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Abstract – Boeing is well known for the aerospace products it 
has produced over its 100-year history. What is not so well 
known is that Boeing played a major role in the development of 
the Finite Element Method, Lanczos Eigenvalue Extraction and 
Craig-Bampton Reduction. These three numerical simulation 
methods revolutionized large system structural dynamic 
analysis when brought together and deployed in commercial 
software packages. Boeing utilizes these methods as the 
foundations of aircraft aeroelastic loads and flutter analysis, 
propulsion structural dynamic analysis and space vehicle and 
satellite coupled loads analysis. Outside of Boeing, these 
methods are commonly applied in automotive vehicle dynamic 
and noise, vibration, and harshness analysis as well as a 
multitude of other industries producing consumer products and 
heavy machinery.  

Index Terms – Finite Element Analysis, Finite Element Method, 
Discrete Stiffness Method, Lanczos Eigenvalue Extraction, 
Craig-Bampton, Component Modal Syntheses 

Acronyms – Automated Component Modal Synthesis (ACMS), 
Automated Multi-Level Substructuring System (AMLS), 
Boeing Computer Services (BCS), Boeing Commercial Airplane 
(BCA), Craig-Bampton (C-B), Discrete Stiffness Method 
(DSM), Degree of Freedom (DOF), Engine Vibration Related 
Noise (EVRN), Fan Blade Out (FBO), Finite Element Analysis 
(FEA), Finite Element Method (FEM), Intellectual Property 
(IP), International Traffic in Arms Regulations (ITAR), NASA 
Structural Analysis (NASTRAN), Noise Vibration and 

Harshness (NVH), Output Transformation Matrix (OTM), 
Request For Proposal (RFP), Senior Technical Fellow (STF), 
Graphical User Interface (GUI). 

I. INTRODUCTION

As Boeing celebrates its centennial, it is appropriate to 
reflect upon Boeing’s impact on the development and 
deployment of several numerical solution methods pervasive 
in the field of structural dynamics. In particular, the 
convergence of the Finite Element Method, Craig-Bampton 
Reduction and the Lanczos Eigenvalue extraction method 
formed a foundation that has improved and accelerated the 
development and performance of virtually every modern 
Boeing airplane along with a multitude of consumer products 
familiar to everyone. For example, consider the modern 
automobile. Today’s automobiles have superb handling and 
are extremely quiet compared to vehicles 30 years ago. The 
comfortable environment of a modern automobile is largely 
due to the industry’s focused efforts on Noise, Vibration, and 
Harshness (NVH) analysis as a means to improve their 
product and sales. At the heart of each NVH analysis is a 
multi-million DOF finite element vibro-acoustic model. The 
low to mid frequency acoustic and structural responses 
require that thousands of frequencies and mode shapes be 
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calculated. Without some form of substructuring and 
dynamic reduction, runtimes are exorbitant. The Automated 
Multi-Level Substructuring (AMLS) method [20] and 
Automated Component Modal Synthesis (ACMS) method 
[21] are routinely applied to the NVH analyses yielding
results in hours instead of days or weeks. At the core, these
methods utilize component modal reduction and synthesis
techniques linked back to the Craig-Bampton technique that
requires an eigenvalue/ eigenvector calculation/ extraction
on the substructure and this is typically done with the
Lanczos method due to its proven accuracy and
performance. In the following sections, we look into the role
Boeing played in the inspiration, development, and
deployment of these numerical solution methods and
summarize how these methods are used both within Boeing
and outside of Boeing in the development of multitudes of
products.

II. BOEING AND THE FINITE ELEMENT METHOD

Today within Boeing, the finite element method is 
pervasive with several thousand engineers utilizing FEA on a 
regular basis. Concerning structural analysis, it is central to 
loads and dynamics analysis as well as stress analysis and 
testing. It turns out that it was Boeing’s need and desire to 
improve flutter prediction that led to Boeing’s leading role in 
the development of the finite element method. 

Who invented finite elements? In the publication “The 
Origins of the Finite Element Method” [1], Carlos Felippa 
states: 

“Not just one individual, as this historical sketch will 
make clear. But if the question is tweaked to: who created 
the FEM in everyday use? there is no question in the 
writer’s mind: M. J. (Jon) Turner at Boeing over the 
period 1950–1962. He generalized and perfected the 
Direct Stiffness Method, and forcefully got Boeing to 
commit resources to it while other aerospace companies 
were mired in the Force Method. During 1952–53 he 
oversaw the development of the first continuum based 
finite elements.” 

