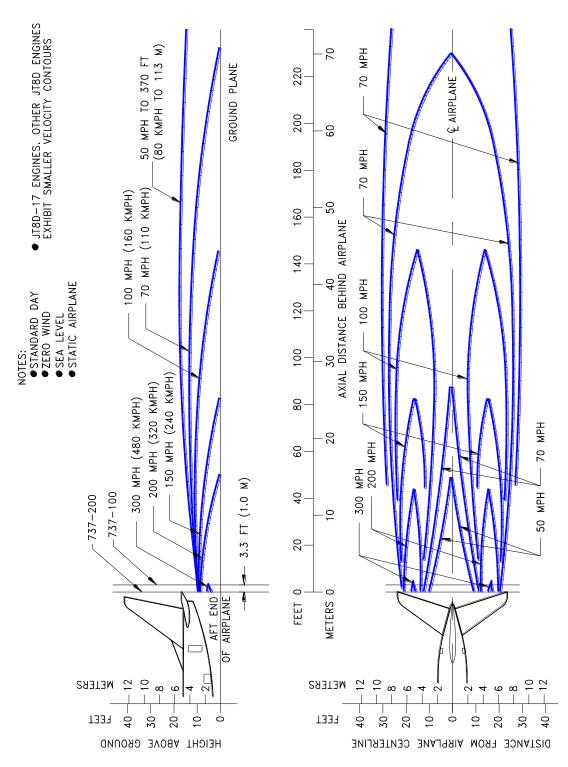
The graphs show jet wake velocity and temperature contours are valid for sea level, static, standard day conditions. The effect of wind on jet wakes was not included. There is evidence to show that a downwind or an upwind component does not simply add or subtract from the jet wake velocity, but rather carries the whole envelope in the direction of the wind. Crosswinds may carry the jet wake contour far to the side at large distances behind the airplane.

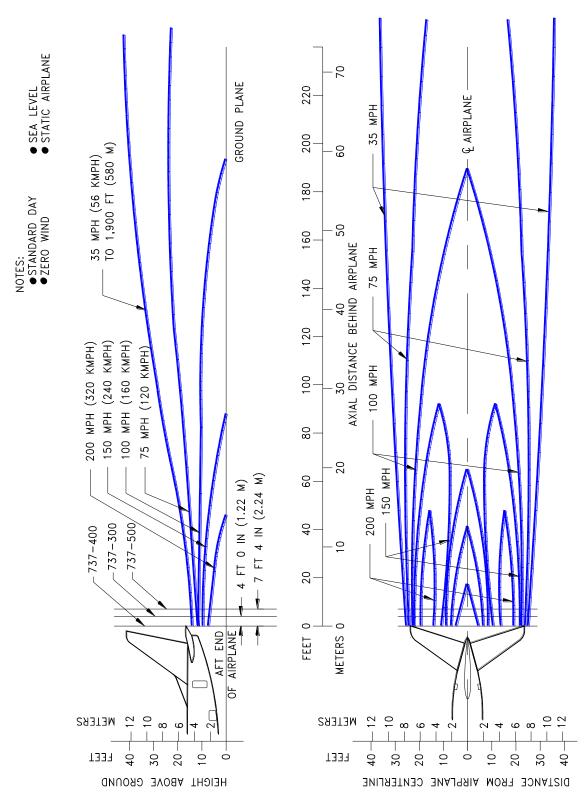

6.1.1 Predicted Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-100, -200

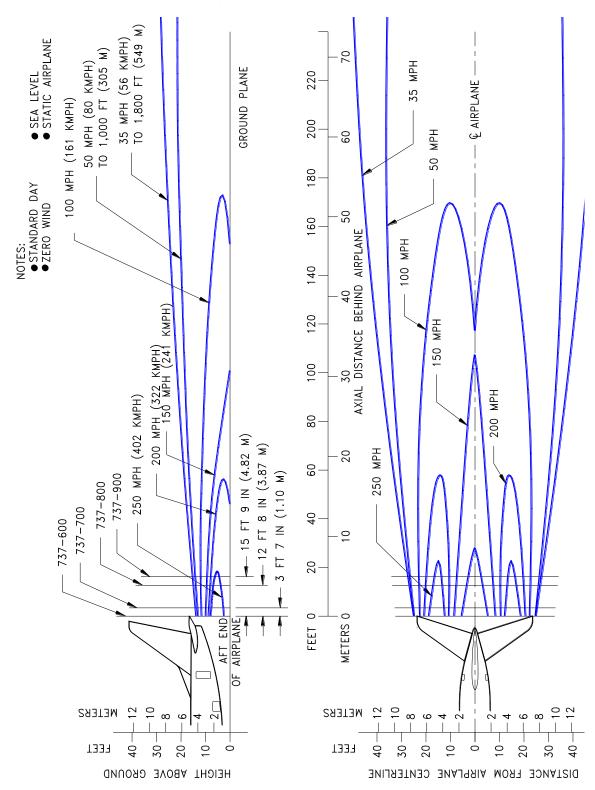

6.1.2 Predicted Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-300, -400, -500

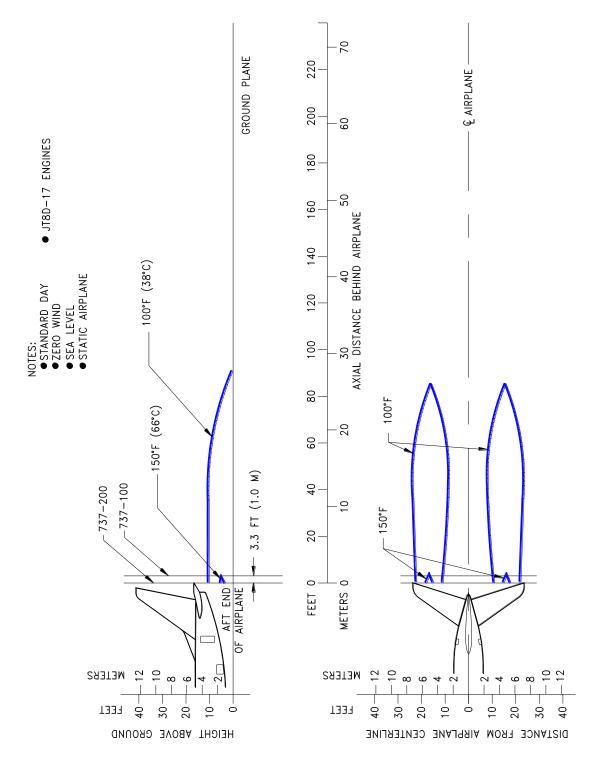

6.1.3 Predicted Jet Engine Exhaust Velocity Contours – Idle Thrust: Model 737-600, -700, -800, -900, All Models

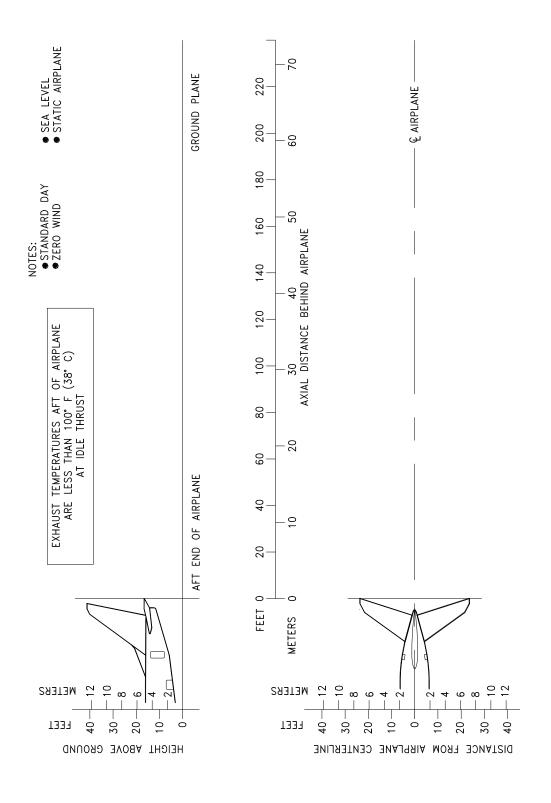

6.1.4 Predicted Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-100, -200

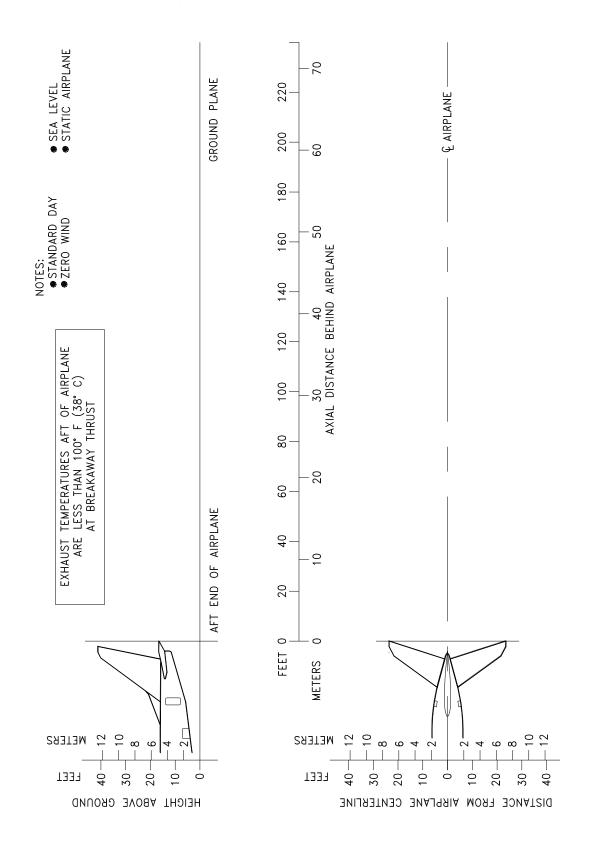

6.1.5 Predicted Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-300, -400, -500

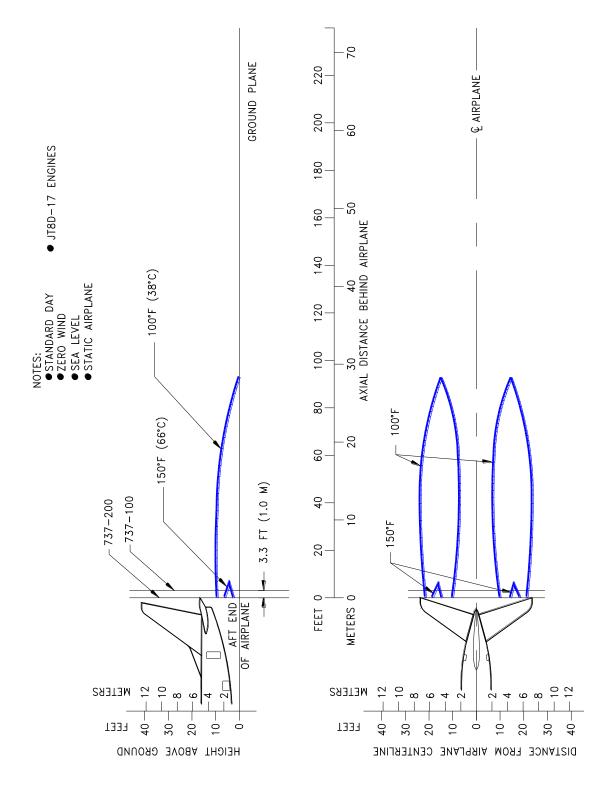

6.1.6 Predicted Jet Engine Exhaust Velocity Contours - Breakaway Thrust: Model 737-600, -700, -800, -900 All Models

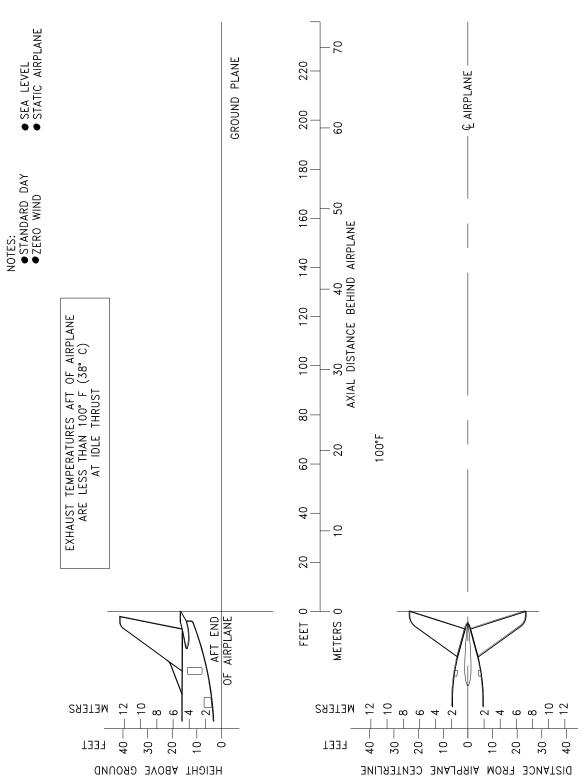

6.1.7 Predicted Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-100, -200

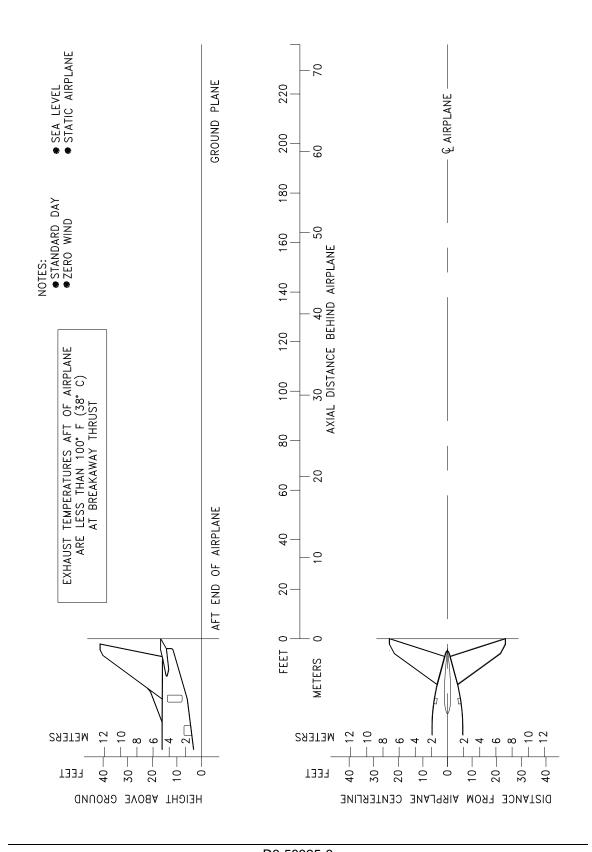

6.1.8 Predicted Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-300, -400, -500

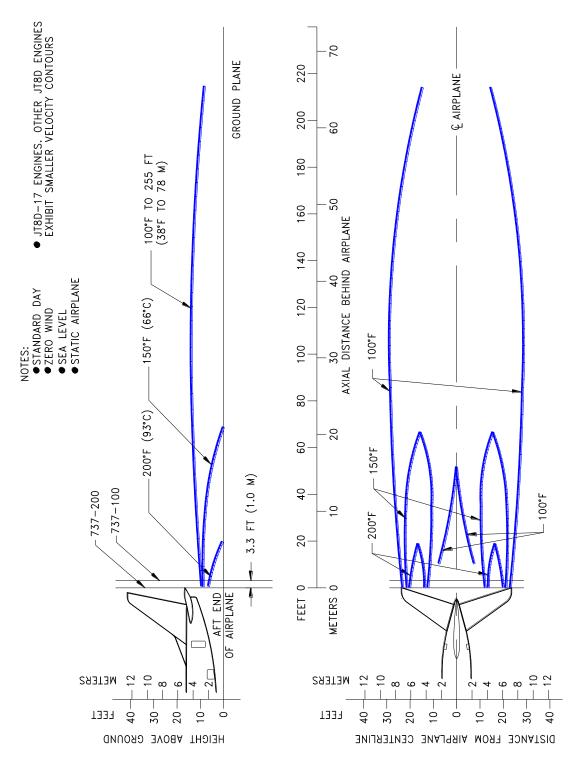

6.1.9 Predicted Jet Engine Exhaust Velocity Contours - Takeoff Thrust: Model 737-600, -700, -800, -900 All Models

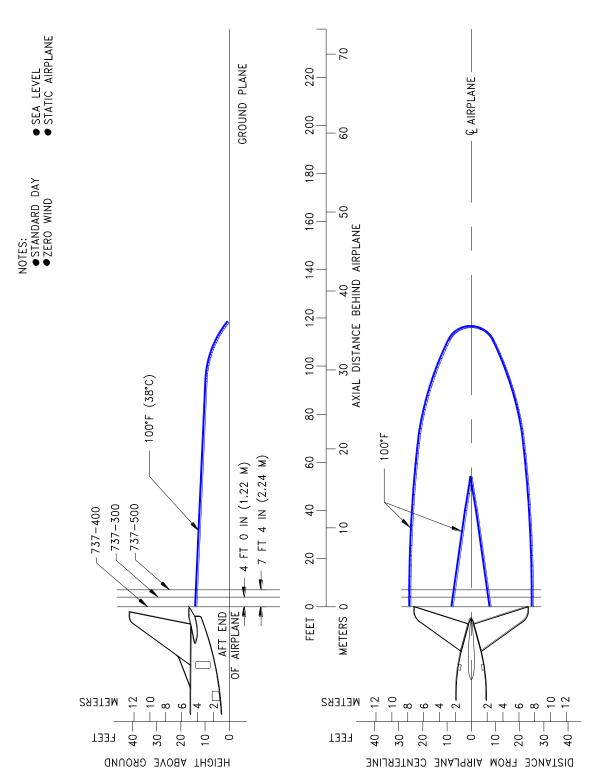

6.1.10 Predicted Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-100, -200

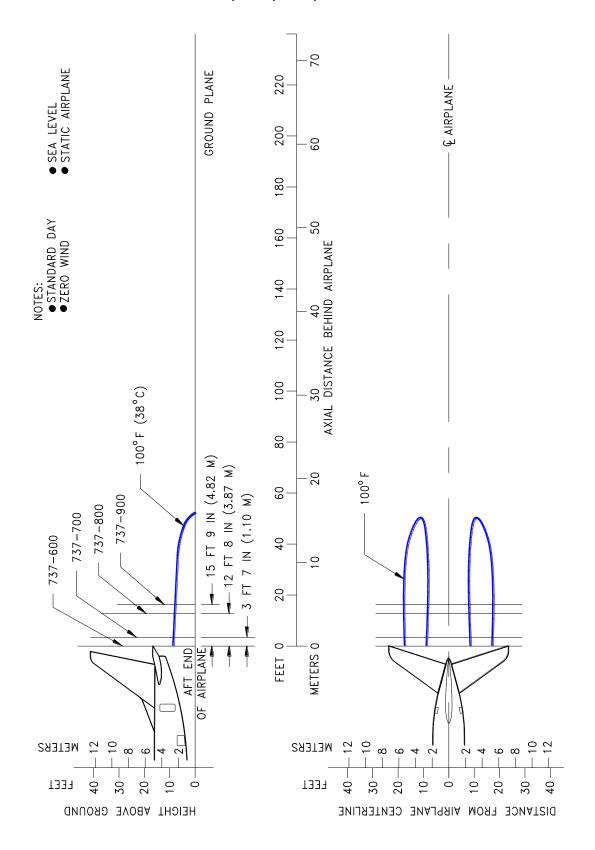

6.1.11 Predicted Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-300, -400, -500


6.1.12 Predicted Jet Engine Exhaust Temperature Contours - Idle Thrust: Model 737-600, -700, -800, -900 All Models


6.1.13 Predicted Jet Engine Exhaust Temperature Contours – Breakaway Thrust: Model 737-100, 200


6.1.14 Predicted Jet Engine Exhaust Temperature Contours – Breakaway Thrust: Model 737-300, -400, -500


6.1.15 Predicted Jet Engine Exhaust Temperature Contours – Breakaway Thrust: Model 737-600, -700, -800, -900 All Models


6.1.16 Predicted Jet Engine Exhaust Temperature Contours – Takeoff Thrust: Model 737-100, -200

6.1.17 Predicted Jet Engine Exhaust Temperature Contours – Takeoff Thrust: Model 737-300, -400, -500

6.1.18 Predicted Jet Engine Exhaust Temperature Contours – Takeoff Thrust: Model 737-600, -700, -800, -900 All Models

6.2 AIRPORT AND COMMUNITY NOISE

Airport noise is of major concern to the airport and community planner. The airport is a major element in the community's transportation system and, as such, is vital to its growth. However, the airport must also be a good neighbor, and this can be accomplished only with proper planning. Since aircraft noise extends beyond the boundaries of the airport, it is vital to consider the impact on surrounding communities. Many means have been devised to provide the planner with a tool to estimate the impact of airport operations. Too often they oversimplify noise to the point where the results become erroneous. Noise is not a simple subject; therefore, there are no simple answers.

The cumulative noise contour is an effective tool. However, care must be exercised to ensure that the contours, used correctly, estimate the noise resulting from aircraft operations conducted at an airport.

The size and shape of the single-event contours, which are inputs into the cumulative noise contours, are dependent upon numerous factors. They include the following:

1. Operational Factors

- a. <u>Aircraft Weight</u>-Aircraft weight is dependent on distance to be traveled, enroute winds, payload, and anticipated aircraft delay upon reaching the destination.
- b. <u>Engine Power Settings</u>-The rates of ascent and descent and the noise levels emitted at the source are influenced by the power setting used.
- c. <u>Airport Altitude</u>-Higher airport altitude will affect engine performance and thus can influence noise.

2. Atmospheric Conditions-Sound Propagation

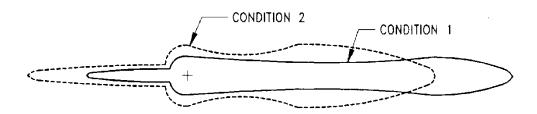
- a. <u>Wind</u>-With stronger headwinds, the aircraft can take off and climb more rapidly relative to the ground. Also, winds can influence the distribution of noise in surrounding communities.
- b. <u>Temperature and Relative Humidity</u>-The absorption of noise in the atmosphere along the transmission path between the aircraft and the ground observer varies with both temperature and relative humidity.
- 3. Surface Condition-Shielding, Extra Ground Attenuation (EGA)
 - a. <u>Terrain</u>-If the ground slopes down after takeoff or before landing, noise will be reduced since the aircraft will be at a higher altitude above ground. Additionally, hills, shrubs, trees, and large buildings can act as sound buffers.

All these factors can alter the shape and size of the contours appreciably. To demonstrate the effect of some of these factors, estimated noise level contours for two different

operating conditions are shown below. These contours reflect a given noise level upon a ground level plane at runway elevation.

Condition 1

Landing Takeoff


Maximum Structural Landing Maximum Gross Takeoff

Weight Weight 10-knot Headwind Zero Wind

3° Approach 84 °F

84 °F Humidity 15%

Humidity 15%

Condition 2

Landing Takeoff

85% of Maximum Structural
Landing Weight

Takeoff Weight

10-knot Headwind

10-knot Headwind

3° Approach 59 °F (15 °C) 59 °F (15 °C) Humidity 70% Humidity 70%

As indicated from these data, the contour size varies substantially with operating and atmospheric conditions. Most aircraft operations are, of course, conducted at less than maximum gross weights because average flight distances are much shorter than maximum aircraft range capability and average load factors are less than 100%. Therefore, in developing cumulative contours for planning purposes, it is recommended that the airlines serving a particular city be contacted to provide operational information.

In addition, there are no universally accepted methods for developing aircraft noise contours or for relating the acceptability of specific zones to specific land uses. It is

therefore expected that noise contour data for particular aircraft and the impact assessment methodology will be changing. To ensure that the best currently available information of this type is used in any planning study, it is recommended that it be obtained directly from the Office of Environmental Quality in the Federal Aviation Administration in Washington, D.C.

It should be noted that the contours shown herein are only for illustrating the impact of operating and atmospheric conditions and do not represent the single-event contour of the family of aircraft described in this document. It is expected that the cumulative contours will be developed as required by planners using the data and methodology applicable to their specific study.

7.0 PAVEMENT DATA

7.1 GENERAL INFORMATION

A brief description of the pavement charts that follow will help in their use for airport planning. Each airplane configuration is depicted with a minimum range of five loads imposed on the main landing gear to aid in interpolation between the discrete values shown. All curves for any single chart represent data based on rated loads and tire pressures considered normal and acceptable by current aircraft tire manufacturer's standards. Tire pressures, where specifically designated on tables and charts, are at values obtained under loaded conditions as certificated for commercial use.

Section 7.2 presents basic data on the landing gear footprint configuration, maximum design taxi loads, and tire sizes and pressures.

Maximum pavement loads for certain critical conditions at the tire-to-ground interface are shown in Section 7.3, with the tires having equal loads on the struts.

Pavement requirements for commercial airplanes are customarily derived from the static analysis of loads imposed on the main landing gear struts. The charts in Section 7.4 are provided in order to determine these loads throughout the stability limits of the airplane at rest on the pavement. These main landing gear loads are used as the point of entry to the pavement design charts, interpolating load values where necessary.

The flexible pavement design curves (Section 7.5) are based on procedures set forth in Instruction Report No. S-77-1, "Procedures for Development of CBR Design Curves," dated June 1977, and as modified according to the methods described in FAA Advisory Circular 150/5320-6D, "Airport Pavement Design and Evaluation," dated July 7, 1995. Instruction Report No. S-77-1 was prepared by the U.S. Army Corps of Engineers Waterways Experiment Station, Soils and Pavements Laboratory, Vicksburg, Mississippi. The line showing 10,000 coverages is used to calculate Aircraft Classification Number (ACN).

The following procedure is used to develop the curves, such as shown in Section 7.5:

- 1. Having established the scale for pavement depth at the bottom and the scale for CBR at the top, an arbitrary line is drawn representing 5,000 annual departures.
- 2. Values of the aircraft gross weight are then plotted.
- 3. Additional annual departure lines are drawn based on the load lines of the aircraft gross weights already established.
- 4. An additional line representing 10,000 coverages (used to calculate the flexible pavement Aircraft Classification Number) is also placed.

All Load Classification Number (LCN) curves (Sections 7.6 and 7.8) have been developed from a computer program based on data provided in International Civil

D6-58325-6

REV A September 2020 7-1

Aviation Organization (ICAO) document 9157-AN/901, <u>Aerodrome Design Manual</u>, Part 3, "Pavements", Second Edition, 1983. LCN values are shown directly for parameters of weight on main landing gear, tire pressure, and radius of relative stiffness (*l*) for rigid pavement or pavement thickness or depth factor (h) for flexible pavement.

Rigid pavement design curves (Section 7.7) have been prepared with the Westergaard equation in general accordance with the procedures outlined in the <u>Design of Concrete Airport Pavement</u> (1955 edition) by Robert G. Packard, published by the Portland Cement Association, 5420 Old Orchard Road, Skokie, Illinois 60077-1083. These curves are modified to the format described in the Portland Cement Association publication XP6705-2, <u>Computer Program for Airport Pavement Design (Program PDILB)</u>, 1968, by Robert G. Packard.

The following procedure is used to develop the rigid pavement design curves shown in Section 7.7:

- 5. Having established the scale for pavement thickness to the left and the scale for allowable working stress to the right, an arbitrary load line is drawn representing the main landing gear maximum weight to be shown.
- 6. Values of the subgrade modulus (k) are then plotted.
- 7. Additional load lines for the incremental values of weight on the main landing gear are drawn on the basis of the curve for k = 300, already established.

The rigid pavement design curves (Section 7.9) have been developed based on methods used in the <u>FAA Advisory Circular AC 150/5320-6D</u> July 7, 1995. The following procedure is used to develop the curves, such as shown in Section 7.9:

- 8. Having established the scale for pavement flexure strength on the left and temporary scale for pavement thickness on the right, an arbitrary load line is drawn representing the main landing gear maximum weight to be shown at 5,000 coverages.
- 9. Values of the subgrade modulus (k) are then plotted.
- 10. Additional load lines for the incremental values of weight are then drawn on the basis of the subgrade modulus curves already established.
- 11. The permanent scale for the rigid-pavement thickness is then placed. Lines for other than 5,000 coverages are established based on the aircraft pass-to-coverage ratio.

The ACN/PCN system (Section 7.10) as referenced in ICAO Annex 14, "Aerodromes," 3rd Edition, July 1999, provides a standardized international airplane/pavement rating system replacing the various S, T, TT, LCN, AUW, ISWL, etc., rating systems used throughout the world. ACN is the Aircraft Classification Number and PCN is the Pavement Classification Number. An aircraft having an ACN equal to or less than the

D6-58325-6

REV A September 2020 7-2

PCN can operate on the pavement subject to any limitation on the tire pressure. Numerically, the ACN is two times the derived single-wheel load expressed in thousands of kilograms, where the derived single wheel load is defined as the load on a single tire inflated to 181 psi (1.25 MPa) that would have the same pavement requirements as the aircraft. Computationally, the ACN/PCN system uses the PCA program PDILB for rigid pavements and S-77-1 for flexible pavements to calculate ACN values. The method of pavement evaluation is left up to the airport with the results of their evaluation presented as follows:

PCN	PAVEMENT TYPE	SUBGRADE CATEGORY	TIRE PRESSURE CATGORY	EVALUATION METHOD
	R = Rigid	A = High	W = No Limit	T = Technical
	F = Flexible	B = Medium	X = To 254 psi (1.75 MPa)	U = Using Aircraft
		C = Low	Y = To 181 psi (1.25 MPa)	
		D = Ultra Low	Z = To 73 psi (0.5 MPa)	

ACN values for flexible pavements are calculated for the following four subgrade categories:

Code A - High Strength - CBR 15

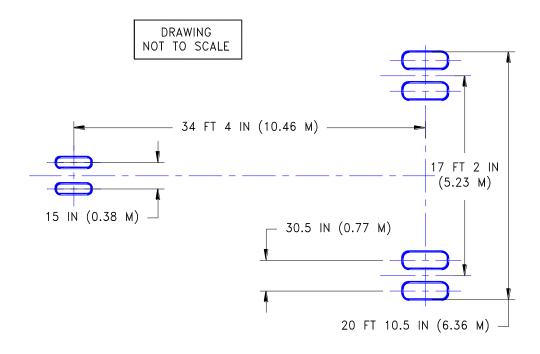
Code B - Medium Strength - CBR 10

Code C - Low Strength - CBR 6

Code D - Ultra Low Strength - CBR 3

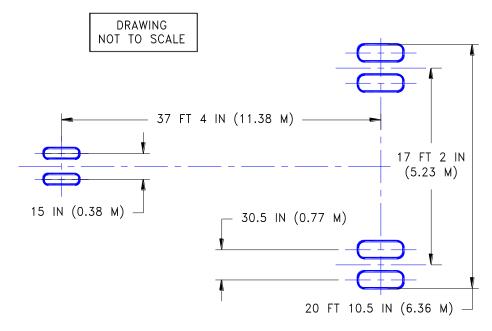
ACN values for rigid pavements are calculated for the following four subgrade categories:

Code A - High Strength, $k = 550 \text{ pci } (150 \text{ MN/m}^3)$


Code B - Medium Strength, $k = 300 \text{ pci } (80 \text{ MN/m}^3)$

Code C - Low Strength, $k = 150 \text{ pci } (40 \text{ MN/m}^3)$

Code D - Ultra Low Strength, $k = 75 \text{ pci } (20 \text{ MN/m}^3)$


7.2 LANDING GEAR FOOTPRINT

7.2.1 Landing Gear Footprint: Model 737-100

	UNITS					
MAXIMUM DESIGN	LB	97,800 104,0		,000	111,000	
TAXI WEIGHT	KG	44,361	47,	174	50,349	
PERCENT OF WEIGHT ON MAIN GEAR	SEE SECTION 7.4					
NOSE GEAR TIRE SIZE	IN	24 x 7.7 – 10 24 14 PR			4 x 7.7 – 10 16 PR	
NOSE GEAR TIRE	PSI	135	13	35	145	
PRESSURE	KG/CM ²	9.49	9.4	49	10.19	
MAIN GEAR TIRE SIZE	IN	40 x 14 – 16 22 PR	40 x 14 – 16 22 PR		40 x 14 – 16 24 PR	
MAIN GEAR TIRE	PSI	138	14	16	157	
PRESSURE	KG/CM ²	9.70	10.	.27	11.04	

7.2.2 Landing Gear Footprint: Model 737-200

	UNITS	MODEL 737-200						
MAXIMUM	LB	100,800	104,000	110,000	111,000	116,000		
DESIGN TAXI WEIGHT	KG	45,722	47,174	49,895	50,349	52,617		
PERCENT OF WEIGHT ON MAIN GEAR	SEE SECTION 7.4							

STANDARD TIRES AND BRAKES

NOSE GEAR TIRE SIZE	IN	24	x 7.7 – 10 14 PR		24 x 7.7 – 10 16 PR				
NOSE GEAR	PSI	135	135	14	1 5	145	145		
TIRE PRESSURE	KG/CM ²	9.49	9.49	10.	.19	10.19	10.19		
MAIN GEAR TIRE SIZE	IN	_	40 x 14 – 16 22 PR			40 x 14 – 16 24 PR			
MAIN GEAR TIRE PRESSURE	PSI	141	146	15	56	157	158		
	KG/CM ²	9.91 10.27		10.97		11.04	11.67		

HEAVY-DUTY TIRES AND BRAKES

NOSE GEAR TIRE SIZE	IN	24 x 7.7 – 10 16 PR						
NOSE GEAR	PSI	145	145	145		145	145	
TIRE PRESSURE	KG/CM ²	10.19	10.19	10.	.19	10.19	10.19	
MAIN GEAR TIRE SIZE	IN		X 14 – 21 22 PR		C40 X 14 – 21 24 PR			
MAIN GEAR TIRE	PSI	141	141 146 1		56	157	164	
PRESSURE	KG/CM ²	9.91	10.27	10.	.97	11.04	11.53	

7.2.3 Landing Gear Footprint: Model Advanced 737-200

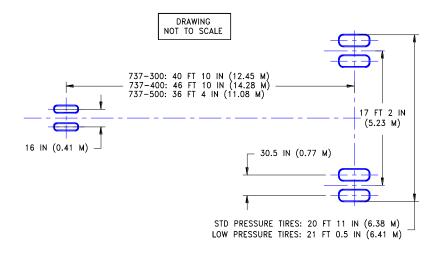
NOTE: SEE PREVIOUS PAGE FOR TIRE LAYOUT

	UNITS	MODEL 737-200					
MAXIMUM DESIGN TAXI WEIGHT	LB	116,000	117,500	120,000	125,000	128,600	
	KG	52,617	53,297	54,431	56,699	58,332	
PERCENT OF WEIGHT ON MAIN GEAR		SEE SECTION 7.4					

STANDARD TIRES AND BRAKES

NOSE GEAR TIRE SIZE	IN	2	24 x 7.7 – 10 16 PR		
NOSE GEAR TIRE	PSI		140		
PRESSURE	KG/CM ²		9.84	(NOT AVAILABLE)	
MAIN GEAR TIRE SIZE	IN	2	10 x 14 – 16 24 PR	(NOT AVAILABLE)	
MAIN GEAR TIRE	PSI	166	168	172	
PRESSURE	KG/CM ²	11.67	11.81	12.09	

HEAVY-DUTY TIRES AND BRAKES


NOSE GEAR TIRE SIZE	IN	24 x 7.7 – 10 16 PR						
NOSE GEAR TIRE	PSI		140					
PRESSURE	KG/CM ²	9.84						
MAIN GEAR TIRE SIZE	IN	С	40 X 14 – 21 24 PR	C40 X 14 – 21 26 PR OR H40 x 14.5 – 19 24 PR				
MAIN GEAR TIRE	PSI	164	166	170	178	182		
PRESSURE	KG/CM ²	11.53	11.67	11.95	12.52	12.80		

LOW PRESSURE TIRES

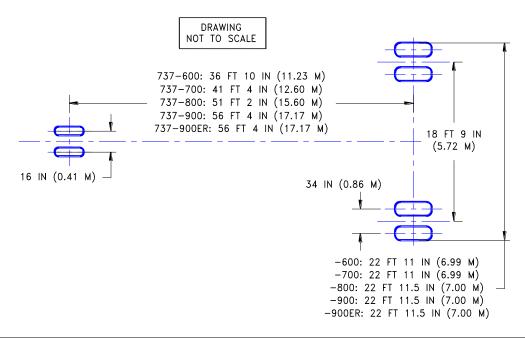
NOSE GEAR TIRE SIZE	IN	C24.5 x 18.5 – 12 12 PR	C24.5 x 18.5 – 12 12 PR			
NOSE GEAR TIRE PRESSURE	PSI	104	104			
	KG/CM ²	7.31	7.31	(NOT AVAILABLE)		
MAIN GEAR TIRE SIZE	IN	C40 X 18 - 17 20 PR	C40 X 18 - 17 20 PR	(NOT AVAILABLE)		
MAIN GEAR TIRE	PSI	95	96			
PRESSURE	KG/CM ²	6.68	6.75			

REV A September 2020 7-6

7.2.4 Landing Gear Footprint: Model Advanced 737-300, -400, -500

	UNITS	737-300		737-400					
MAXIMUM DESIGN TAXI	LB	125,000 TO 140,000	139,000	143,000	144,000	150,500	116,000 TO 134,000		
WEIGHT	KG	KG 56,699 TO 63,049 64,864 65,317 68,266 63,503							
PERCENT OF WEIGHT ON MAIN GEAR	63,503 60,781 60,781								

STANDARD TIRES AND BRAKES

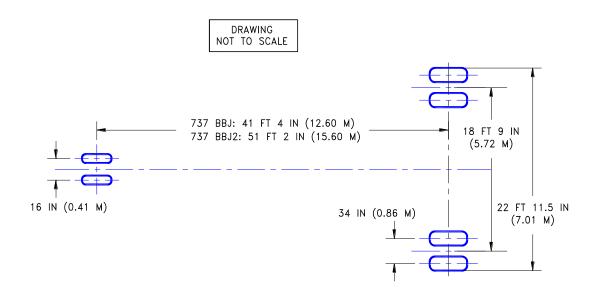

NOSE GEAR TIRE SIZE	IN	27 x 7.75 – 15 10 PR		27 x 7.75 – 15 12 PR			
NOSE GEAR	PSI	166	171	172	173	177	186
TIRE PRESSURE	KG/CM ²	11.67	12.02	12.09	12.16	12.44	13.08
MAIN GEAR TIRE SIZE	IN	H40 x 14. 24 P		H40 x 14.5 – 19 26 PR		H42 x 16 – 19 26 PR	H40 x 14.5 – 19 24 PR
MAIN GEAR	PSI	180 TO 201	203	209	211	185	170 TO 194
TIRE PRESSURE (1)	KG/CM ²	12.65 TO 14.13	14.27	14.69	14.83	13.00	11.95 TO 13.64

LOW PRESSURE TIRES

NOSE GEAR TIRE SIZE	IN	24 x 7.75 – 15 10 PR	24 x 7.75 – 15 12 PR				24 x 7.75 – 15 12 PR
NOSE GEAR	PSI	166	171	172	173	(NA)	186
TIRE PRESSURE	KG/CM ²	11.67	12.02	12.09	12.16	(NA)	13.08
MAIN GEAR TIRE SIZE	IN	H42 X 16 – 19 24 PR		H42 X 16 – 19 24 PR			H42 X 16 – 19 24 PR
MAIN GEAR	PSI	152 TO 170	171	176	177	(NA)	144 TO 164
TIRE PRESSURE (1)	KG/CM ²	10.69 TO 11.95	12.02	12.37	12.44	(NA)	10.12 TO 11.53

NOTE: 1. SEE SEC 7.11 - TIRE INFLATION CHART, FOR TIRE PRESSURES AT INTERMEDIATE WEIGHTS.