Figure 1: Jon Turner 

Jon Turner was the supervisor of the Structural Dynamics 
Unit at Boeing in Seattle. In the early 1950’s, with the 
growing popularity of jet aircraft, and with demands for high 

performance military aircraft, delta wing structures presented 
new modeling and analysis problems. Existing unidirectional 
(that is, beam models) models did not provide sufficient 
accuracy. Instead, two-dimensional panel elements of 
arbitrary geometry were needed. 

At this time, Boeing had a summer faculty program, 
whereby faculty members from universities were invited to 
work at Boeing over the summer. In the summers of 1952-
53, Jon Turner invited Ray Clough from the University of 
California at Berkley, and Harold Martin from the University 
of Washington to work for him on a method to calculate the 
vibration properties for the low-aspect ratio box beam. This 
collaboration resulted in the seminal paper by Turner, 
Clough, Martin and Topp in 1956 [2] which summarized a 
procedure called the Direct Stiffness Method (DSM) and 
derived a constant strain triangular element along with a 
rectangular membrane element. (Topp was a structures 
engineer at the Boeing Airplane Company, Wichita 
Division.) 

It is apropos to hear this story in the words of Clough. The 
following passage is from a speech by Clough transcribed 
and published in 2004. [3]: 

“When I applied for the Boeing Summer Faculty job in 
June 1952, I was assigned to the Structural Dynamics Unit 
under the supervision of Mr. M. J. Turner. He was a very 
competent engineer with a background in applied 
mathematics, and several years of experience with Boeing. 
The job that Jon Turner had for me was the analysis of the 
vibration properties of a fairly large model of a ‘delta’ 
wing structure that had been fabricated in the Boeing 
shop. This problem was quite different from the analysis of 
a typical wing structure which could be done using 
standard beam theory, and I spent the summer of 1952 
trying to formulate a mathematical model of the delta 
wing representing it as an assemblage of typical 1D beam 
components. The results I was able to obtain by the end of 
the summer were very disappointing, and I was quite 
discouraged when I went to say goodbye to my boss, Jon 
Turner. But he suggested that I come back in Summer 
1953. In this new effort to evaluate the vibration 
properties of a delta wing model, he suggested I should 
formulate the mathematical model as an assemblage of 2D 
plate elements interconnected at their corners. With this 
suggestion, Jon had essentially defined the concept of the 
finite element method.  

“So I began my work in summer 1953 developing in-plane 
stiffness matrices for 2D plates with corner connections. I 
derived these both for rectangular and for triangular 
plates, but the assembly of triangular plates had great 
advantages in modeling a delta wing. Moreover, the 
derivation of the in-plane stiffness of a triangular plate 
was far simpler than that for a rectangular plate, so very 
soon I shifted the emphasis of my work to the study of 
assemblages of triangular plate ‘elements’, as I called 
them. With an assemblage of such triangular elements, I 
was able to get rather good agreement between the results 
of a mathematical model vibration analysis and those 
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measured with the physical model in the laboratory. Of 
special interest was the fact that the calculated results 
converged toward those of the physical model as the mesh 
of the triangular elements in the mathematical model was 
refined.” 

While Jon Turner’s application for DSM was vibration 
calculations to facilitate flutter and dynamic analysis, Ray 
Clough realized that DSM could be applied to stress 
analysis. In 1960, Clough penned the famous paper titled 
“Finite Elements for Plane Stress Analysis” which both 
adapted the DSM method for stress analysis and 
simultaneously coined the phrase “Finite Element.” [4].   

Besides the work done by those directly affiliated with 
Boeing, many others contributed to the development and 
popularization of today’s modern finite element method. In 
particular, J.H. Argyris, O.C. Zienkiewicz, and E.L. Wilson 
should be credited with their huge contributions in 
developing and broadening the scope of the finite element 
method beyond aerospace applications. References1, 5 and 6 
provide comprehensive historical background on the 
development and evolution of the finite element method.  

References 2, 4 and 17 can be considered seminal papers 
that laid out the foundation of the modern finite element 
method: 

• Reference 2:   M. J. Turner, R. W. Clough, H. C.
Martin, and L. J. Topp, “Stiffness and 
Deflection Analysis of Complex Structures,” J. 
Aero. Sci., 23, pp. 805–824, 1956. 

• Reference 4:  R. W. Clough, “The finite element
method in plane stress analysis,” Proceedings of 
the Second ASCE Conference on Electronic 
Computation, Pittsburgh, PA, 1960 

• Reference 17:  J. H. Argyris and S. Kelsey, Energy
theorems and structural analysis, Aircraft Engrg., 
Vols. 26 and 27, Oct. 1954 to May 1955 

Of significance is that Argyris was a consultant to Boeing 
[1] in the early 1950’s and continued to collaborate with 
Boeing well into the 1960’s [17]. Both Turner and Topp 
were Boeing engineers, and Clough and Martin were 
affiliated with Boeing via the summer faculty program. 
Therefore, it is evident that Boeing, both inspired, and was 
directly involved in, the research and development that 
directly led to today’s modern finite element method. 

Dr. Rodney Dreisbach, (Boeing STF, Retired 2015) 
summarized Jon Turner’s significance in the FEA 
development and deployment within Boeing’s ATLAS 
program nicely. He wrote about this in the BCA Structures 
Core “Life@Structures Blog” on November 14, 2013. His 
closing paragraph reads:  

“In guiding the not-so-obvious steps leading up to the 
creation of the FEA Method, Jon Turner has been 
recognized as a scientist, an engineer, a mathematician, 
and an innovator. Furthermore, he was a visionary as 
exemplified by his continued leadership in addressing 
more advanced flight vehicles such as advanced composite 

structures for a Mach 2.7 supersonic cruise arrow-wing 
configuration in 1976, and his continued support and 
advocacy of Boeing’s development of the integrated 
multidisciplinary structural design and analysis system 
called ATLAS. The ATLAS System was a large-scale finite-
element-based computing system for linear and nonlinear, 
metallic and composite, structural optimization, including 
the ply stackup of advanced composite structures. The 
engineering disciplines represented by the System 
included statics, weights, dynamics, buckling, vibrations, 
aeroelasticity, flutter, structural optimization, 
substructuring, acoustics, nonlinear mechanics, and 
damage tolerance. Its architecture was comprised of 
separate modules for the various technical disciplines, all 
of which shared a common data management system. The 
System also included several advanced matrix equation 
solvers and eigensolvers, as well as state-of-the-art 
substructuring techniques. Substructured interactions 
could be considered as being static, or as dynamic using 
either a modal synthesis or branch modes approach.” 

Of significance in the above description of ATLAS, is that 
it closely describes NASTRAN as well. This is not a 
coincidence. The roots of both NASTRAN and ATLAS date 
back to the mid–late 1960’s. Boeing was the industrial center 
of finite element analysis and was ahead of the other major 
aerospace companies in recognizing the superiority of the 
displacement method and deploying that method within 
Boeing’s precursors to ATLAS.  

In 1964, NASA recognized that the future of structural 
analysis, particularly for complex aerospace structures, was 
the finite element method. At this time, NASA created a 
committee composed of representatives from each NASA 
center and chaired by Tom Butler (considered by Dr. 
Richard MacNeal to be the Father of NASTRAN). The 
committee was commissioned to investigate the state of 
analysis in the aerospace industry and to find an existing 
finite element program worth recommending to all NASA 
centers. The first committee action was to visit the aircraft 
companies that had done prominent work in finite element 
analysis. In the end, this committee concluded that no single 
computer program “incorporated enough of the best state of 
the finite element art to satisfy the committees hopes” and 
recommended that NASA sponsor development of its own 
finite element program [18]. This program would be called 
NASTRAN which is an acronym for NAsa STRuctural 
ANalysis. 

In July, 1965, NASA issued the RFP for NASTRAN. The 
MacNeal-Schwendler Corporation (MSC) was not 
recognized as a significant or large enough entity in the finite 
element world, and so it partnered with Computer Sciences 
Corporation as the lead in its response to the RFP. Boeing 
considered the RFP, but in the end did not submit a proposal.  

Had Boeing participated, according to Dr. MacNeal (co-
founder of the MacNeal-Schwendler corporation), the 
NASTRAN contract would have certainly gone to Boeing 
since Boeing was the clear industrial leader in the finite 
element method.  

BOEING TECHNICAL JOURNAL 
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In the mid-to-late 1990’s, as an employee of MSC, the 
author brought Dr. MacNeal to Boeing’s Renton engineering 
facility where Dr. MacNeal spoke to BCA’s team of finite 
element analysis experts. Dr. MacNeal began his talk by 
thanking Boeing for not participating in the NASTRAN 
RFP, and he went on to tell the story of how MSC essentially 
won the eventual NASTRAN contract due to Boeing’s 
decision to not participate. 

Dr. MacNeal writes that Boeing departed NASA’s 
NASTRAN Bidders’ Conference after being told that they 
could not have an exception to NASA’s requirement that all 
work be done on NASA’s computers [18]. The NASA 
purchasing agent, Bill Doles, said that an exception could 
not be granted because NASA had determined that their 
computers had a lot of excess capacity and it would be 
uneconomical to pay the contractors for use of their 
computers. Boeing responded that they would carry the costs 
of their own computers as overhead and not charge NASA. 
Bill Doles responded that this was unacceptable since most 
of Boeing’s work was with the government, and the 
government would have to pay the overhead anyway. After 
this exchange, at the next break, the Boeing team abruptly 
departed the conference. 