7.2.5 Landing Gear Footprint: Model Advanced 737-600, -700, -800, -900, -900ER With and Without Winglets



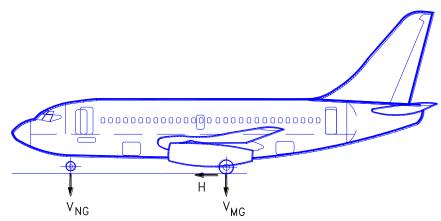
	UNITS	737-600	737-700	737-800	737-900	737-900ER		
MAXIMUM DESIGN TAXI	LB	124,500 THRU 145,000	133,500 THRU 155,000	156,000 THRU 174,700	164,500 THRU 174,700	164,500 THRU 188,200		
WEIGHT	KG	56,472 THRU 65,771	60,554 THRU 70,307	70,760 THRU 79,242	74,616 THRU 79,242	74,616 THRU 85,366		
NOSE GEAR	IN		27 x 7.7 - 15 12 PR		27 x 7.75 - 15	27 x 7.75 - 15		
TIRE SIZE			21 X 1.1 - 15 12 PR		12 PR	12 PR		
NOSE GEAR	PSI	206	205	185	185	185		
TIRE PRESSURE	KG/CM ²	14.50	14.44	13.03	13.03	13.03		
MAIN GEAR	IN	H43.5 x 16.0 – 21	H43.5 x 16.0 – 21	H44.5 x 16.5 – 21	H44.5 x 16.5 – 21	H44.5 x 16.5 – 21		
TIRE SIZE		24PR OR 26 PR	26 PR	28 PR	28 PR	30 PR		
MAIN GEAR	PSI	182 THRU 205	197 THRU 205	204 THRU 205	204 THRU 205	205 THRU 220		
TIRE PRESSURE	KG/CM ²	12.80 THRU 14.41	13.85 THRU 14.41	14.39 THRU 14.41	14.34 THRU 14.41	14.41 THRU 15.47		
OPTIONAL TIRES								

MAN GEAR	IN	H44.5 x 16.5 – 21	H44.5 x 16.5 – 21	NOT AVAILABLE	NOT AVAILABLE	NOT AVAILABLE
TIRE SIZE		28PR (1)	28PR			
MAIN GEAR	PSI	168 THRU 205	179 THRU 205	NOT AVAILABLE	NOT AVAILABLE	NOT AVAILABLE
TIRE PRESSURE	KG/CM ²	11.81 THRU 14.41	12.59 THRU 14.41	NOT AVAILABLE	NOT AVAILABLE	NOT AVAILABLE

NOTE: 1. H44.5 x 16.5 – 21 28PR TIRE CERTIFICATED ON 737-600 UP TO 144,000 LB (65,317 KG)

7.2.6 Landing Gear Footprint: Model 737 BBJ, 737 BBJ2

	UNITS	737-BBJ	737-BBJ2	
MAXIMUM DESIGN TAXI	LB	171,500	174,700	
WEIGHT	KG	77,790	79,250	
PERCENT OF WEIGHT ON MAIN GEAR		SEE SECTION 7.4		
NOSE GEAR TIRE SIZE	IN	27 x 7.7 - 15 12 PR		
NOSE GEAR TIRE	PSI	185	185	
PRESSURE	KG/CM ²	13.03	13.03	
MAIN GEAR TIRE SIZE	IN	H44.5 x 16.5 - 21 28 PR	H44.5 x 16.5 - 21 28 PR	
MAIN GEAR TIRE	PSI	204	204	
PRESSURE	KG/CM ²	14.34	14.34	

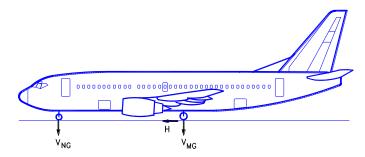

7.3 MAXIMUM PAVEMENT LOADS

7.3.1 Maximum Pavement Loads: Model 737-100, -200

 V_{NG} = MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER OF GRAVITY

V_{MG} = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY

H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING

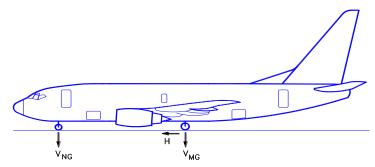

AIRPLANE MODEL	UNITS	UNITS MAX DESIGN TAXI WEIGHT		V _{NG}	V _{MG} PER STRUT AT MAX LOAD AT STATIC AFT C.G.	H PER STRUT	
			STATIC AT MOST FWD C.G.	STATIC + BRAKING 10 FT/SEC ² DECEL		STEADY BRAKING 10 FT/SEC ² DECEL	AT INSTANTANEO US BRAKING (µ = 0.8)
737-100	LB	97,800	14,000	21,500	45,200	15,100	36,200
	KG	44,362	6,350	9,752	20,503	6,849	16,420
737-100,-200	LB	104,000	18,200	24,000	48,000	16,100	38,400
	KG	47,174	8,255	10,886	21,773	7,303	17,418
737-200,200	LB	111,000	17,700	25,600	51,000	17,300	40,800
	KG	50,349	8,029	11,612	23,133	7,847	18,507
737-200, 200C	LB	116,000	16,500	25,200	52,800	18,000	42,200
	KG	52,617	7,484	11,431	23,950	8,165	19,142
737-200, 200C	LB	117,500	15,800	23,500	54,500	18,200	43,600
	KG	53,298	7,167	10,660	24,721	8,255	19,777
737-200	LB	100,800	14,700	21,400	46,800	13,800	37,500
	KG	45,723	6,668	9,707	21,228	6,260	17,010
737-200	LB	110,000	16,100	24,000	51,000	17,000	40,800
	KG	49,896	7,303	10,886	23,133	7,711	18,507
737-200, 200C	LB	120,000	16,500	24,500	55,600	16,800	44,500
	KG	54,432	7,484	11,113	25,220	7,620	20,185
737-200, 200C	LB	125,000	16,400	24,700	57,900	19,400	46,300
	KG	56,700	7,439	11,204	26,263	8,800	21,002
737-200, 200C	LB	128,600	14,200	22,800	59,100	20,000	47,300
	KG	58,333	6,441	10,342	26,808	9,072	21,455

7.3.2 Maximum Pavement Loads: Model 737-300, -400, -500

 V_{NG} = MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER OF GRAVITY

V_{MG} = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY

H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING

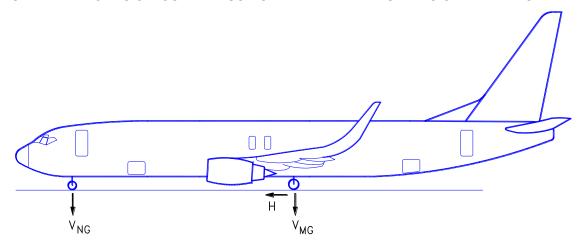

AIRPLANE MODEL	UNITS	MAX DESIGN TAXI WEIGHT		V _{NG}	V _{MG} PER STRUT AT MAX LOAD AT STATIC AFT C.G.	H PER STRUT		
			STATIC AT MOST FWD C.G.	STATIC + BRAKING 10 FT/SEC ² DECEL		STEADY BRAKING 10 FT/SEC ² DECEL	AT INSTANTANEOUS BRAKING (µ = 0.8)	
737-300	LB	125,000	154,000	22,700	58,300	19,400	46,600	
	KG	56,700	69,854	10,297	26,445	8,800	21,138	
737-300	LB	130,500	15,300	23,100	60,600	20,300	48,500	
	KG	59,194	6,940	10,478	27,488	9,208	21,999	
737-300	LB	135,500	15,200	23,400	62,200	21,000	49,800	
	KG	61,462	6,895	10,614	28,214	9,526	22,589	
737-300	LB	137,500	15,600	24,300	63,200	21,400	50,500	
	KG	62,370	7,076	11,022	28,667	9,707	22,907	
737-300	LB	139,000	15,600	24,400	63,600	21,600	50,900	
	KG	63,050	7,076	11,068	28,849	9,798	23,088	
737-300	LB	140,000	14,500	23,400	63,600	21,700	50,900	
	KG	63,504	6,577	10,614	28,849	9,843	23,088	
737-400	LB	139,000	15,900	23,000	64,900	21,600	51,900	
	KG	63,050	7,212	10,433	29,438	9,798	23,542	
737-400	LB	143,000	16,000	20,800	67,100	22,200	53,700	
	KG	64,864	7,258	9,435	30,436	10,070	24,358	
737-400	LB	144,000	12,200	19,700	66,900	22,400	56,500	
	KG	65,318	5,534	8,936	30,346	10,161	25,628	
737-400	LB	150,500	16,500	24,400	70,600	23,400	56,500	
	KG	68,266	7,484	11,068	32,024	10,614	25,628	
737-500	LB	116,000	17,100	25,000	53,700	18,000	42,900	
	KG	52,617	7,757	11,340	24,358	8,165	19,459	
737-500	LB	125,000	17,300	25,800	57,700	19,400	46,200	
	KG	56,700	7,847	11,703	26,173	8,800	20,956	
737-500	LB	134,000	17,300	26,400	61,800	20,800	49,400	
	KG	60,781	7,847	11,975	28,032	9,435	22,407	

7.3.3 Maximum Pavement Loads: Model 737-600, -700, -800, -900, -900ER With and Without Winglets

V_{NG} = MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER OF GRAVITY

 V_{MG} = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY

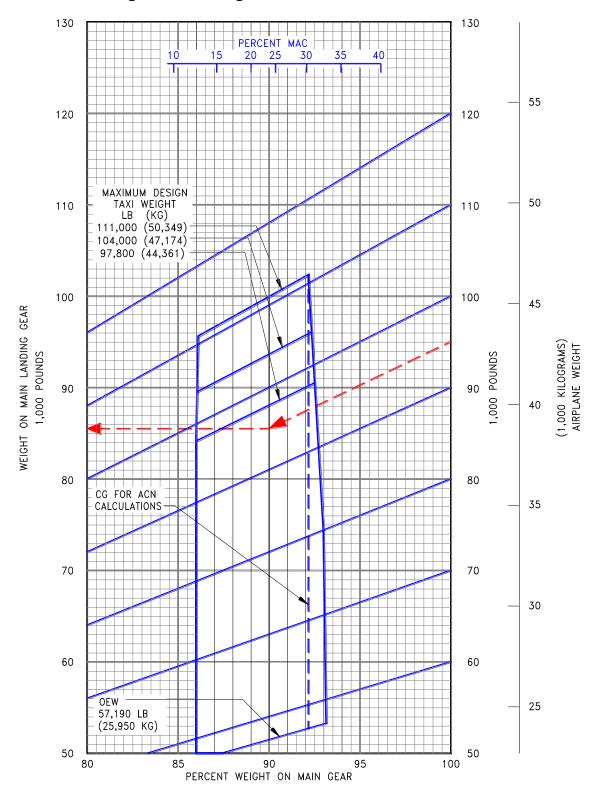
H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING

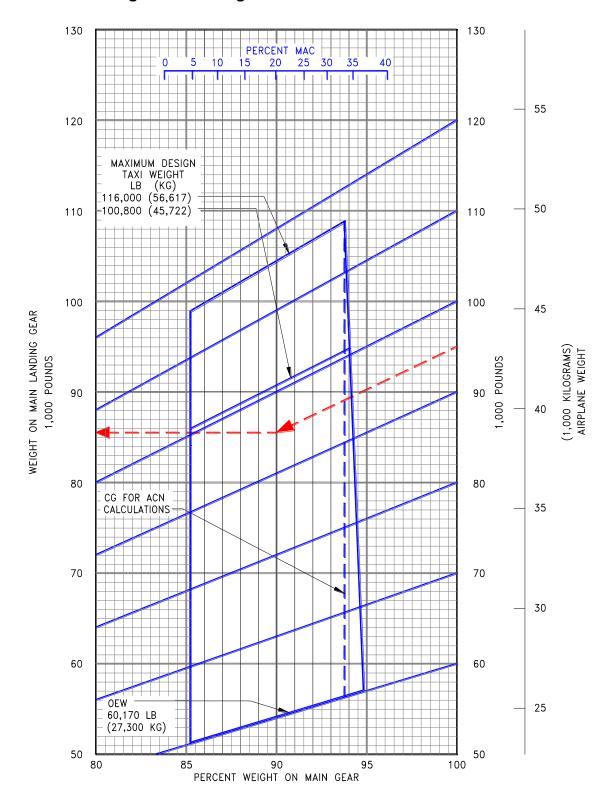

AIRPLANE MODEL		MAX		V _{NG}		H PER STRUT	
	UNITS	DESIGN TAXI WEIGHT	STATIC AT MOST FWD C.G.	STATIC + BRAKING 10 FT/SEC ² DECEL	STRUT AT MAX LOAD AT STATIC AFT C.G.	STEADY BRAKING 10 FT/SEC ² DECEL	AT INSTANTANEOU S BRAKING (µ = 0.8)
737-600	LB	124,500	16,839	26,489	58,333	19,298	46,666
	KG	56,472	7,638	12,015	26,459	8,708	21,167
737-600	LB	144,000	19,020	30,180	66,708	22,320	53,366
	KG	65,317	8,627	13,689	30,258	10,124	24,206
737-600	LB	145,000	19,000	30,236	66,454	22,475	53,163
	KG	65,771	8,618	13,715	30,143	10,194	24,114
737-700	LB	133,500	17,558	26,711	63,000	20,692	50,400
	KG	60,554	7,963	12,116	28,576	9,386	22,861
737-700	LB	153,500	18,740	29,265	71,482	23,792	57,185
	KG	69,626	8,500	13,274	32,424	10,792	25,939
737-700	LB	155,000	16,925	27,552	71,060	24,025	56,847
	KG	70,307	7,677	12,497	32,232	10,898	25,785
737-800	LB	156,000	16,770	25,510	75,062	24,180	60,050
	KG	70,750	7,607	11,571	34,047	10,968	27,442
737-800	LB	173,000	17,059	26,752	82,143	26,815	65,715
	KG	78,471	7,738	12,134	37,259	12,163	29,808
737-800	LB	174,700	15,100	24,886	81,730	27,078	65,384
	KG	79,242	6,849	11,279	37,060	12,282	29,658
737-900	LB	164,500	14,998	23,369	78,962	25,498	63,169
	KG	74,616	6,803	10,600	35,817	11,566	28,653
737-900	LB	174,700	14,155	23,045	81,743	27,078	65,394
	KG	79,242	6,421	10,453	37,078	12,282	29,662
737-900ER	LB	188,200	15,206	24,810	88,993	29,227	71,194
	KG	85,366	6,897	11,254	40,367	13,257	32,293

7.3.4 Maximum Pavement Loads: Model 737 BBJ, 737 BBJ2

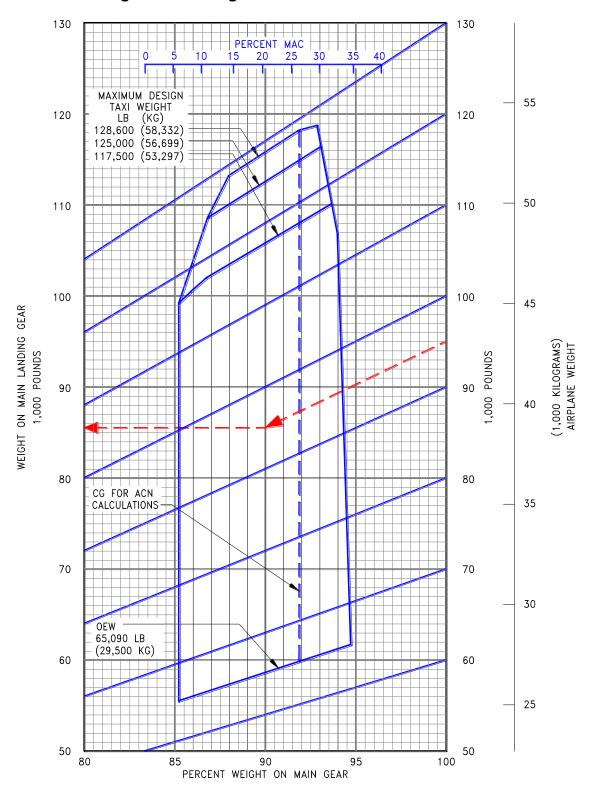
 V_{NG} = MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CENTER OF GRAVITY

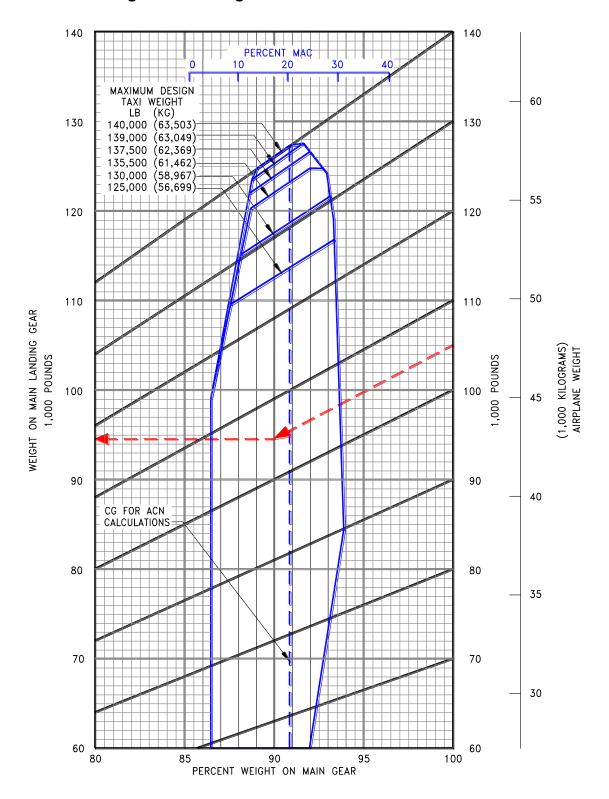
 V_{MG} = MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CENTER OF GRAVITY

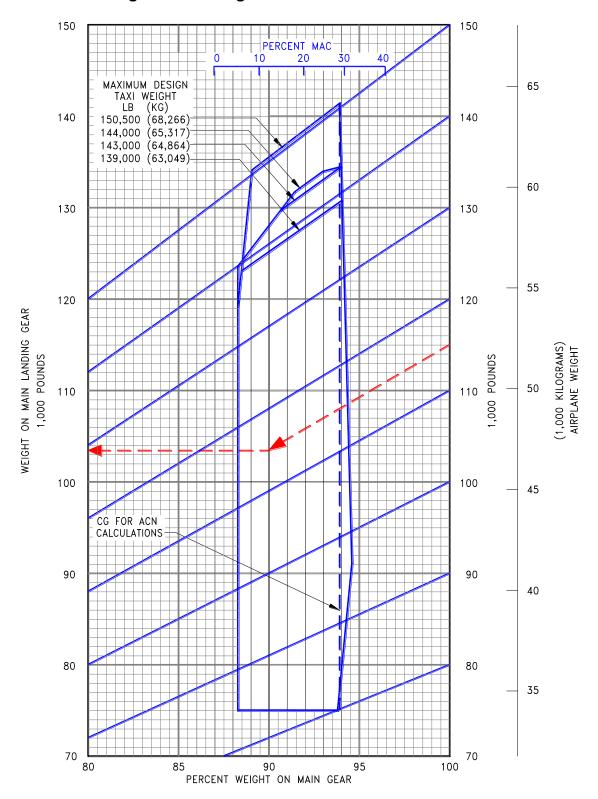

H = MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING

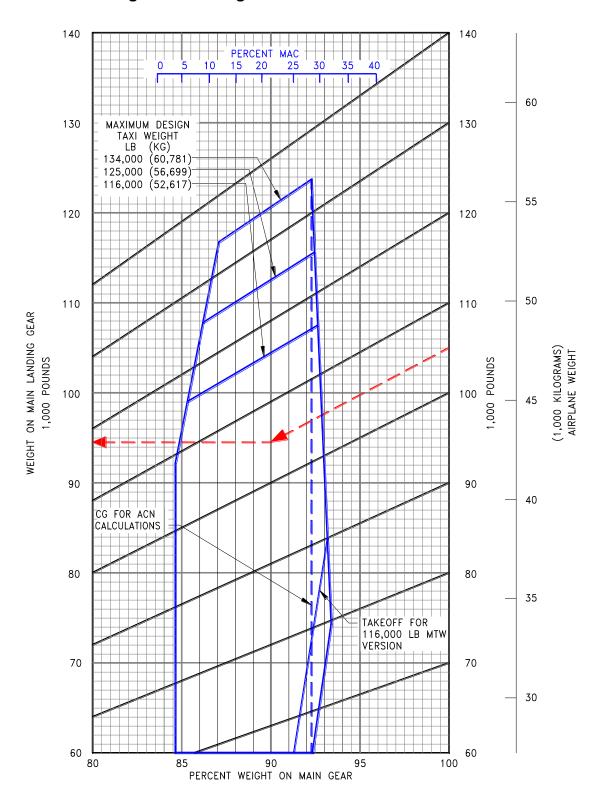

AIRPLANE MODEL	UNITS	MAX DESIGN TAXI WEIGHT	V_{NG}		V _{MG} PER	H PER STRUT	
			STATIC AT MOST FWD C.G.	STATIC + BRAKING 10 FT/SEC ² DECEL	STRUT AT MAX LOAD AT STATIC AFT C.G.	STEADY BRAKING 10 FT/SEC ² DECEL	AT INSTANTANEOU S BRAKING (µ = 0.8)
737 BBJ	LB	171,500	17,400	29,400	78,700	26,600	62,900
	KG	77,800	7,900	13,340	35,700	12,100	28,550
737 BBJ2	LB	174,700	15,100	24,900	81,700	27,100	65,400
	KG	79,250	6,850	11,300	37,050	12,300	29,650

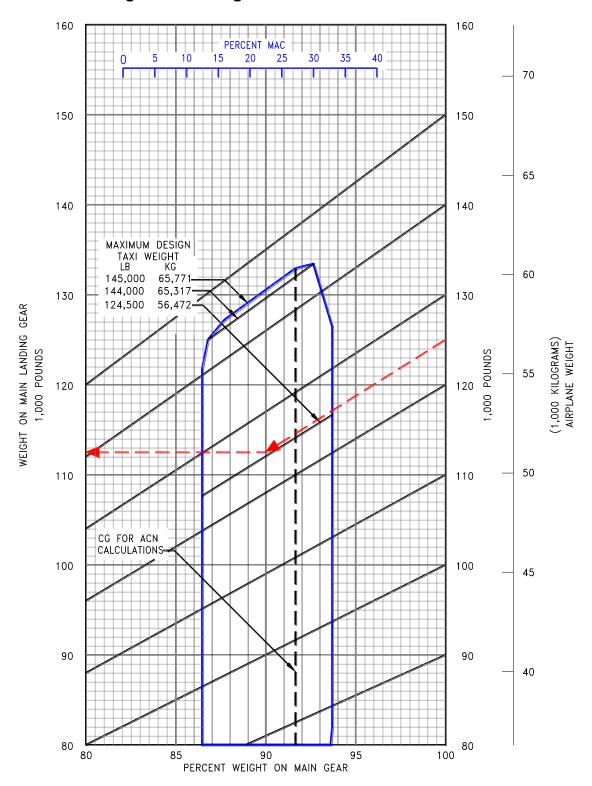
7.4 LANDING GEAR LOADING ON PAVEMENT

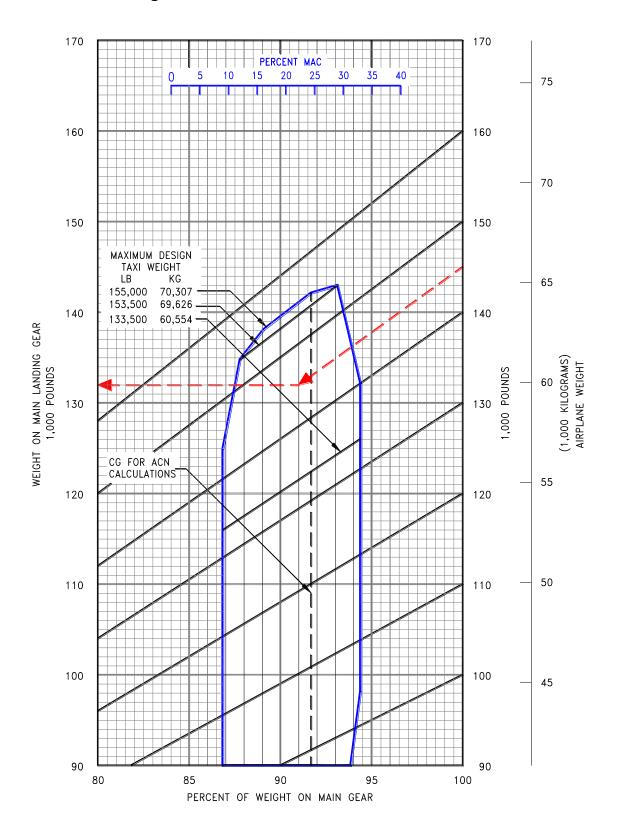

7.4.1 Landing Gear Loading on Pavement: Model 737-100

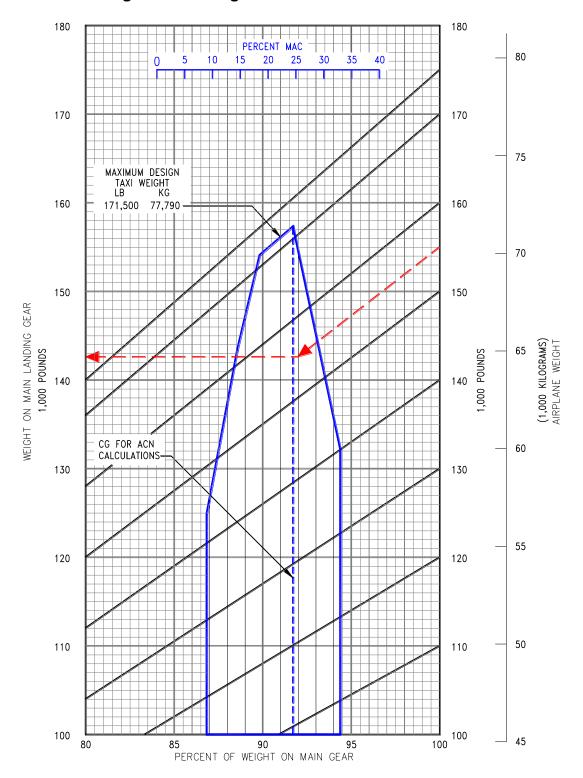

7.4.2 Landing Gear Loading on Pavement: Model 737-200

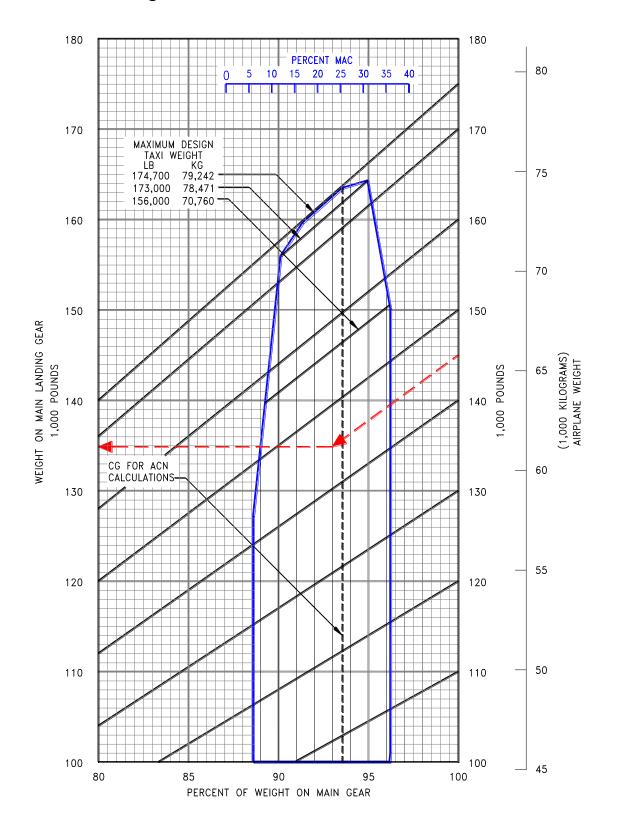

7.4.3 Landing Gear Loading on Pavement: Model 737-200 Advanced

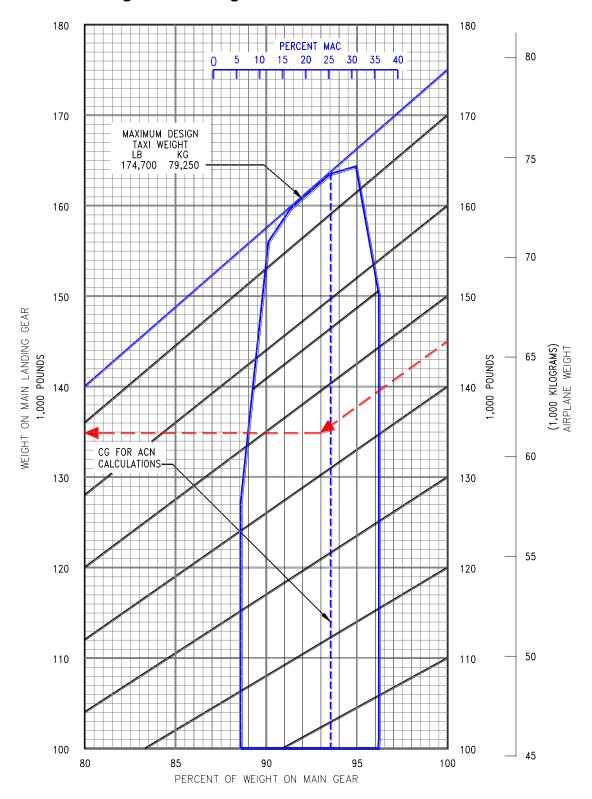

7.4.4 Landing Gear Loading on Pavement: Model 737-300

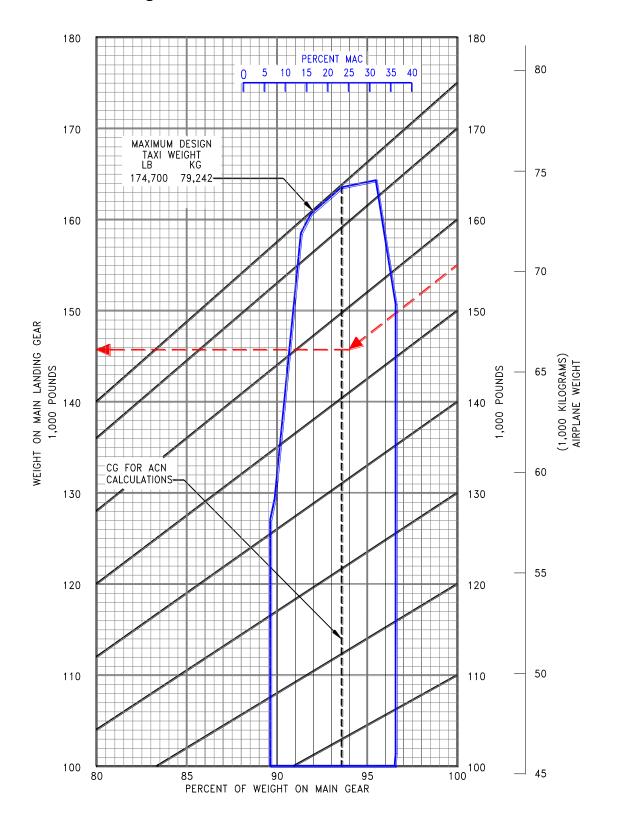

7.4.5 Landing Gear Loading on Pavement: Model 737-400

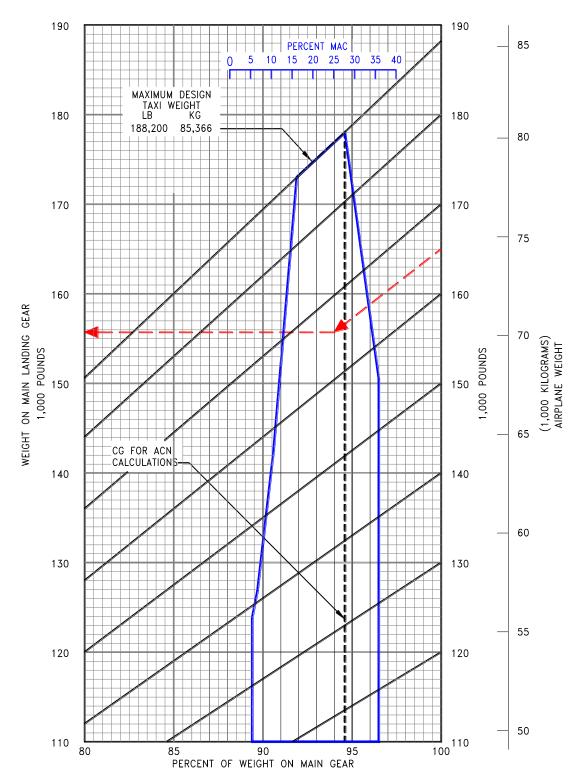

7.4.6 Landing Gear Loading on Pavement: 737-500


7.4.7 Landing Gear Loading on Pavement: 737-600


7.4.8 Landing Gear Loading on Pavement: Model 737-700, -700 With Winglets


7.4.9 Landing Gear Loading on Pavement: Model 737BBJ


7.4.10 Landing Gear Loading on Pavement: Model 737-800, -800 With Winglets


7.4.11 Landing Gear Loading on Pavement: Model 737-BBJ2

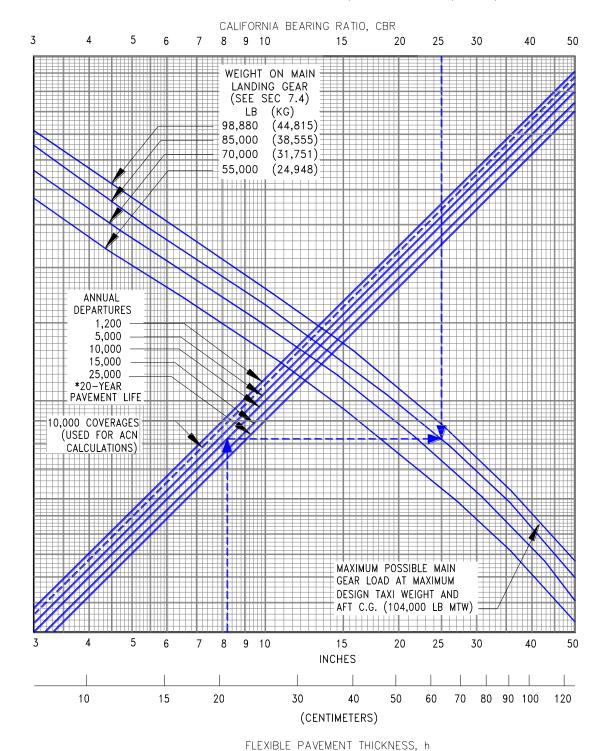
7.4.12 Landing Gear Loading on Pavement: Model 737-900, -900 With Winglets

7.4.13 Landing Gear Loading on Pavement: Model 737-900ER, -900ER With Winglets

7.5 FLEXIBLE PAVEMENT REQUIREMENTS - U.S. ARMY CORPS OF ENGINEERS METHOD S-77-1 AND FAA DESIGN METHOD

The following flexible-pavement design chart presents the data of five incremental maingear loads at the minimum tire pressure required at the maximum design taxi weight.