Nonetheless, Boeing had likely influenced the RFP. The 
RFP was essentially a collection of what NASA perceived to 
be the state of the art in FEA that it gathered from its studies 
of the various aerospace FEA codes. The fact that 
NASTRAN, (developed according to the requirements of the 
RFP), both architecturally and capability-wise are closely 
paralleled  by ATLAS may not be due to pure coincidence, 
but perhaps due to the NASA incorporating Boeing’s “state 
of the finite element art” into the RFP. 

III. CRAIG-BAMPTON COMPONENT MODE REDUCTION AND 
SYNTHESIS 

As mentioned in the last section, ATLAS included several 
“state-of-the-art substructuring techniques.” One of these 
techniques was Component Mode Reduction. Component 
Mode Reduction is a technique for reducing a finite element 
model of a component down to a set of boundary matrices 
that approximately represent the dynamic characteristics of 
the component. The accuracy of the approximation is 
generally improved by increasing the number of component 
modes retained during the reduction process. The reduced 
component is generically referred to as a substructure but 
currently the term superelement, coined by commercial FEA 
software providers, is more prevalent. 

There are a litany of component mode reduction and 
reduced order modeling techniques, but one technique stands 
out due to widespread usage and deployment in the popular 
commercial FEA packages (for example, MSC Nastran, NX 
Nastran, ABAQUS and ANSYS). This technique is the 
“Craig-Bampton” (C-B) component mode reduction method 
and this method is applied to a wide variety of dynamic 
simulations not only in aerospace, where it was conceived, 
but also in virtually every industry where structural 
dynamics has a large influence on the product design and 
performance, especially the automotive industry. [19] 

Within Boeing, the C-B technique is central to the Boeing 
Aeroelastic Process (BAP) that is used for flight loads and 
flutter analysis. Of significant importance to the flutter 
community is that the C-B methodology enables rapid 
frequency variation studies as well as insertion and tailoring 
of assumed modes. The C-B method is also extensively 
applied in propulsion dynamics for Windmilling, Fan Blade 
Out (FBO) loads and Engine Vibration Related Noise 
(EVRN) analyses.  

The EVRN analysis is a coupled vibro-acoustic analysis 
where C-B reduction is performed on both the airframe and 
acoustic fluid model and reduced down to the interface with 
the engine. Of significance, is that this C-B superelement 
package can be delivered to the engine manufacturers in the 
form of boundary matrices and output transformation 
matrices (OTMs), thereby preserving all Boeing IP, while 
enabling the engine companies to determine how different 
engine bearing and mount designs effect the interior cabin 
noise.  

C-B reduction with OTMs is also central to Coupled 
Loads Analysis in Boeing’s Space spacecraft industry. 
Coupled Loads Analysis, in this context, is essentially the 
dynamic structural analysis of the complete space structure. 
For example, in the case of a rocket or launch vehicle, you 
also have the cargo (for example, a satellite). The various 
components of the launch vehicle and cargo are frequently 
built by different companies neither company can generally 
have visibility of the other’s finite element models. 
However, the dynamics of the entire system must be 
analyzed. This is facilitated by use of superelements 
typically created using C-B reduction and OTM’s similar to 
what was described with the propulsion EVRN analysis. 
This process enables all parties to generate the detailed data 
necessary to analyze and design their structure while 
preserving any IP, export, and ITAR data requirements. 

Outside of Boeing, it was summarized in the Introduction 
how the automotive industry applies FEA with C-B 
reduction to their NVH dynamic analyses of their vehicles 
and sub-systems. Another class of dynamic analysis 
performed in the automotive industry, and across virtually 
every other industry (including aerospace) that analyzes 
dynamic systems is Multi-Body Dynamic (MBD) 
simulation.  

MBD is a numerical simulation method in which systems 
are composed as assemblies of rigid and/or elastic bodies. 
Connections between the bodies are modeled with kinematic 
joints or linear/nonlinear springs/bushings/dampers. If inertia 
(mass) is eliminated, and all bodies are rigid links with 
kinematic constraints, then the multibody analysis reduces 
down to a kinematic mechanism analysis. However, when 
mass is included, the analysis is inherently dynamic.   

For the dynamic case with flexible bodies, the challenge is 
to bring the flexibility of each body into the system 
simulation in an accurate and efficient manner. The standard 
methodology used to create the “flex body” is to perform a 
C-B reduction where the body is reduced down to the 
interface DOFs that connect the body to its surrounding 
joints. Additional transformations may be done to put the 
interface matrices in a form compatible with the formulation 



BOEING TECHNICAL JOURNAL 

5 

of the MBD software system. However, the first step is 
typically the C-B reduction. All the popular commercial 
finite element packages have the ability to generate “flex 
bodies” of components from finite element models of the 
component and the C-B method is used to create the reduced 
mass and stiffness matrices that are processed to generate the 
flexible body. (There are other techniques beyond C-B that 
can be used to generate flex bodies, particularly when 
nonlinearities of the component model are needed. However, 
for the linear cases most prevalent today, the C-B method is 
pervasive.) 

Therefore, at this point, we have seen that Boeing had a 
role with the inspiration and development of the finite 
element method, and we have discussed how the C-B 
reduction technique is prevalent across industries performing 
dynamic structural analysis. The C-B reduction technique 
was also one of the “state-of-the-art substructuring 
techniques” present in Atlas.   

The seminal paper on the C-B method was published as 
“Coupling of Substructures for Dynamic Analysis” in July 
1968 in the AIAA Journal [9] by Roy Craig of the University 
of Texas and Mervyn Bampton, a Boeing Sr. Structures 
Engineer. Hence the name of the method “Craig-Bampton.”  

Figure 2: Roy Craig 

Of note is that [9] describes both the C-B reduction 
technique and synthesis of the multiple C-B reduced parts to 
generate an accurate system level dynamic model of 
substantially reduced order enabling both accurate and 
efficient calculation of dynamic characteristics of highly 
coupled structures. This AIAA paper has more than 1100 
subsequent journal citations since publication demonstrating 
the impact the C-B methodology on subsequent applications 
and research. Of course, the motivation for this development 
within Boeing and Atlas was for application of Flutter and 
Coupled Dynamic Loads analysis of highly redundant space 
vehicle and airframe structures.  

Also of note is that this very same paper was earlier 
published within Boeing in 1966 as document D6-15509 
[10]. (This document is available electronically from 
library.web.boeing.com.) This document was prepared by R. 
R. Craig, supervised by M. C. C. Bampton and approved by 
L.D. Richmond. This work took place when Craig was 
employed by Boeing as part of the summer faculty program. 
[19] 

Therefore, just as we saw substantial collaboration 
between Boeing and leading researchers in the development 
of the finite element method, we see a similar collaboration 

with Roy Craig in inspiration, development, and deployment 
of the Craig-Bampton method for Boeing’s dynamic analysis 
needs. The methodology is most credited to Roy Craig who 
spent his 40 years at the University of Texas specializing in 
development of computational and experimental methods of 
flexible substructures. However, the need by Boeing for 
efficient and accurate coupled dynamic analysis methods 
inspired and accelerated the development that became the 
Craig-Bampton technique and 50 years later, this Craig-
Bampton method is omnipresent! [19] 

. 

IV. THE LANCZOS METHOD OF EIGENVALUE EXTRACTION

The natural frequencies of a structure may be the most 
fundamental dynamic characteristic of a structure. 
Dynamicists use the natural frequencies and associated mode 
shapes to understand dynamic behavior and interplay of 
components in a dynamic system. The computation of a 
structure’s or substructure’s natural frequencies and mode 
shapes is of fundamental importance to the dynamicist. 

From a mathematical perspective, the calculation of 
natural frequencies and mode shapes is an eigenvalue 
extraction problem in which the roots (eigenvalues) and 
associated mode shapes (eigenvectors) are computed from 
the dynamic equation of motion with the assumption of 
harmonic motion while neglecting damping and applying no 
loading.  

Eigenvalue/Eigenvector calculation is also a requirement 
of the C-B reduction method. The C-B method uses the 
natural frequencies and mode shapes of a component 
constrained at its interface to generate the dynamic portion 
of the reduced stiffness, mass and loads matrices. Therefore, 
a robust and efficient C-B reduction requires a robust and 
efficient eigenvalue/eigenvector calculation. 

The Lanczos eigenvalue extraction method is by far the 
most prevalent eigenvalue extraction method used today in 
the popular finite element programs for vibration and 
buckling modes. Today, the AMLS and ACMS methods are 
promoted as the state-of-the-art eigenvalue/extraction 
methods for the largest models commonplace in the 
automotive industry.  

While AMLS and ACMS can easily outperform the 
Lanczos method on large models, they are essentially 
automated methods of substructuring the mathematical finite 
element model utilizing enhanced C-B reduction for an 
accurate approximation of each substructure. When these C-
B reduced substructures are assembled, a final system level 
eigenvalue extraction is performed to compute approximate 
system level modes. 