In the example shown in the next page, for a CBR of 25 and an annual departure level of 10,000, the required flexible pavement thickness for an airplane with a main gear loading of 85,000 pounds is 8.2 inches. Similar examples are shown in succeeding charts.

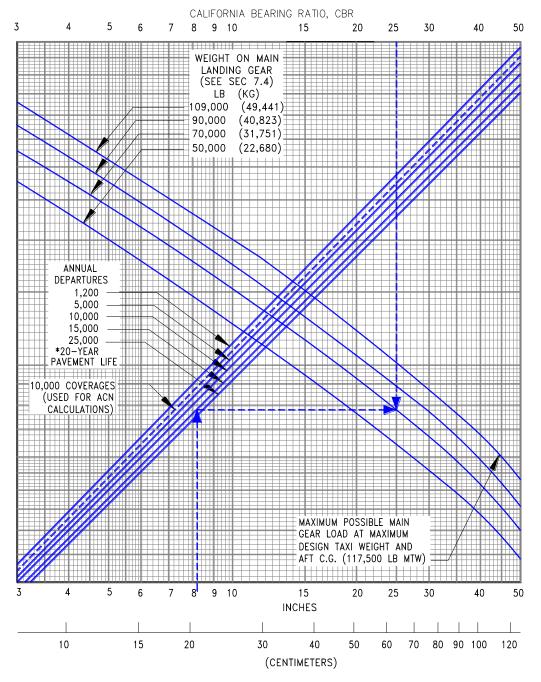

The line showing 10,000 coverages is used for ACN calculations (see Section 7.10).

The FAA design method uses a similar procedure using total airplane weight instead of weight on the main landing gears. The equivalent main gear loads for a given airplane weight could be calculated from Section 7.4.

7.5.1 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-100, -200 to 104,000 LB (47,170 KG) MTW

NOTES:

- * TIRES 40 x 14 16 28 PR; C40 x 14 21 22 PR
- * PRESSURE RANGE FROM 138 TO 146 PSI (9.70 TO 10.27 KG/SC CM)

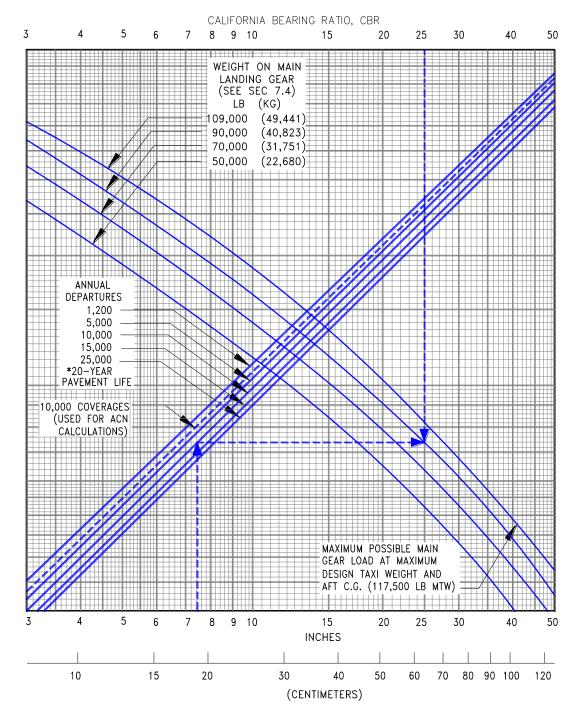


7.5.2 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-100, -200, -200 ADV at 110,000 to 117,500 LB (49,895 to 53,297 KG) MTW

NOTES:

* TIRES - 40 x 14 - 16 24 PR; C40 x 14 - 21 24 PR

* PRESSURE RANGE FROM 156 TO 168 PSI (10.97 TO 11.81 KG/SC CM)

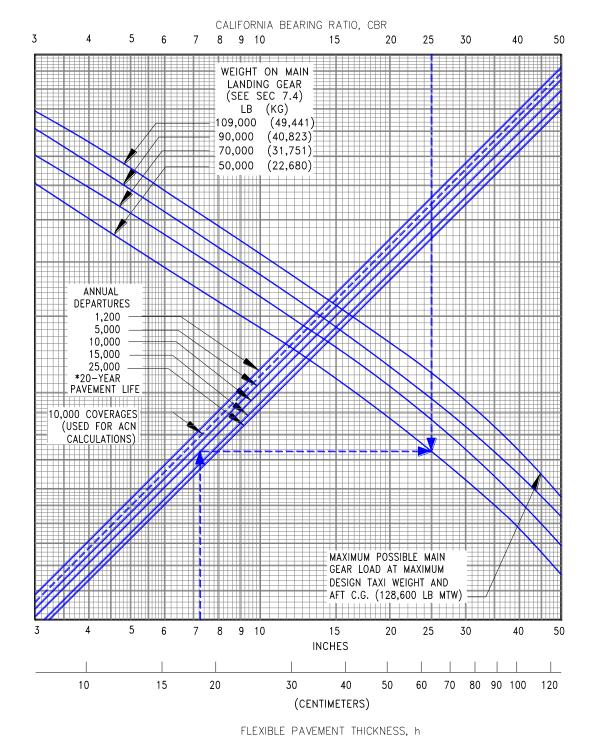


FLEXIBLE PAVEMENT THICKNESS, h

7.5.3 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-200 ADV at 116,000 to 117,500 LB (52,617 to 53,297 KG) MTW, Low Pressure Tires

NOTES:

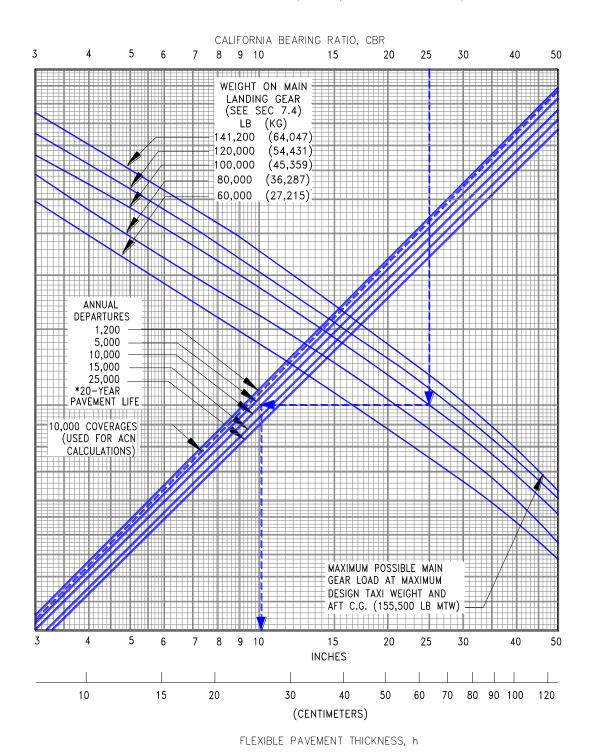
- * TIRES C40 x 18 17 20 PR
- * PRESSURE RANGE AT 95 OR 96 PSI (6.68 OR 6.75 KG/SC CM)

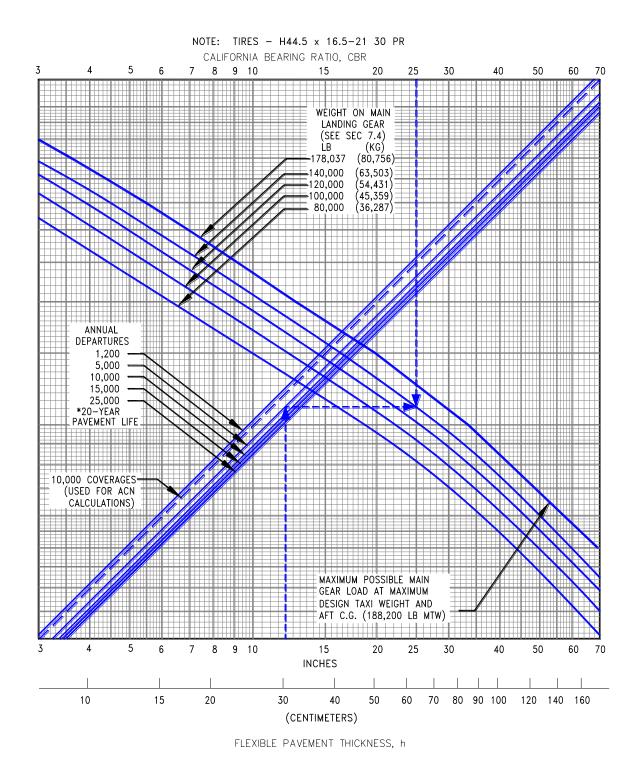


FLEXIBLE PAVEMENT THICKNESS, h

7.5.4 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-200 ADV at 120,000 to 128,600 LB (54,431 to 58,332 KG) MTW

NOTES:

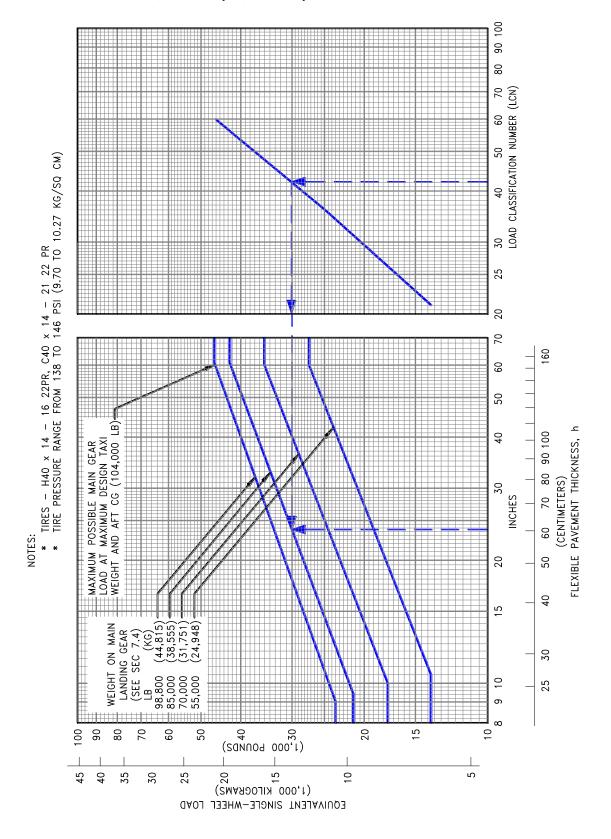

- * TIRES C40 x 18 17 20 PR
- * PRESSURE RANGE AT 95 OR 96 PSI (6.68 OR 6.75 KG/SC CM)


7-31

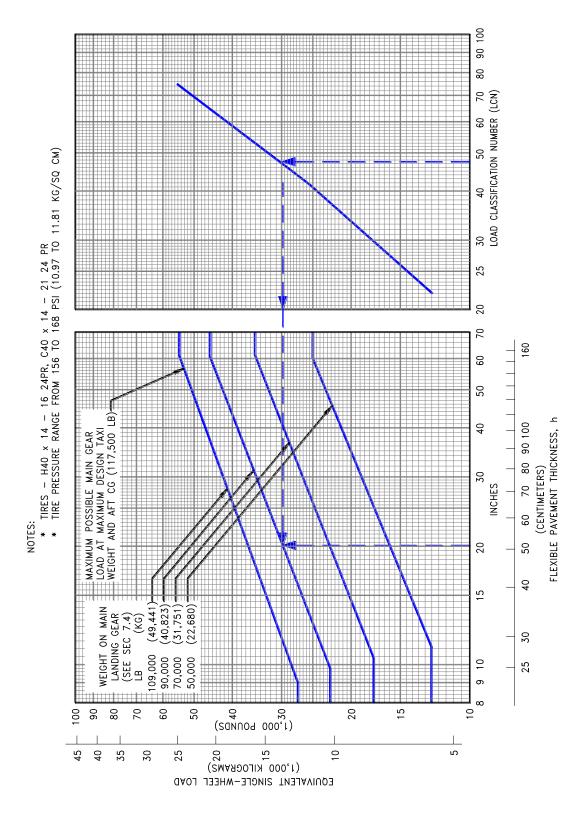
7.5.5 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-300, -400, -500

NOTE: * TIRES - H40 x 14.5 - 19 24 PR, 26 PR, H42 x 16-19 24 PR, 26 PR

7.5.6 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method (S-77-1) and FAA Design Method: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737 BBJ, 737 BBJ2

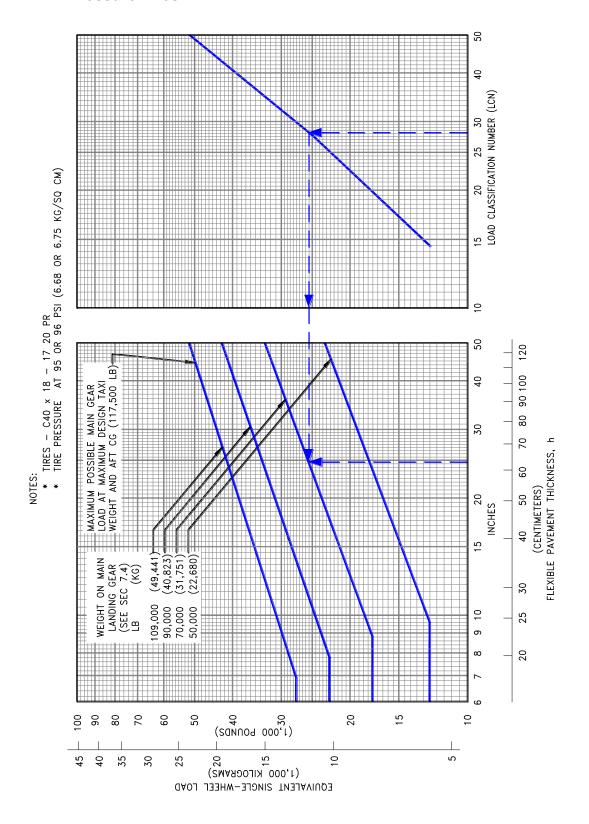

7.6 FLEXIBLE PAVEMENT REQUIREMENTS - LCN CONVERSION

To determine the airplane weight that can be accommodated on a particular flexible pavement, both the Load Classification Number (LCN) of the pavement and the thickness must be known.

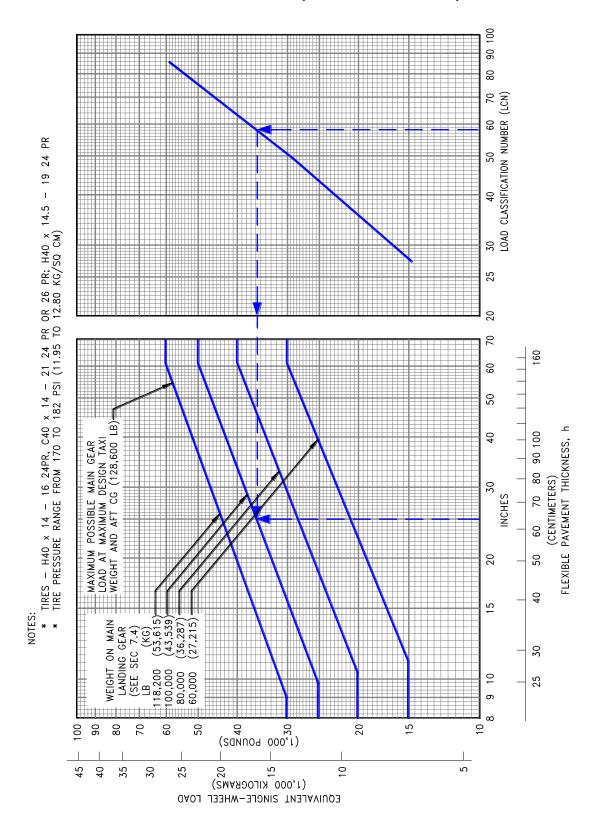

In the example shown on the next page, flexible pavement thickness is shown at 23.75 in. with an LCN of 42. For these conditions, the apparent maximum allowable weight permissible on the main landing gear is 85,000 lb for an airplane with 138 to 146-psi main gear tires. Similar examples are shown in succeeding charts.

Note: If the resultant aircraft LCN is not more that 10% above the published pavement LCN, the bearing strength of the pavement can be considered sufficient for unlimited use by the airplane. The figure 10% has been chosen as representing the lowest degree of variation in LCN that is significant (reference: ICAO Aerodrome Manual, Part 2, "Aerodrome Physical Characteristics," Chapter 4, Paragraph 4.1.5.7v, 2nd Edition dated 1965).

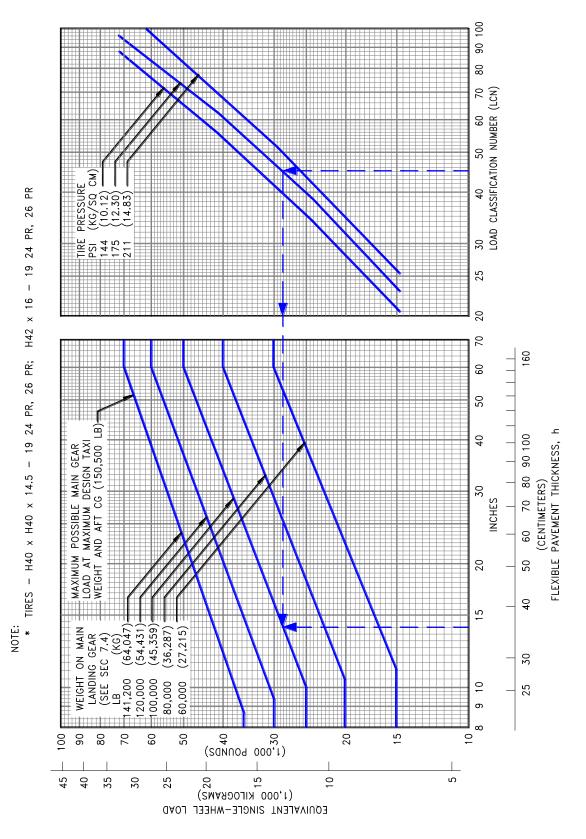
7.6.1 Flexible Pavement Requirements - LCN Method: Model 737-100, -200 at 140,000 LB (47,174 KG) MTW



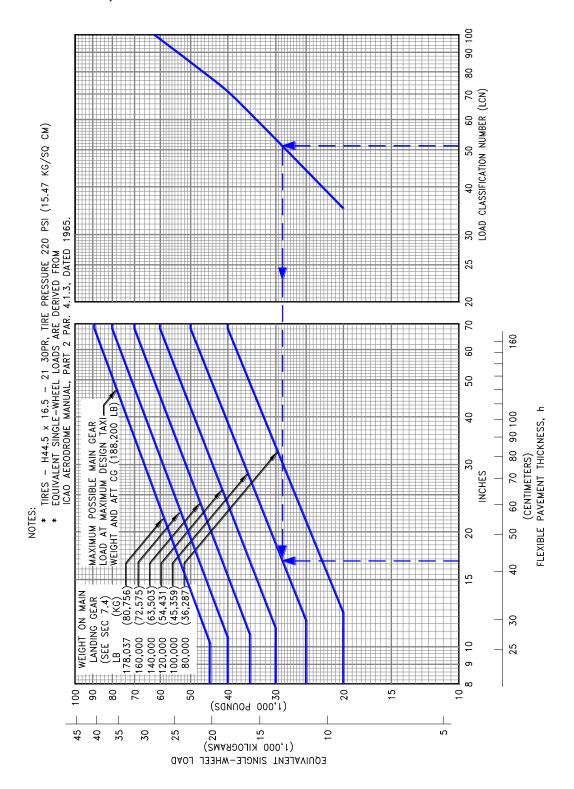
7.6.2 Flexible Pavement Requirements - LCN Method: Model 737-100, -200, -200 ADV at 110,000 to 117,500 LB (49,895 to 53,297 KG) MTW


7-36

7.6.3 Flexible Pavement Requirements - LCN Method: Model 737-200 ADV at 116,000 to 117,500 LB (52,617 to 53,297 KG) MTW, Low Pressure Tires

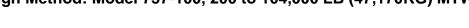


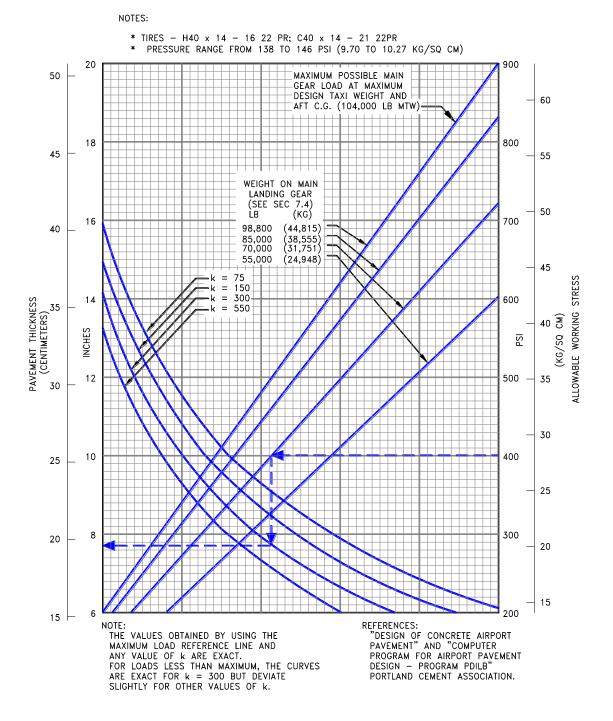
7-37


7.6.4 Flexible Pavement Requirements - LCN Method: Model 737-200 ADV at 120,000 to 128,600 LB (54,431 to 58,332 KG) MTW

7.6.5 Flexible Pavement Requirements - LCN Method: Model 737-300, -400, -500

7.6.6 Flexible Pavement Requirements - LCN Method: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737 BBJ, 737 BBJ2

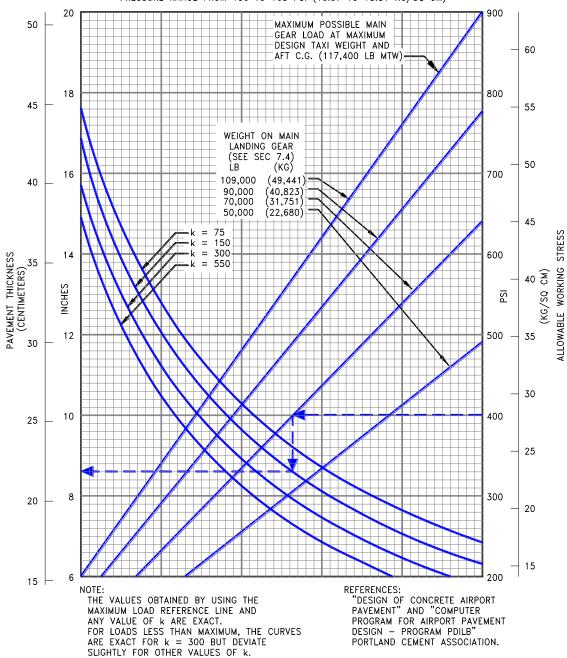

7.7 RIGID PAVEMENT REQUIREMENTS - PORTLAND CEMENT ASSOCIATION DESIGN METHOD


The Portland Cement Association method of calculating rigid pavement requirements is based on the computerized version of "Design of Concrete Airport Pavement" (Portland Cement Association, 1965) as described in XP6705-2, "Computer Program for Airport Pavement Design" by Robert G. Packard, Portland Cement Association, 1968.

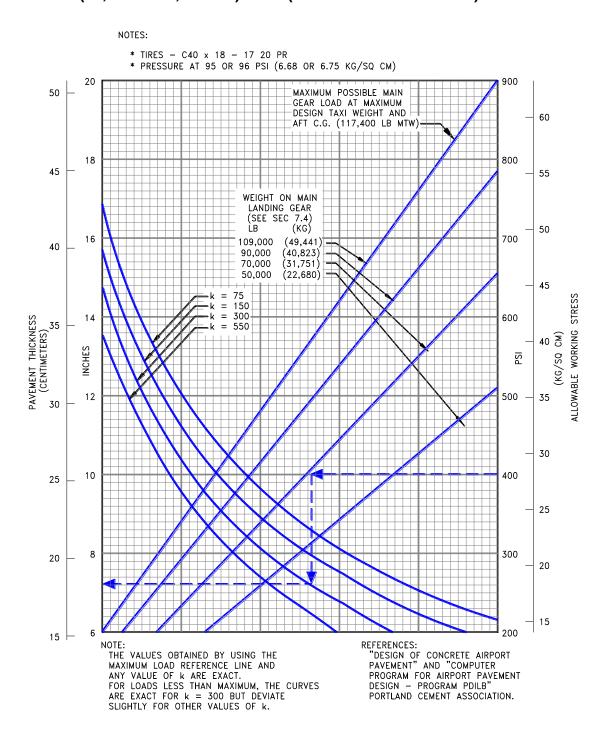
The following rigid pavement design chart presents the data for five incremental main gear loads at the minimum tire pressure required at the maximum design taxi weight.

In the example shown on the next page, for an allowable working stress of 400 psi, a main gear load of 70,000 lb, and a subgrade strength (k) of 300, the required rigid pavement thickness is 7.7 in. Similar examples are shown in succeeding charts.

7.7.1 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-100, 200 to 104,000 LB (47,170KG) MTW

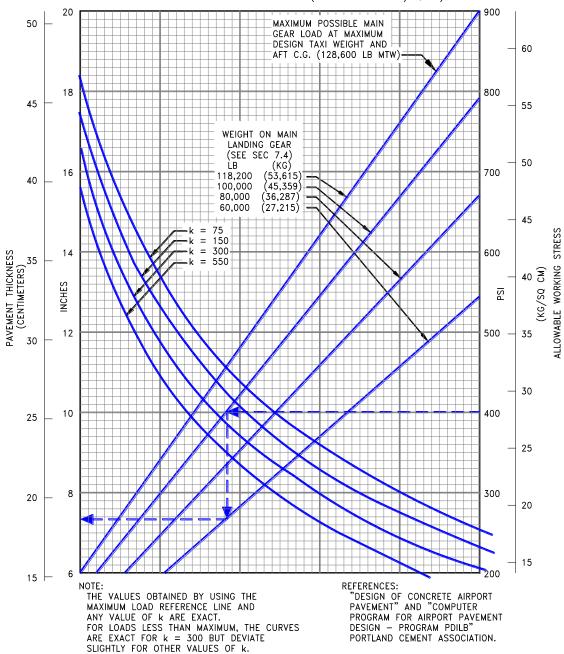


7.7.2 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-100, -200 Advanced 737-200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW



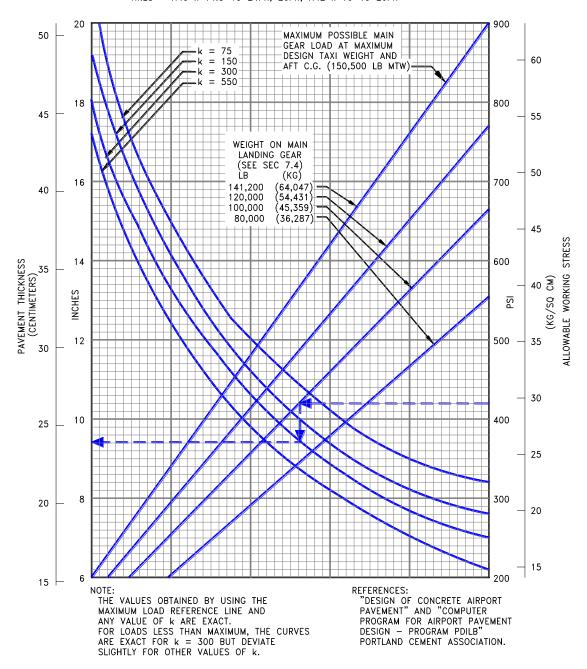
- * TIRES H40 x 14 16 24 PR; C40 x 14 21 24PR
- * PRESSURE RANGE FROM 156 TO 168 PSI (10.97 TO 18.81 KG/SQ CM)

D6-58325-6


7.7.3 Rigid Pavement Requirements - Portland Cement Association Design Method: Model ADV 737-200 at 116,000 to 117,500 LB (52,610 to 53,290 KG) MTW (LOW PRESSURE TIRES)

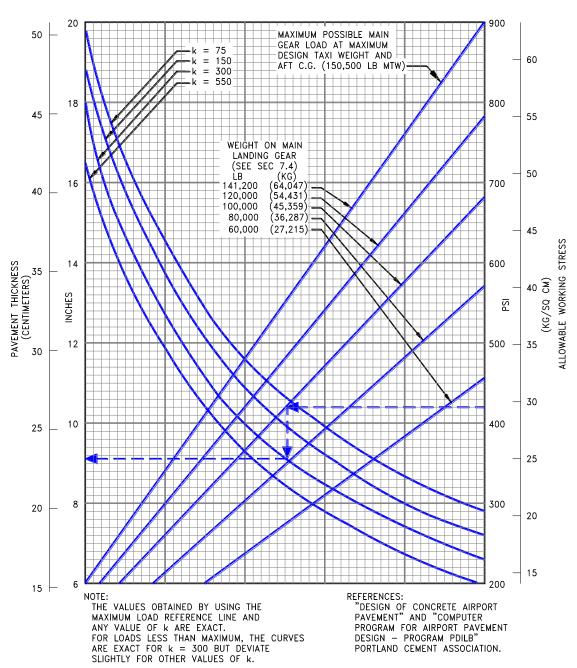
7.7.4 Rigid Pavement Requirements - Portland Cement Association Design Method: Model ADV 737-200 at 120,000 to 128,000 LB (54,430 to 58,330 KG) MTW

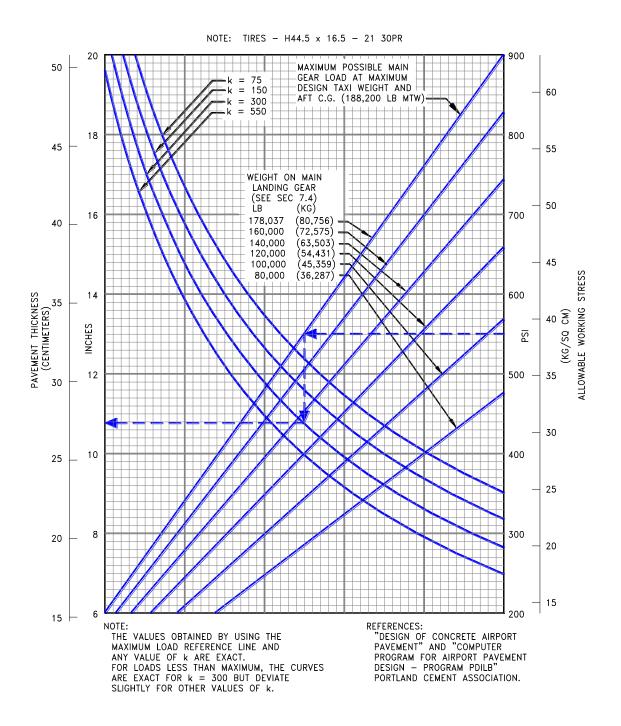
NOTES:

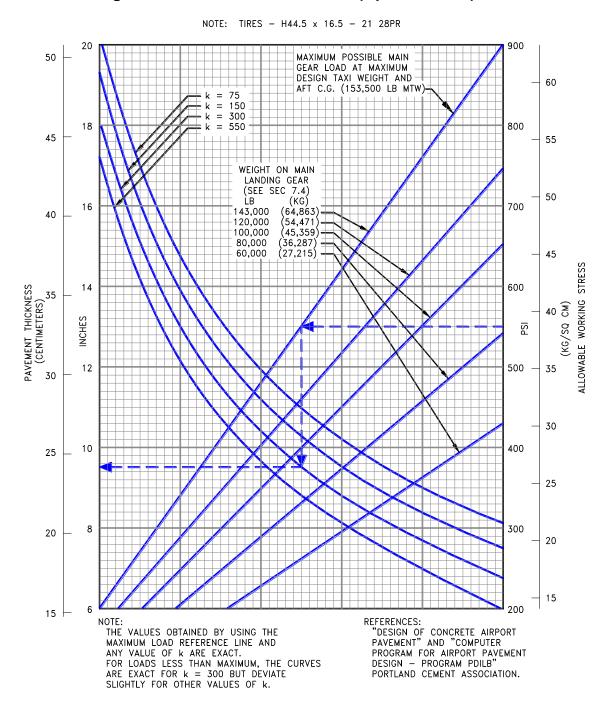

- * TIRES H40 x 14-16 24PR; C40 x 14- 1 24PR OR 26PR; H40 x 14.5-19 24PR
- * PRESSURE RANGE FROM 170 TO 182 PSI (11.95 TO 12.80 KG/SQ CM)

7.7.5 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-300, -400, -500

NOTES:


* TIRES - H40 x 14.5-19 24PR, 26PR; H42 x 16-19 26PR


7.7.6 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-300, -400, -500 (Low Pressure Tires)


* TIRES - H42 x 16-19 26PR

7.7.7 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737 BBJ, 737 BBJ2

7.7.8 Rigid Pavement Requirements - Portland Cement Association Design Method: Model 737-600, -700 (Optional Tires)

7.8 RIGID PAVEMENT REQUIREMENTS - LCN CONVERSION

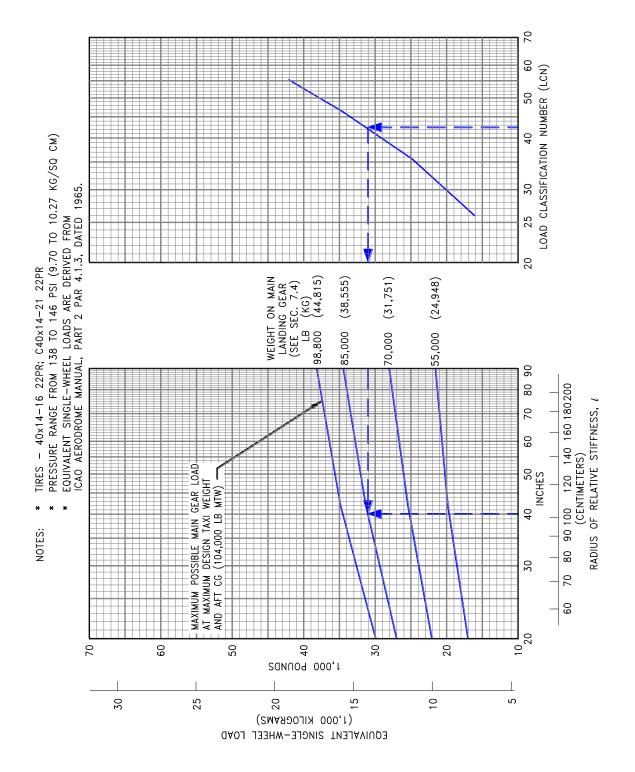
To determine the airplane weight that can be accommodated on a particular rigid pavement, both the LCN of the pavement and the radius of relative stiffness (ℓ) of the pavement must be known.