This complete substructuring, assembly, and solution 
process is captured in the AMLS and ACMS methods. 
However, it is typically the Lanczos method with C-B 
reduction that is utilized to form the reduced approximate 
system that was solved to obtain the approximate system 
frequencies and mode shapes.  

The Lanczos method is the bread and butter of 
dynamicists, whether used directly for computation of 
natural frequencies and mode shapes, or used indirectly with 
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the AMLS/ACMS and similar methods that are based upon 
automated component modal synthesis of very large systems. 

Prior to the commercial availability of the Lanczos 
method in the mid 1980’s, dynamicists spent a large amount 
of thought and time in determining how to reduce a model 
down to a size that could be efficiently solved with their 
finite element program and yield an accurate, albeit 
approximate solution. This is precisely why the C-B and 
other dynamic reduction techniques were created. However, 
the underlying weakness of all these methods was an 
accurate, efficient, and robust eigenvalue extraction method 
for the reduction process.  

From a high level, there were essentially two families of 
eigenvalue extraction methods from which a dynamicist 
could choose: 1) Iterative based methods such as Inverse 
Power and Subspace Iteration, and 2) Tridiagonal methods 
such as the Householder-QR method. The iterative methods 
were relatively fast and efficient, but suffered from accuracy 
issues and struggled with closely spaced and large numbers 
of roots. The Tridiagonal methods were relatively robust and 
could accurately solve for all the roots of a system. 
Unfortunately, they also required enormous amounts of 
memory and were very inefficient making them impractical 
for all but the smallest models. The Lanczos method gained 
instant popularity because it could solve large models both 
accurately and efficiently, eliminating the tedious reduction 
process for a large variety of dynamic analyses. 

In the 1960’s-1980’s substructuring and component mode 
reduction were primarily performed to enable computation 
of a system’s modes when the system could not be solved 
without reduction on the computers of the time due to 
memory, disk, and time constraints. After the commercial 
availability of the Lanczos method, substructuring and 
component mode reduction were primarily performed for 
other reasons, such as to enable efficient frequency variation 
studies (as is the case with BCA’s standard flutter analysis 
process), or to generate reduced matrix level models of 
components that can be shared with a third party to assemble 
into their system.  

Only in the last 15 years with the advent of High 
Performance Computing (HPC) systems, have the 
AMLS/ACMS methods brought us back to substructuring as 
the norm for solving the largest eigenvalue problems because 
parallelization and improved performance is more easily 
enabled using a substructured solution process.  

So what does Boeing have to do with the Lanczos 
method? It is twofold. First, the method was invented by 
Cornelius Lanczos. He published the method in 1950 while 
working at the National Bureau of Standards [11, 14]. 
However, prior to joining the National Bureau of Standards, 
Lanczos was employed with the Boeing Aircraft Company in 
Seattle from 1946-49 where he was inspired to study and 
improve matrix methods and numerical eigenvalue 
extraction of linear systems. Shortly after leaving Boeing, he 
completed the formulation of what we now call the Lanczos 
eigenvalue extraction method [12, 13]. 

Cornelius Lanczos was a colleague of Albert Einstein, and 
on December 22, 1945, he penned this passage in a letter to 
Einstein:  

”In the meantime, my unfavorable situation here at the 
University has changed for the better. I have been in 
cooperation with Boeing Aircraft in Seattle, Washington 
for almost two years. Our relationship has developed in 
such a way that the company offered me a permanent 
position. It is somewhat paradoxical that I with my 
scientific interest can always get on as an applied 
mathematician.” [13] 

Figure 3: Cornelius Lanczos at his desk at Boeing Plant 1, 
Seattle, WA 

More insight into Lanczos’ inspiration from his tenure at 
Boeing is obtained in his recorded interview by the 
University of Manchester in 1972 [12]. There are several 
references to his time at Boeing where among other things, 
he mentions:  

“of course this eigenvalue problem interested me a great 
deal because in Boeing one encountered this eigenvalue 
problem all the time and the traditional methods, they give 
you – it was easy enough to get asymptotically the highest 
eigenvalue, but the question is how do you get all the 
eigenvalues and eigenvectors of a matrix in such a way 
that you shouldn’t lose accuracy as you go to the lower 
eigenvalues… I knew of course from theoretical physics 
that eigenvalues and eigenvectors, I mean wave 
mechanics, everything, is eigenvalues and eigenvectors. 
Only in this case it was numerical, and in Boeing when I 
was frequently asked to give lectures, one of the lecture 
topics was matrices and eigenvalues and linear systems so 
that I was familiar in a theoretical way of the behavior of 
linear systems, particularly large linear systems.”  

After joining the National Bureau of Standards, Lanczos 
had the opportunity to complete the formulation of his 
method based upon his experience at Boeing. He applied it 
on an analog computer available to him, but in the end, he 
doubted the practicality of his method. In reference 12, he 
tells this story:  

“And I will never forget when I think it was an 8x8 matrix 
and the eigenvalues varied in something like 106. I mean 
the highest to the lowest, and I expected that the highest 
eigenvalues would come out to 10 decimal places and then 
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we gradually lose accuracy but actually all the 
eigenvalues came out to 10 decimal places. I mean this 
was a tremendous thrill to see that, that we didn’t lose 
anything, but of course it had to require the careful 
reorthogonalization process which makes my method 
practically, let’s say, of less value or perhaps even of no 
value.” 

It is somewhat entertaining that the roots of the de facto 
standard eigenvalue extraction method for nearly 30 years 
were thought by its inventor to be “of less value, or perhaps 
even no value.” Of course, by Lanczos’ own admission, the 
method was difficult to apply in practice. However, the 
significance of the Lanczos method in maintaining accuracy 
was not lost on the mathematical community and over the 
years, many mathematicians studied the method and 
searched for numerical methodologies that would make the 
method practical and of high value. An in-depth historical 
development of the Lanczos method is beyond the scope of 
this writing. However, this leads us to Boeing’s second point 
of influence on the Lanczos method: The development and 
deployment of the first robust commercially viable 
implementation of the Lanczos method.   

V. BOEING COMPUTER SERVICES AND BCSLIB 

The late 1960’s is a significant period for Boeing as well 
as for finite element analysis, numerical computing, and 
mainframe computing data centers. At this time, Boeing had 
just launched the 747 in 1969 and was about to enter the big 
“Boeing Bust” which saw its employment drop from 
>100,000 down to under 40,000 by the end of 1971. At the 
same time, within Boeing, this bust is perhaps responsible 
for the consolidation of two largely disconnected Boeing 
math groups: one on the military side and one on the 
commercial side. In 1970, Boeing Computer Services (BCS) 
was formed and these two math groups were brought 
together under the BCS organization [15]. 

By the 1980’s, BCS had both a mature data center where 
time was leased on Boeing computers to run commercial 
applications like NASTRAN and ANSYS. The expertise of 
the math group resulted in the establishment of a software 
group that built and licensed the math library BCSLIB-ext as 
well as developed the systems and controls software Easy5 
(the “-ext” version of BCSLLIB was licensed externally. 
BCSLIB was used internally).  

During the 1980’s and early 1990’s the BCS 
math/software team had a major impact on solutions of large 
linear static and dynamic systems. Notably, they were 
directly responsible for the first significant robust and 
efficient Lanczos method deployed in a commercial FEA 
package. In 1985, The MacNeal-Schwendler Corporation 
(MSC) released Nastran V65 with Boeing’s Lanczos 
eigensolver [22] and in the decade following, similar 
implementations were deployed in most of the other popular 
finite element packages. 

The major players on the Boeing side were John Lewis, 
Horst Simon, Roger Grimes, and their manager Al Erisman. 
Louis Komzsik, from MSC also played a major role. Louis 
recognized the impact the Lanczos method would have if 
implemented robustly. He convinced MSC to fund Boeing to 
bring the Lanczos method to fruition in MSC Nastran. Louis 
was a perfectionist and drove the Boeing team to handle 
everything that could break so as to make it as bomb-proof 
as possible.  

Figure 4: John Lewis, Horst Simon and Roger Grimes 

Figure 5: Louis Komzsik 

Taking the Lanczos method from an unstable, impractical 
methodology to a highly practical, robust and efficient 
methodology was the result a many researchers and the 
coalescence of several key break-throughs. The summary, as 
provided to the author during an interview with John Lewis 
in May 2016 is as follows:  The Lanczos algorithm in 
Boeing’s BCSLIB code combined work from five PhD 
theses with critical industrial support. The key contributions 
to efficiency are: 

1) Block algorithms (2 Stanford PhD theses – Richard
Underwood, John Lewis))

2) Stability correction only as needed (2 Berkeley PhD
theses – David Scott, Horst Simon, part of one of the
Stanford theses -- Lewis)

3) Shifting (Swedish PhD thesis – Thomas Ericsson)
4) Integrating all of these with a smart algorithm for

choosing shifts (BCS – Grimes, Lewis & Simon)

The “creative break through,” according to John Lewis, 
emerged over a couple of pints with David Scott while in a 
pub in Reading, England in 1980 where they discussed 
Ericsson’s work on shifting and came up with a plan to 
improve upon earlier Lanczos method implementations. 
However, they could not get funding to implement the plan, 
so it sat for several years. In John Lewis’s words, Louis 
Komzsik emerged as the “Guardian Angel” when he brought 
forward the funding from MSC to implement the plan in 
MSC Nastran. Louis was Hungarian as was Lanczos, so he 
had great faith in his countryman’s idea!  