In the examples shown in Section 7.8.2 for a rigid pavement with a radius of relative stiffness of 47 with an LCN of 91, and 7.8.3 for a rigid pavement with a radius of relative stiffness of 47 with an LCN of 87, the apparent maximum allowable weight permissible on the main landing gear is 600,000 lb (272,155 kg) for an airplane with 221-psi (15.54 kg/cm²) main tires.

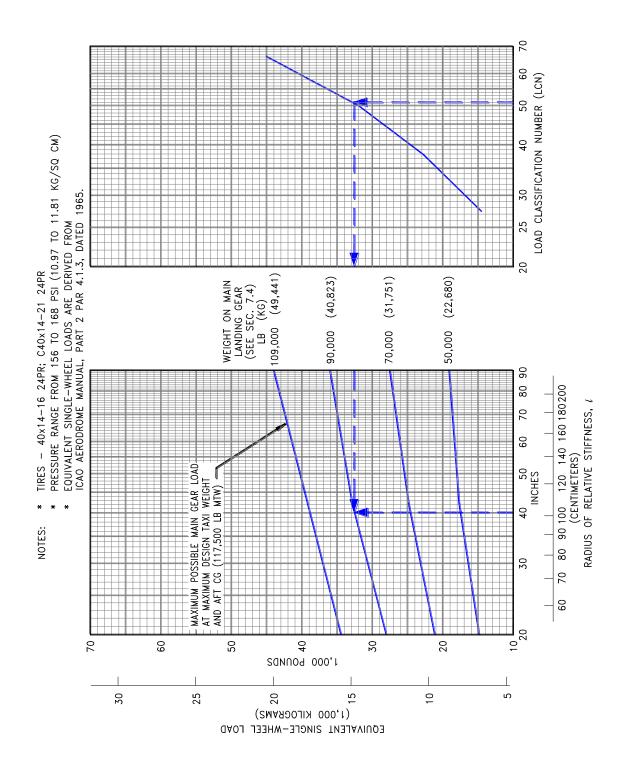
Note: If the resultant aircraft LCN is not more that 10% above the published pavement LCN, the bearing strength of the pavement can be considered sufficient for unlimited use by the airplane. The figure 10% has been chosen as representing the lowest degree of variation in LCN that is significant (reference: ICAO Aerodrome Design Manual, Part 2, "Aerodrome Physical Characteristics," Chapter 4, Paragraph 4.1.5.7v, 2nd Edition dated 1965).

7-50

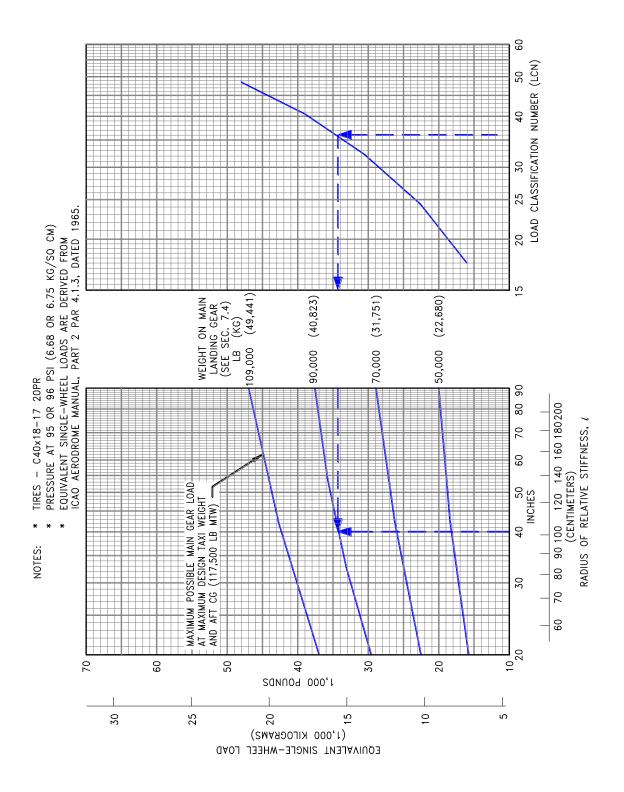
7.8.1 Radius of Relative Stiffness (Reference: Portland Cement Association)

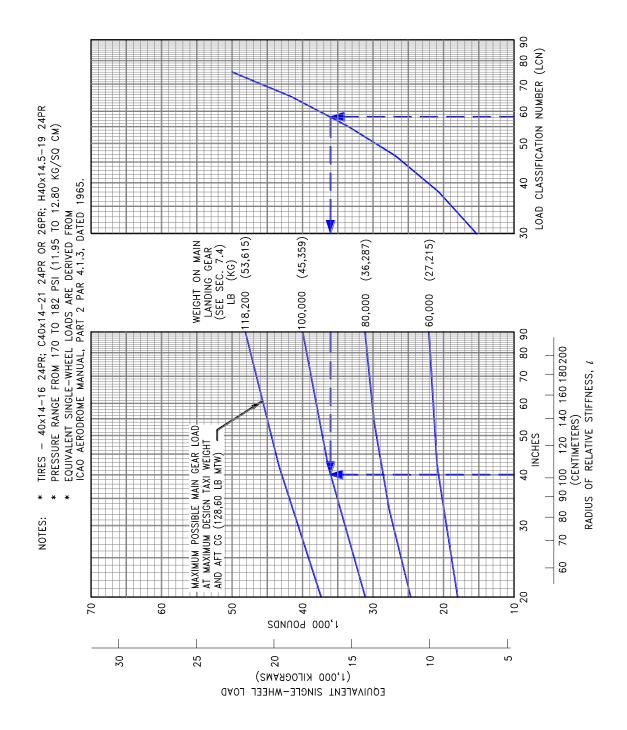

RADIUS OF RELATIVE STIFFNESS (/) VALUES IN INCHES

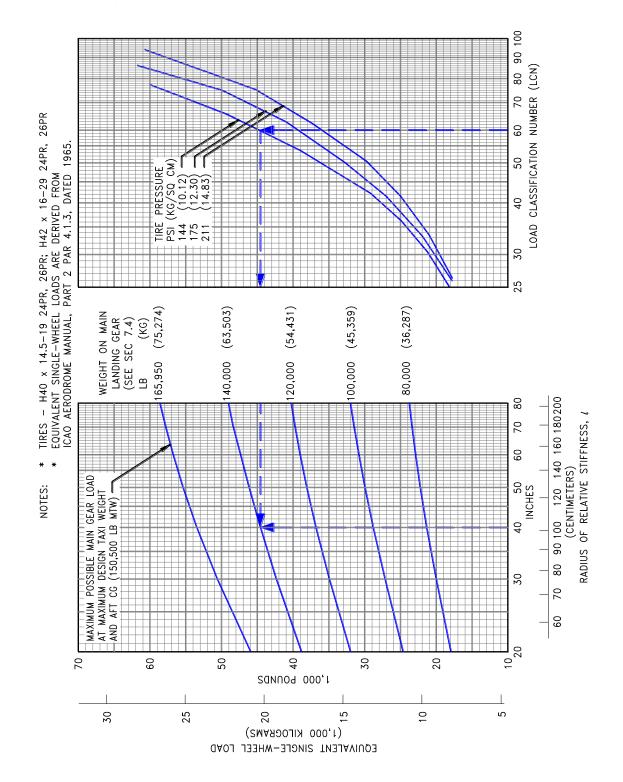
$$\ell = \sqrt[4]{\frac{Ed^3}{12(1-\mu^2)k}} = 24.1652\sqrt[4]{\frac{d^3}{k}}$$

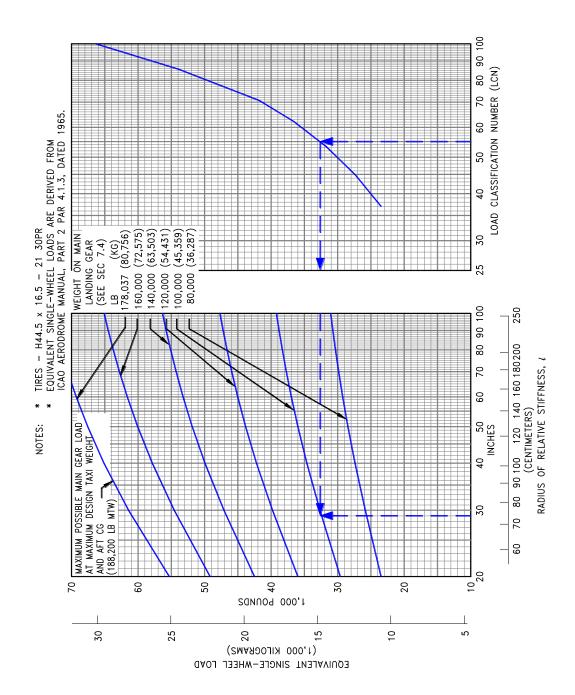

WHERE: E = YOUNG'S MODULUS OF ELASTICITY = 4 x 10 6 psi k = SUBGRADE MODULUS, LB PER CU IN d = RIGID PAVEMENT THICKNESS, IN μ = POISSON'S RATIO = 0.15

d	k = 75	k = 100	k = 150	k = 200	k = 250	k = 300	k = 350	k = 400	k = 500	k = 550
6.0	31.48	29.29	26.47	24.63	23.30	22.26	21.42	20.71	19.59	19.13
6.5	33.42	31.10	28.11	26.16	24.74	23.63	22.74	21.99	20.80	20.31
7.0	35.33	32.88	29.71	27.65	26.15	24.99	24.04	23.25	21.99	21.47
7.5	37.21	34.63	31.29	29.12	27.54	26.31	25.32	24.49	23.16	22.61
8.0	39.06	36.35	32.84	30.56	28.91	27.62	26.57	25.70	24.31	23.73
8.5	40.87	38.04	34.37	31.99	30.25	28.90	27.81	26.90	25.44	24.84
9.0	42.66	39.70	35.88	33.39	31.57	30.17	29.03	28.07	26.55	25.93
9.5	44.43	41.35	37.36	34.77	32.88	31.42	30.23	29.24	27.65	27.00
10.0	46.17	42.97	38.83	36.13	34.17	32.65	31.41	30.38	28.73	28.06
10.5	47.89	44.57	40.27	37.48	35.44	33.87	32.58	31.52	29.81	29.10
11.0	49.59	46.15	41.70	38.81	36.70	35.07	33.74	32.63	30.86	30.14
11.5	51.27	47.72	43.12	40.12	37.95	36.26	34.89	33.74	31.91	31.16
12.0	52.94	49.26	44.51	41.43	39.18	37.43	36.02	34.83	32.94	32.17
12.5	54.58	50.80	45.90	42.71	40.40	38.60	37.14	35.92	33.97	33.17
13.0	56.21	52.31	47.27	43.99	41.60	39.75	38.25	36.99	34.98	34.16
13.5	57.83	53.81	48.63	45.25	42.80	40.89	39.34	38.05	35.99	35.14
14.0	59.43	55.30	49.97	46.50	43.98	42.02	40.43	39.10	36.98	36.11
14.5	61.01	56.78	51.30	47.74	45.15	43.14	41.51	40.15	37.97	37.07
15.0	62.58	58.24	52.62	48.97	46.32	44.25	42.58	41.18	38.95	38.03
15.5	64.14	59.69	53.93	50.19	47.47	45.35	43.64	42.21	39.92	38.98
16.0	65.69	61.13	55.23	51.40	48.61	46.45	44.69	43.22	40.88	39.92
16.5	67.22	62.55	56.52	52.60	49.75	47.53	45.73	44.23	41.83	40.85
17.0	68.74	63.97	57.80	53.79	50.87	48.61	46.77	45.23	42.78	41.77
17.5	70.25	65.38	59.07	54.97	51.99	49.68	47.80	46.23	43.72	42.69
18.0	71.75	66.77	60.34	56.15	53.10	50.74	48.82	47.22	44.65	43.60
19.0	74.72	69.54	62.83	58.47	55.30	52.84	50.84	49.17	46.50	45.41
20.0	77.65	72.26	65.30	60.77	57.47	54.91	52.83	51.10	48.33	47.19
21.0	80.55	74.96	67.73	63.03	59.61	56.95	54.80	53.00	50.13	48.95
22.0	83.41	77.62	70.14	65.27	61.73	58.98	56.75	54.88	51.91	50.68
23.0	86.23	80.25	72.51	67.48	63.82	60.98	58.67	56.74	53.67	52.40
24.0	89.03	82.85	74.86	69.67	65.89	62.95	60.57	58.58	55.41	54.10
25.0	91.80	85.43	77.19	71.84	67.94	64.91	62.46	60.41	57.13	55.78


7.8.2 Rigid Pavement Requirements - LCN Conversion: Model 737-100, - 200 to 104,000 LB (47,170 KG) MTW

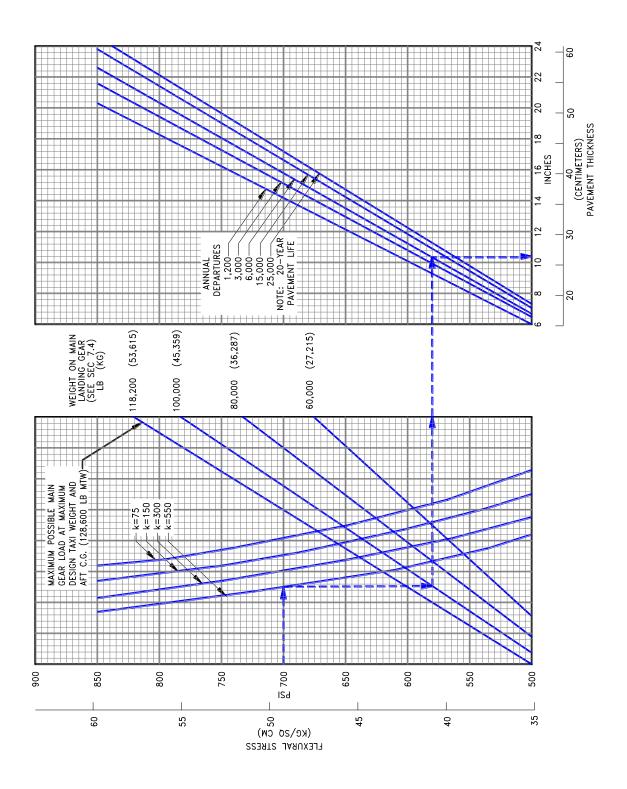

7.8.3 Rigid Pavement Requirements - LCN Conversion: Model 737-100, 200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW


7.8.4 Rigid Pavement Requirements - LCN Conversion: Model ADV 737-200 at 116,000 to 117,500 LB (52,610 to 53,290 KG) MTW (Low Pressure Tires)

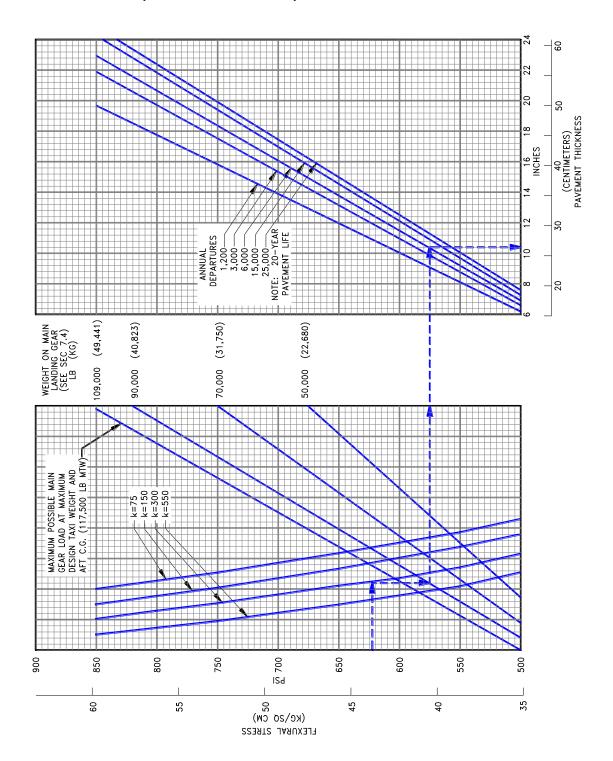

7.8.5 Rigid Pavement Requirements - LCN Conversion: Model ADV 737-200 at 120,000 to 128,600 LB (54,430 to 58,330 KG) MTW

7.8.6 Rigid Pavement Requirements - LCN Conversion: Model 737-300, -400, -500

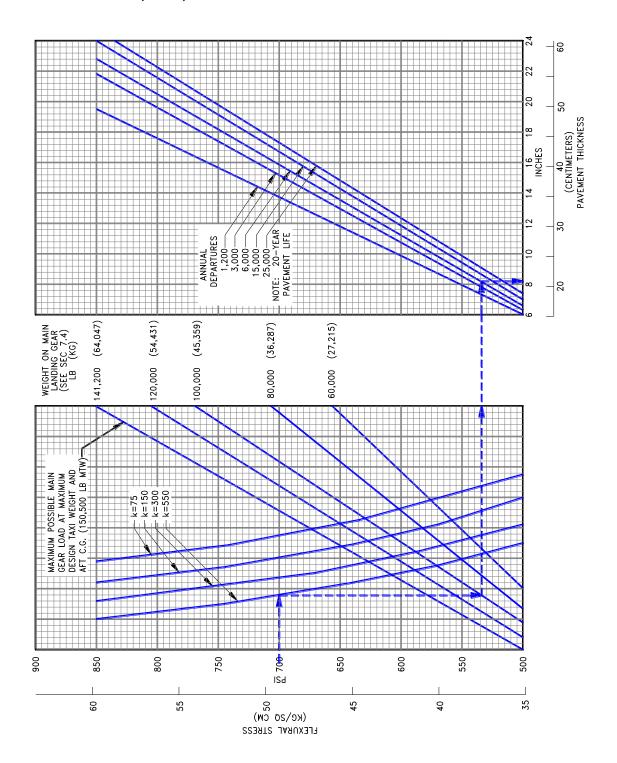
7.8.7 Rigid Pavement Requirements - LCN Conversion: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737 BBJ, 737 BBJ2

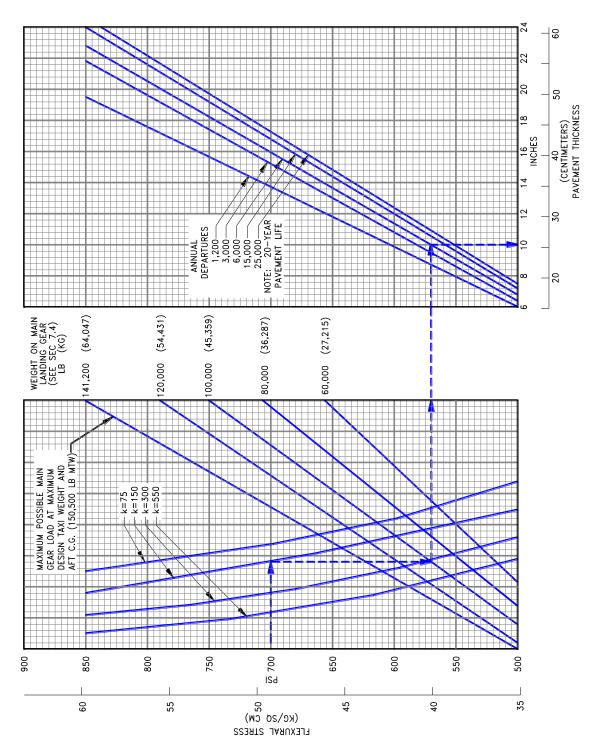

7-57

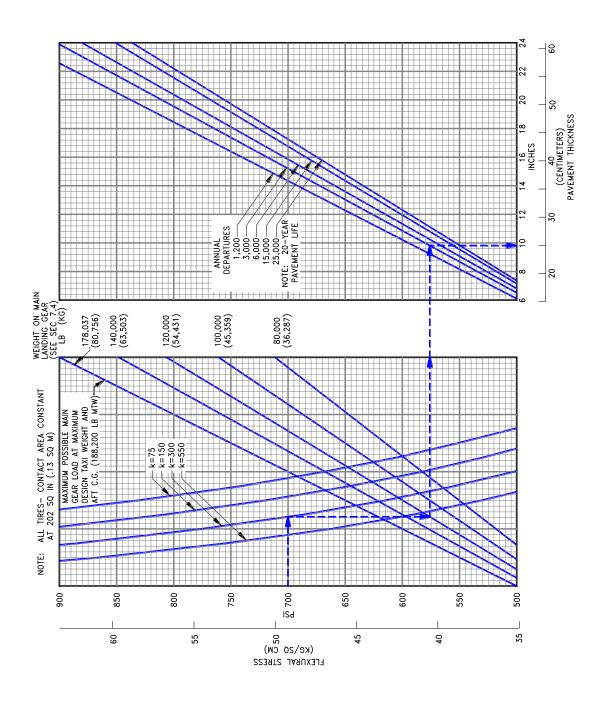
7.9 RIGID PAVEMENT REQUIREMENTS - FAA DESIGN METHOD

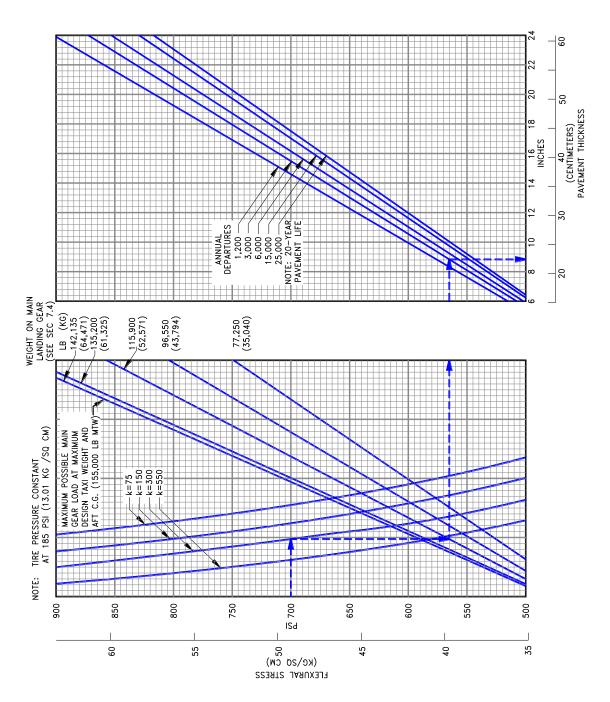

The following rigid pavement design charts present data on five incremental main gear loads at the minimum tire pressure required at the maximum design taxi weight.

In the example shown in the next page, the pavement flexural stress is shown at 700 psi, the subgrade strength is shown at k = 550, and the annual departure level is 6,000. For these conditions, the required rigid pavement thickness for an airplane with main gear load of 100,000 pounds is 10.4 inches. Similar examples are shown in succeeding charts.


7.9.1 Rigid Pavement Requirements – FAA Design Method: Model 737-100, -200


7.9.2 Rigid Pavement Requirements – FAA Design Method: Model ADV 737-200 (Low Pressure Tires)


7.9.3 Rigid Pavement Requirements – FAA Design Method: Model 737-300, -400, -500


7.9.4 Rigid Pavement Requirements – FAA Design Method: Model 737-300, -400, -500 (Low Pressure Tires)

7.9.5 Rigid Pavement Requirements – FAA Design Method: Model 737-600, -700, -800, -900, -900ER With and Without Winglets, 737 BBJ, 737 BBJ2

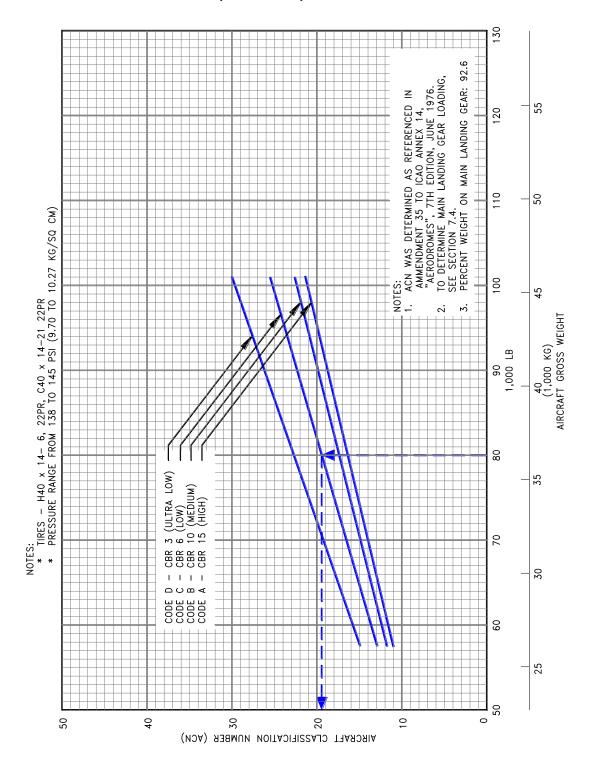
7.9.6 Rigid Pavement Requirements – FAA Design Method: Model 737-600, -700 (Optional Tires)

7.10 ACN/PCN REPORTING SYSTEM - FLEXIBLE AND RIGID PAVEMENTS

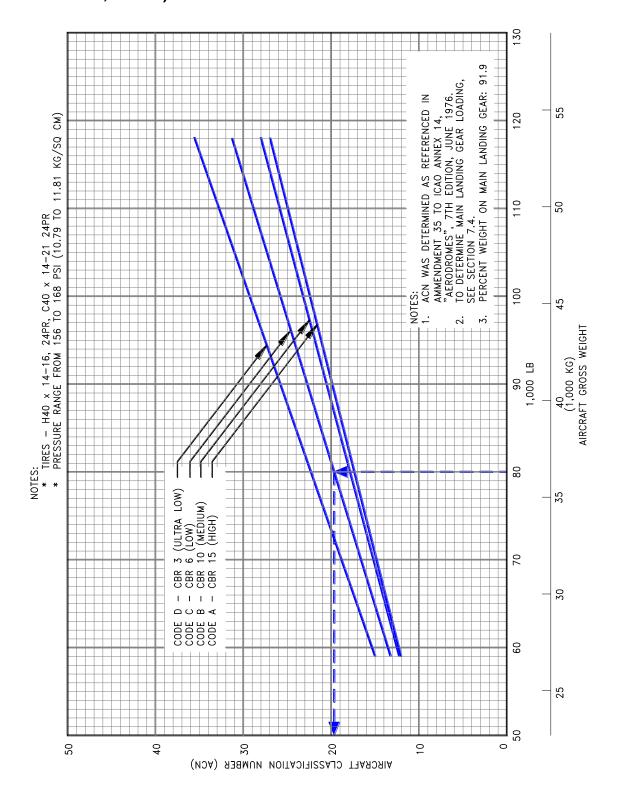
To determine the ACN of an aircraft on flexible or rigid pavement, both the aircraft gross weight and the subgrade strength category must be known. In the chart in Section 7.10.1, for an aircraft with gross weight of 80,000 lb and low subgrade strength, the flexible pavement ACN is 19.5. In Section 7.10.20, for the same gross weight and subgrade strength, the rigid pavement ACN is 20.6.

Note: An aircraft with an ACN equal to or less that the reported PCN can operate on that pavement subject to any limitations on the tire pressure.

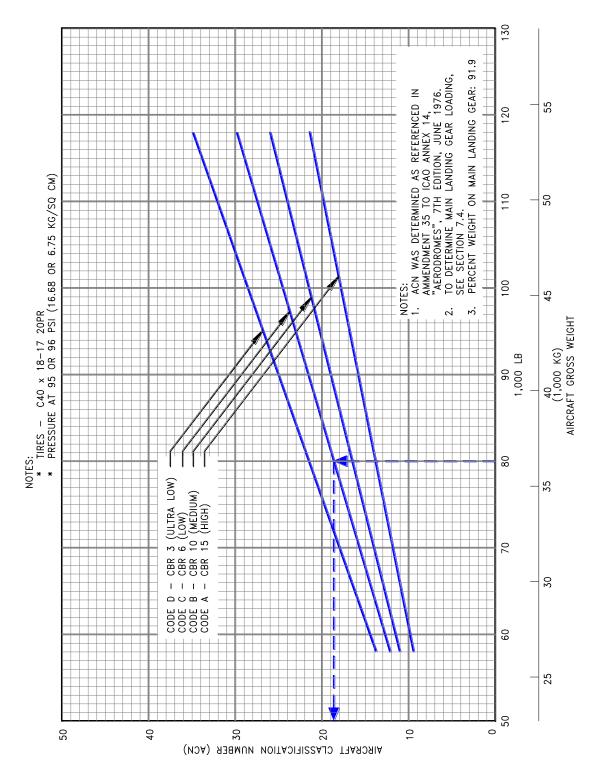
The following table provides ACN data in tabular format similar to the one used by ICAO in the "Aerodrome Design Manual Part 3, Pavements". If the ACN for an intermediate weight between maximum taxi weight and the empty weight of the aircraft is required, Figures 7.10.1 through 7.10.38 should be consulted.

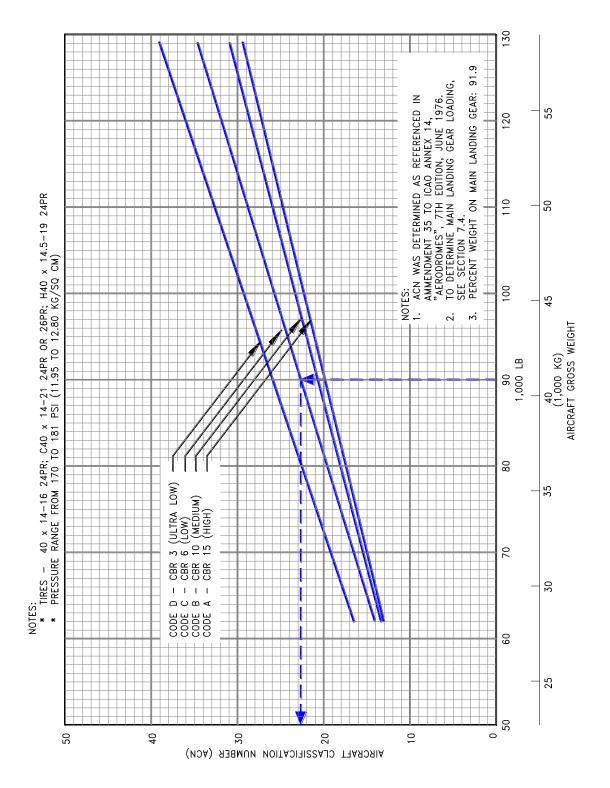

				ACN FOR RIGID PAVEMENT SUBGRADES – MN/m³				ACN FOR FLEXIBLE PAVEMENT SUBGRADES – CBR			
AIRCRAFT TYPE	MAXIMUM TAXI WEIGHT MINIMUM WEIGHT (1) LB (KG)	LOAD ON ONE MAIN GEAR LEG (%)	TIRE PRESSURE PSI (MPa)	HIGH 150	MEDIUM 80	LOW 40	ULTRA LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA LOW 3
737-100	111,000 (50,349)	45.95	157 (1.08)	27	29	31	32	25	26	29	33
	62,000 (28,123)			14	15	16	17	13	13	14	16
737-200	128,600 (58,332)	45.96	182 (1.25)	34	36	38	39	30	31	35	39
	65,300 (29,620)			15	16	17	18	14	14	15	17
737-300	140,000 (63,503)	45.43	201 (1.38)	38	40	42	43	33	35	39	43
	72,540 (32,904)			17	18	19	20	15	16	17	20
737-400	150,500 (68,266)	46.91	185 (1.27)	42	44	47	48	37	39	44	48
	74,170 (33,643)			18	19	20	21	16	17	18	21
737-500	134,000 (60,781)	46.12	194 (1.33)	37	38	40	42	32	33	37	41
	69,030 (31,311)			17	18	19	20	15	15	16	19
737-600	145,000 (65,771)	45.83	182 (1.25)	37	39	41	43	33	34	38	44
	80,200 (36,378)		, ,	19	19	21	22	17	17	19	21
737-600	144,000 (65,317)	45.83	168 (1.15)	36	38	40	42	33	34	38	43
	80,200 (36,378)		, ,	18	19	20	22	17	17	18	21
737-700	155,000 (70,307)	45.85	197 (1.36)	41	43	46	47	36	38	42	47
	83,000 (37,648)		(1122)	19	20	22	23	18	18	19	22
737-700	155,000 (70,307)	45.85	179 (1.23)	40	42	45	47	36	37	42	47
	83,000 (37,648)		(1.2)	20	21	22	23	18	18	19	22
737 BBJ	171,500 (77,790)	45.86	204 (1.41)	47	49	52	54	41	43	48	53
	100,000 (45,360)			25	26	28	29	22	23	24	28
737-800	174,700 (79,242)	46.79	204 (1.41)	49	52	54	56	43	45	50	55
	91,300 (41,413)		, ,	23	24	25	27	20	21	22	26
737 BBJ2	174,700(79,260)	46.79	204 (1.41)	49	52	54	56	42	45	50	55
	100,000(45,360)		. ,	24	26	28	30	22	23	25	29
737-900	174,700 (79,242)	46.79	204 (1.41)	49	52	54	56	43	45	50	55
	94,580 (42,901)		, , ,	24	25	27	28	21	22	23	27
737-900ER	188,200(85,366)	47.29	220 (1.52)	56	58	61	63	48	51	56	61
	98,495(44,676)			26	27	29	30	22	23	25	29

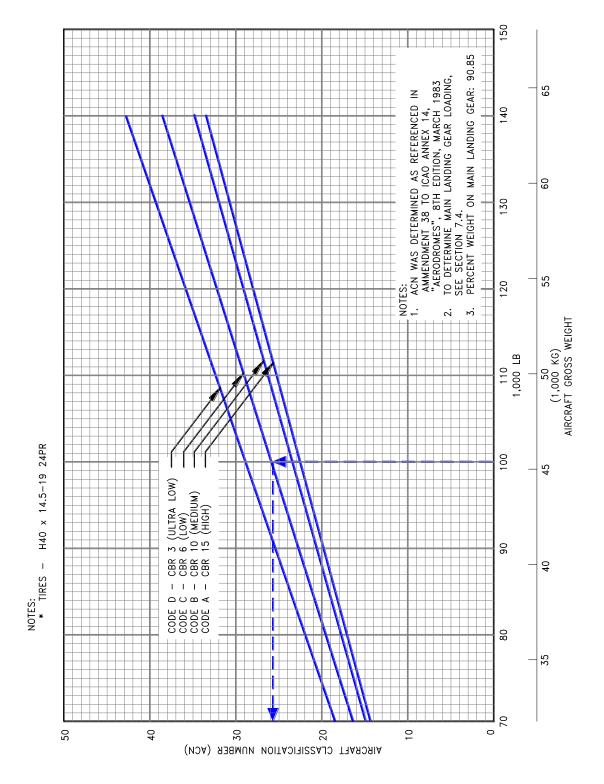
NOTE: VALUES FOR 737-700, -800, -900, -900ER ARE VALID FOR MODELS WITH AND WITHOUT WINGLETS.


D6-58325-6

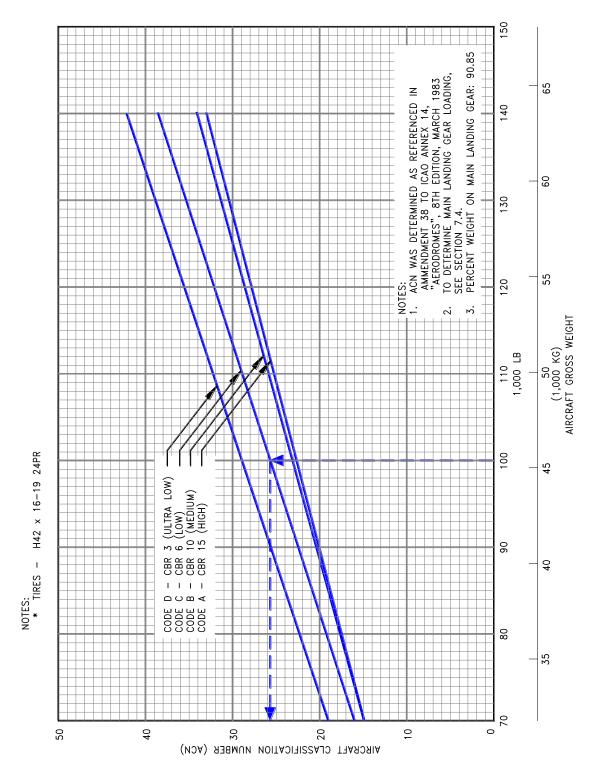
REV A September 2020 7-65


7.10.1 Aircraft Classification Number - Flexible Pavement: Model 737-100, -200 to 104,000 LB (47,170 KG) MTW

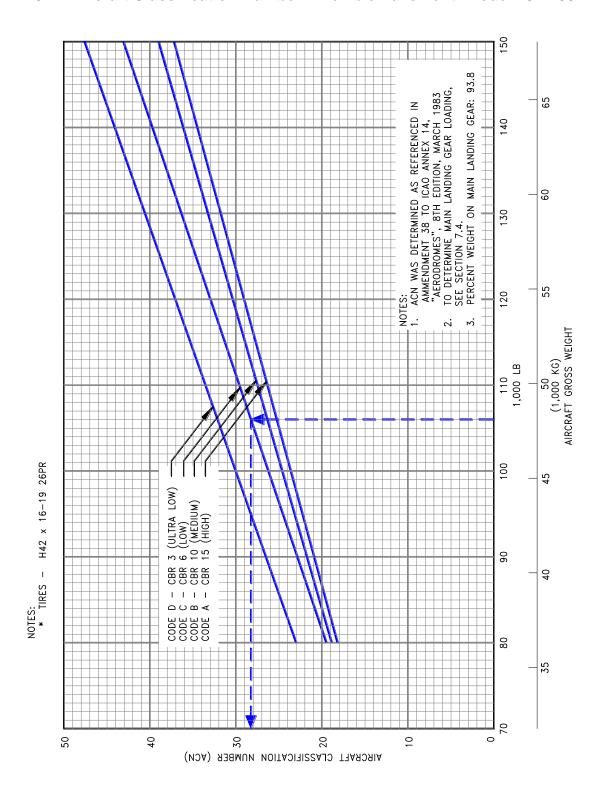

7.10.2 Aircraft Classification Number - Flexible Pavement: Model 737-100, -200, ADV 737-200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW


7.10.3 Aircraft Classification Number - Flexible Pavement: Model 737-100, 200, ADV 737-200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW (Low Pressure Tires)

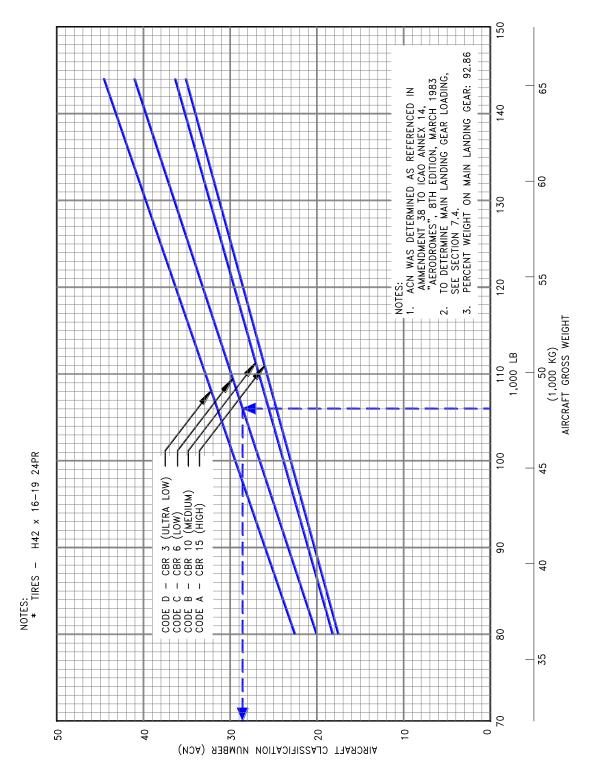
7.10.4 Aircraft Classification Number - Flexible Pavement: Model ADV 737-200 at 120,000 to 128,600 LB (54,300 to 58,330 KG) MTW

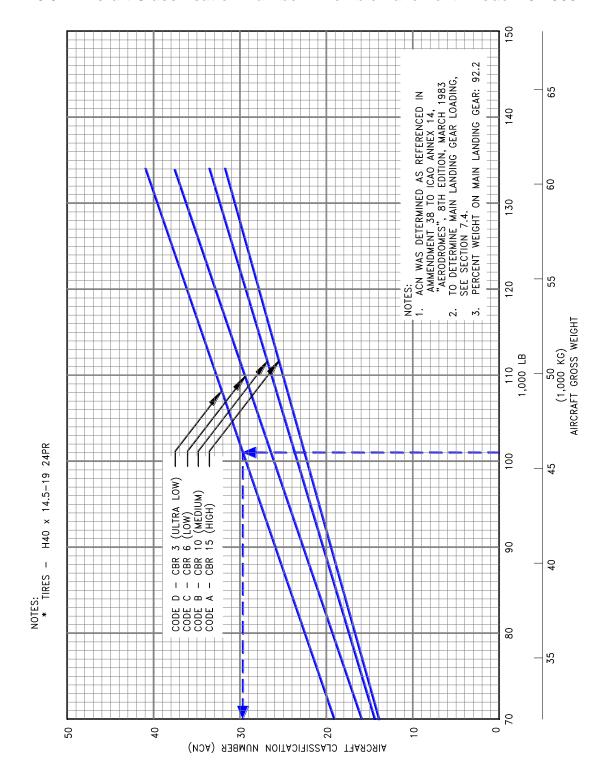


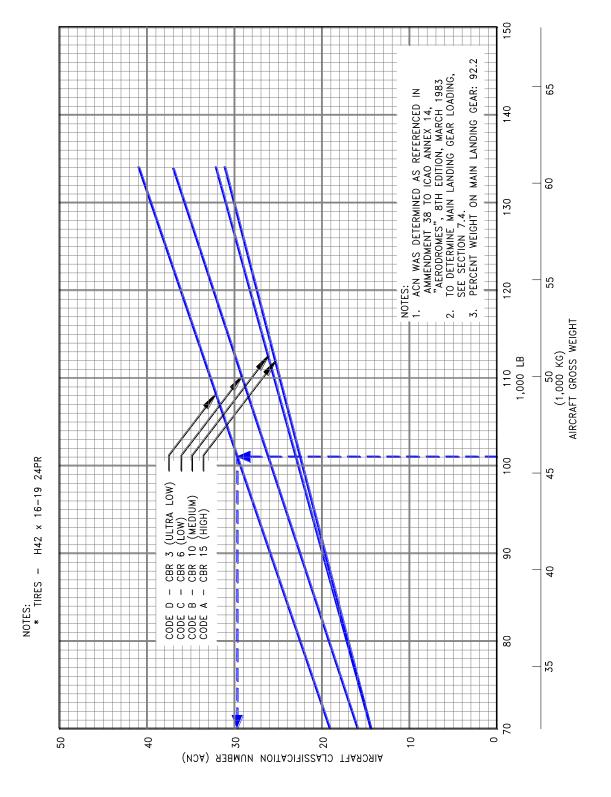
7.10.5 Aircraft Classification Number - Flexible Pavement: Model 737-300



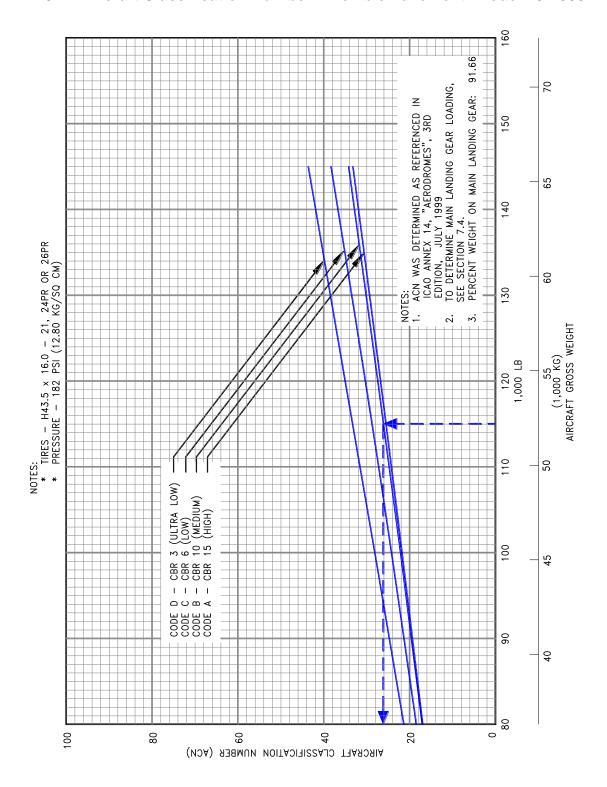
7-70


7.10.6 Aircraft Classification Number - Flexible Pavement: Model 737-300 (Low Pressure Tires)

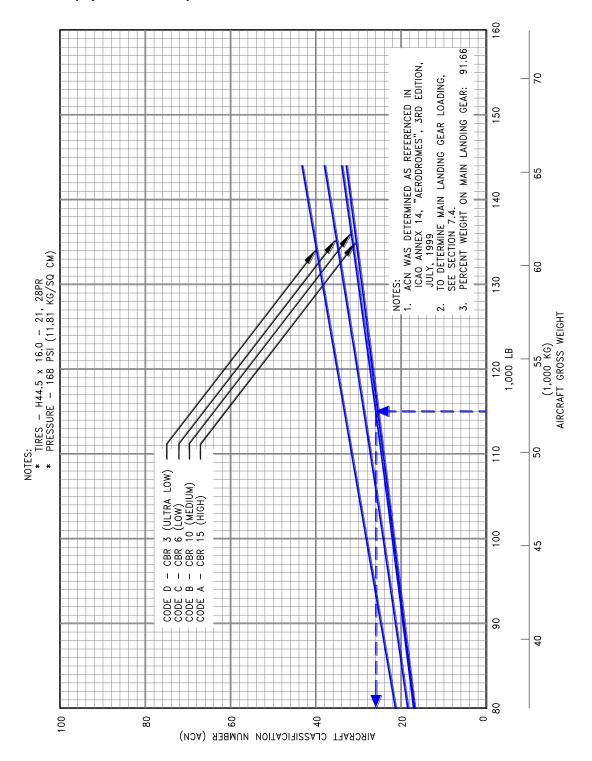

7.10.7 Aircraft Classification Number - Flexible Pavement: Model 737-400


7.10.8 Aircraft Classification Number - Flexible Pavement: Model 737-400 (Low Pressure Tires)

7.10.9 Aircraft Classification Number - Flexible Pavement: Model 737-500

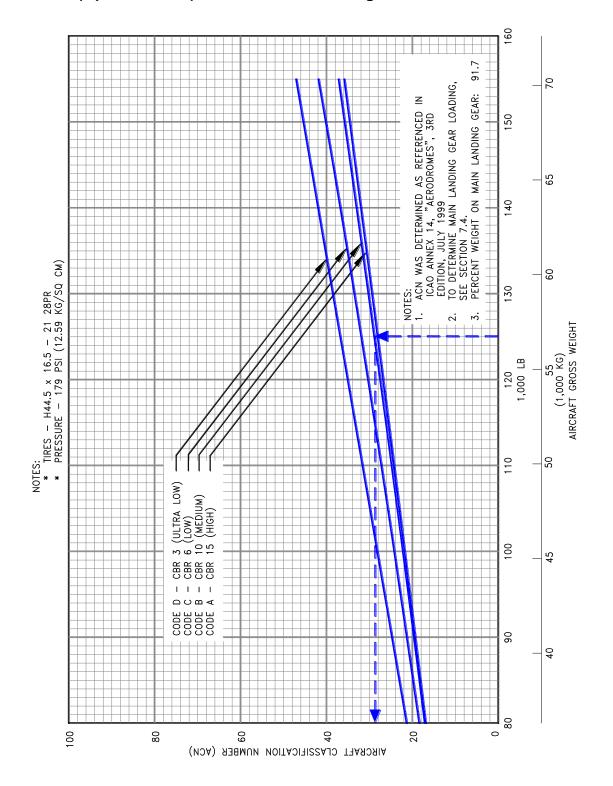


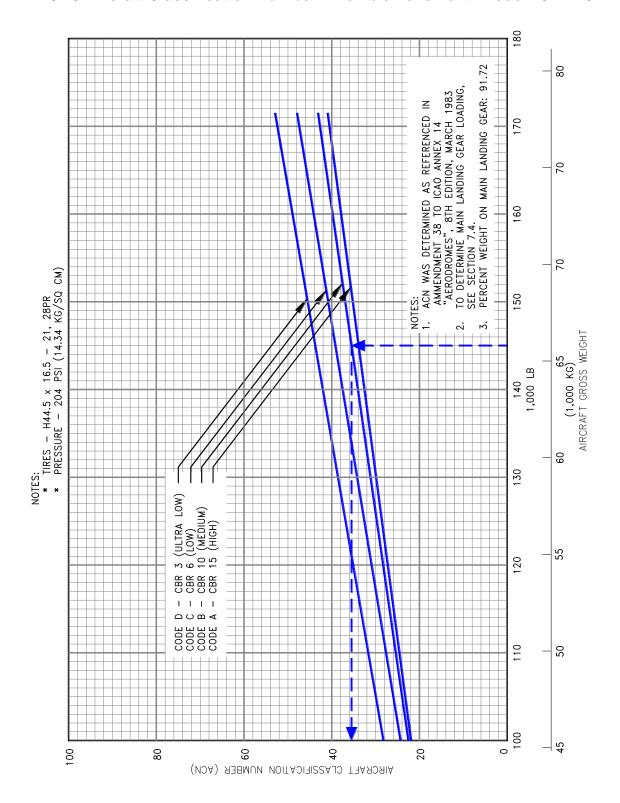
7.10.10 Aircraft Classification Number - Flexible Pavement: Model 737-500 (Low Pressure Tires)

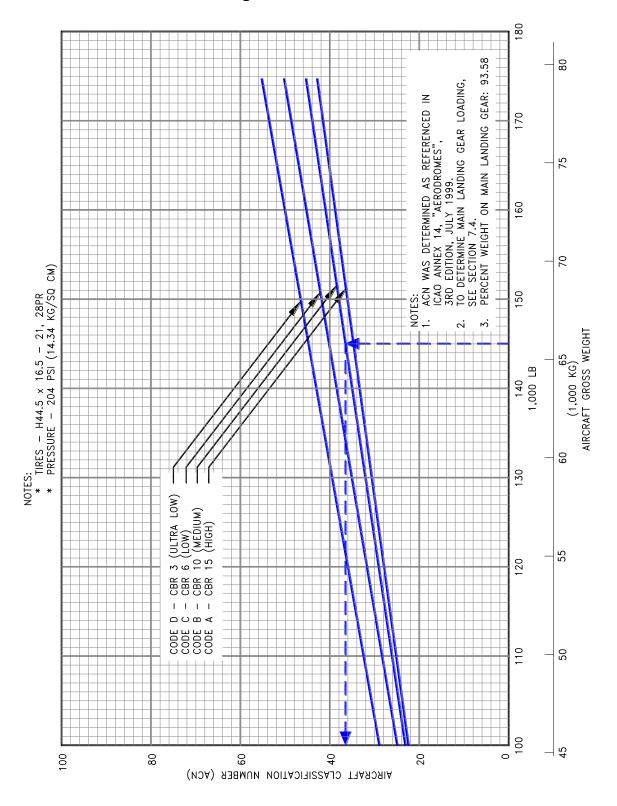


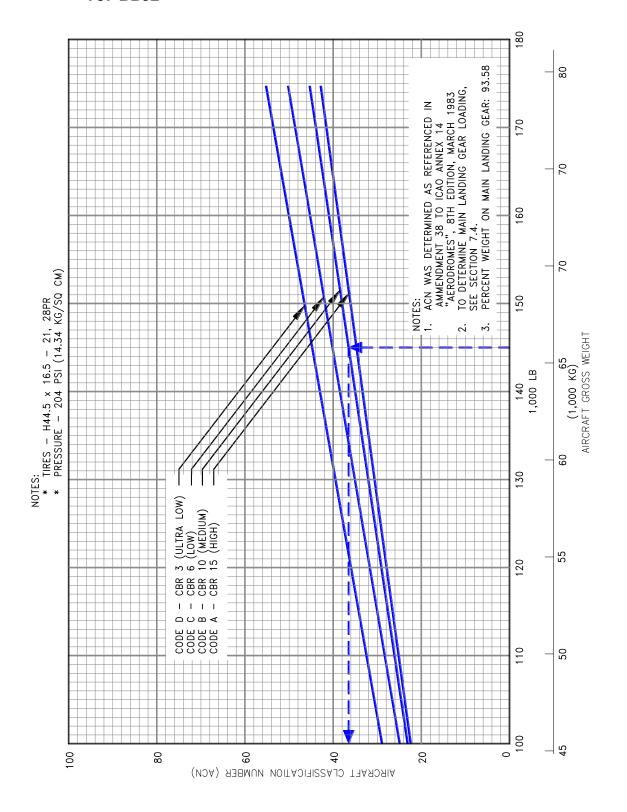
7-75

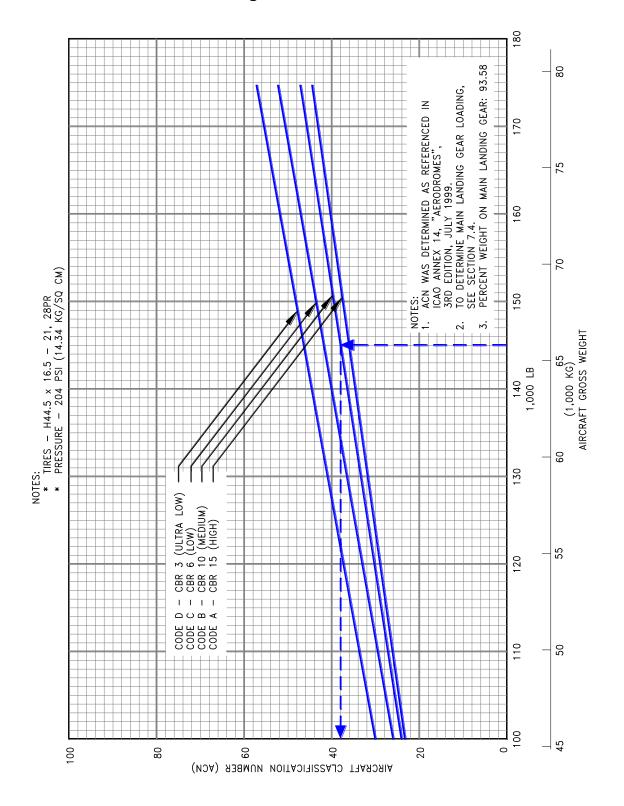

7.10.11 Aircraft Classification Number - Flexible Pavement: Model 737-600

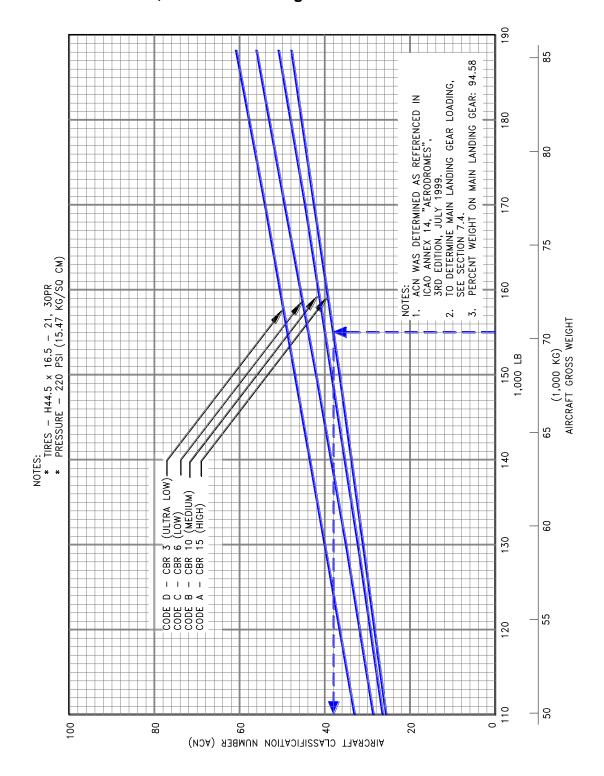

7.10.12 Aircraft Classification Number - Flexible Pavement: Model 737-600 (Optional Tires)

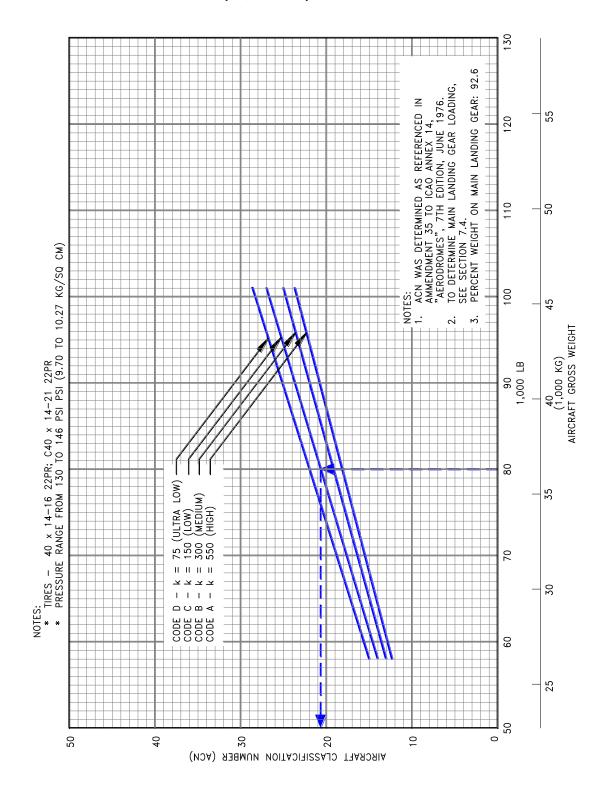

7.10.13 Aircraft Classification Number - Flexible Pavement: Model 737-700 With and Without Winglets

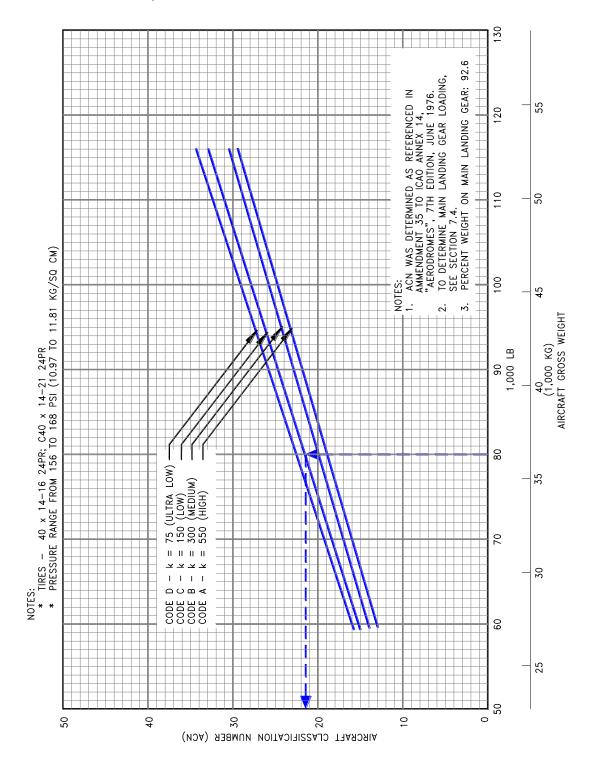

7.10.14 Aircraft Classification Number - Flexible Pavement: Model 737-700 (Optional Tires) With and Without Winglets

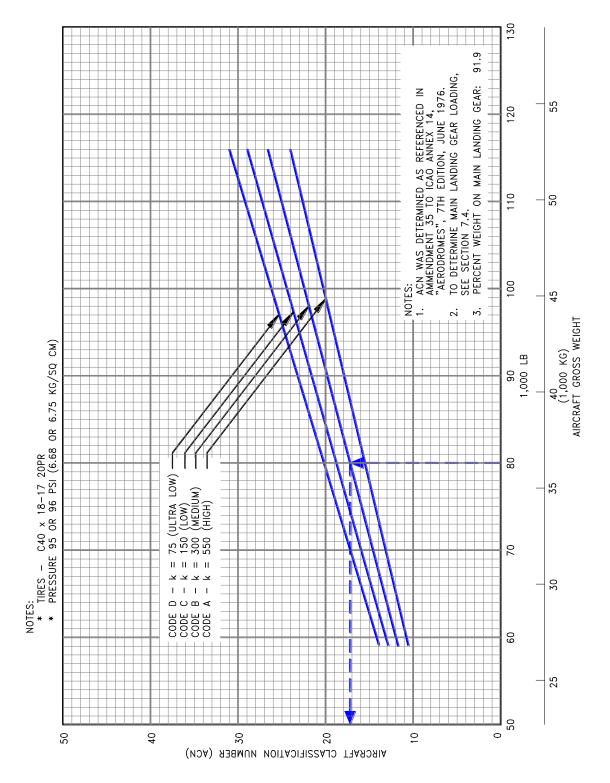

7.10.15 Aircraft Classification Number - Flexible Pavement: Model 737 BBJ

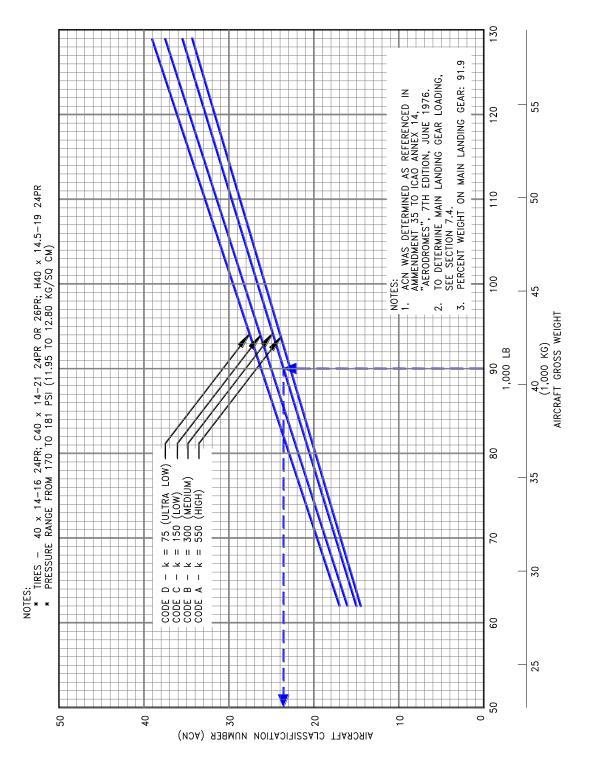

7.10.16 Aircraft Classification Number - Flexible Pavement: Model 737-800 With and Without Winglets

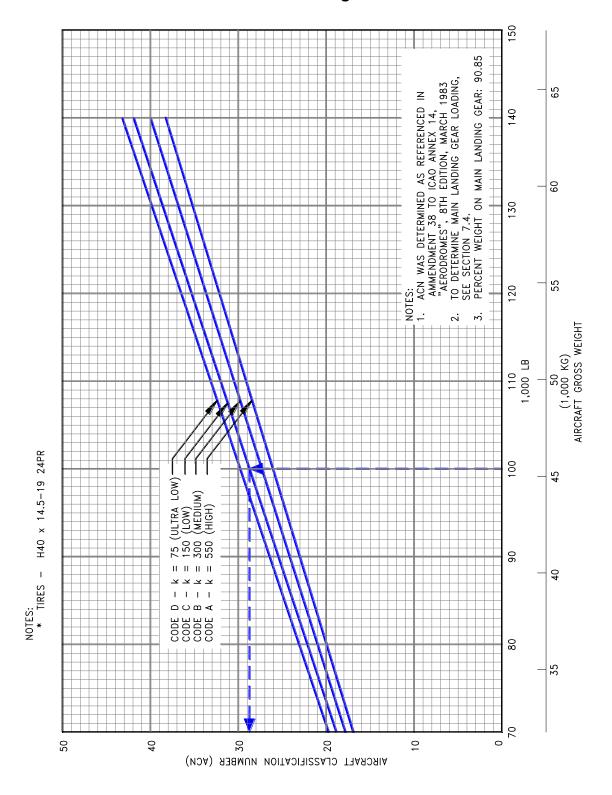

7.10.17 Aircraft Classification Number - Flexible Pavement: Model 737 BBJ2


7.10.18 Aircraft Classification Number - Flexible Pavement: Model 737-900 With and Without Winglets

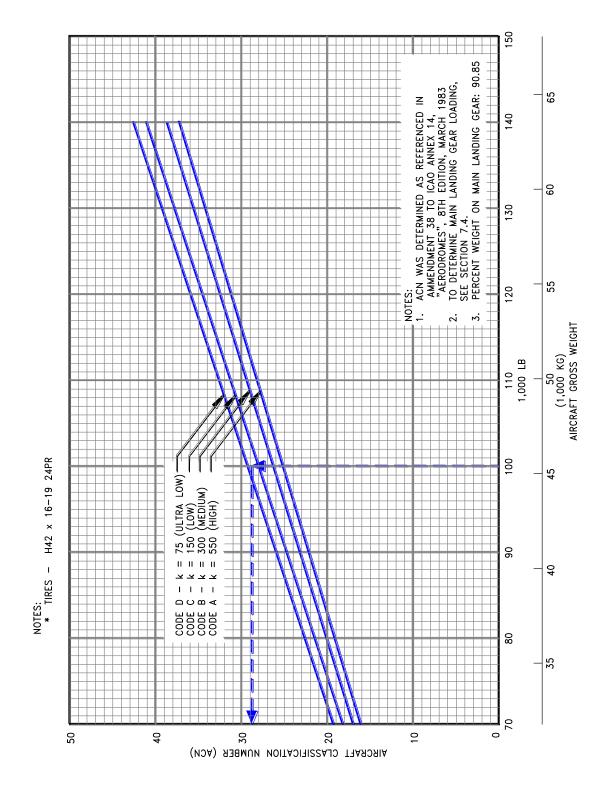

7.10.19 Aircraft Classification Number - Flexible Pavement: Model 737-900ER, -900ER With Winglets


7.10.20 Aircraft Classification Number - Rigid Pavement: Model 737-100, -200 To 104,000 LB (47,170 KG) MTW

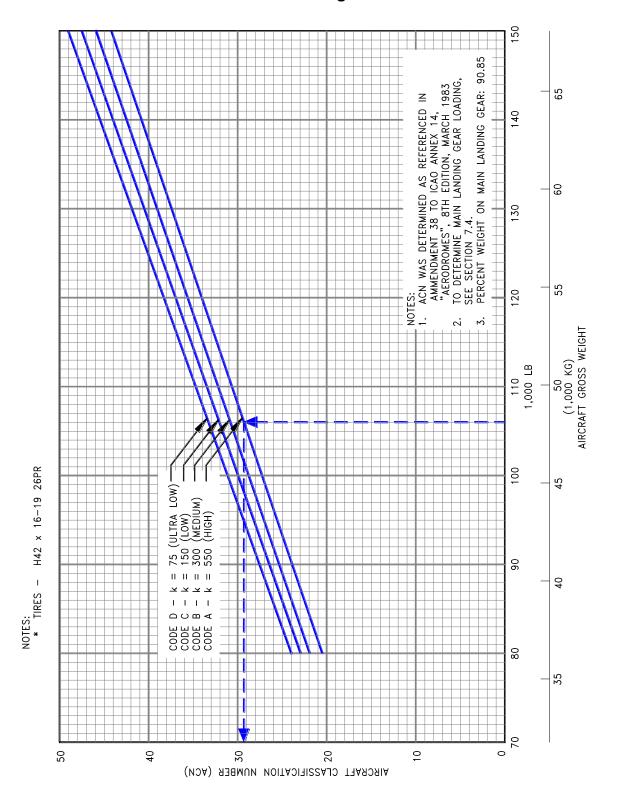

7.10.21 Aircraft Classification Number - Rigid Pavement: Model 737-100, -200, ADV 737-200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW


7.10.22 Aircraft Classification Number - Rigid Pavement: Model 737-100, -200, Adv 737-200 at 110,000 to 117,500 LB (49,900 to 53,290 KG) MTW (Low Pressure Tires)

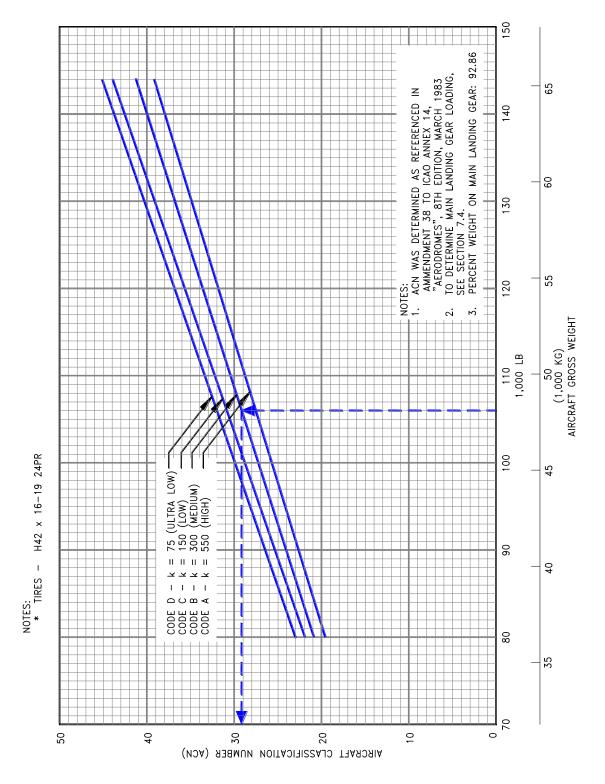
7.10.23 Aircraft Classification Number - Rigid Pavement: Model ADV 737-200 at 120,000 to 128,600 LB (54,300 to 58,330 KG) MTW