Besides the Lanczos component, the other major thrust of 
BCSLIB was the sparse direct linear equation solver. This 
solver provided a substantial performance boost in solution 
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of large linear systems and played a significant role in 
Lanczos performance. Within the Lanczos implementation, a 
series of linear solutions (matrix decompositions) takes place 
as the algorithm searches for the eigenvalues. Maximum 
performance is dependent on minimizing the number of 
decompositions. This requires algorithms for selection of 
good trial eigenvalues along with transformations to find 
both closely space roots and widely separated roots 
efficiently. (What is described here is the “shifting” and 
“smart algorithm for choosing shifts” mentioned above.)  

The work of the BCS math team cannot be overstated 
when it is recognized that 30–35 years after their heroic 
efforts, the Lanczos method is still prominent in the popular 
commercial FEA packages. We attribute much of the 
performance improvement in finite element solutions to 
computing hardware improvements. However, in the late 
1980’s, between the Lanczos and Sparse Solver methods, 
engineers realized order of magnitude gains in solution 
performance independent of any hardware improvements. 
These two performance improvements meant that many 
models that had previously required substantial 
substructuring and complex dynamic reduction could now be 
solved directly with the Lanczos method.  

Also of significance is that this Boeing team, along with 
Cray went on to win the 1989 Society of Industrial and 
Applied Mathematics (SIAM) Gordon Bell Award. They 
received their award specifically for achieving record 
performance with their implementation of a general sparse 
matrix factorization on an 8-processor Cray Y-MP computer. 
This Sparse Matrix Solver development was another great 
effort that found its way into the commercial FEA codes that 
contributed to both Lanczos efficiency and solution 
efficiency of linear systems of equations.  

In closing this section, the overall contribution Al Erisman 
made, should be noted. Erisman managed and directed the 
math group from 1975 until his retirement in 2001. 
According to John Lewis, “Al Erisman created the ethos of 
the Boeing Math Group, which strongly valued academic-
industrial collaboration.” Were it not for Erisman, the 
industrial collaboration between MSC and Boeing may never 
have taken place. 

VI. CONCLUSION

The finite element method was invented roughly 60 years 
ago. Craig-Bampton reduction was invented roughly 50 
years ago and the modern Lanczos and Sparse solver 
methods were deployed into commercial FEA packages 
roughly 30 years ago. Virtually every Boeing product 
created since the 1950’s relied significantly in whole or in 
part on these technologies. The same can be said outside of 
Boeing where multitudes of consumer products ranging from 
toys to automobiles are engineered with significant 
application of these technologies. In many cases, engineers 
are utilizing these technologies today within modern GUI’s 
with no idea of the underlying solution methods and 
algorithms at play. The fact that after multiple decades, these 
technologies persist, albeit in often simpler and automated 

implementations, is a testament to the significance of these 
methods. Moreover, while Boeing did not solely invent any 
of these technologies, Boeing’s need to engineer some of the 
most complex and high performance structures, had a 
tremendous influence on the development and eventual 
deployment of these methods. We feel and see the effects of 
these technologies in the products all around us today. As we 
celebrate Boeing’s Centennial, it is appropriate to not only 
applaud our predecessors for the impact the products they 
engineered had on our society, but also applaud the 
engineers and mathematicians at Boeing who contributed to 
solution methods and algorithms that are routinely applied 
outside of Boeing to the development of the superb products 
that grace our society today.  

It is also fitting to mention that on the same day this 
conclusion was penned, the author received an assignment to 
generate reduced dynamic models for the 777-9X folding 
wing tip. The author will utilize the aeroelastic finite element 
model along with C-B reduction and Lanczos eigenvalue 
extraction to form the flexible body representation of the 
airframe and folding wing tips. These reduced dynamic 
models will be integrated into the external controls multi-
body dynamic system model. Therefore, the work of Boeing 
engineers/mathematicians Turner, Bampton, Lanczos, Lewis, 
Simon, and Grimes will be applied to engineer perhaps the 
most iconic feature of Boeing’s next great commercial 
airplane. However, this is not unusual since as previously 
mentioned, superb products are being engineered all over the 
world with exactly these same methods every day! 
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