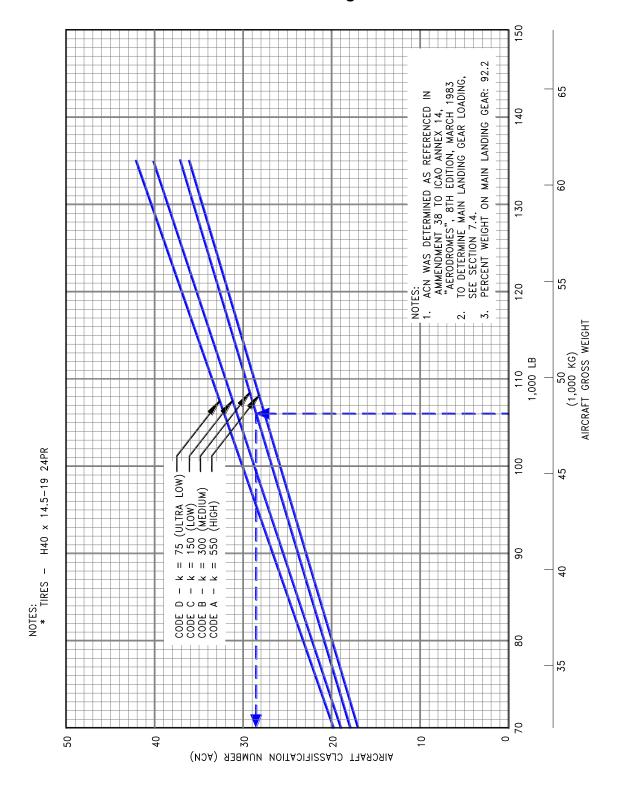


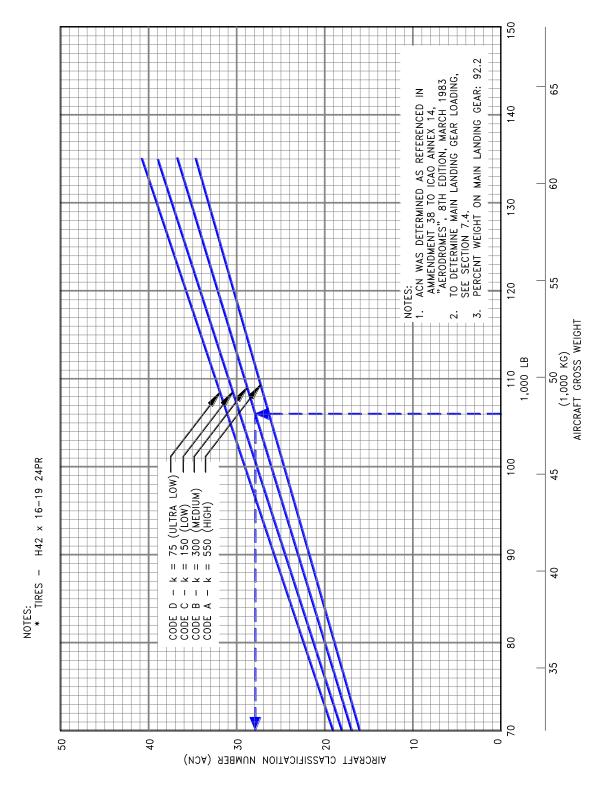
7.10.24 Aircraft Classification Number - Rigid Pavement: Model 737-300

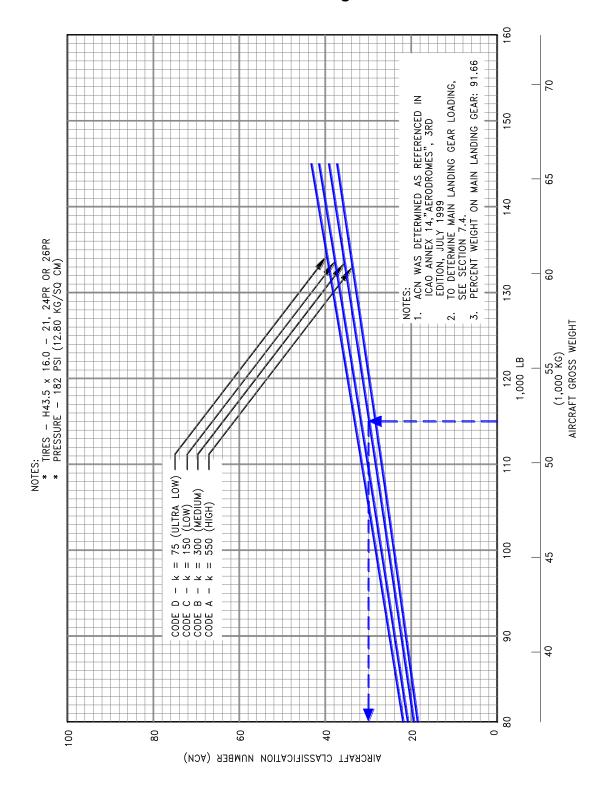


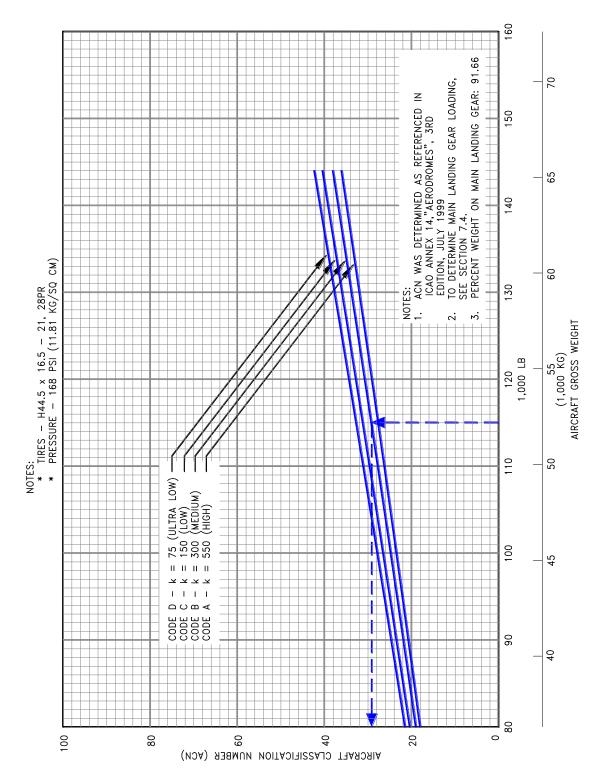
7-89

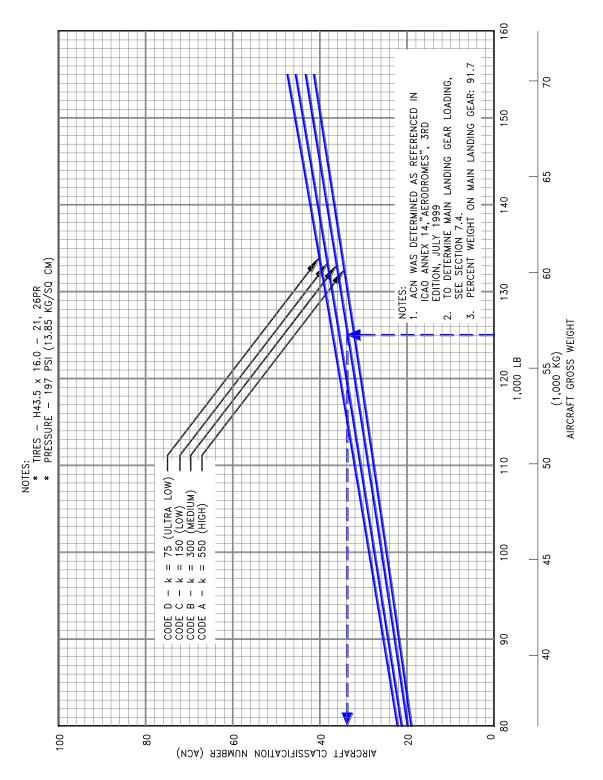

7.10.25 Aircraft Classification Number - Rigid Pavement: Model 737-300 (Low Pressure Tires)


7.10.26 Aircraft Classification Number - Rigid Pavement: Model 737-400

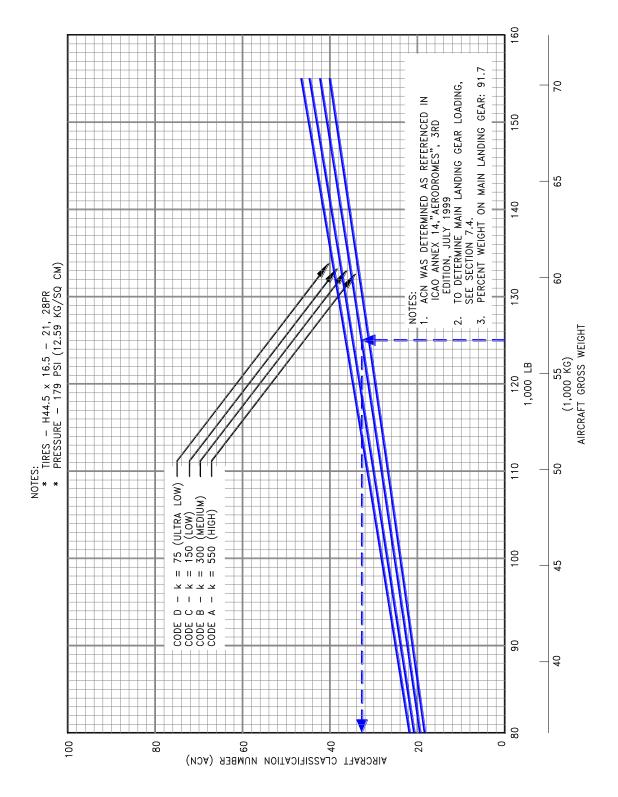

7.10.27 Aircraft Classification Number - Rigid Pavement: Model 737-400 (Low Pressure Tires)


7.10.28 Aircraft Classification Number - Rigid Pavement: Model 737-500

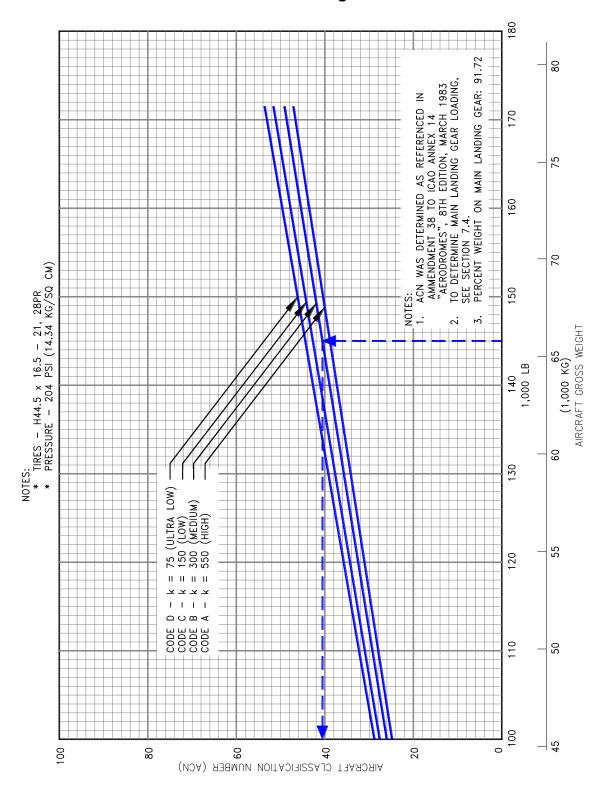

7.10.29 Aircraft Classification Number - Rigid Pavement: Model 737-500 (Low Pressure Tires)


7.10.30 Aircraft Classification Number - Rigid Pavement: Model 737-600

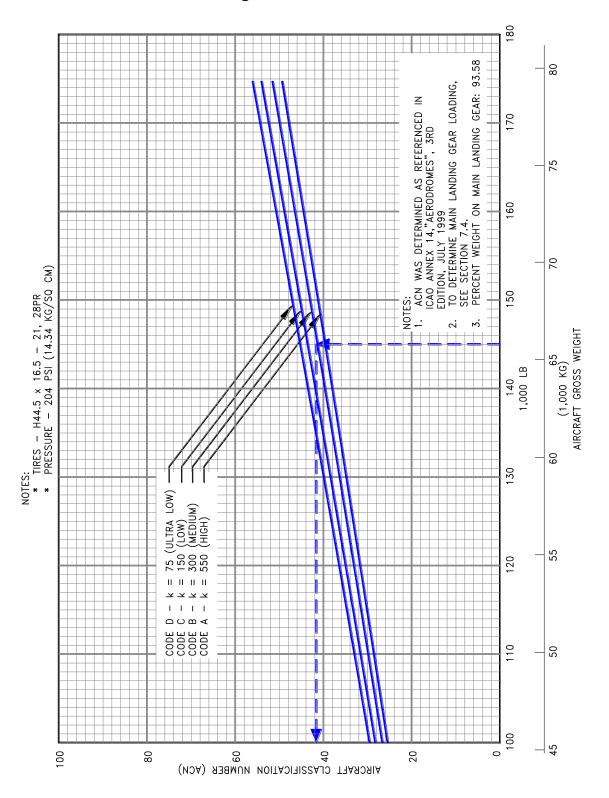
7.10.31 Aircraft Classification Number - Rigid Pavement: Model 737-600 (Optional Tires)

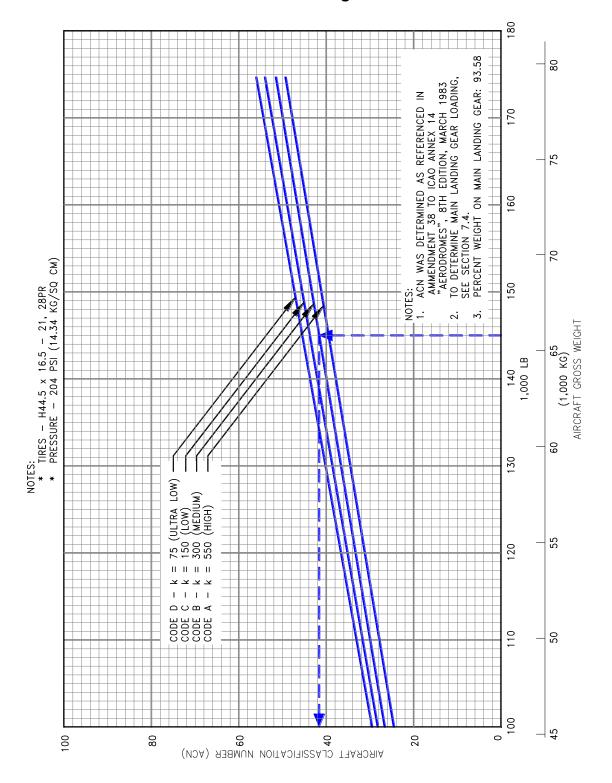


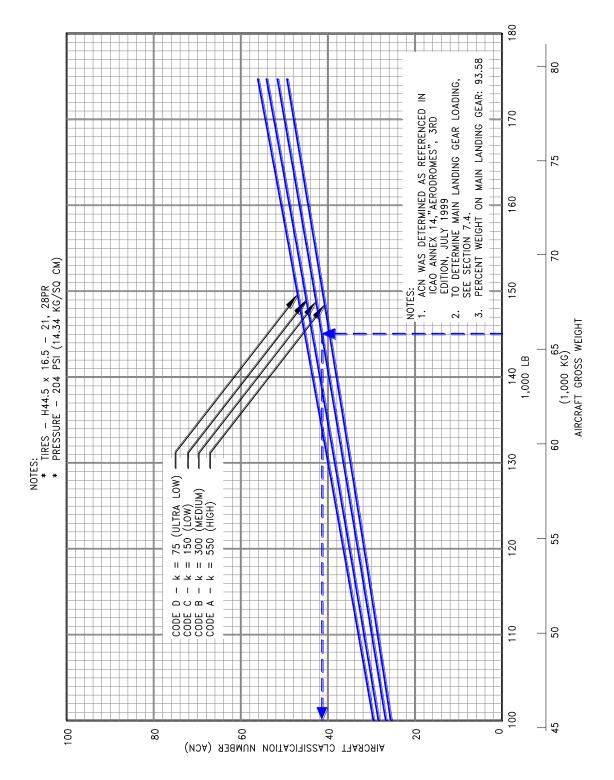
7.10.32 Aircraft Classification Number - Rigid Pavement: Model 737-700 With and Without Winglets)

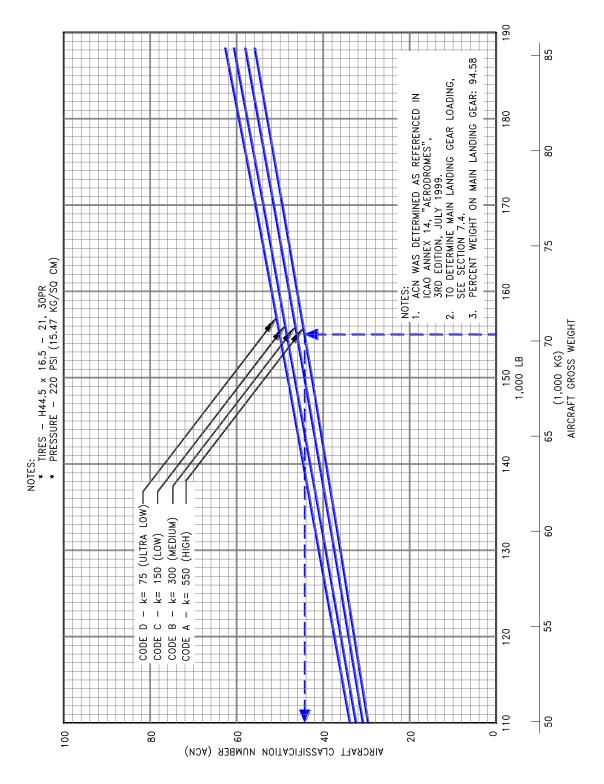


7-97

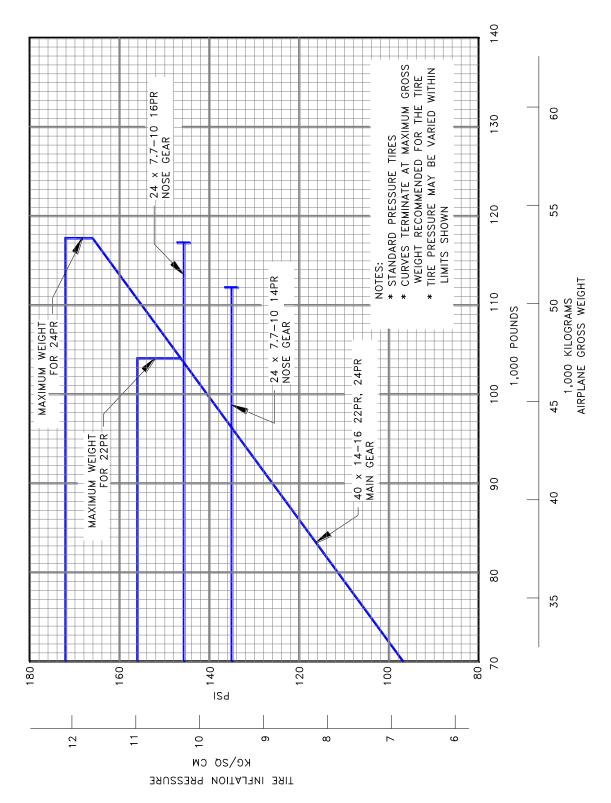

7.10.33 Aircraft Classification Number - Rigid Pavement: Model 737-700 (Optional Tires) With and Without Winglets

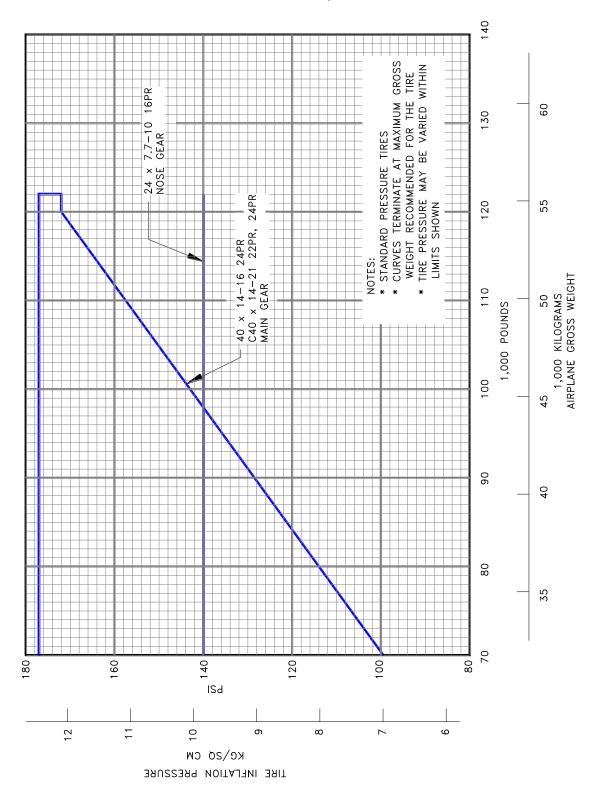

7.10.34 Aircraft Classification Number - Rigid Pavement: Model 737 BBJ


7.10.35 Aircraft Classification Number - Rigid Pavement: Model 737-800 With and Without Winglets

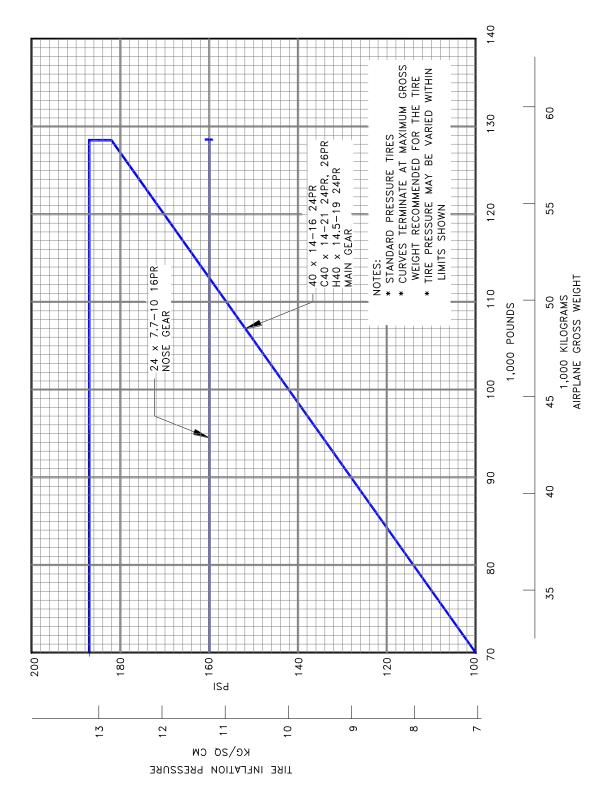

7.10.36 Aircraft Classification Number - Rigid Pavement: Model 737 BBJ2

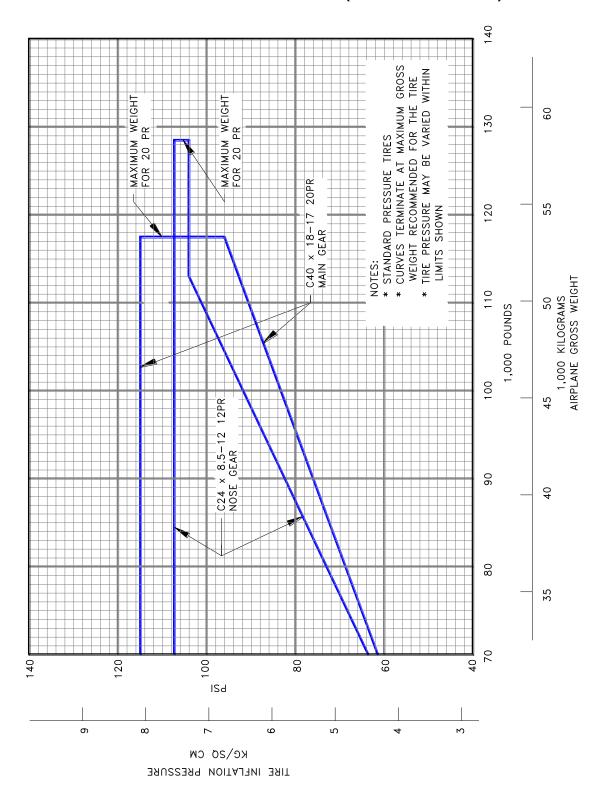
7.10.37 Aircraft Classification Number - Rigid Pavement: Model 737-900 With and Without Winglets

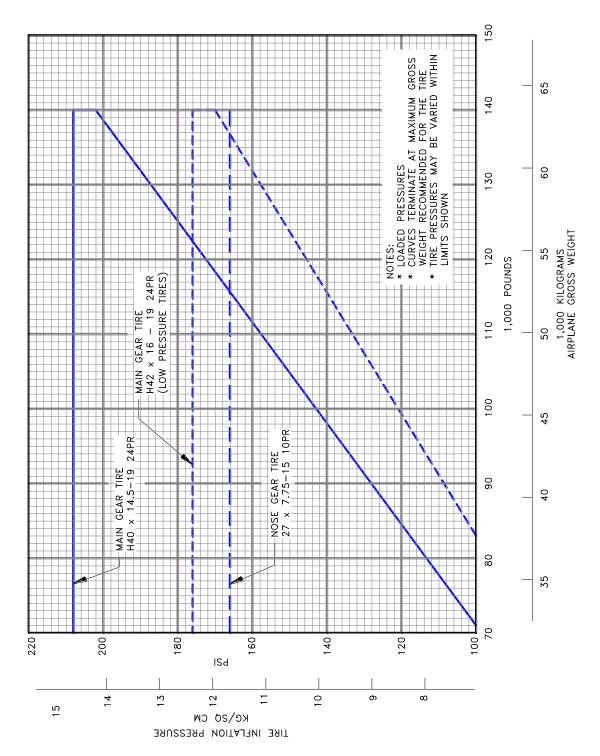

7.10.38 Aircraft Classification Number - Rigid Pavement: Model 737-900ER With and Without Winglets

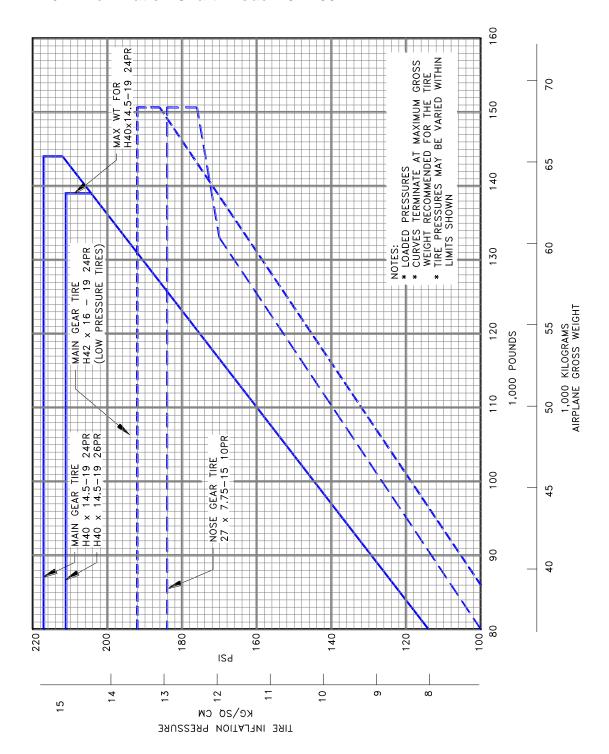

7-103

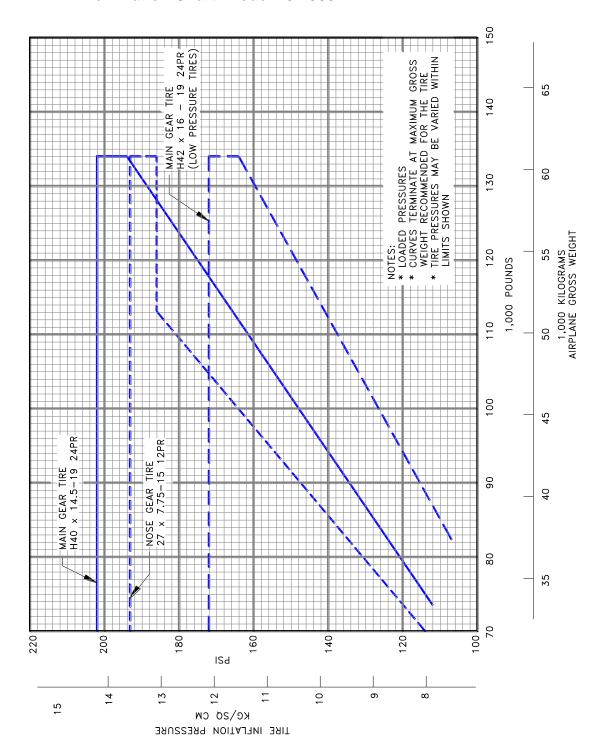
7.11 TIRE INFLATION CHART (737-100 THRU -500 ONLY)


7.11.1 Tire Inflation Chart: Model 737-100


7.11.2 Tire Inflation Chart: Model 737-100, -200


7.11.3 Tire Inflation Chart: Model ADV 737-200


7.11.4 Tire Inflation Chart: Model 737-200 (Low Pressure Tires)

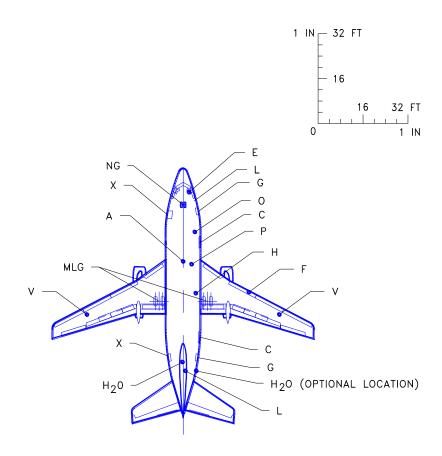

7.11.5 Tire Inflation Chart: Model 737-300

7.11.6 Tire Inflation Chart: Model 737-400

7.11.7 Tire Inflation Chart: Model 737-500

8.0 FUTURE 737 DERIVATIVE AIRPLANES

Development of these derivatives will depend on airline requirements. The impact of airline requirements on airport facilities will be a consideration in the configuration and design of these derivatives.


9.0 SCALED 737 DRAWINGS

The drawings in the following pages show airplane plan view drawings, drawn to approximate scale as noted. The drawings may not come out to exact scale when printed or copied from this document. Printing scale should be adjusted when attempting to reproduce these drawings. Three-view drawing files of the 737 airplane models, along with other Boeing airplane models, can be downloaded from the following website:

http://www.boeing.com/airports

9.1 MODEL 737-100

9.1.1 Scaled Drawings – 1 IN. = 32 FT: Model 737-100

LEGEND

AIR CONDITIONING CARGO DOOR ELECTRICAL

Ē F **FUEL**

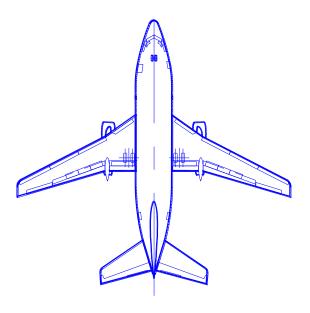
SERVICE DOOR POTABLE WATER H₂0

LAVATORY SERVICE MLG

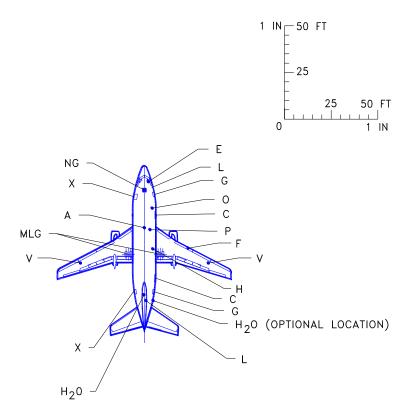
MAIN LANDING GEAR NOSE LANDING GEAR NG

OXYGEN

Ρ PNEUMATIC (AIR START)

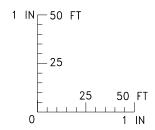

٧ FUEL VENT

PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

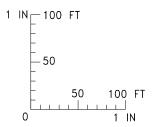
9.1.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-100

9.1.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-100



LEGEND

- A AIR CONDITIONING
 C CARGO DOOR
 E ELECTRICAL
 F FUEL
 G SERVICE DOOR
 H₂O POTABLE WATER
 L LAVATORY SERVICE
- MLG MAIN LANDING GEAR NG NOSE LANDING GEAR
- O OXYGEN
- P PNEUMATIC (AIR START)
- V FUEL VENT
- X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.1.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-100

9.1.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-100

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

A AIR CONDITIONING

C CARGO DOOR

E ELECTRICAL

F FUEL

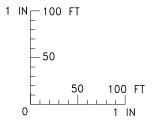
G SERVICE DOOR

H₂O POTABLE WATER L LAVATORY SERVICE

MLG MAIN LANDING GEAR

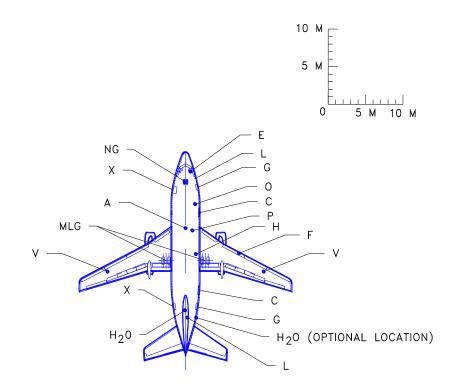
NG NOSE LANDING GEAR

O OXYGEN


P PNEUMATIC (AIR START)

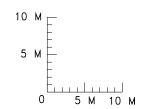
V FUEL VENT

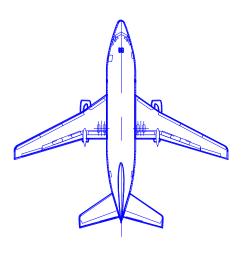
X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.1.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-100

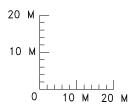
9.1.7 **Scaled Drawings – 1:500: Model 737-100**


LEGEND


- AIR CONDITIONING CARGO DOOR A C E F G
- ELECTRICAL
- **FUEL**

- SERVICE DOOR POTABLE WATER LAVATORY SERVICE
- MLG MAIN LANDING GEAR
- NOSE LANDING GEAR NG
- 0 OXYGEN
- Ρ PNEUMATIC (AIR START)
- ٧ FUEL VENT
- PASSENGER DOOR Χ

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3 NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING


9.1.8 Scaled Drawings – 1:500: Model 737-100

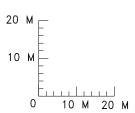
NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

9.1.9 Scaled Drawings – 1:1000: Model 737-100

NOTE:

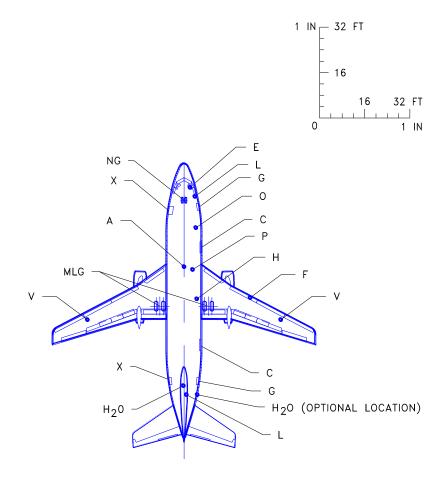
SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND


- AIR CONDITIONING
- CARGO DOOR
- A C E F ELECTRICAL
- FUEL
- SERVICE DOOR POTABLE WATER G
- H20 LAVATORY SERVICE
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- 0 OXYGEN
- PNEUMATIC (AIR START)
- ٧ FUEL VENT
- Χ PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

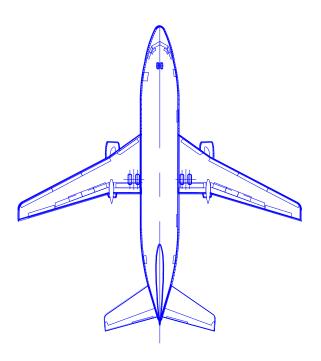
D6-58325-6

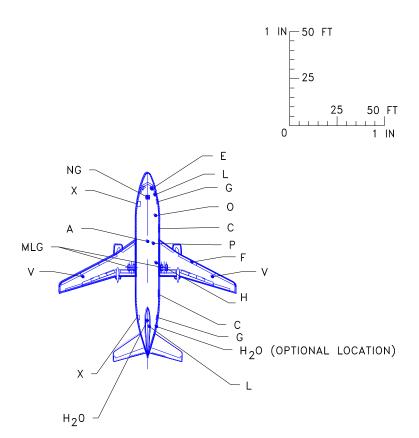

9.1.10 Scaled Drawings – 1:1000: Model 737-100

9.2 MODEL 737-200

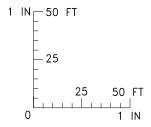
9.2.1 **Scaled Drawings – 1 IN. = 32 FT: Model 737-200**

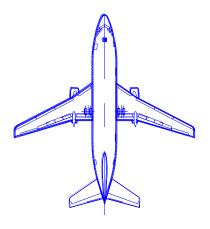
LEGEND


- AIR CONDITIONING
- CARGO DOOR
- C E F ELECTRICAL
- **FUEL**
- G
- SERVICE DOOR POTABLE WATER LAVATORY SERVICE
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- 0 OXYGEN
- Ρ PNEUMATIC (AIR START)
- FUEL VENT
- Χ PASSENGER DOOR

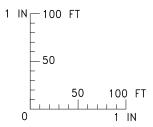

D6-58325-6

9.2.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-200


9.2.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-200



LEGEND


- AIR CONDITIONING A C E F CARGO DOOR
- ELECTRICAL
- FUEL
- G SERVICE DOOR
- Þ POTABLE WATER LAVATORY SERVICE
- MAIN LANDING GEAR
- NOSE LANDING GEAR NG
- 0 OXYGEN
- PNEUMATIC (AIR START)
- FUEL VENT ٧
- Χ PASSENGER DOOR

9.2.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-200

9.2.5 **Scaled Drawings – 1 IN. = 100 FT: Model 737-200**

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

AIR CONDITIONING Α

CARGO DOOR С E F ELECTRICAL

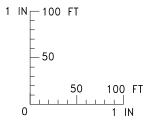
FUEL

G

SERVICE DOOR POTABLE WATER LAVATORY SERVICE F O

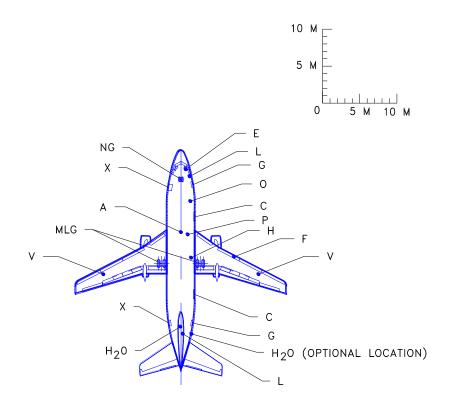
MLG MAIN LANDING GEAR

NG NOSE LANDING GEAR

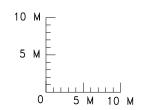

0 OXYGEN

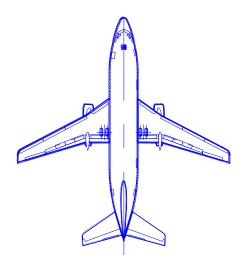
Ρ PNEUMATIC (AIR START)

٧ FUEL VENT

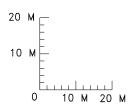

PASSENGER DOOR

9.2.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-200


9.2.7 **Scaled Drawings – 1:500: Model 737-200**



LEGEND


- AIR CONDITIONING CARGO DOOR
- C E F ELECTRICAL
- **FUEL** G
- SERVICE DOOR POTABLE WATER LAVATORY SERVICE Ħ
- MAIN LANDING GEAR MLG NG NOSE LANDING GEAR
- OXYGEN 0
- PNEUMATIC (AIR START)
- ٧ FUEL VENT
- PASSENGER DOOR

9.2.8 Scaled Drawings – 1:500: Model 737-200

9.2.9 Scaled Drawings – 1:1000: Model 737-200

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

AIR CONDITIONING

С CARGO DOOR ELECTRICAL

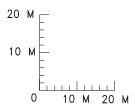
FUEL

SERVICE DOOR POTABLE WATER LAVATORY SERVICE

MLG MAIN LANDING GEAR NOSE LANDING GEAR NG

0 OXYGEN

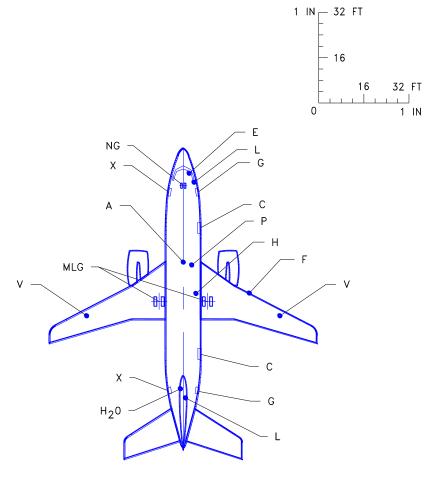
Ρ PNEUMATIC (AIR START)


٧ FUEL VENT

Χ PASSENGER DOOR

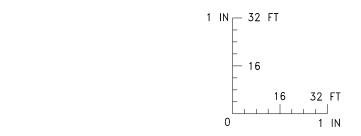
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

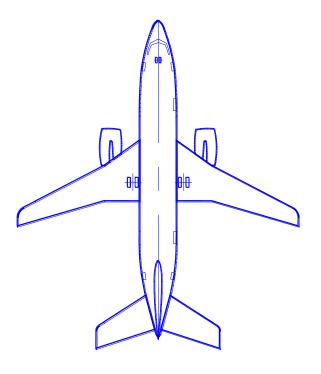
NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

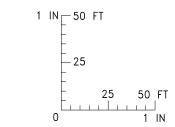

9.2.10 Scaled Drawings – 1:1000: Model 737-200

9.3 MODEL 737-300

Scaled Drawings – 1 IN. = 32 FT: Model 737-300 9.3.1

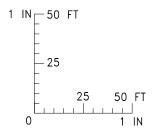

LEGEND

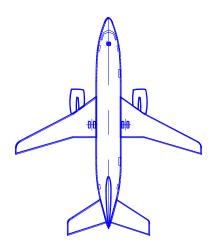

- AIR CONDITIONING CARGO DOOR
- ELECTRICAL
- FUEL
- A C E F G H SERVICE DOOR
- HYDRAULIC POTABLE WATER H20
- LAVATORY SERVICE
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- PNEUMATIC (AIR START)
- FUEL VENT
- PASSENGER DOOR Χ


D6-58325-6

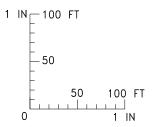
9.3.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-300

9.3.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-300


LEGEND


C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H HYDRAULIC
H2O POTABLE WATER
L LAVATORY SERVICE
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)

AIR CONDITIONING


V FUEL VENT X PASSENGER DOOR

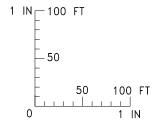
9.3.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-300

9.3.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-300

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

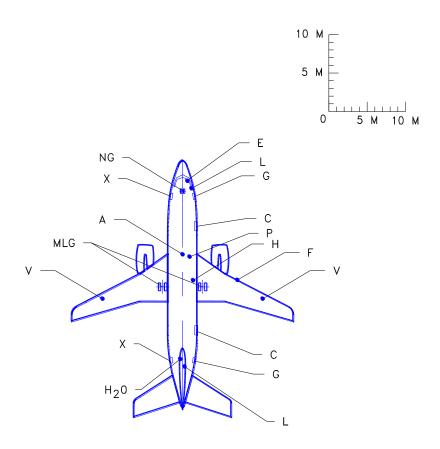
LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H HYDRAULIC
H2O POTABLE WATER
L LAVATORY SERVICE
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR

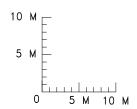
P PNEUMATIC (AIR START)

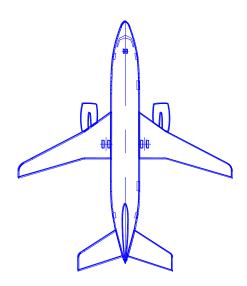
V FUEL VENT

X PASSENGER DOOR

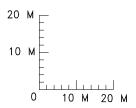

9.3.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-300

REV A


9.3.7 **Scaled Drawings – 1:500: Model 737-300**



LEGEND


- AIR CONDITIONING
- C E CARGO DOOR
- ELECTRICAL
- F FUEL
- G
- Ĥ
- SERVICE DOOR HYDRAULIC POTABLE WATER LAVATORY SERVICE
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- PNEUMATIC (AIR START)
- FUEL VENT
- PASSENGER DOOR Χ

9.3.8 Scaled Drawings – 1:500: Model 737-300

9.3.9 Scaled Drawings - 1:1000: Model 737-300

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

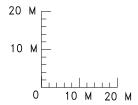
LEGEND

AIR CONDITIONING A C E F CARGO DOOR

ELECTRICAL

FUEL

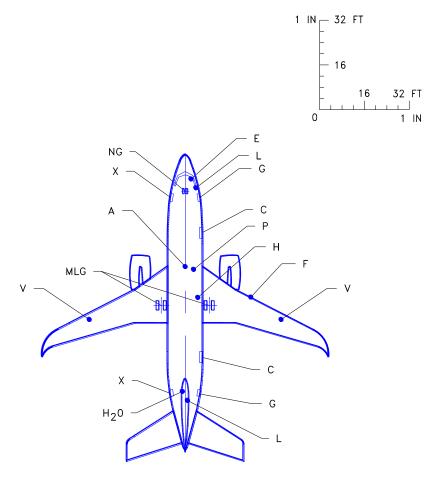
G SERVICE DOOR POTABLE WATER H20 LAVATORY SERVICE MLG MAIN LANDING GEAR NOSE LANDING GEAR NG


0 OXYGEN

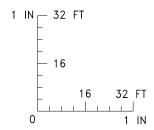
Ρ PNEUMATIC (AIR START)

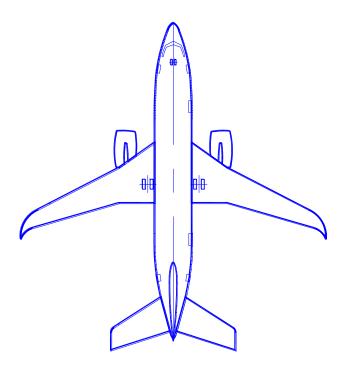
٧ FUEL VENT

PASSENGER DOOR Χ


9.3.10 Scaled Drawings – 1:1000: Model 737-300

9.4 MODEL 737-300 WITH WINGLETS

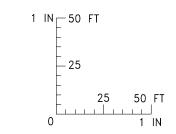

Scaled Drawings – 1 IN. = 32 FT: Model 737-300 with Winglets 9.4.1

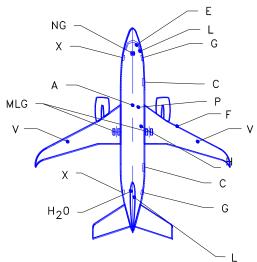


LEGEND

- AIR CONDITIONING CARGO DOOR ELECTRICAL
- Ε **FUEL**
- F
- SERVICE DOOR HYDRAULIC
- POTABLE WATER LAVATORY SERVICE H₂0
- MLG
- MAIN LANDING GEAR NOSE LANDING GEAR NG
- PNEUMATIC (AIR START)
- FUEL VENT
- PASSENGER DOOR Χ

9.4.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-300 with Winglets





D6-58325-6

9.4.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-300 with Winglets

LEGEND

AIR CONDITIONING A C E F

CARGO DOOR

ELECTRICAL

FUEL

SERVICE DOOR HYDRAULIC G Н

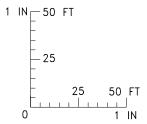
H₂0

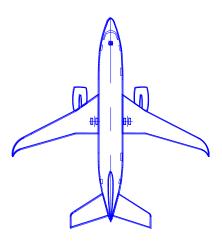
POTABLE WATER LAVATORY SERVICE

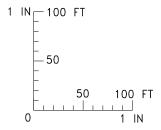
MAIN LANDING GEAR MLG

NG NOSE LANDING GEAR

Ρ PNEUMATIC (AIR START)

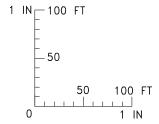

٧ FUEL VENT


Χ PASSENGER DOOR


D6-58325-6

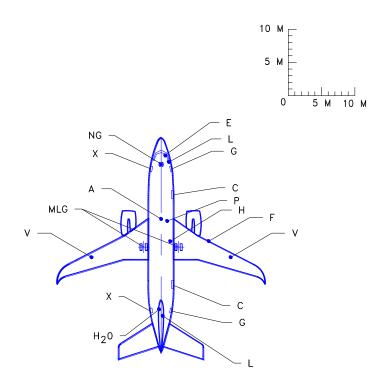
9.4.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-300 with Winglets

9.4.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-300 with Winglets


NOTE:

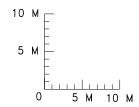
SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

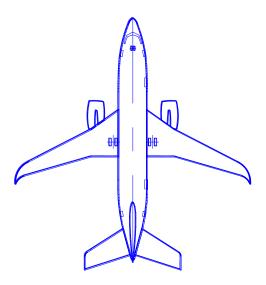
LEGEND


- A AIR CONDITIONING C CARGO DOOR
- E ELECTRICAL
- F FUEL
- G SERVICE DOOR
- H HYDRAULIC H₂O POTABLE WATER
- L LAVATORY SERVICE
- MLG MAIN LANDING GEAR NG NOSE LANDING GEAR
- P PNEUMATIC (AIR START)
- V FUEL VENT
- X PASSENGER DOOR

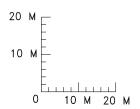
9.4.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-300 with Winglets

9.4.7 Scaled Drawings – 1:500: Model 737-300 with Winglets


LEGEND


- A AIR CONDITIONING
 C CARGO DOOR
 E ELECTRICAL
 F FUEL
- G SERVICE DOOR
 H HYDRAULIC
 H2O POTABLE WATER
 L LAVATORY SERVICE
- MLG MAIN LANDING GEAR
 NG NOSE LANDING GEAR
 P PNEUMATIC (AIR START)
- P PNEUMATIC (AIR START) V FUEL VENT
- X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

9.4.8 Scaled Drawings – 1:500: Model 737-300 with Winglets

9.4.9 Scaled Drawings – 1:1000: Model 737-300 with Winglets

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

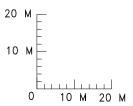
LEGEND

AIR CONDITIONING С CARGO DOOR

E F **ELECTRICAL**

FUEL

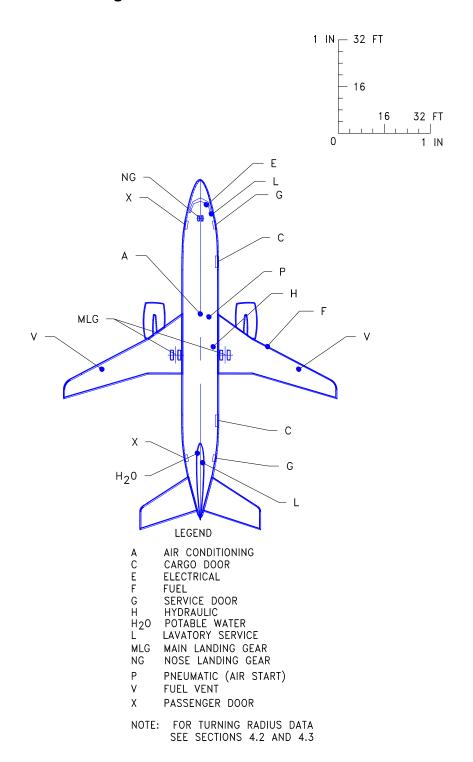
G SERVICE DOOR H₂0 POTABLE WATER LAVATORY SERVICE L MAIN LANDING GEAR NOSE LANDING GEAR MLG NG

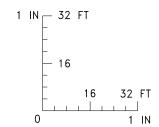

OXYGEN 0

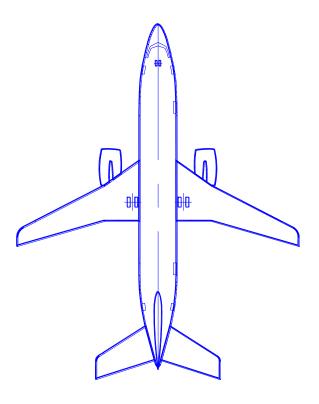
Ρ PNEUMATIC (AIR START)

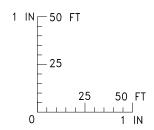
FUEL VENT

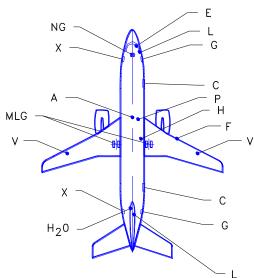
Χ PASSENGER DOOR


9.4.10 Scaled Drawings - 1:1000: Model 737-300 with Winglets

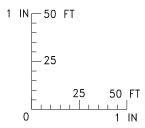

9.5 MODEL 737-400

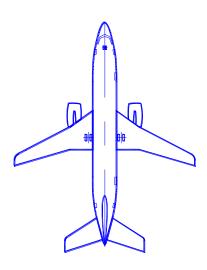

9.5.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-400



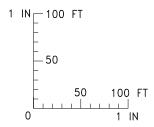

9.5.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-400

9.5.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-400





LEGEND


- AIR CONDITIONING
 - CARGO DOOR
- ELECTRICAL
- Ē F **FUEL**
- G SERVICE DOOR
- **HYDRAULIC**
- POTABLE WATER LAVATORY SERVICE
- MAIN LANDING GEAR MLG
- NOSE LANDING GEAR NG
- Ρ PNEUMATIC (AIR START)
- FUEL VENT
- Χ PASSENGER DOOR

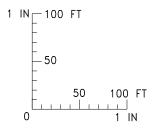
9.5.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-400

9.5.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-400

NOTE:

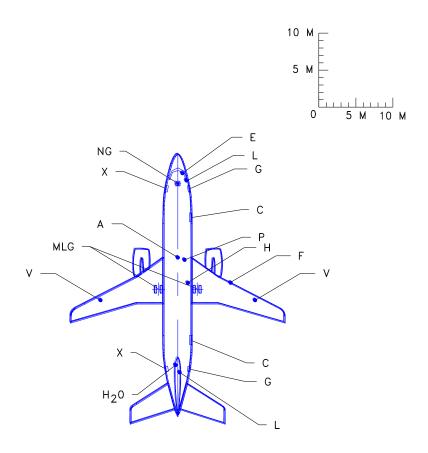
SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H HYDRAULIC
H2O POTABLE WATER
L LAVATORY SERVICE
MLG MAIN LANDING GEAR

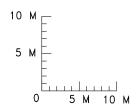
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)

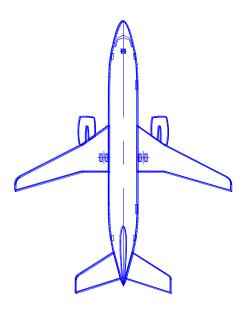
V FUEL VENT
X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA

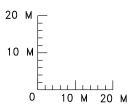
9.5.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-400

9.5.7 Scaled Drawings – 1:500: Model 737-400


LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H HYDRAULIC
H2O POTABLE WATER
L LAVATORY SERVICE
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)

V FUEL VENT `

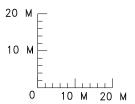

X PASSENGER DOOR

9.5.8 Scaled Drawings – 1:500: Model 737-400

9.5.9 Scaled Drawings - 1:1000: Model 737-400

NOTE:

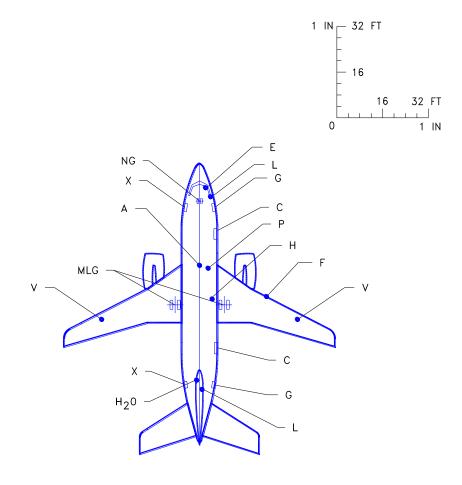
SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


LEGEND

AIR CONDITIONING CARGO DOOR C E F **ELECTRICAL** FUEL G SERVICE DOOR H₂0 POTABLE WATER LAVATORY SERVICE MLG MAIN LANDING GEAR NOSE LANDING GEAR NG 0 **OXYGEN**

PNEUMATIC (AIR START) FUEL VENT

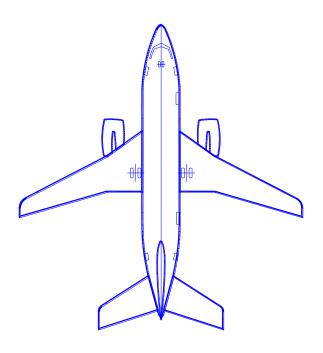
PASSENGER DOOR


9.5.10 Scaled Drawings – 1:1000: Model 737-400

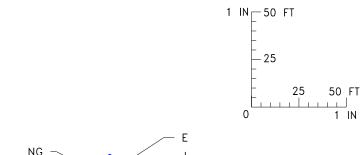
9.6 MODEL 737-500

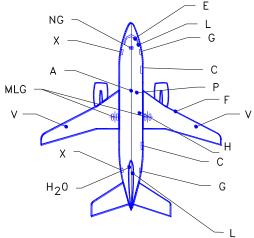
9.6.1 Scaled Drawings – 1 IN. = 32 FT: Model 737-500

LEGEND

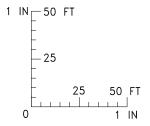

C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H HYDRAULIC
H2O POTABLE WATER
L LAVATORY SERVICE
MLG MAIN LANDING GEAR

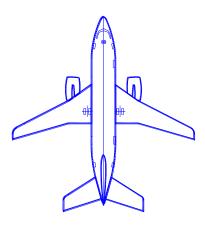
AIR CONDITIONING


- NG NOSE LANDING GEAR
 P PNEUMATIC (AIR START)
- V FUEL VENT X PASSENGER DOOR

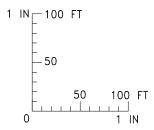

9.6.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-500

9.6.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-500





LEGEND


- AIR CONDITIONING A C E F G H H₂O CARGO DOOR
- ELECTRICAL
- **FUEL**
- SERVICE DOOR
- **HYDRAULIC**
- POTABLE WATER
- LAVATORY SERVICE
- MAIN LANDING GEAR MLG
- NG NOSE LANDING GEAR
- PNEUMATIC (AIR START) Ρ
- FUEL VENT
- Χ PASSENGER DOOR

9.6.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-500

9.6.5 **Scaled Drawings – 1 IN. = 100 FT: Model 737-500**

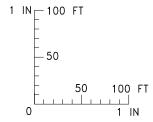
NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

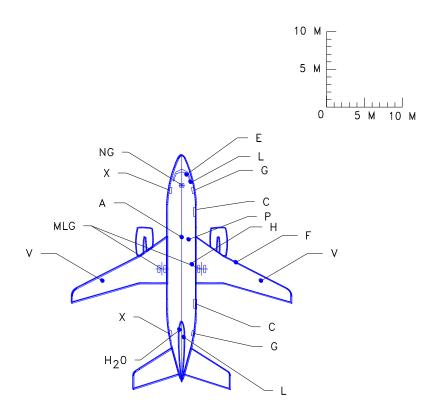
AIR CONDITIONING CARGO DOOR C E F ELECTRICAL

FUEL

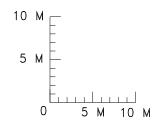

G H SERVICE DOOR HYDRAULIC
POTABLE WATER
LAVATORY SERVICE H₂0 MLG MAIN LANDING GEAR NG NOSE LANDING GEAR

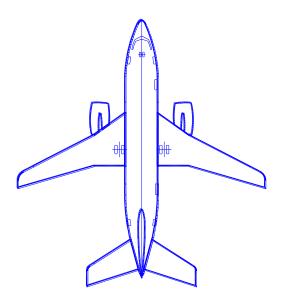
PNEUMATIC (AIR START)

FUEL VENT

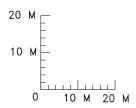

PASSENGER DOOR Χ

9.6.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-500


9.6.7 **Scaled Drawings – 1:500: Model 737-500**



LEGEND


- AIR CONDITIONING
- CARGO DOOR
- C E ELECTRICAL
- F FUEL
- G SERVICE DOOR
- Н
- HYDRAULIC POTABLE WATER LAVATORY SERVICE H₂O
- MAIN LANDING GEAR MLG NG NOSE LANDING GEAR
- Ρ PNEUMATIC (AIR START)
- ٧ FUEL VENT
- Χ PASSENGER DOOR

9.6.8 Scaled Drawings – 1:500: Model 737-500

9.6.9 Scaled Drawings – 1:1000: Model 737-500

NOTE:

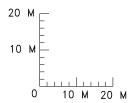
SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

AIR CONDITIONING CARGO DOOR ELECTRICAL A C E F

FUEL

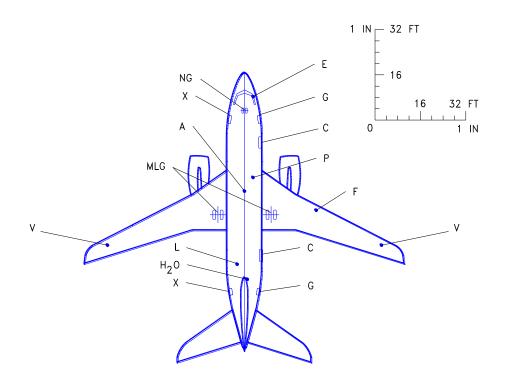
SERVICE DOOR POTABLE WATER LAVATORY SERVICE G MLG MAIN LANDING GEAR NG NOSE LANDING GEAR


0 OXYGEN

PNEUMATIC (AIR START)

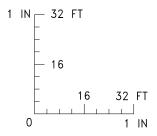
٧ FUEL VENT

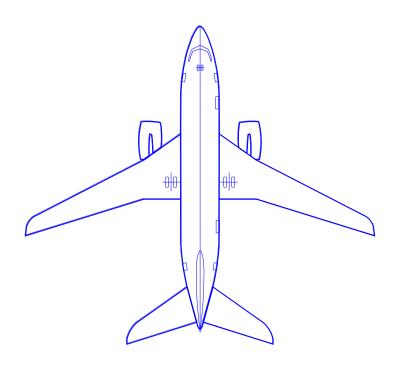
Χ PASSENGER DOOR


9.6.10 Scaled Drawings – 1:1000: Model 737-500

9.7 MODEL 737-600

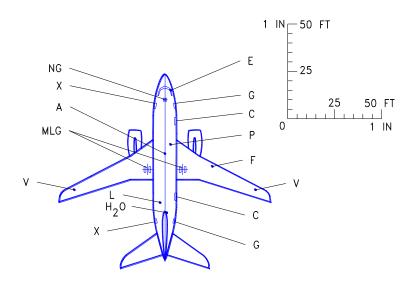
9.7.1 Scaled Drawings – 1 IN. = 32 FT: Model 737-600




LEGEND

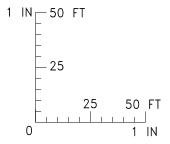
A C E F G H₂O AIR CONDITIONING CARGO DOOR ELECTRICAL **FUEL** SERVICE DOOR POTABLE WATER MAIN LANDING GEAR NOSE LANDING GEAR мĒС PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE FUEL VENT

PASSENGER DOOR


9.7.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-600

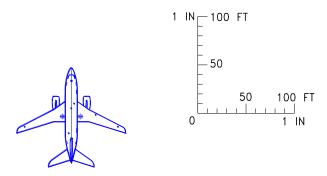
9.7.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-600

LEGEND


AIR CONDITIONING CARGO DOOR ELECTRICAL A C E F

FUEL

SERVICE DOOR POTABLE WATER G H20 MAIN LANDING GEAR NOSE LANDING GEAR MLG NG PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE


FUEL VENT PASSENGER DOOR Χ

9.7.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-600

9.7.5 **Scaled Drawings – 1 IN. = 100 FT: Model 737-600**

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEIGEONETIND

AIR CONDITIONING

CARGO DOOR

Ε ELECTRICAL

FUEL

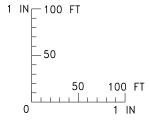
SERVICE DOOR POTABLE WATER G

H₂0 MLG

MAIN LANDING GEAR NOSE LANDING GEAR NG

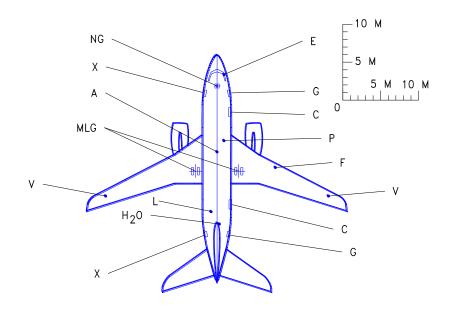
PNEUMATIC (AIR START)

VACUUM LAVATORY SERVICE L


FUEL VENT ٧

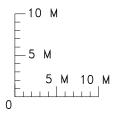
Χ PASSENGER DOOR

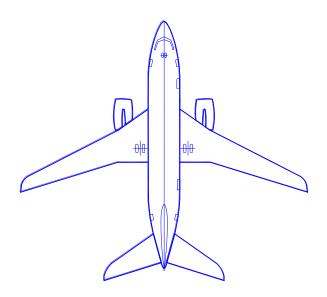
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


REV A September 2020 9-73

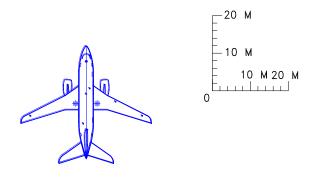
9.7.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-600

9.7.7 Scaled Drawings – 1:500: Model 737-600


LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT X PASSENGER DOOR



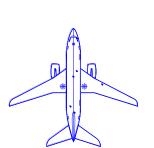
9.7.8 Scaled Drawings – 1:500: Model 737-600

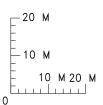
9.7.9 Scaled Drawings - 1:1000: Model 737-600

NOTE:

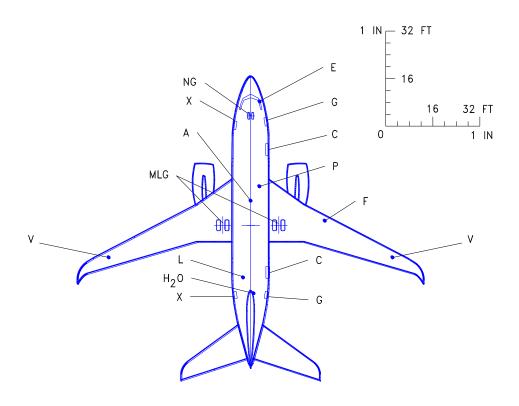
SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND


- A AIR CONDITIONING
 C CARGO DOOR
 E ELECTRICAL
 F FUEL
 G SERVICE DOOR
 H2O POTABLE WATER
 MLG MAIN LANDING GEAR
 NG NOSE LANDING GEAR
 P PNEUMATIC (AIR START)
 L VACUUM LAVATORY SERVICE
- V FUEL VENT
- X PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

REV A September 2020 9-78


9.7.10 Scaled Drawings – 1:1000: Model 737-600

9.8 MODEL 737-600 WITH WINGLETS

Scaled Drawings – 1 IN. = 32 FT: Model 737-600 with Winglets 9.8.1

LEGEND

AIR CONDITIONING

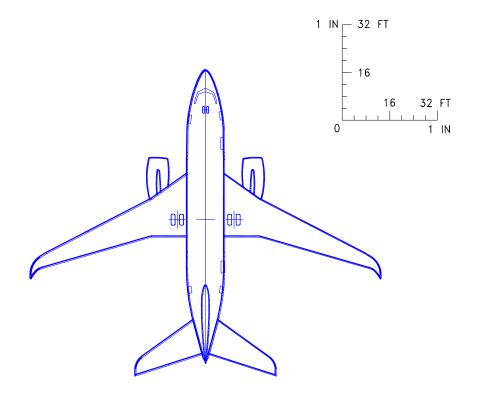
CARGO DOOR

Ē ELECTRICAL

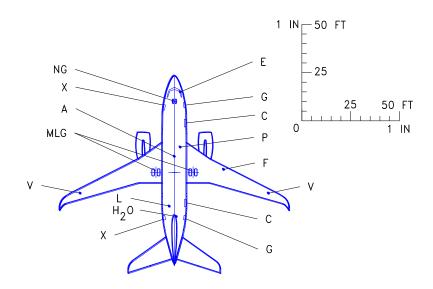
FUEL

G SERVICE DOOR

H₂O POTABLE WATER

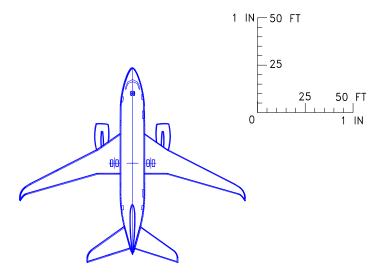

MAIN LANDING GEAR NOSE LANDING GEAR MLG NG

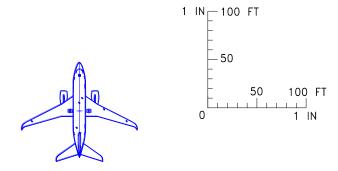
PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE


FUEL VENT

PASSENGER DOOR Χ

9.8.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-600 with Winglets


9.8.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-600 with Winglets

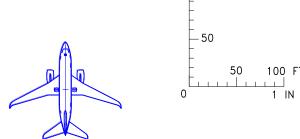

LEGEND

- AIR CONDITIONING
- CARGO DOOR
- C E ELECTRICAL
- FUEL
- SERVICE DOOR POTABLE WATER G H₂0
- MAIN LANDING GEAR NOSE LANDING GEAR MLG
- NG
- PNEUMATIC (AIR START)
- VACUUM LAVATORY SERVICE
- FUEL VENT
- PASSENGER DOOR Χ

9.8.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-600 with Winglets

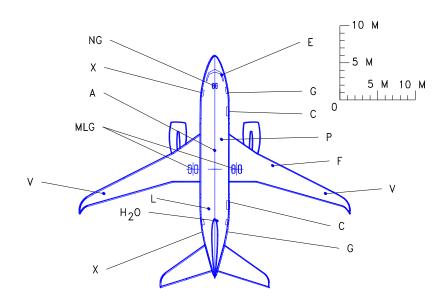
9.8.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-600 with Winglets

NOTE:


SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEIQEGNEDN D

- AIR CONDITIONING
- CARGO DOOR
- ELECTRICAL
- A C E F **FUEL**
- SERVICE DOOR G
- H₂0 POTABLE WATER
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE
- FUEL VENT ٧
- PASSENGER DOOR Χ
- NOTE: FOR TURNING RADIUS DATA


SEE SECTIONS 4.2 AND 4.3

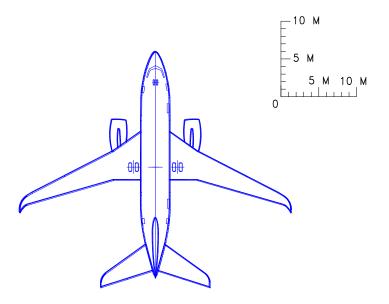
9.8.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-600 with Winglets

1 IN _ 100 FT

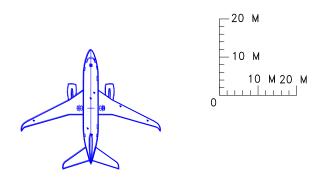
9.8.7 Scaled Drawings – 1:500: Model 737-600 with Winglets

LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE
V FUEL VENT


PASSENGER DOOR

Χ


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

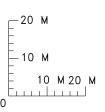
9-87

9.8.8 Scaled Drawings – 1:500: Model 737-600 with Winglets

9.8.9 Scaled Drawings – 1:1000: Model 737-600 with Winglets

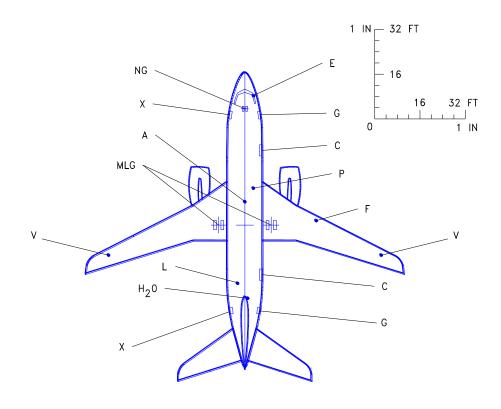
NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


LEGEND

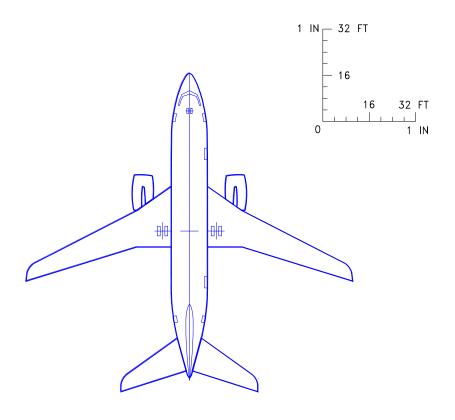
- AIR CONDITIONING
- CARGO DOOR
- **ELECTRICAL**
- FUEL
- G
- SERVICE DOOR POTABLE WATER H₂0
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR PNEUMATIC (AIR START)
- VACUUM LAVATORY SERVICE L
- FUEL VENT
- PASSENGER DOOR Χ

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

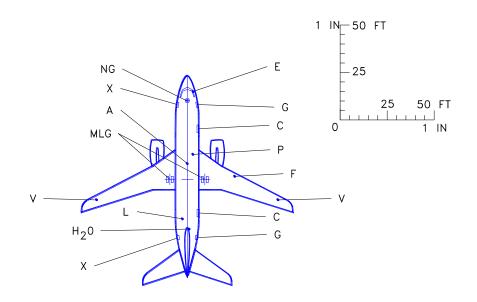

9.8.10 Scaled Drawings – 1:1000: Model 737-600 with Winglets

9.9 MODEL 737-700

9.9.1 Scaled Drawings – 1 IN. = 32 FT: Model 737-700


LEGEND

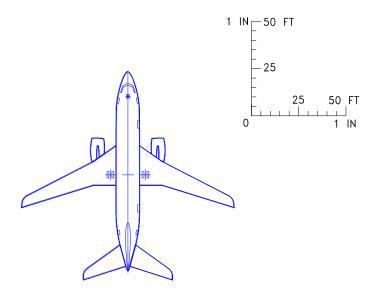
A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE


V FUEL VENT X PASSENGER DOOR

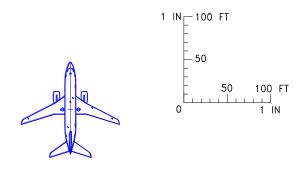
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.9.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-700

9.9.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-700



LEGEND


- AIR CONDITIONING A C E F G
- CARGO DOOR
- ELECTRICAL
- **FUEL**
- SERVICE DOOR
- POTABLE WATER H₂0
- MLG MAIN LANDING GEAR NG NOSE LANDING GEAR
- PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE
- FUEL VENT
- Χ PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.9.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-700

9.9.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-700

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

AIR CONDITIONING

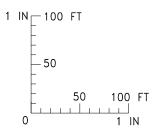
A C E F G CARGO DOOR ELECTRICAL

FUEL

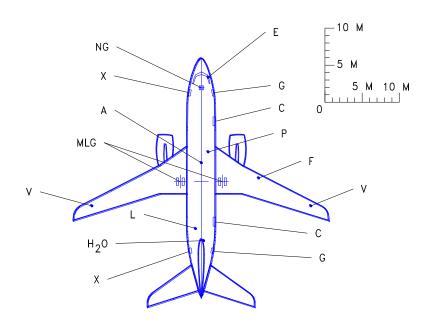
SERVICE DOOR POTABLE WATER

H₂O MLG MAIN LANDING GEAR NOSE LANDING GEAR

PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE

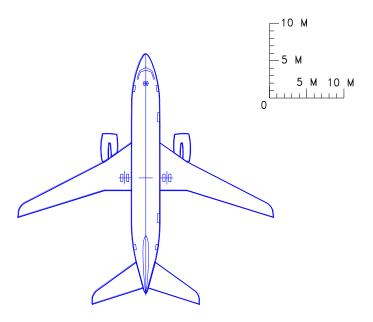

FUEL VENT

X PASSENGER DOOR

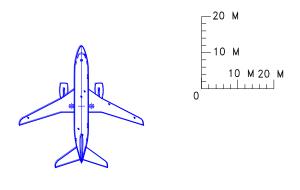

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.9.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-700

9.9.7 **Scaled Drawings – 1:500: Model 737-700**



LEGEND


- AIR CONDITIONING A C E F CARGO DOOR ELECTRICAL
- FUEL
- SERVICE DOOR POTABLE WATER H20 MAIN LANDING GEAR NOSE LANDING GEAR MLG NG PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE
- FUEL VENT PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.9.8 Scaled Drawings – 1:500: Model 737-700

9.9.9 Scaled Drawings – 1:1000: Model 737-700

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

AIR CONDITIONING

CARGO DOOR

A C E F ELECTRICAL

FUEL

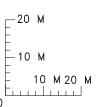
SERVICE DOOR H₂0 POTABLE WATER

MAIN LANDING GEAR NOSE LANDING GEAR MLG

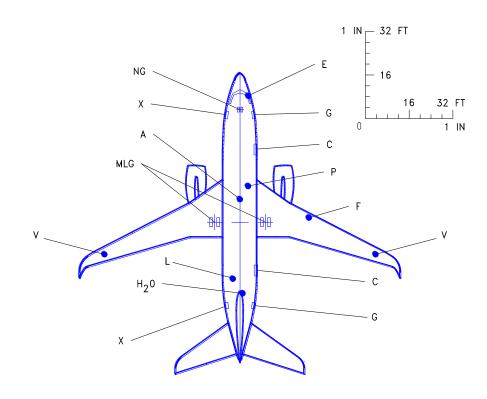
NG

PNEUMATIC (AIR START)

VACUUM LAVATORY SERVICE

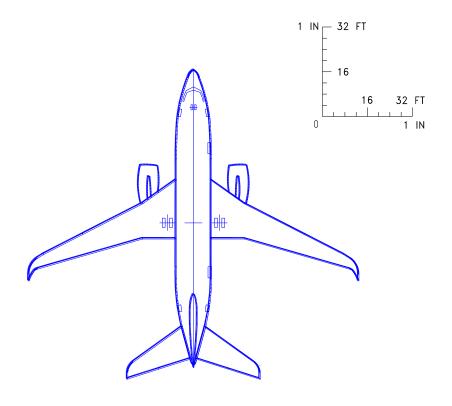

FUEL VENT PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

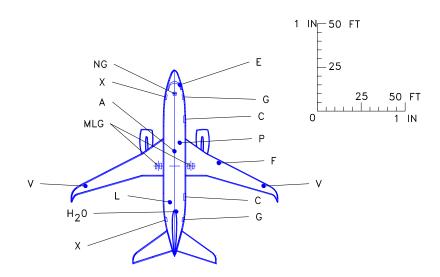

9.9.10 Scaled Drawings – 1:1000: Model 737-700

9.10 MODEL 737-700 WITH WINGLETS, 737 BBJ

9.10.1 Scaled Drawings - - 1 IN. = 32 FT: Model 737-700 With Winglets, 737 BBJ



LEGEND


- AIR CONDITIONING CARGO DOOR
- С
- ELECTRICAL
- **FUEL**
- SERVICE DOOR POTABLE WATER
- H₂0
- MAIN LANDING GEAR мĹС NOSE LANDING GEAR
- PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE
- FUEL VENT PASSENGER DOOR

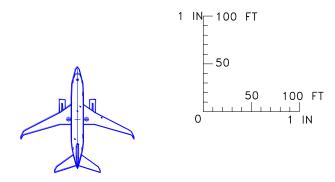
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.10.2 Scaled Drawings - 1 IN. = 32 FT: Model 737-BBJ

9.10.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-700 with Winglets, 737 BBJ

LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE
V FUEL VENT

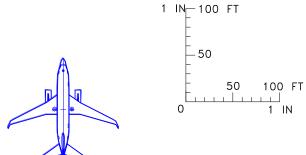

V FUEL VENT X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

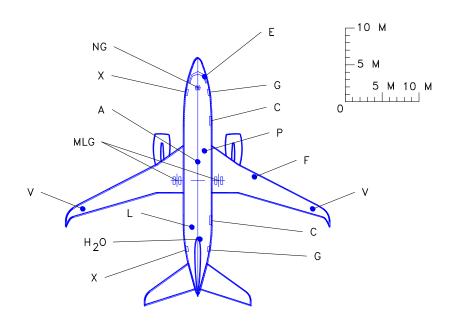
9.10.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-700 with Winglets, 737 BBJ

9.10.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-700 with Winglets, 737 BBJ

NOTE:


SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND


- A AIR CONDITIONING
- C CARGO DOOR
- E ELECTRICAL
- F FUEL
- G SERVICE DOOR
- H₂O POTABLE WATER
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- P PNEUMATIC (AIR START)
 L VACUUM LAVATORY SERVICE
- V FUEL VENT
- X PASSENGER DOOR

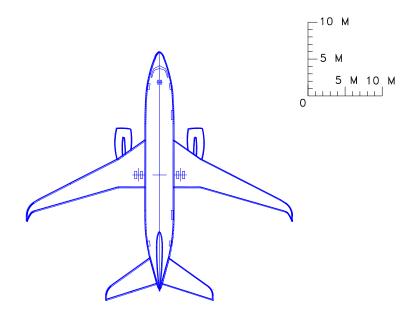
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.10.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-700 with Winglets, 737 BBJ

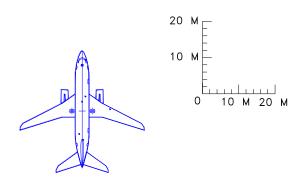
9.10.7 Scaled Drawings - 1:500: Model 737-700 with Winglets, 737 BBJ

LEGEND

AIR CONDITIONING A C E CARGO DOOR ELECTRICAL FUEL G SERVICE DOOR H₂O POTABLE WATER MAIN LANDING GEAR NOSE LANDING GEAR MLG NG


PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE

FUEL VENT PASSENGER DOOR

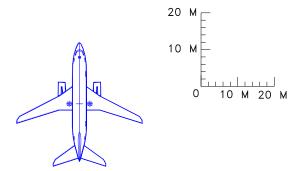

Χ

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.10.8 Scaled Drawings – 1:500: Model 737-700 with Winglets, 737 BBJ

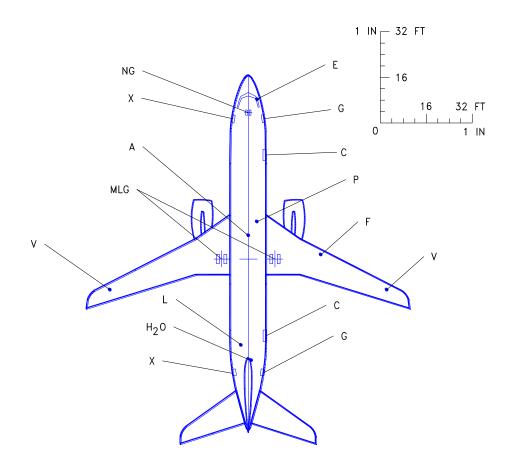
9.10.9 Scaled Drawings - 1:1000: Model 737-700 with Winglets, 737 BBJ

NOTE:


SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

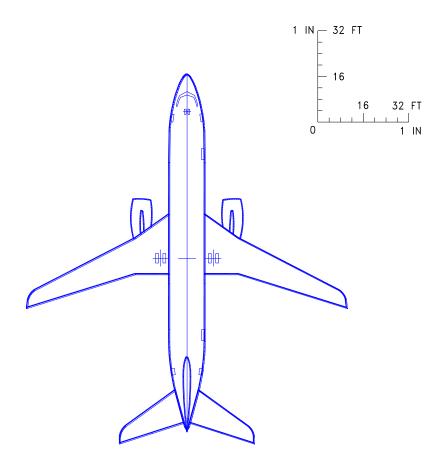
- AIR CONDITIONING
- CARGO DOOR C E F
- ELECTRICAL
- FUEL
- SERVICE DOOR POTABLE WATER G
- H₂0
- MLG MAIN LANDING GEAR NG NOSE LANDING GEAR
- PNEUMATIC (AIR START)
- VACUUM LAVATORY SERVICE
- FUEL VENT
- PASSENGER DOOR Χ


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

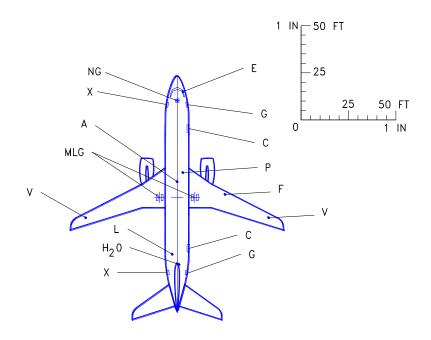
9.10.10 Scaled Drawings – 1:1000: Model 737-700 with Winglets, 737 BBJ

9.11 MODEL 737-800

9.11.1 Scaled Drawings – 1 IN. = 32 FT: Model 737-800


LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE
V FUEL VENT

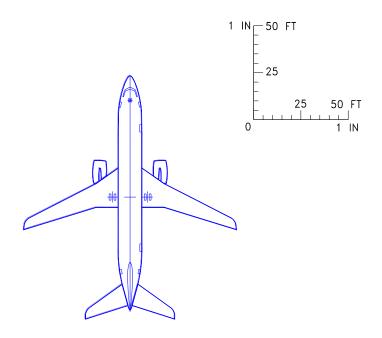

X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.11.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-800

9.11.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-800

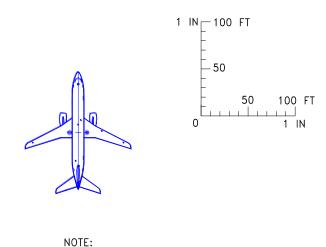
LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR

P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


9.11.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-800

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

9-115

9.11.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-800

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

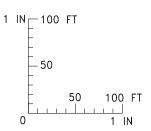
LEGEND

A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR

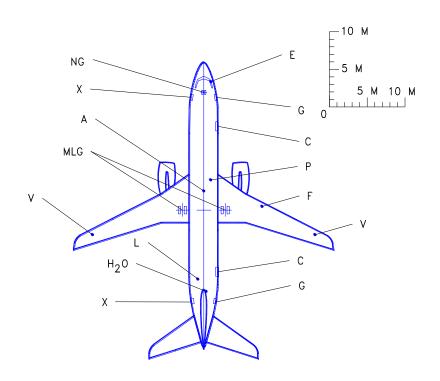
H₂O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT X PASSENGER DOOR


REV A


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

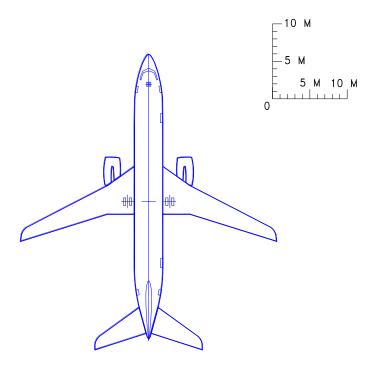
NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING


D6-58325-6

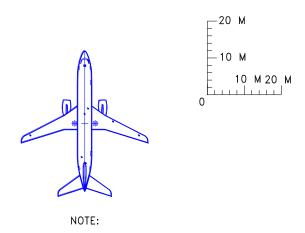
9.11.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-800

9.11.7 Scaled Drawings - 1:500: Model 737-800

LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL

F FUEL
G SERVICE DOOR
H₂O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE
V FUEL VENT


V FUEL VENT X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.11.8 Scaled Drawings – 1:500: Model 737-800

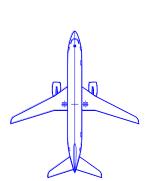
9.11.9 Scaled Drawings – 1:1000: Model 737-800

SEE CORRESPONDING PAGE FOR 1 IN = $32\ FT$ FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

- AIR CONDITIONING A C CARGO DOOR
- Ē F ELECTRICAL
- FUEL
- SERVICE DOOR G POTABLE WATER H₂0 MAIN LANDING GEAR NOSE LANDING GEAR PNEUMATIC (AIR START) MLG NG VACUUM LAVATORY SERVICE FUEL VENT PASSENGER DOOR
- Χ

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

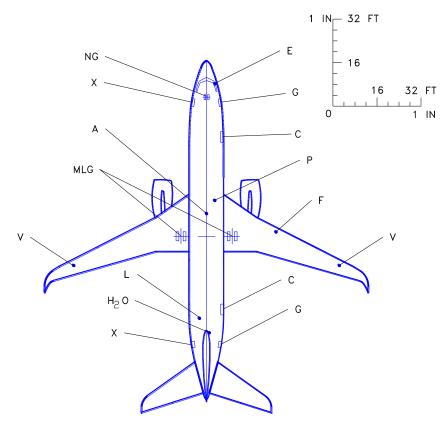


September 2020

REV A

9-121

9.11.10 Scaled Drawings – 1:1000: Model 737-800


_20 M

__10 M

September 2020

9.12 MODEL 737-800 WITH WINGLETS, 737 BBJ2

9.12.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-800 with Winglets, 737 BBJ2

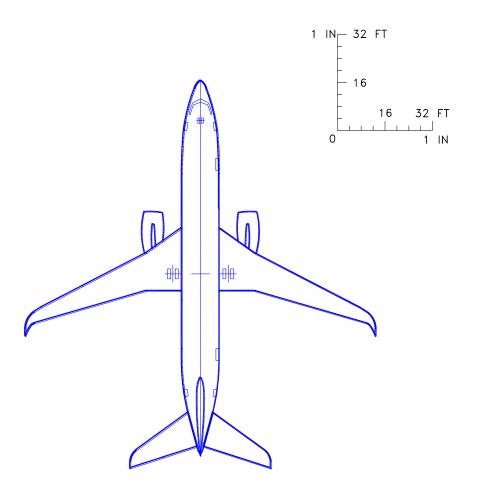
LEGEND

AIR CONDITIONING CARGO DOOR

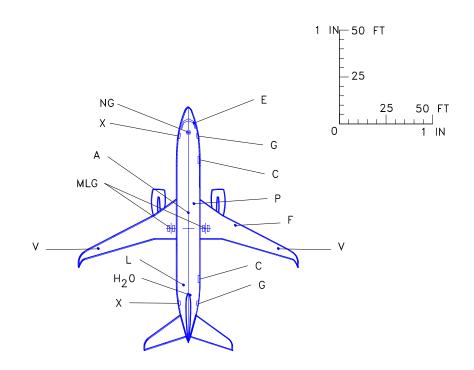
C E F ELECTRICAL

FUEL

SERVICE DOOR POTABLE WATER H₂0


MAIN LANDING GEAR MLG NOSE LANDING GEAR

PNEUMATIC (AIR START)
VACUUM LAVATORY SERVICE
FUEL VENT


PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.12.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-800 with Winglets, 737 BBJ2

9.12.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-800 with Winglets, 737 BBJ2

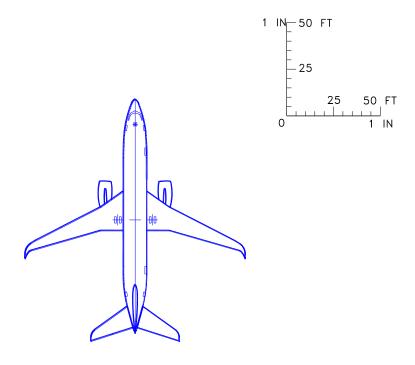
LEGEND

AIR CONDITIONING CARGO DOOR

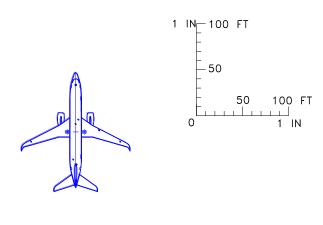
C E F ELECTRICAL

FUEL

G SERVICE DOOR H₂0 POTABLE WATER MLG MAIN LANDING GEAR NOSE LANDING GEAR NG


PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE

FUEL VENT

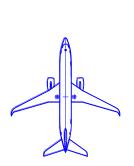

PASSENGER DOOR

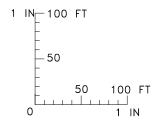
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.12.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-800 with Winglets, 737 BBJ2

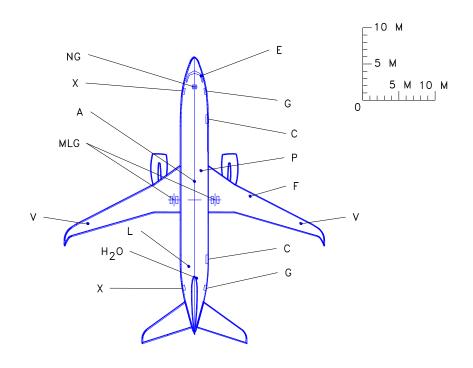
9.12.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-800 with Winglets, 737 BBJ2

NOTE:

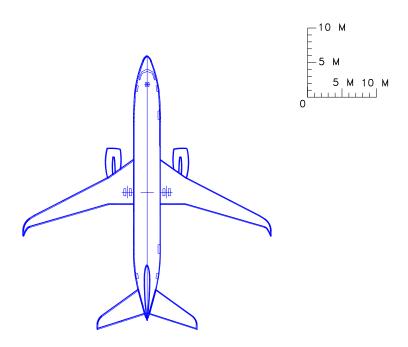

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

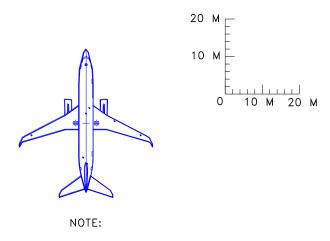

LEGEND

- AIR CONDITIONING
- CARGO DOOR
- Ε ELECTRICAL
- FUEL
- G SERVICE DOOR H₂O POTABLE WATER
- MAIN LANDING GEAR NOSE LANDING GEAR MLG
- NG PNEUMATIC (AIR START)
- VACUUM LAVATORY SERVICE
- FUEL VENT
- PASSENGER DOOR


NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.12.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-800 with Winglets, 737 BBJ2

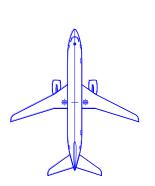

9.12.7 Scaled Drawings – 1:500: Model 737-800 with Winglets, 737 BBJ2

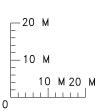

LEGEND

- AIR CONDITIONING CARGO DOOR C E F
- **ELECTRICAL FUEL**
- G SERVICE DOOR H₂0 POTABLE WATER MLG MAIN LANDING GEAR NOSE LANDING GEAR NG
- PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE
- FUEL VENT Χ PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.12.8 Scaled Drawings – 1:500: Model 737-800 with Winglets, 737 BBJ2

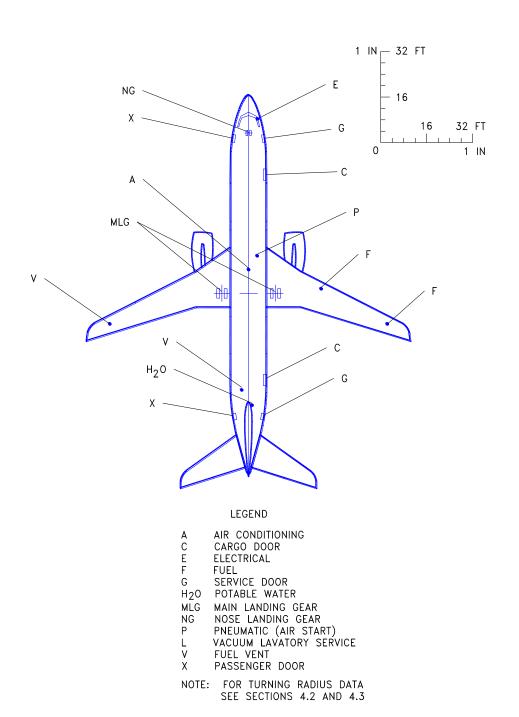
9.12.9 Scaled Drawings - 1:1000: Model 737-800 with Winglets, 737 BBJ2

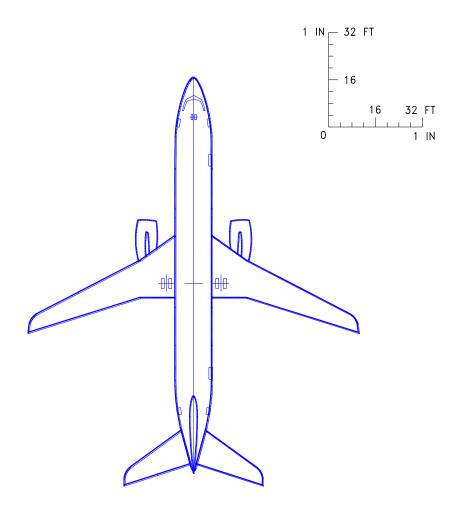

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


LEGEND

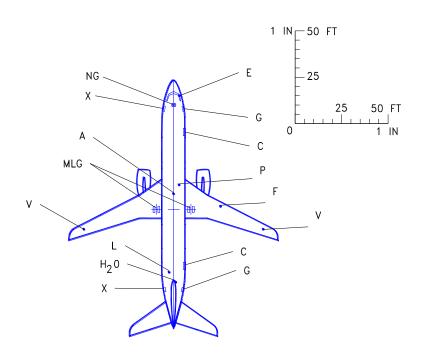
- A AIR CONDITIONING C CARGO DOOR
- E ELECTRICAL
- F FUEL
- G SERVICE DOOR
- H₂O POTABLE WATER
- MLG MAIN LANDING GEAR
- NG NOSE LANDING GEAR
- P PNEUMATIC (AIR START)
- L VACUUM LAVATORY SERVICE
- V FUEL VENT
- X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


9.12.10 Scaled Drawings – 1:1000: Model 737-800 with Winglets, 737 BBJ2

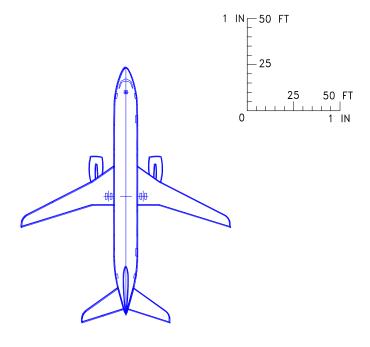


9.13 MODEL 737-900, -900ER

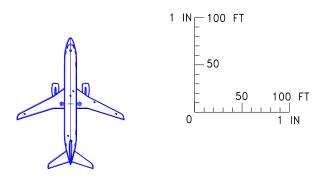

9.13.1 Scaled Drawings - 1 IN. = 32 FT: Model 737-900, -900ER

9.13.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-900, -900ER

9.13.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-900, -900ER


LEGEND

AIR CONDITIONING A C E F GCARGO DOOR **ELECTRICAL FUEL** SERVICE DOOR POTABLE WATER


H₂0 MAIN LANDING GEAR NOSE LANDING GEAR MLG NG PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE FUEL VENT PASSENGER DOOR

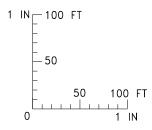
NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.13.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-900, -900ER

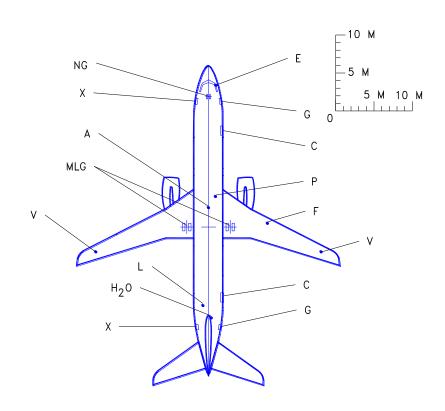
9.13.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-900, -900ER

NOTE:

SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS


LEGEND

- AIR CONDITIONING A C CARGO DOOR
- Ē F ELECTRICAL
- FUEL
- G SERVICE DOOR
- H₂O POTABLE WATER MAIN LANDING GEAR
- MLG NG
- NOSE LANDING GEAR
- PNEUMATIC (AIR START)
- VACUUM LAVATORY SERVICE
- FUEL VENT
- PASSENGER DOOR

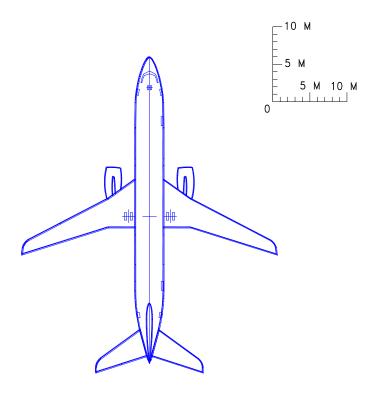

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.13.6 Scaled Drawings - 1 IN. = 100 FT: Model 737-900, -900ER

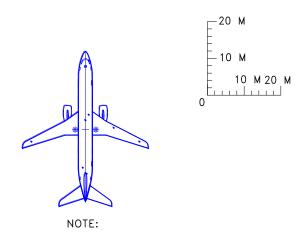
9.13.7 Scaled Drawings – 1:500: Model 737-900, -900ER

LEGEND

AIR CONDITIONING C E CARGO DOOR ELECTRICAL


FUEL

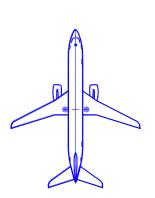
G SERVICE DOOR POTABLE WATER H₂0 MLG MAIN LANDING GEAR NOSE LANDING GEAR NG PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE

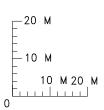

FUEL VENT PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.13.8 Scaled Drawings – 1:500: Model 737-900, -900ER

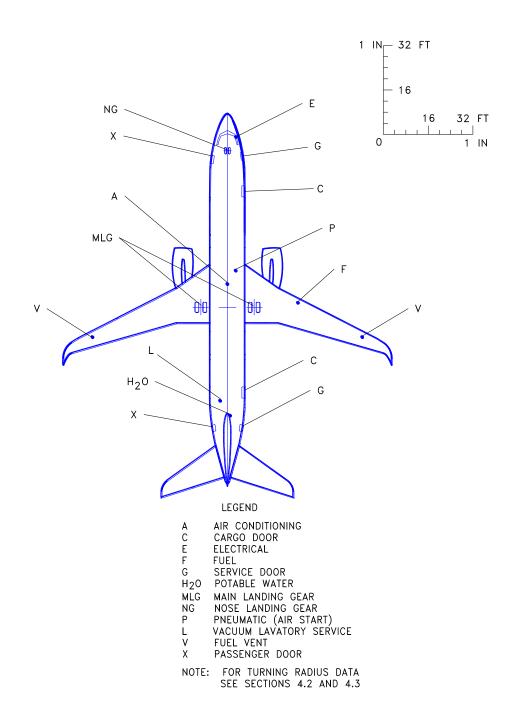
9.13.9 Scaled Drawings - 1:1000: Model 737-900, -900ER

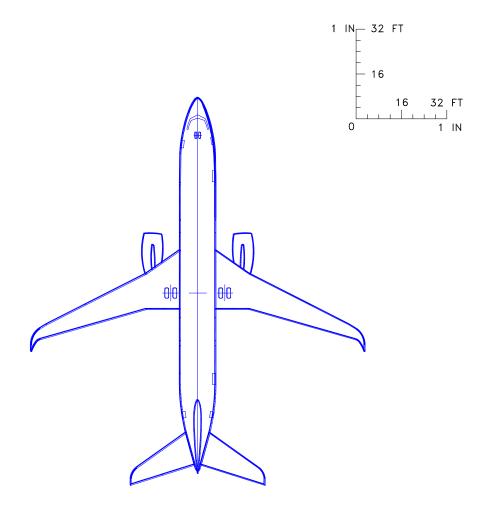



SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

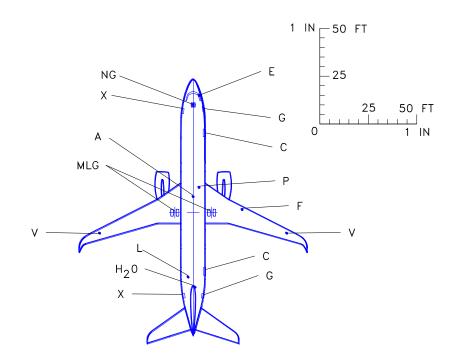
LEGEND

- AIR CONDITIONING C E F CARGO DOOR ELECTRICAL **FUEL** SERVICE DOOR POTABLE WATER G H₂0 MLG MAIN LANDING GEAR NG NOSE LANDING GEAR PNEUMATIC (AIR START) VACUUM LAVATORY SERVICE FUEL VENT PASSENGER DOOR
- NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING
9.13.10 Scaled Drawings – 1:1000: Model 737-900, -900ER



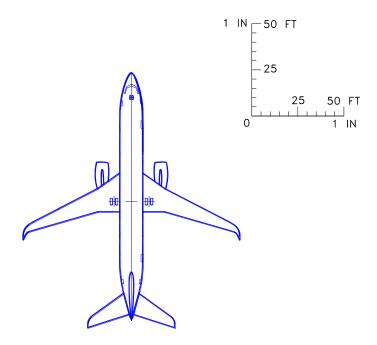
9.14 MODEL 737-900, -900ER WITH WINGLETS


9.14.1 Scaled Drawings – 1 IN. = 32 FT: Model 737-900 with Winglets

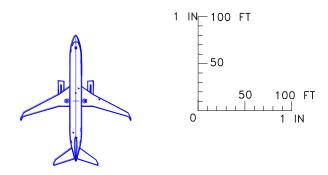
9.14.2 Scaled Drawings – 1 IN. = 32 FT: Model 737-900 with Winglets

9.14.3 Scaled Drawings – 1 IN. = 50 FT: Model 737-900 with Winglets

LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL

G SERVICE DOOR
H2O POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE


V FUEL VENT X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.14.4 Scaled Drawings – 1 IN. = 50 FT: Model 737-900 with Winglets

9.14.5 Scaled Drawings – 1 IN. = 100 FT: Model 737-900 with Winglets

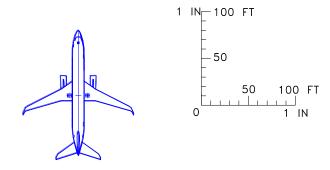
NOTE: SEE CORRESPONDING PAGE FOR 1 IN = 32 FT FOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND

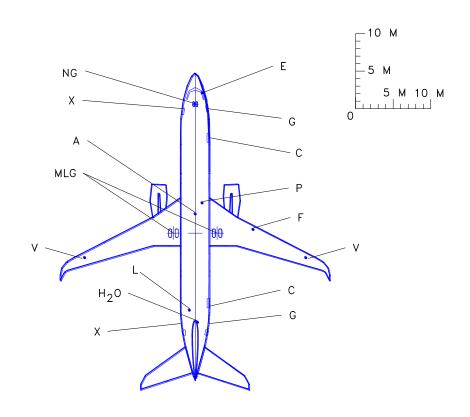
AIR CONDITIONING A C CARGO DOOR Ε ELECTRICAL

FUEL

G SERVICE DOOR H₂O POTABLE WATER MAIN LANDING GEAR NOSE LANDING GEAR мĪС


NG PNEUMATIC (AIR START) Ρ VACUUM LAVATORY SERVICE

٧

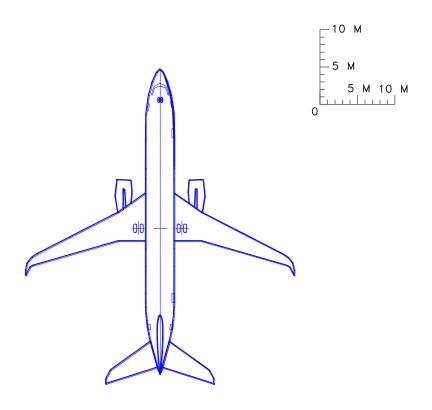

FUEL VENT PASSENGER DOOR Χ

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.14.6 Scaled Drawings – 1 IN. = 100 FT: Model 737-900 with Winglets

9.14.7 Scaled Drawings – 1:500: Model 737-900 with Winglets

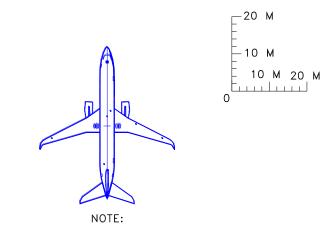
LEGEND


AIR CONDITIONING C E CARGO DOOR ELECTRICAL F FUEL G SERVICE DOOR POTABLE WATER H20 мĹС MAIN LANDING GEAR NOSE LANDING GEAR PNEUMATIC (AIR START) NG Ρ VACUUM LAVATORY SERVICE

L VACUUM LAV

X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3


9.14.8 Scaled Drawings – 1:500: Model 737-900 with Winglets

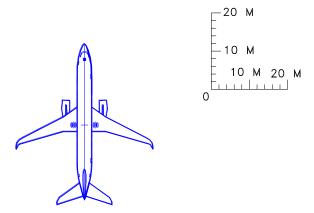
NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING

9-150

9.14.9 Scaled Drawings - 1:1000: Model 737-900 with Winglets

SEE CORRESPONDING PAGE FOR 1 IN = 32 FTFOR IDENTIFICATIONS OF SERVICE POINTS

LEGEND


A AIR CONDITIONING
C CARGO DOOR
E ELECTRICAL
F FUEL
G SERVICE DOOR
H20 POTABLE WATER
MLG MAIN LANDING GEAR
NG NOSE LANDING GEAR
P PNEUMATIC (AIR START)
L VACUUM LAVATORY SERVICE

V FUEL VENT

X PASSENGER DOOR

NOTE: FOR TURNING RADIUS DATA SEE SECTIONS 4.2 AND 4.3

9.14.10 Scaled Drawings – 1:1000: Model 737-900 with Winglets

